KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Automatically Refining Low-Quality Domain Knowledge: A Case Study in Healthcare

Bielski, Pawel ORCID iD icon 1; Jendral, Sönke; Witterauf, Lena; Bach, Jakob ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning is an effective tool for diagnosis prediction on electronic health records (EHRs). To target the challenge of insufficient data for rare diseases, researchers have employed Domain Knowledge Guided Machine Learning (DKGML) to incorporate domain knowledge from medical taxonomies. However, existing research on DKGML in healthcare assumes a high quality of domain knowledge and its solely positive impact on predictions. It is unclear whether these assumptions always hold and what to do if not. To address this gap, we define low-quality domain knowledge in the particular context of DKGML. Based on this definition, we propose methods to detect and refine low-quality domain knowledge. Preliminary results suggest that our approach improves the prediction of rare diseases on the MIMIC-III dataset.


Originalveröffentlichung
DOI: 10.1007/978-3-031-74633-8_25
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Buchaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-031-74633-8
ISSN: 1865-0929
KITopen-ID: 1000177785
Erschienen in Machine Learning and Principles and Practice of Knowledge Discovery in Databases – International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part III
Verlag Springer Nature Switzerland
Seiten 361–367
Serie Communications in Computer and Information Science (CCIS) ; 2135
Bemerkung zur Veröffentlichung Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2023), Turin, Italy, September 18–22, 2023
Vorab online veröffentlicht am 01.01.2025
Schlagwörter Knowledge Graph, Quality, Refinement, Healthcare
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page