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Abstract

Human Pose Estimation for Robot Safety

In modern industrial manufacturing, the interaction of humans with robots becomes in-
creasingly important, as each can add individual strengths to the manufacturing process.
To be able to work together, humans and robots may no longer be physically separated
through the likes of safety fences. Without such a physical separation, human safety needs
to be ensured by other means. A standard procedure is to monitor the distance between
the human and the robot, stopping the robot safely if the human comes too close. Typi-
cally, distance monitoring is done through a safety laser scanner, which only monitors the
location of human legs. A more complete picture could be obtained through human pose
estimation, which detects keypoints across the whole human body.

The use of human pose estimation in its current form for such safety-critical, industrial
robot applications is prohibited by several factors. Most important are the requirements
of relevant safety standards for a sufficiently low error rate as well as hard real-time capa-
bility. Both must be achieved before human pose estimation can be used in safety-critical
industrial applications. In this work, both of these factors are addressed. Methods to re-
duce errors in human pose estimation are introduced, which are used to detect and filter
out incorrect keypoint predictions from human pose estimation methods. As each pre-
dicted keypoint position is affected by a measurement error of some degree, it is also
necessary to know the worst-case magnitude of the measurement error for a keypoint pre-
diction. Only then can the potential inaccuracy of a keypoint prediction be considered
by a safety-critical application. Therefore, additional methods are introduced to predict
an upper bound for the measurement error of each individual keypoint prediction. As a
factor that can significantly increase the occurrence of incorrect results, noise is specifi-
cally considered in this work. Its negative effect on human pose estimation and methods
of this work is highlighted. To counteract its negative effect, several countermeasures are
investigated. In addition to the previous contributions that focus more or less directly on
the error rate in human pose estimation, the hard real-time capability is also addressed.
To achieve hard real-time capability, a method is introduced that bridges the time between
the arrival of human pose estimation results and allows for a safe, hard real-time capable
distance calculation between human and robot.

Most methods are evaluated through experiments on the MPII Human Pose dataset. Meth-
ods for error reduction were able to significantly reduce previously undetected, false hu-
man pose estimation results. The prediction of correct and high-quality upper bounds
for the measurement error of keypoints predictions was possible in most cases. Further-
more, the impact of noise on human pose estimation and the methods of this work was
greatly reduced. The proposed method for achieving hard real-time capability was evalu-
ated through a theoretical comparison against a safety laser scanner. The results indicate
an advantage over this de-facto industrial standard for distance monitoring.
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Zusammenfassung

Human Pose Estimation für sichere Robotik

Für die moderne industrielle Fertigung wird die Interaktion zwischen Mensch und Robo-
ter zunehmen wichtig, da so beide ihre individuelle Stärken zum Fertigungsprozess bei-
tragen können. Um die Zusammenarbeit zwischen Mensch und Roboter zu ermöglichen,
dürfen sie nicht physisch getrennt werden, wie es bei Sicherheitszäunen und ähnlichen
Vorrichtungen der Fall ist. Ohne physische Trennung muss die Sicherheit des Menschen
jedoch nach wie vor gewährleistet werden. Ein gängiges Vorgehen um dieses Ziel zu er-
reichen ist die Abstandsüberwachung zwischen Menschen und Roboter, bei der der Robo-
ter vollständig gestoppt wird, falls der Mensch ihm zu nahe kommt. Üblicherweise wird
die Abstandsüberwachung mittels eines Sicherheits-Laserscanners realisiert, welcher le-
diglich die Position der menschlichen Beine detektiert. Um ein vollständigeres Bild der
Position des gesamten menschlichen Körpers zu erhalten, könnten Verfahren zur mensch-
lichen Posenschätzung - der Human Pose Estimation - eingesetzt werden, welche Schlüs-
selpunkte des gesamten Körpers - sogenannte Keypoints - detektieren.

Aktuell ist der Einsatz von Human Pose Estimation in sicherheitskritischen Teilen in-
dustrieller Robotikanwendungen aufgrund verschiedener Faktoren noch nicht möglich.
Maßgeblich sind vor allem zwei Faktoren, die sich aus relevanten Sicherheitsnormen er-
geben: Eine Fehlerquote, die gering genug ist, und harte Echtzeitfähigkeit. Im Rahmen
dieser Arbeit werden beide Punkte adressiert. Es werden Methoden zur Fehlerreduktion
in der Human Pose Estimation vorgestellt, welche zur Detektion und dem Entfernen von
falschen Ergebnissen für die Position von Keypoints eingesetzt werden. Darüber hinaus
ist jede Position die für einen Keypoint bestimmt wird mit einem Messfehler variabler
Größe behaftet. Damit die entsprechende Ungenauigkeit bei der Lokalisierung von Key-
points im Rahmen sicherheitskritischer Anwendungen berücksichtigt werden kann, ist es
nötig, dass der größtmögliche Messfehler bekannt ist. Um dieses Problem zu lösen wer-
den zusätzliche Verfahren eingeführt, die für jede berechnete Position eines Keypoints
eine individuelle Obergrenze für den Messfehler bestimmen. Ein Faktor der das Auftreten
falscher Ergebnisse stark begünstigen kann ist das Vorhandensein von Rauschen, welches
daher im Rahmen dieser Arbeit ebenfalls behandelt wird. Es werden verschiedene Maß-
nahmen untersucht, um den negativen Effekt von Rauschen auf Human Pose Estimation
und die im Rahmen dieser Arbeit vorgestellten Methoden zu verringern. Zusätzlich zu
bisherigen Beiträgen, die direkt oder indirekt auf die Verringerung der Fehleranfälligkeit
abzielen, wird das Problem der harten Echtzeitfähigkeit behandelt. Hierfür wird ein Ver-
fahren eingeführt, das die Zeit zwischen einzelnen Ergebnissen der Human Pose Estima-
tion sicher überbrückt. Darüber hinaus ermöglicht das Verfahren die hart echtzeitfähige
Distanzberechnung zwischen Mensch und Roboter.

Der Großteil aller Verfahren wird auf dem MPII Human Pose Datensatz evaluiert. Me-
thoden zur Fehlerreduktion waren in der Lage die Menge bisher unentdeckter, falscher
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Ergebnisse für Keypoints signifikant zu reduzieren. Beim Bestimmen individueller Ober-
grenzen für den Messfehler war es in den meisten Fällen möglich korrekte und qualita-
tiv hochwertige Obergrenzen zu berechnen. Der Einfluss von Rauschen auf Human Pose
Estimation und die Verfahren dieser Arbeit konnte durch geeignete Gegenmaßnahmen
signifikant reduziert werden. Das vorgeschlagene Verfahren zur Echtzeitfähigkeit wurde
im Gegensatz zu den anderen Verfahren durch einen theoretischen Vergleich mit einem
Sicherheits-Laserscanner evaluiert. Dieser theoretische Vergleich zeigte Vorteile des Ver-
fahrens gegenüber dem Sicherheits-Laserscanner auf, welcher de-facto ein Industriestan-
dard ist.
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1 Introduction

The manufacturing of goods has come a long way since its beginning: Initially, artisans
manufactured individual goods using simple tools. This individual manufacturing practice
was increasingly replaced by a more standardised manufacturing process and product
design, first through the introduction of machines and later through the use of assembly
lines, sacrificing product customization for higher productivity. This process reached its
peak through the introduction of industrial robots in such assembly lines. These robots
further increased the productivity and efficiency of the manufacturing process.

In contrast to most other machinery, robots had the drawback that humans could not work
safely alongside them due to their rather unpredictable movements and the high forces
they can exert. This led to the physical separation of humans and robots, most commonly
through the use of safety fences, preventing humans from entering the robot workspace.
As a result, the product had to leave the restricted robot working space whenever the
human had to perform a task and it had to reenter it for the robots to continue. Naturally,
this facilitates long sequences of either robot or human tasks, to keep these transitions
to a minimum. This makes the production process more rigid and prevents the use of
human dexterity and adaptability for single steps during the robotic task sequences in an
economical way.

Nowadays, manufacturers aim to increase product individualization while maintaining
productivity. This shall be achieved by breaking with the paradigm of human-robot sepa-
ration in factories to increase the flexibility of the production process and to combine the
advantages of humans and robots in human-robot collaboration. However, this desire for
a shared human-robot workspace poses new challenges to human safety, which must be
ensured at any time. One way to address the danger of robots in a shared environment is
to use robots that limit the force they can exert on humans, thus preventing injuries in the
event of a collision. However, such robots are only suitable for a subset of industrial tasks.
In the general case, it has to be assumed that the robot can injure the human if a collision
occurs. Here, it is necessary to measure and monitor the human’s position and to inter-
vene before a collision occurs, e. g., by safely stopping the robot when the human-robot
distance becomes too small.

When safeguarding a robot by monitoring the human-robot distance, the human detection
system must be reliable enough. This means that the system must not endanger the human,
e. g., because its results are incorrect or delayed. The strict requirements for such systems
are formalized in laws and standards and must be met before any system can be deployed.
This has led to the development of several specialized safety systems used for human
detection in safety-critical scenarios and imposes a high barrier to the introduction of new
technologies in this domain.
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1 Introduction

1.1 Motivation

Traditional safety devices for detecting an approaching human include e. g., safety mats,
light curtains, and laser scanners, where the latter can be viewed as a de facto industry
standard nowadays. A safety laser scanner can be used to monitor a two-dimensional area
called a detection zone [46], determining whether people and/or objects are inside. This is
especially useful when the monitored area is located around the robot’s workspace and is
parallel to the directions from which humans can approach. In such a case, the robot’s be-
havior can be safely adjusted based on the distance of the human to the robot’s workspace.
One common and safe way to adapt the robot’s behavior is speed and separation monitor-
ing (SSM) [48, 51], where the robot is slowed down as a human approaches, up to a full
stop of the robot if the human comes too close.

When using a safety laser scanner for SSM, the distance between the human and the
robot’s workspace is evaluated based on the intersection of the human with the two-
dimensional scan plane. This approach has two drawbacks:

1. A human entering the two-dimensional detection zone is detected at the position
where his body intersects with the detection zone. However, an intersection in two-
dimensional space is not representative of the whole body and thus not of the true
distance between the human and the robot’s workspace. For safety, the worst case
has to be assumed: The human is significantly closer to the robot than the detected
position suggests, i. e., the human stretches his hand towards the robot. As a result,
the robot has to slow down and stop earlier than it would be necessary in most cases,
since the full, three-dimensional position of the body is not known.

2. A laser scanner indiscriminately detects any intersection of a large enough object
or being within the detection zone. This means that not only humans, but also
autonomous vehicles and other objects can trigger a slowdown or safety stop when
entering the detection zone, resulting in unnecessary loss of productivity.

Recent developments in safety technology try to address these shortcomings: The PILZ
SafetyEYE® [97] is a safe camera system that can be placed above a work cell that re-
quires monitoring. In contrast to the safety laser scanner, it can monitor 3D space, resolv-
ing the first downside. Safety radar systems like safeRS [114] go in a similar direction:
They can monitor a 3D volume directly in front of them, originating from the radar device
and contained by horizontal and vertical aperture angles. Similar to the SafetyEYE®, they
address the first drawback. In the case of safeRS, the second drawback is also partially
addressed by the capability to filter out falling objects [114]. The most recent addition to
the field of safety technology is the Veo FreeMove® [126] safety system. It uses multiple
time-of-flight cameras to monitor a robot work cell in 3D. Furthermore, it can discrimi-
nate some large, tracked objects, like workpieces, from humans, thus not only addressing
the first drawback but also starting to work on the second one.

Potential solutions that could address both drawbacks sufficiently can be found in the field
of computer vision. One of these potential solutions is human pose estimation (HPE).
Methods from this domain detect important keypoints of the human body, which are dis-
tributed all over the human body and thus approximate the body position as a whole.
Furthermore, the methods in this domain are explicitly designed for human detection and
do not suffer from the risk of detecting objects and other entities due to the design of the
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1.2 Goal

detection mechanism. However, recent methods based on neural networks are neither reli-
able enough nor suitable for hard real-time capability, making them currently inapplicable
in the safety domain.

1.2 Goal

The goal of this work is to bring human pose estimation closer to being applicable in
the safety domain by making human pose estimation methods more reliable. The focus
lies on the SSM application, where human pose estimation could perform the task of de-
termining a human’s position. Achieving higher reliability involves addressing several
safety-relevant aspects, including (i) the reduction and/or detection of previously unde-
tected errors made by human pose estimators, (ii) the determination of upper bounds for
the distance between keypoint detections and actual keypoint locations (i. e., an estimation
of measurement errors) and (iii) the achievement of hard real-time capability.

Whenever possible, these aspects are addressed for the basic task of 2D single-person
human pose estimation in single images. The whole area of human pose estimation is
much broader: The task can be performed in 2D and 3D, for single or multiple people,
and based on single data points or data sequences. However, since little attention has been
paid to the safety of human pose estimation so far, it is reasonable to address the task in
its most fundamental form before considering more advanced variants, which bring their
own opportunities for improving reliability, but also additional challenges.

Throughout this work, the following research questions are addressed:

• How can previously undetected errors of a human pose estimator be detected, ide-
ally in a general way without making any assumptions about the internal function-
ality of the human pose estimator?

• How can an upper bound for the distance between a keypoint detection and the
actual keypoint location be determined?

• How can noise occur and affect human pose estimation in safety-critical industrial
robot applications, and how can its impact on human pose estimation be handled?

• Assuming that the typical human pose estimator will not be capable of hard real-
time, how can hard real-time capability be ensured for human-robot distance moni-
toring in SSM based on human pose estimation results?

1.3 Outline

The content of this thesis is organised as follows:

Fundamentals: In Chapter 2, the common foundation for different aspects of this work is
laid out by giving an overview of the requirements and principles for safety in industrial
applications. This includes an introduction to relevant laws and associated safety stan-
dards. It is highlighted how these standards apply, and which requirements arise from
them that have to be considered for this work.
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1 Introduction

Related Work: In Chapter 3, an overview of current research from several research ar-
eas related to this work is given. Recent methods, datasets, and evaluation metrics for
human pose estimation are reviewed, highlighting differences and similarities. Next, dif-
ferent approaches to robot safety are discussed, especially focusing on the use of human
pose estimation in such applications. Conceptual shortcomings of selected human-pose-
estimation-based approaches regarding legal compliance are highlighted. Last, methods
from the field of neural network uncertainty are introduced, which are a means of assess-
ing the reliability of neural network results.

Error Reduction: In Chapter 4, diversity is introduced as a way to reduce errors of recent
human pose estimators, without making any assumptions about their outputs apart from
keypoint positions. A threshold-based comparison of results is performed for multiple
results from different networks, and mismatching detections are discarded. A method for
calculating these comparison thresholds, based on a general human body model and re-
dundant keypoint detections, is proposed. Furthermore, methods for error detection based
on heatmap activations are introduced and investigated. Experiments are performed to
evaluate the potential of the methods regarding the elimination of human pose estimation
errors.

Measurement Error Estimation: In Chapter 5, the common definition of correctness in
human pose estimation is put into question for safety purposes. It is replaced by a for-
mulation based on the prediction of measurement errors with additional quality criteria
ensuring meaningful results. This allows the prediction of an area containing the keypoint
at inference time in contrast to simple point predictions with unknown error magnitudes.
Several ways for predicting the measurement error alongside the keypoint position are
investigated and evaluated. Proposed methods build either directly on the current mea-
surement error or on the prediction of probability distributions.

Impact and Handling of Noise: In Chapter 6, the necessity of handling noise in safety-
critical industrial applications is explored, based on special conditions that apply there.
Due to the existence of closely defined environmental conditions and a mandatory risk as-
sessment, it can be assumed that only previously known types of noise can occur in safety-
critical industrial applications – making countermeasures against specific noise types a vi-
able choice. Through experiments, the impact of noise on classic human pose estimation
and the previously introduced adaptations is shown, and countermeasures in the form of
denoising and training against noise are examined.

Real-time capable distance monitoring: In Chapter 7, hard real-time capable human-
robot distance monitoring is explored, without the need for a real-time capable human
pose estimator. Instead, a bridging algorithm for previously detected human body key-
points is introduced, adapting them over time in a way that is compliant with safety stan-
dards. Through these alterations as well as human and robot volume modeling based on
spherical cones, it is possible to calculate distances between humans and robots in hard
real-time under the assumption that the number of humans and robots is limited. Further-
more, the methodology ensures continuous distance changes.

Discussion, Outlook and Conclusion: In Chapter 8, the methods and results regarding
error reduction, measurement error estimation, and hard real-time capability are discussed
with respect to the ultimate goal of making human pose estimation applicable as a part of
safety-critical industrial applications. Achievements are highlighted, together with further
necessary and optional improvements and additions.
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2 Fundamentals

2.1 Safety-Related Laws

The contents of this work are primarily motivated by the legal requirements for robot and
machine safety, which are imposed by laws and standards. However, laws and associated
safety requirements can vary from country to country, making it necessary to choose one
consistent definition for further investigation. For this work, the safety requirements of the
European Union (EU) are chosen for two reasons: (i) the EU is well-known for pursuing
a high level of safety when it comes to the operation of robots and machines, hence being
a suitable choice for safety requirements, and (ii) the EU has put considerable effort into
harmonizing safety-related laws of different member states [26], thereby creating a legally
binding definition of safety which is applied in many countries.

Within the European Union, there are five different types of legislation, which are defined
by the Article 288 TFEU [29] and further elaborated by official EU sources [20]:

1. Regulations: A legally binding legislation for all member states. It defines what
has to be done and must be directly and entirely applied.

2. Directives: Another legally binding legislation for all member states. It defines
common goals that must be achieved but are enforced through national legislation.

3. Decisions: A legally binding legislation very similar to the regulation that is limited
in its scope, e. g., applies to a single member state only.

4. Recommendations: A legally non-binding legislation with limited scope. Used to
communicate the position and desired action of the EU regarding specific topics.

5. Opinions: Similar to recommendations, but only used to communicate the position
of individual EU institutions and the likes on a topic without a desired action.

Safety-related legislation in the EU is typically pursued through directives [25, 26, 27, 28].
This is also the case for the safety of machinery, which is formalized in the Directive
2006/42/EC of the European Parliament and of the Council [26] on the European level,
commonly referred to as Machinery Directive. Taking Germany as an example, the re-
quired national laws implementing the directive are the Product Safety Act [31] and the
Ninth Ordinance on the Product Safety Act [32].

To ensure safety, the Machinery Directive [26] defines in Appendix I the essential health
and safety requirements (EHSRs) that must be fulfilled for a machine if they apply.
Whether or not a specific EHSR applies depends almost always on potential hazards orig-
inating from the machine. This means that most EHSRs are directly linked to hazards.
A notable exception is the general requirement for a risk assessment that always applies.
One of the goals of the risk assessment is to identify all potential hazards of a machine,
which in turn indicate the relevant EHSRs. Once identified, the relevant EHSRs must be
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2 Fundamentals

fulfilled. To help with meeting the EHSRs, the Machinery Directive provides the option
to employ so-called harmonized standards. When applied correctly, they provide the pre-
sumption of conformity with the EHSRs covered by them [26], hence being a helpful tool
for achieving conformity with legal requirements. Defined at the European level [21], they
provide a coherent technical means across all member states for approaching EHSRs.

2.2 Harmonized Standards

Throughout this section, a more detailed introduction to harmonized standards and their
application will be given. A European harmonized standard is a technical specification
that was created at the request of the European Commission to a standardization orga-
nization (CEN, CENELEC, or ETSI) with the goal of assisting the fulfillment of legal
requirements [21, 26]. Such standards can be applied for this purpose as soon as they
have been published in the Official Journal of the European Union, leading to the pre-
sumption of conformity with legal requirements when done right [26]. In the context of
the Machinery Directive, central legal requirements are the EHSRs that must be met to
achieve safety. This involves several steps [26]:

1. Carry out a risk assessment during which hazards of the machine are identified.

2. Identify the EHSRs corresponding to those hazards.

3. Employ measures to meet the EHSRs e. g., apply harmonized standards.

The role of harmonized standards in these steps is to provide solutions that help to meet
the EHSRs in the form of e. g., processes that must be followed or properties a machine
must have. In simple words: While the Machinery Directive defines (through EHSRs)
which goals have to be fulfilled, the harmonized standards outline how to fulfill these
goals through technical procedures, measures, and properties.

After clarifying what harmonized standards can be used for, the question of how to apply
them correctly remains. This is especially interesting, as the Machinery Directive has a
vast amount of harmonized standards [22] but gives little to no guidance on how to use
them, apart from the requirement that the harmonized standards have to cover EHSRs
for the presumption of conformity [26]. More details on the application of harmonized
standards can be found in the ISO 12100 standard [47]. This standard is harmonized with
the machinery directive and introduces a general structure for harmonized standards of
the Machinery Directive [47]: Each harmonized standard is either classified as type A,
B or C standard, with B further distinguishing between B1 (for safety aspects) and B2
(for safety equipment) standards. The most general form is the type A standard, which
introduces e. g., general principles for safety. It is both broad in scope of topics and
devices it applies to, but not highly detailed. In contrast, type B standards are detailed and
broad with respect to the kinds of machines they apply to, but the safety-relevant topic is
narrow in its scope (e. g., one kind of safety aspect or equipment). On the contrary, type
C standards are narrow with respect to the kinds of machines they address (e. g., single
kind of machine) but are broad and detailed in the types of safety aspects they address.
When applying standards, the type C standard always has priority if one exists for the
machine [47]. In turn, this means if no type C standard exists or some safety-critical
aspects are not covered by the type C standard, then type A and B standards have to be
applied. In the following, standards relevant to this work will be introduced.
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Figure 2.1: ISO 12100 [47] process for determining and handling risks (simplified).

2.2.1 ISO 12100

The ISO 12100 standard [47] is the only type A standard for the safety of machinery that is
currently in effect [22]. Thus, it is the central document that details the general principles
and procedures for machine safety. Its most important contribution is a procedure for de-
termining hazards and reducing risk, which is a fleshed-out version of the risk assessment
steps of the 1. General Principle in Annex I of the Machinery Directive [26].

Not all the details of this procedure are required for this work, a more rudimentary under-
standing will suffice. A sufficiently simplified version of it is shown in Figure 2.1. The
(iteratively performed) steps highlighted there comprise the following activities [47]:

1. Determine the Limits of the Machinery: The limits of the machinery are de-
termined first, including e. g., potential interactions with the machine, application
areas, and environmental conditions. Intended use and foreseeable misuse have to
be considered. The limits form the foundation for assessing hazards and risks.

2. Determine Hazards and Analyze Risks: Next, potential hazards have to be iden-
tified based on the limits of the machinery. Normal operation, foreseeable misuse,
and defective machine behavior (e. g., induced by external factors) shall be consid-
ered. For each identified hazard, the associated risk has to be determined, based on
the probability of occurrence and the potential damage inflicted.

3. Judge if the Risks are Sufficiently Reduced: It has to be judged whether each risk
is sufficiently low, or if additional risk reduction measures are necessary.

4. Employ Measures to Reduce Risks: If the risks are not sufficiently low, measures
for risk reduction must be taken. These are (i) changing the machine’s design, (ii)
adding external technical safety measures, and (iii) informing the user about the risk
(e. g., warning signs or noise). For the given order, the first viable solution has to
be taken to eliminate risks as early as possible. Then, the whole process is repeated
because of potential new limits, hazards, and risks.

The mandatory nature of this procedure leads to unique conditions that set the industrial
application of robots and machines apart from an application in the wild: (environmental)
conditions that the machine can encounter during operation are closely defined by the
limits of the machinery, and all hazards with non-neglectable risk that require handling are
identified. This guides the choice of risk-reduction measures to achieve safety. However,
no detailed risk-reduction measures are introduced by ISO 12100. These are subject to
specialized type B and C standards, such as those introduced in the following.
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Figure 2.2: Performance levels and their right-open PFH intervals as in ISO 13849-1 [53].

2.2.2 ISO 13849

The ISO 13849 standard is a B1 standard split in two parts: ISO 13849-1 [53] and ISO
13849-2 [50], that deal with the design and validation of safety-related parts of control
systems respectively. Within the context of these standards, a part of a control system
is considered safety-related when it is used as part of a safety function, which in turn
is a function employed as a measure for risk reduction with the property that the risk is
increased if it malfunctions. An example of such a safety function would be the safe ad-
justment of a robot’s speed based on a sensor output monitoring the human-robot distance.
Here, a malfunction could lead to a prohibitive high speed of the robot in the vicinity of a
human. The ISO 13849-1 standard covers a broad range of requirements for and aspects
of safety functions. Those regarding reliability are of special interest for this work.

The reliability of a safety function is indicated through its performance level, as intro-
duced by ISO 13849-1 [53]. It categorizes safety functions by five different levels a-e,
with a having the weakest and e having the strongest demands for reliability. To assess
the reliability, the average frequency of a dangerous failure per hour (PFH) is employed.
Figure 2.2 shows the relation between performance level and PFH. The performance level
required for a specific safety function depends on several factors, e. g., the severity of pos-
sible injuries and the ability to prevent an injury even if the safety functions fail (e. g., if
the human can leave the danger zone in time). Guidance on determining the necessary per-
formance level is available in ISO 13849-1, while other standards like ISO 10218-1 [48]
demand a certain performance level for all safety functions used in a specific context.

Another relevant aspect discussed by ISO 13849-1 is the use of redundancy and diversity,
where the latter can be described as a special form of redundancy that requires the same
functionality to be provided in different ways (e. g., use of different sensor data types,
different algorithms, ...). Both concepts are introduced as useful tools for increasing the
reliability of safety functions by decreasing the probability that a system malfunctions,
e. g., by detecting errors through the comparison of redundant or diverse results. Diversity
is furthermore highlighted as an effective measure against common cause failures, where
the same cause leads to a malfunction of separate (redundant) parts of a safety function.

2.2.3 ISO 13855

The standard ISO 13855 [46] is a type B1 standard that is focused on the correct placement
of a variety of protective equipment that is mostly but not exclusively non-separating.
A notable portion of the standard is dedicated to electro-sensitive protective equipment,

8



2.2 Harmonized Standards

Assumed movement speed K Applicable for
2.0 m/s Hands and arms
1.6 m/s Remaining body and walking motion

Table 2.1: Movement speeds defined by ISO 13855 [46] as well as their target application.

which includes the likes of laser scanners and camera systems. Such devices are used to
ensure that a minimum distance between a robot and a human is kept, and that the robot
can be brought to a safe stop if this distance gets violated. To make sure a safe stop can
be adequately achieved, the standard introduces different ways to calculate the minimum
distance, based on the sensor placement and further information. For this work, two
elements of ISO 13855 are especially relevant: The way safety distances are calculated,
as well as the way human movement is factored into this calculation.

Regarding human motion, the standard introduces proven in-use constant values that can
be applied to calculate the distance a human can traverse in a certain amount of time.
Depending on the placement of protective equipment, two different values for the human
speed K are used: 2.0 m/s whenever the detection of the hand or arm is crucial, and
1.6 m/s whenever other parts of the body are detected. The draft for an updated version
of ISO 13855 [52] explicitly highlights them as values for hand/arm and walking motion
respectively. Table 2.1 also displays these values. Depending on this speed, the necessary
minimum distance that has to be kept is calculated by the following formula [46]:

S = (K × T ) + C (2.1)

Hereby, the factor K is the aforementioned human movement speed that is assumed, T
is the worst-case time that is needed to detect the human and subsequently fully stop the
robot, and C is an additional factor that indicates how far a human can bypass protective
equipment before he is detected (e. g., by reaching over a plane monitored by a laser
scanner). Overall, this formula gives a general way for calculating safety distances, which
can be further detailed out for specific applications, as done by e. g., ISO/TS 15066 [51].

2.2.4 ISO 10218 and ISO/TS 15066

The standard ISO 10218 is a type C standard exclusively focused on industrial robots,
split into two parts. The first part, ISO 10218-1 [48], focuses on the safety of industrial
robots themselves, while the second part, ISO 10218-2 [49], focuses on safety aspects
that arise when integrating them into their final application. For this work, important
aspects of ISO 10218 include the definition and demand for safety-relevant functionalities
of industrial robots, as well as the formulation of possible human-robot interaction modes
together with necessary requirements for them.

Looking at human-robot collaboration (HRC), ISO 10218-1 outlines four potential ways
to enable a human to share a common workspace with the robot [48]:

1. Safety-Rated Monitored Stop: In this HRC mode, it is necessary to detect when
the human is inside the shared workspace. When the human enters, the robot has to
stop completely, and remain this way until the human leaves.

2. Hand Guiding: In this HRC mode, the human can move the robot by hand while
its speed is limited in a safe way.
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3. Speed and Separation Monitoring (SSM): In contrast to the safety-rated moni-
tored stop, this HRC mode allows the robot to continue operation while both, hu-
man and robot, are inside the shared workspace. A safe distance between human
and robot must be maintained, otherwise the robot must be stopped. This makes it
necessary to detect the human and calculate the human-robot distance in a safe way.

4. Power and Force Limiting: The last mode for HRC allows humans and robots to
share a workspace without an immediate stop. This is achieved through a safe way
of limiting the force that the robot can exert on the human. It is necessary to monitor
the robot’s (potential) forces and to stop the robot safely if limits are exceeded.

SSM is the scenario motivating this work. For it to be used in the HRC context, both
ISO 10218-1 and ISO 10218-2 require the safety functions used to implement it to have
PL d (see Figure 2.2). For the calculation of the necessary safety distance, ISO 10218-1
refers to the contents of the previously presented ISO 13855. For further information
on how to actually implement the SSM mode, both ISO 10281-1 and ISO 10281-2 point
towards the (not harmonized) technical standard ISO/TS 15066 [51].

Overall, ISO/TS 15066 puts very few restrictions on the implementation of SSM, e. g., by
not directly limiting the kinds of devices that can be employed. In any way, a (minimum)
protective separation distance between human and robot has to be maintained, otherwise
the robot has to be stopped in a safe way. Mandatory prerequisites regarding the robot
include a safe way to limit the robot’s speed, a safe way to stop the robot, and, depending
on the way SSM is implemented, a safe way to limit the area the robot can reach. Regard-
ing associated safety functions, PL d is mandated. To calculate the protective separation
distance, ISO/TS 15066 expands on Eq. (2.1) and introduces the following formula [51]:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr (2.2)

In this formula, Sp(t0) refers to the protective separation distance for a certain point in
time t0, indicating a potential time dependence. Whether or not Sp(t0) can actually change
over time is up to how the SSM application is designed, with ISO/TS 15066 leaving both
possibilities open. The factors contributing to Sp(t0) are defined as follows [51]: Sh is the
distance the human can traverse in the direction of the robot during the time that is needed
to detect the human and then fully stop the robot. Sr is the distance that the robot can
traverse in the direction of the human during the time necessary for human detection and
signaling the robot to stop. Similarly, Ss is the distance the robot can traverse towards the
human from start to finish of the stopping process. C denotes a surcharge to the protective
separation distance for body parts that are not detected (see ISO 13855). Zd and Zr

are both surcharges for the (maximum) measurement error in human and robot position
respectively. It is left open whether Sh, Sr, and Ss employ dynamic speed functions or
static speed limits for movement speeds, but worst-case assumptions have to be made.

For this work, the following conclusions can be drawn from ISO 10218 and ISO/TS 15066
for the use of human detection approaches as part of a safety function in SSM:

1. The approach must have PL d, meaning it must fulfill high requirements regarding
its reliability under foreseeable conditions during operation, as shown in Figure 2.2.

2. The approach must be capable of hard real-time, as the time the human detection
process takes must be limited to allow the calculation of Sh and Sr.

3. There must be a way to determine the worst-case measurement error of the human
detection approach to supply the value Zd for the protective separation distance.
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3.1 Human Pose Estimation

Throughout this section, an overview of the task of human pose estimation and its dif-
ferent forms will be given, together with an introduction to different datasets and evalua-
tion metrics. Afterward, selected human pose estimation approaches with high relevance
for this work will be examined in more detail. Due to the overwhelming performance
advantage of deep-learning-based approaches compared to handcrafted ones on popular
datasets [115], the latter will not be part of this section. The overall focus of this chapter
lies on the problem of 2D single-person human pose estimation on single images and its
application in more advanced tasks, as it is the primary form of human pose estimation
used in this work.

3.1.1 General

The task of human pose estimation aims at ’estimating the configuration of the human
body’ [115], which is in recent approaches typically done through the estimation of the
position of important human body keypoints [12, 78, 79, 86, 115, 131, 143, 144, 146].
Hence, in most cases, human pose estimation constitutes a localization problem of a fixed,
predefined set of points. This broad definition comprises a variety of more specialized task
definitions for human pose estimation, which are used to distinguish human pose estima-
tion approaches alongside the employed methodology. The first widely used criterion to
distinguish between human pose estimation approaches is whether they are aimed at 2D or
3D human pose estimation [35, 147], with entire surveys/reviews focused on one of both
areas [18, 130]. This separation is further reinforced by popular human pose estimation
datasets, which have either a clear focus on 2D human pose estimation [3, 58, 70, 104] or
3D human pose estimation [55, 127]. In this work, the separation of human pose estima-
tion approaches into 2D and 3D for classification will also be employed.

For the field of 2D human pose estimation, there exists a widely agreed on taxonomy for
approaches [18, 35, 147]: First, approaches are distinguished based on whether they aim
to detect a single person (2D single-person human pose estimation) or multiple people
(2D multi-person human pose estimation) in a given image. In the field of 2D single-
person human pose estimation, the task of the human pose estimator is to only infer the
keypoint coordinates belonging to a single individual, either from a single-person image
or an image crop of a single person. In contrast, the keypoints of an arbitrary number of
individuals has to be detected in 2D multi-person human pose estimation. This does not
only include the detection of keypoint positions and the correct number of individuals, but
also the association of each keypoint with a specific individual.

Looking closer at 2D single-person human pose estimation, approaches for this problem
are typically categorized by the prediction mechanism they employ [18, 35, 147]: either
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direct keypoint regression or heatmap prediction. When performing direct keypoint re-
gression, the neural network is structured in a way that it directly calculates a result ŷ
that contains the estimated N keypoint positions for a given individual, thus ŷ ∈ RN×2.
Networks for this task start by processing spatial image data in the form of an input im-
age or image crop. At some point in the network, the spatial dimensions are typically
dropped, with one or more fully connected layers being employed before the final re-
sult is produced [12, 78, 125]. Typically, these kinds of networks are trained in a way
that minimizes the difference between annotated and predicted keypoint positions (end-
to-end training), which can be achieved through the application of a suitable loss function,
like the L2-loss [12, 125]. Let, y ∈ RN×2 denote the annotated keypoint positions, and
yi ∈ R2 the position of the i-th keypoint, with a likewise definition of ŷi for predictions.
Then, the loss for a single person can be formulated as [125]:

L2(y, ŷ) =
N∑
i=1

||yi − ŷi||22 =
N∑
i=1

(yi − ŷi)
2 (3.1)

The alternative to direct keypoint regression is heatmap prediction [18, 35, 147]. While
approaches for direct keypoint regression sacrifice the spatial dimensions of the input
image at some point in the prediction process, the heatmap-based approaches retain them
until the final outputs of the network are produced. These outputs are the name-giving
heatmaps. They have the same spatial axes as the input image, however, the actual spatial
resolution may differ (for example, Newell et al. [86] use an image resolution of 256×256
and a heatmap resolution of 64×64 while operating on the MPII Human Pose dataset [3]).
Typically, one heatmap ĥi for each keypoint i of the human is produced. The contents of
a heatmap for a single keypoint are pixel-wise pseudo-probability scores, indicating how
likely the keypoint is located at each pixel location. The final keypoint location required
for the human pose estimation task has to be inferred from the heatmap in post-processing
through a post-processing function fp. The simplest approach to realize this would be to
use the heatmap coordinates with the highest heatmap value – thus the highest keypoint
probability – and to backproject the coordinates into the original image. Mathematically,
this could be expressed as follows for a single keypoint i:

x̂i, ŷi = fp(ĥi)

e. g., x̂i, ŷi = T−1(argmax
u,v

(ĥi[u, v]))
(3.2)

In this equation, T refers to a transformation from the original image to the heatmap,
hence T−1 backprojects the keypoint locations from the heatmap into the original image.
Using the location of the heatmap maximum as a foundation for inferring the final key-
point position is widespread in heatmap-based approaches [35], with Newell et al. [86] for
example using a combination of the maximum position and of the position of the highest-
valued neighboring pixel. To ensure that the heatmap-based approaches learn meaningful
pseudo-probabilities, a suitable ground truth heatmap hi is necessary for every keypoint i
during the learning process. These are generated by applying a spatial filter – most often a
2D Gaussian – at the location of the keypoints in the heatmaps [35, 147]. This procedure
rewards the neural network for heatmap activation ĥi[u, v] > 0.0 not only directly at the
location of the keypoint, but also in its vicinity. The neural network is then trained to
predict these heatmaps by minimizing the difference between predicted and ground truth
heatmaps, e. g., through the application of the mean squared error (MSE) [86, 117, 147],
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Figure 3.1: Illustration of a regression and heatmap-based approach, both processing an
input image. The regression-based approach directly produces its output ŷ in form of
coordinate tuples (x̂i, ŷi) with i ∈ [1, 2, ..., N ] for each of N human keypoints. In contrast,
the heatmap-based approach produces an output ĥ of N heatmaps, each having width
W ′ and height H ′. The keypoint positions have to be inferred through a separate post-
processing step.

a variant of the L2 loss that is normalized based on the number of elements it is calculated
for. In case of using the MSE, the loss function for the predicted and annotated heatmaps
ĥ and h of a single input is calculated as follows, with W ′ and H ′ denoting width and
height of the heatmaps and ĥ,h ∈ RW ′×H′×N :

MSE(h, ĥ) =
1

N ·W ′ ·H ′

N∑
i=1

W ′∑
u=1

H′∑
v=1

(hi[u, v]− ĥi[u, v])
2 (3.3)

When comparing both approaches from a theoretical standpoint, each has some advan-
tages over the other. Direct regression allows for a highly precise prediction of the key-
point position due to direct coordinate regression, while heatmap-based approaches are
limited by the discretization and resolution of the heatmap [18, 147]. Another advan-
tage of regression-based approaches is the possibility to train them in an end-to-end fash-
ion [18, 35, 147] – a property that heatmap-based approaches usually lack due to the use
of non-differentiable post-processing steps like the application of argmax as displayed in
Eq. (3.2) [35]. On the other hand, the spatial nature of heatmaps with non-zero values
near the keypoint location offers better supervision during training [35, 147]. In practice,
heatmap-based approaches are typically superior in terms of keypoint prediction perfor-
mance [35, 147] and are used more often [147], hence being the dominant strategy of the
last years. The keypoint prediction with both approaches is illustrated in Figure 3.1.

Next, the task of 2D multi-person human pose estimation will be examined in greater
detail [18, 35, 147]. Compared to the single-person case, multiple people are present
in an image, and image crops containing single individuals are not available by default.
This leads to additional challenges: (i) the number of keypoints and total human poses
that have to be detected is no longer known for an image, and (ii) it is not sufficient to
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only detect all keypoints in an image, but it is also necessary to associate them with the
different individuals. In general, there are two ways in which this problem can be tackled:
top-down and bottom-up. Top-down approaches try to resolve the problem by locating
all individuals in an image first and then predict the keypoints for them individually. In
contrast, bottom-up approaches try to predict all keypoints present in an image first, and
then group them based on the individual they belong to. This separation of approaches
is also used to classify 2D multi-person approaches. Not covered by this taxonomy is
a small set of relatively new approaches [89, 111, 121], that try to break with the two-
stage paradigm laid down by both top-down and bottom-up approaches. Instead, these
approaches aim to solve the problem directly with a single stage in end-to-end fashion.

First, a more detailed description of the top-down approach will be given [18, 35, 147].
As mentioned before, these approaches have two tasks to solve, (i) the localization of
different individuals in an image and (ii) the prediction of keypoints for each of these
individuals. These tasks are solved one after another through a two-stage pipeline. The
location of different individuals is obtained in a first step, where a human detector is ap-
plied to the input image. Then, a single-person human pose estimator is applied at the
position of each human. Many approaches [9, 67, 68, 117, 134, 137] realize this proce-
dure by employing an established bounding-box object detector like faster RCNN [101]
or MegDet [95] and focus their efforts on the (single-person) human pose estimator that
is applied inside the detected bounding boxes afterward. An exception to this is e. g., the
work of Feng et al. [30], who focused on obtaining a more accurate localization of the
individuals in an image before predicting the final keypoint locations, as a good localiza-
tion of the whole individual is important for the actual human pose estimation afterward.
Overall, top-down approaches can be seen as natural extension of 2D single-person human
pose estimation with an additional step for human localization.

Second, the bottom-up approach will be introduced [18, 35, 147]. Here, the two tasks that
have to be solved are (i) the localization of all keypoints present in an image, and (ii) the
association of these keypoints with different individuals. Just like top-down approaches,
bottom-up approaches solve these problems in consecutive steps. However, contrary to
top-down approaches, the outputs necessary to solve both consecutive tasks are typically
calculated by a single neural network instead of two separate ones. Approaches like Open-
pose [10] or PifPaf [63] employ a single neural network to predict two sets of spatial maps:
One set that is first used to obtain the keypoint locations in the image, and another set that
is used afterward to predict the connectivity of keypoints used for the association of key-
points with individuals. Both approaches use specialized architectures to achieve this.
Instead of focusing on keypoint connectivity, Newell et al. [87] predict labels indicative
of human instances (called associative embeddings) directly, also through an additional
set of spatial maps. These labels are one-dimensional vectors, and the distance between
predicted label vectors is used to associate keypoints with individuals. In contrast to Pif-
Paf and OpenPose, no highly specialized architecture is required. It is sufficient to adjust
the output layers and training procedures of existing heatmap-based single-person human
pose estimation approaches, as e. g., done by HigherHRNet [14].

Looking at the overall relevance of 2D single-person human pose estimation for the multi-
person task, it can be said that the direct application of existing methods is highly relevant
for top-down approaches, with a powerful single-person human pose estimator being cru-
cial for the success of the multi-person method. In contrast, the direct application of a
single-person method trained to detect a single set of keypoints is not possible for bottom-
up methods. However, with slight adjustments (e. g., training heatmap-based approaches
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Figure 3.2: The taxonomy of 2D human pose estimation outlined by multiple surveys and
reviews [18, 35, 147] that is also used in this work.

to detect all keypoint instances instead of a single one [87]) and minor extensions (like
associative embeddings), it is possible to make some of them applicable. However, in
the presence of more specialized architectures and necessary adjustments, they are not as
relevant for bottom-up approaches as for top-down approaches.

A full overview of the presented taxonomy for 2D human pose estimation used in this
work is shown in Figure 3.2. One additional factor that can be used to distinguish human
pose estimation methods not covered by this taxonomy is whether the input data are single
images (like in the previously presented cases) or sequences of images (videos). Following
the definitions from the PoseTrack dataset [4], human pose estimation in videos is the task
of determining the poses of humans in a single image (called key frame), when preceding
and subsequent images from a video are available. This task is not to be confused with the
more advanced problem of pose tracking, where multiple images from videos are available
as input as well. However, instead of predicting poses in single images, the task involves
the prediction of temporal consistent poses across all images from an image sequence,
as well as the consistent association of poses (and keypoints) with individuals [4]. For
the problem of human pose estimation in videos, the simple solution would be to employ
methods working on single images, discarding the temporal information. However, to
achieve better results, specialized approaches that incorporate temporal information were
developed. To incorporate motion between different frames into the prediction process,
some methods rely on separately calculated motion representations like optical flow, for
example to align outputs for different images [96] or to support the prediction process
itself directly [56]. Other approaches [74, 75] directly process multiple images from the
image sequence to predict results for the key frame.

Although this work is primarily focused on 2D single-person human pose estimation, a
brief overview of 3D human pose estimation will be given, with the goal of presenting the
research area of human pose estimation as a whole and highlighting potential applications
of 2D methods in this advanced task. Like 2D human pose estimation, the task of 3D hu-
man pose estimation aims at the correct localization of important human body keypoints
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such as joints, with the difference that it is now performed in 3D space [130, 147]. In con-
trast to 2D human pose estimation, there is no single taxonomy that is widely agreed on.
For example, on the first level, Zheng et al. [147] distinguish whether 3D human pose es-
timation is performed on images (including both, single images and image sequences) or
on other sources, Wang et al. [130] distinguish between the use of single images and im-
age sequences, and Gamra et al. [35] distinguish between single-person and multi-person
methods. Despite these differences in building up a taxonomy, common factors are used
to categorize different methods in these works. Thus, instead of building up yet another
taxonomy in this work, these factors will be quickly discussed in the following.

As a first factor to classify 3D human pose estimation approaches, the general strategy
used to obtain keypoints will be discussed. Overall, three different methods can be dis-
tinguished [130, 147]. First is direct regression, where the 3D position of keypoints is
directly predicted. For example, Zhang et al. [144] propose a neural network architecture
consisting of two parts, a convolutional neural network (CNN) for extracting image fea-
tures from multiple input images taken from different views, and a transformer network to
predict 3D keypoint positions directly based on the extracted features. As a feature extrac-
tor, they employ the existing 2D human pose estimation architecture of Xiao et al. [134].
Second is the lifting from 2D to 3D strategy. Approaches following this strategy use a
two-stage procedure, where a 2D human pose estimator is employed in the first stage to
obtain a 2D pose representation, which is afterward used in a second stage to infer 3D
keypoints. A well-known example of such approaches is the work of Martinez et al. [80].
For calculating 3D keypoints, they build upon the 2D keypoint positions obtained from
an existing 2D human pose detector. These 2D keypoint positions serve as only input for
their simple network architecture for predicting 3D keypoint locations, consisting of two
fully connected layers and two residual blocks based on fully connected layers. Having
2D keypoint locations as only input for the network that predicts the 3D locations makes
this approach highly reliant on the 2D human pose estimator. Third is the use of para-
metric body models that represent the body shape through a 3D mesh, with the SMPL
model [76] being a popular example of such models. Instead of predicting the location of
keypoints, the parameters of the parametric body model [60] or the resulting mesh [62] are
predicted. Then, 3D keypoint locations can be obtained, e. g., through the application of
a learned regression matrix on the vertices of the body mesh produced by the parametric
body model [76]. An example of approaches that employ parametric body models is the
work of Kolotouros et al. [62], who use a CNN for extracting features from images that
are used as input for a graph neural network, in which each node calculates the location
of one vertex of the SMPL mesh model. 3D keypoint locations are inferred through the
official regression matrix provided by SMPL. Another example is the work of Kamazawa
et al. [60]: they also extract features from images by using a CNN first, but then infer
SMPL parameters from the image features by using a regressor that iteratively corrects an
initial estimate of these parameters. To obtain 3D keypoint locations, a regressor is used
on the mesh model which is calculated from the predicted SMPL parameters.

Another distinguishing factor (that also appears in 2D human pose estimation) is whether
methods are aimed at detecting a single person or multiple people [35, 130, 147]. Methods
for 3D single-person human pose estimation are limited in a way that they can only pre-
dict the pose information of a single individual. Using the previously introduced method
of Kolotouros et al. [62] as an example, the graph neural network is constructed in such a
way that it predicts exactly one position for every vertex of the SMPL mesh model, mak-
ing it by design unable to predict multiple positions/meshes and thus results for multiple
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people. In contrast, 3D multi-person methods must be able to detect multiple people in
the network input. Just as in the 2D case, 3D multi-person approaches can further be split
into top-down and bottom-up approaches. Again, top-down approaches have to localize
single human instances in input images first, and then predict 3D keypoint locations for
these single human instances. For example, Moon et al. [84] follow this paradigm by
employing a human bounding box detector to locate humans in the input image, subse-
quently cropping the input image to single human instances using the detected bounding
boxes. Afterward, their 3D keypoint detection approach is applied to every cropped im-
age, detecting a root as well as root-relative pose information for a single human instance
per crop. A special case of the top-down paradigm can occur when multiple images from
different views are used as input: Here, the same person can be present in multiple im-
ages, making it necessary to associate different detections of the same person with one
another. This problem is for example solved by Dong et al. [23] by clustering image crops
of single persons in different images based on their appearance in the image crop as well
as their 2D pose, which is detected through a 2D human pose estimator. In contrast to
top-down approaches, bottom-up approaches predict keypoint locations for all persons
in the input data, and then have to solve the association problem of keypoints to person
instances – a similar definition to the 2D case. For example, Zhen et al. [146] calculate
multiple intermediate results. Heatmaps are used to obtain the location of all keypoints
first, then the keypoints are associated with individuals using part affinity fields and root
depth maps, resulting in 2D poses. 3D poses are afterward calculated based on root depth
maps and part relative-depth maps. Apart from top-down and bottom-up processing, there
exist approaches that omit both paradigms by aiming directly at the prediction of multiple
3D poses, like Zhang et al. [144].

A unique factor for 3D human pose estimation is whether camera data is available from
a single view or from multiple views [130, 147]. Many methods focus on the problem
of reconstructing 3D human poses from images taken by a single camera, hence having
only a single view of the human to work with. This task is hard due to two factors: First,
the problem of inferring the depth of a human pose from a single image has no unique
solution, as the same 2D human pose can be created by projecting different 3D human
poses into a 2D image. Second, taking images from a single view is prone to (partial)
occlusion of the human. For example, severe occlusion can hinder the precise localization
of 2D keypoints, in which case 3D single-view human pose estimation methods that rely
on precise 2D keypoint locations like Martinez et al. [80] are set up to fail. Having images
taken from multiple cameras with different views can help to alleviate both single-view
problems, with occlusions being not necessarily present in all views and with triangulation
or more advanced methods [23] being available to obtain depth information more reliably.
However, processing images from multiple views can also add additional problems that
need to be solved, like the identification of the same individual in multiple images from
different views [23]. The previously introduced methods of Zhang et al. [144], who collect
and jointly process image features extracted from multiple views, and Dong et al. [23],
who generate and process cluster of image crops from different views associated with the
same individual, are examples of how images from multiple views can be leveraged for
3D human pose estimation.

The final distinction discussed in this section concerns the input data used by different
methods [130, 147]. These can be single images, image sequences, other data like IMU
information, or combinations thereof. Previously introduced examples belonged to the
single images category, where one image from a single view or multiple, simultaneously
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taken images from multiple views are processed without taking temporal information and
context into consideration. Working with image sequences from a single or multiple views
offers exactly that temporal context. For example, Pavllo et al. [93] pursue a general strat-
egy similar to Martinez et al. [80] by predicting 3D keypoint positions directly from pre-
viously extracted 2D keypoint positions. In contrast, Pavllo et al. do not build on a single
set of 2D keypoints as input, but use 2D keypoint locations obtained from a sequence of
243 images. Temporal information is exploited by stacking the 243 sets of 2D keypoint
positions along one axis and by processing them through a CNN that employs dilated
convolutions along this axis to finally produce a single set of 3D keypoints. Apart from
distinguishing between the use of single images and image sequences, other input source
or combination of inputs are also used. For example, Zhou et al. [149] calculate point
clouds from depth images and estimate 3D poses based on these point clouds, and Mac-
ard et al. [127] leveraged a combination of IMU and image data to obtain the ground truth
3D poses for their 3D Poses in the Wild dataset. However, such methods are not as widely
used as pure image-based methods [147].

Summarizing the contents of this general overview with respect to this work, 2D single-
person human pose estimation from single images is the most fundamental problem of
human pose estimation. However, advanced tasks are not completely disconnected from
it, as methods from this domain can be found in various tasks, like in 2D multi-person
human pose estimation through top-down approaches and two-stage 3D human pose es-
timation. Thus, a reliable 2D single-person human pose detector benefits not only the
task of 2D single-person human pose estimation, but has also relevance for 3D and multi-
person human pose estimation.

3.1.2 Datasets

As the current state-of-the-art in human pose estimation is dominated by deep learn-
ing, vast amounts of data are necessary for training and evaluation. To perform both
tasks in a standardized way, a variety of datasets is available. With respect to the fo-
cus of this work, only 2D human pose estimation datasets for human pose estimation
from single images will be covered in the following. In this domain, a variety of older
datasets like the Leeds Sport Dataset (LSP) [58] together with its extended variant (ex-
tended LSP) [59] and the Frames Labelled in Cinema (FLIC) dataset [104] exist. They
were frequently used by the pioneering deep learning approaches for human pose esti-
mation [86, 98, 123, 125, 131]. However, these datasets are lacking with respect to the
needs of modern deep learning approaches in at least one regard: the available amount
of data is too small and/or the subjects and activities displayed are not diverse enough.
For example, the original LSP dataset contains only 2000 images, all focused on sporting
activities. FLIC has with 5003 images substantially more data, however, this data is only
taken from 30 different movies, severely limiting the diversity displayed in the images.
Extended LSP contains the most images, however, these are still limited to the sports
domain, showing no large variety of settings and activities. Over time, these smaller or
limited-in-scope dataset were gradually replaced by two popular large-scale human pose
estimation datasets: the MPII Human Pose dataset (MPII) [3] as well as Microsoft Com-
mon Objects in COntext (MS COCO) [70], which are frequently used by more modern
approaches [10, 78, 86, 111, 117]. Apart from MPII and MS COCO, there exist further
large-scale human pose estimation datasets, like the Look into Person dataset (50.462 im-
ages) [69] and the AI Challenger dataset (300.000 images) [133]. However, these are by
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far not as commonly used. Thus, a more detailed overview of MPII and MS COCO will
be given in the following:

MPII Human Pose Dataset [3]: The MPII Human Pose dataset (MPII) was the first
large-scale human pose estimation dataset für 2D human pose estimation that featured
both, a large number of samples, as well as a big variety in displayed activities. In its
current form1, the dataset contains approximately 25.000 images with a total of about
40.000 annotated individuals performing 410 different activities. For 2D single-person
human pose estimation, a total of almost 29.000 training samples together with annota-
tions is publicly available, while the remaining samples are used as test set, withholding
ground truth annotations for keypoint positions. In any case, the approximate location
of individual people is provided and can be used, making the localization of individuals
unnecessary. A further division of the training set into training and validation set has
been performed by Newell et al. [86] by using 3000 images from the training set only
for validation during training. To evaluate the performance for 2D single-person human
pose estimation, a metric called PCKh is used. Here, detections are classified as correct
or incorrect based on their Euclidean distance to the corresponding ground truth annota-
tions and a threshold calculated from an annotated head bounding box (a more detailed
introduction will be given in Section 3.1.3). The dataset also features a 2D multi-person
human pose estimation task, where keypoints have to be detected and assigned to mul-
tiple people in an image without using the approximate locations of these individuals.
The official evaluation script for the multi-person case is hereby based on the evaluation
procedure proposed by Pishchulin et al. [98]. Detections are assigned to the ground truth
based on the highest per-instance PCKh score, and the final evaluation of approaches is
then performed based on the mean average precision (mAP).

Microsoft COCO [70]: The public2 Microsoft Common Objects in COntext (MS COCO)
dataset is large-scale and not only focused on human pose estimation but also additional
tasks like object detection and scene segmentation. For the human pose estimation task,
the dataset features about 200.000 images containing 250.000 annotated people in diverse
environments and activities. In contrast to MPII, it does not provide the coarse location
of individual human instances in the image, but instead explicitly forbids to use such data
during evaluation. Thus, the problem of human pose estimation on MS COCO includes
both: The detection of all individuals in an image together with the position of their as-
sociated keypoints – the classic multi-person human pose estimation task. From an eval-
uation perspective, MS COCO treats the human pose estimation problem like an object
detection problem, with the difference, that a similarity measure specific to human poses
is employed to measure how well a detected pose fits an annotated one. This measure
is called Object Keypoint Similarity (OKS), a score between 0.0 and 1.0 that indicates
how well a predicted pose reflects the annotated pose under consideration of the difficulty
to correctly estimate the position of certain types of keypoints (a detailed introduction to
OKS will be given in Section 3.1.3). Based on the OKS for human poses together with
a predicted confidence score for each human detection, standard evaluation metrics like
average precision and average recall are employed to evaluate different methods.

Although MS COCO is a larger dataset than MPII, it is solely focused on 2D multi-person
human pose estimation. Thus, the MPII Human Pose dataset with its focus on 2D single-
person human pose estimation will be used throughout this work.

1available at http://human-pose.mpi-inf.mpg.de
2available at https://cocodataset.org/#home
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3.1.3 Evaluation Metrics

A standardized evaluation of human pose estimation requires standardized evaluation met-
rics in addition to commonly used datasets like those from Section 3.1.2. In the following,
a selection of 2D human pose estimation evaluation metrics will be introduced and dis-
cussed, including those typically employed on the MPII and MS COCO datasets:

Percentage of Correct Parts (PCP) [24]: The PCP metric is an evaluation metric that
does not aim at directly measuring how well single keypoints were detected, but instead
focuses on correctly detected body parts defined by pairs of keypoints, whose direct con-
nection is indicative of the body part. A body part with annotated endpoints (pi,1,pi,2) is
considered detected correctly, if the distance of both detected endpoints (p̂i,1, p̂i,2) from
their respective annotated counterparts is less than a constant fraction c ∈ [0.1, 0.5] of the
annotated body parts length. Obviously, this metric can only consider body parts with
annotated endpoints, thus let vi be True, if both endpoints pi,1 and pi,2 are annotated, and
False otherwise. Expressed as a formula, the PCP for a single human pose with N body
parts is:

PCP =
100∑N

i=1 δ(vi)

N∑
i=1

δ(vi)δ(
||pi,1 − p̂i,1||2
||pi,1 − pi,2||2

≤ c)δ(
||pi,2 − p̂i,2||2
||pi,1 − pi,2||2

≤ c) (3.4)

In this formula, δ constitutes a function to convert boolean values as follows:

δ(vi) =

{
0, if vi = False

1, otherwise
(3.5)

The PCP metric has the obvious downside, that the difficulty of detecting a certain human
body part is highly influenced by the length of the ground truth body part, which can vary
greatly even among instances of the same kind of body part, due to the projection from
3D into 2D when taking pictures – a fact that is e. g., criticized by Andriluka et al. [3].

Mean-based Percentage of Correct Parts (PCPm)[3]: The PCPm metric proposed by
Andriluka et al. [3] is an evolution of the PCP metric that aims to decrease the inherent
correlation of body part detection difficulty with annotated body part length when us-
ing PCP. This is done by replacing the pose- and part-specific part lengths used by PCP
through pose-agnostic and part-specific part lengths li. The part-specific value li for part i
is calculated as the mean of all part lengths of part i in the test set. Then, the resulting con-
stant li is applied during testing every time part i is evaluated. In addition, only c = 0.5 is
used, meaning that a detected body part is now considered correct, if the distance of both
detected endpoints to their annotated counterparts is within 50% of the mean annotated
part length. Based on Eq. (3.4) for PCP, this leads to the following formula for PCPm (for
a single pose):

PCPm =
100∑N

i=1 δ(vi)

N∑
i=1

δ(vi)δ(
||pi,1 − p̂i,1||2

li
≤ c)δ(

||pi,2 − p̂i,2||2
li

≤ c) (3.6)

Percentage of Correct Keypoints (PCK) [139]: In contrast to PCP and PCPm, PCK
is the first introduced metric that focuses on keypoint detections directly. To this end,
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it focuses on the distance between annotated keypoints yi and detected keypoints ŷi. A
detected keypoint is considered correct, if this distance is at most a constant fraction c of
the size of an annotated bounding box of the human the keypoint belongs to. For the size
of the bounding box with height h and width w, the maximum side length max(h,w) is
used. Depending on the dataset, proposed values for c include 0.1 and 0.2 [139]. Just
like PCP and PCPm, the PCK score can only be evaluated when a ground truth annotation
is available, thus let vi be True is the i-th keypoint of a person is annotated, and False
otherwise. Using these introduced variables, the PCK score for a single pose with N
keypoints can be expressed as follows:

PCK =
100∑N

i=1 δ(vi)

N∑
i=1

δ(vi)δ(
||yi − ŷi||2
max(h,w)

≤ c) (3.7)

A downside of this metric is the dependence on the size of the annotated human bounding
box, as Andriluka et al. [3] criticize. It is highly susceptible to changes in human posture:
For example, sitting instead of standing upright can already reduce the height h by about
half, which in turn makes it about twice as hard to detect human keypoints correctly
(assuming h > w when standing and sitting).

Head-based Percentage of Correct Keypoints (PCKh) [3]: The PCKh metric, which is
the official evaluation metric for 2D single-person human pose estimation on MPII, was
proposed by Andriluka et al. [3] as a variant of the PCK metric. The goal was to eliminate
the influence of the human posture on the distance-based thresholding during evaluation,
to e. g., prevent the aforementioned increase in difficulty when sitting instead of stand-
ing. To do so, they no longer base their calculations on the size of an annotated human
bounding box, but on a fraction of the size of the head inferred from an annotated head
bounding box. In contrast to the size of the overall human bounding box, this measure
does not change much for different postures. Let sh denote the size of the head and c the
constant fraction of it being used, which is commonly set to 0.5 [147]. Then, based on
Eq. (3.7), the PCKh score for a single human pose with N keypoints can be expressed as:

PCKh =
100∑N

i=1 δ(vi)

N∑
i=1

δ(vi)δ(
||yi − ŷi||2

sh
≤ c) (3.8)

Object Keypoint Similarity (OKS) [70]: The OKS metric is part of the evaluation pro-
cedure on the MS COCO dataset. The goal of this metric is to assess how well a detected
pose resembles an annotated pose, based on the distance between annotated keypoints
yi and detected keypoints ŷi. While this is so far similar to PCK and PCKh, the OKS
score differs in two significant ways: First, the evaluation metric does not work with per-
centages of keypoints classified as correct or incorrect, and does not distinguish between
correct and incorrect at all. Instead, a similarity measure with values between 0 and 1 is
calculated, indicating through a floating point number how well poses are matches. Sec-
ond, for the first time, the difficulty of detecting different kinds of keypoints is reflected
by the evaluation metric through the use of keypoint type specific standard deviations σi

obtained under consideration of people’s scale in an image from multiple human anno-
tations. The higher the σi value, the lower the negative impact of a certain distance on
the OKS score. Another factor influencing the OKS score is the scale of the person sp
(annotated). The effect on the OKS is similar to the effect of sh on the PCKh, with higher
values of sp leading to a lower negative impact of a calculated distance between keypoints
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yi and ŷi on the OKS score. In this section’s notation, the official formula for the OKS
score from Lin et al. [70] can be expressed as follows for a single pose with N keypoints:

OKS =
1∑N

i=1 δ(vi)

N∑
i=1

δ(vi)e
(
−||yi − ŷi||22
2s2p(2σi)2

)

(3.9)

Average Precision (AP): The previously introduced evaluation metrics provide measures
only tailored towards the evaluation of 2D single-person human pose estimation – it is as-
sumed that exactly one human instance with annotated keypoints exists per image, making
it necessary to predict a single location for each keypoint. This is no longer true in the 2D
multi-person setting, as the number of people (and thus the number of keypoints to detect)
is no longer known. With the number of individuals and keypoints no longer known, it
becomes possible to produce incorrect detection for which no corresponding annotation
exists. In this setting, both MPII [3] and MS COCO [70] build upon the long-standing
metrics of (average) precision and (average) recall for evaluation. For their calculation,
these metrics need three kinds of results: (i) true positives (TP), where a matching ground
truth exists for a prediction, (ii) false positives (FP), where no matching ground truth ex-
ists for a prediction, and (iii) false negatives (FN), where no matching prediction exists
for a ground truth. Whether a detection matches a ground truth or not, is decided on MPII
and MS COCO through the PCKh score and OKS score respectively. In both cases, each
ground truth can only have one matching prediction. Then, with # denoting the amount
of something, a general definition of precision and recall is:

Precision =
#TP

#TP +#FP

Recall =
#TP

#TP +#FN

(3.10)

However, when directly used like this, these metrics have the downside that a decision has
to be made which human pose estimation results have to be kept for evaluation, with the
contraindicating goals of keeping as many as possible to maximize #TP and thus the recall,
and to keep only a few selected result which are very likely to be correct to minimize #FP
and thereby maximizing the precision.

Instead, a better way to evaluate 2D multi-person human pose estimation performance is
the average precision (AP) metric, which is the primary evaluation metric for this task
used by MPII and MS COCO. For its calculation, an additional confidence score is re-
quired for each detection (both MPII and MS COCO utilize scores at the human instance
level). Based on this confidence score, it can be decided which 2D multi-person human
pose estimation results shall be kept and which shall be discarded. Instead of evaluating
just a single threshold for confidence, recall and precision are plotted against one another,
forming a precision-recall curve (PRC). At each point, this curve shows the precision
value that can be achieved for a certain recall value, with different confidence thresholds
being employed to obtain each recall value. The area under the precision-recall curve
(AUPR) is indicative of the performance, and is represented by the average of the preci-
sion values along this curve – the AP metric. To maximize AP, there is not only a human
pose estimator necessary that detects all annotated human instances and their keypoints
precisely but also a way to obtain suitable confidence scores that allow for a separation
into correct and incorrect detections.
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3.1.4 Selected Approaches

After giving a general introduction to the overall topic of human pose estimation as well as
to datasets and evaluation metrics used in 2D human pose estimation, several approaches
with high relevance to this work shall be presented in greater detail. As this work does not
aim at directly improving performance on evaluation metrics like PCKh but investigates
other problems like the identification of incorrect keypoint predictions and the estimation
of measurement errors, approaches and experiments should be based on broadly used
neural network architectures to ensure good generalization. Two such approaches are
the stacked hourglass (HG) model proposed by Newell et al. [86] as well as the High-
Resolution Net (HRNet) from Sun et al. [117]. Both are prominent milestones for the task
of 2D single-person human pose estimation, with many works using them as a foundation
for their own architectures and modifications [8, 14, 15, 16, 57, 85, 116, 138, 140, 141].
Their importance as well as the common basis they provide for many approaches make
them an ideal choice for the investigations of this work. Therefore they will be introduced
in greater detail. A third approach that will be highlighted is the work of Wang et al. [129].
For the field of 2D human pose estimation, they were the first to touch on the topic of
robustness against noise - a topic that was up to this point neither covered by other research
nor through existing benchmarks. To improve robustness against noise, they proposed a
data augmentation method called Adversarial Augmentation Mix (AdvMix).

Stacked Hourglass (HG) Model [86]: The stacked hourglass model proposed by Newell
et al. [86] belongs to the category of heatmap-based 2D single-person human pose estima-
tion methods. The core idea behind the stacked hourglass model is to consecutively apply
encoder-decoder-inspired blocks called hourglasses for the prediction and improvement
of human pose data in the form of heatmaps. Hereby, a single hourglass consists of three
different types of components: 2 × 2 max pooling layers to half the spatial resolution of
inputs in both dimensions, 2× 2 nearest neighbor upsampling layers to double the spatial
resolution of inputs in both dimensions as well as residual blocks (a concept introduced by
He et al. [41]) for data processing. When data enters an hourglass, it is first processed by
repeated downsampling and application of residual blocks, with the aim of processing the
data at different resolutions. Before every downsampling operation, data is branched off
to a skip connection that preserves the spatial resolution and processes the data through a
residual block. After reaching the lowest spatial resolution, data is repeatedly upsampled
and processed by residual blocks, with data of the same spatial resolution being added
from the skip connections. This procedure aims to join features extracted at different
resolutions together. To gain a better understanding of the hourglass, the schematics are
shown in Figure 3.3. The residual blocks employed by the hourglass consist of a 1 × 1
convolution, followed by a 3 × 3 convolution and another 1 × 1 convolution. The first
two convolutions have 128 filters, while the last one uses 256. At the end, features be-
fore and after the processing through convolutions are added up. To connect (or rather
stack) hourglasses and to calculate intermediate results, additional layers are necessary
between individual hourglasses. To this end, a residual block together with several 1 × 1
convolutions is used in the official implementation3: Specifically, the hourglass output is
processed by a residual block followed by a 1× 1 convolution with 256 filters. The result
is processed by another 1 × 1 convolution with N filters to produce heatmaps (the inter-
mediate result), where N is the number of keypoints. Afterward, the heatmaps as well as
the features before heatmap prediction are separately processed by 1× 1 convolutions to

3available at https://github.com/princeton-vl/pose-hg-train
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Figure 3.3: An illustration of the architecture of a single hourglass used in the stacked
hourglass model. Blocks marked with R denote residual modules, lines moving down
denote 2 × 2 max pooling operations, lines moving up denote 2 × 2 nearest neighbor
upsampling and the plus sign stands for an add operation. Note that this illustration is
reflective of the final hourglass structure used in Newell’s official implementation of the
stacked hourglass model and that it slightly differs from the figure presented by Newell
et al. [86] for a single hourglass.

bring them back to a feature dimension of 256. Then, they are added up with features ex-
tracted right before the hourglass was applied to form the input for the next hourglass. See
Figure 3.4 for an illustration. If the hourglass is the last hourglass of the stacked hourglass
model, only the first residual block and 1×1 convolution, as well as the 1×1 convolution
for heatmap prediction are applied. For training and evaluation on MPII, Newell et al. use
inputs of size 256×256 for their network. Before the first hourglass stack, these inputs are
preprocessed and downsampled through several preprocessing layers, including convolu-
tions, residual blocks, and max pooling, to bring the spatial resolution down to 64 × 64.
Apart from the neural network itself, the data augmentation strategy pursued by Newell
et al. during training will also be highlighted, as it will also be used throughout this work.
When training on MPII, they first crop individuals from the full image by using bounding
boxes derived from the annotated position of individuals and resize them to fit the input
size of the network. As a first augmentation, before cropping, the size of this bounding
box is adjusted to a value between 75% and 125%. After cropping, two other augmenta-
tions are performed: Flipping (left-right) of the image with a chance of 50%, as well as a
rotation of the image using an angle between -30° and +30°. As ground truth, heatmaps
are generated from annotated keypoints by applying a Gaussian kernel at the location of
the keypoints at heatmap resolution (64× 64). The loss is then calculated using the MSE
between all predictions (intermediate and final) and the ground truth heatmaps.

High-Resolution Net (HRNet) [117]: The High-Resolution Net proposed by Sun et al.
follows the same core belief as Newell et al. [86] that data processing at different resolu-
tions is crucial for good human pose estimation results. However, instead of repeatedly
decreasing and increasing the resolution to accumulate information from different reso-
lutions, Sun et al. want to process data at different resolutions in parallel, including the
exchange of information between these resolutions. To this end, they proposed a network
architecture that iteratively adds data processing at lower resolutions, while fully main-
taining branches that work on higher resolutions. Specifics will be given based upon the
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Figure 3.4: Illustration of one hourglass stack (hourglass + intermediate layers) from
Newell et al. [86], consisting of one hourglass HG, one additional residual block R, as
well as several 1 × 1 convolutions, denoted through 1 × 1 × F , where F is the amount
of filters used in the layer (either 256 or the amount of keypoint N .). This illustration
displays the layers used in the official implementation. If the hourglass stack is the last
stack, only elements on the path to N Heatmaps will be present.

work of Sun et al. [117] and the official implementation4: First, they leverage two 3 × 3
convolutions with stride two, each decreasing the spatial resolution of the input in both
dimensions by half. The resulting spatial resolution is the highest spatial resolution that
will be used throughout the network – in the case of MPII, the input will have a size of
256 × 256, resulting in a resolution of 64 × 64 for the highest resolution branch. Af-
ter these initial convolutions, four stages are added. The first stage works on the highest
resolution only and consists of four residual modules, each consisting of a 1× 1 convolu-
tion, a 3 × 3 convolution as well as another 1 × 1 convolution. Features from before the
first convolution are either added directly to the results of the last convolution, or, in the
case of mismatching feature dimensions, another 1× 1 convolution is used to make them
match. Whenever advancing to a stage of higher order, a new branch with half the spatial
resolution in both directions is added first by applying a 3× 3 convolution with stride two
on the output of the lowest resolution branch of the previous stage. In addition to decreas-
ing the spatial resolution, the size of the feature dimension is doubled. In contrast to the
first stage, stages 2-4 consist of so-called exchange blocks, where each exchange block
features four residual blocks on every branch as well as one exchange unit. The residual
blocks differ from those of stage one, as they only use two 3 × 3 convolutions instead of
two 1 × 1 and one 3 × 3 convolution. The following exchange unit is used to exchange
features across all scales. For each scale, features are first gathered from all scales and
then either processed by an identity function (if the source spatial resolution equals the
target spatial resolution), a 1× 1 convolution for adjusting the feature dimension together
with nearest neighbor upsampling to adjust the spatial dimension (if the source spatial res-
olution is smaller than the target spatial resolution) or 3×3 convolution(s) with stride two
to adjust spatial resolution and feature resolution simultaneously (if source spatial reso-
lution is larger than target resolution). To aggregate the features, gathered and processed

4see https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
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Figure 3.5: An illustration of the HRNet architectures based on the paper and official
implementation of Sun et al. [117]. For better understanding, the exchange blocks (E)
that span over all resolutions are written out for every resolution, with the three exchange
blocks of the last layer being shown in detail to the right. In the image, C denotes a
convolution, E denotes an exchange block, R denotes a residual block with two 1 × 1
convolutions and one 3 × 3 convolution, and R̂ denotes a residual block with two 3 × 3
convolutions. Horizontal arrows represent identity functions, arrows pointing down stand
for 3×3 convolutions with stride two that double the feature dimensions (one convolution
for each branch it moves down), and arrows pointing upward stand for a 1×1 convolution
that halves the feature dimension per branch the arrow moves up as well as an nearest
neighbor upsampling that doubles the spatial dimension per branch the arrow moves up.

features for each target resolution are added up before they are passed to the next layer.
Stages 2-4 use one, four and three exchange blocks respectively. For the prediction of
keypoint positions, the features from the highest resolution branch after the last exchange
block are used, and processed by a further 1× 1 convolution to produce one heatmap per
keypoint. An illustration of the network architecture can be found in Figure 3.5. Typical
feature dimensions are 32 and 48 on the highest branch in stages 2-4.

Adversarial Augmentation Mix (AdvMix) [129]: Although the AdvMix method pro-
posed by Wang et el. [129] is not used in this work, the background surrounding it is of
high relevance. Only recently, Wang et al. were the first to spotlight the fact that the im-
pact of different kinds of noise (e. g., Gaussian, fog, ...) on methods of 2D human pose
estimation is severely neglected in current research on the topic, with the work being the
first to investigate countermeasures against noise for modern deep-learning based human
pose estimators. Their work focuses on a broad variety of noise types that can occur in
the wild. They highlight the susceptibility of human pose estimation methods to these
noise types through experiments, showing a considerable decrease in performance met-
rics like PCKh and AP. As anticipation of potential noise types for a scenario in the wild
is hardly possible as previously unforeseen events can happen, they focus on improving
the robustness of human pose estimation against noise through an adversarial image aug-
mentation strategy they call AdvMix, achieving performance improvements for almost all
previously unknown kinds of noise (improvements for all kinds of noise when combined
with the stylized images approach [37]) that are investigated, while not being able to elim-
inate the impact completely. The primary benefit of the approach is in its generalization
capability towards previously unknown noise types corrupting images: Their experiments
showed that training with image corruptions from a subset of the investigated noise types
usually led to better results for these noise types during test time compared to AdvMix
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(and optional usage of stylized images). However, results did not generalize as well to all
kinds of previously unseen noise types, with AdvMix having the better results most of the
time. In addition, the performance on clean data was negatively impacted too. Putting the
research of Wang et al. into the perspective of this work, the major motivation for having a
strategy like AdvMix is the operation of 2D human pose estimation in an uncontrolled en-
vironment where previously unknown types of noise can occur. However, this is not true
for the setting that is investigated here, as the industrial environment is highly controlled
(outlined in Section 2.2.1). Thus, alternative strategies more tailored towards noise types
that can occur in such a setting could prove beneficial (based on the results obtained from
training on a subset of noise types) if the negative impact on clean data performance can
be removed or minimized.

3.2 Robot Safety

This work focuses on the task of speed and separation monitoring as a motivational ex-
ample. Looking at SSM from a more generalized perspective, it can be seen as a specific
methodology for collision avoidance aimed at humans, where the avoidance is pursued
through slowdowns and if necessary a full stop of the robot, based on a monitored safety
distance. For the general task of collision avoidance in robotics, be it with humans or arbi-
trary obstacles, a variety of approaches exists [33, 66, 71, 72, 73, 83, 88, 91, 100, 102, 105,
119, 136, 142]. Apart from a few exceptions, these approaches do not only focus on col-
lision avoidance but also try to achieve an efficient robotic task or movement completion.
Generally speaking, collision avoidance approaches consist of two main parts: One part
that is responsible for perceiving the environment (perception), with the goal of locating
static and moving obstacles in the vicinity of the robot, and the actual collision avoidance
part, which acts on the obstacle information obtained from perception. In the following,
an overview of different strategies to tackle collision avoidance in recent research will
be given, followed by an overview of how human and/or obstacle locations are obtained
for these approaches. Afterward, a closer look at two approaches that tackle the motiva-
tional example of speed and separation monitoring by using human pose estimation will
be given.

In the broad field of collision avoidance, several general strategies for tackling the task ex-
ist. One strategy is to approach collision avoidance as an optimization problem [88, 142],
where the movement of the robot is determined by solving the optimization problem, and
the collision avoidance is performed through imposing constraints on the optimization
problem. This can e. g., have the form of constraints on the joint velocity [88] while
obtaining the optimal target joint velocity for the next time step. Another set of strate-
gies [33, 136] for approaching the task is inspired by the idea of potential fields: the ap-
plication of a repulsive force on the robot (originating from obstacles) that is considered
during movement. This allows for reaching a goal while avoiding obstacles. For example,
Xu et al. [136] move their robot towards a target based on an attractive force vector. For
each limb of the human body, the distance to the robot is monitored. For each limb that
violates a predefined safety distance, a repulsive force vector is added to the attractive one,
repelling the robot from the body part, while still considering the attraction towards the
target. Furthermore, it is possible to combine the idea of potential fields with optimiza-
tion as performed by Liu et al. [71], who apply a repulsive velocity (obtained based on the
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calculation of a repulsive force) to the end effector, while collision avoidance for the re-
maining links of the robot is tackled as an optimization problem with constraints. Based
on recent advances in machine learning, the use of reinforcement learning for collision
avoidance while completing tasks was explored [73]. To this end, Liu et al. [73] used a
deep reinforcement learning approach that rewarded the completion of a task, while penal-
izing violations of a safety distance to obstacles as well as a delayed completion of tasks
to facilitate both, safety and efficient task execution. Other approaches that strive to avoid
obstacles while aiming to reach a target or completing a task include for example the use
of sampling-based path replanning as a reaction to moving obstacles [91], the formulation
of the problem in closed form [83] or the modulation of dynamic systems through a suit-
able modulation matrix [105]. However, collision avoidance is not limited to performing
evasive maneuvers while continuously aiming for a target, it can also be viewed as a sepa-
rate problem. In this regard, several approaches do not modify the robot’s movements, but
aim to adjust its overall speed and stop it in time, before a collision occurs [66, 102, 119].
For example, Rosenstrauch et al. [102] monitor the distance between humans and robots
and employ a function for scaling the robot’s speed down as soon as a certain distance
threshold is violated, with a scaling of the velocity to 0 within a safety margin around
the robot. Another approach to collision avoidance is presented in the work of Reardon
et al. [100], who operate on a more abstract action planning level with a state machine.
A distance-based reward function determines whether the robot should take a productive
action or a safety action next.

No matter which kind of approach to collision avoidance is pursued, each of them builds
on the reliable detection of humans or (more general) obstacles in the vicinity of the
robot. Typical devices that are employed for perception include depth sensors [33, 71],
RGB/RGB-D cameras [88, 105, 119, 136], camera systems with associated drivers that di-
rectly offer human pose information [73, 100, 102] and whole vision-based human track-
ing system (like e. g., Vicon) [2, 66, 83], which can e. g., be further extended through
the use of inertial measurement units (IMUs) [2]. From these sensors and through op-
tional further processing steps, the input data required for different approaches can be
obtained. The input data can e. g., include RGB images [136], depth images [33] or point
clouds [71, 105], the position of human keypoints and/or associated limbs [100, 102] or
more elaborate representations of the human pose and body [66]. Based on the input data,
the localization of obstacles is performed or the required location is already given. In any
case, obtaining inaccurate or incorrect obstacle locations can become decremental for the
following task of collision avoidance. For example, Xu et al. [136] build their approach
on the location of 3D human joints that they obtain through their own perception pipeline
from RGB images. The safety of the human is pursued through the use of repelling force
vectors emitted from the position of human body links. In case of a severely incorrect
localization of the human body, the behavior of the system might become completely un-
predictable, while some smaller localization error (e. g., slightly above the end effector
while in reality being slightly below) could send the robot straight into the human, hereby
provoking a collision. Another example is Roenstrauch et al. [102], who work directly
on the 3D keypoint positions obtained with the help of a Kinect V2 sensor. Based on
these positions, distances between the robot and the human are calculated and used to
safely control the speed of the robot, slowing it down when the human is close. In this
case, if the closest point with respect to the robot is detected further away than it is, the
robot can move at a higher speed than what would actually be allowed, increasing the
probability of collisions. To improve the reliability and accuracy of the perception, some
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works employ additional measures. Examples of such measures are the use of Kalman
filters [71, 105], checks to verify and if necessary undo previous actions taken in itera-
tive perception procedures [136] or the additional use of IMUs (for accurate results under
occlusion) [2]. However, the reliability and accuracy of results from the perception part
are rarely assessed and later reflected in the collision avoidance method. For example,
a perception method is sometimes just declared to be (sufficiently) accurate [66] with-
out an assessment of measurement errors. In other cases, measurement uncertainties in
the range of a few centimeters [142] to a few millimeters [2] are declared, but without
proof that this will always (or almost always) be the case in the target application under
different conditions. Collision avoidance methods also rarely account for measurement
uncertainties or outright incorrect results from the perception, with exceptions being e. g.,
the work of Zanchettin et al. [142], who allow the incorporation of the magnitude of mea-
surement errors directly into their overall optimization problem, as well as the work of
Reardon et al. [100], who do not use the measured position of the human directly to ob-
tain a human’s state, but employ a state-based probability function instead to account for
e. g., uncertainties in the measurement.

In the following, a more detailed look at the works of Svarny et al. [119] and Rosenstrauch
et al. [102] will be taken, as they (i) use human pose estimation (without an extensive
tracking system) to determine the distance between human and robot, (ii) pursue the ap-
plication of speed and separation monitoring, and (iii) refer to European safety standards.
In the case of Svarny et al. [119], their work is motivated by the monitoring of the protec-
tive separation distance Sp as defined by ISO/TS 15066 between human and robot. Instead
of the typical realization through laser scanners and safety zone monitoring, the distance
between human keypoints and robot keypoints is monitored. Hereby, human keypoints are
obtained through human pose estimation. In particular, the authors apply OpenPose [10]
to the 2D images of an RGB-D camera and project the resulting 2D keypoints into 3D
through an associated point cloud obtained from the camera. For the robot, keypoint posi-
tions are calculated as well using the forward kinematics. As keypoint positions are only
a discretization of the full body, they further propose to alter the protective separation dis-
tance Sp to a keypoint separation distance Sd, which incorporates additional surcharges
on Sp to account for the discretization. In particular, specific surcharge values are applied
for every human and robot keypoint. These are calculated by assigning each part of the
human or robot body to the closest keypoint, and then using the maximum Euclidean dis-
tance between a keypoint and its assigned body parts as the keypoint-specific surcharge
value. In addition, further keypoint-specific surcharges are applied to realize higher safety
distances to certain keypoints. Overall, this means that different distance surcharges have
to be considered for each combination of human and robot keypoints, which leads to in-
dividual values for Sd for each of these combinations. Concerning e. g., measurement
uncertainties and reaction times that can influence Sd, the authors point out that these can
already be captured by the original safety distance Sp. However, for their work, they do
not point out a methodology to obtain these values for human pose estimation, hence the
proposed approach would require an additional method that tackles these problems before
it becomes applicable in practice. In their experiments, they ignore this problem by using
a constant value for Sp. Furthermore, the authors do not go into any detail on how safety
could be maintained in the case of missing keypoint detections, although their method-
ology explicitly builds on the availability of all human and robot keypoints for pair-wise
distance calculations. Similar to Saverny et al., Rosenstrauch et al. [102] also motivate
their work based on the speed and separation monitoring task from ISO/TS 15066. How-
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ever, their focus lies on an implementation of SSM that adjusts the robot’s speed through a
continuous function, based on the human-robot distance. They employ a skeleton tracker
on data from a Kinect V2 sensor to obtain the position of human keypoints, and calculate
the currently relevant human-robot distance as the shortest distance between all human
and robot joints. For scaling the robot’s speed, two distance thresholds are defined: A
minimum distance threshold mandating a full stop of the robot if the human-robot dis-
tance becomes smaller and a maximum distance threshold that allows the robot to operate
at full speed if the current human-robot distance is larger. Between these two thresholds,
linear speed scaling is employed, based on the current distance (from 1.0 at the maximum
threshold to 0.0 at the minimum threshold). In experiments, they use two constant values
for the thresholds, derived from the robot arm’s length. This does not reflect the method-
ology used for the calculation of the minimum separation distance Sp in ISO/TS 15066,
and neither considers values for the body dimensions of the human, nor any uncertain-
ties, reaction times, and more. For practical application, these factors would have to be
calculated and considered. Concerning missing keypoint detections that would prohibit
distance calculations, they propose to stop the robot, thus achieving a safe state. However,
stopping the robot every time a single keypoint detection is missing could severely impact
productivity, thus alternative solutions to maintain a safe state would be preferable.

3.3 Uncertainty Estimation for Neural Networks

Whenever neural networks are utilized as a safety-critical part of an application, the re-
liability of the neural network results is paramount. However, the results ŷ produced by
the neural network for a given input x can not be viewed as reliable in general, as the
whole process that leads to their calculation is affected by uncertainties, originating e. g.,
from the training data, the neural network training and each input sample x [36, 44]. This
makes it necessary to assess the reliability of all neural network outputs on an individual
basis. The field of uncertainty estimation for (deep) neural networks explicitly focuses on
assessing the reliability of neural network outputs by estimating their uncertainty, which
in turn can be expressed through different uncertainty metrics, depending on the task and
output of the neural network. In the following, a general introduction to uncertainty es-
timation for neural networks will be given, including a closer look at uncertainty and its
sources, metrics for measuring uncertainty, as well as strategies that are employed to ob-
tain uncertainty estimates. Afterward, the assessment of the reliability of human pose
estimation results in recent methods will be discussed.

3.3.1 General

When talking about uncertainty in the context of neural networks, two major types of un-
certainty are frequently distinguished: aleatoric uncertainty, referring to the part of the
uncertainty inherent to a problem (unavoidable), and epistemic uncertainty, which stems
from an imperfect method to approach the problem (avoidable) [44]. A simple example
of aleatoric uncertainty would be the prediction of the result of a dice roll: while using
all information available for the dice like imbalances could lead to one outcome being
favored over the others, no 100% accurate prediction can be made for each dice roll, as
the outcome is inherently ambiguous. On the other hand, a simple example of a source of

30



3.3 Uncertainty Estimation for Neural Networks

epistemic uncertainty would be the use of a linear classifier for a non-linear classification
problem – uncertainty in this case stems from the use of a method incapable of providing
an optimal solution for the problem, and uncertainty could be reduced or completely re-
moved through the use of a non-linear classifier. Closer resembling the notions used with
neural networks, Gawlikowski et al. [36] refers to aleatoric uncertainty as data uncertainty
(viewing data as the only source of irreducible uncertainty) and epistemic uncertainty as
model uncertainty – a notion that is adopted in this work. Model uncertainty is directly
linked to the model’s ability to correctly find the best mapping from all potential inputs
of its input space to their respective results in the output space [44]. Multiple factors con-
tribute to the model uncertainty, with prominent ones being presented in the following.
First, the training of neural networks is typically performed on a subset of all potential
inputs, optimizing the network for mapping training inputs to training outputs. However,
this training procedure does not ensure that the learned mapping is also optimal for all
potential inputs, leading to increased uncertainty the smaller and less representative the
amount of training data is [36, 44]. Another contributing factor to the model uncertainty
is the model architecture – given that enough training data is available, an incorrect archi-
tecture can still prohibit that an optimal mapping between inputs and outputs is found, as
its structure is unable to express this mapping [36, 44]. The training procedure of neural
networks can further contribute to the model uncertainty, as it is typically a stochastic pro-
cess that does not guarantee that an optimal mapping for the input data is found [36]. In
contrast to model uncertainty, data uncertainty is attributed to the process of data collec-
tion through measurement by Gawlikowski et al. [36]: When data is collected, only some
characteristics of the real world are captured, leading to a loss of information, while the
data that is collected is further effected by factors like noise. In turn, this can lead to e. g.,
the same or very similar input data being representative of multiple different outputs, thus
containing inherent uncertainty about the correct output. Apart from aleatoric and epis-
timec uncertainty, there is also the uncertainty that is inherent to a single neural network
output ŷ for a given input x, called predictive uncertainty [36, 44]. Typically, this uncer-
tainty should contain both, data and model uncertainty, however, the term is always used
when the uncertainty for a prediction is calculated, whether it captures all uncertainties or
not. With respect to this work, the predictive uncertainty is important, as the reliability of
individual keypoint predictions shall be assessed.

To express the uncertainty of a neural network output, different task-dependent measures
of uncertainty are employed throughout the literature. For regression problems, a com-
mon approach is to express the uncertainty of a prediction through the use of Gaussian
distributions, using the mean as the point prediction of the regression task and the vari-
ance to represent the uncertainty of this point prediction [34, 65]. Using the variance,
uncertainty can also be expressed as an interval over regression values around the mean.
Intervals encapsulating the potential solution of a regression task can also be predicted
directly [94], without relying on a Gaussian distribution first. Furthermore, the use of a
confidence score ranging from 0.0 to 1.0 to indicate the reliability of a regression result
has also been proposed [112]. In the field of classification, using scores ranging from 0.0
to 1.0 to indicate the reliability of a result is way more common, as the maximum class
probability in such a task is a natural measure of a neural network’s trust in its result [36],
and can be obtained from a single neural network or (for better results) from e. g., an
ensemble of neural networks [65]. To improve the uncertainty assessment in classifica-
tion, the variance of multiple softmax predictions for the same input can be used [36].
Another option is the use of a confidence score, predicted in addition to the softmax clas-
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sification score to account for e. g., overconfidence in the predicted class due to an input
far away from the training distribution [19]. To fully capture the uncertainty of a neural
network output, it can be necessary to combine different measures, as different measures
and procedures for their calculation may only be representative of either data or model
uncertainty, while also being influenced by the other [36]. For a more comprehensive and
detailed overview of uncertainty measures, please refer to Gawlikowski et al. [36].

So far, methods for obtaining uncertainty estimates have not been discussed yet. To
that end, the taxonomy for uncertainty estimation approaches introduced by Gawlikowski
et al. [36] will be adopted, who distinguish between four different kinds of approaches:
(i) the direct prediction of uncertainty estimates through a single, deterministic neural net-
work (single network deterministic methods), (ii) the prediction of uncertainty through the
application of Bayesian probability theory to neural networks (Bayesian neural networks),
(iii) the prediction of uncertainties from multiple neural network outputs calculated by dif-
ferent neural networks (ensemble methods) as well as (iv) the prediction of uncertainties
based on different outputs from one neural network obtained through different augmenta-
tions of the test data (test-time augmentation methods). In the following, these approaches
will be introduced in greater detail.

Single Network Deterministic Methods [36]: The first category of approaches that is
defined by Gawlikowski et al. [36] encompasses all approaches that fulfill two criteria:
(i) a single neural network is used for uncertainty estimation, and (ii) the behavior of the
neural network is deterministic, meaning that not only the neural network itself is de-
terministic, but also that no nondeterministic behavior is induced, e. g., through multiple
forward passes with differently augmented data. With these restrictions in place for meth-
ods of this category, there are only two ways to obtain uncertainty estimates. First, the
neural network can be designed in a way that it predicts both – the final prediction for a
specific task as well as an estimate for the uncertainty of that prediction, and in doing so,
linking the actual prediction task with the uncertainty estimation. A very simple example
from Gawlikowski et al. are classification methods, that derive the predicted class as the
class with the highest probability over a probability distribution, while the actual probabil-
ity for the class can be put out as a basic uncertainty measure. The second way to handle
uncertainty estimates in the current category is to separate the actual prediction task from
the estimation of the associated uncertainty by applying one method to predict results,
and another, separate one, to predict uncertainties. An abstract schematic illustration of
how single network deterministic methods work can be found in Figure 3.6. Looking
at some exemplary methods belonging to this domain, DeVries et al. [19] approach the
problem of uncertainty in classification tasks by not only predicting class probabilities,
but by extending the neural network architecture by an additional branch that predicts a
confidence score for the current result. This branch is explicitly trained in a way to have
high confidence if the neural network is sure about its current prediction, i. e., thinks it
knows the data and the correct result, and to express low confidence, when the data and
their correct interpretation is unknown. This especially aims at identifying incorrect re-
sults for data that was not or only poorly represented by the training data, for which high
classification probabilities can occur despite them being incorrect, making the probabil-
ity distribution of the classification task an unsuitable uncertainty measure in these cases.
Another approach belonging to the current category is the work of Oala et al. [90]. They
aim to capture uncertainty in form of an interval predicted around the current prediction
result. To obtain this interval, they define an additional interval neural network, where
each parameter is not defined as a single value, but as an interval through a lower and
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Figure 3.6: Exemplary, abstract visualization of a method belonging to the single network
deterministic methods category of Gawlikowski et al. [36]. Input data is processed by a
deterministic neural network that directly produces the result for the input, as well as an
output to measure the predictive uncertainty of that result.

Figure 3.7: Exemplary, abstract visualization of a method belonging to the Bayesian neu-
ral network category of Gawlikowski et al. [36]. Input data is processed by the same
neural network multiple times with different parameters θ1, θ2, ..., θK that have been
drawn from an approximation of the posterior distribution p(θ|D). Each time, a differ-
ent neural network result is produced, which are afterward processed through statistical
methods to obtain the final result as well as an estimate of the predictive uncertainty.

upper bound. First, the interval neural network is created as an exact copy of a pretrained
neural network, with lower and upper bound for all parameters being the same as the sin-
gular parametric values of the original network. In the following, it is trained to produce
meaningful intervals, that always contain the parameter values of the original network,
in the end resulting in an interval produced for every prediction of the original network
when applied to the same input. An example of the full separation of predicting the result
for a task and predicting the uncertainty is the work of Raghu et al. [99]. They employ
an unmodified classification model for a classification task, and run a completely sepa-
rate neural network on the same input data to obtain uncertainty estimates for the current
prediction. They explore the prediction of different uncertainty measure like the variance,
whereas the ground truth uncertainty for training is obtained from multiple annotations
made for the same input.

Bayesian Neural Networks [36]: The second category used by Gawlikowski et al. [36]
encapsulates all approaches that build upon the principles of Bayesian probability theory.
While other neural networks are designed and trained in a way that aims to find the sin-
gle best set of parameters to solve a specific problem (maximum likelihood), Bayesian
methods incorporate a probabilistic view by treating network parameters as well as neural
network outputs as probability distributions. Specifically, the distribution of the neural
network parameters θ is modeled through the use of Bayes theorem as a posterior dis-
tribution that depends on the training data D, while the output distribution for a neural
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network output ŷ is modeled as a probability that is conditional on both, the current input
x as well as the training data D [36]:

p(θ|D) =
p(D|θ)p(θ)

p(D)

p(ŷ|x,D) =

∫
p(ŷ|x,θ)p(θ|D) dθ

(3.11)

In this equation, p(ŷ|x,θ) takes the role of data uncertainty, while the model uncertainty
is explicitly represented by p(θ|D) [36]. While forming a strong theoretical foundation,
a direct calculation of p(ŷ|x,D) is typically not possible [36], thus Bayesian neural net-
works encompass approximate methods. Gawlikowski et al. further distinguish three dif-
ferent ways of how this approximation can be obtained: (i) variational inference methods
that try to fit a parametric distribution q(θ) as close as possible to the true posterior distri-
bution of the network parameters p(θ|D), which can be done by minimizing the evidence
lower bound of the Kullback-Leibler divergence KL(q(θ)||p(θ|D)) between both distri-
butions, so that q(θ) becomes a good approximation of p(θ|D), (ii) sampling methods that
create one sample after another for potential values of θ, with the entirety of created sam-
ples representing an arbitrary, non-parametric probability distribution, and (iii) Laplace
approximation methods that simplify the true posterior distribution of p(θ|D) by assum-
ing it is a multivariate normal distribution, where the mean is the most likely set of pa-
rameters (maximum a posteriori estimate of the probability distribution, which can e. g.,
be obtained through traditional neural network training), whereas the uncertainty of the
distribution is represented by a Hessian matrix, with the main challenge for methods from
the field being the approximation of the Hessian. Independent from the method ((i) - (iii))
through which the distribution of model parameters is approximated, it is then possible
to evaluate statistical measures of uncertainty like the variance by performing multiple
forward passes through the neural network with the same input, each time using another
set of sampled parameters θk from the probability distribution, with k denoting the k-th
forward pass. See Figure 3.7 for an illustration. Looking at examples in the category of
Bayesian neural network, one prominent approach is Monte Carlo dropout (MC dropout),
which was proposed by Gal et al. [34]. In their work, they make two major contributions:
First, they prove that training a standard neural network with dropout layers (i. e., apply-
ing a Bernoulli distribution to intermediate outputs of individual neural network layers,
which sets individual elements to zero with a certain probability) is equivalent to fitting a
distribution q(θ) to approximate the true posterior distribution p(θ|D) by minimizing the
Kullback-Leibler divergence, as it is done in the category of variational inference meth-
ods. Second, they show that a final prediction together with measures for the predictive
uncertainty of the output can be obtained through gathering multiple results from the same
neural network through multiple forward passes with different samples of the Bernoulli
distribution being applied, leading to different results in every forward pass. The final re-
sult is calculated as the mean of all results obtained that way, while the predictive variance
is represented as the variance of the samples, while also taking a hyperparameter for the
the model precision into account.

Ensemble Methods [36]: The third category presented by Gawlikowski et al. [36] in-
cludes all approaches that use multiple neural networks as a neural network ensemble to
obtain predictions and uncertainty estimates. Specifically, this means that each of multi-
ple neural networks is presented with the same input x and produces its own output ŷk,
with k indicating the k-th neural network that is used. Having obtained multiple outputs,
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Figure 3.8: Exemplary, abstract visualization of a method belonging to the ensemble
methods category of Gawlikowski et al. [36]. Input data is processed by multiple differ-
ent (structure-wise/weight-wise/...) deterministic neural networks. Each time, a different
neural network result is produced, which are afterward processed through statistical meth-
ods to obtain the final result as well as an estimate of the predictive uncertainty.

statistical methods can be applied, e. g., to calculate the mean and, as an uncertainty mea-
sure, the variance. See Figure 3.8 for a general illustration. For this procedure it is crucial
that the employed neural networks do not operate exactly the same, so that they do not
produce the same outputs for the same inputs. Especially when uncertainty is high, the
models should expose different behavior. To achieve this varying behavior, it turned out
that using the same model multiple times while initializing model parameters in a ran-
dom way, together with the randomness introduced by training on shuffled minibatches,
is sufficient for ensembles, as e. g., highlighted by Lakshminarayanan et al. [65]. How-
ever, further beneficial diversity can be introduced to the ensembles by other means. For
example, Herron et al. [42] highlight the benefits of using different neural network archi-
tectures in ensembles to further increase the ensemble’s diversity. A prominent example
of uncertainty estimation through ensemble methods is the work of Lakshminarayanan
et al. [65]. For regression, they use a neural network architecture that already predicts
regression results and associated uncertainty measures by using two outputs that reflect
mean and variance. To further improve this estimate, they employ an ensemble of neural
networks by using the same neural network architecture multiple times, but with different
randomized initialization as well as shuffling with minibatches during training. To obtain
the predictive uncertainty, they pass the same input once through each neural network, and
aggregate the individual outputs of means and variances as a Gaussian mixture model. As
final prediction, they represent the Gaussian mixture model through a single Gaussian
distribution, which has a single variance that can serve as predictive uncertainty measure.

Test-Time Augmentation Methods [36]: The last category introduced by Gawlikowski
et al. [36] encapsulate all methods that employ data augmentation at test time to deal with
uncertainty. The general idea in this category is to induce diverse behavior into a single,
deterministic neural network by creating a range of different neural network inputs from
a single input x through different data augmentations. Different results for an input x
are created by passing the different, augmented versions of x through the neural network.
With different results available, statistical methods can be employed to calculate the final
result and associated uncertainty measures. See Figure 3.9 for an illustration. An impor-
tant point when performing test-time augmentation that is emphasized by Gawlikowski
et al. [36] is that data augmentation at test time should be used in a way that only creates
new data belonging to the training distribution. Simple examples of augmentations that
can be used during test time are the same that have been applied during training. For
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Figure 3.9: Exemplary, abstract visualization of a method belonging to the test-time aug-
mentation methods category of Gawlikowski et al. [36]. Input data is augmented multiple
times using non-deterministic augmentation methods to produce a set of differently aug-
mented input data. Each of them is processed by the same deterministic neural network,
producing a different output each time. Afterward, these outputs are processed through
statistical methods to obtain the final result and an estimate of the predictive uncertainty.

a further investigation on augmentations during test time that are beneficial vs. harmful,
Gawlikowski et al. point to the work of Shanmugam et al. [110] on the topic. An example
of a test-time augmentation approach is e. g., the work of Wang et al. [128], who use test-
time augmentation as a method to calculate the data uncertainty in an image segmentation
task. In their work, they use the same augmentations (noise and spatial transformations)
during training and test time. Through repeated forward passes with different augmenta-
tions, they generate multiple segmentation results. For every pixel, the frequency of each
segmentation class is recorded (based on the highest probability in each forward pass),
and the entropy is subsequently calculated as an uncertainty measure based on the class
frequency.

3.3.2 Human Pose Estimation

In human pose estimation, assessing the (un)certainty of results, be it individual key-
points or the overall resulting pose, is not an integral part of all tasks. Concerning 2D
single-person human pose estimation, the common evaluation metrics introduced in Sec-
tion 3.1.3 do not even offer a way to include the confidence of results into the final score.
It is only important whether the detection is correct with respect to the ground truth,
while confidence in the detection does not play a role at all, and delivering no keypoint
detection for an annotated keypoint is treated equal to supplying an incorrect keypoint de-
tection. In conclusion, methods aiming at 2D single-person human pose estimation do not
necessarily produce outputs that could be used to assess the uncertainty of keypoint detec-
tions. While heatmap-based methods have a natural way to express uncertainty through
the pseudo-probability scores of the heatmaps, the same is not true for regression-based
methods, which in some cases only calculate the estimated position of keypoints without
further measures [12, 118, 125].

In contrast to single-person human pose estimation, it is an integral part of multi-person
human pose estimation to assess how certain a neural network is about its results. For 2D
multi-person human pose estimation, both predominant datasets – MPII and MS COCO
(see Section 3.1.2) – require a confidence score per detected person expressing how cer-
tain the neural network is that the detection is correct. This confidence score is required
for the calculation of core performance metrics like the precision-recall curve or (mean)
average precision. Therefore, a good estimation of a neural network’s (un)certainty about
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its detections on a human instance level is crucial for attaining good performance on these
datasets. Looking at top-down multi-person human pose estimation methods consisting
of an object detector and a separate single-person human pose estimator, the straightfor-
ward approach to obtaining confidence scores would be to use confidence scores already
supplied by the object detector for its current detection, hereby alleviating the human
pose estimator from producing any estimates itself. However, Papandreou et al. [92] dis-
covered that this leads to suboptimal results, and suggested using the average over the
maximum of activation maps for each individual keypoint instead, with activation maps
being their proposed adaptation of heatmaps. More commonly used is a refinement of this
approach, where the confidence scores of single keypoints (e. g., from heatmaps) are com-
bined with the score from the object detector [9, 13, 67], hereby loosely following the idea
of ensembles by incorporating predictions from more than one network, however, without
explicitly assessing deviations between predictions. An example of such approaches is the
work of Chen et al. [13], who calculate the final score for a human pose based on the aver-
age of individual keypoint confidence scores (obtained from heatmaps), multiplied by the
confidence score associated with the bounding box that is obtained from a object detector.
Completely independent of the presence of an object detector, some human pose estima-
tion approaches from the bottom-up domain assess the confidence at human instance level
only based on confidence values supplied by the heatmaps [14, 87]5. For example, Cheng
et al. [14] first extract the confidence scores of keypoint-specific heatmaps at the locations
where the individual keypoints were detected for a human instance. Then, the confidence
value at the human instance level is calculated as the mean over these confidence values.
All previously presented approaches so far depend on the presence of heatmaps to obtain
the final confidence score, however, these are not present when regression approaches
are used. In the absence of heatmaps, some approaches directly aim to predict confi-
dence scores, either on the human instance level or per keypoint [79, 111]. For exam-
ple, the regression-based transformer approach of Mao et al. [79] supplies per-keypoint
confidence scores for the final confidence calculation by predicting the parameters of a
probability distribution for each keypoint. Mean and scale are used as parameters for a
Laplacian density function, from which the keypoint confidence is obtained as the prob-
ability that the actual keypoint locations falls within an interval focused at the mean, that
is defined through a fixed offset from the mean in both directions.

Works from the previous section primarily focus on achieving good performance with
respect to the evaluation metrics of MS COCO and other datasets, with the calculation
of confidence scores being only a smaller part of this procedure. However, there are
also works that explicitly focus on the uncertainty assessment in human pose estimation.
Bramlage et al. [7] explore two different methods to obtain estimates for both, data and
model uncertainty. The first approach builds upon the prediction of the parameters of a
Gaussian distribution using maximum a-posteriori inference, with the mean representing
the keypoint position and the variance representing data uncertainty. To obtain a mea-
sure for the model uncertainty, they apply Monte Carlo dropout and calculate the variance
over the predicted mean values in each forward pass. Their second approach is the ap-
plication of deep evidential regression (introduced by Amini et al. [1]) to the problem of
human pose estimation. While their first approach predicts the most likely values for the
mean and variance of a Gaussian, deep evidential regression aims to predict the parame-

5not mentioned in the respective papers directly, but evident from the code supplied by the corresponding
official repositories available at https://github.com/princeton-vl/pose-ae-demo and
https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
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ters of a normal-inverse-gamma distribution which describes the mean and variance of the
Gaussian distribution as a distribution. An upside of this approach is, that all three, final
keypoint position, data uncertainty, and model uncertainty, can be directly calculated from
the predicted parameters of the normal-inverse-gamma distribution, without the need for
sampling multiple results like it is the case with Monte Carlo dropout. In any case, confi-
dence intervals reflecting uncertainty for predicted keypoint positions can be inferred from
the obtained standard deviations. To obtain better confidence intervals from the predicted
standard deviations, an additional recalibration step is performed that multiplies standard
deviations with a factor obtained from a learned function for which the output depends on
the current quantile of data that shall be covered. Gundavarapu et al. [40] model human
pose estimation as a problem of predicting a multivariate Gaussian distribution. Keypoint
positions are represented as the mean values, while the covariance matrix is expressive of
the uncertainty for such a distribution. Instead of predicting the covariance matrix directly,
they aim to obtain the inverse of it, the precision matrix, by predicting the parameters for
the Cholesky decomposition of the precision matrix. In turn, the precision matrix and thus
also the covariance matrix can be calculated from the neural network outputs. As a final
uncertainty measure obtained from the covariance matrix, they investigate both, the over-
all entropy as well as the variance for different human body joints. Through experiments,
they show that their uncertainty measure correlates with the amount of occlusion that is
present (which in turn correlates with increased data uncertainty). Further experiments
highlight the capability of the uncertainty measure to identify images of the MPII human
pose dataset for which their human pose estimator fails to produce correct results, as well
as the ability to identify images for which the predicted poses are correct.

Methods that incorporate uncertainty can also be found in other tasks that leverage human
pose estimation. For example, aiming at the prediction of the 3D position of humans
from 2D keypoints in a single, monocular image, Bertoni et al. [6] leverage a Laplace
distribution to capture the data uncertainty inherent to the task of inferring the depth using
2D keypoints in an image from a single camera, while Monte Carlo dropout is performed
to incorporate the model uncertainty. Their work focuses only on the step from 2D to
3D, with their proposed architecture using 2D keypoint positions as input, which they
obtain from existing 2D human pose estimation methods. Their network is designed to
calculate the mean and scale of a Laplace distribution from the 2D keypoints used as
input, where the mean represents the estimated 3D position and the scale is representative
of the uncertainty. To implement MC Dropout, the network contains the required dropout
layers. To obtain a final measure for predictive uncertainty which contains both, data and
model uncertainty, they calculate multiple results with active dropout at test time, while
also sampling multiple times from the Laplace distribution to obtain depth values. Then,
the variance over these results is calculated to represent the predictive uncertainty.
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In this chapter, the first of the four central points of this work will be discussed: How
can previously undetected errors of a human pose estimator be detected? The presence of
incorrect results itself is a property that is inherent to treating human pose estimation as a
point estimation problem that is solved by neural networks. As previously outlined, neu-
ral networks suffer from model uncertainty, induced by factors like the model structure
and training procedure, that affects their capability to predict correct results. On the other
hand, the formulation of human pose estimation as a point estimation problem, where the
only necessary result per keypoint is a single set of coordinates indicating the keypoint’s
position, is prone to incorrect results whenever there is large enough positional ambigu-
ity in the input that cannot be resolved. However, the presence of such errors is not an
acceptable option for safety-critical applications like SSM, as a keypoint localized at an
incorrect position poses a potential threat to safety. Throughout this chapter, it is ruled
out of the question to change the human pose estimation problem to something else than
a pure point estimation problem, as this is the way how the problem is approached on
the common 2D single-person human pose estimation datasets. A solution to the problem
is the identification of potentially incorrect results that can not be trusted for further use
in safety-critical applications. Their identification opens up the use of secondary safety
measures which can be employed whenever an unreliable, potentially incorrect result is
identified. For example, these could stop the safety-critical application or safely bridge
the time until another reliable result for a keypoint is available. This makes the identifica-
tion of potentially incorrect results a crucial part for the safe use of human pose estimation
in safety-critical applications.

As in most cases throughout this work, the problem of identifying incorrect keypoint pre-
dictions from neural networks is investigated and pursued for the fundamental task of 2D
single-person human pose estimation. Furthermore, the approach for identifying incorrect
results shall make as little assumptions as possible about the neural network employed for
human pose estimation to ensure broad applicability. Ideally, this means that a method
for error detection solely depends on the keypoint positions calculated by the neural net-
work and no further outputs and/or intermediate results that can deviate between neural
network architectures and approaches. Although the primary goal is to identify previ-
ously undetected errors, this should be achieved while maintaining a low false positive
rate (correct detections that are falsely labeled as erroneous). This is necessary to avoid
that safety measures building upon human pose estimation results are practically rendered
useless when almost every result is labeled as potentially incorrect, and secondary safety
measures have to be used all the time to ensure safety. In the following, the problem of
error detection in human pose estimation together with definitions like the correctness of
a keypoint will be further formalized. Next, the application of safety engineering and
neural network uncertainty estimation principles to this problem will be discussed, before
presenting potential solutions and their evaluation. The content presented in this chapter
is primarily based on previously published work of the author on the application of diverse
neural network ensembles for error identification in human pose estimation [106].
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4.1 Problem Definition

The defined goal is to find methods that are capable of identifying erroneous human pose
estimation results at inference time, whereby erroneous means that a predicted keypoint
position would be considered incorrect. As perfectly predicting the correctness of every
detected keypoint position is a highly challenging task, it can be relaxed to determining
whether a result is reliable (correct) or unreliable (potentially incorrect). This puts the
emphasis on retaining a set of correct keypoint predictions in the reliable category, while
the unreliable category pools incorrect results as well as correct results without enough
evidence to support their correctness. This relaxation is suitable for retaining safety when
sufficient additional safety measures are used whenever an unreliable result is identified.

To obtain a formal definition of the error detection problem for 2D single-person human
pose estimation, let f : RW×H×3 7→ RN×2 denote the function that is realized by a trained
neural network for human pose estimation. It maps an input, a 3-channel color image
with width W and height H , to a total of N coordinate pairs in image coordinates, with N
being the total number of keypoints that shall be localized. Let ŷ = f(x) ∈ RN×2 be the
keypoint positions predicted by the neural network for a single input image x ∈ RW×H×3,
and let y ∈ RN×2 denote the true (ground truth) locations of the keypoints. Furthermore,
let g : RN×2 × RN×2 × _ 7→ {0, 1}N denote the general definition of a function used
to evaluate the neural network output. It calculates the evaluation result b = g(ŷ,y,Dg)
based on the predicted and true 2D keypoint positions, as well as additional data Dg of ar-
bitrary type and shape (dependent on specific evaluation function). The result b ∈ {0, 1}N
contains the value 1 at position i, if the i-th keypoint prediction ŷi for input x is correct
with respect to the true location yi, and 0 otherwise. The function g and thus also b
have the downside, that they can only be applied and calculated when the true keypoint
locations and potential additional data Dg are known (e. g., from human annotations on a
dataset), however, this is not the case when the human pose estimator shall be deployed
in a practical application. To assess at inference time whether a result is correct or not,
it is necessary to define a function g′ : _ 7→ {0, 1}N that mimics the behavior of g and
calculates an output b̂ ∈ {0, 1}N solely based on data that is available at inference time,
including e. g., the input image and neural network results, while explicitly excluding the
likes of human annotations. The ideal result of g′ is b̂i = bi for every given keypoint pre-
diction ŷi. For safety, it is also sufficient to aim for b̂i ≤ bi, where b̂i = 0 now indicates
that the results for the i-th keypoint is unreliable (might be correct or incorrect but should
not be used or trusted), while b̂i = 1 indicates that the result is reliable (assumed to be
correct). Only b̂i > bi is safety-critical, as the i-th keypoint position would be considered
correct while it is not. To assess the performance of a human pose estimator, together with
a realization of g′ that makes a statement about the reliability of the predicted keypoint
positions, three potential states for a predicted keypoint ŷi have to be considered:

ŷi = f(x)i is


Correct, if bi = 1 & b̂i = 1

False, if bi = 0 & b̂i = 1

Uncertain, if b̂i = 0

(4.1)

With an ideal realization of g′, all keypoint predictions that are incorrect with respect to g
would fall into the Uncertain category, while all correct keypoint predictions with respect
to g would fall into the Correct category. In practice, a good realization of g′ should feature
a very low amount of results in the False category, while maintaining a high amount of
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results in the Correct category. Eliminating (almost) all incorrect results at the cost of
leaving almost no results in the Correct category is not desirable, as that would mean that
almost all results would fall into the Uncertain category. This would mean that almost no
results could be used, which would severely limit practical usability.

To enable the implementation of a function g′, the actual evaluation function g that deter-
mines whether a detected keypoint position is correct or not should be known beforehand.
For common 2D single-person human pose estimation datasets [3, 24, 139], the catego-
rization of keypoint (or part) detections into correct or incorrect is done by thresholding
the Euclidean distance between predicted and human-annotated positions with thresholds
derived from human annotations. As the experiments in this work will be performed on
the MPII Human Pose dataset [3], the same correctness definition that is employed there
will be used, which is part of Eq. (3.8) for the calculation of the PCKh score. Transferred
into the notation of this chapter, the function for assessing correctness on the MPII dataset
gMPII can be written as follows for the i-th keypoint:

gMPII(ŷ,y, sh)i = δ(
||ŷi − yi||2

sh
≤ cMPII) = δ(||ŷi − yi||2 ≤ cMPII · sh) (4.2)

Here, sh (the head-based, annotated normalization distance that changes between different
human instances) takes the place of the additional data Dg, and it is not available at
inference time, just as the annotated location yi. The constant cMPII is known and always
the same, typically 0.5. It will be the goal to find a function g′MPII that classifies a result
as reliable when it is correct with respect to Eq. (4.2) and as unreliable otherwise. Also
note that Eq. (4.2) omits the case that human annotations can miss for certain keypoints,
something that is considered in Eq. (3.8) from which it is derived. On datasets, these
missing keypoints typically originate from the human annotator being unable to annotate
them. The standard procedure is to omit these missing annotations (as it is e. g., also
done in Eq. (3.8)), and further detail on this case will be provided when experiments are
performed.

4.2 Discussion of Safety Engineering and Neural
Network Uncertainty Concepts

Throughout this section, the concepts and strategies from safety engineering as well as
from neural network uncertainty estimation will be discussed in the context of their po-
tential for obtaining a function g′ that is capable of identifying potentially incorrect results.
This shall be done under the following limitations imposed by the problem definition:

1. No assumptions about the neural network for 2D single-person human pose estima-
tion shall be made, except that it solves a point estimation problem. This means that
the only outputs that shall be considered are the predicted coordinates for keypoints.

2. Only data available at inference time may be processed. Most and foremost, this
includes the 2D input image, as well as keypoint coordinates obtained from the
human pose estimation network.

3. Only a single input image is available for the human pose estimator, and no other,
additional input data.
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Safety Engineering Concepts: First, safety engineering concepts from safety standards
will be discussed for the problem of identifying incorrect human pose estimation results.
Specifically, the concepts of redundancy and diversity from Section 2.2.2 will be assessed:

1. Redundancy: The concept of redundancy itself, where an implementation that ful-
fills a given functionality is simply duplicated, is not a useful option for detecting
incorrect human pose estimation results. The majority of neural networks for human
pose estimation are deterministic in nature (see e. g., the representative networks in-
troduced in depth in Section 3.1.4), thus running the same neural network multiple
times on the same input leads to the same result (in absence of hardware malfunc-
tions which are not considered here). Having the same result multiple times opens
up no options for error identification, thus redundancy is considered unsuitable.

2. Diversity: In contrast to mere redundancy, diversity is highly promising. Instead of
identical implementations, functionally different implementations are used, mean-
ing that different results for the same input can occur. This opens up the possibility
to compare results for the identification of errors, with deviations being indicative
of malfunctions. Previously introduced error sources affecting neural networks for
human pose estimation include factors like ambiguity or lack of evidence regard-
ing the keypoint position in the 2D input image, as well as factors like the neural
network structure or training. Using different neural network architectures as well
as a randomized training procedure should prevent that errors caused by architec-
ture and training are identical across multiple networks. As both, architecture and
training, are aspects of the neural network’s implementation, this claim is further
supported by standard IEC 61508-7 [45], which lists diversity as a measure against
software implementation errors through result comparison. With respect to ambi-
guity or lack of evidence in the input, it can be expected that highly different neural
networks react in different ways. In case of ambiguity where different, highly likely
candidates for the keypoint position exist, it should be likely that different neural
networks predict different candidates, again enabling a comparison-based error de-
tection. The same should be true when a lack of evidence occurs and no likely
candidate for the keypoint position exists. Overall, this leads to the conclusion that
a diversity-based comparison of results should be effective for identifying incor-
rect human pose estimation results. As the correctness of a keypoint detection is
defined based on spatial vicinity, the comparison of results should also be vicinity-
based. This makes it necessary to obtain a suitable distance-based threshold from
data available at inference time, posing an additional challenge. From a theoreti-
cal perspective, the only slightly limiting factor for the concept is that diversity in
inputs can not be achieved due to the problem definition mandating a single input.

Neural Network Uncertainty Estimation Methods: Next, the four general methods for
assessing uncertainty in neural networks from Section 3.3 will be assessed regarding their
capability to identify incorrect human pose estimation results under the given limitations:

1. Ensemble Methods: The concept of using an ensemble of neural networks for
assessing uncertainty is closely related to using diversity for error detection. In
this strategy, multiple neural networks are used to predict the same output for a
given input, with uncertainty metrics like the variance being calculated over the
results. For human pose estimation, the variance of multiple predicted keypoint
positions could be assessed, which is indicative of the distance between them. This
can be seen as a distance-based comparison, where high variance is indicative of an
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error. Using a threshold on the variance can enable a binary decision whether an
error occurred or not. If architecturally different neural networks and randomized
training procedures are used for the ensemble, this is almost the same as using
diversity, making the strategy useful for the problem in a similar way. For such an
ensemble, the field of uncertainty estimation overlaps with safety engineering.

2. Bayesian Neural Networks: The assessment of uncertainty through Bayesian neu-
ral network approaches works similar to ensemble methods, with uncertainty mea-
sures like the variance being calculated over multiple different neural network out-
puts. Different outputs are obtained by using different weights that are sampled
from weight distributions for the same neural network. Compared to an ensemble
with architecturally different neural networks, this has the downside that the neural
network architecture poses a single point of failure. Furthermore, Bayesian methods
make requirements regarding the neural network architecture (e. g., the presence of
dropout layers for Monte-Carlo dropout [34]), hereby violating the first limitation.
Thus they are considered less viable than ensembles or diversity for the problem.

3. Test-Time Augmentation Methods: Methods from the field of test-time augmen-
tation also assess uncertainty similar to Bayesian methods and ensembles based on
multiple results. The difference lies in how these results are created. In contrast to
using multiple networks or sampled weights, different neural network behavior is
induced through different augmentations of the input at inference time. This pro-
vokes different results from a single neural network with fixed weights, but suffers
from a single point of failure by using only a single neural network. Furthermore,
augmentations of the input can be considered a form of noise on the input, which
conflicts with the aim of limiting the impact of noise. Therefore, this approach is
also considered less viable than ensembles and diversity.

4. Single Network Deterministic Methods: The strategy of using single, determin-
istic neural networks for predicting neural network uncertainty is highly different
from the other three strategies, as neither multiple results nor statistical methods
are used. Instead, the uncertainty measure is directly predicted by a neural net-
work. For the given problem, this could e. g., be done by using a separate neural
network that calculates an uncertainty value from a predicted keypoint position and
the input image. Alternatively, the neural network for human pose estimation itself
could predict an uncertainty value for each of its predicted positions. Thresholding
on the uncertainty value could be used to decide whether a result is correct or not.
Both ideas have only a single network responsible for the uncertainty assessment,
hence there is a single point of failure. Having the neural network itself predict
uncertainty values would further violate the first limitation. However, this violation
could be kept small by using the broadly available heatmaps as uncertainty mea-
sure. These are already a useful tool for calculating confidence scores for human
detections in multi-person human pose estimation (see Section 3.3.2).

Concluding the look at safety engineering concepts and neural network uncertainty esti-
mation methods, two approaches look promising: First is a combination of diversity and
neural network ensembles, as both share similar ideas for detecting errors likewise assess-
ing uncertainty while fulfilling all introduced limitations. Hence, their combination makes
an ideal candidate to realize g′, while also unifying both worlds. Second is having a look
at heatmaps as a realization of direct uncertainty estimation, as it is the only strategy that
does not rely on a comparison or statistical evaluation of multiple results.

43



4 Error Reduction

4.3 Human Pose Estimation and Error Detection
with Neural Network Ensembles

Throughout this section, the first idea of combining diversity and neural network ensem-
bles for the realization of a function g′ that separates results into reliable and unreliable
will be further explored. To this end, an ensemble architecture based on two or more di-
verse neural networks is proposed. Its task is to predict both, final keypoint positions as
well as a binary output for each keypoint that indicates whether the predicted position is
reliable or unreliable. This architecture will be called a diverse neural network ensemble.
First, the proposed architecture of the diverse neural network ensemble will be introduced,
followed by the methods for obtaining final keypoint positions as well as the binary reli-
able/unreliable classifications. The latter performs a distance-based comparison between
multiple predicted keypoint positions, which requires a suitable threshold. Last, a method
to obtain such a threshold from data available at inference time will be introduced.

4.3.1 Method Design

The proposed diverse neural network ensemble will require two building blocks. The first
building block is a set of two or more diverse neural networks. Each of them will be
used to process the same input image and produce an individual predicted position for
every keypoint. No other outputs are produced. As a result, every keypoint will have
as many different predicted positions as diverse neural networks are employed. The sec-
ond building block is a comparison module. Based on all individual keypoint predictions
from the diverse neural networks, it is responsible for producing the final predicted posi-
tion for every keypoint, alongside a binary classification for every keypoint that indicates
whether the predicted position is reliable or unreliable. Together, both building blocks
form the pipeline of the diverse neural network ensemble as depicted in Figure 4.1. The
pipeline has characteristics of both, a typical ensemble of neural networks for uncertainty
estimation and the safety concept of diversity. Processing the same, single input through
multiple neural networks with some differences is most in line with typical ensembles,
while diversity would have further preferred a different kind of input for every neural net-
work. However, this was ruled out by the problem definition. In contrast, the comparison
module is more in line with the concept of diversity by making a binary decision that
indicates whether a result is reliable and may be used further, or if it is unreliable. An
ensemble of neural networks for uncertainty estimation would have preferred an output
that indicates the degree of uncertainty instead of a binary decision.

Next, the individual building blocks are introduced in greater detail, starting with diverse
neural networks. Multiple neural networks are considered diverse in this work, if (i) their
architectures are different, and (ii) their training procedures are randomized (e. g., ran-
domized weight initialization, randomized data augmentation, ...) or completely different.
Although the literature considers differences in training (especially randomized weight
initialization) sufficient for uncertainty estimation with ensembles [36], different architec-
tures can be beneficial [42] and are more in line with the concept of diversity by increasing
functional differences. Therefore, diverse neural networks shall have both. Furthermore,
they must treat human pose estimation as a point estimation problem by realizing a func-
tion fk : RW×H×3 7→ RN×2 that predicts keypoint coordinates ŷk = fk(x) from a color
image x. Hereby, k ∈ [1, ..., K] denotes the k-th of K diverse neural networks.

44



4.3 Human Pose Estimation and Error Detection with Neural Network Ensembles

Figure 4.1: The diverse neural network ensemble pipeline. An input image is processed
by K ≥ 2 diverse neural networks, each producing a result ŷk for the keypoint positions.
From these results, the comparison module predicts the final keypoint positions ŷ as well
as their reliable/unreliable classification b̂. Based on author’s figure from [106].

The second individual building block is the comparison module that needs to realize two
functionalities: calculation of the final keypoint positions as well as the binary classifica-
tion into reliable or unreliable. The latter will be discussed first. Classification shall be
performed based on the safety concept of diversity, which means that all results calculated
in different ways should be the same to be reliable and used further [45]. However, per-
fect similarity of multiple predicted keypoint positions is not viable: not even humans are
able to agree on a single, perfect keypoint position, which is e. g., highlighted by the aver-
age standard deviation of human annotations used by the OKS score (see Section 3.1.3).
Instead, close enough spatial vicinity will be used to determine whether multiple key-
point positions match or not – a practice that is also used by many human pose estimation
datasets to evaluate predictions against annotations (see Section 3.1.3). As later experi-
ments and evaluations will be performed on the MPII Human Pose dataset, the dataset’s
vicinity-based comparison from the evaluation metric (see Eq. (4.2)) is a suitable choice as
a foundation for determining whether multiple predicted keypoint positions from diverse
neural networks match or not. Two major adaptations to this foundation are required.
First, the human-annotated threshold sh can no longer be used and must be replaced with
an approximation ŝh that can be calculated at inference time. Second, the distance-based
comparison was only defined for a single pair of keypoint positions, while now a total
of K predicted keypoint positions exist which shall all match. To change this, pairwise
comparisons between all potential pairs of keypoint positions can be performed, with all
of them matching if all pairs match. For a formal definition, let ŷk,i = fk(x)i denote the
predicted position for the i-th keypoint from the k-th diverse neural network, ŷi the final
keypoint position resulting from them, and cR a selectable constant that takes the role of
cMPII from Eq. (4.2). Then, reliable and unreliable are determined as follows:

ŷi is

Reliable, if
∑K−1

l=1

∑K
k=l+1 δ(||ŷk,i − ŷl,i||2 ≤ cR · ŝh) =

K(K − 1)

2
Unreliable, else

(4.3)

This comparison can be formulated as an approximation g′R,MPII of Eq. (4.2):

g′R,MPII([ŷ1, ..., ŷK ], sh)i = δ((
K−1∑
l=1

K∑
k=l+1

δ(||ŷk,i−ŷl,i||2 ≤ cR ·ŝh)) =
K2 −K

2
) (4.4)
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Figure 4.2: Exemplary illustration of potential outcomes when calculating the final key-
point position ŷi (cyan) as average over K keypoint predictions ŷk,i (blue, here K=2). All
keypoint detections inside the green circle are considered correct for ground truth position
yi and distance threshold cMPII · sh (black). Based on author’s figure from [106].

In this equation, each element ŷk of [ŷ1, ..., ŷK ] contains all predicted keypoints of the
k-th diverse neural network. If the equation evaluates to 1, the output is reliable, while
0 means unreliable. The calculation of the required approximation ŝh will be subject to
Section 4.3.2. Whether Eq. (4.4) is suitable for detecting incorrect results or not will be
determined through an isolated proof of concept and further experiments.

Apart from the reliable/unreliable classification, the final keypoint positions must be cal-
culated based on the individual predictions from the diverse neural networks. A common
practice among ensembles of neural networks is to average the results [36], which will
also be done here. Apart from being a common practice, averaging the results also makes
sense for the given problem: Cases in which the average produces very poor results should
be identified through the binary classification by labeling the resulting keypoint positions
as unreliable. An example of a very poor result from averaging would be if two locations
far away from each other exist that could both be the location of the keypoint with high
likelihood. In such a case, multiple predictions are expected to be distributed around these
two locations, while the average is at a position in-between that makes no sense. How-
ever, this also means that not all keypoints are in the vicinity of one another. Hence, the
resulting (mean) keypoint position is classified as unreliable, preventing further use. On
the other hand, if the binary classification yields reliable, only keypoints in the vicinity of
one another exist, making the average keypoint position a good approximation of individ-
ual results. Therefore, the final keypoint position ŷi for the i-th keypoint is calculated as
follows:

ŷi =
1

K

K∑
k=1

ŷk,i (4.5)

While ŷi is a meaningful final keypoint prediction, it can either be correct or incorrect with
respect to gMPII , (partially) depending on whether the individual predicted keypoints ŷk,i

where correct or not. A selection of potential outcomes is presented in Figure 4.2. It
can only be guaranteed that ŷi is correct, if all ŷk,i where correct. In this case, all ŷk,i

lie within a 1D sphere (a circle) with center yi (the ground truth position) and radius
cMPII · sh (the threshold for correctness), which constitutes a convex geometry. As every
convex combination (like the mean) of points within a convex geometry falls within the
convex geometry, this is also true for ŷi, meaning that it is also correct. In every other
case, ŷi can either be correct or incorrect. Although g′R,MPII can thus not guarantee that
the average ŷi is correct if labeled reliable, the same is true for every single prediction of
ŷk,i. Therefore, the use of ŷi is not invalidated by the potential of incorrect results, as the
alternative of using one of the multiple available predictions yields no theoretical benefit.
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4.3.2 Threshold Calculation at Inference Time

To enable an application of the diverse neural network ensemble at inference time, it is
necessary to calculate and use an approximate ŝh instead of the human-annotated sh for
distance thresholding as in Eq. (4.4). This calculation must be performed based on data
available at inference time. To be in line with functional safety principles, the calculation
of ŝh should be performed in a way that does not introduce potential new errors when
it is used as a substitute for sh. New errors can only be introduced when ŝh > sh, as a
larger threshold leads to fewer results being labeled as unreliable, with the potential of
additional incorrect results being labeled as reliable. Therefore, approximate values of
ŝh should be the same or more conservative than the respective values for sh, meaning
ŝh ≤ sh. In this case, the same amount or more results will be labeled as unreliable,
however, no additional incorrect results will be labeled as reliable.

As a reference point, the calculation of sh values will be introduced first. Each is obtained
from an annotated head bounding box with width w and height h as follows [3]:

sh = 0.6 ·
√
w2 + h2 (4.6)

The straightforward way to get an approximation ŝh for this would be to employ a head
bounding box detector and perform the same calculation using the width and height of
detected bounding boxes. However, the bounding box detector is a potential additional,
unchecked source of errors, that can easily lead to less conservative ŝh values whenever
the predicted bounding box is too large. A safer approach for obtaining ŝh would be to
leverage the diverse neural networks, hereby building on diversity again. As each of them
only predicts keypoint positions, the calculation of ŝh must be based on them.

Keypoint positions on their own are not very useful for calculating ŝh. However, typical
keypoints include joints, which means that certain pairs of keypoints define rigid body
parts and can be used to calculate their length. On the MPII dataset, two keypoints are
especially useful for conservatively approximating ŝh: the upper neck and the top of the
head keypoints. They define the start- and endpoint of the head itself, therefore they
should be close to the border of a bounding box encapsulating the head closely. Although
these points do not define the diagonal of the head bounding box used in Eq. (4.6) directly,
the distance lH between them can be seen as a conservative approximation of the diagonal
as (i) they lie within in the bounding box, meaning lH is smaller than the diagonal, and
(ii) they are usually close to the bounding box border (exceptions being discussed later).
Furthermore, both keypoints have the highest correct detection rates among all keypoints
according to official MPII data1. While the use of these two keypoints alone might seem
to be a good idea at first, the distance between both points can vanish due to the projec-
tion from 3D into 2D when taking an image. In cases where the 3D keypoint locations are
aligned closely to the same ray from the camera, their 2D projection will be at approxi-
mately the same position, leading to a distance close to 0 and thus a bad approximation of
ŝh. Figure 4.3 illustrates where lH leads to a good vs. a bad approximation.

To resolve this issue, an additional distance obtained from other keypoints is necessary,
with the requirement that this distance cannot vanish simultaneously. Furthermore, a
relation between this distance and lH should be established, such that the new distance can
also be mapped to a meaningful approximation of ŝh. A suitable choice for these keypoints

1available at http://human-pose.mpi-inf.mpg.de/#results
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(a) Good approximation (b) Bad approximation

Figure 4.3: Illustration of using the distance (blue line) between the upper neck and top
of the head keypoints (blue dots) as an approximation of the diagonal (red dotted line) of
a head bounding box (red rectangle). On the left side, a good conservative approximation
is achieved. However, on the right side, the distance between both keypoints vanishes
due to the projection into 2D, leading to a conservative yet very poor (way too small)
approximation of the bounding box diagonal.

are the shoulder keypoints, with their distance to one another being called lS . As the upper
neck is very close to the line connecting both shoulders, lS can only vanish at the same
time as lH , when the shoulder keypoints are closely aligned along the same line as the
upper neck and top of the head keypoints (assuming the camera has a reasonable distance
of a few meters to the human). However, due to the spatial dimensions of the body around
these keypoints, this is highly unlikely – for an illustration, see Figure 4.4. Therefore,
both distances should not vanish at the same time. A further point that speaks for the
shoulder keypoints is that they are detected correctly more often than most other keypoints
according to official MPII data, except for the aforementioned top of the head and upper
neck keypoints. To put lH into relation to lS , the work of Winter [132] can be applied,
which contains a model of body part lengths relative to the body height. This enables the
inference of a relation between shoulder width and head height, which is approximately
2:1 based on the body model used by Winter. This will be used to put lS into context of
lH by assuming 0.5 · lS = lH (the ideal case where body parts are not foreshortened due to
projection into 2D). Without leveraging the diverse neural networks, an early idea for the
approximation ŝh with respect to Eq. (4.6) could be ŝh = 0.6 · max(0.5 · lS, lH), with the
maximum being used to keep the distance which has lost less length due to the projection
into 2D. However, if these distances are calculated from e. g., only a single of the diverse
neural networks, both lH and lS are prone to errors due to incorrectly localized keypoints
making up the respective body parts. This can result in distances being too large, which
in turn can lead to values for ŝh that are too large and thus safety-critical.

The remaining question is how to incorporate the diverse neural networks into the calcula-
tion of ŝh to decrease the risk of safety-critical errors. Similar to the comparison between
keypoints, for which ŝh is required, this will be done through a comparison-based ap-
proach. For each of the diverse neural networks, both length values will be calculated
from their keypoint predictions, producing the values lH,k and lS,k for the k-th of K di-
verse neural networks. Comparison will be performed between different values for lH,k

and lS,k respectively. The final value for lH will be calculated as average over all values
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(a) Vanished
head

(b) Vanished
shoulder

(c) Vanished shoulder,
head aligned

Figure 4.4: Comparison of the distance between the two shoulder keypoints (orange) with
the distance between the upper neck and top of the head keypoints (blue). Whenever the
shoulder or head distance (almost) completely vanishes, the other one does not. This is
even true in example (c), where the head is aligned with the line connecting the shoulder
keypoints until the body blocks further alignment.

lH,k, and the validity will be assessed based on the difference between the largest and
smallest value for lH,k, resulting in a variable vH which is True if the largest value for lH,k

is at most 50% larger than the smallest value for lH,k:

vH =

{
True, if 1.5 ·min({lH,k|k ∈ [1, ..., K]}) ≥ max({lH,k|k ∈ [1, ..., K]})
False, else

lH =
1

K

K∑
k=1

lH,k

(4.7)

Hereby, the formulation of vH is loosely inspired by the PCP metric (see Section 3.1.3),
where a fraction of the length of annotated body parts is used to assess whether a predic-
tion is correct for a given ground truth annotation, with 0.5 being a common choice for the
fraction [3, 147]. The same fraction is used here to define the maximum allowed deviation
between multiple lengths for the same body part: The largest length may be at most 50%
larger than the smallest. Definitions similar to those for vH and lH will be used for calcu-
lating vS and lS based on multiple lS,k values. Whenever vS or vH are False, it means that
the corresponding value for lS respectively lH should not be used. The situation that both
are False can occur too, thus a conservative fallback value is necessary. This value will
be called sh,min and is calculated as the average over the 5% smallest values for sh, with
the goal that sh,min is highly conservative, but not as conservative as the smallest value.
Building on Eq. (4.6) and Eq. (4.7), this leads to the final formula for ŝh:

ŝh = max(0.6 · 0.5 · δ(vS) · lS, 0.6 · δ(vH) · lH , sh,min) (4.8)

The maximum is used to get the largest, non-vanishing conservative approximation of
ŝh that is considered valid. Validity is ensured by δ(vS) and δ(vH), which set the corre-
sponding calculated lengths lS and lH to 0 if they are not valid. This means that they are
ignored by the max function as sh,min > 0. Now, the approximation ŝh can be calculated
at runtime, with a safe and conservative estimation of ŝh being aided by the diverse neural
networks under the application of the principle of diversity for error reduction. An evalua-
tion of the methods for obtaining ŝh, as well as additional experiments with the calculated
ŝh values, will be provided in the experimental section.
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4.4 Heatmap-Based Error Detection

After introducing the diverse neural network ensemble approach for detecting potentially
incorrect results in the previous section, this section is dedicated to the detection of in-
correct results based on the contents of predicted heatmaps ĥ. Heatmaps are intermediate
outputs of heatmap-based neural networks, from which final keypoint positions ŷ are in-
ferred. Their use constitutes a violation of the first limitation from the problem definition
in Section 4.2 which says that keypoint coordinates shall be the only neural network out-
puts to be considered. The reason behind this limitation is to ensure the broad applicability
of error detection methods. With this goal in mind, the use of heatmaps is only a slight
violation of this limitation, due to heatmap-based methods being widely adopted for 2D
single-person human pose estimation (see Section 3.1.1). In contrast to this slight viola-
tion, the use of heatmaps offers the opportunity to investigate error detection approaches
that are highly different from the diverse neural network ensemble. This difference is that
neither a comparison nor a statistical evaluation of multiple results has to be performed.
Instead, the reliability of individual keypoints can be directly assessed based on the as-
sociated heatmaps. Such approaches can be categorized as single network deterministic
methods in uncertainty estimation, the category from Section 3.3.1 that has the largest
difference from all others. This makes heatmap-based methods worthy of investigation.

4.4.1 Heatmaps as Uncertainty Measure

The concept of heatmaps was previously introduced in Section 3.1.1. The primary purpose
of a single predicted heatmap ĥi for the i-th keypoint is the identification of the keypoint’s
location. At each location, the heatmap contains a pseudo-probability score that indicates
how likely it is that the keypoint is located at this location, with the final keypoint position
typically being inferred based on the location of the heatmap maximum. With respect to
uncertainty, the magnitude of the maximum can be seen as indicative of how certain the
neural network is in its result for the keypoint. Maximum values from heatmaps have also
been successfully used as (part of) confidence scores. An example is the use for expressing
the confidence into an entire human detection in multi-person human pose estimation,
where e. g., the average of maximum heatmap activations across different keypoints [92]
or the combination of this average with other elements [9, 13, 67] was used. Furthermore,
Newell et al. [86] showed on the MPII Human Pose dataset that the maximum (or mean)
heatmap scores are suitable for deciding whether an individual keypoint has an annotated
position or misses one (human was not able to determine the position). Therefore, it
is a straightforward and reasonable idea to employ the established concept of using the
heatmap maximum as confidence measure to define a function g′ that separates results
into reliable and unreliable, as well as to explore other heatmap-based functions.

The use of heatmaps for defining a function g′ has some differences to the examples men-
tioned above. The separation into annotated and not annotated keypoints performed by
Newell et al. is a much simpler problem, as the absence of a keypoint annotation is influ-
enced by factors like heavy occlusion or the keypoint being outside the image [86]. This
means the image strongly lacks evidence for the keypoint’s location, meaning heatmaps
with very low values can be expected. This can also have an influence when average
maximum heatmap scores are used as (part of) confidence scores for whole human de-
tections in multi-person human pose estimation, e. g., when a previously used person de-
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tector cropped off parts of a human, leading to a bad detection that is scored accordingly.
However, the relation between maximum heatmap scores and detection quality for ex-
isting keypoints also plays a role. For defining a function g′ that approximates gMPII

from Eq. (4.2), the most important heatmap property is that the magnitude of a heatmap’s
scores is indicative of the distance to the annotation keypoint position, as gMPII builds
upon the distance between predicted and annotated keypoint positions. This is typically
the case when the standard training procedure for heatmap-based methods as introduced
in Section 3.1.1 is used. Then, the predicted heatmap aims to reproduce a ground truth
heatmap that is calculated by applying a 2D Gaussian at the annotated keypoint position,
which makes the Euclidean distance part of every score. Thus, a low Euclidean distance
to the annotation can be assumed for a keypoint prediction with high associated maximum
heatmap score, while the opposite is true for a low maximum score. This reinforces the
assumption that heatmaps are useful for defining a function g′.

When using gMPII to determine the correctness of a keypoint prediction on the MPII
Human Pose dataset, there is not only a dependency on the Euclidean distance, but also
on the annotated value sh, which is different for every person. This highlights a conceptual
shortcoming of using heatmaps to define a function g′ to approximate gMPII , as predicted
heatmap scores are only assumed to be indicative of the Euclidean distance and not of sh,
making it impossible to decide whether a keypoint prediction is correct or not even if the
Euclidean distance would be perfectly represented by the predicted score. However, lower
Euclidean distances can be assumed for higher predicted heatmap scores, thus increasing
the chance of fulfilling gMPII for an unknown sh.

4.4.2 Method Design

Two ways of using the predicted heatmaps for assessing keypoint reliability will be inves-
tigated: The first one will use the heatmap score at the predicted keypoint position, the
second one will assess how well a predicted heatmap matches the expected heatmap for a
predicted keypoint position, thus considering more information than only the maximum.

The first method employs the established principle of using the heatmap maximum. It
is practically similar to what Newell et al. [86] does, however, the approach is applied to
identify incorrect keypoint results instead of those with missing annotations. The final
predicted keypoint position ŷi for the i-th keypoint is obtained as the position of the
maximum in the corresponding heatmap ĥi, backprojected into the original image through
a transformation T−1. The maximum ĥmax,i of the i-th heatmap expresses the reliability:

ŷi = T−1(argmax
u,v

(ĥi[u, v])), ĥmax,i = max(ĥi) (4.9)

A realization of g′MPIII based on ĥmax,i, which will be called g′H−Max,MPIII , can then
be realized by thresholding over ĥmax,i:

g′H−Max,MPIII(ĥmax)i = δ(ĥmax,i ≥ cmax) (4.10)

This leaves finding a suitable constant for cmax up to debate, which could e. g., be done
statistically based on data. Furthermore, the approach of using the heatmap maximum has
the downside that major parts of the heatmap are ignored, which could still contain rele-
vant information regarding the reliability of results. For example, multiple high heatmap
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Figure 4.5: Pipelines of the two heatmap-based methods that build on predicted heatmaps
ĥ. The upper branch shows the method building upon the heatmap maximum for predict-
ing reliability, where keypoint position and binary reliable/unreliable classification can
be directly obtained from the predicted heatmaps. The lower branch illustrates the sec-
ond method. Only the final keypoint positions ŷ are directly inferred from the predicted
heatmaps. From these positions, the expected heatmaps are generated and compared to
the predicted ones to obtain the binary classification into reliable and unreliable.

values in different places could indicate multiple likely keypoint candidates. To capture
this information, a suitable method is required. Using the mean of the scores in a single
heatmap (like Newell et al.) seems not suitable for the given problem, as multiple low
scores could lead to the same mean as a single high score.

Instead, it will be leveraged that the heatmap ĥi should look like a heatmap created during
training if the neural network is very certain about its result ŷi. Deviations like a smaller
maximum score or multiple high scores in different locations are indicative of uncertainty.
To assess these deviations, a new heatmap ĥ′

i will be created through the same process
that would have been used to create the ground truth heatmap hi during training, but with
ŷi replacing yi in the process. This leads to ĥ′

i being a perfectly shaped heatmap, and
exactly the training target hi if ŷi equals the ground truth annotation yi. To assess the
degree of deviation between ĥi and ĥ′

i, the mean squared error (MSE) can be applied to
obtain a measure ĥmse,i of uncertainty that can be used for thresholding:

ĥmse,i = MSE(ĥi, ĥ′
i) (4.11)

A low score for ĥmse,i correlates with high confidence of the neural network in its result.
To obtain a very low score, it is not only necessary to have a high heatmap maximum
similar to the maximum in ground truth heatmaps, but other factors impacting reliability
must also be absent, like multiple high heatmap values in different locations. A function
for binary reliable/unreliable classification g′H−MSE,MPII can again be defined through
thresholding ĥmse,i with a constant threshold cmse:

g′H−MSE,MPIII(ĥ, ĥ
′)i = δ(ĥmse,i ≤ cmse) (4.12)

Again, it is necessary to find a value for the constant cmse, e. g., statistically. For a quick
reference, Figure 4.5 shows the pipelines realized by both methods from this section.
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4.5 Experiments

To evaluate the proposed approaches for the identification of potentially incorrect results,
experiments will be performed on the MPII Human Pose dataset. The goal of the ex-
periments is to show how good the different methods are at filtering out incorrect results
while retaining a high rate of correct detections. To this end, it is necessary to modify
the standard evaluation metric of the dataset, the PCKh score. Previously introduced for
a single human with N keypoints in Eq. (3.8), this equation will now be presented in a
form that accounts for a total of M inputs with one human each [3]:

PCKh =
100∑M

j=1

∑N
i=1 δ(vj,i)

M∑
j=1

N∑
i=1

δ(vj,i)δ(
||yj,i − ŷj,i||2

sh,j
≤ cMPII) (4.13)

Index j denotes the j-th of M inputs and index i still denotes the i-th of N keypoints. The
variable sh,j is the human-specific head-based distance used in thresholding for the j-th
input, while vj,i denotes whether a keypoint is annotated (True) or not (False).

This equation is not suitable for evaluating the methods of this chapter, as it (i) does not
consider reliable/unreliable classification and (ii) does not account for the fact that the
percentage of incorrect results is no longer implicitly defined by the percentage of correct
ones. Therefore, three new evaluation metrics will be defined with respect to Eq. (4.1):
the percentage of correct keypoints (C), false keypoints (F) and uncertain keypoints (UC).
With b̂ denoting the binary classification result from a realization of g′ that predicts 1 when
the output is reliable and 0 otherwise (1 will be assumed for all b̂ values if no classification
function is used), this leads to the following equations for M test samples:

C =
100∑M

j=1

∑N
i=1 δ(vj,i)

M∑
j=1

N∑
i=1

δ(vj,i)b̂j,iδ(
||yj,i − ŷj,i||2

sh,j
≤ cMPII)

F =
100∑M

j=1

∑N
i=1 δ(vj,i)

M∑
j=1

N∑
i=1

δ(vj,i)b̂j,iδ(
||yj,i − ŷj,i||2

sh,j
> cMPII)

UC =
100∑M

j=1

∑N
i=1 δ(vj,i)

M∑
j=1

N∑
i=1

δ(vj,i)(1− b̂j,i)

(4.14)

Results without corresponding keypoint annotations are not considered in these equations,
as it is common practice during evaluation on MPII. One could argue that an evaluation of
keypoints without annotations would be useful, as they should be classified as unreliable
as even humans failed to annotate them. However, such keypoints suffer from various
problems on the MPII dataset. First, missing keypoint annotations are heavily biased.
On the validation split used by Newell et al. [86], 54.5% of missing annotations are from
ankle keypoints, while 85.3% are either from ankle or knee keypoints. Second, one of
the major reasons for missing keypoints (as highlighted by Newell et al.) is that keypoints
are outside the image. With respect to practical application, this should not happen as the
safety-critical working area should be well-covered by sensors. Furthermore, there can be
a most likely position for the cut-off keypoint in the image: the point where the associated
body limb leaves the image, especially when the keypoint is cut off closely (e. g., the end
of the forearm if the wrist is cut off). Thus, keypoints without annotations will be omitted.
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To perform the evaluation, the MPII dataset needs to be split into training, validation, and
test data, which will be called train/validation/test split. The official dataset only features a
training and test split, with the latter being kept private. Newell et al. [86] used parts of the
official training data to form a separate validation split of approximately 3000 samples,
which they also employed for evaluation in some of their experiments that were not using
the PCKh metric. Their used training and validation split are publicly available2. In this
work, their validation split will be used as test split for evaluation. Furthermore, 1000
samples are removed from their training split to form a new validation split, with the
remainder of their training split serving as the training split of this work.

Throughout the experimental section, two neural networks will be repeatedly used for
evaluating the different approaches: a stacked hourglass model (HG) as proposed by
Newell et al. [86] as well as a High-Resolution Net (HRNet) as proposed by Sun et al. [117].
A detailed introduction to these neural networks was given in Section 3.1.4, which also
highlighted that they are the foundation or a common building block of many advanced
works, making them an ideal candidate for experimental evaluations. Regarding their di-
versity, the architectures share some similarities as both predict heatmaps and process data
at different spatial resolutions. However, the HG does that through repeated down- and
upsampling, while the HRNet processes data across different resolutions simultaneously
and subsequently adds lower resolutions. Thus, a fair share of architectural diversity is
present among some similarities. For the hourglass model, a variant with four stacked
hourglass blocks and standard feature dimensions will be used, which is called 4-HG. For
HRNet, the standard architecture with a feature dimension of 32 in the highest resolution
branch will be used and called HRNet-W32. Both will be trained with almost the same
training procedure on the training split of MPII. In each case, training will be performed
for 200 epochs. From a further 10 epochs, the best weights are determined based on vali-
dation split performance (PCKh score). Weights are randomly initialized and the dataset
is shuffled in-between epochs. To obtain the input images for the neural networks, the
images of the dataset are cropped around individual humans using the dataset’s annotated
human bounding boxes, as it is common practice for single-person human pose estima-
tion on MPII. Data augmentation during training is performed analogously to Newell
et al. [86]: Input images are rotated randomly in-between −30◦ and 30◦ as well as hori-
zontally flipped with a chance of 50%, and human bounding boxes are randomly scaled
before cropping by a factor between 0.75 and 1.25. Image crops are then rescaled to the
input size of 256 × 256 used by both networks. As optimizer, RMSprop [122] is used
with a leaning rate of 2.5e−4 and gradient clipping. A batch size of 8 is used for HG,
while 32 is used for HRNet (for stability during training). The training split is shuffled
and weights are randomly initialized. Ground truth heatmaps of size 64 × 64 are used.
For the i-th keypoint with annotated position yi, the corresponding heatmap hi is created
by projecting the keypoint’s position into the heatmap with a transformation T , yielding
(x′

i, y
′
i) = y′

i = T (yi). Then, a 2D Gaussian with standard deviation σ is applied. The
heatmap value at pixel coordinates (u, v) is determined as follows:

hi[u, v] = e
−(
(x′

i − u)2

2σ2
+
(y′i − v)2

2σ2
)

(4.15)

The mean squared error between the predicted and ground truth heatmaps will be used as
loss function. In the case of 4-HG, the loss is also applied to intermediate results (and not
only the final heatmap predictions), as Newell et al. [86] use intermediate supervision.

2see train.h5/valid.h5 available at https://github.com/princeton-vl/pose-hg-train
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For missing keypoint annotations, two different training approaches will be explored:
(i) using empty heatmaps (all zeros) as ground truth and (ii) ignoring the keypoints during
training. In case of (ii), all annotated keypoints falling outside an augmented and cropped
training image will also be ignored to enforce a distinct peak in every used ground truth
heatmap. The suffixes V1 and V2 will be used to indicate whether (i) or (ii) is used.
Predicted keypoint positions will be obtained from final predicted heatmaps by backpro-
jecting the position of each heatmap’s maximum into the original image (as in Eq. (3.2)).

4.5.1 Proof of Concept: Diverse Neural Network Ensemble

First, a proof of concept will be provided for the core mechanism behind the diverse
neural network ensemble: the reliable/unreliable classification performed by g′R,MPII (see
Eq. (4.4)). It builds on two major assumptions: (i) individual results of diverse neural
networks in case of an incorrect final keypoint prediction are different enough for the
distance-based comparison to work, and (ii) the conservative approximation of sh through
ŝh is possible at inference time through the procedure from Section 4.3.2.

Both assumptions will be assessed, starting with the first one. To show that the distance-
based comparison is suitable for the identification of incorrect results, experiments will
be performed in isolation of the approximation procedure for ŝh, which is an additional
source of errors. Therefore, ŝh will be replaced with the value it aims to approximate: sh
itself. Furthermore, the constant cR = 0.5 will be used for g′R,MPII , as this is the com-
mon choice for its equivalent cMPII = 0.5 in the PCKh metric [3, 147]. Both 4-HG-V1
and HRNet-W32-V1 will be used for keypoint prediction, serving as the diverse neural
networks. Experiments will be performed on the test split with the evaluation metrics
introduced in Eq. (4.14). Fig 4.6 shows the experimental results for cMPII values be-
tween 0.05 and 0.5. The application of the diverse neural network ensemble significantly
decreased the percentage of false detections compared to the individual neural networks
without an error detection mechanism. All the while, a high percentage of correct results
was retained, even including a minor increase in correct results over the individual net-
works for small cMPII values. The minor increase in correct results can be explained by
incorrect results from individual neural networks contributing to a correct final keypoint
prediction of the ensemble (as illustrated in Figure 4.2). The loss of correct results in
other cases, e. g., for cMPII = 0.5, is also a logical result, as g′R,MPII is expected to mark
some results as unreliable that would otherwise have been correct. Looking at the com-
mon choice of cMPII = 0.5, a notable decrease of almost 50% in false results from 12.9%
(lowest of both networks) to 6.6% was achieved, while the percentage of correct results
only decreased from 85.4% (lowest of both networks) to 82.8%. These results highlight
the capability of the distance-based comparison to identify incorrect results, suggesting
that the diverse neural network ensemble could be a valuable tool for error detection.

To further solidify this claim, the second assumption must be verified by showing that sh
can be conservatively approximated through ŝh at inference time through the procedure
from Section 4.3.2 and especially Eq. (4.8). The required constant sh,min is calculated as
the average over the smallest 5% of annotated sh values, using only data from the training
and validation split to avoid a bias towards the test split. This results in a rounded value of
sh,min = 25 pixels. Adding the subscript j to indicate the j-th input, it will be evaluated
how often a conservative approximation ŝh,j ≤ sh,j is achieved. The same two networks as
previously will be used to supply keypoint predictions for the approximation procedure.
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(a) Correct results (b) False results

Figure 4.6: Evaluation results on the test split for a diverse neural network ensemble
consisting of 4-HG-V1 and HRNet-W32-V1, as well as for the individual networks. In
the ensemble, annotated ground truth values sh,j are used instead of ŝh,j , indicated through
the suffix (gt) in the plots. Furthermore, cR = 0.5 is used for the ensemble.

On the joined training and validation split, 96.71% conservative approximations were
achieved, while 95.37% were achieved on the test split. To evaluate whether the non-
conservative approximations with ŝh,j > sh,j are far too large or close by, it is evaluated
how many values of ŝh,j are still in the vicinity of sh,j . This is done by looking at the
percentage of results that are smaller or equal to a 50% increase of sh,j , thus fulfilling
ŝh,j ≤ 1.5 · sh,j . This was the case for 99.73% of all approximations on the joined
training and validation split, and for 99.76% on the test split. In conclusion, a conservative
approximation was possible in more than 95% of all cases, while large errors almost never
occur (< 0.3%). Thus, the second assumption holds true, hereby validating the diverse
neural network approach and clearing the way for more extensive experiments.

4.5.2 Evaluation of Diverse Neural Network Ensembles

With the strategy for calculating ŝh,j being validated, experiments can be performed to
show how well the diverse neural network ensemble performs in its intended form using
ŝh,j in g′R,MPII for calculating b̂j,i values. However, ŝh,j ≤ sh,j being true in most cases
does also mean that g′R,MPII will be more strict in cases where the value is smaller, most
likely leading to more unreliable classifications and thus a higher UC percentage, which
means less correct and/or false results. In turn, if too many correct results would be lost,
then practical usability would be hampered. Figure 4.7 shows the repetition of the proof
of concept experiment, but with ŝh,j . At cMPII = 0.5, correct results were decreased from
85.4% to 81.7%, while false results were decreased from 12.9% to 6.1%. This means that
1.84 false results were eliminated per lost correct result, showing the effectiveness of the
diverse neural network ensemble at eliminating previously undetected, incorrect results.
Furthermore, Figure 4.8 shows a direct comparison of using approximation ŝh,j vs. an-
notation sh,j in g′R,MPII for the otherwise same diverse neural network ensemble. The
differences are minimal: For cMPII = 0.5, the percentage of correct (C) results decreased
from 82.8% to 81.7%, while the percentage of false (F) results also decreased from 6.6%
to 6.1%. Losses in both metrics are expected behavior when using a conservative approx-
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(a) Correct results (b) False results

Figure 4.7: Results for the repetition of the experiment from Figure 4.6 using the same
ensemble and individual neural networks. The only difference in the experimental setting
is that ŝh,j values are used by the ensemble as originally intended.

(a) Correct results (b) False results

Figure 4.8: Experimental results comparing the use of approximations ŝh,j (available at
inference time) with the use of the ground truth annotations sh,j (suffix (gt)) in a diverse
neural network ensemble employing 4-HG-V1 and HRNet-W32-V1. Differences in per-
formance are minimal.

imation. The fact that the loss in correct results is only small further highlights that the
conservative approximation ŝh,j is a suitable choice.

Next, different variants of the diverse neural network ensemble with respect to the in-
volved diverse neural networks are evaluated. To this end, the following neural networks
are employed: 4-HG-V1, 4-HG-V2, HRNet-W32-V1, HRNet-W32-V2, as well as the
network of Zhang et al. [143], which will be called FPD-HG. On one hand, FPD-HG is
highly similar to 4-HG-V1 and 4-HG-V2, as it is an hourglass variant with four hourglass
stacks but decreased feature dimensions (256 down to 128). On the other hand, its training
is more dissimilar, as the name-giving Fast Pose Distillation (FPD) [143] training proce-
dure is employed that aims at a knowledge transfer from a teacher to a student model.
Therefore, adding FPD-HG to the mix of neural networks will allow a closer examination
of the effect of differences in training and architecture. For FPD-HG, official experimen-
tal results on the test split made available3 by Zhang et al. [143] will be used. Experiments

3see https://github.com/ilovepose/fast-human-pose-estimation.pytorch
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Method
Head Shoulder Elbow Wrist Hip Knee Ankle Mean

C F C F C F C F C F C F C F C F UC
4-HG-V1 97.0 3.0 94.7 5.3 87.7 12.3 82.0 18.0 86.2 13.8 80.9 19.1 77.1 22.9 87.1 12.9 0.0
4-HG-V2 96.9 3.1 94.5 5.5 87.8 12.2 81.8 18.2 86.8 13.2 82.0 18.0 78.9 21.1 87.4 12.6 0.0

FPD-HG [143] 97.4 2.6 95.5 4.5 89.0 11.0 84.3 15.7 88.9 11.1 84.1 15.9 80.7 19.3 89.0 11.0 0.0
HRNet-W32-V1 96.7 3.3 93.9 6.1 85.1 14.9 80.4 19.6 84.7 15.3 78.4 21.6 74.7 25.3 85.4 14.6 0.0
HRNet-W32-V2 96.3 3.7 93.8 6.2 85.3 14.7 79.9 20.1 84.0 16.0 79.0 21.0 76.1 23.9 85.4 14.6 0.0

4-HG-V1 + 4-HG-V2 96.2 1.5 93.1 3.2 84.3 6.6 77.1 8.4 83.8 9.4 76.5 9.5 72.3 9.7 83.9 6.7 9.4
4-HG-V1 + FPD-HG 96.3 1.5 93.3 3.0 85.0 6.6 78.5 8.7 85.1 8.4 77.9 9.1 73.4 9.6 84.8 6.5 8.7
4-HG-V2 + FPD-HG 96.5 1.7 93.4 3.3 85.1 6.6 78.7 8.5 85.9 8.4 78.7 8.8 74.5 9.3 85.3 6.5 8.2

HRNet-W32-V1 + HRNet-W32-V2 95.5 1.6 91.5 3.1 80.4 6.6 74.3 8.4 79.8 9.2 72.4 8.6 68.2 9.9 81.0 6.6 12.4
4-HG-V1 + HRNet-W32-V1 95.8 1.5 92.3 2.9 81.2 6.4 75.3 8.1 80.7 8.5 73.0 7.9 68.5 8.4 81.7 6.1 12.2
4-HG-V2 + HRNet-W32-V1 95.9 1.5 91.8 3.0 81.6 6.3 75.0 8.1 81.7 8.2 73.4 7.1 69.0 8.1 81.9 5.9 12.2
FPD-HG + HRNet-W32-V1 96.1 1.5 92.5 3.2 82.9 6.2 77.0 8.2 82.9 7.7 74.6 7.8 70.1 9.0 83.0 6.1 10.9
4-HG-V1 + HRNet-W32-V2 95.7 1.7 92.1 2.9 81.9 6.3 75.2 8.2 80.6 8.6 73.8 7.9 69.4 8.9 81.9 6.2 11.9
4-HG-V2 + HRNet-W32-V2 95.5 1.6 91.9 3.1 81.7 6.0 74.9 7.9 81.6 8.3 74.1 8.0 70.4 9.4 82.1 6.2 11.7
FPD-HG + HRNet-W32-V2 95.9 1.7 92.5 3.0 83.0 6.0 76.7 8.8 82.4 8.4 76.1 8.0 72.1 9.6 83.3 6.3 10.4

4-HG-V1 + 4-HG-V2 + FPD-HG 95.6 1.2 91.7 2.5 82.0 4.7 74.6 5.6 81.7 7.1 73.7 6.2 69.2 6.1 81.9 4.7 13.4
4-HG-V1 + 4-HG-V2 + HRNet-W32-V1 95.1 1.1 90.5 2.2 78.5 4.3 71.7 5.2 77.6 6.5 69.7 5.2 65.3 4.9 79.1 4.2 16.7

Table 4.1: Experimental results on the test split for single neural networks and differ-
ent diverse neural network ensembles, using the constants cMPII = 0.5 and cR = 0.5.
Legend: C – percentage of correct detections; F – percentage of false detections; UC –
percentage of uncertain results.

are performed with all individual neural networks (which have no method for reliable/un-
reliable classification), diverse neural network ensembles consisting of all potential pairs
of neural networks, as well as selected combinations of three neural networks into one
ensemble. Table 4.1 shows the results obtained from these experiments. It can be seen
that all explored variants of the diverse neural network ensemble were able to significantly
reduce the number of false results compared to the individual neural networks, while only
using data available at inference time. Compared to the best individual neural network
which is FPD-HG with only 11.0% false results, the worst diverse neural network en-
semble consisting of 4-HG-V1 and 4-HG-V2 exposed only 6.7% false results, while the
best of the examined diverse neural network ensembles consisting of 4-HG-V1, 4-HG-V2
and HRNet-W32-V1 reduced that number to 4.2%. Regarding the importance of diverse
training and diverse architecture, the experiments showed that diversity induced through
differences in training (randomization and other factors) is of high importance: Although
4-HG-V1 and 4-HG-V2 have the same architecture, the diverse neural network ensemble
achieved an error reduction from 12.6% to 6.7%. Similar results were achieved when
combining HRNet-W32-V1 with HRNet-W32-V2 in a diverse neural network ensemble.
However, experimental results also suggest some benefits from architectural diversity:
Diverse neural network ensembles consisting of two neural networks with the same or
extremely similar architectures exposed between 6.5% and 6.7% false results, while only
5.9% to 6.3% false results for diverse neural network ensembles consisting of two neural
networks with diverse architectures were observed. The two experiments with diverse
neural network ensembles consisting of three diverse neural networks further highlight
this effect: FPD-HG on its own performs significantly better than HRNet-W32-V1, with
89.0% correct and 11.0% false results compared to 85.4% correct and 14.6% false results.
However, adding FPD-HG to a diverse neural network ensemble including 4-HG-V1 and
4-HG-V2 resulted in 4.7% false results, while adding HRNet-W32-V1 to the same en-
semble instead resulted in 4.2% false results, despite the fact that HRNet-W32-V1 had
weaker performance in the first place. Regarding the retention of correct results, all di-
verse neural network ensembles except for one achieved above 80% correct results, with
the single outlier being close to that threshold with 79.1% correct results.
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(a) Comparison on 4-HG-V1 (b) Comparison on HRNet-W32-V1

Figure 4.9: PRC curves comparing the effectiveness of the methods based on the heatmap
maximum (HM Max) and MSE (HM MSE) for identifying incorrect results.

4.5.3 Evaluation of Heatmap-Based Approaches

Next, the evaluation of both heatmap-based approaches for error detection will be per-
formed on the MPII Human Pose dataset. The previously introduced neural networks
4-HG-V1, 4-HG-V2, HRNet-W32-V1 and HRNet-W32-V2 will be employed to produce
the respective heatmaps. As no specific way for calculating the necessary thresholds cmax

and cmse was introduced, the heatmap-based methods will be evaluated using the PRC
curve to consider all their potential values. For plotting the PRC curve, precision and
recall as introduced in Eq. (3.10) need to be calculated for different thresholds, which re-
quires the number of true positives (#TP), false positives (#FP) and false negatives (#FN).
Based on Eq. (4.1) and variable vj,i that indicates whether keypoint detection ŷj,i has an
annotated ground truth (True) or not, these amounts can be calculated as follows:

#TP = |{ŷj,i|(ŷj,i is Correct) and (vj,i = True)}|
#FP = |{ŷj,i|(ŷj,i is False) and (vj,i = True)}|
#FN = |{vj,i|vj,i = True}| −#TP

(4.16)

In simple terms, #TP is the number of predicted keypoints with annotations in the Correct
category, #FP is the number of predicted keypoints with annotations in the False category,
and #FN is the number of predicted keypoints with annotations that are not in the Correct
category. Definition over ŷj,i in the above formula is possible, as every annotated keypoint
yj,i has only a single prediction ŷj,i by the design of the 2D single-person human pose
estimation problem. Using this definition, the PRC curve is calculated for both proposed
methods, using cMPII = 0.5 while exploring different potential thresholds for cmax and
cmse in the respective reliable/unreliable classifications (see Eq. (4.9) and (4.12)) on the
test split. As these thresholds only govern how many results will be filtered out, the
maximum achievable recall will not be 1.0, but will be limited to a smaller value due to
cMPII = 0.5 being fixed (the other factor that governs whether a result belongs to the
Correct category). Experimental results are displayed in Figure 4.9 for 4-HG-V1 and
HRnet-W32-V1. Looking at the right side of both curves, the precision rapidly improves
for minor reductions in recall. This highlights the capability of both methods to reduce
false results effectively. In both cases, the method building upon the heatmap maximum
for thresholding outperforms the MSE-based method.
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(a) Comparison on 4-HG (b) Comparison on HRNet-W32-V1

Figure 4.10: PRC curves comparing the effect of training procedures V1 and V2 on the
method using the heatmap maximum for incorrect result identification.

So far, all experiments with heatmaps have been performed on the V1 variant of the neu-
ral networks, where missing keypoint detections are incorporated during training in the
form of all-zero heatmaps. For V2, these are excluded completely, with all ground truth
heatmaps used for training having a distinctive peak. In theory, this could lead to the max-
imum heatmap value being less expressive, as the neural network is not explicitly trained
to predict all-zero heatmaps in case of high uncertainty, which could impact the heatmap-
based methods. Further experiments are conducted to find out if a notable impact exists,
using the V1 and V2 variants of both neural networks for the previously superior method
building on the heatmap maximum. Figure 4.10 shows the resulting PRC-curves. Mi-
nor differences exist for 4-HG-V1 and 4-HG-V2, while almost no differences are present
for HRNet-W32-V1 and HRNet-W32-V2. Overall, it can be concluded that the choice
between V1 and V2 has no major impact on the examined heatmap-based approach.

Last, a comparison between the diverse neural network ensemble and the best heatmap-
based approach will be performed. For this comparison, a suitable, fixed value for cmax

has to be selected. For a fair comparison of the capability to reduce false results, the
diverse neural network ensemble will be evaluated first. Subsequently, cmax will be chosen
for the heatmap-based method such that the percentage of correct results is the same.
Hence the difference will be in the percentage of false results. An experiment on the test
split will be performed using 4-HG-V1, HRNet-W32-V1, and a diverse neural network
ensemble using both networks. The diverse neural network ensemble achieves a total of
81.7% correct results while still having 6.1% false results (as in Table 4.1). Using the
heatmap-based approach that builds on the heatmap maximum and choosing cmax such
that 81.7% correct results are achieved yields 6.2% false results for 4-HG-V1 and 8.4%
false results for HRNet-W32-V1. Hence the diverse neural network ensemble has very
similar performance to thresholding over the heatmap maximum when using 4-HG-V1,
however, without reliance on an intermediate output like the heatmap.

In conclusion, all methods have shown to be valuable for reducing false keypoint detec-
tions. Thresholding over the maximum value of heatmaps has shown to be the best of the
examined heatmap-based approach. The method showed comparable performance to the
diverse neural network ensemble in direct comparison, with the latter being more broadly
applicable (no heatmaps required). However, none of the investigated methods was able
to fully eliminate false results while retaining a high level of correct results.

60



5 Measurement Error Estimation

In this chapter, the second of the four central points of this work will be discussed: How
can an upper bound for the distance between a keypoint detection and the actual keypoint
location be determined? In the previous chapter, it has already been discussed that a per-
fect localization of keypoint positions is unrealistic. This means that a certain degree of
deviation between predicted and actual keypoint position will typically be present, which
constitutes a measurement error. The presence of measurement errors is not prohibitive
for the use in safety-critical applications like SSM, however, the presence of measure-
ment errors needs to be factored in. Taking the protective separation distance definition
of Sp(t0) (see Eq. (2.2)) from ISO/TS 15066 [51] as an example, the worst case mea-
surement error has to be factored in through the additional surcharge Zd. This means it
is assumed that the human is Zd closer to the robot than his measured position suggests.
This makes it either necessary to have a global worst-case value for the measurement error
or to obtain individual measurement-specific worst-case values that accompany each mea-
surement. For the use of human pose estimation in safety-critical applications, this means
that the worst-case measurement error of predicted keypoint positions must be available.
Potential upper bounds for the measurement error specific to individual keypoint predic-
tions conflict with the standard treatment of 2D single-person human pose estimation as
a point estimation problem: the keypoint positions that are required as only output to
solve the problem are not indicative of the measurement error. Alternatively, aiming for a
global upper bound is also problematic, as large measurement errors are a common sight
in human pose estimation [103]. Looking at the previous section, one could argue that
cMPII · sh,j could be a suitable upper bound for the measurement error (specific to the
j-th input) for correct keypoint predictions. However, sh,j is human annotated and not
available at inference time, while ŝh,j is no suitable substitute for an upper bound due to
being more conservative (smaller). Overall, this highlights the need for methods to obtain
upper bounds for the measurement error of predicted keypoints at inference time.

Again, investigations throughout this section will be limited to the fundamental task of
2D single-person human pose estimation. The primary goal is to find methods that pro-
duce high-quality upper bounds for the measurement error of keypoint predictions. Upper
bounds that become very large are not useful for practical application, as they simply in-
dicate that the keypoint could be anywhere. Hence a high-quality upper bound fits the
true localization error closely. For practical application, it is also worth to revisit the cor-
rectness definition of keypoints in 2D single-person human pose estimation. In its current
form, it lacks information at inference time about where the actual keypoint position could
be relative to the predicted position. In the following, the formal problem definition and a
new definition of keypoint correctness will be introduced first. Next, potential approaches
to solve the problem of upper bound prediction will be discussed and specific methods
will be proposed. Last, the proposed methods will be evaluated through experiments, as-
sessing if they are able to predict meaningfully upper bounds for the measurement error
of keypoint predictions at inference time. The contents of this chapter are primarily based
upon previously published work of the author [109].
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(a) No context (b) Correct prediction, equivalent interpretations

Figure 5.1: Illustration of what is known about the true location of a keypoint (black dot).
No conclusion can be drawn about the true keypoint location at inference time, if only
the predicted keypoint location (blue dot) is available without context as in (a). With an
upper bound r for the measurement error, it is possible to define keypoint correctness
as inclusion by a 1D sphere with radius r, which can either be drawn around the true
keypoint location ((b), left) or the predicted keypoint location ((b), right). If r is available
at inference time, the latter defines the potential true keypoint locations if correct.

5.1 Problem Definition and Keypoint Correctness

To obtain a more detailed problem definition, the conceptual problem with results for the
common 2D single-person human pose estimation problem will be discussed in greater
detail first. As already highlighted, the common 2D single-person human pose estimation
problem is solved by predicting a predefined set of keypoint positions ŷ only. For the i-th
keypoint, this position is (x̂i, ŷi) = ŷi. No other outputs are required. Without further
context, a predicted position holds no information about the true location of the keypoint
and simply represents the position where the neural network believes the keypoint to be.
Figure 5.1a illustrates this for the wrist keypoint. Especially, no upper bound for the mea-
surement error of prediction ŷi is available, which is crucial for safety applications, e. g.,
for the calculation of the protective separation distance as in Eq. (2.2). If context is added
by assuming that the human pose estimator was evaluated on a representative dataset and
that X% correct detections were achieved for the i-th keypoint with one of the common
evaluation metrics from Section 3.1.3, it is still not possible to make a definite statement
about ŷi, except that it has a chance of X% to be correct. When the strong assumption
is made that no incorrect results for the i-th keypoint exist (the ultimate goal of the previ-
ous section) while using the PCKh score (Eq. (4.13)) from MPII as exemplary evaluation
metric, then it is possible to assume that a correct ŷi lies within a 1D sphere (circle) with
radius cMPII · sh around the actual keypoint position yi. This can also be formulated
the other way around, that yi lies within a 1D sphere with radius cMPII · sh around ŷi,
which would constitute an upper bound for the measurement error. See Figure 5.1b for an
illustration. However, this upper bound has to be available at inference time to be appli-
cable when the human pose estimator is deployed, which is not the case due to sh being
a human annotation. Thus, even such a strong assumption is not sufficient to obtain an
upper bound for the measurement error of keypoint predictions with a common definition
of keypoint correctness. This highlights the need for additional methods to obtain upper
bounds for the measurement error at inference time, as well as the need to reformulation
keypoint correctness to better suit the needs of safety applications.

A reformulation of keypoint correctness should stay close to existing definitions, while
also resolving their shortcoming regarding the needs of safety applications. All metrics
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from Section 3.1.3 that separate predictions into correct and incorrect do so by threshold-
ing the Euclidean distance between prediction and annotation using thresholds obtained
from human annotations. For safety, such thresholds must be available at inference time
if they shall serve as upper bounds for the measurement error, therefore they shall be pre-
dicted as well. Let ŷi and yi denote the predicted and annotated keypoint position of the
i-th keypoint respectively, and r̂i the predicted threshold. Then, function grad shall define
the correctness of the predicted pair (ŷi, r̂i) as follows:

grad(ŷi,yi, r̂i) = δ(||ŷi − yi||2 ≤ r̂i) (5.1)

Predicting both ŷi and r̂i ensures that the threshold is available at inference time. For a
correct prediction, r̂i constitutes an upper bound for the measurement error and can be
used together with ŷi as seen in Figure 5.1b to indicate all potential true keypoint locations
through a 1D sphere. However, building upon Eq. (5.1) alone has two shortcomings:
There exists a trivial solution with r̂i → ∞ that leads to meaningless upper bounds, and
spatial vicinity between ŷi of yi – the primary goal of metrics from Section 3.1.3 – is not
explicitly required as a large enough r̂i can counteract any degree of deviation. To address
these shortcomings, two additional quality metrics will be introduced. A good prediction
of r̂i should be close to the actual deviation between ŷi and yi and not unnecessarily
large, which shall be assessed through quality metric Qrad as follows:

Qrad(ŷi,yi, r̂i) = |r̂i − ||ŷi − yi||2| (5.2)

Second, a good predicted keypoint position ŷi should be close to the annotated keypoint
position yi, which will be assessed through quality metric Qpos as follows:

Qpos(ŷi,yi) = ||ŷi − yi||2 (5.3)

Qrad(ŷi,yi, r̂i) → 0 as well as Qpos(ŷi,yi) → 0 is desired for good quality. However,
it can also be necessary to violate one or both quality metrics by an increased amount
to achieve correctness with respect to grad, e. g., in case of strong occlusion where high
positional uncertainty in the input data exists and all potential keypoint positions should
be covered by (ŷi, r̂i). In the following, it will be the goal to find methods to predict
values for ŷi and r̂i that achieve a high percentage of correct detections with respect to
Eq. (5.1) while having decent quality.

5.2 Discussion and Selection of Approaches

To solve the 2D single-person human pose estimation problem under the reformulated
correctness definition from Eq. (5.1) with good quality under the respective metrics Qrad

and Qpos, two general ideas come to mind: The first idea is to add a method that over-
approximates the human-annotated threshold used in traditional correctness definitions at
inference time, as the reliance on human annotations prevents the use of this value at in-
ference time in the first place as highlighted in Section 5.1. In case of MPII, this would
require the prediction of an approximation ŝ′h,j for each input j, such that cMPII · sh,j ≤
cMPII · ŝ′h,j = r̂j,i for all keypoints i. The second idea is to directly predict individual
values r̂j,i for every keypoint i and input j. This could e. g., be done through jointly
predicting ŷj,i and r̂j,i with a single neural network. In the following, both ideas will be
discussed in greater detail and a selection of promising approaches will be made.
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(a) Grasp bottom (b) Grasp front (c) Ambiguity

Figure 5.2: Illustration of ambiguity under occlusion. Images (a) and (b) are different:
In (a), the left hand supports the box from the bottom, in (b) the box is pulled towards
the body by grasping around the front of the box with the fingers of the left hand. The
position of the corresponding left wrist keypoint is marked in both images (cyan dot),
however, from image information alone the cases can not be distinguished. In (c), this
ambiguity is highlighted, further showing that a 1D sphere with radius cMPII · sh and
cMPII = 0.5 (cyan circle) is unable to sufficiently capture the ambiguity.

Overapproximation of Evaluation Thresholds: Section 4.5.1 has shown that it is possi-
ble to obtain a suitable conservative approximation ŝh of sh in most cases. Therefore, an
obvious idea would be to adjust the methodology there to calculate an over-approximation
ŝ′h instead with the goal of ŝ′h,j ≥ sh,j for every input j. Then, r̂j,i = cMPII · ŝ′h,j could be
used as threshold for every keypoint i of the j-th input. However, this idea suffers from
two conceptual shortcomings. The first shortcoming is that the approximation procedure
used for ŝh naturally favors conservative approximation and not over-approximation. This
is especially the case due to the foreshortening of body parts through the projection into
2D. While lS and lH are used in conjunction to limit the effect, both can be foreshort-
ened to some degree at the same time, which leads to smaller approximation values. This
effect is tolerable for a conservative approximation, but not an over-approximation. For
both, the maximum degree of foreshortening before the other one takes over would have
to be determined, and both values would always have to be increased respectively, e. g.,
by a certain percentage. Furthermore, a value sh,max from the largest sh,j values on the
dataset would have to be calculated as fallback value and counterpart of sh,min for cases
where lS and lH can not be calculated. This would most likely lead to frequent massive
over-approximations of sh,j , e. g., in cases with little to no foreshortening, which would
mean poor quality regarding Qrad. The same is true if r̂j,i = cMPII · sh,max would be
used as a single, global threshold. The second shortcoming is that using sh,j (or an ap-
proximation thereof) is also not ideal from a theoretical perspective. This value, derived
from an annotated head bounding box, is neither expressive of the neural network’s own
positional uncertainty in its predicted position, nor is it expressive of the positional uncer-
tainty inherent to a given input image, e. g., due to occlusion. The latter can even prevent
that correct predictions are reliably produced when the positional uncertainty in an input
image j exceeds 2 · cMPII · sh,j , meaning that all potential positions for a keypoint can no
longer be covered by 1D sphere with radius sh,j . Figure 5.2 illustrates this problem.
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Upper Bound Prediction: Values for r̂j,i could also be obtained by aiming at the predic-
tion of upper bounds for the measurement error instead of approximating dataset thresh-
olds. Two general strategies for obtaining upper bounds for the measurement error are:
(i) obtaining them as a slight increase of the currently assumed measurement error, and
(ii) obtaining them directly without considering the current measurement error itself.
From the first strategy, good quality Qrad can be expected when the upper bound is pre-
dicted as a slightly larger version of the current measurement error. However, this also
means that smaller errors in the prediction process can already lead to incorrect results
when the upper bound becomes smaller than the measurement error, in turn decreasing
the percentage of correct detections regarding grad. Good quality regarding Qpos could be
ensured by e. g., extending an existing human pose estimation method that already aims
at minimizing the distance between predicted and annotated keypoint positions. In prac-
tice, this could be realized by extending an existing neural network architecture through
an additional branch or prediction head that predicts the current measurement error or a
slightly increased version thereof to serve as the foundation for an upper bound calcula-
tion. An estimate of the measurement error could also be obtained from existing outputs
of some networks like heatmaps. In the case of heatmaps, scores are already indicative of
the assumed deviation between each pixel’s position and the true keypoint location.

The second strategy of predicting an upper bound for the measurement error without di-
rectly incorporating a prediction of the measurement error itself could be based upon
a change of the human pose estimation problem from point prediction to distribution
prediction. This idea is supported by the fact that the prediction of distributions is al-
ready established in some areas, e. g., in uncertainty estimation, where Lakshminarayanan
et al. [65] predicted a distribution’s mean and variance through individual networks and
refined the prediction with an ensemble of neural networks, using the resulting variance
as uncertainty measure. Directly aimed at human pose estimation, Kreiss et al. [63] pre-
dicted parameters of a Laplace distribution as part of the loss function during training,
while Gundavarapu et al. [40] predicted the covariance matrix of a multivariate Gaussian
to obtain uncertainty measures of individual keypoint predictions. More specific to the
problem at hand, Bertoni et al. [6] obtained confidence intervals for the 3D location of
humans based on 2D keypoint predictions from a single image. This is done based on
the prediction of parameters for Laplace distributions. In retrospect, this idea is now also
supported by the work of Bramlage et al. [7] (simultaneously published to the author’s
work [109] on the topic), who predict uncertainty based on the prediction of the param-
eters of a Gaussian distribution combined together with Monte-Carlo dropout. Further-
more, confidence intervals were calculated from the resulting standard deviation, scaled
by a learned calibration function to incorporate a certain percentage of results. Overall,
these examples show that predicting distributions is useful for various tasks where uncer-
tainty is involved, including tasks related to human pose estimation. One way to obtain
upper bounds for the measurement error from predicted distributions would be to predict
the parameters of Gaussian distributions and then apply the well-established 3-sigma rule
to obtain the upper bounds r̂j,i, which should encapsulate almost all measurement errors.
For such an approach, a high number of correct results regarding grad can be expected,
however, the resulting upper bounds are expected to become larger, thus achieving less
quality Qrad. The position quality Qpos depends on how the position will be inferred.

Overall, approaches that aim at the over-approximation of existing evaluation thresholds
do not seem very promising due to the aforementioned shortcomings. In contrast, the
methods for predicting upper bounds look more promising: When the prediction of the
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keypoint position and upper bound for the measurement error is realized by the same neu-
ral network, the network can express its positional uncertainty. A methodology for ob-
taining upper bounds from heatmaps is worth an investigation as their use is widespread.
Methods that additionally predict upper bounds, be it directly based on the measurement
error or not, are both worth an investigation due to the different properties that can be
expected from them (better Qrad vs. higher rate of correct predictions). In the following,
concrete approaches for these strategies will be introduced and examined.

5.3 Heatmap-Based Measurement Error Prediction

The first proposed approach that will be introduced is the inference of upper bounds for
the measurement error directly from predicted heatmaps ĥ. Building the measurement
error estimation upon heatmaps has the advantage that no architectural changes have to
be made to the broad range of heatmap-based neural networks that already exist for the
problem of 2D single-person human pose estimation. This opens up the question of how
the measurement error or an upper bound for it can be inferred from a heatmap. To answer
this question, the generation of ground truth heatmaps – the target a heatmap-based neural
network is trained to predict – will be examined more closely. The typical procedure is
the application of a 2D Gaussian, which comes down to the application of a formula like
Eq. (4.15) at each pixel location (u, v). A more general form of this equation for the i-th
keypoint under further consideration of a scaling factor a > 0, and with (x′

i, y
′
i) = y′

i

denoting the ground truth position of the i-keypoint in the heatmap would be:

hi[u, v] = a · e
−(
(x′

i − u)2

2σ2
+
(y′i − v)2

2σ2
)

(5.4)

This equation clearly shows that the value of the heatmap hi at each pixel position (u, v)
depends on the individual distance of the ground truth keypoint at heatmap resolution to
the pixel in both dimensions. Through several steps, the equation can be reformulated as
follows:

hi[u, v] = a · e
−(
(x′

i − u)2

2σ2
+
(y′i − v)2

2σ2
)

⇔ ln(
hi[u, v]

a
) = −(

(x′
i − u)2

2σ2
+

(y′i − v)2

2σ2
)

⇔ − 2σ2 · ln(hi[u, v]

a
) = (x′

i − u)2 + (y′i − v)2

(5.5)

After the last transformation, the potential to obtain an equation for the Euclidean distance
and thus the measurement error by simply applying the square root on both sides becomes
obvious. For the square root to be applicable, the left side must be 0 or positive, which
comes down to the natural logarithm being negative or zero (as σ2 > 0). For the natural
logarithm to be negative or zero, it must be applied to a value of the half-open interval
(0, 1]. This is here the case, as hi[u, v] can take values in the half-open interval (0, a]
by definition of Eq. (5.4), therefore the division by a leads to a value inside (0, 1]. This
allows the application of the square root, leading to the following formula:√

−2σ2 · ln(hi[u, v]

a
) =

√
(x′

i − u)2 + (y′i − v)2 (5.6)

66



5.3 Heatmap-Based Measurement Error Prediction

This means that the Euclidean distance between an annotated keypoint position (x′
i, y

′
i)

at heatmap resolution and the pixel coordinates (u, v) can be directly calculated from the
ground truth heatmap hi, as both a and σ are known, constant values.

At inference time, the ground truth heatmap hi is not available, but only the predicted
heatmap ĥi. As heatmap-based neural networks are trained to produce predictions ĥi that
equal hi, Eq. (5.6) will be applied to ĥi. For this application, caution has to be taken.
First, it has to be enforced that 0 < ĥi[u, v] ≤ a holds true for all pixel positions (u, v)
of the heatmap. This might not be the case, as some neural networks do not enforce a
value range for their produced heatmaps (as e. g., Newell et al. [86]). This makes post-
processing necessary to enforce that heatmap values fall within (0, a], which can e. g., be
done by replacing values that are ≤ 0 with a very small ϵ > 0 and values > a with a itself.
Second, even if ĥi is a good approximation of hi, some variation in heatmap values can be
expected. This in turn impacts the calculated distances based on values from ĥi. Hence, a
constant b should be added to move the predicted distance values into the direction of an
upper bound for the measurement error.

As final prediction for the i-th keypoint, the keypoint position ŷi will be obtained as the
position of the maximum in the predicted heatmap ĥi, backprojected into the original im-
age through a transformation T−1. To obtain r̂i, Eq. (5.6) will be applied to the maximum
value of the predicted heatmap. Then, a positive constant b is added and the resulting
heatmap-related upper bound r̂′

i is backprojected too. This is formalized as follows:

ŷ′
i = (x̂′

i, ŷ
′
i) = argmax

u,v
(ĥi[u, v])

r̂′
i = b+

√
−2σ2 · ln(ĥi[x̂

′
i, ŷ

′
i]

a
)

ŷi = T−1(ŷ′
i), r̂i = T−1(r̂′

i)

(5.7)

Whenever ĥi is a good approximation of hi, this equation should result in a suitable upper
bound r̂i. This opens up the question of what will happen if ĥi is not a good approxi-
mation. One example of a bad approximation ĥi would be that the maximum of ĥi is
far away from the maximum in hi, thus completely different keypoint positions would be
indicated by both heatmaps. For keypoint predictions far away from the ground truth, ex-
periments performed in Section 4.5.3 showed that the maximum values of ĥi are typically
smaller than in cases where the keypoint prediction is close by, as thresholding over the
maximum heatmap value showed to be an effective method for identifying incorrect re-
sults. In turn, smaller values for the heatmap maximum mean that larger upper bounds will
be predicted through Eq. (5.7), which is the desired behavior in case of a larger distance
from prediction to ground truth. Whether this is sufficient for the prediction of r̂i values
such that (ŷi, r̂i) pairs are correct in these cases will be assessed through experiments.

To realize this heatmap-based prediction strategy, a 4-stack hourglass model as in Sec-
tion 4.5 will be used. The simple choice of a = 1.0 does not only simplify the previous
equations, but also opens up the use of the sigmoid activation function to enforce that each
heatmap value falls into the interval (0, a = 1.0]. Thus, instead of no activation function,
the sigmoid activation function will be used to predict the final heatmaps in the 4-stack
hourglass model. It will be called 1H-HG in the following. Training can still be performed
with the mean squared error (see Eq. (3.3)) between predicted and ground truth heatmaps
as loss function and will be called lMSE here. The overall approach of this section will be
called 1H-HGerror, as it uses the 1-HG model and is based on the measurement error.
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5.4 Direct Measurement Error Prediction

The apparent shortcoming of using heatmap values to obtain upper bounds for the mea-
surement error is that heatmaps were not designed for that task, but for the localization of
keypoints instead. In the previous approach, they were used for both. In turn, this means
that any adjustments to them that aim to improve the prediction of upper bounds would
inevitably affect the localization of keypoints as well, and vice versa. Such a dependency
should be omitted for better control over the prediction of positions and upper bounds.
This could be achieved by having separate neural network outputs for each of the tasks,
while the relation between the predicted position and upper bound for the measurement
error can still be modeled, e. g., through the loss.

To obtain multiple outputs for different (sub)tasks from the same neural network, the es-
tablished strategy of using multiple prediction heads can be employed. In this strategy,
multiple short branches called prediction heads are added near the end of a neural net-
work, each producing its own output. This approach was for example employed by Shi
et al. [111], who use one prediction head to predict confidence scores and another one to
predict keypoint positions, or Kreiss et al. [63], who use one head to predict Part Inten-
sity Fields and another one to predict Part Association Fields. In this work, the hourglass
model [86] shall be used as a foundation. Two different general strategies will be investi-
gated. (i) The calculation of keypoint positions based on heatmaps shall be retained as is,
and only upper bounds shall be optimized for the predicted positions. This means that the
prediction of keypoint positions ŷi is independent of the upper bound prediction, while
the prediction of upper bounds r̂i depends on the predicted keypoint positions. (ii) The
calculation of predicted keypoint positions and upper bounds shall be performed based on
a joint optimization of both, meaning that the prediction of keypoint positions depends
on the prediction of upper bounds and the other way around. Both of these strategies
will make adjustments to the hourglass model necessary. In the case of strategy (i), one
prediction head will be added to predict values for the upper bound calculation, while two
prediction heads will be added for strategy (ii) to enable joint optimization (details later).
Both strategies will be pursued for an upper bound prediction that is directly based on
the measurement error in this section. Therefore, the strategies will be called 2-HGerror

respectively 3H-HGerror, with details about the architectures, prediction of final results,
and training being discussed in the following.

2-HGerror Approach: For strategy 2-HGerror, the prediction of keypoint positions will be
retained as is for the hourglass model, meaning that one prediction head is necessary that
predicts heatmaps ĥi for every keypoint i from which the predicted keypoint positions
ŷi will be inferred. For predicting the upper bounds for the measurement error r̂i, a
second prediction head will be necessary. Following the paradigm of heatmaps to retain
spatial dimensions, this can be done through the prediction of uncertainty maps ûi with
the same spatial dimensions as ĥi. Furthermore, the feature dimension of ûi will be 1 in
this approach. The value of ûi at position (u, v) shall correspond to an upper bound for
the measurement error at heatmap resolution if (u, v) is the predicted keypoint position at
heatmap resolution. This means that ŷi and r̂i are calculated as follows:

ŷ′
i = (x̂′

i, ŷ
′
i) = argmax

u,v
(ĥi[u, v])

r̂′
i = ûi[x̂

′
i, ŷ

′
i]

ŷi = T−1(ŷ′
i), r̂i = T−1(r̂′

i)

(5.8)
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Figure 5.3: Architecture of the proposed two-head hourglass (2H-HG). It is similar to the
standard hourglass model during the first three stacked hourglass blocks. Afterward, the
network branches off, using an additional hourglass block in each of the branches before
heatmaps and uncertainty maps are predicted. Based on author’s figure from [109].

To realize this idea for the hourglass model, the architecture of a 4-stack hourglass net-
work will be modified. Three hourglass stacks will be retained, and prediction heads will
branch off afterward. Both branches will use an additional hourglass stack before predict-
ing the heatmaps and the uncertainty maps respectively. An illustration of the proposed
architecture can be found in Figure 5.3. It will be called 2H-HG in the following. For the
prediction of the heatmaps, the sigmoid activation function will be used, while the soft-
plus activation function will be used for the uncertainty maps to ensure that upper bounds
r̂′
i > 0.0 without a fixed upper limit will be predicted at heatmap resolution.

The prediction of correct and high-quality upper bounds through Eq. (5.8) requires a suit-
able loss function for training. For the independent prediction of keypoint positions in
strategy (i), the use of the mean squared error (MSE) between predicted and ground truth
heatmaps can be continued, which will be called l1,1 = lMSE here. To ensure meaningful
uncertainty maps ûi, a new loss function is required. This loss function should have sev-
eral properties. When the predicted upper bound is smaller than the current measurement
error, then the gradient of the loss should be the strongest, as obtaining correct predictions
is the highest priority. If the upper bound is only marginally larger than the current mea-
surement error, the neural network should further be pushed to predict a more significant
upper bound such that small errors do not lead to an incorrect upper bound. Here, the
gradient should still be strong, but not as strong as previously. For upper bounds that are
significantly larger than the true measurement error, the neural network should be pushed
towards predicting smaller upper bounds. The strength of the gradient in that case should
be the weakest, as this only improves the quality Qrad while obtaining correct results is of
utmost importance. To design such a loss based on the measurement error, a two-part loss
function is proposed, consisting of the parts l1,2 and l1,3. For better understanding, these
losses will be defined as functions that calculate a single per-pixel loss for a single pre-
dicted uncertainty map ûi – their calculation over all these maps and pixel positions for a
single input will be discussed later. Let (x′

i, y
′
i) denote the ground truth keypoint position

at heatmap resolution for keypoint i, and let cdir > 0.0 be a positive constant that indicates
how much larger the upper bound should be compared to the actual measurement error at
heatmap resolution. Then, the losses at pixel position (u, v) can be written as:

l1,2(ûi, x
′
i, y

′
i, u, v) = | (ûi[u, v]− || (x′

i, y
′
i)− (u, v) ||2 |

l1,3(ûi, x
′
i, y

′
i, u, v) = max(0,−(ûi[u, v]− || (x′

i, y
′
i)− (u, v) ||2 − cdir)

(5.9)

The first part l1,2 punishes a deviation of the predicted upper bound in ûi from the mea-
surement error for pixel (u, v) in both directions (smaller or larger) equally through the
calculation of the absolute error between both. The second part l1,3 is used to create
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the desired behavior of the loss in combination with l1,2. This combination will be per-
formed by adding the losses using a weighting factor γ as follows: l1,2 + γ · l1,3. For
ûi[u, v] ≥ || (x′

i, y
′
i) − (u, v) ||2 + cdir, meaning that the predicted upper bound is sig-

nificantly larger than the actual measurement error, the combined loss simply degrades
to l1,2. For ûi[u, v] < || (x′

i, y
′
i) − (u, v) ||2 where the predicted upper bound becomes

too small, the gradient of both l1,2 and l1,3 point into the same direction, hence they
add up and produce a stronger gradient as in the previous case. For the middle case
of || (x′

i, y
′
i)− (u, v) ||2 < ûi[u, v] < || (x′

i, y
′
i)− (u, v) ||2+ cdir, the gradients of both loss

functions point into different directions, hence weakening one another. To keep optimiz-
ing towards || (x′

i, y
′
i)−(u, v) ||2+cdir, γ > 1.0 is required for this case. With γ > 2.0, the

gradient for this case becomes larger than in case of ûi[u, v] ≥ || (x′
i, y

′
i)−(u, v) ||2+cdir,

thus fulfilling the desired order of gradient strengths. To obtain the final loss function, l1,1
will be combined with l1,2 and l1,3. Furthermore, masks mi will be used to only consider
pixels of the uncertainty maps in the vicinity to the true keypoint location during train-
ing – this is a procedure that was already used by Papandreou et al. [92] when results of
an additional prediction head depended on the actual keypoint location. In this case, the
vicinity will be defined as all positions (u, v) with hi[u, v] > 0.02, given that the ground
truth heatmap hi was calculated based on Eq. (5.4) with a = 1.0. In the case of a key-
point being not annotated, the respective uncertainty map will be ignored during training,
as no measurement error can be calculated. Whether or not an annotation exists is indi-
cated through variable vi as previously. Last, the combined loss of l1,2 and l1,3 has to be
calculated over all pixel positions of a heatmap with width W ′ and height H ′ for a total
of N keypoints (in contrast, l1,1 already is). Then, the final loss function with additional
weighting factors α and β can be defined as follows (for a single input):

l1 = α · l1,1 + β · 1

N ·W ′ ·H ′

N∑
i=1

W ′∑
u=1

H′∑
v=1

(δ(vi) ·mi[u, v] · (l1,2(ûi, x
′
i, y

′
i, u, v)+

γ · l1,3(ûi, x
′
i, y

′
i, u, v)))

(5.10)

3-HGerror Approach: For the 3-HGerror strategy, the prediction of measurement-error-
based upper bounds shall be jointly optimized together with the prediction of final key-
point positions. This goal poses a problem when the standard keypoint localization mech-
anism of the hourglass model is used – the heatmap. The heatmap does not directly solve
a regression problem that delivers a keypoint position in the end, but only predicts per-
pixel scores. Hence it is not possible to simply apply a loss to a position that indicates
how it would have to change. A solution to this problem is to no longer rely on the
heatmap and its maximum for the prediction of the final keypoint position, but to join the
heatmap paradigm with regression itself. Respective approaches have e. g., been proposed
by Papandreou et al. [92] and Kreiss et al. [63]. Both of them predict per-pixel regression
vectors in addition to the heatmaps, with each regression vector pointing to where the
respective keypoint for the map is expected. Such a procedure will be employed here,
making a total of three prediction heads necessary: one for heatmaps ĥi, one for the pre-
diction of regression vectors in form of regression maps d̂i, and one for the prediction
of upper bounds in form of uncertainty maps ûi. Each regression map d̂i for keypoint
i will have the same spatial resolution as the respective heatmap and uncertainty map,
and a feature dimension of 2. At position (u, v), d̂i will contain a displacement vector
(∆x̂′

i,u,v,∆ŷ′i,u,v) relative to the pixels position that points towards the predicted position
of the i-th keypoint, hence d̂i[u, v] = (∆x̂′

i,u,v,∆ŷ′i,u,v). This allows to infer the pre-
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Figure 5.4: Architecture of the proposed three-head hourglass (3H-HG). The upper
branch equals a 4-stack hourglass model. The lower (regression) branch aggregates fea-
tures from preprocessing and the third hourglass stack through concatenation and a 1× 1
convolution, to be processed by another two hourglass stacks to predict regression maps.
The same input features of the regression branch, in addition to features obtained from the
regression maps through a 1× 1 convolution, are fed into the middle (uncertainty) branch
with a similar structure to predict uncertainty maps. Based on author’s figure from [109].

dicted position (x̂′
i, ŷ

′
i) of the keypoint at heatmap resolution from a single position (u, v)

as follows: (x̂′
i, ŷ

′
i) = (u + ∆x̂′

i,u,v, v + ∆ŷ′i,u,v). For the prediction of the measurement
error, the uncertainty map ûi should contain the predicted measurement error for position
(x̂′

i, ŷ
′
i) = (u+∆x̂′

i,u,v, v+∆ŷ′i,u,v) at position (u, v). This means ûi[u, v] corresponds to
the predicted measurement error at position (x̂′

i, ŷ
′
i). To obtain the final predicted keypoint

position ŷi and upper bound for the measurement error r̂i for the i-th keypoint, a voting
scheme based on the strength of heatmap activations will be employed. First, all posi-
tions (u, v) expected to be in the vicinity of the i-th keypoint will be determined through
ĥi[u, v] > 0.02, assuming that Eq. (5.4) with a = 1.0 was used for ground truth heatmaps.
Then, votes from these positions for ŷ′

i and r̂′
i will be gathered and weighted based on the

respective heatmap values, hereby avoiding a dependency on single values. For a heatmap
with width W ′ and height H ′, this leads to:

r̂′
i =

∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v] · ûi[u, v])∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v])

ŷ′
i = (x̂′

i, ŷ
′
i) =

∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v] · ((u, v) + d̂i[u, v]))∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v])

ŷi = T−1(ŷ′
i), r̂i = T−1(r̂′

i)

(5.11)

The proposed architecture for predicting all three required maps will be called 3H-HG, as
it employs three prediction heads, one for each map. Its architecture, based on the hour-
glass model, is depicted in Figure 5.4. Similar to 2H-HG, the top branch for predicting
heatmaps corresponds to a 4-stack hourglass model, with three shared hourglass stacks
and one more hourglass stack after branching off. Again, the sigmoid function is used
for heatmap prediction. The bottom branch for predicting regression maps aggregates
features from after the preprocessing layers and the three shared hourglass stacks through
concatenation and a 1 × 1 convolution to bring the feature dimension down again to the
standard value of 256 used by the hourglass stacks. Then, two more hourglass stacks are
applied to predict the regression maps. No activation function is employed. Afterward,
the regression maps are processed by a 1 × 1 convolution to make them available in the
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form of features for the middle branch that predicts uncertainty maps. The rationale be-
hind this procedure is that the uncertainty map no longer predicts the measurement error
for each pixel location, but for each location after the application of the regression vectors
from the regression map. Hence these should be made available to that branch. In the
middle branch, these features are aggregated with the features from behind the prepro-
cessing layers and the shared three hourglass stacks, again through concatenation and a
1× 1 convolution to bring the feature dimension back to 256. Then, two hourglass stacks
are applied to finally predict the uncertainty maps using the softmax activation function.

The last factor that has to be discussed is the loss definition for the 3-HGerror approach.
It should jointly tune the prediction of keypoint positions and upper bounds for the mea-
surement error. Furthermore, the upper bounds shall still be based on the measurement
error here. To achieve this, a modification of the loss functions proposed in Eq. (5.9) can
be used, together with l2,1 = lMSE for the heatmaps (as in 2H-HGerror). The adaptation
of l1,2 and l1,3 to new losses l2,2 and l2,3 can simply be done by rewriting the Euclidean
distance between pixel position and ground truth in the equations to incorporate the pre-
dicted displacement vectors of the regression map d̂i, leading to || (x′

i, y
′
i) − ((u, v) +

(∆x̂′
i,u,v,∆ŷ′i,u,v)) ||2 for the Euclidean distance. This formulation can be simplified such

that the difference between ground truth displacement vectors (∆x′
i,u,v,∆y′i,u,v) and pre-

dicted displacement vectors (∆x̂′
i,u,v,∆ŷ′i,u,v) is calculated:

|| (x′
i, y

′
i)− ((u, v) + (∆x̂′

i,u,v,∆ŷ′i,u,v) ||2
⇔|| ((u, v) + (∆x′

i,u,v,∆y′i,u,v))− ((u, v) + (∆x̂′
i,u,v,∆ŷ′i,u,v)) ||2

⇔|| (∆x′
i,u,v,∆y′i,u,v)− (∆x̂′

i,u,v,∆ŷ′i,u,v) ||2
(5.12)

Using this formulation, the keypoint regression can be incorporated into l1,2 and l1,3 to
form l2,2 and l2,3. Together with another loss l2,4 that favors the prediction of accurate per-
pixel regression values, the following partial loss functions for 3-HGerror can be derived,
with di denoting a ground truth regression map such that (∆x′

i,u,v,∆y′i,u,v) = di[u, v]:

l2,2(ûi, d̂i,di, u, v) = | ûi[u, v]− ||di[u, v]− d̂i[u, v] ||2 |
l2,3(ûi, d̂i,di, u, v) = max(0,−(ûi[u, v]− ||di[u, v]− d̂i[u, v] ||2 − cdir)

l2,4(d̂i,di, u, v) = ||di[u, v]− d̂i[u, v] ||2

(5.13)

These loss functions will again be combined together to form a final loss function l2. From
the above partial losses, l2,2 and l2,3 aim to achieve the same as l1,2 and l1,3. However, now
these losses can be reduced by adjusting the predicted keypoint position as well as through
changing the predicted upper bound, allowing to jointly optimize both of them. The loss
function l2,4 is here to ensure that predicted regression vectors stay close to the ground
truth regression vectors. In turn, this aims at the prediction of keypoint positions close to
the true keypoint locations. Combined together, these losses should ensure good quality
with respect to both, Qrad and Qpos, with correct predictions being facilitated through
the same mechanism of aiming at predicting bounds slightly above the true measurement
error (by a factor of cdir). The combined loss function for a single input will be written
similarly to Eq. (5.10) as follows:

l2 = α · l2,1 + β · 1

N ·W ′ ·H ′

N∑
i=1

W ′∑
u=1

H′∑
v=1

(δ(vi) ·mi[u, v] · (l2,2(ûi, d̂i,di, u, v)+

γ · l2,3(ûi, d̂i,di, u, v) + l2,4(d̂i,di, u, v)))
(5.14)
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5.5 Distribution-Based Upper Bound Prediction

In contrast to the previous section, which aimed at predicting upper bounds for the mea-
surement error based on the measurement error itself, this section aims at predicting up-
per bounds through the use of probability distributions. By building upon distributions
to predict upper bounds for the measurement error, it is no longer necessary to predict an
increased version of the measurement error as upper bound. Apart from this detail of how
the upper bounds for the measurement error are predicted, the investigated approaches in
this section will be similar to 2H-HGerror and 3H-HGerror. This is done for two reasons.
First, it makes also sense for the distribution-based approaches to investigate a scenario
where the position is independently optimized from the upper bound for the measure-
ment error, as well as a scenario where this optimization is performed jointly. Second, by
keeping the approaches as similar as possible, the influence of building the upper bound
prediction on the measurement error itself versus building it upon probability distribu-
tions can be better examined. Therefore, the same 2H-HG and 3H-HG architectures will
be used, except for minor necessary adjustments to the prediction of uncertainty maps ûi.

For all approaches throughout this section, the prediction of the upper bounds will be
performed based on the predicted standard deviation parameters (σ̂x, σ̂y) of a 2D Gaussian
under the assumption of independent random variables to simplify the problem. This
makes it necessary that the feature dimension of the uncertainty maps ûi is increased to 2.
Subsequently, the predicted values for (σ̂x,i, σ̂y,i) allow the inference of position intervals
along the x-axis and y-axis that shall contain all likely positions of the i-th keypoint with
high confidence, hence being a suitable foundation for the calculation of an upper bound.
In the following, two approaches that incorporate this idea will be investigated. Based
on the use of Gaussian parameters and the 2H-HG as well as 3H-HG architectures, these
will be called 2H-HGgauss and 3H-HGgauss respectively. In the following, both will be
introduced in greater detail.

2H-HGgauss Approach: Similar to the 2H-HGerror approach, the 2H-HGgauss approach em-
ploys the 2H-HG architecture to predict a heatmap ĥi and an uncertainty map ûi for each
keypoint i, with the difference that ûi contains two values (σ̂x,i,u,v, σ̂y,i,u,v) at each spa-
tial position (u, v). Again, the prediction of final keypoint positions shall be performed
without changes based on the position of the maximum in each predicted heatmap ĥi.
In contrast, the prediction of each final upper bound r̂i will be performed differently.
Both predicted values σ̂x,i,u,v and σ̂y,i,u,v shall be the predicted standard deviations of a
2D Gaussian with independent random variables for which the position (u, v) serves as
mean. In turn, the true keypoint location will be viewed as a sample from that distribu-
tion. This view is similar to how Lakshminarayanan et al. [65] view regression problems
as a problem of predicting Gaussian distributions, however, adapted to the problem of
heatmap-based human pose estimation. Now that the true keypoint location is viewed as
a sample from the Gaussian distribution defined by (u, v) and (σ̂x,i,u,v, σ̂y,i,u,v), an upper
bound for the measurement error can be calculated based on the 3-sigma-rule, as the true
keypoint position should then be encapsulated in the resulting interval. As independent
random variables are assumed, a deviation of 3σ has to be considered independently along
the x- and y-axis. Thus, the resulting worst case of 3σ̂x,i,u,v and 3σ̂y,i,u,v has to be consid-
ered for the upper bound prediction, with r̂′

i,u,v =
√

(3σ̂x,i,u,v)2 + (3σ̂y,i,u,v)2 capturing
the predicted worst-case deviation in that case. Then, the final keypoint position ŷi and
predicted upper bound r̂i for this position are calculated as follows:
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ŷ′
i = (x̂′

i, ŷ
′
i) = argmax

u,v
(ĥi[u, v])

(σ̂x,i, σ̂y,i) = ûi[x̂
′
i, ŷ

′
i]

r̂′
i =

√
(3σ̂x,i)2 + (3σ̂y,i)2

ŷi = T−1(ŷ′
i), r̂i = T−1(r̂′

i)

(5.15)

In order for this approach to work properly, the prediction of suitable standard deviations
has to be ensured through the training procedure. The training of the heatmaps for the
prediction of the keypoint positions – or the mean values of the standard deviations in
this case – continues to use the mean squared error loss, thus adding the partial loss of
l3,1 = lMSE for training. To obtain meaningful values (σ̂x,i, σ̂y,i) independent of which
keypoint position is selected in the end, the values at each position (u, v) in the uncer-
tainty map will be trained under the assumption that this position is the predicted mean.
Optimization of the standard deviations can be performed through a loss function that is
closely related to the more general proposed loss function of Lakshminarayanan et al. [65]
and of Kübler [64]. The overall training goal is to maximize the value of a 2D Gaussian
density function with independent random variables at each position (u, v), which is de-
fined by the mean (u, v) as well as σ̂x,i,u,v and σ̂y,i,u,v. It can be written as follows for the
i-th keypoint with (x′

i, y
′
i) denoting the keypoint’s position at heatmap resolution:

1

2πσ̂x,i,u,vσ̂y,i,u,v

e
−
1

2
(
(x′

i − u)2

σ̂2
x,i,u,v

+
(y′i − v)2

σ̂2
y,i,u,v

)

⇔e
−
1

2
(2ln(2π)+2ln(σ̂x,i,u,v)+

(x′
i − u)2

σ̂2
x,i,u,v

+2ln(σ̂y,i,u,v)+
(y′i − v)2

σ̂2
y,i,u,v

)

(5.16)

The second line rewrites the formula of the 2D Gaussian such that all variables become
part of the exponent, making it easier to find the relevant parts for maximizing the equa-
tion. To maximize the equation, the exponent needs to be maximized, which comes down
to minimizing the full term within the outer brackets. Removing the constant of 2ln(2π),
this leads to a partial loss function l3,2 for a single keypoint i and a single position (u, v),
with σ̂x,i,u,v = ûi[u, v, 1] and σ̂y,i,u,v = ûi[u, v, 2]:

l3,2(ûi, x
′
i, y

′
i, u, v) = 2ln(ûi[u, v, 1]) + 2ln(ûi[u, v, 2]) +

(x′
i − u)2

(ûi[u, v, 1])2
+

(y′i − v)2

(ûi[u, v, 2])2

(5.17)

This 2D loss function is highly similar to the general 1D version proposed by Lakshmi-
narayanan et al. [65] and a straight extension into 2D with a fixed mean of the 1D variant
proposed by Kübler [64]. During training, some practical adjustments have to be em-
ployed when using l3,2. First, for values σ̂x,i,u,v and σ̂y,i,u,v that are very close to 0, the
natural logarithm could become infinitely large. To avoid this, the values for both standard
deviations will be capped to be > ϵ, where ϵ > 0 is a small positive constant. Second,
the quadratic differences (x′

i − u)2 and (y′i − v)2 will also be restricted to be larger or
equal to a positive value of 0.025 to prevent them from vanishing in certain cases. To
favor readability, these adjustments will not be included in the loss equations directly. By
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combining l3,1 and l3,2, the final loss function l3 can be defined for a single input by using
the same additional variables introduced in Eq. (5.10) as follows:

l3 = α · l3,1 + β · 1

N ·W ′ ·H ′

N∑
i=1

W ′∑
u=1

H′∑
v=1

(δ(vi) ·mi[u, v] · l3,2(ûi, x
′
i, y

′
i, u, v)) (5.18)

3H-HGgauss Approach: The 3H-HGgauss approach will be similar to the 3H-HGerror ap-
proach, as the same 3H-HG architecture will be used, except that the predicted uncertainty
maps ûi will contain two results at each position (u, v) instead of one – standard devia-
tions σ̂x,i,u,v and σ̂y,i,u,v, as in case of 2H-HGgauss. Similar to the 3H-HGerror approach, the
regression map d̂i will be used to obtain the final predicted keypoint position for the i-th
keypoint, that also serves as the mean for the predicted 2D Gaussian distribution. The goal
is to jointly optimize the predicted mean with the upper bound obtained from the standard
deviations. Thus, for each position (u, v), the uncertainty map shall contain standard devi-
ations (σ̂x,i,u,v, σ̂y,i,u,v) = ûi[u, v] for a 2D Gaussian with mean (u+∆x̂′

i,u,v, v+∆ŷ′i,u,v),
where (∆x̂′

i,u,v,∆x̂′
i,u,v) = d̂i[u, v]. Then, the principle of using a voting scheme as in

Eq. (5.11) can be employed, letting all keypoints that are suspected to be in the vicinity
of the true keypoint position vote on the final location and standard deviations. Building
upon this equation and assuming that the prediction of heatmaps was trained using ground
truth heatmaps generated by Eq. (5.4) with a = 1, final results ŷi and r̂i are obtained as
follows for the i-th keypoint:

(σ̂x,i, σ̂y,i) =

∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v] · ûi[u, v])∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v]
)

r̂′
i =

√
(3σ̂x,i)2 + (3σ̂y,i)2

ŷ′
i = (x̂′

i, ŷ
′
i) =

∑W ′

u=1

∑H′

v=1 δ(ĥi[u, v] > 0.02) · ĥi[u, v] · ((u, v) + d̂i[u, v]))∑W ′

u=1

∑H′

v=1(δ(ĥi[u, v] > 0.02) · ĥi[u, v])

ŷi = T−1(ŷ′
i), r̂i = T−1(r̂′

i)

(5.19)

Now, only the loss used during training has to be defined, such that meaningful Gaussian
distributions with independent random variables are predicted. Furthermore, the distri-
bution mean shall be jointly optimized with the standard deviations. This can simply be
done by replacing the fixed mean defined in loss function l3,2 with the predicted mean
which can be calculated based on the current location (u, v) in the heatmap and the value
of the regression map d̂i at location (u, v). Replacing the respective part in l3,2 to form
l4,2 (similar to the replacement from l1,2 to l2,2) leads to the following function:

l4,2(ûi, d̂i,di, u, v) =2ln(ûi[u, v, 1]) + 2ln(ûi[u, v, 2])

+
(di[u, v, 1]− d̂i[u, v, 1])

2

(ûi[u, v, 1])2
+

(di[u, v, 2]− d̂i[u, v, 2])
2

(ûi[u, v, 2])2

(5.20)

To obtain the final loss for 3H-HGgauss, this loss has to be combined with the loss for the
heatmaps l4,1. As in every other approach, l4,1 = lMSE will be used. This leads to the
final loss function l4 (using the same variable names as in Eq. (5.14)):

l4 = α · l4,1 + β · 1

N ·W ′ ·H ′

N∑
i=1

W ′∑
u=1

H′∑
v=1

(δ(vi) ·mi[u, v] · l4,2(ûi, d̂i,di, u, v)) (5.21)
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5.6 Experiments

Next, experiments will be performed to evaluate the capability of the proposed methods
to produce correct upper bounds for the measurement error of their predicted keypoint
positions. A detection will be considered correct in these experiments, if the function for
assessing correctness grad (see Eq. (5.1)) yields 1. Whether the evaluation of this func-
tion is performed with all components being defined at heatmap resolution or at original
image resolution does not matter. This is the case, as the function only compares two dis-
tances, the Euclidean distance between predicted and annotated keypoint, as well as the
distance that is defined as upper bound r̂i. When transforming between original image
and heatmaps, both of these distances are affected by the same percentual scaling factors,
and remain unchanged for the other actions like image cropping. Looking at the quality
metrics that will be employed during evaluation, Qrad and Qpos, evaluation at heatmap
resolution will yield more meaningful results. This is the case, as input images for the
hourglass model must have a fixed size of 256 × 256 pixels, which in turn means that
image crops of individual persons are rescaled before being fed into the neural network.
During backprojection into the original image, this scaling has to be reverted, meaning
that the same predicted value for the upper bound at heatmap resolution ends up being
different for differently-sized image crops. For larger image crops, the backprojected
value of the upper bound will also be larger. This in turn leads to a larger difference when
evaluating the absolute deviation between measurement error and upper bound in Qrad.
This effect can be omitted when performing evaluation at heatmap resolution which is the
same for all inputs, which will thus be done in the following. All experiments will be per-
formed on the MPII Human Pose dataset, using the same train/val/test splits introduced in
Section 4.5.

With respect to the evaluation metrics, the percentage of correct results C-Rad regard-
ing grad will be measured, as well as the average errors Erad and Epos which will be de-
fined based on both quality metrics Qrad and Qpos at heatmap resolution. In addition, the
average size of the predicted upper bounds r̂′

j,i at heatmap resolution will be assessed.
Whenever a heatmap ĥj,i is predicted that does not contain a value above 0.02, the result
is directly filtered out, which means that it will be considered not correct with respect
to C-Rad and will not be included for the calculation of Erad, Epos and the average upper
bound value. This is done, as upper bound prediction was only learned for heatmap values
larger than 0.02, meaning that no meaningful upper bound can be expected in this case.
The resulting evaluation metrics are then defined as follows, using j to index a total of M
inputs and i to index a total of N keypoints:

C-Rad = 100 ·
∑M

j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02)δ(||y′

j,i − ŷ′
j,i||2 ≤ r̂′

j,i))∑M
j=1

∑N
i=1 δ(vj,i)

Erad =

∑M
j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02)Qrad(ŷ

′
j,i,y

′
j,i, r̂

′
j,i))∑M

j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02))

Epos =

∑M
j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02)Qpos(ŷ

′
j,i,y

′
j,i))∑M

j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02))

Avg. r̂′ =

∑M
j=1

∑N
i=1 δ(vj,i)(δ(max(ĥj,i) > 0.02)r̂′

j,i)∑M
j=1

∑N
i=1(δ(vj,i)δ(max(ĥj,i) > 0.02))

(5.22)
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Approach C-Rad Erad Epos Avg. r̂′

1H-HGerror 73.8% 1.271 1.941 1.918
2H-HGerror 79.5% 1.417 2.043 2.367
3H-HGerror 76.4% 1.234 1.944 2.084
2H-HGgauss 94.7% 3.017 1.946 4.417
3H-HGgauss 89.5% 2.327 1.931 3.615

Table 5.1: Experimental results on the test split for all proposed methods. Previously
published by the author [109], © 2023 IEEE, slightly altered.

Throughout all experiments, training of the previously introduced approaches will be per-
formed using the RMS-prop optimizer [122] with a learning rate of 2.5e−4 and gradient
clipping for 120 epochs on the train split. The same augmentations as in Section 4.5 will
be performed and keypoints falling outside the cropped image will be treated as if the
keypoint annotations were missing. The 1H-HG approach will be trained using the mean
squared error between predicted and ground truth heatmaps as loss α · lMSE , all other
approaches will be trained using their previously introduced custom loss functions. With
respect to weighting factors, β = 1 and γ = 4 will be employed for all approaches using
these factors. For all 1H and 2H approaches α = 15 will be employed, while α = 5 will
be used for all 3H approaches. This follows the rationale that good heatmaps are crucial
for the success of all methods, however, in the case of the 3H approaches, the keypoint lo-
calization does not only depend on the heatmap but also on the regression map, hence the
weighting of the heatmap is reduced. For the generation of ground truth heatmaps, a 2D
Gaussian in accordance with Eq 5.4 will be employed, using a = 1 as required by most
methods and σ = 2 with the goal of allowing more pixels to vote in the 3H approaches
compared to using σ = 1. In case of a missing keypoint annotation, all heatmap values
will be set to zero. No intermediate supervision will be used, and the layer for predicting
intermediate results in each intermediate hourglass stack will be removed.

5.6.1 Evaluation of Approaches

The evaluation of the approaches 1H-HGerror, 2H-HGerror, 3H-HGerror, 2H-HGgauss and 3H-
HGgauss is performed on the test split, using the settings and training procedures described
previously. The experimental results with respect to the evaluation metrics from Eq. (5.22)
are displayed in Table 5.1. The results show, that the Gaussian-based approaches 2H-
HGgauss and 3H-HGgauss significantly outperform the measurement-error-based approaches
when it comes to the percentage of correct results with respect to C-Rad. While the
worst Gaussian-based approach achieves 89.5% correct results, the best measurement-
error-based approach only achieves 79.5% correct results. However, this comes at a
cost in quality, as the average deviation of the upper bound from the measurement er-
ror Erad is significantly larger. The lowest value for Erad achieved with the Gaussian-based
approaches is about 2.3 pixels, while the highest value for Erad from the measurement-
error-based approaches is about 1.4 pixels. So far, this behavior can be expected, as the
measurement-error-based methods aim by design at predicting upper bounds closer to the
measurement error, with the potential cost of losing correct predictions. The value for
Erad is furthermore correlated with the average size of the predicted upper bound (Avg. r̂′)
in the presented results. This makes sense, as Erad depends on two factors, (i) the error
between the predicted keypoint position and annotated keypoint position and (ii) the size
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of the predicted upper bound. With Epos accounting for (i) and being similar for all ap-
proaches, a correlation between Avg. r̂′ and Erad must exist when varying values for Erad

are observed. Avg. r̂′ values range from 1.9 to 4.4 pixels. To assess if these are reasonable
sizes, a look at the annotated thresholds from the MPII Human Pose dataset for the calcu-
lation of the PCKh@0.5 score can be taken, where they describe the maximum allowed
measurement error for correctness. When projecting the thresholds 0.5 · sh,j from the test
split to heatmap resolution and calculating their average, a value of 3.2 pixels is obtained.
Given that value, average upper bound sizes of 1.9 to 4.4 seem reasonable.

Apart from what the quantitative analysis through the evaluation metrics can capture, a
good method for upper bound prediction should have additional properties. The magni-
tude of the predicted upper bound should grow with the size of the measurement error,
which should be reflected by C-Rad, however, given the small average localization error
Epos for all methods, these cases will be rare and will thus not be well reflected. Further-
more, some cases where the predicted upper bounds overshoot the actual measurement
error by far are acceptable, but such strong outliers may have a noticeable impact on the
average Erad. To get a better impression of how the approaches perform on a case-to-case
basis, the relation between the predicted upper bounds r̂′

j,i and the respective measure-
ment errors (calculated using Qpos) at heatmap resolution is displayed in Figure 5.5 for the
left wrist, right hip, and top of the head keypoints on the test split. The y-axis represents
the predicted upper bound for the measurement error and the x-axis the measurement er-
ror itself, both at heatmap resolution in pixels. All results above or on the dotted line in
each plot are considered correct (upper bound ≥ measurement error). It can be seen that
all measurement-error-based methods do not fare well, as their predicted upper bounds
tend to cluster around a single value, frequently predicting small, incorrect upper bounds
for larger measurement errors – an undesired behavior. On the other hand, the Gaussian-
based methods perform very well regarding this aspect, regularly predicting large upper
bounds for large measurement errors, which is desired. Some small predictions for large
measurement errors exist, as well as some upper bounds that are slightly too small, how-
ever, these occur in far fewer cases. On the downside, upper bounds that are way larger
than the measurement error occur more frequently, however, this behavior can be expected
when the upper bound is designed to capture all potential positions for a keypoint.

Furthermore, qualitative results are supplied using two images that are not from the MPII
dataset. In Figure 5.6a, the results of the 3H-HGgauss approach for such an image supplied
with MPII-style keypoint annotations are shown. Small upper bounds are predicted for
the clearly visible keypoints of the upper body. Larger upper bounds are predicted for
the lower body keypoints, which are harder to detect due to partial occlusions and mono-
colored loose jeans. Next, Figure 5.6b shows the result of the same method for the left
wrist in the image that was previously used to illustrate high positional uncertainty in
the image data. The predicted keypoint position may seem odd at first, but under the
assumption that the neural network does not understand that both hands are required to
carry the box, it makes perfect sense – then, occlusion by either the box or the human
body would be possible, with the keypoint position being placed in-between. Compared
to Figure 5.6a, the predicted upper bound is significantly larger, which is desired in the
face of high positional uncertainty. On the downside, the prediction is not large enough
to capture all potential positions for the keypoint (see Figure 5.2). Overall, this shows the
potential of the method, but also highlights that further improvements are necessary. In
Figure 5.6c, results for the left wrist are predicted using the 2H-HGgauss approach. This
method does not use a voting scheme for the final keypoint position as 3H-HGgauss does,
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Figure 5.5: Plots comparing the size of the predicted upper bounds for the measurement
error (y-axis) to the actual measurement errors (x-axis) on the test split. Results for the
keypoints left wrist (left column), right hip (middle column), and top of the head (right
column) are displayed for all investigated approaches. Results above or on the dotted line
are considered correct (green), while those below are considered incorrect (red).

79



5 Measurement Error Estimation

(a) 3H-HGgauss result (b) 3H-HGgauss result (c) 2H-HGgauss result

Figure 5.6: Predicted keypoint positions and upper bounds (green dots and circles) as
well as annotated keypoint positions (red dots). In (b) and (c), only the predicted position
and upper bound for the heavily occluded left wrist are displayed.

m-threshold C-Rad Erad Epos Avg. r̂′

0.02 89.5 2.327 1.931 3.615
3.5e−4 91.5 2.678 1.962 4.082
None 97.7 6.031 2.859 8.761

Table 5.2: Effect of training with a lower mask threshold or no mask on the 3H-HGgauss

results. Previously published by the author [109], © 2023 IEEE, slightly altered.

but uses the most likely position from the heatmap instead. In the given image, this was the
location where the left wrist would probably be if the human supports the box with both
hands from the bottom – a reasonable guess. Similar to the other approach, the predicted
upper bound is large but not large enough to cover all potential keypoint locations.

Through the previous experiments, the potential of the Gaussian-based approaches for the
prediction of upper bounds has been highlighted, which performed well in many cases.
One further factor with a significant impact on the performance shall be investigated as
part of this work: The choice to use a mask during training. This investigation will be
performed for 3H-HGgauss only. During training, the mask mi is used to limit the learning
of regression vectors and standard deviations in the respective maps to pixel positions
close to the annotated i-th keypoint. Training at far away pixel positions as well could be
beneficial in theory, so that useful regression vectors and standard deviations are available
across all pixels in the maps. In turn, the calculation of the final position and upper bound
through the voting scheme in Eq. (5.19) could become less dependent on good heatmap
predictions. Thus, the training of 3H-HGgauss will be repeated, once without mask, and
once using a less restrictive threshold of 3.5e−4 for the mask. The results can be found in
Table 5.2. While significantly more correct results were achieved without mask, the size
of predicted upper bounds exploded to more than 8 pixels on average. 8 pixels already
result in spheres with a diameter of 16 pixels, which is 1/4 of the heatmap resolution of 64
pixels in each dimension – a massive upper bound for the measurement error that limits
practical usability severely. On the contrary, applying the mask with threshold 3.5e−4 led
to a slight increase in both, correct results and the average size of the upper bound, hinting
that the threshold for the mask could be used to achieve a trade-off between correct results
and upper bound size (and in turn quality with respect to Qrad).
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6 Impact and Handling of Noise

In this chapter, the third of the four central points of this work will be discussed: How
can noise occur and affect human pose estimation in safety-critical industrial robot ap-
plications, and how can its impact on human pose estimation be handled? The presence
of noise in input data can be very harmful to neural network performance, as it was e. g.,
highlighted by Geirhos et al. [38] and Zheng et al. [148] for the task of image classifica-
tion with noise-corrupted input images. In the field of human pose estimation, the impact
of noise was long neglected, with the work of Wang et al. [129] just recently bringing
attention to the topic. They showed the negative impact of various kinds of noise on the
performance of neural networks for human pose estimation, leading to a high number of
keypoints being localized incorrectly. When it comes to safety-critical applications, such
incorrect detections are unacceptable as previously outlined. To deal with them, methods
from Chapter 4 could be used to detect or eliminate them, or methods from Chapter 5
could be capable of capturing the additional uncertainty induced by the noise through the
prediction of larger upper bounds. Hence both methodologies could potentially reduce
the amount of incorrect results that are induced by noise, but could also severely impact
the usefulness of human pose estimation for SSM. When major amounts of incorrect re-
sults are simply filtered out, then there will be almost no correct results left that can be
employed by SSM. When positional uncertainty from noise is captured through larger
predicted upper bounds for the measurement error, then very large upper bounds can oc-
cur, which only indicate that the keypoint could basically be everywhere. Therefore, other
methods are required to limit the impact of noise. For potential other methods, it has to
be kept in mind that the environment of safety-critical industrial applications is highly
regulated compared to applications in the wild. The safety standard ISO 12100 [47] man-
dates (i) that the limits of the machinery are determined and (ii) that hazards and risks are
analyzed and appropriately reduced. The robot-specific safety standard ISO 10218-2 [49]
is primarily in line with the requirements from ISO 12100. The determination of the
limits of the machinery means, that a machine may only be operated under specific con-
ditions. Such limitations can include that operation under direct sunlight is prohibited or
that operation is restricted to a certain range of environmental temperatures [47]. In ad-
dition to these limits in environmental conditions, the mandatory analysis of hazards and
risks makes it necessary to identify potential malfunctions of safety measures due to noise
within these limits. Together, they affect if and how noise needs to be handled.

In the following, the negative impact of noise on 2D single-person human pose estimation
and previously introduced methods will be highlighted through experiments, demonstrat-
ing the severity of its impact. Then, the problem of limiting this impact will be defined,
under the special constraints and limitations that apply due to safety standards. Afterward,
potential approaches for dealing with noise in human pose estimation will be discussed,
with selected approaches being fleshed out further. Last, a large-scale evaluation of these
selected approaches will be performed, showing how well they are able to handle noise,
and how they perform in combination with the approaches from Chapter 4 and 5. The
contents of this chapter are primarily based upon previous work of the author [108].
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6 Impact and Handling of Noise

(a) Correct results (b) False results

Figure 6.1: Experimental results for baseline models and error reduction methods from
Chapter 4 on noisy data. The x-axis denotes the strength of the noise through the em-
ployed standard deviation σtest. Correct results decrement for all methods, but all error
detection methods are able to keep the amount of false results low.

6.1 Impact of Noise on Human Pose Estimation

Throughout this section, the negative impact of noise on human pose estimation shall be
highlighted, as well as its effect on the proposed methods from Chapter 4 and 5. To this
end, 4-HG-V1 and HRNet-W32-V1 from Chapter 4 will be evaluated – once in their native
form without adjustments, once with thresholding over the maximum heatmap values for
the elimination of incorrect results, and once put together into a diverse neural network
ensemble. When thresholding over the heatmap maximum, cmax = 0.2 will be used, and
cR = 0.5 is used for the diverse neural network ensemble. The same trained instances
of these networks that were used in the experiments in Section 4.5 will be employed.
Furthermore, the effects of noise on the 2H-HGgauss approach will be evaluated. For this
evaluation, a newly trained instance (200 epochs) of the respective network will be used.

Experiments will be performed on the same test split employed in previous sections. To
evaluate the impact of noise, Gaussian noise will be used as exemplary noise type. Each
test image will be augmented with it. To do this, an individual, random noise value for
each pixel and color channel of the input image will be drawn from a 1D Gaussian dis-
tribution N(0, σ2). The noise value will be added to the value of the respective pixel and
color channel, and the result will be clipped to the valid value range of [0.0, 1.0] to produce
a valid image. To evaluate the relation between the severity of noise and neural network
performance, 17 different values σtest for σ will be examined, uniformly sampled from
the interval [0.0,0.8]. For each σtest value, the whole test split will be augmented and the
performance of all methods will be assessed.

The results for the unaltered 4-HG-V1 and HRNet-W32-V1 as well as the respective error
detection methods can be found in Figure 6.1. It can be seen that the percentage of correct
results decreases fast for all methods, with less than 40% correct results for noise values
σtest ≥ 0.3 remaining. The amount of false results grows heavily for the unaltered 4-HG-
V1 and HRNet-W32-V1 networks, but all methods for incorrect result detection manage
to keep the amount low. However, none of the methods can be used effectively in practice
when strong noise occurs, as almost no correct results remain. A qualitative example of
how noise affects human pose estimation is shown in Figure 6.2, using 4-HG-V1 under
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6.1 Impact of Noise on Human Pose Estimation

(a) No noise (b) Medium noise (σ = 0.3) (c) Strong noise (σ = 0.8)

Figure 6.2: Qualitative results for 4-HG-V1 under no, medium and strong noise. While
the human pose estimation works well without noise, many results turn incorrect for
medium noise. Under strong noise, result do not make any sense at all.

(a) Correct results (b) False results (c) Upper bound size

Figure 6.3: Experimental results for the 2H-HGgauss method under noise. The percentage
of correct results (here measured with C-Rad from Eq. (5.22)) decreases slower than for
methods from Figure 6.1, while an increase in incorrect results can be witnessed. For the
average predicted upper bound size, a strong increase occurs as noise increases.

no, medium, and strong amounts of noise. Keypoint positions are detected correctly when
no noise is applied to the input. Under medium noise, some predicted positions remain
correct (e. g., head and shoulders), however, many others become incorrect. Under strong
noise, the results do not represent the pose of the human at all.

Results for 2H-HGgauss are displayed in Figure 6.3. In contrast to the other methods, this
method is capable of retaining a significantly higher percentage of correct results with
regards to its own correctness definition C-Rad. For example, for σtest = 0.8, over 50%
correct results are retained, while all methods displayed in Figure 6.1 fall below 20%
correct results for σtest ≥ 0.5. However, this effect comes at the cost of a strong increase
of the average predicted upper bound size, which almost tripled from about 4.1 pixels for
no noise (σtest = 0.0) to about 11.5 pixels under strong noise (σtest = 0.8). High upper
bounds indicate that the neural network is not very sure where the keypoint is located,
with 11.5 pixels relating to a sphere with a diameter of 23 pixels for potential keypoint
locations. This is a massive area and thus not very useful given the heatmap resolution
of 64 × 64 pixels. Furthermore, a notable increase in false results can be witnessed.
This is the case, as the 2H-HGgauss features no dedicated method against incorrect results.
Only in case of the heatmap maximum being below 0.02, results are eliminated and thus
not counted towards correct or false, as upper bound prediction was not trained for such
values. Overall, the 2H-HGgauss method is also highly affected by noise in a negative way.
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6 Impact and Handling of Noise

6.2 Problem Definition under Limitations from
Safety Standards

Before a formal problem definition for human pose estimation under noise in safety-
critical industrial applications will be given, the impact of safety standards on this problem
will be discussed first. As first highlighted by Wang et al. [129] and confirmed by the ex-
periments in Section 6.1, human pose estimation based on neural networks is highly prone
to noise. Without additional measures, high amounts of false results are produced in the
presence of medium to strong noise as shown in Figure 6.1. The incorrect localization of
keypoints caused by noise is a threat to safety when they are used for SSM, as this can lead
to the calculation of an incorrect distance between human and robot. Thus, the problem
must be dealt with. Whether noise can occur or not depends on external, environmental
factors. As safety standards highly regulate the operation environment of machines, they
will affect both: the kinds of noise that can occur, and how they must be dealt with.

A major limitation imposed by safety standards is that a machine does not have to work
without safety-critical malfunctions under all possible operation conditions. Instead, the
potential (environmental) conditions that have to be considered are confined by the so-
called limits of the machinery [47]. They explicitly outline under which conditions the
machine may be operated, in turn defining the conditions under which safety has to be
achieved. This also means that only a fraction of all potential noise types can be encoun-
tered as the environmental prerequisites for others will not be fulfilled. For example, if
operation under direct sunlight is prohibited (an example of limits from ISO 12100 [47])
and strong light sources may also not be present, then the overexposure noise type should
not occur. As another example, if the machine may only be operated indoors, noise from
e. g., snow and rain should not occur. From all noise types that can occur, only a subset
will be safety-critical and require handling. But is this subset of safety-critical noise types
known beforehand? To this end, the safety standard for industrial robotics, ISO 10218-
2 [49], mandates that a risk assessment in accordance with ISO 12100 [47] has to take
place before the final robot system may be put into service. This includes the identifica-
tion of potential additional hazards (with unacceptable risk) that arise from selected safety
measures for risk reduction. With respect to hazards, ISO 12100 [47] mandates that all
of them should be documented (together with cause and effect). In turn, this means that
specific kinds of noise that can lead to a malfunction of safety measures and hence to
hazards should be documented and are thus known for a specific industrial robot appli-
cation. Looking at the S3000 safety laser scanner [113] as a practical example of safety
measures, noise from reflection is specifically considered. It is documented that reflective
objects can cause incorrect measurements or can prevent that measurements are obtained.
Countermeasures include that retro-reflectors may not be placed within 1m of the protec-
tive field monitored by the laser scanner. If this is not possible, a surcharge of 0.2m has to
be applied to the protective field to account for measurement errors due to noise [113].

In conclusion, it can be assumed that all safety-critical noise types that can occur in an
industrial application are known beforehand. This enables the use of noise-specific coun-
termeasures for safety-critical industrial applications. However, this statement builds on
the definition of the limits of the machinery as well as the risk assessment (including
the identification of hazards), which have different results for individual industrial ap-
plications. Thus, different safety-critical noise types can occur in different applications,
making a selection of noise-specific countermeasures on a case-to-case basis necessary.
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For safety-critical applications, a human pose estimator should work correctly whether
noise is present or not. Resistance to noise in that context means that a correct keypoint
detection for an input image is not turned into an incorrect one if noise is added to the
image. Let g denote a function to assess whether a predicted keypoint position is correct
(output 1) or not (output 0). Further, let f denote the function realized by a neural network
for human pose estimation that predicts keypoint positions, x a single input image, and
ϵ̃ the noise that corrupts the clean input image x to form a noise-corrupted input image
x̃ = x + ϵ̃. Last, yi denotes the ground truth keypoint position for the i-th keypoint.
Then, the goal of resistance to noise can be formalized as follows:

g(f(x)i,yi) = 1 =⇒ g(f(x̃)i,yi) = 1 (6.1)

Of course, it will not be possible to achieve this goal for all possible input images x and for
all potential kinds of noise ϵ̃. Assume e. g., the extreme case of an ϵ̃ with very high values
that represents the effects of extreme overexposure and turns the whole image white.
Then, any image x could have been the clean, uncorrupted image, making it impossible to
achieve the above goal. However, the formula should be fulfilled as often as possible, such
that the remaining cases in which it is not can be handled through additional methods like
those from Chapter 4 without a significant negative impact for practical usability. Apart
from keypoint correctness, additional quality criteria, if present, should also be maintained
at comparable levels (like a rather small upper bound in case of methods from Chapter 5).
The noise ϵ̃ that was used to compute x̃ was not further specified in Eq. (6.1). Due to
the limitations of safety-critical industrial applications, ϵ̃ can only come from a fixed,
previously known set of noise types for a specific application. It can either be an instance
of one of these noise types, or a combination of multiple ones. As safety-critical noise
types can vary between applications, a choice must be made for further investigations.

To enable a large-scale comparison for different methods and experimental settings, Gaus-
sian noise will be used as an exemplary noise type, as it is highly common in image-based
applications (e. g., due to low environmental illumination). Throughout this work, two dif-
ferent kinds of Gaussian noise will be investigated. They will be called channel-diverse
Gaussian noise Gdiv and channel-identical Gaussian noise Gid. In both cases, the foun-
dation for sampled noise values will be a Gaussian distribution N(0, σ2), and noise values
will be sampled from this distribution for each pixel location of an image independently.
However, in case of Gdiv, three independent noise values will be sampled per pixel (one
for each color channel), while only one noise value per pixel will be sampled and sub-
sequently applied to all color channels in case of Gid. This means Gid can be seen as a
special case of Gdiv, where the sampled noise values for the color channels are the same.
This will allow the investigation of how minor changes in the noise type impact different
measures against noise. In any case, only valid images will be examined in this work,
which means that the image values (ranging from 0.0 to 1.0) will be clipped back to the
valid image value range after noise has been applied. For a mathematical description, let
ϵ̃div,u,v = (ϵ̃div,u,v,1, ϵ̃div,u,v,2, ϵ̃div,u,v,3) ∈ R3 denote a Gdiv sample for pixel location
(u, v), and ϵ̃id,u,v = (ϵ̃id,u,v,1, ϵ̃id,u,v,1, ϵ̃id,u,v,1) with ϵ̃id,u,v,1 ∈ R1 the same for Gid.
Further, let clip denote a function that clips pixel values to the valid image value range.
Then, the augmentation process can be written as follows:

x̃div[u, v] = clip(x[u, v] + (ϵ̃div,u,v,1, ϵ̃div,u,v,2, ϵ̃div,u,v,3))

x̃id[u, v] = clip(x[u, v] + (ϵ̃id,u,v,1, ϵ̃id,u,v,1, ϵ̃id,u,v,1))
(6.2)

In the following, approaches against noise in human pose estimation will be defined and
examined based on these two noise types and the described augmentation process.
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6.3 Discussion of Potential Solutions

To deal with noise in human pose estimation, two general strategies will be discussed. The
first will be to make the neural network for human pose estimation itself robust against
noise. This would allow the use of the neural network in an environment with noisy data
without the need for additional, external measures against noise. Second will be the use of
a dedicated image denoiser against noise. By eliminating noise from the input image, the
overall problem could potentially be solved without changes to the human pose estimator
itself. In the following, both strategies will be discussed in greater detail.

Neural Network Robustness against Noise: The goal of this strategy is to make the neu-
ral network for human pose estimation itself robust against noise. Outside of human pose
estimation, there are some works that discuss this problem for image classification. Ap-
proaches from that domain tend to focus on the training of the neural network to achieve
robustness against noise. One common strategy is to add noise to the inputs during train-
ing, be it to increase robustness against artificial noise in the form of adversarial attacks
targeted to make neural networks malfunction [39, 77] or to increase robustness against
less targeted kinds of noise [38], which is what is required here. Other training-based
strategies include the use of an altered loss function [148] or the use of model noise
(amongst other strategies) [135] during training. In the field of human pose estimation,
the work of Wang et al. [129] also employed a strategy for corrupting input images with
noise during training based on an image augmentation strategy called AdvMix (for details
see Section 3.1.4). This strategy aims at increasing robustness against previously unseen
kinds of noise. For this work, following the common strategy of adding noise during train-
ing to achieve robustness against noise seems reasonable. First, it is broadly applicable,
as no changes to neural network architectures or loss functions are necessary. Second, its
typical points of criticism do only partially apply. They include (i) that training with one
kind of noise does not necessarily increase robustness against other, unseen kinds of noise
[38, 77, 129], and (ii) that performance on clean data can tank due to training with noisy
input images [38, 129]. Safety-critical applications should not be affected by problem (i),
as all kinds of noise that can occur and require handling are known and thus can be used
during training. Only (ii) could be a problem, hence the clean data performance will have
to be specifically considered when employing such a training strategy.

Image Denoising against Noise: The second strategy is the straightforward idea of re-
solving the problem of noise before the human pose estimator is applied by reconstructing
the original, uncorrupted image through the use of a dedicated image denoiser. Image de-
noising itself is a broad research area on its own (see Tian et al. [120] for an overview),
which features a variety of established methods to deal with noise. These existing meth-
ods can be leveraged in a pipeline with a human pose estimator to limit the impact of
noise. A potential problem of this approach is that existing methods for image denoising
do not reconstruct the original image perfectly and can e. g., introduce their own noise
by eliminating details of the original image, resulting in a blur-like effect (see example
images of Tian et al. [120]). If and how human pose estimation is affected by this has
to be investigated, with the effect potentially prohibiting the direct use of a human pose
estimator together with an image denoiser without retraining to the new, denoised images.

Both strategies show the potential to solve the problem of noise in safety-critical industrial
applications. Making a human pose estimator itself robust against noise through training
has the advantage that no additional components are required after the training is finished.
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Figure 6.4: A pipeline that depicts the noise augmentation performed during training.
Instead of being used directly, a clean input image is first corrupted with noise by a noise
augmentor. Only then it is processed by the neural network for human pose estimation.

Downsides of this approach include that a loss of correct results on clean data is possible
and that out-of-the-box use of existing human pose estimators is not possible as new
training is required. Using a dedicated denoiser to deal with noise also has advantages
and disadvantages. The strategy separates the task of dealing with noise from human pose
estimation itself, allowing two separate methods to focus on only one of both problems.
This could potentially allow the use of existing human pose estimators without retraining.
For image denoising, existing methods from this field can be leveraged. On the downside,
it is not guaranteed that human pose estimators will work on denoised images out-of-the-
box due to imperfect reconstruction. Furthermore, additional computational resources are
required at inference time for the image denoiser. In the following, realizations of both
strategies will be introduced, and an extensive experimental evaluation will be performed.

6.4 Training Human Pose Estimators against Noise

The first discussed strategy was to train a neural network for human pose estimation to
be robust against noise. This only requires changes to the training and allows the use of
the neural network without any modifications during inference. The required changes for
training are depicted in the pipeline from Figure 6.4. As pipeline input, a clean image
is used. Such images can come from large-scale datasets like the MPII Human Pose
dataset. Next, it is fed into a noise augmentor that corrupts it with noise, resulting in a
noisy input image for the human pose estimation method. The neural network for human
pose estimation predicts results based on this noisy image, which are heatmaps in the
depicted pipeline. Then, neural network training can be performed based on this output
with standard loss functions, like the mean squared error between predicted and ground
truth heatmaps. At that point, there is no difference from training without noise.

If other elements are additionally used during training, like further image augmentations,
then they remain unchanged. The only difference to standard training is the use of the
noise augmentor, which is responsible for achieving robustness against noise. As experi-
ments will be performed for the previously defined Gaussian noise variants Gdiv and Gid,
the augmentation approach will be discussed for these noise types. One of them shall be
used exclusively for each training, such that experiments can be performed for a single
exemplary noise type. Every time an input image x is processed during training, an indi-
vidual noise pattern ϵ̃ shall be sampled, such that a large variety of different noise patterns
can be encountered during training. Each individual value from the noise pattern shall be
drawn from a Gaussian distribution N(0, σ2

train) – in case of Gdiv three values per pixel
and in case of Gid only one. To increase the difference in observable noise patterns during
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Figure 6.5: Depiction of the pipeline used after training when a dedicated image denoiser
is employed. A (potentially) noisy test image is first denoised by the image denoiser. The
resulting denoised image serves as input for the human pose estimation neural network.

training, σtrain will not always be the same. Every time an image x is processed during
training, a new value for σtrain will be randomly determined from an interval σrange of
potential values to define N(0, σ2

train). With this procedure, the strength of the noise will
be the same during the augmentation of a single input image, but different otherwise.

The last factor to be considered is the potential decrease in clean data performance due to
data augmentation with noise during training. To strengthen the clean data performance,
only a certain percentage of the input data shall be augmented with noise, retaining some
clean data to be part of the training – a strategy that successfully prevented performance
loss on clean data in image classification [38]. To augment only a certain percentage of
input data, a value a between 0.0 and 1.0 will be sampled from a continuous uniform
distribution U[0,1] every time an input image x is encountered. If a ≤ caug, then the image
will be augmented. Mathematically, the whole augmentation process during training can
be described as follows, with ϵ̃ ∼ N(0, σ2

train) denoting that the individual noise values
for a whole image were individually drawn from distribution N(0, σ2

train) and Uσrange

indicating the continuous uniform distribution for the value interval σrange:

a ∼ U[0,1], σtrain ∼ Uσrange , ϵ̃ ∼ N(0, σ2
train)

x̃ = clip(x+ (δ(a ≤ caug) · ϵ̃))
(6.3)

How the values for ϵ̃ get sampled from N(0, σ2) depends on whether Gdiv or Gid is used.
The above equation shows how each training sample in the form of image x is individually
processed whenever it is encountered. How well this strategy works, e. g., for different
values of caug, will be subject to the experimental section.

6.5 Human Pose Estimation with Denoisers

The second discussed strategy was to use a dedicated image denoiser together with a
neural network for human pose estimation. This allows to solve the problems induced by
noise separately from the actual human pose estimation. The resulting pipeline is depicted
in Figure 6.5. Every input image is processed by an image denoiser first, attempting to
remove noise from the image. This is always done whether the image is noisy or clean,
as a different treatment of those would require an additional method to determine whether
noise is present or not. Then, the denoised image is used as input for the human pose
estimator which produces heatmaps in the depicted case. This straightforward procedure
leaves two questions open: (i) which denoising approaches shall be used and (ii) how shall
the training of the human pose estimator be pursued.
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Regarding question (i), potentially any denoising approach can be applied, as long as its
denoising capability is strong enough. Furthermore, the denoising approach should ide-
ally not be too computationally expensive, as the denoiser is meant to be a supplement to
the human pose estimator and not the primary source of computational cost. For this work,
two different denoising approaches will be investigated: BM3D [17] and FFDNet [145].
BM3D is a traditional, well-established method for image denoising that does not rely on
machine learning. Yet, it still achieves denoising results close to the quality of modern
neural-network-based approaches on different benchmarks [120, 145]. Evaluating such a
proven and still competitive method seems a good addition to modern machine-learning-
based approaches. As a representative of modern machine-learning-based approaches,
FFDNet will be explored. It is a small and fast neural network for image denoising with
competitive performance [120, 145], which makes it an ideal choice for the proposed
pipeline. Both BM3D and FFDNet have a parameter that controls the denoising strength
of the respective approach. This parameter represents the expected standard deviation of
the noise and will thus be called σset for both approaches. As the pipeline does not feature
additional networks to determine the strength of the noise present in a given input, fixed
values for σset independent of the current input will be explored during experiments.

This procedure directly ties into question (ii) of how training of the human pose estima-
tor shall be pursued. An always active denoiser with fixed denoising strength means that
alterations in the input image due to the denoising process will always occur, which e. g.,
means a loss of image details as shown by qualitative evaluations from Tian et al. [120]. In
theory, a pretrained neural network for human pose estimation without previous exposure
to denoised images could be used, however, the effects of image denoising could affect
the neural network’s performance. Alternatively, the neural network could be exposed to
denoised images during training by applying the image denoiser to all training images.
Both of these ideas will be pursued, however, during training, only clean training images
will be denoised to expose the human pose estimator to the effects of the denoising pro-
cess, but not to the noise itself. This has the goal of retaining a strong enough difference
between the two strategies of training against noise and using a denoiser against noise.

6.6 Experiments

Throughout the experimental section, the effectiveness of the suggested strategies against
noise in 2D single-person human pose estimation shall be evaluated. To this end, the
following three questions shall be answered:

1. Are the proposed methods against specific kinds of noise capable of reducing the
negative impact of noise on human pose estimation under the assumption that they
are faced with a noise type they were designed against? If yes, to what extent can
the negative impact of noise be reduced?

2. How well do the noise-specific countermeasures generalize to previously unknown,
yet very similar noise types? While bad generalization for large differences in noise
types is a common phenomenon [38, 129], small differences as e. g., between Gdiv

and Gid are worth an investigation.

3. Section 6.1 highlighted the negative impact of noise on the proposed methods for
error detection and measurement error upper bound prediction. Can this negative
impact be reduced as well?
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Figure 6.6: The effect of Gdiv and Gid on an image for different levels of noise that are
defined by the magnitude of the standard deviation σ. Based on author’s figure from [108].

First and foremost, the negative impact of noise that was demonstrated in Section 6.1 for
standard human pose estimation and adaptations from this work was the loss of correct
detections for all methods, and the increase of false detections and/or upper bounds for
some of the methods. For standard human pose estimation, the percentage of false results
is implicitly defined by the percentage of correct results. In this case, it is thus sufficient
to only monitor the percentage of correct results to get a full picture. For all methods that
can label a keypoint prediction as unreliable, it is necessary to monitor both, correct and
false results, as outputs can also fall in the third Uncertain category. In the case of upper
bound prediction, a third value that can be monitored to estimate the negative impact is
the average size of the predicted upper bound values Avg. r̂′, as high values for this metric
are always indicative of bad result quality (with respect to Qrad and/or Qpos).

Evaluations will be performed for a large number of experimental settings, each of them
differing in the dimensions of how the test split is augmented, which countermeasures
against noise are used, and how the parameters of the approaches are configured. In any
case, the same test split for the MPII Human Pose dataset as in previous sections will
serve as the foundation for all experiments. For (almost) each experimental setting, the
test split will be augmented with noise. For the augmentation with noise, the following
variables will be explored in different experimental settings:

1. Noise strength: σtest ∈ {0.0, 0.05, 0.1, ..., 0.8}

2. Noise type: Gdiv or Gid

Specifically, this means that per experimental setup, only one noise type will be used to
augment all test samples and that only one noise strength represented through σtest will be
employed to form the underlying Gaussian distribution N(0, σ2

test) from which individual
noise samples are drawn. These settings allow to investigate how well different strategies
fare for both, different noise types and strengths of the noise present in images. Figure 6.6
illustrates how both noise types affect images given different noise strengths.

Variable settings will not only be explored for the augmentation of the test split, but also
for the countermeasures against noise. In the case of approaches relying on training pro-
cedures against noise, these variable factors include:

1. Noise type used during training: Gdiv or Gid

2. Chance for noise augmentation during training: caug ∈ {0.5, 1.0} (50%/100%)

3. Range of noise strength during training: σrange = [0.0, 0.75]
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This means that training in one specific experimental setting will be performed using ei-
ther Gdiv or Gid only, with either 50% or 100% of training samples being augmented. In
every experimental setting, values for σtrain that are used to form the underlying Gaus-
sian distribution N(0, σ2

train) for creating the training noise will be drawn from the same
σrange = [0.0, 0.75] (individually for every training sample and epoch). This means that
the neural networks are always exposed to different noise strengths within σrange. The
range ends at 0.75, such that a slightly stronger noise of σtest = 0.8 can occur during
tests, showing the performance for a previously unseen noise strength.

Not only do the training-based approaches feature variable settings, but the approaches
that rely on a dedicated denoiser do so as well. For different experimental settings, the
following variable choices will be explored:

1. Expected noise strength: σset ∈ {0.15, 0.3, 0.7}

2. Type of Denoiser: FFDNet or BM3D

3. Training data of human pose estimator: clean or clean-denoised (clean-den.)

This means that one specific denoiser with a single denoising strength σset will be used
per experimental setting. A further difference is described by the last point: whether the
human pose estimator was trained on the clean training images of the MPII Human Pose
dataset or if these clean training images were passed through the denoiser before being
used for training. In the latter case, the same σset is used during training and evaluation.

Independent from the specific experimental setting, a lightweight variant of the original
hourglass model by Newell et al. [86] will be used. This variant will feature two consec-
utive hourglass blocks instead of the original eight, and will thus be called 2-HG. The
reduction in model size is done to speed up the training and testing process, which is nec-
essary due to the large number of combinations in experimental settings that are explored.
The training of the 2-HG is pursued on the same training split as in previous sections and
in a similar fashion to previous experiments where variants of the hourglass model were
involved. The same data augmentation procedure proposed by Newell et al. [86] for train-
ing data is used, including image flipping, rotation, and image cropping with modified
crop sizes. Inputs of the neural network are rescaled to the fixed input size of 256× 256.
Ground truth heatmaps are produced with the same procedure as Newell et al. did, and
training of the neural network is pursued with intermediate supervision, using the mean
squared error between predicted and ground truth heatmaps as the loss function. Batches
of 16 samples each are processed, and RMSprop [122] is used with a learning rate of 0.001
and gradient clipping. Every training procedure is performed for 200 epochs. Depending
on the specific experimental setup, additional alterations to the training process may take
place (corruption of input images with noise/denoising of input images).

Apart from the human pose estimation method, the image denoiser FFDNet also requires
configuration and training. In accordance with the suggestions from the authors [145],
FFDNet will be configured to use 12 convolutional layers with a feature dimension of 96
for the initial 11 layers and a feature dimension of 12 for the last layer. In contrast to the
original, training is performed on this work’s training split for MPII, omitting other data
sources that were used for training the original FFDNet. As for the training procedure,
an altered, slightly simplified version is employed. Similar to the human pose estimator,
FFDNet is trained with the annotated image crops that were rescaled to a size 256× 256
pixels, however, no augmentations in the form of image flipping, rotation, or the adjust-
ment of the crop size are performed. The only augmentation is the corruption of the input
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with noise. Depending on whether FFDNet is trained to remove Gdiv or Gid, every train-
ing image is corrupted with the respective noise type. For every input image and epoch,
an individual noise strength σtrain is drawn from the interval [0.0, 0.75]. This value is used
to determine the underlying Gaussian distribution N(0, σ2

train) from which the individual
noise values for the image are drawn, and is also used to calculate the noise level map
required by FFDNet (all value are set to σtrain). As loss function, the mean squared error
between the original image (before adding noise) and the denoised image from FFDNet
is used. Training is pursued for 50 epochs, using the RMSprop optimizer with a learning
rate of 0.0001 and a batch size of 16. During tests, all values of the noise level map will
be set to the respective value of σset in the specific experimental setting.

The image denoiser BM3D does not require training. Throughout the following exper-
iments, the publicly available1, GPU-accelerated version of the algorithm proposed by
Honzátko and Kruliš [43] will be used. On a technical note, this implementation operates
on image values ranging from 0 to 255, hence σset-values that are originally defined for an
image value range of 0.0 to 1.0 have to be scaled accordingly. While this is what happens
in practice, σset will always be defined for an image value range of 0.0 to 1.0 in this work,
for the sake of simplicity and a coherent visualization across approaches.

6.6.1 Evaluation for Standard Human Pose Estimation

First, the impact of the proposed methods against noise will be evaluated for the standard
2D single-person human pose estimation problem. To this end, the percentage of correct
detections will be evaluated on the test split of MPII (as defined in Section 4.5) using the
standard PCKh@0.5 score. The 2-HG model will be used as the human pose estimator for
all experiments. A large variety of experimental scenarios will be evaluated, consisting of
different combinations of the variable settings described above. Different settings for both
training- and denoiser-based approaches will be evaluated against the same target noise
they were designed for, either Gdiv or Gid, for 17 variable levels of noise represented by
σtest. Values for σtest start at 0.0 (meaning no noise) and are increased in steps of 0.05
up to 0.8 (strongest noise level). Whenever training takes place to deal specifically with
Gdiv or Gid (training-based approaches and FFDNet denoiser), an evaluation against the
other kind of noise is performed as well to highlight if the method generalizes well for
small changes in the noise type. Overall, this leads to 782 experimental scenarios being
evaluated. Table 6.1 depicts the evaluated scenarios together with the respective results
(due to limited space, results for σtest ∈ {0.65, 0.75} are not displayed).

Looking at the experimental results in the table, even without going into detail, it becomes
directly obvious that all investigated approaches lead to improvements when used against
the noise type they were designed against (first and third block in the table). In these
blocks, all methods improved the results for noise levels σtest ≥ 0.2 compared to the
baseline model without countermeasures. With respect to performance on clean data and
low noise settings, performance decreases of varying degrees can be observed for several
methods. However, this is not true for all methods, as BM3D with σset = 0.15/0.3 as
well as training with 50% noisy data either retain the performance (no. 37) on clean data
or even slightly outperform (no. 11, 12, 14, 34 and 35) the 2-HG model without coun-
termeasures on clean data. For the training-based approaches against noise, the decrease

1available at https://github.com/DawyD/bm3d-gpu
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Experimental Setup PCKh@0.5 Score for Noise Strength σtest

No.
Noise Type 2-HG

Denoiser σset
σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest σtest

Test Train Train Data 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8
1

Gdiv

- clean - - 83.4 79.4 70.5 58.1 44.8 34.4 26.4 20.5 16.7 14.2 13.1 12.3 11.5 10.7 10.1
2 Gdiv clean FFDNet 0.15 77.1 77.4 78.4 78.9 74.2 64.2 54.4 46.0 39.0 34.2 29.6 26.2 23.2 18.1 15.1
3 Gdiv clean FFDNet 0.3 70.7 71.1 71.6 72.3 73.0 74.0 73.0 69.3 62.0 53.4 45.1 39.0 34.1 26.3 21.0
4 Gdiv clean FFDNet 0.7 58.7 58.4 58.2 58.0 58.4 58.3 58.7 59.3 59.6 59.8 59.4 59.2 57.5 54.2 49.8
5 Gdiv clean-den. FFDNet 0.15 81.7 81.4 81.2 79.1 68.6 56.2 46.4 38.8 32.4 27.9 23.2 20.8 18.4 15.2 12.7
6 Gdiv clean-den. FFDNet 0.3 80.2 80.1 80.0 79.2 78.3 76.8 71.9 63.0 50.3 39.1 31.6 26.1 22.4 17.2 14.5
7 Gdiv clean-den. FFDNet 0.7 75.5 75.0 74.5 73.9 73.1 72.5 71.8 70.7 70.0 68.1 66.6 64.7 62.3 55.5 48.6
8 - clean BM3D 0.15 82.8 82.6 82.1 81.7 80.1 76.1 68.5 60.2 51.9 44.5 38.7 33.3 29.2 23.4 19.2
9 - clean BM3D 0.3 82.2 82.0 81.5 81.0 80.1 79.2 77.7 76.7 74.3 71.7 68.6 65.8 62.0 52.9 44.1

10 - clean BM3D 0.7 81.2 81.1 80.4 80.1 79.2 78.2 76.8 75.6 73.6 71.7 69.3 67.3 64.8 59.7 54.6
11 - clean-den. BM3D 0.15 84.3 84.2 83.6 82.9 81.1 76.8 69.5 60.3 51.5 43.5 36.5 31.4 27.4 22.0 18.6
12 - clean-den. BM3D 0.3 83.8 83.5 83.2 82.7 81.6 80.5 79.5 77.9 75.3 72.3 68.4 64.6 60.8 52.3 43.9
13 - clean-den. BM3D 0.7 82.9 82.8 82.2 81.6 80.5 79.3 77.7 75.7 73.1 70.4 67.1 63.7 60.5 53.0 46.8
14 Gdiv 50% noisy - - 83.7 83.3 82.3 81.2 80.0 78.8 77.4 76.0 75.2 73.3 71.6 70.2 68.6 65.6 62.4
15 Gdiv 100% noisy - - 81.2 81.0 80.6 79.9 79.5 78.1 77.5 76.1 75.2 73.8 72.6 71.1 69.9 67.3 63.6
1

Gdiv

- clean - - 83.4 79.4 70.5 58.1 44.8 34.4 26.4 20.5 16.7 14.2 13.1 12.3 11.5 10.7 10.1
16 Gid clean FFDNet 0.15 76.9 76.6 73.9 67.4 55.8 44.6 35.9 28.7 23.8 20.6 17.7 15.8 14.3 12.6 11.8
17 Gid clean FFDNet 0.3 72.2 72.2 68.4 61.4 53.2 44.3 37.7 31.1 25.2 20.8 18.4 16.1 14.8 12.9 11.9
18 Gid clean FFDNet 0.7 63.3 61.6 58.2 50.8 43.8 37.2 31.4 26.7 22.7 19.6 17.0 15.7 13.9 12.1 10.9
19 Gid clean-den. FFDNet 0.15 81.3 79.2 71.8 60.3 45.0 32.2 22.6 16.2 12.5 10.4 8.9 7.9 7.7 7.0 6.7
20 Gid clean-den. FFDNet 0.3 80.3 77.3 66.8 52.0 36.6 24.9 17.0 12.6 10.1 8.7 7.7 7.4 6.7 6.4 6.0
21 Gid clean-den. FFDNet 0.7 78.7 75.8 64.8 51.3 38.8 29.0 22.7 18.7 16.2 14.3 12.9 12.0 11.4 10.8 10.4
22 Gid 50% noisy - - 83.4 81.5 73.4 58.0 39.4 23.2 13.9 9.8 7.6 6.8 6.2 6.2 5.9 5.8 5.4
23 Gid 100% noisy - - 80.1 76.4 64.7 48.2 32.7 22.3 15.8 12.3 10.8 9.8 8.7 8.2 8.0 7.4 6.9
24

Gid

- clean - - 83.4 77.2 68.5 60.0 52.1 44.4 37.0 29.9 23.9 19.2 15.3 12.5 10.4 7.3 5.6
25 Gid clean FFDNet 0.15 76.9 77.4 78.0 78.7 72.9 60.3 49.5 41.7 34.6 29.5 24.8 21.1 18.4 14.0 11.6
26 Gid clean FFDNet 0.3 72.2 72.7 73.4 73.8 74.5 75.2 75.0 72.8 66.7 57.0 47.7 38.3 31.7 22.1 16.1
27 Gid clean FFDNet 0.7 63.3 64.1 65.0 66.0 66.9 67.6 67.8 68.8 68.5 68.8 68.4 69.0 68.3 67.5 66.2
28 Gid clean-den. FFDNet 0.15 81.3 81.3 81.2 79.0 67.1 52.9 42.4 34.3 28.0 22.7 18.9 16.1 14.4 11.9 10.7
29 Gid clean-den. FFDNet 0.3 80.3 80.3 80.4 80.3 80.2 79.3 77.4 71.8 59.7 45.2 33.7 26.2 21.8 16.7 14.3
30 Gid clean-den. FFDNet 0.7 78.7 78.7 78.4 78.2 78.0 78.0 77.6 77.0 76.9 76.5 76.2 75.6 75.5 73.8 72.1
31 - clean BM3D 0.15 82.7 82.6 81.8 78.1 69.5 60.7 52.8 45.7 39.3 33.1 28.0 23.9 20.4 15.6 12.5
32 - clean BM3D 0.3 82.2 82.1 81.2 80.5 78.9 76.9 73.5 66.9 58.7 50.2 42.6 35.9 30.7 23.2 18.1
33 - clean BM3D 0.7 81.2 81.0 80.2 79.6 78.2 76.5 75.1 73.1 70.5 68.5 66.0 63.1 60.6 54.3 48.7
34 - clean-den. BM3D 0.15 84.3 84.0 83.1 79.3 72.1 64.4 57.3 49.9 42.5 36.8 31.8 26.5 22.8 17.5 13.8
35 - clean-den. BM3D 0.3 83.8 83.6 82.9 81.8 80.4 78.0 74.2 68.7 63.1 57.0 52.0 47.4 43.0 35.7 30.0
36 - clean-den. BM3D 0.7 82.9 82.7 81.8 80.8 79.6 77.7 75.9 73.6 71.3 69.4 66.5 63.2 60.7 55.1 48.6
37 Gid 50% noisy - - 83.4 82.6 81.5 80.8 80.4 80.0 79.4 78.8 78.5 78.1 78.1 77.4 77.2 76.4 75.6
38 Gid 100% noisy - - 80.1 80.1 80.1 79.6 79.4 79.2 78.9 78.5 78.1 77.8 77.2 76.9 76.7 76.2 75.6
24

Gid

- clean - - 83.4 77.2 68.5 60.0 52.1 44.4 37.0 29.9 23.9 19.2 15.3 12.5 10.4 7.3 5.6
39 Gdiv clean FFDNet 0.15 77.1 77.9 78.7 67.6 55.8 46.1 37.9 30.5 24.6 19.8 16.1 13.7 11.8 8.9 7.4
40 Gdiv clean FFDNet 0.3 70.7 71.2 72.2 73.5 71.2 58.7 46.3 38.1 29.7 24.1 19.1 15.5 13.2 9.4 7.5
41 Gdiv clean FFDNet 0.7 58.7 58.4 58.1 57.9 58.6 59.2 58.6 55.7 51.2 44.8 37.8 30.2 23.8 13.9 9.2
42 Gdiv clean-den. FFDNet 0.15 81.7 81.2 77.3 62.1 51.5 43.5 36.5 30.4 25.1 20.7 18.0 15.5 13.5 10.7 8.8
43 Gdiv clean-den. FFDNet 0.3 80.2 80.1 79.3 76.5 65.1 46.1 33.7 26.1 20.7 16.4 13.2 11.3 10.2 9.0 8.1
44 Gdiv clean-den. FFDNet 0.7 75.5 75.1 74.3 73.3 71.7 68.7 62.6 51.6 39.1 28.5 21.1 15.5 12.1 9.6 8.6
45 Gdiv 50% noisy - - 83.7 82.0 79.3 75.4 71.1 66.3 60.4 55.4 49.9 44.5 38.8 33.3 28.5 20.5 15.3
46 Gdiv 100% noisy - - 81.2 80.8 79.5 77.5 74.3 70.3 66.1 61.3 55.9 50.6 45.1 40.0 35.2 27.4 21.5

Table 6.1: Experimental results together with the respective experimental setup for 15
out of 17 investigated noise strengths. PCKh@0.5 is used as evaluation metric. Results
are grouped in four blocks: the first and second display experiments where tests are pur-
sued using Gdiv. The first block displays experiments where training (if applicable) was
performed on the same noise type, while the second block includes experiments where
training was pursued with the other noise type Gid to show how well the training transfers
to tests on Gdiv. Blocks three and four are similarly structured, this time with Gid as the
noise type for tests. Results that are better than the respective baseline in grey (2-HG with-
out countermeasures against noise) are marked in green, and worse results are marked in
red. The best result in each block for each noise level σtest is highlighted in bold numbers.
Previously published by the author [108], © 2023 IEEE, slightly altered.
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(a) Train Gdiv, test Gdiv (b) Train Gid, test Gid

Figure 6.7: Plots of experimental results for methods against noise while testing on the
same noise they were designed against. The respective experiment numbers in Table 6.1
are 1, 11, 13, 14 and 15 for the left as well as 24, 34, 36, 37 and 38 for the right plot.
The first bracket in a method’s name indicates on which data the 2-HG model was trained
(c. for clean, c. den. for clean-denoised and X% Gdiv/Gid for an augmentation of X% of
the training data with the specified noise type). The number after the name of a denoiser
indicates which value for σset was used.

in clean data performance reported by Wang et al. [129] for training the neural network
with the noise type that shall be handled during inference was confirmed when all training
samples are augmented with noise (no. 15 and 38), however, the opposite is true when
50% noisy data is used (no. 22 and 37). This shows that not the training with the test
noise type leads to a performance decrease on clean data by itself, but that it depends on
the used training strategy. From the experimental results, it can be concluded that it is
important to retain a percentage of clean training data when training with noise. Depend-
ing on the noise level, denoiser-based approaches where the human pose estimator was
trained on clean-denoised images and training-based approaches fared best. Figure 6.7
shows a performance comparison for some of the best methods. Although all displayed
methods highly improve the performance under noise, it can be seen that the denoiser-
based approaches tend to tank for high levels of noise in comparison to the training-based
approaches. The effect is more dramatic for low σset values, although these achieve better
performance for scenarios with low levels of noise, making the choice of σset a trade-off.

The next question that can be answered based on the experimental results from the first
and third block is whether neural networks for human pose estimation can be used to-
gether with a dedicated denoiser without (re)training them to adapt to the new, altered
inputs. It can be seen from experiments no. 2-13 as well as 25-36, that the use of a hu-
man pose estimator trained on clean data is possible together with a dedicated denoiser to
improve the results under noise, however, at a loss of clean data performance. In direct
comparison, training the neural network based on image denoiser outputs for clean images
leads to better performance for no and low levels of noise, but with an increasing noise
level, the use of a human pose estimator trained on clean data becomes better in most
cases. Figure 6.8 illustrates the effect. Although this behavior under high levels of noise
seems surprising, it could potentially be explained through the fact that the neural net-
work training with denoiser outputs was only performed for images without noise which
were processed by the denoiser. Hence, the neural network was never tuned towards the
denoiser behavior at high noise levels.
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(a) Train Gdiv, test Gdiv (b) Train Gid, test Gid

Figure 6.8: Plots of experimental results for the denoiser-based strategy that illustrate the
effect of training the 2-HG model on clean denoised images from the denoiser vs. training
it on clean images. With respect to Table 6.1, experiments 2, 5, 10, and 13 are depicted
on the left as well as 25, 28, 33, and 36 on the right. The naming of methods in the plots
is mostly the same as in Figure 6.7, with the difference that the bracket after FFDNet
indicates which noise type was used to train this denoiser.

(a) Noisy,
Gdiv, σ = 0.1

(b) Denoised,
BM3D, σset = 0.3

(c) Denoised,
FFDNet, σset = 0.3

Figure 6.9: Visual comparison of the denoising results from BM3D and the custom-
trained FFDNet with σset = 0.3 for an image corrupted with Gdiv of strength σ = 0.1.

Another effect that can be observed is that FFDNet performed significantly worse than
BM3D in the first and third block, despite the original paper reporting comparable perfor-
mance to BM3D [145]. This behavior must originate from the altered training procedure
that is used in this work, as a simple visual inspection shows that FFDNet outputs are not
near the quality of BM3D outputs in the experiments (see Figure 6.9). However, having
a denoiser with a high loss in image details is not bad for the experiments: it allows to
investigate how the denoiser-based strategy fairs when a lot of image details are lost in the
denoising process. The effect is most severe for the highest denoiser strength σset = 0.7,
and without adjusting the human pose estimator to the effects, large performance de-
creases can be seen when no or only low amounts of noise are present (no. 4 and 27).
However, when the human pose estimator is trained with the denoised images, the nega-
tive effect can be limited (no. 7 and 30). This shows that the strategy can still work at a
decent, although not ideal level, even if the denoiser eliminates many image details.
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(a) Train Gid, test Gdiv (b) Train Gdiv, test Gid

Figure 6.10: Plots of experimental results (left: 1, 21, 22, right: 24, 44, 45) that highlight
the effect of changing the noise type between training and testing using Gdiv and Gid,
compared to the baseline model. The methods do not generalize well.

The last question that can be answered from the results is how well the strategies general-
ize between Gdiv and Gid. This was evaluated in the second and fourth block for methods
that relied on either Gdiv or Gid for training (including the FFDNet denoiser). General-
ization is not good in both cases, with the performance for training on Gid and testing on
Gdiv (second block) even tanking below the baseline without countermeasures in many
cases. Figure 6.10 shows the generalization from Gid to Gdiv and vice versa for two meth-
ods. Performance losses are significant in all cases, especially compared to the same noise
performance (Figure 6.7 and 6.8). This shows that generalization is not even guaranteed
between similar noise types. In turn, hazardous noise types have to be precisely defined,
e. g., during the risk assessment, when noise-specific countermeasures shall be used.

6.6.2 Impact on Further Methods

After the positive impact on standard human pose estimation has been verified for the
proposed methods, the last remaining question is how they interact with the methods for
error detection and measurement error upper bound prediction. To this end, the experi-
ments from Section 6.1 will be repeated using the training-based strategy with 50% noisy
data, as it was highly effective against noise while retaining or even improving clean data
performance. Both training and testing are done with Gdiv, the same noise type used in
Section 6.1. To apply the strategy of training with 50% noisy data, all networks will be
trained from scratch. Apart from the addition of noisy data, the training remains the same.

First, the results of the error detection methods will be discussed. Figure 6.11 shows
these results for the base methods 4-HG-V1 and HRNet-W32-V1, as well as for the re-
spective error detection methods which either leverage the strategy of thresholding over
the heatmap maximum or employ the diverse neural network ensemble. Compared to the
results without countermeasure against noise (previously shown in Figure 6.1), signifi-
cantly more correct results are retained for increasing levels of noise. This includes both,
the baseline methods and all methods for error detection. The number of false results is
significantly reduced for the baseline methods. All methods for error reduction experience
a higher number of false results for higher levels of noise. However, the total amount of
false results stays at a low level for the error detection methods, significantly lower than
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(a) Correct results (b) False results

Figure 6.11: Evaluation of baseline models and error detection methods, when all of them
are trained with 50% noisy data as a countermeasure against noise. Noise type Gdiv is used
during training and evaluation.

(a) No noise (b) Medium noise (σ = 0.3) (c) Strong noise (σ = 0.8)

Figure 6.12: Predicted keypoint positions and resulting pose for an input image with
no/medium/strong noise. Keypoint predictions were produced by the 4-HG-V1 model,
trained with 50% noisy data. Noise type Gdiv is used for training and testing.

without them. Furthermore, the lower amount of false results for high levels of noise that
was observed without training on noisy data (see Figure 6.1) was not due to a selective
elimination of false results, but due to the methods simply labeling almost all keypoints
as unreliable. This means that the methods were basically unusable in practice for higher
amounts of noise when no countermeasures were used.

Section 6.1 also featured a qualitative comparison of human poses predicted by 4-HG-V1
under different levels of noise. To give an impression of how the predictions changed
on a qualitative level, the experiment is repeated, with 4-HG-V1 employing the strategy
of training with 50% noisy data (Gdiv is used for both training and testing). The results
can be found in Figure 6.12. Between no noise and medium noise, there is almost no
difference in predicted keypoint positions. Even under strong noise, a subjectively good
pose estimate is produced, with only the right wrist keypoint being a bit further away from
where it should be located. However, locating this keypoint correctly is also challenging
for humans due to the strong noise.

Next, the effect of training with 50% noisy data as a countermeasure against noise is inves-
tigated for measurement error upper bound prediction. Thus, the respective experiment
from Section 6.1 is repeated with the addition of 50% noisy data (Gdiv) in the training
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(a) Correct results (b) False results (c) Upper bound size

Figure 6.13: Comparison of experimental results for measurement error upper bound
prediction, once without countermeasures against noise and once using training with 50%
noisy data as a countermeasure. Noise type Gdiv is used for training and testing.

process. The results can be found in Figure 6.13. They can be described as almost com-
pletely positive: Correct results are only slightly reduced, even for high levels of noise,
while false results also only slightly increase. In both cases, significant improvements
are achieved for every noise level in comparison to not using a countermeasure. When
it comes to the average upper bound size as an indicator of result quality, slightly worse
results can be observed for no and low noise, however, for increasing levels of noise,
significant improvements are achieved. Instead of growing similar to a logistic function,
the growth in upper bound size is now more linearly correlated with the increasing noise
level. Furthermore, the overall increase is significantly smaller, from approximately 4.8
pixels at σtest = 0.0 to about 7.2 at σtest = 0.8.

Overall, it can be said that training with 50% noisy data as a countermeasure against noise
is capable of limiting the negative impact of noise on methods for error detection and
measurement error upper bound prediction when training and testing noise types are the
same. In the case of error detection, training with noisy data resolved the problem that
almost all results were labeled as unreliable, which meant that almost no keypoint pre-
dictions remained under higher levels of noise for further use. On the downside, training
with noisy data also resulted in (undetected) false results slightly increasing for higher
levels of noise. Without countermeasure, this was not the case for high noise levels with
σtest ≥ 0.4. This can probably be explained by human pose estimation results becoming
completely non-sensical for large amounts of noise when no countermeasures are used
(as in Figure 6.2), which in turn should make their detection and hence elimination eas-
ier. The fact that almost no detections (neither correct nor false) remained in that case
when error detection methods were applied supports this claim. For measurement error
upper bound prediction, no long discussion is needed: apart from a minor increase in
upper bound size on clean data and for very low levels of noise, effects of training with
50% noisy data were positive through and through, making it a valuable addition for the
method without significant drawbacks.
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7 Human Pose Estimation and
Distance Calculation in Hard
Real-Time

In this chapter, the fourth central point of this thesis shall be examined: How can hard
real-time capability be ensured for human-robot distance monitoring in SSM based on
human pose estimation results? This question shall be discussed assuming that current
human pose estimation methods are not hard real-time capable themselves. Concerning
safety through SSM, hard real-time capability is the last major missing piece for safe hu-
man detection, when a sufficiently low probability for dangerous errors can be guaranteed
and correct upper bounds for measurement errors are available. The requirement for a
hard real-time capable human detection mechanism arises from the calculation of a min-
imum safety distance that has to be maintained between human and robot, which is the
minimum distance S in ISO 13855 [46] and the protective separation distance Sp(t0) in
ISO/TS 15066 [51] (see Section 2.2.3 and 2.2.4). As part of these distances, the (worst
case) movement of the human towards the robot has to be considered for the maximum
time it takes to detect the human, evaluate the distance, and then fully stop the robot. This
means that both, the human detection and the human-robot distance calculation must be
hard real-time capable, so that the respective maximum times for both tasks exist. Guar-
anteeing these maximum times for both tasks is crucial, as both S and Sp(t0) are designed
to ensure that the robot is fully stopped before a human reaches it. Hence, missing dead-
lines imposed by the hard real-time requirement can lead to a collision between human
and moving robot, which is a critical safety violation. To prevent such violations by the
human detection process, two methods are required: one to ensure that a valid detection
for every (required) keypoint is available with a fixed, guaranteed frequency, and another
one to ensure that the keypoint-based human-robot distance calculation and evaluation
against a minimum safety distance are performed within a maximum amount of time.

These challenges will be addressed for 3D human pose estimation instead of 2D, as (i) the
calculation of a minimum safety distance relies on the distance in 3D space, and (ii) the
full potential of human-robot distance calculations based on keypoints can only be lever-
aged in 3D. For an isolated investigation of hard real-time capability, a 3D human pose
estimation system not capable of hard real-time will be assumed first, which is error-free
through previously introduced measures. Next, the calculation of the protective separation
distance will be introduced in greater detail for a formal problem definition and to high-
light alternative paths to its fulfillment. Potential solutions to the problem are discussed
afterward. Selected approaches are pursued further, creating a solution to the problem
based on bridging the time in-between human pose estimation results, together with dis-
tance calculation based on a human volume model. The viability of the proposed solution
is shown through a comparative theoretical analysis. Overall, the contents of this chapter
are primarily based on previously published work of the author [107].
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7.1 Assumptions for an Isolated Examination

First, the foundation for the research in this chapter has to be created by formalizing
the properties of the required 3D human pose estimation system. The properties of the
system should be formulated in a way that allows to separate the problem of achieving
hard real-time capability from the other problem of achieving a low enough error rate for
safety. This separation allows the application of different methods to solve these prob-
lems (mostly) independently from one another, although potential interactions will have
to be considered. In the following, it will be assumed that the 3D human pose estimation
system already has methods in place that reduce errors sufficiently. This means that the
problem of achieving hard real-time capability can be pursued without need for further
error reduction. However, employed methodology must not introduce new errors.

As no such 3D human pose estimation system exists to date, assumptions have to be made
about how such a system could realistically look like. To ensure applicability in safety-
critical scenarios at inference time, it will be assumed that the 3D human pose estimation
system follows the proposed reformulation of the human pose estimation problem from
Chapter 5, altered to the 3D case. This means it predicts 3D keypoint positions together
with upper bounds for the measurement error, and that a result is correct if the predicted
upper bound is larger or equal to the distance between predicted and ground truth posi-
tion. As experiments from Section 5.6 never achieved 100% correct results, it would be
unfair to assume that this methodology alone will be sufficient to avoid incorrect results
completely. Thus it will be assumed that the 3D human pose estimation system employs a
second method to eliminate incorrect results, e. g., like those from Chapter 4. It is assumed
that this leads to a system without incorrect results, but with less than 100% correct re-
sults due to the elimination of individual, (potentially) incorrect results. In turn, not every
keypoint will have a valid detection in every human pose estimation output. Furthermore,
the 3D human pose estimation system will be assumed to be incapable of hard real-time,
which is the problem that shall be solved. Summarized, the assumed 3D human pose
estimation system will have the following properties:

1. Pairs of keypoint positions and upper bounds for the measurement error are pre-
dicted in 3D space, resulting in a uniform keypoint sphere per keypoint.

2. No incorrect results are produced by the human pose estimation method.

3. Not every output of the 3D human pose estimation system has a valid position and
upper bound for each keypoint, as incorrect results are filtered out.

4. The 3D human pose estimation system is not capable of hard real-time.

The assumption of missing hard real-time capability is made as the focus of human pose
estimation research does not lie on hard real-time capability, but on something that rather
resembles soft real-time capability: the processing of a certain number of inputs (e. g.,
images) per second on average [11, 23, 61, 81, 82]. The difference to hard real-time capa-
bility is that no upper time limit for the availability of an individual result is guaranteed.
With this differing understanding of real-time, it is unlikely that the considerable efforts
necessary in both hardware and software for a hard real-time capable 3D human pose es-
timation system will be realized soon. Furthermore, calculating results in hard real-time
would not be sufficient for the assumed error-free human pose estimation system, as in-
correct results are filtered out and no guarantee can be given when the next valid result for
a keypoint arrives, even if results are calculated within a fixed time span.
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7.2 Problem Definition

Throughout this section, a formal definition for the problem of making the human-robot
distance calculation based on human pose estimation hard real-time capable shall be
given. To this end, let fhpe denote the function that is realized by the 3D human pose
estimator from Section 7.1, taking an input x and producing outputs ŷ, r̂ that denote the
predicted 3D keypoint positions and upper bounds for the measurement error of all valid
keypoint detections. Furthermore, let fdist denote the function for human-robot distance
calculation, Dhpe the human pose estimation data that is supplied to that function, and
Ddist other required data for the distance calculation (e. g., data reflecting the robot’s
position). The calculated human-robot distance is called dh-r and is calculated as follows:

ŷ, r̂ = fhpe(x)

dh-r = fdist(Dhpe,Ddist)
(7.1)

For hard real-time capability, the distance calculation fdist itself as well as the acquisition
of required data Dhpe and Ddist must be hard real-time capable. This is the reason why
the calculation of Dhpe is not defined closer. The simplest solution would be to use (ŷ, r̂)
directly as Dhpe, however, this would require fhpe to be hard real-time capable. Instead,
Dhpe could also be obtained by other means, e. g., an adaptation mechanism that safely
adapts previous human pose estimation results, hereby shifting the need for hard real-time
capability from fhpe to the adaptation mechanism. Thus, the given formulation opens up
more potential solutions to the problem.

As an additional stipulation, the calculated distance dh-r shall consider all measurement-
and evaluation-related factors from the protective separation distance (which is used as
realization of a minimum safety distance) that account for the fact that the human can be
closer to the robot than the measured distance. This change allows the use of new and
potentially better solutions for SSM. Detailed reasoning will be given in the following.

The formula for the calculation of the protective separation distance Sp(t0) in accordance
with ISO/TS 15066 [51] (see Eq. (2.2)) considers multiple factors: First is the (worst
case) distance the human can traverse towards the robot before it is fully stopped (Sh) and
the (worst case) distance the robot can move into the direction of the human (split into
two parts, the distance Ss traversed while the robot is in the process of stopping and the
distance Sr traversed before the stopping is initiated). Further factors include the distance
C the human can be closer to the robot due to certain body parts being potentially not
detected, and distance surcharges for the worst case measurement error in the human (Zd)
and robot (Zr) position. All of these factors account for how much closer the human could
be to the robot at the time the robot has been safely stopped compared to the measured
human-robot distance if the measured distance takes none of these factors into account. It
is further possible to split these factors or parts of them into two groups: Those that are
relevant to the measurement process and subsequent evaluation of the minimum safety-
distance, leading to the decision whether or not the robot has to be stopped, and those
that are relevant to the stopping process afterward. The worst case time required for the
measurement and evaluation will be called T ′

r, while the equivalent for the stopping will
be T ′

s. Their definition slightly differs from those of Tr and Ts in ISO/TS 15066, where the
time required to activate the safety stop (excluding the actual time to stop) is also counted
towards Tr (in contrast to T ′

r, where it is part of T ′
s). Instead, it is more in line with time

spans used by ISO 13855 [46]. Furthermore, using T ′
r and T ′

s instead of Tr and Ts is not
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problematic, as T ′
r + T ′

s = Tr + Ts, thus the same overall time is covered. However,
some minor changes to the individual factors used for the calculation of the protective
separation distance are necessary. The following original definitions are affected [51]:

Sh =

∫ t0+Tr+Ts

t0

vh(t)dt, Sr =

∫ t0+Tr

t0

vr(t)dt, Ss =

∫ t0+Tr+Ts

t0+Tr

vs(t)dt (7.2)

Hereby, vh denotes a time-dependent function for the human movement speed, vr denotes
a time-dependent function for the robot speed, and vs denotes a time-dependent function
for the robot speed while the robot is trying to stop. These speeds are defined directed
towards the robot and the human respectively, thus the integral indicates the change in
distance between human and robot [51]. With the use of T ′

r and T ′
s, new formulas for

distances S ′
h, S ′

r and S ′
s can be defined, such that S ′

h = Sh and S ′
r + S ′

s = Sr + Ss:

S ′
h = S ′

h,0 + S ′
h,1, S ′

h,0 =

∫ t0+T ′
r

t0

vh(t)dt, S ′
h,1 =

∫ t0+T ′
r+T ′

s

t0+T ′
r

vh(t)dt

S ′
r =

∫ t0+T ′
r

t0

vr(t)dt, S ′
s =

∫ t0+Tr

t0+T ′
r

vr(t)dt+

∫ t0+Tr+Ts

t0+Tr

vs(t)dt

(7.3)

To explain the change for S ′
s, it has to be considered that Tr includes the required time to

initiate the stopping procedure of the robot in contrast to T ′
r. This means that Tr > T ′

r,
and between t0+T ′

r and t0+Tr, the robot will keep operating with a speed determined by
vr instead of vs. Thus vr is used between t0 + T ′

r and t0 + Tr in the equation for S ′
s. With

these new definitions, the protective separation distance can be reformulated as follows:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr = S ′
h,0 + S ′

h,1 + S ′
r + S ′

s + C + Zd + Zr (7.4)

With this reformulation, it is now possible to separate the different parts of the protective
separation distance into the aforementioned groups: Those that account for how much
closer the human could be to the robot than the measured human-robot distance d′h-r due
to the measurement process and evaluation of the protective separation distance, and those
that account for potential further distance decreases during to the stopping procedure of
the robot. The first group of factors includes S ′

h,0, S
′
r, as well as C, Zd and Zr, as they

directly relate to the measurement of the human and robot position. The latter set includes
S ′
h,1 as well as S ′

s.

With these groups of factors, the evaluation of the protective separation distance can be
reformulated as well. The unaltered version checks whether a measured distance d′h-r
that incorporates none of the protective separation distance factors violates the protective
separation distance Sp(t0), i. e., a safety stop of the robot has to be activated if it is smaller:

d′h-r < Sp(t0) = S ′
h,0 + S ′

h,1 + S ′
r + S ′

s + C + Zd + Zr (7.5)

While this version is designed to work with the measured distance d′h-r that does not
consider the worst-case reduction of the distance between human and robot during its
determination and evaluation against Sp(t0), this can be changed by incorporating the
respective protective separation distance factors from the first group into the calculation
of the human-robot distance. This yields a new calculated human-robot-distance d′′h-r and
an altered protective separation distance S ′

p(t0) through the following formula:

d′′h-r = d′h-r − S ′
h,0 − S ′

r − C − Zd − Zr < S ′
h,1 + S ′

s = S ′
p(t0) (7.6)
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In this formulation the newly defined human-robot distance d′′h-r is now compared to the al-
tered version of the protective separation distance S ′

p(t0) to assess whether or not the robot
has to be stopped. In function, Eq. (7.6) is identical to Eq. (7.5). However, considering
the measurement- and evaluation-related factors that might lead to a lower human-robot
distance than the measured distance d′h-r as part of d′′h-r opens up new ways of human-
robot distance calculation that might lead to less conservative outcomes (robot has to be
stopped later), while still ensuring safety.

To highlight the implications of Eq. (7.6), it shall be assumed that multiple distances to
the robot are measured, and that the smallest of all measured distances is used as d′h-r.
This could e. g., be the case, if multiple people are present, or if the distance for a sin-
gle person is calculated based on multiple measurements (as it could be the case in the
presence of multiple keypoint detections). Let i denote the i-th of N measured distances
d′h-r,i, with d′h-r = min(d′h-r,1, d

′
h-r,2, ..., d

′
h-r,N). Further assume that each measured dis-

tance d′h-r,i has its own, associated upper bound for the measurement error Zd,i, with
Zd = max(Zd,1, Zd,2, ..., Zd,N). The other elements shall remain as is for this example,
without further changes. Following the paradigm of the protective separation distance to
operate on worst-case assumptions, the following adaptation of Eq. (7.6) would have to be
evaluated for N distance measures with custom upper bounds for the measurement error:

d′′h-r =min(d′h-r,1, d
′
h-r,2, ..., d

′
h-r,N)

−max(Zd,1, Zd,2, ...,−Zd,N)

− S ′
h,0 − S ′

r − C − Zr < S ′
p(t0)

(7.7)

However, in case of argmini(d
′
h-r,i) ̸= argmaxi(Zd,i), the calculated distance d′′h-r becomes

smaller than it has to be for safety, as the correlation between Zd,i and d′h-r,i is not modeled.
Without putting safety at risk, this correlation can be factored into the calculation of the
equation, modeling it as follows:

min(d′h-r,1, d
′
h-r,2, ...d

′
h-r,N)−max(Zd,1, Zd,2, ...,−Zd,N) ≤

min(d′h-r,1 − Zd,1, d
′
h-r,2 − Zd,2, ..., d

′
h-r,N − Zd,N)

(7.8)

The right side of the Eq. (7.8) can be used as a substitute for the left side without a risk
to safety, as it models the existing dependency between individual distance measurements
and their associated upper bound for the measurement error, instead of simply taking the
uncorrelated worst case of both. When this substitution is used in Eq. (7.7), then it leads
to equal or larger values for d′′h-r. In turn, larger values for d′′h-r mean that the violation of
the altered protective separation distance (which is the case if d′′h-r < S ′

p(t0)) becomes less
likely, which in turn means that potentially fewer safety stops will be required.

The previous example showed that incorporating measurement- and evaluation-related
factors from the protective separation distance into the calculation of the human-robot
distance can lead to less conservative results when evaluating the protective separation
distance, or in that case, its altered variant S ′

p(t0) (less violations of the altered protec-
tive separation distance). This can be achieved by modeling the interconnection between
different elements of the protective separation distance in higher detail, instead of using
the worst-case value for each individual part. This is the reason why the stipulation was
made to include them into the calculation of dh-r, so that dh-r only needs to be evaluated
against S ′

p(t0). This stipulation does not restrict solutions that want to rely on the original
definition of the protective separation distance, as the equivalent formulation in Eq. (7.6)
can be applied. Instead, it opens up new ways to implement the distance calculation of
dh-r in hard real-time while retaining safety.
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7.3 Discussion of Potential Solutions

To solve the problem of hard real-time capable distance calculation between human and
robot, two separate problems have to be tackled: First, the distance calculation itself has to
be hard real-time capable, and second, availability of data for the distance calculation from
human pose estimation must be ensured. Both factors will be discussed in the following.

Distance Calculation in Hard Real-Time: A distance calculation in hard real-time re-
quires an upper limit for the amount of operations that have to be performed, as well as
hard real-time capable hardware and software for their execution. The last two points can
easily be addressed by restricting the necessary distance calculations to a simple set of
operations that can be executed on a real-time operating system and device without the
need for highly specialized libraries and hardware which would e. g., be required for deep
learning.

A simple way to measure the human-robot distance could be to calculate the distance be-
tween human keypoints and further points representing the robot, as e. g., done by Svarny
et al. [119]. This would lead to several calculations of the Euclidean distance between
pairs of 3D points, with each calculation being performed through a fixed, small number
of simple operations. The overall number of calculations can be limited by using a fixed
number of (key)points for humans and robots while guaranteeing an upper limit for the
total number of people and robots. Such a limit could e. g., be enforced by stopping the
robot(s), as soon as too many people enter the shared human-robot workspace. To adjust
the distance to include selected factors from the protective separation distance (see left
side of Eq. (7.6)) as proposed in Section 7.2, the calculation of C, Zd, Zr, S ′

h,0 and S ′
r (or

their alternative incorporation) is necessary. The variable C encompasses constant values,
which are known beforehand, thus hard real-time capability is no problem here. Zd and
Zr can also be represented through constant values, or they could be determined as part of
the human or robot position acquisition, as it is e. g., done with the upper bounds for the
measurement error of human keypoints in the proposed 3D human pose estimator. In turn,
they pose no greater challenge to the hard real-time capability than the position acquisi-
tion itself. With S ′

h,0 and S ′
r, it becomes potentially more challenging, as the formulas for

their calculation (see Eq. (7.3)) encapsulate a time-dependent function for the human and
robot movement speed respectively. If the time dependence shall be leveraged, human and
robot movement during T ′

r must be determined safely, e. g., by a safe simulation. Such a
safe and detailed simulation can be expected to be very complex, thus its hard real-time
capability could be questioned, if such a simulation would be available. As an alternative,
constant movement speeds could be used in both cases. This procedure is also suggested
by ISO/TS 15066 [51]. For human movement, 1.6m/s is suggested by ISO/TS 15066 [51]
as worst case speed (up to 2m/s in ISO 13855 [46], depending on the use case), while the
active upper speed limit for the robot can serve as (worst case) speed for the robot.

Instead of measuring the human-robot distance based on individual points from both of
them, distance calculations could also be performed based on volume models. The factors
C, Zd, Zr, S ′

h,0, and S ′
r could then be directly incorporated into the volume model to be

part of the distance calculation. In any case, determining the respective volume models
as well as the distance calculation between them would have to be hard real-time capa-
ble. A suitable foundation for such volume modeling could e. g., be the work of Tornero
et al. [124], who introduced a volume modeling and fast distance calculation approach
based on spheres, which are also the outputs of the proposed 3D human pose estimator.
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Making Human Pose Estimation Hard Real-Time Capable: While the proposed 3D
human pose estimator in the form of a neural network was already declared to be incapable
of hard real-time in the assumptions from Section 7.1, it shall nevertheless be quickly
discussed whether making it hard real-time capable would be sufficient to supply the data
needed for the hard real-time capable distance calculation. In short, it is not, at least
not on its own. Making it hard real-time capable would mean that predictions of the 3D
human pose estimator would be available within a fixed amount of time. However, it
was assumed that not all of these results would always be valid. Through the removal of
invalid data, it is impossible to define the maximum amount of time required to obtain a
valid result for a keypoint, which is required for further distance calculations.

Bridging the Time In-Between Human Pose Estimation Results: To sufficiently sup-
ply a distance calculation method with results, two potential problems under the given
assumptions from Section 7.1 have to be tackled. These are that (i) no upper time limit
can be guaranteed until the human pose estimation method produces an output and (ii) that
some keypoints may lack a valid result in that output. A potential solution to both of these
problems would be to bridge the time in-between detections for individual keypoints from
the human pose estimation method. After an initialization period, where at least one de-
tection per keypoint has to be gathered, adjustments to these keypoint detections could
be made to ensure that they remain valid with respect to safety. Such adaptations could
include e. g., an increase of the upper bound for the measurement error based on the time
that passed since the keypoint position was obtained, as well as adjustments to the position
of the keypoint detection. For these adjustments, human movement speeds as outlined in
ISO 13855 [46] and ISO/TS 15066 [51] could be leveraged. The necessary initializa-
tion period could e. g., be covered by more traditional safety measures, switching to SSM
based on human pose estimation as soon as the initialization finished, or the robot may
only be allowed to start operating after the initialization was performed.

Pursuing a solution that safely bridges the time in-between human pose estimation re-
sults shows especially potential when combined with a volume model that is derived from
human pose estimation results. Whenever the distance calculation requires data, the vol-
ume model can be adapted based on the previous human pose estimation results and the
time that passed since the last valid result for each keypoint arrived. These adaptations
could be designed to account for both: the missing hard real-time capability of the hu-
man pose estimation method, as well as the human-specific factors from the protective
separation distance that the distance calculation shall account for. The robot could be
modeled similarly, with the robot-specific factors being incorporated into the robot model.
Furthermore, additional desired properties could be realized through such models, like a
continuous function for the distance calculation through continuous surface changes of
the involved volume models. Such a property would be desirable when the robot speed is
adapted based on the human-robot distance in the SSM application.

Conclusion: From the discussed potential solutions, an approach that builds upon a vol-
ume model built from human pose estimation results seems most promising. The construc-
tion of the model shall include a bridging method for safely bridging the time in-between
human pose estimation results to resolve the missing hard real-time capability of the 3D
human pose estimation method, making it applicable for safety applications like SSM.
When a similar model is used for the robot, all factors from the protective separation dis-
tance that shall now be considered during the distance calculation could be incorporated
into the respective models. Then the models would cover the whole area where parts of
the human and robot could be when the human-robot distance is calculated and evaluated.
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7.4 Human Volume Modeling and Pipeline Design

First, it is necessary to define a volume model for the human. This model should be used
to (i) resolve the missing hard real-time capability of the human pose estimation method,
(ii) incorporate human-specific factors from the protective separation distance that shall
now be considered during the human-robot distance calculation, and (iii) enable human-
robot distance calculations in hard real-time. The foundation for the model’s calculation
will be the results from the proposed 3D human pose estimator, uniform keypoint spheres
consisting of the 3D keypoint positions as centers and upper bounds of the measurement
error as radii. The previously mentioned modeling approach of Tornero et al. [124] is a
promising choice under this condition, as it leverages sweeping volumes from spheres
with one or more degrees of freedom for volume modeling. To be applicable, a suitable
way to model the human with the methods of Tornero et al. must be found, and hard
real-time capable distance calculation must be ensured with the resulting volume model.

From the sweeping volumes introduced and examined by Tornero et al. [124], the spheri-
cal cone seems most suited for human volume modeling. Its sweeping volume is defined
by a sphere with one degree of freedom and bounded movement. Mathematically, it is
described as a linear combination of two spheres. Let pi,1 and pi,2 denote the centers of
these two spheres, while ri,1 and ri,2 denote the radius values. Then, the functions pi(λi)
and ri(λi) with λi ∈ [0, 1] define the i-th spherical cone as follows [124]:

pi(λi) = pi,1 + λi(pi,2 − pi,1)

ri(λi) = ri,1 + λi(ri,2 − ri,1)
(7.9)

This formulation is especially useful for the assumed 3D human pose estimation method,
as keypoints are already detected in form of keypoint sphere and thus pairs of keypoint
spheres can be employed to define spherical cones. Taking into account that keypoints are
often defined based on the position of human body joints [3, 70], suitable pairs of such
keypoints can be employed to model the human limbs connecting these joints, e. g., wrist
and elbow keypoints for the lower arms. For the torso and the head, other suitable key-
points pairs can be chosen, if available e. g., the upper neck keypoint and top of the head
keypoint for the head and the thorax keypoint and pelvis keypoint for the torso (although
one more intermediate keypoint would be preferable here to account for spine flexibility).
Then, the human volume is defined by the union of all these spherical cones. Required
adaptations to the volume model to account for the missing hard real-time capability of
the human pose estimator and for the respective human-specific factors from the protec-
tive separation distance that shall be incorporated in the distance calculation can then be
performed by adapting the individual spheres, as each spherical cone is defined by the lin-
ear combination of two existing spheres. It is important to note that individual spheres do
now no longer only account for the position of the keypoint itself, but also for the position
of associated body limbs – this must be considered, when adaptations are performed. An
illustration of how spherical cones can be used to create a volume model of the human
can be found in Figure 7.1, simplified from 3D to 2D and only for one arm of the human.

After answering how the human can be modeled using spherical cones, the question of
hard real-time capable distance calculations arises, especially when considering that a
sweeping volume as defined by Eq. (7.9) consist of an infinite number of spheres. For
the calculation of the distance between a pair of spherical cones, Tornero et al. [124] offer
an analytical solution based on the definition from Eq. (7.9) that consists of a few simple
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Figure 7.1: 2D illustration of how the lower arm (including the hand) and the upper arm
are modeled using two spherical cones, each derived from a pair of keypoint spheres.
Based on author’s figure from [107].

steps only (like additions, subtractions, division, (inverse) trigonometric functions, and
square roots). This could be implemented in hard real-time without the need for com-
plex software libraries, thus a hard real-time capable solution for the distance calculation
between pairs of spherical cones is available. To calculate the human-robot distance in
hard real-time with this solution, two more things are required. First, the robot must also
be modeled using spherical cones, so that the human-robot distance can be calculated as
the distance between spherical cones. This can be done similar to human modeling with
spherical cones. The joints and base of the robot can serve as the centers of spheres with
suitable radius values, and robot links as well as the connection from the base to the first
joint can be modeled as spherical cones. Other factors could also be incorporated into the
robot volume model, like the robot-specific factors from the protective separation distance
that shall now be considered during the distance calculation. Second, the amount of dis-
tance calculations must be limited. This is the case if (i) the amount of spherical cones is
limited for individual humans and robots, and (ii) the total number of humans and robots
is limited. Defining a limited number of keypoints or points of the robot for which spheres
and spherical cones are calculated resolves issue (i), as the number of keypoints per hu-
man is already limited. To resolve issue (ii), additional measures could be employed to
enforce a maximum allowed number of people, e. g., shutting off the robot if the number
is exceeded, while the amount of robots is limited by the design of the robot work cell in
a controlled industrial environment. Then, only a limited amount of distance calculations
from all spherical cones of the humans to those of the robots has to be performed to find
the smallest human-robot distance, enabling distance calculation in hard real-time.

The resulting distance calculation pipeline is displayed in Figure 7.2. Without the need
for hard real-time capability, a 3D human pose estimation system supplies 3D keypoint
spheres, each consisting of the predicted keypoint position and upper bound for the mea-
surement error. For some keypoints, corresponding keypoint spheres can miss. They serve
as input for the hard real-time capable module for human volume modeling, which adapts
previously received keypoint spheres to safely model the human volume through spheri-
cal cones. With a fixed frequency, it supplies adapted keypoint spheres defining spherical
cones to the distance calculation module. Adapted spheres for the robot are also passed
to the distance calculation module for the calculation of the human-robot distance. In the
figure, they are calculated in similar fashion to the adapted keypoint spheres, however, any
hard real-time capable solution is fine that ensures that the robot is safely modeled through
spherical cones derived from these spheres and that they include the robot-specific factors
from the protective separation distance that have to be considered when the calculated
human-robot distance shall be compared against S ′

p(t0) from Eq. (7.6).
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Figure 7.2: Illustration of the proposed pipeline for distance calculation between human
and robot, highlighting the parts that require hard real-time capability and those that do
not. In the pipeline, it is assumed that adapted robot spheres are acquired with comparable
steps to those used for obtaining adapted keypoint spheres. However, any hard real-time
capable and safe procedure that supplies suitable spheres for the robot will suffice.

7.5 Volume Model Adaptations

The previous section introduced the concept of modeling the human using spherical cones,
which are generated based on the keypoint spheres produced by a 3D human pose esti-
mation system under the assumptions from Section 7.1. However, these keypoint spheres
only lay the foundation for the volume model and require further adjustments to account
for the missing hard real-time capability of the human pose estimator, as well as for the
additional human-specific factors from the protective separation distance that shall be
considered during the distance calculation. In the following, these two aspects will be
discussed separately by (i) introducing an algorithm for bridging the time in-between
human pose estimation results and (ii) introducing adaptations to account for the afore-
mentioned human-related factors of the protective separation distance. As spherical cones
are indirectly defined by pairs of keypoint spheres, (i) and (ii) will define necessary adap-
tations to individual keypoint spheres. These adaptations must ensure that safety through
SSM can be achieved for any arbitrary point in time t0. This includes that the adaptations
themselves must be executable within a maximum amount of time so that the potential
worst-case movement of the human towards the robot during their calculation can be fac-
tored in. Thus, the hard real-time capability of the adaptation methods must be shown.

7.5.1 Adaptations for Hard Real-Time Capability

To bridge the time in-between human pose estimation results it will be assumed that the
3D human pose estimator sends new results to the bridging method whenever they are
available. These results are keypoint spheres, each consisting of the predicted keypoint
position ŷi and the upper bound for the measurement error r̂i, with i denoting the i-th
keypoint. When the human pose estimation process (including data acquisition) that led
to the calculation of the latest result for the i-keypoint was started at t1,i and a current
human pose estimation result is requested at t2, it is not possible to define a maximum
period of time that is guaranteed to include t2 − t1,i. This is the case as the assumed
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3D human pose estimator is neither hard real-time capable (results not guaranteed to be
available within a fixed time limit) nor is the availability of a valid keypoint sphere for
the i-th keypoint in each result guaranteed. In practice, an upper limit for t2 − t1,i would
be required to account for the worst-case distance the human could have moved towards
the robot during the human pose estimation process and up to t2. The simplest way to
account for this distance without an upper time limit would be to extend the individual
keypoint spheres based on the maximum human movement speed from safety standards
(considering worst-case movement of every keypoint into any direction) and the time that
actually passed between t2 and each t1,i. Then, only an upper limit for the time necessary
to adapt the individual keypoint spheres would be necessary to resolve the missing hard
real-time capability. This time limit will be called ∆tb. Let rg denote a function that
adapts the radius of the keypoint sphere and pg denote a function that adapts the keypoint
position. Then, when human pose estimation results are requested at t2, the functions can
be formalized with human movement speed vh (1.6m/s [51] or up to 2m/s [46]) as follows:

rg(t2, t1,i, r̂i) = r̂i + vh(t2 − t1,i)

pg(t2, ŷi) = ŷi

(7.10)

In simple terms, rg adapts the radius r̂i of the latest detected i-th keypoint sphere by
assuming worst case human movement into all directions with vh from t1,i to t2, while
the sphere’s position remains unaltered through pg. This equation safely bridges the time
between the start of the human pose estimation process and the actual time human pose
estimation results are requested. With a simple, limited number of operations per key-
point sphere, it can be implemented in hard real-time for a limited number of spheres.
However, it exposes undesired behavior when a new keypoint sphere (ŷ′

i, r̂
′
i) with new

associated time t′1,i > t1,i is predicted and received for the i-th keypoint. Then, discontin-
uous changes in the volume model’s surface can be observed over time. The function rg
is continuous with respect to continuous changes in time t2 while t1,i and r̂i remain con-
stant. However, a noncontinuous change of the output occurs when the inputs t1,i and r̂i
are replaced with their newly arrived counterparts t′1,i and r̂′

i, a variable change that is non-
continuous itself. Furthermore, the overall position of the keypoint sphere also changes in
a non-continuous way due to the sudden substitution also taking place in pg. This leads to
a non-continuous change of the human volume model’s surface if this sudden substitution
happens between two points in time t2,j and t2,j+1 where results are requested, potentially
causing a non-continuous change of the human-robot distance, which is e. g., problematic
if the robot speed shall also be controlled based on the distance (jump in robot speed).

This discontinuity is caused by the replacement of the old adapted keypoint sphere with
the newly arriving one. A first step to resolve this issue is to retain and further adapt the
contributions of the previous keypoint sphere to the human volume instead of instantly
deleting it. Then, the only remaining cause of a discontinuous volume change is if the new
keypoint sphere is not fully encapsulated by the old one upon arrival, hence directly con-
tributing to the volume. Let (ŷ′

i, r̂
′
i) denote the position and radius of a newly arriving key-

point sphere, t′1,i the time when the associated human pose estimation process started and
tr,i the time when it was received by the bridging method. Then, r′

g,i,tr,i
= rg(tr,i, t

′
1,i, r̂

′
i)

will denote the adapted radius of the new keypoint sphere at tr,i, and p′
g,i,tr,i

= pg(tr,i, ŷ
′
i)

the adapted position. Furthermore, let rg,i,tr,i = rg(tr,i, t1,i, r̂i) and pg,i,tr,i = pg(tr,i, ŷi)
denote the respective adapted values for the previous keypoint sphere at tr,i. Then, the
newly arrived keypoint sphere is fully encapsulated by the previous one, if:

r′
g,i,tr,i

+ ||p′
g,i,tr,i

− pg,i,tr,i||2 ≤ rg,i,tr,i (7.11)
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From the center p′
g,i,tr,i

of the new sphere, all points on its surface have a distance of
r′
g,i,tr,i

. If the radius of the previous sphere is larger than the radius of the new sphere
plus the distance between both sphere centers, then all keypoints on the surface of the new
sphere will be encapsulated by the previous sphere. The same is also true for all spherical
cones that could be created from (p′

g,i,tr,i
, r′

g,i,tr,i
) due to the spherical cone definition

from Eq. (7.9). Thus, retaining the old keypoint sphere and only accepting a new keypoint
sphere if it fully falls inside the old one resolves the problem of discontinuity. However,
this opens up a new question: how shall the two or more keypoint spheres for the same
keypoint after the arrival and acceptance of a new one be adapted? This is an especially
interesting question, as the presence of more than one keypoint sphere per keypoint can
endanger both, the hard real-time capability of the bridging method as well as the distance
calculation, if no maximum number of spheres can be defined.

To ensure that all potential positions for keypoint i are well reflected when requested at t2,
the adaptation of its newest keypoint sphere needs to be pursued with Eq. (7.10), as it was
done previously. The question of how an old keypoint sphere shall be adapted after the
arrival of a newer one at tr,i remains to be answered. As an old keypoint sphere indicates
only where the keypoint could have been before a newer keypoint sphere arrived and
was accepted, it is now no longer needed. However, it is still contributing to the human
volume model at tr,i, hence its instant removal can lead to a discontinuous volume change,
which shall be avoided. Hence, instead of instantly removing the old keypoint sphere, it
would be logical to shrink its size with speed vd instead of growing it, up until it can be
removed without causing a discontinuous volume change. This point is either reached
when the radius of the keypoint sphere becomes zero or when it is fully encapsulated
by another keypoint sphere for the same keypoint, as the encapsulation means that it no
longer contributes to the volumes of spherical cones that use the keypoint. Let the updated
keypoint sphere radius in this new adaptation be rb,i,t2 when an update is requested at t2,
and let tr,i denote the point in time where a newer keypoint sphere for keypoint i arrived
and was accepted. Then, rb,i,t2 can be defined as follows:

rb,i,t2 =

{
rg(t2, t1,i, r̂i), if no newer keypoint sphere was accepted
rg(tr,i, t1,i, r̂i)− vd · (t2 − tr,i), else

(7.12)

While this procedure ensures a continuous change of the volume surface, it is not sufficient
for hard real-time capable keypoint sphere adaptations and distance calculations based on
spherical cones. This is the case, as the amount of keypoint spheres and spherical cones
that have to be considered per human is no longer limited. To prove this statement, assume
that one sphere is currently present to represent the i-th keypoint. Upon the arrival and
acceptance of a new keypoint sphere, the new keypoint sphere is fully inside the previous
one, meaning that only the previous one contributes to the volume at that time. However,
through the process of shrinking the old one and growing the new one, it can happen that
both contribute to the human volume model at the same time. This is the case when neither
of them fully encapsulates the other, which can make it necessary to consider spherical
cones derived from both of them. With the arrival and acceptance of yet another new
keypoint sphere, this process can repeat itself all over again. This can lead to an unknown
number of keypoint spheres and spherical cones contributing to the human volume model,
hereby preventing hard real-time capability. Figure 7.3 illustrates the problem. To achieve
hard real-time capability, the sphere adaptation process must be changed to ensure that
only a limited number of keypoint spheres (and thus spherical cones) has to be considered
per keypoint.
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Figure 7.3: Illustration of the problem that multiple keypoint spheres for the same key-
point can contribute to the overall volume when the radius of the latest keypoint sphere is
grown with vh and the radii of all previous ones are shrunk with vd (vd = vh here).

The underlying problem of the previously described scenario is that the growing keypoint
sphere (p′

g,i,t2
, r′

b,i,t2
) is no longer fully encapsulated by the shrinking keypoint sphere

(pg,i,t2 , rb,i,t2) when results are requested at t2, all while the shrinking keypoint sphere
still exists. This is the case when the following three conditions are fulfilled:

Condition 1: r′
b,i,t2 + ||p′

g,i,t2 − pg,i,t2||2 > rb,i,t2

Condition 2: rb,i,t2 + ||p′
g,i,t2 − pg,i,t2 ||2 > r′

b,i,t2

Condition 3: rb,i,t2 > 0

(7.13)

Condition 1 & 2 ensure that neither of both keypoint spheres is fully encapsulated by
the other, meaning that both contribute to the volume. Condition 2 & 3 ensure that the
shrinking keypoint sphere still exists due to not being fully encapsulated and having a
radius larger than zero. If at least one of the conditions is always violated, distance calcu-
lations will have to consider only one keypoint sphere per keypoint: if the first condition
is violated, the growing keypoint sphere is fully encapsulated by the shrinking one, mean-
ing only the latter contributes to the volume. If condition 2 or 3 is violated, then the
shrinking keypoint sphere is deleted and only the growing one remains. Furthermore,
the constant violation of at least one condition ensures that a maximum of two keypoint
spheres per keypoint have to be retained for further adaptations. To prove this, consider
the arrival and acceptance of yet another keypoint sphere (p′′

g,i,t′r,i
, r′′

b,i,t′r,i
) for the i-th

keypoint at t′r,i. If condition 2 or 3 is violated at t′r,i, then there is only only one other
keypoint sphere, as the condition for deleting the shrinking one is met, bringing the total
number of keypoint spheres for the i-th keypoint to two. If the first condition is violated
instead then (p′

g,i,t′r,i
, r′

b,i,t′r,i
) is fully encapsulated by (pg,i,t′r,i

, rb,i,t′r,i). This means
(p′

g,i,t′r,i
, r′

b,i,t′r,i
) can directly be deleted instead of being transformed into a shrinking

keypoint sphere, as it has currently no contribution to the volume and won’t have one in
the future, as (p′′

g,i,t′r,i
, r′′

b,i,t′r,i
) is now the growing keypoint sphere. Again, two keypoint

spheres remain. Thus, violating at least one condition from Eq. (7.13) limits both, the
number of keypoint spheres and spherical cones that have to be considered per keypoint.

Now, the violation of at least one condition from Eq. (7.13) must be ensured, which can
be achieved by adapting the shrinking keypoint sphere’s center in a different way. Let
(pg,i,tr,i , rb,i,tr,i) be a keypoint sphere for the i-th keypoint upon the arrival and accep-
tance of a newer keypoint sphere (p′

g,i,tr,i
, r′

b,i,tr,i
) at tr,i. From that point in time on,

(pg,i,tr,i , rb,i,tr,i) will shrink with vd and (p′
g,i,tr,i

, r′
b,i,tr,i

) will grow with vh. The mini-
mum distance between the sphere surfaces at tr,i can be calculated as follows:

rb,i,tr,i − (r′
b,i,tr,i

+ ||pg,i,tr,i − p′
g,i,tr,i

||2) (7.14)
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It is possible to keep this distance constant despite the growing and shrinking of the key-
point spheres for a limited period of time ∆tc = ||p′

g,i,tr,i
− pg,i,tr,i||2/(vh + vd) when

moving the center of the shrinking keypoint sphere with speed vh + vd towards the cen-
ter of the growing keypoint sphere until both positions are the same. This is possible
without a risk to safety as the volume defined by the old keypoint sphere is already out-
dated. Furthermore, movement with fixed speed doe not endanger the continuous volume
change over time. The retention of the same minimum distance between the surface of
both keypoint spheres while moving can be shown for 0 ≤ ∆t ≤ ∆tc as follows, with
dp′,p = ||p′

g,i,tr,i
−pg,i,tr,i ||2 denoting the Euclidean distance between both sphere centers:

(rb,i,tr,i − vd∆t)− ((r′
b,i,tr,i

+ vh∆t)

+ ||pg,i,tr,i +
p′
g,i,tr,i

− pg,i,tr,i

dp′,p
(vd + vh)∆t− p′

g,i,tr,i
||2)

=(rb,i,tr,i − vd∆t)− (r′
b,i,tr,i

+ vh∆t)

− ||
pg,i,tr,idp′,p + (p′

g,i,tr,i
− pg,i,tr,i)(vd + vh)∆t− p′

g,i,tr,i
dp′,p

dp′,p
||2

=(rb,i,tr,i − vd∆t)− (r′
b,i,tr,i

+ vh∆t)

− ||
pg,i,tr,i(dp′,p − (vd + vh)∆t)− p′

g,i,tr,i
(dp′,p − (vd + vh)∆t)

dp′,p
||2

=(rb,i,tr,i − vd∆t)− (r′
b,i,tr,i

+ vh∆t)

− |dp′,p − (vd + vh)∆t| · ||
pg,i,tr,i − p′

g,i,tr,i

dp′,p
||2

=(rb,i,tr,i − vd∆t)− (r′
b,i,tr,i

+ vh∆t)− (dp′,p − (vd + vh)∆t)

=rb,i,tr,i − (r′
b,i,tr,i

+ dp′,p)

(7.15)

The penultimate transformation in this equation is possible due to ∆t ≤ ∆tc, hence the
calculation of the absolute value can be removed as the value is positive anyway. This
leads to equivalence with Eq. (7.14) after the final transformation, showing that the mini-
mum distance between the sphere surface of both spheres is retained during the movement.
Recalling that a new keypoint sphere is only accepted if it lies within the previous sphere’s
volume, this means that the new keypoint sphere will remain fully inside the old keypoint
sphere during this movement. In turn, the first condition from Eq. (7.13) is violated during
the movement. For time t2 with t2 ≥ tr,i + ∆tc, the center of the old and new keypoint
sphere are the same. Then, it is sufficient to check whether rb,i,t2 ≤ r′

b,i,t2
to decide if the

shrinking keypoint sphere can be deleted (i. e., is fully encapsulated). In turn, this means
that as soon as the first condition from equation 7.13 becomes true (which degenerates
to r′

b,i,t2
> rb,i,t2 for equal sphere centers), the second condition is no longer fulfilled

(which degenerates to rb,i,t2 > r′
b,i,t2

for equal sphere centers), as their fulfillment is
mutually exclusive for equal sphere centers.

To describe the movement of a shrinking keypoint sphere’s center mathematically, its
updated position will be called pb,i,t2 when requested at t2. Over the lifetime of a keypoint
sphere, multiple newer keypoint spheres can be received and accepted. They will be
enumerated using index k for K newer keypoint spheres, with tr,i,k denoting the time they
were received (tr,i,k < tr,i,k+1). Their respective keypoint sphere centers will be called
p′
b,i,tr,i,k,k

. Then, pb,i,t2 at t2 can be described as follows:
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pb,i,t2 =



pg(t2,yi) , if no newer keypoint sphere was accepted

pg(tr,i,1,yi) + dmin(p
′
b,i,tr,i,K ,K − pb,i,tr,i,K , (vh + vd)

·(t2 − tr,i,K) ·
p′
b,i,tr,i,K ,K − pb,i,tr,i,K

||p′
b,i,tr,i,K ,K − pb,i,tr,i,K ||2

)

+
∑K−1

k=1 dmin(p
′
b,i,tr,i,k,k

− pb,i,tr,i,k , (vh + vd)

·(tr,i,k+1 − tr,i,k) ·
p′
b,i,tr,i,k,k

− pb,i,tr,i,k

||p′
b,i,tr,i,k,k

− pb,i,tr,i,k ||2
) , else

dmin(v1,v2) =

{
v1, if ||v1||2 < ||v2||2
v2, else

(7.16)

While looking complex at first, this formula can be described in simple words. As long
as no newer keypoint detection for keypoint i exists, the center of the keypoint sphere is
not moved. Then, when a newer keypoint sphere arrives and is accepted, the old keypoint
sphere is moved towards the center of the newest accepted keypoint sphere for keypoint
i. In the equation, dmin(p

′
b,i,tr,i,K ,K − pb,i,tr,i,K , (vh + vd) · (t2 − tr,i,K) · (p′

b,i,tr,i,K ,K −
pb,i,tr,i,K )/||p′

b,i,tr,i,K ,K − pb,i,tr,i,K ||2) is the movement that has been performed by the
old keypoint sphere towards the newest keypoint up to t2, while

∑K−1
k=1 dmin(p

′
b,i,tr,i,k,k

−
pb,i,tr,i,k , (vh+vd)·(tr,i,k+1−tr,i,k)·(p′

b,i,tr,i,k,k
−pb,i,tr,i,k)/||p′

b,i,tr,i,k,k
−pb,i,tr,i,k ||2) de-

notes the combined movement that was performed previously by the old keypoint sphere
towards new keypoint spheres, except for the newest one. The formula for pb,i,t2 can also
be calculated in hard real-time, although K is not limited in theory. This problem can be
resolved by an incremental calculation. Whenever a new keypoint sphere arrives at tr,i,k
and is accepted, the shrinking keypoint sphere’s position can be updated and saved, so
that further calculations build upon pb,i,tr,i,k . This way, the sum over K − 1 previous po-
sition updates in Eq. (7.16) can be omitted, reducing the calculation to a limited number
of simple operations. Furthermore, a minimum amount of time lies between the arrival of
new keypoint spheres as the 3D human pose estimator cannot calculate them arbitrarily
fast, which can be expected to take longer than the position update. Thus, a hard real-time
capable adaptation can be achieved in practice. Figure 7.4 shows the adaptation process.

The final keypoint sphere adaptation mechanism works as follows: Per keypoint, a maxi-
mum number of up to two keypoint spheres are tracked. This always includes one growing
keypoint sphere and potentially one shrinking keypoint sphere. The adaptation of keypoint
spheres over time is performed as highlighted in Eq. (7.12) and (7.16). If a shrinking key-
point sphere exists, a new keypoint sphere is accepted if it is fully inside the shrinking
one, replacing the growing one. If only a growing keypoint sphere exists, a new key-
point sphere is accepted if it is fully inside the growing one, turning that sphere into a
shrinking one while becoming the growing sphere itself. A shrinking keypoint sphere is
deleted, as soon as it is found to be fully encapsulated by the growing (due to the posi-
tional adaptation, the radius can not become zero before that). Adaptations to a keypoint
sphere’s radius and position are calculated whenever a new keypoint sphere for the i-th
keypoint arrives (and is checked for acceptance), and when human pose estimation results
are periodically requested at points in time (t2,j , t2,j+1, t2,j+2,...). Performing adaptations
incrementally instead of calculating Eq. (7.16) in full limits the number of operations that
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Figure 7.4: 2D illustration of keypoint sphere growth, shrinking, and movement in accor-
dance with Eq. (7.14) and (7.16) using vh = vd. The red keypoint sphere is grown until
tstart + ∆t when a new keypoint sphere arrives and is accepted. Then, it starts to shrink
and move towards the new one. At tstart + 2∆t, an even newer keypoint sphere arrives
and is accepted. The previously new sphere (blue) is deleted, and movement is presumed
towards the newer one, until the sphere centers are the same at tstart+3∆t. The old sphere
is finally deleted at tstart + 3.5∆t, with only the newest one remaining at tstart + 4∆t.

have to be performed per incremental update, as only the movement towards a single new
keypoint sphere has to be considered. With the frequency at which updates are necessary
being limited and a maximum of two keypoint spheres per keypoint that require updates
through a limited number of simple operations, hard real-time capable updates can be
achieved for a limited number of people and thus keypoints. When adapted keypoint
spheres are requested for distance calculations, only one has to be returned, either the
currently shrinking one if it exists (as it fully encapsulates the other) or the growing one
otherwise. Thus, keeping track of two keypoint spheres per keypoint does not influence
the number of spherical cones for the distance calculation. In the following, the keypoint
sphere returned for a request from the distance calculation at t2 is called (pb,i,t2 , rb,i,t2).

7.5.2 Adaptations for Protective Separation Distance Factors

After a bridging method for resolving the missing hard real-time capability of the 3D hu-
man pose estimator has been introduced, further adjustments are necessary to incorporate
the human-related factors from the left side of Eq. (7.6) into the adapted keypoint spheres
and thus the human volume model. Together with a robot volume model that incorporates
the respective factors for the robot, the calculated distance can be used to evaluate the al-
tered protective separation distance S ′

p(t0) from Eq. (7.6). So far, the potential movement
of the i-th keypoint towards the robot between the start of the human pose estimation
process at t1,i up to the time the respective keypoint sphere was requested at t2 is already
considered as part of (pb,i,t2 , rb,i,t2). The same is true for the measurement error factor
Zd through the inclusion of individual predicted upper bounds for the measurement er-
ror. Remaining factors that have to be considered are the potential human movement after
t2 (that should be covered by S ′

h,0) as well as elements of C that account for parts and
dimension of the human body not being detected by the human pose estimation process.

First, the human-specific parts of C shall be discussed. The assumed 3D human pose
estimator detects keypoint spheres that account for the keypoints positions and the worst-
case measurement errors. However, the predicted keypoint positions typically fall inside
the body and do not account for actual body dimensions, which is neither done by the
radius of the predicted keypoint spheres so far. Hence, individual factors Ci that can be
added to the radius of spheres are necessary to account for the human body dimensions.
These surcharges to keypoint spheres must be sufficiently large to ensure that associated
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spherical cones fully encapsulate the body parts they model. This shall be achieved for a
perfect keypoint prediction with no measurement error (as measurement errors are already
handled through other means). The wrist and elbow keypoints and the associated spherical
cone will be used as an example. They will be denoted as keypoint i′ and i′′ respectively.
Then, Ci′ must ensure that the whole wrist itself and the hand attached to it is covered
(assuming no hand keypoint exists), and Ci′′ must ensure that the whole elbow is covered.
Further, the choice of Ci′ and Ci′′ must ensure that the whole forearm is covered by the
associated spherical cone. Each Ci value can be chosen as worst-case constant to achieve
this, which can easily be added in hard real-time to the radius of keypoint spheres. They
could e. g., be obtained based on worst-case measurements from all involved individuals.

Last, potential human movement after t2 has to be considered, such that the altered pro-
tective separation distance remains valid for any potential point t0 in time. After adapted
keypoint spheres to account for missing hard real-time capability have been requested
at t2, the bridging method must be executed. The maximum time it takes from t2 until
the adapted keypoint spheres are available will be called ∆tb. Then, further adaptations
for including the human-specific factors from the protective separation distance that shall
be included in the distance calculation are necessary. The maximum time required for
these further adaptations will be called ∆ta. Last, the distance calculation itself has to
be performed. The maximum time necessary after the further adaptations up until the
distance calculation has been performed and the evaluation against S ′

p(t0) has finished
will be called ∆td. After the evaluation has finished, the human can still move towards
the robot. Up until the altered protective separation distance is evaluated the next time,
it has to remain valid, as the robot could otherwise not necessarily be stopped in time.
If the evaluation is performed with a fixed frequency fe, then further movement during
1/fe has to be considered. During all these periods of time, worst-case human movement
will be assumed, using a human movement speed vh that is in line with safety standards
like ISO 13855 [46] and ISO/TS 15066 [51]. This leads to the following further adapta-
tions that have to be applied during ∆ta to the radius rb,i,t2 of an adapted keypoint sphere
(pb,i,t2 , rb,i,t2) requested from the bridging method at t2, while the position remains un-
touched:

rb,i,t2 + vh · (∆tb +∆ta +∆td +
1

fe
) + Ci (7.17)

It is known from the previous section that the maximum times ∆tb and ∆td exist for a
limited number of keypoint spheres and spherical cones, which is the case for a limited
number of people and robots. With the above equation, the same is obviously true for
∆ta, the time during which the simple alterations of this equation have to be performed
for the radius of each adapted keypoint sphere. Hence, all adaptations and the distance
calculation can be performed in hard real-time for a limited number of people and robots.

After applying Eq. (7.17), the missing hard real-time capability is resolved safely for a
limited number of people and human-specific factors for a comparison against S ′

p(t0) are
integrated. The volume model resulting from the respective spherical cones still exposes
continuous surface change, as constant values are added only. Together with a safe robot
volume model based on spherical cones that incorporates the robot-specific factors and
exposes a continuous volume change, a continuous and hard real-time capable human-
robot distance calculation of d′′h-r can be realized for a limited number of people and
robots. This shows how missing hard real-time capability of the assumed 3D human pose
estimator can be resolved and how human pose estimation can be used in SSM.
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7.6 Theoretical Analysis

Last, a theoretical comparison between the proposed approach for human-robot distance
calculation based on human pose estimation and the use of a safety laser scanner for SSM
will be performed. It shall be determined how well the proposed approach would be
suited for human detection in an SSM application. Apart from having to fulfill necessary
requirements for safety as hard real-time capability and low enough error rate, the suit-
ability of a human detection method primarily depends on how often safety stops become
necessary. A good value for assessing this is d′′h-r from Eq. (7.6) – the larger d′′h-r is in the
same scenario the less likely it is that it is exceeded by S ′

p(t0), which would necessitate
a safety stop. Across different methods for human detection, S ′

p(t0) has similar values
with the only potential difference being deviations in its element S ′

h,1 if different human
movement speeds have to be assumed by human detection methods. However, these dif-
ferences are not major, as safety-standard based human movement speeds range only from
1.6m/s to 2.0m/s [46]. Hence, comparing the performance of different human detection
methods by assessing how large their d′′h-r values are in the same scenario is suitable to
assess whether they are roughly on the same level, or if one is significantly outperforming
the other. In the following, let d′′hpe denote the value of d′′h-r for the human pose estimation
based approach, and let d′′sls be the respective value for the safety laser scanner.

The calculation of d′′h-r depends on both, human- and robot-specific factors. From the
robot-specific factors, the respective parts of C as well as the maximum amount of time
that is required to obtain current robot data for the distance calculation are independent
of the human detection method. Dependence exists for the maximum time needed for
the distance calculation (depends on the representation of the human position), as well
as its frequency (relevant for S ′

h,0 and S ′
r). By always using the same method to supply

robot data, most major differences can be eliminated. To simplify the comparison of d′′hpe
and d′′sls, the dependent robot-specific factors will be ignored, so that only the measured
distance d′h-r and human-specific factors S ′

h,0, C and Zd have to be considered. For a rough
comparison, this can be done, as the contribution of the time required for the distance
calculation to d′′h-r is small and neglectable (shown later). Furthermore, the difference in
contribution to d′′h-r for high frequencies is only a few centimeter for speeds around 1.6m/s
and 2.0m/s. For the robot, this will be first ignored, but discussed later.

To calculate the human-specific factors, additional assumptions to those from Section 7.1
have to be made for both, the proposed approach and the safety laser scanner. Afterward,
d′′hpe and d′′sls will be compared in two different scenarios, where the underlying setting
will always be the interaction of one human with one robot featuring six axis.

Assumptions for the Proposed Approach Based on Human Pose Estimation: For the
human modeling and distance calculation approach based on human pose estimation, the
human and robot need to be modeled using spherical cones. Taking keypoints defined
by the MPII Human Pose dataset [3] as foundation, the following keypoint pairs can be
used to model different body parts: ankle and knee for the lower legs, knee and hip for
the upper legs, wrist and elbow for the lower arm, elbow and shoulder for the upper arm,
upper neck and top of the head for the combination of neck and head, as well as thorax
and pelvis for the torso. This results in 10 spherical cones and 16 unique keypoints total
that are required to create the human volume model. The six-axis robot will be modeled
through 6 spherical cones total – one between each pair of axes that is connected by a
link, and one for the base to the first axis.
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Further assumptions have to be made for the calculation of rb,i,t2 , as well as for the
human-specific factors from the protective separation distance that shall be included in
the human volume model. This is made harder by the fact that the 3D human pose estima-
tion system assumed in Section 7.1 is hypothetical in nature, thus an argument has to be
made to obtain realistic estimates for required values. Whenever no (reasonable) worst-
case scenario can be determined for a required value, the average or most likely case will
be used, with the impact of deviations on d′′hpe being discussed later. To obtain a realistic
value for rb,i,t2 , an average case for the predicted upper bound of the measurement error
(that accounts for Zd) is required first. For a reasonable estimate, experiments from Sec-
tion 5.6.1 are used as a foundation. The best experiment achieved 94.7% correct results
(meaning 5.3% have to be filtered out) with an average radius of 4.4 pixels at a heatmap
resolution of 64×64. Assuming the human was not cropped too tightly, a human height of
50 pixels at heatmap resolution is reasonable. Assuming 180cm average body height, this
translates to an average measurement error of 15, 84cm, with the rounded value of 16cm
being used in the following. To model the time that passed between the start of the human
pose estimation process at t1,i and the request for a updated keypoint sphere at t2 it will be
assumed that the 3D human pose estimator operates with a frequency of fhpe = 30Hz, in-
cluding the transfer to the bridging method – a reasonable assumption, given the fact that
powerful human pose estimation methods like OpenPose are already able to achieve 22
outputs per second [11] (on older hardware than what is available today). Furthermore, it
will be assumed that data acquisition also operates on 30Hz, including the transfer of data
to the 3D human pose estimator. This means that the time between the start of the human
pose estimation process and the arrival of a new result for the i-th keypoint at the bridging
method is tr,i − t1,i = 2 · 1/fhpe on average if a valid results for the keypoint exists. If
not, that time is extended by 1/fhpe every time, a case that is discussed later. With respect
to the j-th request of updated keypoint spheres at t2,j , the worst case scenario is that the
previous request was made directly before tr,i arrived, thus t2,j−1 < tr,i < t2,j−1 + ϵ for
a small ϵ. Then, potential human movement during the whole time until the next request
at t2,j has to be considered, which is about 1/fd for a fixed frequency fd at which the
distance calculation is performed and thus requests keypoint spheres. Human movement
with vh has to be considered for all this time. As hands are included in the human volume
model, vh = 2m/s will be assumed based on ISO 13855 [46] (see table 2.1).

Apart from the calculation of rb,i,t2 , several fixed factors have to be defined. First, this
includes the fixed frequency fd at which the distance calculation operates in hard real-
time. To achieve hard real-time in practice, fd must be large enough that the bridging
method, further keypoint sphere adaptations and the distance calculation itself can actually
be performed within 1/fd. Of all these parts, the distance calculation is most complex.
For ten spherical cones representing the human and six representing the robot, a total of
60 distance calculations between pairs of spherical cones have to be performed to find the
minimum distance. In their work, Tornero et al. [124] evaluated the time necessary for
a distance calculation between a pair of spherical cones, with the worst value observed
being 1.6ms. However, computations where performed on a SUN SPARCStation 1, only
featuring a CPU speed of 20 MHz [5]. With today’s computational power of a single CPU
core being about 150 to 300 times higher, it can realistically be assumed that a hard real-
time capable implementation of the distance calculation between two spherical cones is
able to calculate the distance for 60 of them in under 1ms. Bridging method and keypoint
sphere adaptations should be even faster, as they only have to update the keypoint spheres
with a few simple operations. The contribution of the maximum time required for all
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7 Human Pose Estimation and Distance Calculation in Hard Real-Time

three activities to d′′hpe is neglectable, as a duration of 1ms contributes only 0.2cm with
vh = 2m/s. For the frequency at which distance calculations are performed, fd = 50Hz is
chosen, which is reasonable due to 1/fd >> 1ms. The last required fixed factor are the
surcharges for the body dimensions that are not detected by the human pose estimation,
represented through Ci for the i-th keypoint. For the following scenarios, those values will
be required for three keypoints: the thorax, the pelvis, and the wrist. Based on a measured
worst-case torso width of 40cm among members of the lab, a radius surcharge Ci of
25cm will be chosen for the thorax and pelvis keypoint respectively, such that the whole
torso is fully encapsulated by the associated spherical cone (note that spine flexibility
might require more keypoints for a better approximation, which is ignored for this simple
comparison). For the wrist keypoint, a worst-case distance of 20cm was measured to the
tip of the hand, hence a Ci value of 22cm will be chosen for the wrist to fully encapsulate
the hand (and forearm) with the resulting spherical cone between wrist and elbow.

With the assumptions made, reasonable values can be calculated for rb,i,t2 (includes Zd),
S ′
h,0 and Ci. As an adapted keypoint sphere reaches it’s largest extent while growing, it

will be assumed that rb,i,t2 is growing. Then, necessary adaptations to a keypoint sphere
for the distance calculation as described in Eq. (7.17) can be approximated as follows:

rb,i,t2 =vh · (2 ·
1

fhpe
+

1

fd
) + Zd

=200
cm
s

· (2 · 1

30
s +

1

50
s) + 16cm ≈ 33cm

S ′
h,0 = S ′

h,0,hpe =vh · (∆tb +∆ta +∆td +
1

fd
)

≈200
cm
s

· ( 1
50

s) = 4cm

Ci =Ci

(7.18)

In this formula, ∆tb, ∆ta and ∆td are removed due to their neglectable impact on the re-
sults. Ci remains dependent on the keypoint, while average, keypoint-independent values
partially based on worst-case assumptions are calculated otherwise.

Assumptions for the Safety Laser Scanner: For the safety laser scanner, a representa-
tive device in form of the S3000 safety laser scanner [113] will be chosen to supply the
human-specific values. Assuming that reflections are not present, the required surcharge
Zd for the measurement error of this device is 10cm [113]. For the human-specific C, the
manual of the S3000 [113] refers to the formulas of ISO 13855 for calculation, meaning
that C can be calculated depending on the installation height HD as follows[46, 113]:
C = min(120cm − 0.4 · HD, 85cm). This means that mounting the safety laser scanner
higher can reduce C down to a minimum of 85cm. However, mounting the safety laser
scanner higher than 30cm makes additional safety measures against crawling beneath the
scan plane necessary [46]. Thus, it will be assumed that the safety laser scanner will be
mounted at 30cm height, leading to C = 108cm. For T ′

r that is required to calculate
S ′
h,0, the laser scanner’s basic response time of 60ms [113] will be used. For the distance

calculation, it will be assumed that the laser scanner determines the distance from the in-
tersection of the human with the scan plane to a 2D projection of the robot volume model
onto the scan plane. Furthermore, the simplifying assumption will be made that the basic
response time stays the same for this distance calculation and evaluation. Then, using
the assumed human movement speed of 1.6m/s [46, 113] the last human-specific factor is
S ′
h,0 = S ′

h,0,sls = 160cm/s · 0.06s = 9, 6cm.
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Scenario 1: For both human detection methods, the same robot volume model including
identical robot-specific factors is used by prior assumptions. Thus, let d′hpe denote the
measured distance between robot volume model and the human based on human pose
estimation, and let d′sls denote the measured distance of the laser scanner between a 2D
projection of the robot volume model into the scan plane and the human, both excluding
human-specific surcharges. The first scenario is designed to evaluate a situation in which
the actual distance of the robot volume model to the human d1 equals the measured dis-
tance of the laser scanner, thus d′sls = d1. The distance is measured based on where the
outerior of the leg intersects the scan plane at the height of 30cm. In 3D, it is assumed
that the same closest distance exists between (the outerior of) the human torso and the
3D robot volume model. For this to be true, the human is assumed to stand straight up
with arms at his side, so that no other points of the human body get closer to the robot.
Based on keypoint positions only, d′hpe measures the distance to the line connecting two
keypoints, which would be thorax and pelvis representing the torso in this case. Assuming
a torso-depth of 30cm (largest value of people in the lab) and that the line runs through
the middle of the torso leads to d′hpe = d′ + 15cm (line is 15cm inside the torso).

Next, d′′sls can be calculated by directly using the values defined in the assumptions. The
calculation of d′′hpe is more complex due to keypoint-specific values being used that define
the radius of keypoint spheres. They affect the distance calculation, as well as which
spherical cone is closest to the robot. Given that the final adapted radius of each keypoint
sphere is calculated based on the same average values except for Ci in this analysis, it can
be assumed that the spherical cone for the torso is closest to the robot, as the encapsulated
thorax is the closest human body part and the individual assumed Ci values are largest for
thorax and pelvis which define the torso spherical cone. As thorax and pelvis have the
same assumed Ci value and all other elements contributing to the radius are also assumed
to be the same for this comparison, the torso spherical cone consists of an infinitely large
amount of spheres with identical radius (equal to thorax and pelvis sphere radius). Hence,
the shortest distance from every point on the surface of the spherical cone to the line
connecting the sphere positions equals this radius. Hence, the measured distance d′hpe is
foreshortened by rb,i,t2 + S ′

h,0 + Ci to form d′′hpe. Using the assumed values for elements
of this equation and Ci = 25cm for thorax and pelvis, d′′hpe and d′′sls can be compared:

d′′hpe − d′′sls =(d′hpe − rb,i,t2 − S ′
h,0,hpe − Ci)− (d′sls − S ′

h,0,sls − C − Zd)

=((d1 + 15cm)− 33cm − 4cm − 25cm)

− (d1 − 9, 6cm − 108cm − 10cm)

=− 47cm + 127.6cm = 80.6cm

(7.19)

This result means that the proposed approach based on human pose estimation strongly
outperforms the use of the safety laser scanner, as the latter requires a safety stop 80.6cm
earlier for the same S ′

p(t0). The difference is hereby strong enough that it excuses inaccu-
racies of the assumptions and simplifications made, with a few centimeters in difference
not impacting the interpretation of the result. If e. g., the (average) measurement error
would be twice as large for the proposed approach (32cm instead of 16cm), a notable dif-
ference of 64.6cm would yet remain. Whenever a valid keypoint sphere is missing, d′′hpe
would be further decreased by vh · 1/fhpe = 6.67cm, which can happen 12 times in a row
before the advantage of 80.6cm is used up. This leads to the conclusion that the proposed
approach is better suited for the first scenario.
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Scenario 2: The major advantage of the proposed method in the first scenario can be
explained by the necessary surcharge of C = 108cm for the laser scanner required to
account for all potential upper body positions. As the smallest distance to the upper
body was the same as the distance to the leg, this was a massive over-approximation.
Hence, the second scenario shall incorporate a situation with less over-approximation
where the upper body is significantly closer to the robot than the position of the legs by
fully stretching out one arm towards the robot.

Except for one arm being stretched out towards the robot, the second scenario will be the
same as the first one. This means that nothing changes for the calculation of d′′sls. How-
ever, changes to d′hpe and d′′hpe occur. Compared to the first scenario, where the minimum
distance between 3D robot volume model and human was the distance to the thorax, it
is now assumed that this distance is foreshortened by a full arm’s length when the arm is
fully stretched out towards the robot. To determine what a full arm’s length is, it will be
assumed that the human is 180cm tall. Then, the human body model employed by Win-
ter [132] can be used to determine the arm’s length based on the person’s height, leading
to 79.2cm for the full arm (including the hand) and 19.44cm from the wrist to the tip of the
hand. As the distance to the thorax was d1, the distance to the tip of the hand will now be
d1−79.2cm. For the measured distance d′hpe, the arm being fully stretched out means that
the closest detected part of the human is the wrist keypoint, 19.44cm further away from
the robot than the tip of the fingers, thus d′hpe = d1− 79.2cm+19.44cm = d1− 59.76cm.
For the scenario with the tip of the hand being closest to the robot, it is reasonable to
assume that the spherical cone modeling the lower arm is closest to the robot, with the
keypoint sphere around the wrist being the closest part towards the robot volume model.
Using Ci = 22cm for the wrist, comparison between d′′hpe and d′′sls can be performed as in
Eq. (7.19) using the new values for the approach based on human pose estimation:

d′′hpe − d′′sls =((d1 − 59.76cm)− 33cm − 4cm − 22cm)

− (d1 − 9, 6cm − 108cm − 10cm)

=− 118, 76cm + 127, 6cm = 8, 84cm
(7.20)

The performance difference for scenario two is no longer sufficient to determine if one
method is significantly better than another, given the inaccuracies due to simplifications
and assumptions. It can be said that both approaches are expected to perform on roughly
the same level. For example, a 10cm higher predicted upper bound for the measurement
error or two missing detections in a row would already turn the result in favor of the laser
scanner here. The human leaning further towards the robot would have the same effect.

Summary: The theoretical comparison under the given simplifications and assumptions
has shown that the proposed approach for hard real-time capable human modeling and
human-robot distance calculation based on human pose estimation can be beneficial com-
pared to a safety laser scanner when employed in an SSM scenario. Especially when the
human keeps the arms close to the body and does not fully stretch them out, a large po-
tential advantage can be observed due to large surcharges required by the laser scanner to
account for all potential upper body positions. When the hand was fully stretched out to-
wards the robot, both methods exposed comparable performance. For the many practical
tasks where the arms do not need to be fully stretched out, the method shows great poten-
tial over the laser scanner. How large the advantage will be can be determined as soon as
a system similar to the hypothesized one in this theoretical comparison is developed and
put into service, so that the proposed approach can be applied in practice.
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8 Discussion, Outlook and
Conclusion

Throughout this work, methods have been proposed and evaluated that aim at improving
shortcomings of human pose estimation methods that prohibit their use in safety-critical
applications like SSM. These shortcomings include an error rate that is too high, as well
as missing hard real-time capability. Throughout this chapter, the contributions of this
work towards resolving these shortcomings will be recapitulated and discussed, including
the identification of necessary future work for their full resolution.

8.1 Discussion

This work aimed to answer four central research questions revolving around the ulti-
mate goal of enabling the use of human pose estimation in safety-critical applications.
In essence, these questions aimed at the reduction of previously undetected errors, the
prediction of upper bounds for measurement errors, the potential impact and handling of
noise, and resolving the lack of hard real-time capability in human pose estimation. In the
following, the contributions to these points will be recapped and discussed.

Error Reduction: A low enough rate of dangerous errors (e. g., below 10−6 dangerous
errors per hour for robotic applications [48, 53]) is a crucial property that any system em-
ployed in a safety-critical scenario must possess. Current human pose estimation methods
do not. To reduce the number of undetected errors experienced in 2D single-person hu-
man pose estimation, a diverse neural network ensemble was proposed, which employs
two or more diverse neural networks (different architecture/training) and compares their
results for the same input to decide whether or not a result has to be filtered out, thereby
creating an implementation of the essential safety concept of diversity for human pose
estimation. The comparison was performed based on individual thresholds derived from
human pose estimation results of the diverse neural networks for each input. As a means
of comparison, two methods for error detection were used that relied on the thresholding
of heatmap values, thus requiring a heatmap-based human pose estimation method.

Methods were evaluated on the MPII Human Pose dataset [3]. All of them reduced the
amount of previously undetected incorrect results significantly while retaining a high
amount of correct results. In contrast to the heatmap-based methods, the diverse neu-
ral network ensemble makes no assumptions about the kind of human pose estimation
method used, making it generally applicable. However, none of the methods could com-
pletely reduce the number of incorrect results while retaining a high number of correct
ones. Furthermore, evaluations were performed on the correctness definition used by
MPII, which is not particularly suitable for safety – an issue that was resolved later. Al-
though the diverse neural network ensemble could not eliminate all incorrect detections
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on its own, it shows great potential for further development due to its ability to eliminate
a significant amount of incorrect detections with only small losses to correct ones. The
potential is further highlighted by the fact that the original work of the author on this
topic [106] was picked up by the International Organization for Standardization (ISO) in
their recent publication ISO/IEC TR 5469 on ’Functional safety and AI systems’ [54].

Measurement Error Estimation: In terms of safety, the shortcomings of typical cor-
rectness definitions for 2D single-person human pose estimation based on thresholding
the distance between annotated and detected keypoint positions using a threshold derived
from human annotations were highlighted. Such thresholds are (i) not available at infer-
ence time and (ii) not a suitable representation of a result’s positional uncertainty and thus
the potential measurement error. Therefore, a reformulation of the human pose estimation
problem was proposed with a new correctness definition that aims at the specific needs
of safety applications: together with each predicted keypoint position, an upper bound
for the measurement error of this position shall be predicted. A prediction is considered
correct if the distance to the annotated keypoint position is lower than the predicted upper
bound. In addition to being available at inference time, this allows the prediction of up-
per bounds that are actually tailored towards the positional uncertainty of each keypoint
prediction. Additional quality criteria are used to ensure meaningful results.

To tackle the reformulated 2D single-person human pose estimation problem, several ap-
proaches and neural network architectures were designed that either tried to solve the
problem based on a direct prediction of the measurement error or by predicting the pa-
rameters of a Gaussian distribution and inferring upper bounds based on the standard
deviations. While methods based on direct measurement error prediction did not fare
well, Gaussian-based methods exposed desired behavior, with the best method predicting
correct upper bounds in almost 95% of all cases while exposing decent quality regarding
the introduced quality metrics. While 100% correct results would have been desirable,
separate methods could be employed to deal with the remaining incorrect results, like
those previously introduced. A realization of this combination constitutes potential future
work. Overall, the Gaussian-based methods and networks proved to be suitable solutions
for the prediction of upper bounds for the measurement error in human pose estimation,
while necessary improvements entail the removal of the remaining incorrect results and
optional improvements include the quality of predicted upper bounds.

Impact and Handling of Noise: Proper functioning of devices and methods employed
in safety-critical applications has to be ensured not only under ideal conditions but under
all foreseeable, likely enough conditions that can occur within the limits of the machin-
ery. This includes the occurrence of noise, a common threat to the proper functioning of
neural networks, with the negative effect on 2D single-person human pose estimation be-
ing verified through experiments. An argument was made that all dangerous noise types
for a specific realization of a safety-critical industrial application can be identified due
to restrictions from the limits of the machinery and the mandatory risk assessment that
has to take place. This led to the conclusion that noise-specific countermeasures can be
employed to deal with noise in safety-critical applications.

To deal with specific noise types, two general strategies were explored: training against
noise, as well as using a dedicated denoiser. Existing denoisers and training strategies
from outside the domain of human pose estimation were applied to the problem in a
large variety of experimental settings, using Gaussian noise and a slightly altered version
thereof as exemplary specific noise types. The experiments were able to show that all
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methods are capable of reducing the negative impact of the specific noise type they were
designed against. However, in some cases, specific precautions (like the retention of some
amounts of clean training data) had to be taken to ensure that no loss of performance on
clean data occurred. Sometimes, it was even possible to slightly improve clean data per-
formance, while also improving performance under noise. The impact of small amounts
of noise was fully negated by some of the methods, while this was no longer possible for
increasingly large amounts of noise. Whether these amounts can occur in a specific safety-
critical application is up for debate and would have to be discussed on a case-to-case basis.
Nevertheless, significant improvements can be achieved with the examined approaches.
One potential problem that was identified during the experiments is that slight alterations
in the noise type can already cause malfunctions of the training-based countermeasures.
While not invalidating the proposed approaches, this calls for a clear identification and
definition of noise types that can occur, with further research into countermeasures that
are resistant to slight noise-type alterations being desirable.

Hard Real-Time Capability: While other parts of this work were more or less directly
targeted towards correctness and error reduction in (2D single-person) human pose esti-
mation, further contributions were made towards the second major factor that prohibits the
application of human pose estimation in safety-critical scenarios: the missing hard real-
time capability. The problem was addressed in the context of an SSM application, which
requires an (almost) error-free and hard real-time capable method for human detection.
In contrast to other contributions, the problem had to be approached for 3D human pose
estimation. For an isolated investigation on hard real-time capability, a 3D human pose
estimation system was assumed that is not hard real-time capable and employs approaches
from other parts of this work to become error-free, meaning that it predicts upper bounds
for the measurement error alongside keypoint positions and filters out potentially incor-
rect results in every output. Hereby, the combination of keypoint position and associated
upper bound constitutes a uniform sphere in 3D space, which is called a keypoint sphere.

The problem of missing hard real-time capability was resolved through a combination
of two things: a bridging method and a human volume model derived from human pose
estimation results. The bridging method is designed to adapt previous human pose esti-
mation results for a keypoint, such that a safely adapted keypoint sphere can be returned
whenever it is necessary for distance calculations of the SSM method. The adaptations
are designed to account for the worst-case movement of the human from the start of the
human pose estimation process up until results are required, while they also ensure that
the human volume model will have a continuous volume change. The human volume
model is created by using multiple spherical cones which are derived from pairs of key-
point spheres. Several factors from the protective separation distance are also incorporated
into the volume model by adjusting the respective keypoint spheres and thus the resulting
spherical cones. For calculating the distance between a single pair of spherical cones, a
hard real-time capable analytical solution already exists. To calculate distances in an SSM
application in hard real-time, the robot(s) must also be modeled with spherical cones, and
the number of humans and robots must be limited. Then, the distance calculation is capa-
ble of hard real-time. The same is true for the bridging method and further adaptations –
as long as the amount of people and thus keypoints is limited, they can be calculated in
hard real-time. A theoretical comparison against a safety laser scanner showed that the
method has especially high potential for practical application in scenarios where the arms
are close to the body, where it significantly outperforms the safety laser scanner. Overall,
the approach can be used to achieve hard real-time capability for human pose estimation,
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even if the human pose estimator itself is not hard real-time capable, and is promising
for practical application in SSM. However, two potential downsides remain: First is the
required limit for the number of humans and robots to achieve hard real-time capability.
While robots can be limited by the design of the robot work cell, additional measures are
necessary to limit the number of people. Second, there is the initialization and shutdown
problem: For initialization, the proposed bridging method requires one detection for ev-
ery relevant keypoint before it starts. On the other hand, once bridging starts, it must be
determined when the bridging has to stop (e. g., when people are leaving the work cell).
Both issues could potentially be resolved through a combination with established safety
measures, which could be used for safe operation until the initialization is finished and to
determine when a person left and no further bridging is required.

8.2 Outlook

This work has explored how human pose estimation methods can be brought closer to an
application in safety-critical scenarios by addressing and improving upon the major prob-
lems that prohibit their use in such scenarios. While previously undetected errors were
significantly reduced and the human pose estimation problem itself was altered to better
suit the needs of safety, further reductions in the error rate are necessary for compliance
with safety standards. Furthermore, most methods were discussed for fundamental 2D
single-person human pose estimation, while safety-critical applications would require 3D
human pose estimation, ideally for multiple people. This lays out several topics that can
or have to be assessed through future research.

Further Error Reduction: The methods for error reduction presented in this work were
able to significantly reduce the amount of undetected errors in human pose estimation,
however, not to a level required by safety standards. This makes further improvements
a necessity. Future research could improve upon the proposed diverse neural network
ensemble by increasing the diversity of employed methods or by training the neural net-
works in a way that favors the prediction of significantly different results among them
in case of existing uncertainty. In the spirit of further leveraging the safety concept of
diversity, a second, functionally completely different method for error detection could be
developed and deployed in combination with the diverse neural network ensemble.

Combination of Methods: Throughout the work, the diverse neural network ensemble
has been proposed for error reduction, and upper bound prediction for the measurement
error was pursued through other methods. However, both have not been combined so far,
which could e. g., be done to improve predicted upper bounds and/or to eliminate incorrect
ones. To truly leverage the concept of diversity in this context, two functionally differ-
ent ways to calculate the upper bounds would be required. However, only approaches
employing a Gaussian-based strategy were successful for upper-bound prediction in this
work. Therefore, further research for the development of a second successful strategy
would be required, before the concept of a diverse neural network ensemble could be
altered and applied.

From 2D to 3D: Methods for error reduction and measurement error upper bound predic-
tion were focused on the fundamental problem of 2D single-person human pose estima-
tion in this work. However, to e. g., calculate the human-robot distance in 3D space, 3D
keypoint predictions are necessary. A potential solution to this problem could be pursued
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by keeping the application of the developed methods at the 2D level, with 3D results be-
ing obtained by projecting keypoint positions and measurement errors into 3D through a
stereo vision approach. Additional errors resulting from this procedure would have to be
determined and incorporated. Another potential solution would be the adaptation of these
approaches to 3D human pose estimation methods, as neither the diverse neural network
ensemble nor the upper bound prediction is strictly limited to 2D human pose estimation.
However, they would have to be realized in slightly different ways.

Single- to Multi-Person: A potential future improvement would be a step from single-
person human pose estimation to multi-person human pose estimation. While a robot
work cell could be designed for a single human with additional measures being in place
to ensure that only a single human is present, this would mean a restriction to the kinds
of applications that can be realized. Hence, enabling multi-person human pose estimation
for a limited number of people could be a desirable goal. However, pursuing safe multi-
person human pose estimation introduces new problems to safety. For example, keypoint
detection could be associated with the incorrect person in bottom-up methods, or human
instances could be completely missed or incorrectly located in top-down methods. The
safe resolution of these problems poses material for future research.

Incorporation of Sequence Data: Further potential improvements for the error reduction
could be achieved by leveraging the fact that data for human pose estimation arrives most
likely in the form of a data sequence in a practical application, instead of the single,
uncorrelated data points that are used in standard 2D human pose estimation. Consistency
of new detections with previous ones could be assessed, or potential human movement
could be forecast to detect unlikely and thus potentially incorrect results. However, such
approaches do also have the risk that errors propagate forward, with errors in the past
impacting the capability to detect errors in the present. Appropriate measures to deal with
this problem would have to be put in place.

8.3 Conclusion

In this work, the primary problems that prohibit the use of human pose estimation in
safety-critical industrial applications were addressed. The goal was to bring human pose
estimation closer to being applied in such scenarios by reducing the amount of undetected
errors and resolving the missing hard real-time capability. To these goals, the following
primary contributions were made:

Diverse Neural Network Ensembles for Error Reduction: The use of the safety con-
cept of diversity for error reduction was realized through the proposed diverse neural
network ensemble, which can detect incorrect results through a result comparison from
functionally different neural networks. During experiments on the MPII Human Pose
dataset, the lowest error rate achieved was 4.2%. This is a significant reduction, as the er-
ror rates of the individual neural networks involved in this ensemble were 12.6%, 12.9%,
and 14.6%. Furthermore, the ensemble achieved a correct detection rate of 79%.

A Safety-Focused Reformulation of the Human Pose Estimation Problem: The stan-
dard 2D single-person human pose estimation problem only requires the prediction of
keypoint positions and relies on human annotations to define thresholds that represent the
acceptable deviation from prediction to annotation. These thresholds define upper bounds
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for the allowed measurement error. However, annotations are not available at inference
time, where an upper bound for the measurement error is required to ensure safety. There-
fore, a reformulation of the human pose estimation problem was proposed that requires
the prediction of upper bounds for the measurement error alongside keypoint positions,
thereby making them available at inference time. Further quality measures were proposed
to ensure meaningful results.

The Prediction of Upper Bounds for the Measurement Error: To solve the refor-
mulated human pose estimation problem, different methods for the prediction of upper
bounds were proposed. Approaching human pose estimation as a distribution prediction
problem where the keypoint position is the mean of a Gaussian distribution and the upper
bound for the measurement error is obtained based on three times the standard deviations
showed the best success. It was possible to determine a correct upper bound in 94.7% of
all cases while having decent quality.

Large-Scale Evaluation of Countermeasures against Noise: A large-scale investiga-
tion on human pose estimation under noise was conducted, as noise poses a severe risk
to correct neural network functioning and is thus a potential source of errors. Based on
restrictions from safety standards, it was argued that noise-specific countermeasures can
be used, and experiments were performed using Gaussian noise and a slightly changed
form of it as exemplary specific noise types. The impact of noise on human pose estima-
tion as well as the effectiveness of a variety of countermeasures was evaluated. Results
showed that it was possible to negate the impact of small amounts of noise completely
without a negative impact on the clean data performance. Furthermore, a significant per-
formance decrease was observed for training-based countermeasures when slight changes
to the noise type were performed, which highlighted the need for a close definition of
noise types that can occur in a specific application.

Hard Real-Time Capability through Bridging and Volume Modeling: A method to
resolve the missing hard real-time capability of human pose estimation was proposed. It
builds upon the combination of a bridging algorithm, that safely adapts human pose esti-
mation results under consideration of the time that passed since their prediction process
started, and a volume model, that incorporates other safety-relevant factors. Both, the
bridging algorithm and the model can be calculated in hard real-time for a limited num-
ber of people, and the volume model allows distance calculations in hard real-time for a
limited number of persons and robots through existing methods. Together, they not only
resolve the problem of missing hard real-time capability in human pose estimation but
also resolve that problem for necessary distance calculations. In a theoretical comparison,
the potential advantage of the proposed approach over a safety laser scanner in an SSM
application was highlighted, showing that fewer violations of the protective separation
distance can be expected from the proposed approach.

Overall, this work has achieved various improvements regarding the problems that pro-
hibit the use of human pose estimation in safety-critical industrial applications. The hu-
man pose estimation problem was adapted in a way that makes it applicable in safety-
critical scenarios and errors were significantly reduced, although not to the level required
by safety standards yet. Hard real-time capability has been achieved for a limited number
of people and robots through the proposed bridging method. Through all of this, a strong
foundation for further work is provided. Together with future research on error-reduction
methods for human pose estimation, this work can guide the way to the safe use of human
pose estimation in safety-critical industrial applications.
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