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Abstract

With the rise of Artificial Intelligence (AI), big data, and digital public services,
traditional Central Processing Units (CPUs) are reaching their limits. This
necessitates specialized hardware accelerators alongside expanded CPU capa-
bilities, leading to a complex computing landscape. Heterogeneous computing
systems are increasingly deployed. Cloud service providers like Amazon Web
Services, Microsoft Azure, and Google Cloud Platform are embracing het-
erogeneity, integrating Field-Programmable Gate Array (FPGA) instances
to accelerate various applications, e.g., AI. However, security concerns per-
sist, especially for sensitive data like medical and financial records. This
work focuses on ensuring trust in cloud computing and establishing a secure
processing framework for cloud data to prevent breaches. This dissertation
presents four fundamental contributions, addressing these challenges.

The secure communication between the client and server is essential. There-
fore, the first contribution focuses on authenticating the client server com-
munication. Lightweight security solutions such as Physical Unclonable
Functions (PUFs) are an alternative to hash functions, leveraging Integrated
Circuit (IC) differences for unique responses. Attackers employ Machine
Learning (ML) to predict PUF responses accurately. This contribution tackles
ML-resilient PUFs, utilizing Multi-Level Cell (MLC) properties of Non Volatile
Memory (NVM) and cascade architectures for dynamic changes. Additionally,
PUF’s reliability when used as dynamic accelerators on FPGAs or when are
based on NVM is studied.

Encryption prevents plaintext leakage, yet covert channels can compromise
keys. All cryptographic schemes, depend on key security; if compromised,
overall security collapses. The second contribution focuses on covert-channel
attacks. Two novel covert-channel threats for cloud FPGAs are presented,
followed by a software and a hardware-based countermeasures. The first
attack targets Trusted Execution Environments (TEEs) on Multi-Processor
System-on-Chips (MPSoCs) containing FPGAs, exposing a temperature-based
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Abstract

covert channel leveraging benign hardware accelerators. The second covert
channel exploits power usage in Multi-tenant FPGAs, establishing communi-
cation between different tenants. The hardware-based countermeasure uses
configurable ring oscillators to increase noise which reduces the leaks. Finally,
the software-based countermeasure add delays to stop the communication.

To combat data leakage, the third contribution introduces a solution for accel-
erating secure processing on the cloud by accelerating Fully Homomorphic
Encryption (FHE). FHE allows processing of encrypted data, mitigating trust
and legal concerns by preventing data leakage. However, FHE comes with
high computational costs, compounded by memory bottleneck issues, es-
pecially with large datasets. This contribution develops an FHE hardware
accelerator using a recursive Karatsuba multiplier, intelligently mapped to
3D High Bandwidth Memory (HBM) to address memory bottlenecks. Addi-
tionally, a custom control interface maximizes HBM bandwidth utilization,
aligning with FHE’s memory access patterns.

Data leakage is not the sole concern; attackers may inject faults or trigger
Denial of Service (DoS), rendering cloud usage unfeasible. Therefore, the
fourth contribution develops two fault injection countermeasures targeting
Power-Hammering on Multi-tenant cloud FPGAs, where attackers exploit
power wasters like ring oscillators. The first is an online approach, deacti-
vating malicious FPGA partitions swiftly upon detection. The second, an
offline approach, analyzes bitstream metadata to identify malicious designs,
challenging due to new attacks using modified benign accelerators.

All four contributions advance the state of the art. The first presents PUFs
resilient to four state-of-the-art attacks, with FPGA prototypes costing as
low as 300 Look Up Tables (LUTs) for the cascaded PUF. In the second,
novel attacks achieve error rates below 5%, countered effectively by a novel
countermeasure. The third introduces an accelerator with over 100× speedup
compared to baseline solutions. Lastly, the fourth detects 98. 2% of fault
injection attacks and speeds up the protection by more than 10×.
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Zusammenfassung

Mit dem Aufstieg von AI, Big Data und digitalen öffentlichen Diensten stoßen
traditionelle CPUs an ihre Grenzen. Dies erfordert spezialisierte Hardware-
Beschleuniger neben erweiterten CPU-Fähigkeiten, was zu einer komplexen
Computerlandschaft führt. Heterogene Computersysteme werden zuneh-
mend eingesetzt. Cloud-Dienste-Anbieter wie Amazon Web Services, Micro-
soft Azure und Google Cloud Platform setzen auf Heterogenität und inte-
grieren FPGA-Instanzen, um verschiedene Anwendungen, wie z.B. AI, zu
beschleunigen. Doch bleiben Sicherheitsbedenken, insbesondere bei sensi-
blen Daten wie medizinischen und finanziellen Aufzeichnungen, bestehen.
Diese Arbeit konzentriert sich darauf, Vertrauen in das Cloud-Computing
sicherzustellen und einen sicheren Verarbeitungsrahmen für Cloud-Daten
zu schaffen, um Sicherheitsverletzungen zu verhindern. Diese Dissertation
präsentiert vier Beiträge, die sich mit diesen Herausforderungen befassen.

Die sichere Kommunikation zwischen dem Client und dem Server ist uner-
lässlich. Der erste Beitrag konzentriert sich auf die Authentifizierung der
Client-Server-Kommunikation. Leichte Sicherheitslösungen wie PUFs sind
eine Alternative zu Hash-Funktionen und nutzen Unterschiede in ICs für
eindeutige Antworten. Angreifer setzen ML ein, um PUF-Antworten genau
vorherzusagen. Dieser Beitrag betont ML-resistente PUFs, die die Eigenschaf-
ten von MLC in NVM nutzen und Kaskadenarchitekturen für dynamische
Veränderungen einsetzen. Darüber hinaus wird die Zuverlässigkeit von PUFs
untersucht, wenn diese als dynamische Beschleuniger auf FPGAs verwendet
werden.

Während Verschlüsselung die Preisgabe von Klartext verhindert, können
verdeckte Kanäle weiterhin Schlüssel kompromittieren und damit die kryp-
tografische Sicherheit untergraben. Dieser Beitrag untersucht Angriffe über
verdeckte Kanäle und stellt zwei neue Bedrohungen für Cloud-FPGAs vor. Der
erste Angriff zielt auf FPGA-MPSoCs ab und nutzt einen temperaturbasierten
verdeckten Kanal über harmlose Hardware-Beschleuniger. Der zweite Angriff
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nutzt den Stromverbrauch in Multi-Tenant-FPGAs, um die Kommunikation
zwischen Mandanten zu ermöglichen. Als Gegenmaßnahmen werden eine
Hardwarelösung mit konfigurierbaren Ringoszillatoren zur Erhöhung des
Rauschens und Reduzierung der Lecks sowie eine Softwarelösung vorge-
schlagen, die durch das Einfügen von Verzögerungen die Kommunikation
stört.

Um Datenlecks zu verhindern, führt der dritte Beitrag eine Lösung zur Be-
schleunigung der sicheren Verarbeitung in der Cloud durch die Beschleu-
nigung von FHE ein. FHE ermöglicht die Verarbeitung von verschlüsselten
Daten und mindert Bedenken hinsichtlich Vertrauen und rechtlicher Fragen,
indemDatenlecks verhindert werden. FHE ist jedochmit hohen Rechenkosten
verbunden, die durch Speicherengpässe, insbesondere bei großen Datensät-
zen, noch verschärft werden. Dieser Beitrag entwickelt einen FHE-Hardware-
Beschleuniger, der einen rekursiven Karatsuba-Multiplizierer verwendet, der
intelligent auf 3D-HBM abgebildet wird, um Speicherengpässe zu beheben.
Darüber hinaus maximiert eine benutzerdefinierte Steuerungsschnittstelle
die Bandbreitenausnutzung von HBM und passt sich an die Speicherzugriffs-
muster von FHE an.

Datenlecks sind nicht die einzige Sorge; Angreifer können Fehler injizieren
oder DoS auslösen, was die Nutzung der Cloud unmöglich machen kann. Der
vierte Beitrag entwickelt zwei Gegenmaßnahmen zur Fehlerinjektion, die
sich auf Power-Hammering in Multi-Tenant-Cloud-FPGAs konzentrieren, bei
dem Angreifer Energieverschwender wie Ringoszillatoren ausnutzen. Die
erste ist ein Online-Ansatz, der bösartige FPGA-Partitionen schnell nach ihrer
Erkennung deaktiviert. Der zweite, ein Offline-Ansatz, analysiert Bitstream-
Metadaten, um bösartige Designs zu identifizieren, was aufgrund neuer An-
griffe mit modifizierten harmlosen Beschleunigern eine Herausforderung
darstellt.

Alle vier Beiträge bringen den Stand der Technik voran. Der erste stellt
PUFs vor, die gegen vier Angriffe resistent sind, wobei FPGA-Prototypen nur
300 LUTs für den kaskadierten PUF benötigen. Der zweite wehrt neuartige
Angriffe mit Fehlerraten unter 5% durch eine neue Gegenmaßnahme ab. Der
dritte führt einen Beschleuniger ein, der im Vergleich zu Basislösungen über
100× schneller ist. Der vierte erkennt 98,2% der Fehlerinjektionsangriffe und
beschleunigt den Schutz um mehr als 10×.
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Research at CES

Research at the Chair for Embedded Systems (CES) tackles critical computing
challenges, focusing on resource management for multicore systems, machine
learning in resource-constrained systems, cross-layer security in emerging
systems, and reconfigurable computing. These areas aim to improve system
performance, energy efficiency, hardware longevity, and computational model
adaptability [28, 94].

Reconfigurable Computing

Reconfigurable computing offers a flexible and adaptive approach to multi-
core resource management, dynamically locating and retracting resources
as needed [38, 173]. CES focuses on hardware-software codesign, enabling
real-time resource adjustments to improve efficiency and scalability [65, 67].
By configuring hardware according to software demands, CES develops sys-
tems that optimize performance and energy use, particularly effective in
approximate computing, where reduced precision saves resources [95].

Resource Management for Multicore Systems

Resource management in multicore systems is crucial for energy efficiency,
thermal management, and mitigating hardware aging [93, 132]. CES re-
searchers developed techniques for dynamic resource allocation and work-
load balance, reducing energy use and controlling temperature [60, 92]. The
research also addresses hardware aging, aiming to extend system life by reduc-
ing the wear on transistors. With increasing core density, heat management
becomes more challenging. CES emphasizes dynamic thermal management
to evenly distribute heat and avoid performance-degrading hotspots while

xi



Research at CES

ensuring the long-term reliability of hardware components by reducing per-
formance degradation over time [96, 116].

Machine Learning in Resource-Constrained Systems

CES focuses on machine learning for low-resource environments, such as
embedded systems and IoT devices, which are limited in processing power,
memory, and energy [61, 162]. Researchers design lightweight, optimized
ML models using techniques such as model compression, approximate com-
puting, and energy-efficient inference. These methods enable advanced ML
algorithms to run on modest hardware. Approximate computing, which sim-
plifies computations to save energy while maintaining accuracy, is crucial for
applying ML in resource-constrained systems.

Cross-layer Security in Emerging Systems

Security is paramount in today’s computing landscape. With the advent of the
Internet of Things (IoT), systems are increasingly interconnected, leveraging
advanced network capabilities from recent technologies such as 5G. Notable
among these interconnected systems are AI applications, as well as Edge
and Cloud Computing. These systems are susceptible to novel attack vectors
that exploit both hardware and software resources in unexpected ways. CES
addresses the security of these systems using a cross-layer approach, which
includes both the software and the hardware domains [84, 86].

Alignment of the Dissertation with Research at CES

The dissertation is primarily aligned with the cross-layer security research
topic at CES. Moreover, it addresses key challenges of efficient resource
management in FPGA-accelerated cloud systems, aligning with CES’s other
focuses. It contributes to mitigating covert channel threats and fault injec-
tion vulnerabilities in multi-tenant FPGAs and enhances machine learning-
resilient PUFs for low-resource device authentication. These contributions
support CES’s goals of system efficiency, security, and long-term reliability.
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1 Introduction

Cloud computing transforms industries by offering scalable and flexible in-
frastructure [88, 143]. It supports diverse applications, from data storage to
real-time analytics. In healthcare, it stores and processes patient data for
remote diagnostics and personalized treatments. Financial services use the
cloud for trading, fraud detection, and transactions [191]. AI relies on cloud
platforms for computational power to train models for applications ranging
from autonomous vehicles to recommendation systems. IoT devices highlight
the cloud’s role in handling data from sensors in smart cities, healthcare, and
industrial automation.

Cloud computing has rapidly transformed, driven by advancements in net-
working, virtualization, and distributed computing [66, 110]. It began from
grid computing and evolved with virtualization technologies, allowing dy-
namic scaling of shared infrastructure. The early 2000s saw a significant shift
with services like AWS introducing Infrastructure-as-a-Service (IaaS). This
evolved to recently include Platform-as-a-Service (PaaS), and Acceleration-as-
a-Service (AaaS) [58] simplifying application deployment and management.
The ecosystem now includes serverless computing, edge computing, and
hardware acceleration, which is essential for AI and big data analytics [139].
Cloud computing continues to evolve, enhancing flexibility and scalability.

The rapid evolution of cloud computing has brought both unprecedented
computational capabilities and significant architectural challenges. As mod-
ern applications demand increasingly complex and efficient processing, cloud
infrastructures must evolve to provide performance and flexibility. Hard-
ware accelerators, such as FPGAs, Graphics Processing Units (GPUs), and
Application Specific Integrated Circuits (ASICs), play a crucial role in this
shift, enabling cloud providers to offer tailored acceleration for diverse work-
loads [40, 143, 185] leading to the introduction the concept of accelerated
cloud systems [58].
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1 Introduction

A prominent example of accelerated cloud systems is the concept of FPGA-
as-a-Service (FaaS), which allows users to leverage FPGA technology for
customized tasks. Offering FaaS and other modern computation capabilities
led to the rise of MPSoCs integrating FPGAs, as shown in Figure 1.1. These
systems allow for runtime reconfiguration, enabling the modification of hard-
ware implementations to adapt to changing workloads. This capability is
especially relevant for cloud systems where multiple users share the same re-
source. In case of an FPGA, the resource can be shared by assigning each user
its own Partial Reconfigurable Region (PRR) to accelerate its application [13,
18].

PS

Communication Bus

PL

PRR0 PRR1 PRR2 … PRRn
MemoryPL 

Controller

Figure 1.1: Example of a modern FPGA-MPSoC. The Processing System (PS), i.e., the CPUs and
the Programmable Logic (PL), i.e., the FPGA are both integrated on the same chip. Moreover,
both PS and PL can access the memory directly via the communication bus. The PL is divided
into several PRRs to enable the acceleration of several applications at the same time.

While FaaS and AaaS [58] in general increase the efficiency of processing in
cloud systems, they also introduce new attack possibilities, e.g. malicious
exploitation of shared mediums in multi-user setups [16, 83]. Therefore, en-
suring the security of these accelerated cloud systems is critical. Introducing
mechanisms to safeguard sensitive computations, authenticate communica-
tion, and prevent unauthorized access in accelerated cloud systems became
crucial. This creates a growing need for robust security solutions that can
accommodate the evolving landscape of accelerated computing without com-
promising performance or flexibility [88, 130, 191].

1.1 Integration of Cloud Computing in Daily Life

To show how cloud computing became part of normal life, consider an IoT-
based health monitoring system deployed in a hospital. The patients are
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using wearable medical devices that continuously record patient vitals. These
resource-constrained devices rely on a cloud-based server for computationally
intensive tasks, such as analyzing large datasets of medical data. Given the
sensitive nature of the data, secure and efficient communication between the
client devices and the cloud server is essential. Moreover, while computing
sensitive data, the Cloud Service Providers (CSPs) have to ensure that no data
leakage occurs.

Typically for such applications, the health provider will not have its own
cloud infrastructure but will instead use a service from a public cloud such as
AWS or Azure [88, 131]. This is a client-server architecture where the client
is the resource-constrained IoT health device with limited computational
power, necessitating the offloading of processing-intensive tasks to an exter-
nal cloud-based server [31]. Figure 1.2 shows an example of this client-server
architecture in accelerated cloud systems.

FPGA GPU ASIC

Server

Client
Authenticated Communication

Security Primitive

Figure 1.2: System model illustrating the client-server relationship in a cloud setup. The client,
with limited resources, relies on the semi-trusted cloud server for computational tasks while
ensuring authenticated communication. The cloud server shares the resources between the
different users.

The client relies on the server for complex computations while maintaining
control over sensitive information [31, 130]. The client has to generate crypto-
graphic keys using a security primitive, e.g., PUF and prove its integrity, e.g.,
by attestation [70, 198]. Once authenticated, the client securely offloads tasks
to the server, which executes them and returns the results [31]. This authenti-
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cated communication is important to ensure that no leakage, impersonation,
or Distributed Denial of Service (DDoS) attacks occur.

The cloud server performs most of the heavy computations for several users
at once. Therefore, the server is considered semi-trusted, meaning that,
although it is not actively malicious, it remains susceptible to attacks and
data leakage [191]. This is particularly critical in cases where resources are
shared among multiple users [80]. The attack surface becomes wide and
complex when the server uses several possible hardware accelerators such as
GPUs [185], FPGAs [110], and ASICs [111].

Challenges for Accelerated Cloud Systems

In cloud-based client-server architecture with resource-constrained clients,
several security and performance issues arise. These clients offload compu-
tationally expensive tasks to a cloud-based accelerated server, improving
efficiency but introducing vulnerabilities from the shared, multi-user nature
of clouds and the need for secure communication.

One primary issue is that resource-constrained client devices may lack the
power for heavy cryptographic tasks, making them vulnerable to replay
and impersonation attacks. Ensuring that only legitimate clients can access
server resources is critical, but current authentication mechanisms may be
too burdensome for low-power devices [160]. Resource-constrained devices
might use Physical Unclonable Functions (PUFs) for authentication. However,
PUFs are susceptible toML-modeling attacks [39], where attackers can predict
the PUF’s behavior, compromising authentication.

Additionally, despite the advantages of hardware accelerators, their adoption
in cloud systems presents several key challenges. The focus in this disser-
tation is on the challenges introduced by integrating FPGAs in the cloud
systems as they open attractive opportunities to increase efficiency of the
computation but at the same time introduce significant vulnerabilities [16, 40,
120, 198]. The flexibility of FPGAs can be exploited to introduce new attacks,
especially in multi-user cloud systems where FPGAs are used as a shared
medium. Consequently, the risk of security breaches and data leakages in-
creases significantly [80, 119]. Moreover, when CSPs like AWS and Microsoft
Azure offer customizable FPGA-based accelerators, these concerns are fur-
ther amplified. This is because it allows clients to program and configure the
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hardware according to their specific needs, raising the potential for malicious
configurations [31, 63, 161].

One threat in such multi-user systems is the exploitation of covert channels,
such as power or thermal channels, by malicious users, leading to information
leakage. These attacks are difficult to detect or mitigate with traditional
security measures [84]. As mentioned above, the problem worsens with
hardware acceleration using FPGAs where users can craft accelerators that
leak information more efficiently than normal CPUs [81]. Such attacks are
powerful, as they can occur remotely without physical access.

Further risks include attackers manipulating the shared power infrastructure
or hardware vulnerabilities to induce faults in other users’ computations,
compromising data integrity and potentially causing system-wide failures.
Again, this is a prominent threat for FPGAs. Several works show that if cloud
providers use one FPGA for various workloads from several users, it is easy
for them to perform remote DoS and fault injection attacks [80, 122].

Lastly, a critical opportunity is securing the processing of encrypted data in
privacy-sensitive systems using HE. Integrating HE into accelerated cloud
infrastructures is challenging as it is highly compute and memory inten-
sive [53]. Therefore, existing solutions may not perform the computation in
a timely manner for the user. FaaS offers an attractive opportunity [194]. By
tailoring the accelerator and leveraging near-memory capabilities of FPGA
systems [164], HE can be effectively accelerated.

In summary, the following challenges are tackled in this dissertation:

• Machine Learning Threats to PUFs: PUFs are used for device au-
thentication and cryptographic key generation, but they are vulnerable
to attacks that leverage machine learning techniques to model and
predict their responses [160, 199].

• Security Vulnerabilities in FPGAs: The reconfigurability of FPGAs
introduces vulnerabilities that can be exploited through covert-channel
attacks. In multi-user systems, these threats are particularly concern-
ing as attackers can easily exploit hardware accelerators to amplify
the leaks used for the covert communication [78].

• Computational Bottlenecks in FHE: FHE is a promising crypto-
graphic technique that allows computations on encrypted data, ensur-
ing data privacy. However, FHE is computationally intensive, requiring
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significant resources to perform encrypted additions and multiplica-
tions [54]. Accelerating FHE using hardware, such as FPGAs, is crucial
to overcoming these bottlenecks.

• Fault InjectionAttacks: Voltage-based fault injection attacks, such as
Power-Hammering [4], present significant threats to the reliability and
security of FPGAs. These attacks can induce faults that compromise
the system’s integrity and availability [119].

1.2 Contributions

This dissertation addresses the security and performance challenges of accel-
erated cloud systems with focus on FPGA-based acceleration by proposing
the following four major contributions:

1. Client-Server Authentication viaML-Resilient PUFs: Novel PUFs
are introduced, designed to withstand machine learning-based model-
ing attacks. By leveraging architectural and technological properties,
these PUFs provide a more secure authentication method, suitable for
lightweight client devices in cloud-based systems.

2. Identifying and Mitigating Covert Channels on FPGA-Accel-
erated Cloud Systems: New covert channel attack vectors in FPGA-
accelerated cloud systems are identified and analyzed. Countermea-
sures are developed to prevent information leakage in multi-user cloud
infrastructures, ensuring secure hardware-accelerated services.

3. Data Leakage Mitigation in Cloud Systems Using FPGA-Accel-
erated Homomorphic Encryption: A high-performance accelerator
for Fast Fully Homomorphic Encryption over the Torus (TFHE) is
developed, utilizing HBM-enabled FPGAs to overcome the memory
bottlenecks inherent in FHE. The design includes a scalable recursive
multiplier, significantly enhancing computation speed for encrypted
data processing.

4. Eliminating Fault Injection Threats in Multi-tenant FPGAs: A
combined defense mechanism is presented, integrating offline and
online monitoring to mitigate remote fault injection attacks in cloud
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FPGAs. This approach protects the integrity and availability of shared
resources in multi-user systems.
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Figure 1.3: The domains tackled to achieve the contributions and face the challenges in the
dissertation. Four domains: ML, FPGA Memory and Physical Attacks are tackled. Each domain
is used in at least two contributions.

To address the challenges and achieve the contributions, four domains (Mem-
ory, FPGA, ML, and physical attacks) are studied as Figure 1.3 shows. Each
domain is studied for more than one contribution and the domain of FPGAs
is essential for all four contributions. Moreover, per contribution, at least one
new tool or accelerator is developed.

The importance of this dissertation lies in its direct response to the growing
use of FaaS for accelerating computational tasks in diverse applications in
cloud systems. As the adoption of FaaS grows, the need for secure, efficient,
and resilient systems becomes crucial. The vulnerabilities introduced by
FPGAs, particularly in multi-user systems, pose a significant threat to data
integrity and system reliability. This dissertation contributes to the field of
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1 Introduction

hardware security by addressing these concerns, developing solutions that
protect against potential attacks, and also enhancing the performance of
secure computation on cloud-based systems.

Validation of the Contributions

To validate the contributions of this dissertation, several experiments are
executed. As mentioned above, the primary focus and contribution of this
dissertation is on hardware acceleration using FPGAs in accelerated cloud
systems and the challenges and threats it faces. As such, the majority of
the experimental efforts to validate the contributions are centered around
the deployment and testing of FPGA-based systems. Whether a hardware
solution can be adapted for general use or specifically building an FPGA
accelerator, the FPGA remains the core of the experimental setup.

To closely mirror real-world conditions in cloud computing systems, a dual
approach is employed. First, an FPGA development board is connected di-
rectly to a powerful in-house server, allowing full control over variables and
providing a stable system for testing designs. Second, the experiments are
extended to a more realistic cloud infrastructure using the Heterogeneous
Accelerated Compute Cluster (HACC) from AMD at ETH Zurich [97]. HACC
offers the computational resources and cloud infrastructure (as shown in
Figure 1.4) necessary for evaluating the performance and security of the
designs under conditions that closely resemble commercial cloud services.

In addition to FPGA-based experiments, the framework includes a suite of
tools tailored for different aspects of the research. For any mathematical
modeling required, such as the development of delay models for PUFs, the
validation relies on MATLAB. It provides the computational power and flex-
ibility needed to accurately describe the behavior of the devices through
mathematical equations. When the research involves the detection of mali-
cious code execution on the cloud via ML, the validation incorporates ML
techniques developed in Python. Python’s rich ecosystem of ML libraries
enables the efficient analysis of large datasets and identify patterns indicative
of malicious activities.

Finally, for circuit-level simulations, particularly when evaluating noise mod-
els or other low-level characteristics, SPICE is utilized. It allows to simulate
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Figure 1.4: The architecture of HACC. Several computational nodes that are directly connected
to FPGA boards. Communication between the boards is possible via a switch and nodes can
communicate to the outer world via Ethernet [97].

the behavior of the circuits with high accuracy, providing insights into how
they will perform under various conditions.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows:
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• Chapter 2 provides an overview of cloud computing architectures,
with a focus on the use of FPGAs and hardware accelerators. It also
discusses the security challenges in cloud systems, FHE, and PUFs.

• Chapter 3 introduces the proposed PUFs that are resilient to machine
learning attacks and their usage to authenticate the communication
between clients and servers.

• Chapter 4 presents the identification of new covert channels in FPGA-
accelerated cloud systems and the countermeasures developed to miti-
gate the threats of data leakage.

• Chapter 5 introduces the proposed hardware accelerator for FHE to
eliminate the threat of data leakage.

• Chapter 6 discusses various fault injection attacks on FPGAs in cloud
systems and the countermeasures proposed to protect against them.

• Chapter 7 recaps the contributions of the dissertation and suggests
directions for future research.
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2 Background

Modern computing is facing increasing challenges due to the growing demand
for processing power in applications such as artificial intelligence, big data,
and real-time analytics. Traditional architectures, which rely primarily on
CPUs, are reaching their limits in terms of speed, efficiency, and scalability.
This situation has necessitated a shift toward cloud computing, which offers
scalable and flexible resources to meet these demands [13, 23, 25, 102, 110].

2.1 Solving the Memory Bottleneck

As data continues to grow exponentially, memory bandwidth becomes a
critical bottleneck. Several works try to eliminate this bottleneck through
near-memory and in-memory processing [19, 37, 128, 163]. HBM is one of
the significant advancements designed to address this issue. HBM vertically
stacks memory dies interconnected by through silicon vias, significantly
reducing the physical footprint while greatly enhancing data transfer rates,
as shown in Figure 2.1. This design shifts from a 2D to a 2.5D architecture,
facilitating near-memory processing. The result is a substantial increase in
bandwidth, which enables faster data access and transmission between the
logic core, such as CPUs or FPGAs, and memory, optimizing overall system
performance and efficiency [106, 127, 175].

In addition to HBM, NVM is another critical emerging technology that is
changing the landscape of memory technologies [15, 19]. Unlike traditional
Dynamic RAM (DRAM) and Static RAM (SRAM), NVM retains its state with-
out requiring a constant power supply, which is crucial for energy efficiency
and data retention in power-sensitive applications. NVM also supports MLC,
which allows multiple states to be coded within a single cell, thereby in-
creasing storage density and enabling a range of new computing possibilities,

11



2 Background

Package Substrate
Interposer

Logic Core H
BM

Figure 2.1:HBM Integration with chip in a 2.5D manner. The memory stack is directly connected
with the logic core via an interposer on the same package.

such as processing in memory and the implementation of PUFs for security
purposes [105].

Phase Changing Memory (PCM) and Resistive RAM (RRAM) are two of the
most famous examples of NVM. PCM operates by heating a chalcogenide
material to different temperatures, causing it to switch between amorphous
and crystalline states. These states have distinct resistive properties, with
the amorphous state having high resistivity High Resistance State (HRS) and
the crystalline state having low resistivity Low Resistance State (LRS). By
carefully controlling the heating and cooling process, intermediate states can
be achieved, each corresponding to a different resistance level, as shown in
Figure 2.2a [15, 151].
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GST Layer
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Bottom
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x l-x
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ρc: Resistivity Crystalline     l: total length 
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       : Amorphous part              : Crystalline part 

(a) PCM cell. The chalcogenide layer can be quenched
to enter the amorphous state or heated to transition
into the crystalline state.
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(b) RRAM operation steps. The HRS and LRS corre-
spond to the presence or absence of a metallic filament
within the cell [196].

Figure 2.2: PCM and RRAM NVM technologies

Similarly, RRAM operates by forming or dissolving a metallic filament within
a metal oxide layer between two electrodes. The formation of the filament
reduces the cell’s resistance to LRS, while its dissolution increases resistance
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to HRS. By applying a specific voltage, the filament can be partially formed or
dissolved, creating intermediate resistance states. These multiple resistance
states enable RRAM to store more information per cell, as illustrated in
Figure 2.2b [196].

As these novel memory systems become integrated into modern computing
infrastructures, they play a pivotal role in overcoming the limitations of
traditional architectures. HBM and NVM do not only provide solutions to
current memory bottlenecks but also pave the way for more advanced high-
performance computing systems that are capable of handling the increasing
demands of today’s data-driven world [37]. Although these novel memory
systems are a breakthrough in solving memory bottlenecks, the need for
high computational capabilities is still a challenge in modern computing. A
typical resource-constrained device is not capable of dealing with the high
computation demands of AI, big data, etc.

2.2 Cloud Computing and Heterogeneous Systems

To address the modern computing challenges, cloud computing has become a
critical infrastructure, enabling on-demand access to a shared pool of config-
urable resources such as networks, servers, storage, and applications. The
ability to scale resources dynamically to meet varying demands has led to
the widespread adoption of cloud services across multiple industries [102,
204].

One of the key developments in cloud computing is the integration of hetero-
geneous MPSoCs, which combine traditional CPUs with specialized hardware
accelerators such as GPUs, Real-time Processing Units (RPUs), FPGAs, and
Coarse Grained Reconfigurable Arrays (CGRAs) as Figure 2.3 shows. These
heterogeneous systems offer significant performance improvements for tasks
such as machine learning, data processing, and cryptography by leveraging
the strengths of each hardware component [143, 185]. For instance, FPGAs
are particularly valued in cloud systems due to their reconfigurability, al-
lowing them to be customized to specific workloads and applications [31,
110].

The rise of AI and big data analytics has further fueled the demand for
more heterogeneous computing in cloud systems. These applications require
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Figure 2.3: Heterogeneous computing system architecture integrating CPUs, RPUs, GPUs,
CGRAs, and FPGAs in form of PRRs. Modified from the InvasIC System [181]

massive computational power and the ability to process large datasets in real-
time, which traditional CPUs alone cannot efficiently handle. By offloading
specific tasks to GPUs or FPGAs, cloud providers can significantly accelerate
processing times and reduce the overall cost of computation [110, 204].

In addition to performance benefits, heterogeneous systems in cloud comput-
ing also offer advantages in terms of energy efficiency. FPGAs and ASICs, for
example, can be optimized for power consumption, making them ideal for
workloads that require high computational throughput with minimal energy
use. This energy efficiency is particularly important in data centers, where
reducing power consumption translates directly to lower operational costs
and a smaller environmental footprint [102, 143].
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However, the adoption of heterogeneous computing systems also introduces
complexity in terms of resource management. Ensuring that different hard-
ware components work seamlessly together requires sophisticated software
frameworks and scheduling algorithms. These frameworks must manage
the allocation of tasks to the appropriate hardware accelerator, handle data
transfer between different processing units, and optimize performance across
the entire system [31, 102]. The development of these frameworks is a critical
area of research, as it directly impacts the scalability and efficiency of cloud
services.

2.2.1 FPGA Integration in Cloud Computing

In this dissertation the focus is mainly on FPGAs as the hardware accelerator
in cloud computing. FPGAs have transitioned from standalone devices to inte-
gral components of cloud infrastructure. Major CSPs like AWS and Microsoft
Azure now offer FPGA-as-a-Service (FaaS), enabling users to deploy cus-
tomized hardware for specific tasks [31, 161]. This trend reflects the growing
demand for high-performance, low-latency computing solutions in areas such
as real-time data processing, machine learning, and cryptography [110].

As the concept of FaaS expands in cloud systems, the development of spe-
cialized frameworks to manage these services has become crucial [97, 152].
Cloud providers have invested in creating tools and platforms that simplify
the deployment, scaling, and management of FPGA resources. These plat-
forms typically offer users the ability to program FPGAs remotely, select
pre-configured accelerators for common tasks, and monitor the performance
of their FPGA deployments in real time [31, 161]. Moreover, they also utilize
FPGA-MPSoCs, as Figure 2.4 shows, to give the users the flexibility to choose
what parts to be done in hardware and what parts to be done in software.
This user-friendly approach has lowered the entry barrier for utilizing FPGA
technology, allowing a broader range of industries to leverage the power of
hardware acceleration.

Despite these advancements, the integration of FPGAs into cloud computing
continues to evolve, with ongoing research aimed at further improving the
efficiency and security of these systems. One area of focus is the develop-
ment of dynamic reconfiguration techniques that enable FPGAs to adapt
to changing workloads without requiring downtime. These techniques are
critical for applications that demand high availability and reliability, such as
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Figure 2.4: Overview of the setup for FPGA-as-a-Service (FaaS). Each host is connected to an
FPGA-MPSoC. User Apps can trigger trusted apps to use trusted accelerators from the PL or
they can dynamically reconfigure custom accelerators via the reconfiguration manager and the
hypervisor.

financial trading systems and real-time analytics [13, 63]. Another research
direction involves enhancing the security of FPGAs in cloud systems, par-
ticularly against covert-channel attacks and other forms of hardware-based
threats [171].

2.2.1.1 Multi-Tenant FPGAs

The concept of multi-tenant FPGAs has emerged as a promising solution to
maximize resource utilization and reduce costs in cloud computing systems
that offer FaaS. As FPGAs continue to grow in capacity and performance,
the ability to partition a single FPGA into multiple isolated regions, each
serving a different user or application, has gained significant attention in
both academia and industry [110, 204].

Multi-tenant FPGAs enable CSPs to offer FaaS to multiple clients simultane-
ously. This approach allows clients with varying computational requirements
to share the same physical FPGA hardware without interfering with each
other. The FPGA can be logically divided into several regions or partitions,
each assigned to a different tenant. These partitions can be dynamically recon-
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figured to accommodate changing workloads, making multi-tenant FPGAs
highly adaptable to diverse computational tasks [40, 57].

The implementation of multi-tenant FPGAs in cloud systems leverages partial
reconfiguration, which allows individual PRRs of the FPGA to be reconfigured
without affecting the operation of other partitions. This capability is crucial
for achieving the flexibility and efficiency required in multi-tenant setups.
Partial reconfiguration enables CSPs to update, reprogram, or reallocate
resources on-the-fly, providing a seamless user experience and optimizing
resource usage [40].

Multi-Tenant FPGA

Tenant 1 Tenant 2 Tenant 3

Tenant 4 Tenant 5 Tenant 6

Tenant 7 Tenant 8 Static 
Hypervisor

Figure 2.5: Conceptual representation of a multi-tenant FPGA setup. The FPGA is divided into
multiple partitions, each allocated to a different tenant. These partitions can be dynamically
reconfigured based on the tenants’ needs.

One of the key challenges in realizingmulti-tenant FPGAs is ensuring efficient
resource management. Given the diverse and often unpredictable nature of
workloads in a cloud system, CSPs must implement sophisticated scheduling
algorithms and resource management frameworks to allocate FPGA resources
effectively. These frameworks must balance the computational demands of
different tenants, minimize latency, and prevent resource contention, all while
maximizing the utilization of the FPGA fabric [110].

Moreover, the integration of multi-tenant FPGAs into existing cloud infras-
tructures requires careful consideration of compatibility with other com-
ponents, such as CPUs, GPUs, and memory systems. The communication
between these components must be optimized to ensure that the performance
benefits of FPGAs are fully realized in amulti-tenant system. This includes the
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development of high-speed interconnects and efficient data transfer protocols
that minimize overhead and latency [204].

2.3 Security Challenges for FPGA-as-a-Service in
Cloud systems

The deployment of FPGAs in cloud computing systems presents several
security challenges, including data leakage, covert-channel attacks, and fault
injection attacks. These threats are exacerbated in multi-tenant settings,
where multiple users share the same hardware resources.

As CSPs increasingly offer FPGA-based acceleration services, the need for
robust security measures becomes paramount. The flexible nature of FPGAs
allows users to reprogram hardware dynamically, which, while beneficial
for performance, opens up vulnerabilities that can be exploited by attackers.
These vulnerabilities can lead to unauthorized access, data breaches, and
disruption of services. In particular, multi-tenant systems are susceptible to
attacks where one tenant can potentially interfere with or extract data from
another tenant’s resources. Addressing these security challenges requires
a combination of hardware-based protections, secure design practices, and
continuous monitoring for anomalies [171, 198].

2.3.1 Data Leakage and Covert-Channel Attacks

The increasing integration of FPGAs into cloud systems has brought signifi-
cant security concerns, particularly in multi-tenant systems where multiple
users share the same physical hardware. One of the primary threats in such
systems is data leakage, often facilitated by covert-channel attacks. These
attacks exploit indirect information leaks through various physical channels,
such as power consumption and temperature variations, to extract sensitive
data [20, 80].

Covert-channel attacks on FPGAs are particularly concerning because of
the flexibility and reconfigurability that these devices offer. Attackers can
craft malicious circuits that, when deployed on shared FPGAs, manipulate
shared resources such as Power Distribution Networks (PDNs) or thermal
characteristics to create covert communication channels. These channels can
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be used to leak information between isolated workloads or from secure areas
of the FPGA to an external observer [42].

One of the most studied covert-channel vectors is based on power-based
attacks. In a multi-tenant FPGA system, power-based covert-channel attacks
leverage the shared PDN to infer operations occurring in neighboring tenants’
circuits. Attackers may deploy circuits that cause specific power consumption
patterns, which can then be monitored to extract information. For instance,
small variations in power usage, which correlate with different data being
processed, can be amplified and measured to reconstruct the processed data.
This method is particularly effective because it does not require physical
access to the FPGA and can be executed remotely, making it a potent tool for
attackers [77, 82].

Another critical covert-channel attack vector involves temperature-based,
i.e., thermal covert channels. In these attacks, an attacker modulates the
temperature of the FPGA by varying the activity levels of certain circuits.
For example, by running intensive computations on one part of the FPGA,
the temperature in that region increases. This change can be detected by
other circuits on the FPGA, which are sensitive to temperature variations,
effectively creating a covert communication channel between them. Thermal
covert channels are particularly stealthy, as they exploit the natural heat
dissipation properties of the chip, making them difficult to detect using
traditional security mechanisms [137, 182].

The implementation of covert channels on FPGAs has evolved significantly,
with recent studies demonstrating that these channels can achieve relatively
high data transmission rates while maintaining low error rates. This is
achieved by carefully controlling the modulation of the covert signal and
optimizing the encoding schemes to reduce detection chances [82].

Both power-based and thermal covert channels pose severe risks to the confi-
dentiality and integrity of data in FPGA-based cloud systems. These attacks
exploit the shared nature of resources in multi-tenant systems, allowing ma-
licious actors to bypass logical isolation mechanisms. The stealthy nature
of these channels, especially thermal-based ones, makes them particularly
challenging to detect and mitigate. As FPGAs continue to be integrated into
cloud infrastructures, it is essential to develop robust countermeasures to
protect against these sophisticated covert-channel attacks [82, 171].
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2.3.2 Threat of Fault Injection Attacks in Cloud systems

Fault injection attacks are a critical threat to cloud systems, particularly with
the increasing adoption of FPGAs in multi-tenant settings. Traditionally,
fault attacks required physical access to the hardware, where attackers could
manipulate clock signals or induce voltage drops to cause timing violations
and other faults in ICs [195]. However, with cloud FPGAs, attackers no longer
need physical proximity to execute these attacks. They can exploit the shared
nature of cloud resources to induce faults remotely, affecting not just their
own virtualized hardware, but also the resources of other tenants on the same
physical device [80, 119].

In cloud systems, fault injection attacks can lead to severe consequences,
such as DoS, data corruption, and security breaches. The shared PDN in
FPGAs makes them particularly vulnerable, as attackers can create high
power-consuming circuits that destabilize the power supply, leading to faults
in other tenants’ computations. This type of attack not only disrupts service
but can also result in significant financial losses for CSPs due to downtime
and the need for manual intervention to restore services [125].

2.3.2.1 Power-Hammering on FPGAs

Power-hammering, also referred to as voltage-based attacks, is another sig-
nificant threat in FPGA-accelerated cloud systems. These attacks involve
manipulating the power consumption of an FPGA by creating circuits that
consume excessive power, leading to voltage drops that can cause faults or
DoS conditions [80]. The goal of power-hammering is either to disrupt the
operation of the FPGA entirely (causing a DoS) or to introduce faults that
can be exploited for malicious purposes.

The distinction between power-hammering attacks that aim to cause DoS and
that aim to inject faults is important. DoS attacks typically involve circuits
that create sustained high power consumption, leading to a significant voltage
drop that eventually causes the FPGA to crash. In contrast, fault injection
attacks are more subtle and precise, using circuits that generate transient
power spikes timed to coincide with specific operations in the FPGA, causing
faults without necessarily crashing the system [119, 159].
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Figure 2.6 illustrates various power-wasting circuits that have been used in
power-hammering attacks. These include self-oscillating circuits, which are
particularly dangerous and can cause attacks even at low utilization. Multi-
plexers (Figure 2.6a), latches (Figure 2.6b), and even standard components like
Block RAMs can be configured to consume excessive power, making them
effective tools for power-hammering [29, 126, 176].
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(e) Advanced Encryption System (AES)-based Power-Hammering attack from [159].
By xoring the key and the cipher and using a special input pattern and key pattern, a
power-hammering attack is successful.

Figure 2.6: Different types of power wasters, suggested in [29, 121, 126, 159, 176].

Preventing power-hammering attacks requires advanced monitoring and
detection mechanisms. Techniques such as dynamic voltage and thermal
sensors can detect anomalies in power consumption and take corrective action,
such as throttling the power supply or shutting down the affected regions
of the FPGA [80, 158]. However, these tools are typically slow and need
pre-identification or at least suspicion of maliciousness of the circuit. This
is easy with simple attacks from above. Attackers responded with creating
stealthier attacks that mimic legitimate circuit activity e.g., AES as Figure 2.6e
shows. This stealthy nature makes them difficult to counter and identify
these attacks [16].

2.4 Homomorphic Encryption

To combat data leakage in cloud systems, CSPs can leverage HE. The concept
of HE, known as "privacy homomorphism," was proposed in 1978 [165] and
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practically implemented in 2009 [75]. Homomorphic Encryption is both en-
cryption and a homomorphism, a function preserving group structure. Given
two groups (𝐺, ·) and (𝐻,×), function ℎ : 𝐺 → 𝐻 is a group homomorphism
if

ℎ(𝑢 · 𝑣) = ℎ(𝑢) × ℎ(𝑣),
for all u, v in G. This allows operations on encrypted data.

Let (𝑃,⋄,𝐶, ◦, 𝑒, 𝑑) be the homomorphic encryption scheme, 𝑃 the plaintext
group with operation ⋄, and 𝐶 the ciphertext group with operation ◦. Func-
tions 𝑒 and 𝑑 denote encryption and decryption algorithms, respectively. By
definition, 𝑒 : 𝑃 → 𝐶 , 𝑑 : 𝐶 → 𝑃 , ⋄ : 𝑃 → 𝑃 , and ◦ : 𝐶 → 𝐶 apply. Note that
⋄ is an arbitrary operation on 𝑃 (e.g., addition or multiplication), while ◦ is
defined by the homomorphic encryption scheme. Given plaintexts 𝑎 ∈ 𝑃 and
𝑏 ∈ 𝑃 , the scheme satisfies

𝑒 (𝑎) ◦ 𝑒 (𝑏) = 𝑒 (𝑎 ⋄𝑏).

. This enables performing modified operation ◦ on encrypted data, producing
the same result upon decryption as the intended operation ⋄ on plaintext,
without data knowledge in between. The final result is evaluated at decryption
as

𝑑 (𝑒 (𝑎) ◦ 𝑒 (𝑏)) = 𝑎 ⋄𝑏.
.

The mathematics behind HE relies on Eigenvalue and Eigenvector algebra.
Noise 𝑛 is added before encryption to prevent plaintext recovery via Gaussian
elimination [75]. This noise grows with data operations and can eventu-
ally corrupt the data [54, 75], but decrypting before too many operations
eliminates the noise.

2.4.1 Types of Homomorphic Encryption

To deal with the noise problem, several algorithms of HE exist. They can
be categorized into three types. First is Partial Homomorphic Encryption
(PHE) [167], which just supports one operation type. Schemes of this category
can apply a single operation for an arbitrary amount of time without losing
the ability to decrypt the data. It is usually the least practical type as it can
only work for specific applications that perform the same operation over and
over.
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Second is Somewhat Homomorphic Encryption (SHE) [140], which supports
multiple operation types. Schemes of this category can apply multiple op-
erations, but only for limited amounts of time. If the limits are exceeded,
the ability to decrypt the data is lost. It is suitable for applications where
the number of operations is fixed at design time, i.e., has little to no data
dependency.

Third is FHE [54, 75], which supports multiple operation types withmitigation
strategies to limit the noise growth. Schemes of this category can apply
multiple operations in any order for an arbitrary amount of times.

2.4.2 Fully HE over the Torus (TFHE)

Figure 2.7: Bootstrapping operation of TFHE: The ciphertext of message𝑚 has a high noise
(shown by the red bars) and is therefore re-encrypted homomorphically with a new key 𝑠′ and
then decrypted homomorphically using the old key 𝑠 to restore the noise level.

TFHE is based on the Learning With Errors and Ring Learning With Errors
problems [54]. The calculations for TFHE are done over the real Taurus
T = R/Z in a quantized finite format T𝑞 with 𝑞 = 232. The numbers are

represented as {0, 2
0

232
, ...,

232 − 1
232

}. T𝑞 can be identified with Z𝑞 = Z/𝑞Z
which is uniform and easier to compute. Therefore, the calculations are done
over Z𝑞 . The polynomial ring used for TFHE is R𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑁 + 1) with
𝑁 = 29 and the polynomial coefficients being modulo 𝑞.

To mitigate noise, TFHE performs bootstrapping (re-encryption with a new
key then decryption using the old key) as shown in Figure 2.7. It works as
follows: suppose that there is an SHE scheme that can support 𝑁 operations
and needs 𝑁 −𝑚 operations to perform decryption. Then it can perform𝑚

homomorphic operations normally. Afterward, it homomorphically encrypts
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the ciphertext again using a new key. Then, using the old key in homomor-
phically encrypted form, it decrypts the ciphertext. The result would be the
ciphertext encrypted using the new key. Note that during the decryption,
the noise is reduced by definition as the operations did not exceed 𝑁 . There-
fore, this new ciphertext now has a very low noise level and can continue𝑚
homomorphic operations.

Bootstrapping is computationally intensive, and decryption is usually com-
plicated, therefore, doing it homomorphically is even more complicated. All
FHE schemes have similar bootstrapping mechanisms. However, TFHE has
an extra feature which is that it can perform computations during each boot-
strapping. Therefore, bootstrapping is not a totally lost overhead and is
called Programmable Bootstrapping (PBS). Compared to other schemes, this
increases the efficiency of TFHE for certain tasks such as the evaluation of
neural networks.

Even with TFHE performing computation during PBS it is still very com-
putationally intensive. The main step where the highest overhead stems
is the external product step. This is the step where the ciphertext 𝑠 (𝑚) is
re-encrypted to produce the double homomorphically encrypted ciphertext
𝑠′ (𝑠 (𝑚)). Therefore, this step is usually the focus of acceleration schemes. It
involves, as its name suggests, multiplications.

2.5 Physical Unclonable Functions

In addition to the computation, a crucial part in cloud computing is establish-
ing communication between clients and servers in an authenticated manner.
One possible solution to perform the authentication is to use PUFs. PUFs
leverage the inherent manufacturing variations of ICs to produce unique
and unpredictable responses to given inputs, known as challenges. These
deviations, which are impossible to clone or predict without physical access to
the device, make PUFs a powerful tool for security applications, particularly
in device authentication and cryptographic key generation.

PUFs can be built using several hardware primitives. Among these are
electronic primitives [177], mechanical primitives [76, 189], optical prim-
itives [134], analog primitives [133], and quantum primitives [156]. Memory
can also be used to build PUFs [188]. One example is Butterfly [123], which
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reads the initial state of SRAM PUFs. Another example is to use the Row-
Hammer effect [12] to build unique patterns as done in [169].

PUFs are generally classified into weak and strong categories. Weak PUFs
generate a limited number of Challenge-Response-Pairs (CRPs) and are often
used for tasks like cryptographic key storage. In contrast, strong PUFs can
generate an exponential number of CRPs, making them suitable for more
complex applications like device authentication [98, 168].

An example of strong PUFs is Pseudo LFSR PUF (PLPUF). It uses combi-
national elements instead of sequential registers in an LFSR-based design.
Figure 2.8 presents a PLPUF for 32-bit challenges and responses. It has 32
elements 𝐿𝑖 , each with an inverter connected to a multiplexer. The multi-
plexer selects between the initial challenge value and the previous element’s
output based on a select signal. The input for 𝐿0 comes from an XOR gate
with inputs mirroring a same-sized LFSR. The responses 𝑟𝑖 are outputs of
elements 𝐿𝑖 , stored in Flip-Flops 𝐹𝐹𝑖 , which store the response one clock cycle
post-challenge initialization using an enable signal. Besides the challenge,
the stored response depends on 𝐿𝑖 latency and clock frequency. The fre-
quency is constant and typically known, but 𝐿𝑖 latency depend on IC process
variation.
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Figure 2.8: The design of PLPUF with a 32-bit challenge. The response depends on process
variations in the circuit, providing unique outputs for different ICs [98].
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2.5.1 PUF Quality Metrics

The reliability against noise is one of the three basic metrics used to evaluate
PUFs. The other two metrics are uniformity and uniqueness. Each metric has
an ideal value as follows. If the metrics of a PUF are near the ideal value, then
the PUF is said to have good performance, otherwise, it has bad performance.
The reliability is evaluated based on

Reliability = (1 − 1
𝑁

𝑁−1∑︁
𝑖=0

𝐻𝐷 (𝑅𝑠 , 𝑅𝑖 )
𝑚

) × 100%, (2.1)

where N is the total number of measurements used to calculate the reliability,
m is the bit-length of the response generated by the PUF, R𝑠 is the stable
response of the PUF at normal conditions, R𝑖 is the response of the ith mea-
surement, and HD is the Hamming distance between two responses, i.e., the
number of different bits. Ideally, the reliability should be at 100%.

The uniformity metric measures the frequency of 1s in the response, i.e., its
Hamming weight. The probability of 0 and 1 should be equal, i.e., ideally, the
uniformity should be at 50%. Uniformity is calculated by Eq. (2.2), where 𝑅(𝑖)
is i-th bit of a response binary string.

Uniformity =
1
𝑚

𝑚−1∑︁
𝑖=0

𝑅(𝑖) × 100% (2.2)

The uniquenessmetric measures how unique a PUF is compared to other PUFs.
If PUF-responses are similar across different ICs, it means that the PUF design
is not governed by the process variations but rather by the delay paths of the
design itself. Ideal uniqueness should be at 50%. If the uniqueness is higher,
this would mean that the responses are similar. A lower uniqueness would
mean that the bits are also similar but with inverted values. Uniqueness
is important, as an attacker might have a reference PUF at hand. If the
uniqueness is bad, then the attacker can easily model the PUF based on the
reference PUF. Uniqueness is calculated based on Eq. (2.3), where Z is the
number of PUFs, P𝑖 is the response of the i-th PUF, and P 𝑗 is the response of
the j-th PUF.
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Uniqueness =
2

𝑍 (𝑍 − 1)

𝑍−2∑︁
𝑖=0

𝑍−1∑︁
𝑗=𝑖+1

𝐻𝐷 (𝑃𝑖 , 𝑃 𝑗 )
𝑚

× 100% (2.3)

2.5.2 Machine Learning Modeling Attacks on PUFs

ML Modeling attacks significantly threaten the security of PUFs, especially
those with predictable structures. Adversaries gather many CRPs to create a
model that mimics the PUF, nullifying the security of PUF by generating valid
responses without device access [99, 199]. The Arbiter PUF (APUF), shown
in Figure 2.9, is vulnerable to ML attacks due to its linear delay model. It
comprises switches controlled by challenge bits, with an arbiter determining
the output based on the delay of two signals. Although APUF can generate
many CRPs, the linear challenge-response relationship makes it susceptible
to ML attacks like Logistic Regression (LR) and Support Vector Machine
(SVM)[39].

0 0 0 0 

Arbiter 
I1 

I0 

S0 S1 S2 S3 

R 

C 

Figure 2.9: Design of APUF, which is vulnerable to ML attacks due to its linear delay model [99].

In an ML attack, the attacker first collects a large dataset of CRPs from APUF.
Using this data, the attacker trains a machine learning model to predict the
response for any given challenge. Because the delay model of APUF is linear,
the trainedmodel can achieve high accuracy with relatively few CRPs, making
this type of attack highly efficient and effective. As a result, APUF and similar
PUFs are often considered insecure against adversaries capable of performing
ML modeling attacks [146, 180].
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2.5.3 Machine Learning-Resilient PUFs

To counter ML modeling attacks, various strategies have been proposed to
enhance the resilience of PUFs. These strategies fall into three groups. The
first group uses cryptographic operations in the PUF response generation
process. For example, using a hash function to encode the PUF response
hides the relationship between challenge and response, making it harder
for attackers to model the PUF. Other techniques include using Error Code
Correction (ECC) to mask noise effects and prevent insights from repeated
queries [108, 160].

The second group modifies the architecture of the PUF itself to increase
its complexity and reduce its vulnerability to ML attacks. This can involve
combining multiple PUFs to create a more complex response, as seen in
XOR-PUFs, or introducing additional randomness into the PUF structure. For
example, the CT-PUF uses a combination of R, -PUF, APUF, and BiPUF to
complicate the model, while the NoPUF design introduces intentional noise
into the response to make it harder to predict it [146, 187].

The third group uses NVM memory with MLC capabilities, which represents
a significant advancement in memory design by allowing each cell to store
more than just a binary state. In NVMs like PCM and RRAM, MLC enables
multiple resistance levels, encoding several bits of information per cell [19, 70].
This enhances the ML resilience of PUFs by utilizing the inherent resistance
variability of NVM cells to generate unique responses. MLC increases the
complexity of PUF responses, making them more resistant to ML attacks [89,
202].

HRS … … … LRS 

VNVM 
Previous 

State 

Current 

State 

Figure 2.10: Reconfiguration of PCM cell states in an NVM-based PUF. The change in state
modifies the PUF response, enhancing ML resilience [124].

As Figure 2.10 shows, in NVM-based PUFs, each memory cell can be set to
one of several resistance levels, depending on the applied voltage. By varying
the challenge input and reconfiguring the NVM cells, a wide range of unique
responses can be generated. This dynamic behavior significantly increases
the difficulty of modeling the PUF using ML techniques [124].

28



3 Client-Server Authentication via
ML-Resilient PUFs

The first focus of the dissertation is on the communication between the
client side, typically a resource-constrained device, and the server side in
a cloud setup. To authenticate communication between the client and the
server securely, the chapter explores lightweight and efficient PUFs. PUFs
are widely investigated for security applications, such as attestation [17, 118,
172], RFID tags [41], IoT [33], electronic transaction protocols [47], secure
FPGA reconfiguration [27], and secure code execution [114, 115, 149]. These
applications, particularly in cloud and edge systems, often run on resource-
constrained ICs, necessitating lightweight PUFs [33, 47, 136].

The use of PUFs in cryptography has introduced new attack vectors. Attack-
ers with physical access or the ability to eavesdrop (e.g., through network
interception) can collect CRPs and build ML models to predict responses [39,
71, 99, 187]. New PUF designs with cryptographic techniques counter these
attacks, but often introduce resource and latency overheads [59, 108] as the
cryptographic techniques are costly. Alternatively, modifications like XOR-
PUF increase ML modeling complexity by combining outputs from several
internal PUFs [177]. However, this also adds overhead by using several PUFs
in parallel. A common PUF primitive is memory, particularly NVM [117, 169].
NVM technologies like PCM, RRAM, Spin Orbit Torque RAM (SOTRAM),
and Spint Transfer Torque RAM (STTRAM) switch states without constant
power [150]. Due to the non-linear relationship of MLC, NVM-based PUFs
are resilient to ML-based attacks [89, 202] but often are weak PUFs [1]. This
chapter proposes two novel PUF designs: Cascaded PUF (CaPUF), an ML-
resilient lightweight PUF, and Arbiter NVM-based PUF (ANV-PUF), a strong
NVM-based PUF with robust ML resistance while remaining lightweight.

This chapter is based on contributions from [1–3].
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PUF Verifier 

Figure 3.1: ML modeling attacks on PUFs, by listening on the communication channel between
PUF and the verifier, the attacker is capable of modeling the behavior of PUFs and predicting the
responses for unseen challenges. Consequently, the authentication can be compromised.

3.1 Motivational Example

As a motivational example, consider the case of authentication using PUFs, a
verification entity sends an input challenge to a PUF and collects its output
response. If an attacker observes the PUF and collects challenges with their
corresponding responses to build and train a machine learning (ML) model,
they can accurately predict the responses of this PUF for unseen challenges.
Such an attack, as shown in Figure 3.1, is usually based on listening to the
communication channel between the verifier and the PUF. To mitigate such
attacks, one solution is to use a cryptographic hardware module such as Hash
to randomize the output. However, this comes with a significant overhead
area, which is undesirable for PUFs [2, 160].

3.2 Threat Model

The target scenario in this chapter is one inwhich a PUF is used to authenticate
the identity of a prover (client) to a verifier (server of the CSP) to stop DDoS
attacks in a cloud setup. This is a common PUF application [33, 160]. The
attacker’s target is to impersonate the PUF. Therefore, the PUF has to be strong
in order to avoid replay attacks. Replay attacks occur when challenges sent
to the PUF are repeated. However, with a strong PUF, repeating challenges is
less likely [2].

The aim is to combat the threat of ML-modeling attacks on PUFs as well.
In such a case, the attacker would be able to eavesdrop on the communi-
cation channel between the PUF and the verifier to send and receive CRPs.
The attacker may even have the device in their possession for some time,
impersonating a verifier and collecting CRPs.
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Based on the CRPs collected, the attacker would be able to train an ML
model to predict the response to unseen challenges. Consequently, the at-
tacker would be able to impersonate the device containing PUF and act as an
authenticated device.

LR and SVM, Neural Networks (NNs), and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) are typically used for ML-modeling attacks [39,
190]. Those ML techniques, when trained with tens of thousands of CRPs,
are capable of accurately predicting the response to unseen challenges. The
attacks rely on the linear relation between challenges and responses in most
of PUF designs [39].

3.3 Contributions

The contributions of this chapter are:

• CaPUF, a lightweight silicon-based PUF dynamically changing its
response behavior to achieve full resilience against ML modeling.

• ANV-PUF, the first strong PUF that uses the iterative pulsing property
of NVM PUFs to achieve full resilience against ML modeling.

• Studying the effects of implementing PUFs as run-time accelerators
on FPGAs on the performance of the PUFs.

• Studying the endurance degradation of NVM-based PUFs and its effect
on the reliability of the PUFs.

3.4 Previous ML-Resilient PUFs

With progressing ML attacks, creating ML-resilient PUFs is crucial for secure
hardware. The following is a review of efforts to design ML-resilient PUFs,
focusing on two widely used technologies for PUFs,silicon-based and NVM-
based PUFs, to understand their strengths, weaknesses, and challenges in
achieving robust ML resistance with practical design overhead.
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3 Client-Server Authentication via ML-Resilient PUFs

3.4.1 Silicon-based

The earliest ML-resilient design is the XORPUF [177], where the output of
several PUFs is xored, creating a more complex model. However, it is not fully
secure as it resembles a combination of linear models [39]. With fewer xored
PUFs, one might dominate the output, making attacks easier [146, 180]. Thus,
a high number of PUFs is needed, leading to significant overhead. The CT
PUF [199] combines three PUF designs. Depending on the count of 1𝑠 in even
and odd challenge positions, the response comes from an RO-PUF, APUF,
or BiPUF, making it difficult to model the PUF. CT PUF also introduces an
optional security layer by xoring the output of two PUFs, similar to XORPUF
but with different designs. NoPUF [187] introduces obfuscation by hiding a
reliable PUF within a noisy one. It is based on the APUF design and is fine-
tuned to be reliable only for specific challenges. If the challenge is outside
this subset, the output is noisy, complicating PUF modeling due to unreliable
responses. An attacker with NoPUF design knowledge can model it using
reliability information [39, 99, 146].

3.4.2 NVM-Based

The first NVM PUF was proposed in [124], using PCM-based NVM where
each cell is in an arbitrary intermediate state. The challenge is an address to
the memory; the selected cell is compared to a reference. If the resistivity is
higher than the reference, the output bit is 1; otherwise, it is 0. Occasionally,
a short reconfiguration message is sent with the challenge, converted to an
analog voltage VNVM using a Digital to Analog Converter (DAC), applied to
all memory cells to change their states (Figure 2.10). Reading the same address
twice, before and after reconfiguration, gives different responses, making
prediction difficult if reconfiguration is periodic. During enrollment, CRPs
are collected under different reconfiguration messages. The verifier, tracking
reconfiguration messages, knows the expected response to authenticate the
device. This idea was extended to STTRAM, SOTRAM, and RRAM [30, 48,
112, 203]. The first improvement over [124] was made by [200], noting
that logarithmic resistance changes in PUF reduce uniqueness. They used
a logarithmic amplifier, increasing the uniqueness from 60.56% to 48.14%.
Employing ECC maintained reliability at 99% instead of dropping to 90%. The
Reed-Muller ECC requires minor overhead for storing helper data on the
NVM chip. In contrast, [201] used an Imprecise Control Regulator (ICR) and
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Hash function to boost uniqueness. ICR causes unpredicted offsets, increasing
randomness. The hash function further randomizes the output, improving
uniqueness from about 30% to 50%, with some area overhead.

The ideas in [124, 200, 201] focus on weak PUFs. Unique responses correlate
linearly with memory addresses. To increase response range, [202] uses MLC
property of NVMwith a varying current reference as a challenge, converted to
an analog signal by a DAC. Starting at HRS, the NVM cell’s resistance changes
iteratively using short pulses. After each pulse, cell current is compared to
the analog signal; if lower, the counter increases; otherwise, counter value is
returned as the response. The counter resets after reading.[89] follows [202],
using RRAM instead of PCM to enhance ML resilience by xoring outputs of
multiple cells. The responses were ML-resilient with 50% uniqueness. Despite
using a counter, the response range is limited to 4-bit pulses.[30] expands
the range by employing Arbiter design from APUF with RRAM, switching
from LRS to HRS based on challenge bits, affecting delay due to different
capacitance behaviors. However, this PUF is only 65% secure. To summarize,
NVM-based ML-resilient PUFs are either weak as in [89, 200, 201] or not
fully secure as in [30]. There is a need for a strong NVM-based ML-resilient
PUF.

3.5 Proposed ML-Resilient PUFs

To address the limitations of existing ML-resilient PUFs, this chapter intro-
duces two novel designs: CaPUF and ANV-PUF. They aim to improve PUF
security with complex dynamic behaviors that are difficult for ML models to
predict while being strong PUFs.

3.5.1 CaPUF Design

The first ML-resilient PUF in this chapter is CaPUF which is silicon-based.
The main idea is to use several PUFs as building blocks to have a dynamically
changing behavior from the PUF. With each new challenge, some of the
properties of CaPUF change as if the challenge was given to a different PUF
than with the previous one. CaPUF achieves the dynamic behavior through
two aspects. The first aspect is the cascaded architecture. There are four
stages of PUFs cascaded one after the other, the output of one stage is the
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input of the next stage. Hence, the response comes from an internal challenge
that is different from the one sent initially. The PUFs used for the cascade
are PLPUFs. They are used because they are very lightweight PUFs.

The second aspect is the frequency of collecting the outputs from PLPUF. In-
stead of using a constant frequency all the time for all PLPUFs, for each stage,
the frequency of collecting each individual response bit is variable. It depends
on the output of another PLPUF from the previous stage. This introduces an
extra layer of protection, as for each challenge the frequency of collecting
each bit is different and the model of the PLPUF changes dynamically.
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Figure 3.2: The Novel Cascaded PUF (CaPUF) containing 16 PLPUFs in a 4 × 4 grid. C is the
32 bit challenge sent to CaPUF, R is the 16 bit response (each 4 bits come from one PLPUF), and
K0 until K3 are four secret keys.
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Figure 3.2 shows the design of CaPUF. It has four stages (shown as columns
in Figure 3.2) and each stage contains four PLPUFs. The challenges and re-
sponses of the PLPUFs of the first stage are 32 bit long (the same as the design
in Figure 2.8), and in the second/third/fourth stage 16/8/4 bit, respectively.
CaPUF has four chains (shown as rows in Figure 3.2) from chain0 (bottom)
to chain3 (top). The output of one PLPUF in the chain is connected as an
input to the next PLPUF in the chain. The 32 bit challenge is fed to all four
PLPUFs of the first stage, and the outputs of each PLPUF of the fourth stage
are concatenated to form the 16 bit response of CaPUF. Each stage produces
double the amount of bits needed as input for the next stage. The bits are
separated into two signals, upper and lower, for all stages except the final
one. The lower part is used as an input for the next stage.

The upper part of the output is used to control the frequencies of the PLPUFs
from the next stage. It does not control the same PLPUF that takes the lower
part as input challenge. This choice is made so that there is no dependency
between the PLPUF input and its frequency controller. The same chain
controls the frequency of another chain only once, to break any possible
dependency between the chains. The frequency control of the first stage must
be initialized with a secret key (see 𝐾𝑖 values in Figure 3.2). CaPUF uses a
Physically Obfuscated Key (POK) to generate the 𝐾𝑖 values. The POK can be
any PUF with high reliability. For the case of CaPUF, it uses a PLPUF with
an arbitrary constant challenge to keep it lightweight.

Figure 3.2 shows the details of the frequency controller of the last stage, the
other controllers look the same but with more comparators as they have more
bits. The PLPUF is enabled for four clock cycles. A counter is used to track
the clock cycles. Two bits of its input (the upper signal from a PLPUF of the
previous stage) control the frequency of collecting one response bit. If the
value of the two bits is equal to the counter, the enable signal for the Flip-Flop
is turned on to collect the response bit. It is collected after 1, 2, 3, or 4 clock
cycles. The control is done by a simple 2 bit comparator. This makes each bit
independent from the other.

Compared to the 32 × 16 APUF normally used to get the 16 bit response
from a 32 bit challenge, CaPUF uses significantly less hardware and have ML-
resilience. Therefore, evenwhenCaPUF uses 16 PLPUFs, it is still lightweight.

35



3 Client-Server Authentication via ML-Resilient PUFs

3.5.2 ANV-PUF Design

The second PUF design in this chapter, ANV-PUF, is NVM-based. ANV-PUF’s
design is similar to an APUF, with 128 blocks, each receiving one challenge
bit. However, instead of having delay propagated on switches, ANV-PUF
relies on the MLC property. To profit from the MLC property, ANV-PUF
uses an extra 8-bit value in conjunction with the 128-bit challenge. The 8-bit
value specifies the voltage level that the NVM cell must reach by changing
its internal resistance. The change in voltage is related to the change in
resistance, which is not linear. Thus, the modeling of the PUF will be more
difficult than that of a normal APUF.
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Figure 3.3: ANV-PUF System, challenges given sequentially to ANV-PUF to build a full bitwidth
Response. Digital to Analog Converter used to generate a variable reference voltage VDAC.

Similar to all APUF designs, ANV-PUF produces one unique response bit
for one full 128-bit challenge. To generate a 128-bit response, 128 ANV-
PUFs would have to be used in parallel. Another alternative is to give 128
challenges sequentially to a single ANV-PUF and collect the response. The
sequential alternative is chosen because of it needs 1

128 resources compared
to the parallel one. For the sequential alternative, 27 different challenges
are needed to obtain one 128-bit response, the number of possible different
challenges reduces from 2128 (one challenge is given to 27 parallel PUFs) to
2121 (27 different challenges are given sequentially to one PUF), which is still
a large enough number of challenges.
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Alongside ANV-PUF itself, additional logic is needed to control the generation
of the full response. Figure 3.3 shows the implementation of the complete
system for using ANV-PUF. The 128 challenges are received and stored in a
challenge memory. To convert the extra value used to generate the voltage
reference, a DAC is used. For generating the full 128-bit response, ANV-PUF
uses the same reference value. Finally, a controller is needed that supplies
reset signals, writes, and reads pulses to the ANV-PUF. The control signals,
the analog voltage, and the 128 challenges are given as input to ANV-PUF.
The response is collected sequentially in a shift register to output the 128-bit
full response.
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Figure 3.4: Design of ANV-PUF

ANV-PUF itself consists of 128 blocks that implement the NVM cells, two
adders (Adder𝑎 and Adder𝑏 ), and a comparator as shown in Figure 3.4a.
Each block 𝑖 receives a one-bit challenge c𝑖 , the control signals rst and read,
and sequential set pulses set𝑝 to produce two count values, count𝑖𝑎 and
count𝑖𝑏 . Both adders perform the addition over all 128 counts having the
same respective subscript to calculate S𝑎 and S𝑏 . If S𝑎 is higher, then the
output of the comparator is ‘0’, otherwise it is ‘1’.

To produce both counts, all blocks include two NVM cells, as Figure 3.4b
shows. Each NVM cell is connected to a transistor acting as a switch and a
small shunt resistor (Rsense) to provide input to a Sense Amplifier (SA) with
comparator functionality. If set𝑝 is high, the NVM cell is supplied by VNVM,
which is a variable voltage reference and supplies either read, set, or reset
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voltage level. When VNVM is at read level, the voltage passing through Rsense
is compared to the reference voltage of the DAC (VDAC) using the SA. If the
voltage through Rsense is lower, the counter increases. Once the voltage of
both Rsense is higher than VDAC both counts pass through the switch. The
switch is controlled by the challenge bit; if the challenge bit is ‘0’ count𝑎
is assigned count0 and count𝑏 is assigned count1. If the challenge bit is ‘1’
count𝑎 is assigned count1 and count𝑏 is assigned count0. Hence, with each
unique 128-bit challenge, a unique set of 128 counter values are summed by
Adder𝑎 , and another unique set of 128 counter values are summed by Adder𝑏 .
Consequently, this leads to a unique comparison between S𝑎 and S𝑏 for each
unique 128-bit challenge.
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Figure 3.5: Time Plot of ANV-PUF Operation based on PCM parameters for pulse width and
amplitude. One reset signal is followed by several set and read signals to perform the counting.

To operate the full system, the ANV-PUF controller has to generate various
signals. The most important signal is the VNVM power supply signal as it
controls the iterative increase of counter values. It has to change between
the three voltage levels for set, read, and reset. Figure 3.5 shows how the
signal works for ANV-PUF when PCM is used as the NVM cell. To generate
one count, first, a ‘reset’ pulse is generated to bring the PCM cell to the fully
amorphous state. This is followed by a short ‘set’ pulse to go into a gradual
state between amorphous and crystalline. Consequently, a ‘read’ pulse is
generated to evaluate whether the VDAC is matched or not. This pattern of a
short ‘set’ pulse and then a ‘read’ pulse is iterated until the desired level is
reached. The same sequence with one ‘reset’ signal followed by iterations of
short ‘set’ and ‘read’ pulses is used as well for RRAM when used as the NVM
cell. However, the amplitudes and widths of the pulses are changed to the
levels needed for RRAM.

In addition to VNVM, the controller generates several other signals. It generates
the ‘set pulse’ (set𝑝 ) that controls the switch behavior of the transistor and
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Figure 3.6: Operation of ANV-PUF controller: Through the finite state machine, the controller is
able to collect the response bits sequentially from all 128 challenges.

acts as a clock signal for the counter. It also generates the ‘increase’ signal
that enables the counter and the ‘reset’ signal that resets the counter after
the result of a challenge is collected. Moreover, it controls the collection of
the response bit by bit in the shift register.

Figure 3.6 shows the operation of the ANV-PUF controller. Initially, it is
idle until the challenges are received. Then it generates the voltage using
the DAC based on the 8-bit value received with the challenges. To ensure
that ANV-PUF starts from a full high resistivity state (HRS), a reset pulse is
given to all the NVM cells. Set pulses are then repeatedly generated, followed
by read pulses and an increase of the counters. Once a cell can match the
voltage, the SA stops sending the enable signal to its counter. If all cells reach
the reference level, the controller switches to the next state to perform the
additions and then compares S𝑎 and S𝑏 to produce the response bit. The
whole process is then repeated. It starts by resetting all cells to HRS and
resetting counters to zero, then generating the next response bits. Once all
128 bits are generated, the full response is generated and delivered, and the
controller returns to the idle state.
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3.5.3 Complexity of Modeling the novel PUFs

ML models can predict the output of PUFs based on the simplicity of their
delay models [2]. To further understand why it would be hard to model the
novel PUFs in the scope of a successful attack, the following sections show
an approximate mathematical model for their delay. The goal is to show
that the mathematical model is more complex than the other PUFs related
to them, namely APUF and PLPUF, and thus it will be harder to build an
accurate model that predicts responses correctly. Note that it is not an exact
model, but an approximated model for simplicity. The exact model would be
significantly more complicated and even harder to be built through ML. Note
that the mathematical model is not used exclusively, but also state-of-the-art
attacks are run against CaPUF and ANV-PUF.

3.5.3.1 Mathematical Model of PLPUF

The model for PLPUF is based on the design from Figure 2.8 with a bit width
of 32 bits. The assumption is that all its 𝐿𝑖 elements and the XOR-gate have
the same delay 𝐷 , which makes this an approximate model, as in practice the
different 𝐿𝑖 elements will have slightly different delays. Based on the period
𝑇 of the clock signal (‘clk’ in Figure 2.8), each bit 𝑐𝑖 of a new input challenge
will traverse through a constant number 𝑛 of 𝐿𝑖 elements.

𝑛 =
𝑇

𝐷
. (3.1)

This means that PLPUFwill calculate𝑛 responses (all 32 𝑟𝑖 signals in Figure 2.8
correspond to one response) for every input challenge 𝑐 , but only the 𝑛th
response will be sampled by the output register. In the following, 𝑟 𝑗 will
be used to differentiate the 𝑛 responses, and 𝑟 𝑗

𝑖
will be used to denote bit

𝑖 of the 𝑗 th response. The first response 𝑟 0 corresponds to the inversion of
the challenge. All the following responses 𝑟 𝑗 can be calculated as shown in
Eq. (3.2). The first bit 𝑟 𝑗0 of the 𝑗

th response comes from the xor gate, and the
other bits come from the previous bit position of the 𝑗−1th response.
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𝑟 0𝑖 = 𝑐𝑖 𝑖 ∈ [0, 31]

𝑟
𝑗

0 = 𝑟
𝑗−1
0 ⊕ 𝑟 𝑗−11 ⊕ 𝑟 𝑗−121 ⊕ 𝑟

𝑗−1
31 𝑗 ∈ [1, 𝑛−1]

𝑟
𝑗

𝑖
= 𝑟

𝑗−1
𝑖−1 𝑖 ∈ [1, 31], 𝑗 ∈ [1, 𝑛−1]

(3.2)

With enough CRPs, the model can deduce 𝑛 and the number of transforma-
tions that occur through the PLPUF. The final model of a PLPUF that creates
a response 𝑟 can be expressed as an arbitrary function 𝑓 based on 𝑛 and the
challenge 𝑐 ,

𝑟 = 𝑓 (𝑛, 𝑐). (3.3)

𝑓 calculates the above-described shift and xor operations as shown in Eq. (3.2).
This is a simplified version of the model. The real model would be a function
of the delays of all 𝐿𝑖 elements and the xor gate, which would all have different
values. However, it is still a simple additive model that can be modeled by an
ML-based attack after enough CRPs are collected.

3.5.3.2 Mathematical Model of CaPUF

Based on the approximate model for PLPUF, the approximate model of CaPUF
is built. For illustration, the explanation focuses only on chain0 from Figure 3.2,
but the same concept holds for all chains. The explanation goes step by step
from the first stage to the final stage. Thus, showing how each stage in
combination with the frequency controllers contributes to the complexity of
the model, which in turn makes CaPUF harder to model. The explanation
uses the same subscripts as Figure 3.2 which are two numbers separated by a
comma. The first number is the chain identifier, and the second number is
the bit width used for the challenges and responses of the respective PLPUF
on the chain. Starting by the first stage, the output from PLPUF0,32 will be
𝑟0,32 = 𝑓 (𝑛0,32, 𝑐). 𝑛0,32 can be computed as

𝑛0,32 =
𝐾0,32𝑇

𝐷0,32
, (3.4)

where 𝐾0,32 comes from the POK that stores the initial value for the first stage
PUF, 𝐷0,32 is the delay of one element in PLPUF0,32, and T is the clock period.
Here, the first effect of the design can be noticed. The response is collected
after multiple clock cycles based on the secret value𝐾0,32. However, this alone
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would not be sufficient to prevent ML-based attacks, as 𝐾0,32 is constant and
the model will be able to learn it. That is why the other stages are added. The
final output 𝑟0,32 for the initial challenge 𝑐 is

𝑟0,32 = 𝑓 (
𝐾0,32𝑇

𝐷0,32
, 𝑐). (3.5)

Going to the next stage in the chain, the input challenge for PLPUF0,16 is the
response from the previous stage 𝑐0,16 = 𝑟0,32. 𝑛0,16 is calculated as

𝑛0,16 =
𝑟1,32𝑇

𝐷0,16
, (3.6)

where 𝑟1,32 is the response from PLPUF1,32 from Figure 3.2. 𝑟1,32 is variable
and changes with each new input challenge. Hence, 𝑛0,16 also changes with
each challenge, which achieves the dynamic behavior that is desired for the
design.

By substituting the values of 𝑐0,16 and 𝑛0,16 in Eq. (3.3), the final output from
the PUF can be expressed as

𝑟0,16 = 𝑓 (
𝑓 (𝑛1,32, 𝑐1,32)𝑇

𝐷0,16
, 𝑓 (𝑛0,32, 𝑐)). (3.7)

Similarly, going to the third stage of the chain, the challenge 𝑐0,8 is the output
of Eq. (3.7). The value 𝑛0,8 is evaluated as

𝑛0,8 =
𝑟2,16𝑇

𝐷0,8
. (3.8)

𝑟2,16 is the response of PLPUF2,16. Hence, 𝑛0,8 is variable and gets a different
value based on each new challenge.

By substituting 𝑐0,8 and 𝑛0,8 in Eq. (3.3) the response 𝑟0,8 from this stage is
based on

𝑟0,8 = 𝑓 (
𝑓 (𝑛2,16, 𝑐2,16)𝑇

𝐷0,8
, 𝑓 ( 𝑓 (𝑛1,32, 𝑐1,32)𝑇

𝐷0,16
, 𝑓 (𝑛0,32, 𝑐))) . (3.9)

At the final stage, 𝑛0,4 depends on 𝑟3,8 and is formulated as

𝑛0,4 =
𝑟3,8𝑇

𝐷0,4
. (3.10)
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𝑟3,8 is based on a complex path similar to 𝑟0,8. This makes 𝑛0,4 variable and
unpredictable as each PUF in the path of 𝑟3,8 will affect its value. The final
output from this chain is then based on

𝑟0,4 = 𝑓 (
𝑟3,8𝑇

𝐷0,4
, 𝑓 ( 𝑟2,16𝑇

𝐷0,8
, 𝑓 ( 𝑓 (𝑛1,32, 𝑐1,32)𝑇

𝐷0,16
, 𝑓 (𝑛0,32, 𝑐)))). (3.11)

It can be seen that the output is based on several outputs of PUFs from the
cascade. The relation between the different PUFs is not a simple additive one
but more complicated with multiplications.

To model the full CaPUF, the attacker would need to model several different
PUFs, where their behaviors affect each other in multiplicative ways and
transformations of inputs to outputs. Note that Eq. (3.9) and (3.11) are not
fully expanded for brevity. The underlying model is even more complex.
Moreover, this is just an approximate model. The real model will have a
more complex structure. For once, the delay of all elements within one PUF
is not equal. Thus, the calculation of 𝑛, the intermediate responses 𝑟 𝑗 , and
consequently 𝑟 will be more complex. Modeling all these PUFs and their
relations will require an extremely high number of CRPs which might not be
feasible to collect.

3.5.3.3 Mathematical Model of Arbiter PUF

Next, the vulnerability ofAPUF to ML-modeling attacks is explained. APUFs
can generally be modeled using a linear additive model [39, 180, 190]. Looking
back at Figure 2.9, the output bit is based on which path has a longer delay.
This can be modeled mathematically as a sign equation using Eq. (3.12), where
𝑅APUF is the output response bit, and 𝑇𝐷1 and 𝑇𝐷0 are the delays of the upper
and lower paths, respectively.

𝑅APUF = sign(𝑇𝐷1 −𝑇𝐷0 ) (3.12)

The delay of one path itself is the sum of the delay of all the stages that build
APUF. The focus is on𝑇𝐷1 for simplicity, but the same holds for𝑇𝐷0 . The delay
can be represented as shown in Eq. (3.13), where 𝑛 is the number of stages
and𝑤𝑖1 (𝑐𝑖 ) is the delay of the i-th stage of the arbiter path as a function of 𝑐𝑖 ,
which is the challenge bit controlling the i-th stage of the arbiter.
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𝑇𝐷1 =

𝑛−1∑︁
𝑖=0

𝑤𝑖1 (𝑐𝑖 ) (3.13)

𝑤𝑖 (𝑐𝑖 ) is calculated following Eq. (3.14), where 𝛿cross𝑖 is the delay of the stage
when the path through the stage is crossed and 𝛿direct𝑖1

is the delay of the stage
when the path through the stage is direct.

𝑤𝑖 (𝑐𝑖 ) = 𝛿cross𝑖1
, if 𝑐𝑖 = 1

𝑤𝑖 (𝑐𝑖 ) = 𝛿direct𝑖1
, if 𝑐𝑖 = 0

(3.14)

Substituting Eq. (3.13) and (3.14) in Eq. (3.12) results in the final model in
Eq. (3.15), where 𝛿 (𝑐𝑖 )

𝑖
denotes the dependency between which the value 𝛿 is

used based on 𝑐𝑖 .

𝑅APUF = sign(
𝑛−1∑︁
𝑖=0

𝛿
(𝑐𝑖 )
𝑖1
−

𝑛−1∑︁
𝑖=0

𝛿
(𝑐𝑖 )
𝑖0
) (3.15)

Hence, the model at the end is a linear additive model, where some constants
are summed. An attacker would only need to be capable of recording enough
CRPs for the model to be able to evaluate all the different possible 𝛿 (𝑐𝑖 )

𝑖
values.

For an APUF with 128 stages, it will need to be able to calculate 512 values,
which usually takes around 10K-50K CRP for the model to evaluate it [190].

3.5.3.4 Mathematical Model of ANV-PUF

Compared to APUF, ANV-PUF adds an additional layer of security using𝑉DAC
that leads to a minimal but significant change. Previous works, e.g., [147, 180,
190] show that a minimal change of adding a random shift or substituting
a single bit of the challenge would increase the complexity of modeling the
PUF quadratically. This makes the task of building the model practically
impossible, as the attacker has to collect an enormous number of CRPs, which
might not be feasible. To showcase the change that is caused by adding 𝑉DAC,
the mathematical model of ANV-PUF is built. Starting with a very similar
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model to APUF, the response bit 𝑅ANV-PUF is calculated as Eq. (3.16), where
𝑆𝑏 and 𝑆𝑎 are both sum values of Figure 3.4a.

𝑅ANV-PUF = sign(𝑆𝑏 − 𝑆𝑎) (3.16)

Both 𝑆𝑎 and 𝑆𝑏 are the result of the summation of the different counters 𝑐𝑜𝑢𝑛𝑡𝑖𝑎
from Figure 3.4a and follow Eq. (3.17). The focus is on 𝑆𝑎 for simplicity, but
the same holds for 𝑆𝑏 .

𝑆𝑎 =

𝑛−1∑︁
𝑖=0

𝑐𝑜𝑢𝑛𝑡𝑖𝑎 (𝑐𝑖 ) (3.17)

𝑐𝑜𝑢𝑛𝑡𝑖𝑎 (𝑐𝑖 ) switches based on the value of 𝑐𝑖 between 𝑐𝑜𝑢𝑛𝑡0 and 𝑐𝑜𝑢𝑛𝑡1 (see
Figure 3.4b) and follows Eq. (3.18).

𝑐𝑜𝑢𝑛𝑡𝑖𝑎 (𝑐𝑖 ) = 𝑐𝑜𝑢𝑛𝑡𝑖1, if 𝑐𝑖 = 1
𝑐𝑜𝑢𝑛𝑡𝑖𝑎 (𝑐𝑖 ) = 𝑐𝑜𝑢𝑛𝑡𝑖0, if 𝑐𝑖 = 0

(3.18)

Both 𝑐𝑜𝑢𝑛𝑡0 and 𝑐𝑜𝑢𝑛𝑡1 are functions of 𝑙𝑜𝑔(𝑉DAC) [200] with𝑉DAC itself being
a variable and not a constant. Substituting Eq. (3.17) in Eq. (3.16) results in
Eq. (3.19)

𝑅ANV-PUF = sign(
𝑛−1∑︁
𝑖=0

𝑐𝑜𝑢𝑛𝑡𝑖𝑎 (𝑐𝑖 , 𝑙𝑜𝑔(𝑉DAC)) −
𝑛−1∑︁
𝑖=0

𝑐𝑜𝑢𝑛𝑡𝑖𝑏 (𝑐𝑖 , 𝑙𝑜𝑔(𝑉DAC)))

(3.19)

By comparing Eq. (3.19) and Eq. (3.15), the attacker must no longer try to
capture constant delay values 𝛿 , but rather capture a variable value which is
more challenging. The model will have to decode the logarithmic relationship
between 𝑉DAC and 𝑐𝑜𝑢𝑛𝑡0/𝑐𝑜𝑢𝑛𝑡1 for each NVM cell used in each of the 128
blocks.
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3.5.4 PUFs Implementation and Simulation

3.5.4.1 CaPUF Implementation on FPGA

After designing CaPUF, it is tested on real hardware. First, CaPUF was imple-
mented as synthesizable VHDL code. The target is the Xilinx VC707 board
containing a Virtex-7 FPGA. Moreover, to ensure that the PUF is not affected
by modifications to the experimental setup framework, it was placed in a
Pblock (definition of a sub-area on an FPGA) with constraints that manually
place its elements on selected resources.

FPGA 

Python Script UART RAM 

Challenge 
Generator 

PUF 

Figure 3.7: The experimental setup for logging the challenge response pairs

Four different VC707 boards are used to test CaPUF. Figure 3.7 shows the
entire framework for conducting the experiments. In addition to the PUF,
other components are needed to be able to log the results and communicate
them to a computer for further analysis. A challenge generator is used to
send the challenges to the PUF and collect a large set of CRPs. The challenges
should be random and not in sequence to cover as many possibilities as
possible. An LFSR with a constant seed generated randomly is used as a
Pseudo Random Number Generator (PRNG) to generate the challenges. The
responses along the challenges are stored on the FPGA in block RAM. For
each PUF implemented on one of the four boards, 65,536 CRPs are generated.
Each CRP is generated 1000 times to evaluate the reliability. The CRPs are
communicated via UART to the computer to perform the analysis.

In addition to the CaPUF, PLPUF [98], APUF, 3-XORPUF, and 5-XORPUF [177]
are implemented. Both XORPUFs are based on the implemented APUF. The
difference between them is the number of used PUFs for the xor (3 or 5). This
comes with a trade-off between security and resource usage. In addition, the
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performance of PLPUF is recorded on the four boards. This is because CaPUF
is compared to PLPUF, which is used as its building block to see if any of the
metrics (uniqueness, reliability, and uniformity) degrades. APUF, 3-XORPUF,
and 5-XORPUF were only evaluated on one of the boards, since they are only
used to assess whether attacks work or not and this can be measured based
on one board.

3.5.4.2 Simulating ANV-PUF

There was no possibility of taping out an NVM IC for ANV-PUF. Moreover,
commercial NVM ICs do not allow exploiting the MLC property. Therefore, a
Matlab simulation environment is built to evaluate ANV-PUF. For the target
NVM cell, both RRAM and PCM are used. They are differentiated by calling
the RRAM-based PUF ANV-PUFRRAM and the PCM-based ANV-PUFPCM. The
matlab simulation environment solves differential equations to get the behav-
ior of the NVM cells either PCM or RRAM. It use the mathematical model
parameters shown in Table 3.1 from [46, 151] for PCM and from [52, 196] for
RRAM. The exact mathematical model for PCM is taken from [201] and the
mathematical model for RRAM is taken from [145]. The material simulated
for PCM is GST and for RRAM it is HfO𝑋 . 𝜌𝐿 and 𝜌𝐻 of PCM are higher than
those of RRAM. HfO𝑋 is a unipolar RRAM and, therefore, all voltages are in
the positive range. V𝑟𝑒𝑎𝑑 for RRAM is in the middle between the set voltage
and the reset voltage, unlike for PCM, which has V𝑟𝑒𝑎𝑑 of a very low value.

Table 3.1: System parameters used in Matlab simulation. PCM parameters are based on [46, 151].
For RRAM the parameters are based on [52, 196]

NVM 𝜌𝐿Ω/𝑚 𝜌𝐻Ω/𝑚 L/W V𝑟𝑒𝑎𝑑 V𝑠𝑒𝑡 V𝑟𝑒𝑠𝑒𝑡 t
PCM 416𝜇 100 5.7 0.1 V 0.6 V 1V 10 ns
RRAM 40𝜇 27 0.2 1.2 V 1.8 V 0.8 V 5 ns

The NVM cells and the circuits are not always identical to the ideal design. To
reflect this in the simulation, several sources of offset and noise are identified.
The offsets are the main source of the PUF behavior, while the noise degrades
the reliability. The following offset sources were identified: (i) length and
width of the active region of the NVM cell, (ii) amplitude and width of VNVM
pulses, (iii) 𝜌𝐻 and 𝜌𝐿 of the active region, (iv) output from the DAC, and
(v) input and output offsets for the SA. The offsets are in the range of 1%
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of their ideal values and are randomly selected for each device. Two ANV-
PUFRRAM and two ANV-PUFPCM are built, each PUF has random offsets that
help to evaluate the uniqueness of ANV-PUF for both technologies.

For noise, three main sources are considered, (i) the ambient temperature,
(ii) pulse amplitude of VNVM, and (iii) pulse width of VNVM. The three noise
sources cause changes up to 25% of their ideal value randomly for each device
in different runs.

To make the noise evaluation more realistic, in addition to the mathematical
evaluation, a SPICE noise simulation is performed. The SPICE models for
PCM and RRAM are from [72, 90] respectively. The DAC and SA are openly
available part models from Analog Devices. Part LTC2688 is the DAC and
part LT6118 is the SA with comparator functionality. The noise contribution
until the output of the SA of each component of one block of ANV-PUF is
evaluated in the SPICE simulation.

Based on the Matlab simulation environment, 1,048,576 response bits from
each PUF are collected in the form of 8192 responses, each with a bit width
of 128 bits. Each 128-bit response uses unique 128 challenges, each composed
of 128 bits and one random 8-bit value to generate the reference voltage
VDAC. The same experiment is repeated 1000 times under random changes to
calculate confidence intervals and standard deviation for all the calculated
metrics.

3.6 Evaluation of the novel PUFs

3.6.1 CaPUF Quality and Performance

The quality and performance of CaPUF are evaluated on the collected CRPs.
This is an important step before trying to evaluate its performance against
ML-modeling attacks. If it has a bad uniqueness, then an attacker can model
it based on a reference PUF. If it has a biased uniformity, then an attacker
can predict large portions of the response. If it has low reliability, then it is
noise-dominated and cannot be used to authenticate a device.

For uniqueness, Figure 3.8 shows in orange the results for calculating the
Hamming distance between CaPUFs on the different boards. It has a Gaussian
distribution, which is expected for such a random relation. It has a peak at
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Figure 3.8: Hamming weight representing uniformity and Hamming distance representing
uniqueness based on all the values collected from the FPGA boards showing the desired normal
distribution behavior of CaPUF

9, which is only 1 bit away from the ideal 8. This is an acceptable deviation,
as it is still close to 50%, which would be desirable. Overall, calculating the
average on this Hamming distance was 8.9 and the standard deviation was
1.76.

As for uniformity, Figure 3.8 shows in blue the Hamming weight of the
responses from the four boards. Here the distribution the expected Gaussian
shape. In addition, the peak is exactly at 8 which is the ideal value. This
means that for uniformity, CaPUF has an almost ideal performance. Overall,
it has 8.01 as an average and a standard deviation of 1.63.

Table 3.2: Performance of PLPUF and CaPUF
PUF Uniqueness Uniformity Reliability

PLPUF 49.60% 46.12% 98.47%
CaPUF 55.63% 50.06% 92.54%

Moreover, Table 3.2 shows the results of reliability, uniformity, and uniqueness
in the four boards. The metrics are calculated for PLPUF (the building block
of CaPUF) and CaPUF. The uniqueness of PLPUF is slightly better than the
uniqueness of CaPUF as it is closer to the value of 50%, both are still under
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60%. However, CaPUF has an improvement for the uniformity over PLPUF
as it is almost the ideal value 50%. In terms of reliability, PLPUF was able
to achieve a remarkably high value of 98.47%. CaPUF has a lower reliability,
which can be understood as it is based on some chains of PUFs, which reduces
overall reliability. This does not affect the performance of CaPUF, as it is still
in the range where fuzzy extractors can extract the response on the verifier
side [118].

3.6.2 ANV-PUF Quality and Performance

In a similar fashion, the uniformity and uniqueness are calculated for the
generated CRPs for ANV-PUFRRAM and ANV-PUFPCM. They are in a very
good range for both NVM technologies. For ANV-PUFPCM, uniqueness and
uniformity have a value of 50.88% and 50.41%, and for ANV-PUFRRAM, 50.34%
and 49.27%, respectively.
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Figure 3.9: Hamming Results for (a) ANV-PUFPCM and (b) ANV-PUFRRAM, both have the desired
Gaussian distribution around the mid value 64 for Hamming distance between responses and
Hamming weight of the responses. The error bars show the confidence interval for the 1000
experiments.
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Figure 3.9 shows the histogram for uniqueness and uniformity of both ANV-
PUFPCM and ANV-PUFRRAM. In general, both versions of ANV-PUF have a
Gaussian distribution of around 64 with no offset. Hence, the uniformity and
uniqueness of both versions are in the desired range. The main difference
between both is in the standard deviation. For ANV-PUFPCM, the standard
deviation of uniformity and uniqueness is 4.37% and 4.35%, respectively. As
for ANV-PUFRRAM, it has a lower standard deviation of uniqueness at 3.71%
and a slightly lower standard deviation of uniformity at 4.24%.

Based on the three noise sources, the system is simulated and the CRPs
are calculated. Then the Hamming distances of the responses under noise
simulation vs. the noise-free golden reference are calculated. The reliability
under noise effects gets degraded as expected. However, as Figure 3.10 shows,
the reliability of both ANV-PUFPCM and ANV-PUFRRAM does not drop below
85%, even with noise reaching 25% of the normal value of pulse width, pulse
amplitude, and ambient temperature. ANV-PUFRRAM is affected most by
variation in temperature and least by pulse amplitude noise. In contrast,
ANV-PUFPCM is affected least by noise in the pulse width and most by the
pulse amplitude noise. Note that this reliability degradation occurs, as no ECC
techniques are used, in case a technique such as the technique used by [200]
or by [117] would be used, then the reliability would stay higher. Moreover,
the reliability does not get worse than the theoretical limits, where the PUF
output is no longer usable, as stated by [117, 118], i.e. the PUFs are usable
without ECC, even though their reliability under noise can be improved even
further when needed.

TheMatlab reliability simulation is not used solely. Rather, a SPICE simulation
environment is used to inspect the noise sources and their effect on the SA
output. The noise effects are shown in Figure 3.11, and they are similar for
both ANV-PUFPCM and ANV-PUFRRAM. The noise contribution of the NVM
cell is generally the lowest for both ANV-PUF variations. However, the noise
contribution of the PCM cell is greater than the noise contribution of the
RRAM cell. As for the contribution of all the other circuit components, the
contribution of the DAC is the highest. This is expected as it is the first
circuit component and any noise it contributes will be further propagated
across the circuit. Moreover, since it generates the reference voltage VDAC,
any noise from it will affect the comparison by the SA. The second highest is
the noise contribution of VNVM. Any change in the amplitude or width of the
pulse will affect the reset, partial sets, and read signals, which consequently
will affect the input voltage to the SA and reflect on its output. The noise

51



3 Client-Server Authentication via ML-Resilient PUFs

0.8 0.9 1 1.1 1.2
Normalized Variation Range

85

90

95

100

R
el

ia
b
ili

ty
 %

Reliability against Current Variation
Reliability against Pulse Variation
Reliability against Temperature Variation

(a) Reliability against noise for ANV-PUFPCM
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Figure 3.10: Reliability against noise in voltage amplitude, pulse width, and ambient temperature
variation. Overall with extreme noise levels and extreme high and low temperatures, the
reliability does not drop below 85%. The error bars show the confidence interval for the 1000
experiments.

contribution of both the SA and the transistor are similar. The SA comes as
the final component, and hence, its noise does not get propagated any further.
As for the transistor, it acts as a mere switch and has no strong impact on
the functionality of the circuit. These results show that lowering the noise of
each component to a level comparable to the noise of the NVM cell would
reduce total noise and enhance reliability.

3.6.3 CaPUF’s Resilience against ML-based attack

The collected CRPs are not only used to evaluate the CaPUF performance
metrics but also to evaluatewhether or not theML-attackswould be successful
against the CaPUF. The state-of-the-art open-source LR and SVM modeling
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Figure 3.11: Noise contribution of each circuit component for the final output of the SA for (a)
ANV-PUFPCM and (b) ANV-PUFRRAM

attacks of [199] are trained based on the collected CRPs. The attack works
as follows: It uses a separate model for each response bit with two classes
representing both binary values. The challenge value is the single feature
used for training. It performs 1000 iterations on the classifier’s parameters
(LR or SVM) to fine-tune the model.

The attacks attacks are used against all implemented CaPUFs. Up to 50,000
CRPs were used to train the models, the rest are used to test and obtain the
prediction accuracy.

The results for both attacks are similar as shown in Figure 3.12. APUF was
easily breakable by both attacks. It required around 10,000 CRPs to be almost
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(d) SVM on CaPUF
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(e) SVM on Arbiter-based PUFs
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(f) SVM on PLPUF

Figure 3.12: SVM and LR attacks on CaPUF, PLPUF, APUF, 3-XORPUF, and 5-XORPUF. The
attacks are only as good as flipping a coin on CaPUF and 5-XORPUF, but they have a better
performance against 3-XORPUF, and they are successful against APUF and PLPUF. Board0 to
Board3 denote the four different boards used to implement the PUFs.
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completely predictable and became partially predictable using even less CRPs.
This is in line with many of the previous works [39, 99, 199]. PLPUF was also
broken by both attacks. It showed to be harder to break than APUF, and it
was easier to break it by using the LR attack.

3-XORPUF was partially broken. With enough CRPs the bits were predictable
up to 75% accuracy. But neither of the attacks was able to fully model it. Only
5-XORPUF and CaPUF were not broken by the attacks. The accuracy of the
prediction did not reach higher than 57% for CaPUF and 59% for 5-XORPUF.
Note that the prediction accuracy is per individual bit of the response, that
is, the chance of correctly predicting every bit. This is why the ideal value
is 50% (similar to flipping a coin on each bit). If the accuracy is too high or
too low, then modeling the PUF worked well. For low accuracy, the attacker
only needs to invert the values, and then the bits will be of mostly correct
values.

3.6.4 ANV-PUF’s Resilience against ML-based attack

Similar to CaPUF, the generated CRPs (including the 8-bit reference voltage
value) from the experimental setup are used to evaluate the success of ML-
modeling attacks against ANV-PUF. As the simulation of ANV-PUF produced
significantly more CRPs than running CaPUF on hardware, the evaluation
of ANV-PUF is not limited to SVM and LR but extends to the use of NN and
CMA-ES. For SVM and LR, the attacks are the same open-source attacks
used for CaPUF. For NNs and CMA-ES, there are no open-source attacks,
so the attacks are replicated using the same parameters detailed in [190].
Table 3.3 shows the parameters for each ML model. SVM uses a fourth-degree
polynomial as its kernel to be able to catch nonlinear behavior. LR uses the
Newton-Cholesky solver, which is recommended for a problem where the
number of samples is significantly higher than the number of features and the
best matching parameters for this solver. The NN of a 4-layer dense network
(based on [190]), with each layer having 32 nodes with relu activation. CMA-
ES uses a standard deviation of 0.5 and allows for up to two training restarts
from the best point reached.

The attacks are run on both variations of ANV-PUF and on the Arbiter Re-
configurable PUF from [30]. The Arbiter Reconfigurable PUF uses RRAM
and switches between LRS and HRS instead of using switches as in conven-
tional APUF. Its model is built by using the same RRAM model used for
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Table 3.3: Model parameters of the ML-models used for attacks
ML-Model Parameters

SVM Kernel: poly, gamma: auto, degree: 4
LR penalty: l2, dual: false, solver: Newton-Cholesky
NN Layers: 4, nodes per layer: 32, activation: relu

CMA-ES sigma: 0.5, restart: from best, restarts: 2
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Figure 3.13: Resilience of ANV-PUF against ML modeling attacks, the ideal prediction accuracy
should be 50% which is as good as flipping a coin. ANV-PUF prediction accuracy stays in the
50% range. The error bars show the confidence interval for the 1000 experiments.

ANV-PUFRRAM and generated the same number of responses based on the
same challenges. Figure 3.13 shows the results of predictability using the
attacks. The attacks are run several times, gradually increasing the size of
the training set from 1,000 CRPs to 1,000,000 CRPs. The predictability of
ANV-PUF for both of its variations remains in the ideal range of around
50%. In contrast to ANV-PUF, the predictability of Arbiter Reconfigurable
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PUF reaches 78% when 1,000,000 CRPs are used for training. This is higher
than the predictability of 65% reported in [30] however they used a smaller
training set. Note that when using a training size of 10,000 CRPs (as in [30]),
the numbers match the range of 65%, as can be seen from Figure 3.13. In all
cases, the predictability of Arbiter Reconfigurable PUF is significantly higher
than the ideal range of around 50%. The reason for this higher predictability
is that it does not use the MLC property of NVM. It only uses the switching
between LRS and HRS to change the delay across the PUF elements.

3.6.4.1 Using Long-Short-Term-Memory Classifier

ANV-PUF incorporates a finite state machine within its structure. While
its security does not depend on the finite state machine but rather on the
difference between the used NVM cells and the accumulation of the sums.
Next it is investigated if Neural Networks with memory, e.g., a Long Short-
Term Memory (LSTM) classifier, would lead to better results than existing
state-of-the-art attacks.

As ANV-PUF produces 128 response bits sequentially, they are used as the
input time series for an LSTM classifier with multivariate multiple input series.
The LSTM is trained using 1,000,000 CRPs (same as for the state-of-the-art
attacks) and tried four different configurations as follows

1. Activation Function: Relu, Optimizer: Adam, epochs = 50, steps = 16

2. Activation Function: Relu, Optimizer: Adam, epochs = 100, steps = 32

3. Activation Function: Relu, Optimizer: Adam, epochs = 150, steps = 48

4. Activation Function: Relu, Optimizer: Adam, epochs = 300, steps = 64

For all four configurations, the prediction accuracy does not exceed the range
of 50%. Note that these results are not conclusive and do not show that no
LSTM-based ML model would be capable of attacking ANV-PUF. However,
no state-of-the-art attack is capable of attacking ANV-PUF. And also the
examined LSTM-based attacks were not.
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Table 3.4: CaPUF Comparison to the related works
PUF ML-Resil. Locking LUTs Memory Time
CRC yes no 5120 0 N.A.
PLPUF no no 32 0 1 cycle
CaPUF yes no 329 0 16 cycles
Arbiter no no 1024 0 1 cycle
3-XOR partial no 3072 0 1 cycle
5-XOR yes no 5120 0 1 cycle
Slender yes no 1168 68 KB N.A.
CT yes no 3072 0 1 cycle
LPN yes no 49K 7KB N.A.
FSM yes yes 1082 68 KB 2508 cycles
IPA yes yes 1060 2 KB 18764 cycles

NoPUF partial obfusc. 1024 0 1 cycle

3.6.5 Comparing CaPUF to the State-of-the-Art

CaPUF is to the state of the art silicon-based PUFs. The comparison is done
for all PUFs assuming that they have 32 bit challenges and 16 bit responses,
which are the same bit widths as those of CaPUF. The numbers for area and
latency are based on implementing them on FPGA, based on their description
of their respective works, or the numbers reported by the work itself. Hence,
the numbers are in LUTs and memory is in Kilobytes.

CaPUF is the smallest ML-resilient PUF. As a matter of fact, only PLPUF is
smaller than CaPUF, even APUF requires more hardware than CaPUF. The
closest in terms of area to the implementation from the ML-resilient PUFs
is CT, which requires almost 10× more LUTs than CaPUF. Slender requires
fewer LUTs than CT; however, it uses 68 KBs of memory, which would require
more area.

It can be seen that all cryptography-based PUFs have significant resource
usage. For example, the stream cipher dominates the resource usage of CRC.
LPN has the highest resource usage; it is the only one that exceeds 10K
LUTs. This is because of its on-chip implementation of the error correction
code. FSM and IPA both use significantly less hardware than LPN. However,
both require thousands of clock cycles to complete their computation. The
reason for this is that they use a lightweight serial hash function which is
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slow. Additionally, for IPA, it uses voting rounds instead of error correction,
which adds a significant delay overhead. These delay overheads are very
problematic in the enrollment phase, as collecting the CRPs requires a three
to four orders of magnitude longer time for each individual IC. The delay of
the three CaPUF modes is also slightly higher than the other PUFs. However,
it is similar to the serial implementations of weak PUFs when they try to
output several bits, so it is in the acceptable ranges [34].

3.6.6 ANV-PUF’s Comparison to the State-of-the-Art

NVM-based PUFs, compared to ANV-PUF, are mostly weak Table 3.5 and lack
the CRP range of ANV-PUF, so they report results directly. The comparison
includes other PUF metrics beyond ML resilience. ANV-PUF is both strong
and ML-resilient, unlike current PUFs: [89, 202] which are ML-resilient
but weak, and [30] which is strong but not fully ML-resilient. PUF in [30]
achieves full ML resilience using the xor method [177] across four parallel
PUF instances, increasing area and energy overhead. Some attacks target this
xor method [39] and are not covered in [30].

PUFs are compared for uniqueness and uniformity. PUFs of [89, 202] don’t
assess uniformity as they are weak. PUF of [202] has low uniqueness, unlike
the ideal uniqueness in [89]. For the PUF of [30] and both ANV-PUF variations,
both uniqueness and uniformity are ideal. Energy consumption per response
bit is considered. ANV-PUF consumes the most energy due to its use of
multiple NVM cells with iterative set pulses. The Reconfigurable Arbiter PUF
of [30] uses one set/reset pulse per cell for one bit. This comparison excludes
the energy overhead from xoring four parallel PUFs. Weak PUFs of [89, 202]
use sequential sets/resets with fewer cells, lowering energy consumption.
The focus is on PUF implementation, without considering energy for hash
functions that enhance uniqueness.

3.6.6.1 Comparison to Strong PUF of Ref. [30]

Now the focus is on a comparison between ANV-PUF and the PUF of [30] as
it is the closest to ANV-PUF. Both the PUF of [30] and ANV-PUF are based
on the famous Arbiter PUF design [177]. This is the first design of a PUF
and is still widely used as the base for novel PUFs of different types [180,
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Table 3.5: Comparison to the related works, PUF of [30] is strong but not fully secure. PUFs
of [89, 202] are secure but not strong. ANV-PUF is both secure and strong.

PUF ML-Resil. Strong Unique Uniform Energy
ANV-PUFPCM yes yes 50.88 % 50.41 % 6.5 𝜇 𝑗
ANV-PUFRRAM yes yes 50.34 % 49.27 % 7.2 𝜇 𝑗
PUF of [30] partially yes 50.21 % ∼ 50 % 575𝑛𝑗
PUF of [202] yes no 30 % N.A. 1.9 𝜇 𝑗
PUF of [89] yes no 49.69 % N.A. 150𝑛𝑗

190]. There are two similarities with the PUF of [30]. First: Using the Arbiter
PUF as the base of the design, and second: Using NVM as a building block.
However, both PUFs are significantly different.

The PUF of [30] uses the propagation delay of signals that traverse the NVM
cell, as it differs significantly depending on whether the NVM cell is in high
resistance state (HRS) or low resistance state (LRS). Hence, it does not benefit
from the MLC character of NVM cells. In contrast, ANV-PUF focuses on
leveraging the MLC character of NVM cells. ANV-PUF does not rely on
the propagation delay of signals through NVM cells. It rather obtain the
unclonability and ML-resilience from the number of electric pulses needed
for each cell to reach an arbitrary resistance level.

3.6.7 CaPUF’s Reliability on FPGAs

CaPUF can be implemented on FPGAs as a reconfigurable accelerator. The
impact of Dynamic Partial Reconfiguration (DPR) on CaPUF’s performance
is assessed. Since CaPUF uses PLPUFs, their performance is studied; if they
degrade, CaPUF will degrade as well. Each PRR includes static routing from
neighboring areas via a communication channel through the PRR. This com-
munication is likely routed partially through the PRR. Trials change the
communication channel bitwidth from 0 to 64 bits. PLPUF is implemented
as a primary design (PRR is fine-tuned) and secondary design (PRR just fits
the PUF). Figure 3.14 shows the results. Increased signals crossing the PRR
degrade PUF performance in both primary and secondary designs. In the
primary design, degradation remains within 1%. In the secondary design,
performance is always worse and can degrade up to 5%.
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Figure 3.14: The performance of PLPUF degrades significantly when used as a secondary design,
especially with the increase of static routing crossing the PRR

3.6.8 ANV-PUF Endurance

NVM cells degrade with repetitive usage [14, 15, 22, 24] and have a limited
lifespan. An endurance analysis methodology, as shown in Figure 3.15, utilizes
a Markov chain to determine the probability of ANV-PUF failing after N
challenges. The analysis primarily examines ANV-PUFPCM but generally
applies to ANV-PUFRRAM as well.

3.6.8.1 Analyzing States

TheMarkov chain evolves state probabilities using the transition matrix. Each
state’s probability is a vector, updated by applying the transition matrix to
the current vector. All transitions start from the "Receive Challenge" state, so
the initial state is a one-hot vector with a probability of one for the "Receive
Challenge" state.

The proposed state machine, which includes a terminal state with zero tran-
sition probability to other states, will converge to this terminal state. The
evolution process stops when the probability of reaching the termination
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Figure 3.15: Flow to analyze the endurance of the PUF

state is 1 - 10−5. Iterative updates of the state vector determine the probability
of each state at each iteration. Each state is denoted by 𝑃𝑚 (𝑡, 𝑠), representing
the probability that state s is visited at iteration t. These records calculate the
distribution of accumulated visit time for each state.

3.6.8.2 Inference Set/Reset Count

To assess the PUF system’s endurance, it’s crucial to calculate accumulated
set/reset operations. First, determine the distribution of total state visits per
challenge. Next, derive the final distribution for set and reset operations.
The total visit count is obtained by converting the recorded transition state
probabilities using the following equations.

𝑃𝑐 (𝑁 |𝑡, 𝑠) = 𝑃𝑐 (𝑁 − 1|𝑡 − 1, 𝑠)𝑃𝑚 (𝑡 − 1, 𝑠) + 𝐾𝐸𝐸𝑃 (𝑡, 𝑠) (3.20)

𝐾𝐸𝐸𝑃 (𝑡, 𝑠) = 𝑃𝑐 (𝑁 |𝑡 − 1, 𝑠) (1 − 𝑃𝑚 (𝑡 − 1, 𝑠)) (3.21)

𝑃𝑐 (0|𝑡, 𝑠) =
{
1, if 𝑡 = 0
𝐾𝐸𝐸𝑃 (𝑡, 𝑠), otherwise

(3.22)

In Eq. (3.20), 𝑃𝑐 (𝑁 |𝑡, 𝑠) denotes the probability of state 𝑠 being visited 𝑁 times
by iteration 𝑡 . This probability comes from two parts: the probability that the
visit count just reached 𝑁 at iteration 𝑡 −1, from Eq. (3.20), and the probability
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that the visit count reached 𝑁 before iteration 𝑡 − 1 with no further updates,
from Eq. (3.21). The initial condition is in Eq. (3.22), where the probability
of not visiting any state is set to one initially, and the probability of staying
in the non visiting state is given by 𝐾𝐸𝐸𝑃 (𝑠, 𝑡)𝑡 . As the system transitions
to the ending state, the set and reset operation states become unvisited and
converge to a stable distribution, defining the set and reset distribution for a
given challenge.

3.6.8.3 Modeling of Set/Reset Distribution

The model considers the set and reset counts of a challenge as random vari-
ables that follow the distribution introduced in Section 3.6.8.2. Based on
this distribution, the model deduces the set and reset counts after N chal-
lenges. The distribution of the total number of set and reset operations after
N challenges is derived by summing N independent random variables, each
following the set and reset operation distribution of an individual challenge.
Finally, the model obtains the time-variant distribution of the set and reset
operations, enabling the deduction of the lifetime of the system.

3.6.8.4 Deduce Lifetime

The model sets an endurance limit for a cell’s set and reset operations, beyond
which the cell is considered dead. A PUF with M cells is dead if 15% of its
cells are dead. The goal is to find the PUF failure probability based on this
and the distribution of set and reset operations. For each challenge t, the
probability of a cell being dead is the chance its set and reset operations
exceed the endurance limit Eq. (3.23). Since cells operate independently, the
number of dead cells among M follows a binomial distribution Eq. (3.24). The
PUF failure probability is the sum of probabilities for having 𝑘 > 0.15𝑀 to
Eq. (3.25) dead cells. The 15% limit is a standard assumption [117, 118], and
the lifetime threshold is taken from the mid-range value in [46] for PCM
cells.

𝑃𝑐𝑒𝑙𝑙 (𝑑𝑒𝑎𝑑 |𝑡) = 𝑃 (𝑠𝑒𝑡 𝑜𝑟 𝑟𝑒𝑠𝑒𝑡 𝑜𝑝𝑠. > 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛) |𝑡 (3.23)

𝑃 (𝑘 𝑑𝑒𝑎𝑑 |𝑡) = 𝐶𝑀
𝑘
𝑃𝑘
𝑐𝑒𝑙𝑙
(1 − 𝑃𝑐𝑒𝑙𝑙 )𝑀−𝑘 |𝑡 (3.24)

𝑃 (𝑃𝑈 𝐹 𝑑𝑒𝑎𝑑 |𝑡) = Σ𝑘>0.15𝑀𝑃 (𝑘 𝑑𝑒𝑎𝑑) |𝑡 (3.25)
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Figure 3.16: Lifetime of both ANV-PUF [1] and PUF from [30]

Based on the analysis above, both ANV-PUF [1] and the PUF from [30] are
run through the lifetime analyzer. As Figure 3.16 shows, ANV-PUF has a
slightly better lifetime.

3.7 Summary

This chapter tackles the issue of authenticating communication between
clients and servers using ML-resilient PUFs. It introduced two novel PUF
designs: CaPUF and ANV-PUF, aiming for strong resilience against ML-based
modeling attacks while remaining lightweight for resource-constrained de-
vices. CaPUF uses a cascaded architecture of PLPUFs, dynamically changing
its response to complicate modeling attacks. Its modular structure and dy-
namic frequency control enhance its unpredictability, making it harder to
model than traditional PUFs. On the other hand, ANV-PUF uses the MLC
property of NVM cells for non-linearity in response generation, improving re-
silience to ML attacks. Using a variable voltage reference with challenge bits,
ANV-PUF increases modeling difficulty. Both CaPUF and ANV-PUF showed
strong metrics of uniqueness, uniformity, and reliability. Evaluations against
state-of-the-art ML attacks confirmed robustness, with prediction accuracy
around 50%, indicating resistance. Additionally, the chapter provides analysis
the reliability of PLPUF the basic block of CaPUF as a runtime reconfigurable
accelerator and the lifetime of ANV-PUF.
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4 Identifying and Mitigating
Covert Channels on
FPGA-Accelerated Cloud Systems

While the data is transmitted from the client to the server in ciphertext form
securely, the processing itself usually happens on the plaintext. Therefore,
covert-channel attacks pose a significant threat as they exploit the shared
nature of multi-tenant FPGA resources, allowing one tenant to infer sensitive
information [51, 73]. This chapter explores two such covert channel attacks,
one based on power consumption and the other on thermal emissions, and
propose countermeasures to mitigate these threats.

Power-based covert channels leverage fluctuations in the FPGA’s PDN to
transmit information between colluding malicious tenants [73]. By care-
fully modulating their power consumption, these tenants can communicate
without directly interacting with each other, bypassing traditional security
measures. Similarly, thermal-based covert channels use the heat generated
by FPGA circuits to encode and transmit data [85]. Variations in temperature,
which are easily detectable by thermal sensors, provide a covert means of
communication that is difficult to detect and counteract.

Both types of attacks pose significant risks when FaaS is offered in accel-
erated cloud systems, where multiple tenants share the same physical FPGA
resources. If left unaddressed, these covert channels could lead to data
breaches and other security violations. Therefore, the development of ef-
fective countermeasures is crucial to ensuring the security and reliability of
FPGA-accelerated cloud systems [204].

This chapter is based on contributions from [4–7].
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4.1 Motivational Example

As amotivational example, consider a scenario in a secure environment where
a colluding application from a dishonest vendor operates within the secure
world of a TEE-enhanced FPGA-MPSoC. This application uses a benign
accelerator in the PL of the FPGA to modulate the temperature of the PL (1).
Meanwhile, a malicious receiver, running in the normal world, accesses the
temperature sensor of the PL (2), which is available in the normal world, to
decode the messages transmitted.

Figure 4.1 illustrates this scenario, where the temperature of the PL in the
FPGA-MPSoC is exploited as a means of covert communication. This setup
allows for information transfer between applications in different security
contexts, effectively creating a covert channel within the FPGA infrastructure
of an accelerated cloud system.

CPU

CPU

CPU

CPU

Secure
World

Normal
World

Hardware
Accelerator

�

Processing System Programmable Logic

�

Figure 4.1: Overview of a thermal covert channel on a TEE-enhanced FPGA-MPSoC.

4.2 Problem Statement

In accelerated clouds, the usage of MPSoC with integrated FPGA, i.e., FPGA-
MPSoCs is increasing [110]. These FPGA-MPSoCs could allow multiple ten-
ants, in software or hardware, to share the same physical infrastructure. This
shared infrastructure, while efficient, introduces significant security risks,
particularly through the use of covert channels for intra-chip communica-
tion. These channels enable malicious tenants to bypass traditional security
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mechanisms, leading to threats such as data leakage or the coordination of
more complex attacks on the system.

As illustrated in Figure 4.2, the ability of tenants to communicate covertly
within the same FPGA-MPSoC presents a serious vulnerability. They can
use software and hardware components on the FPGA-MPSoC to engage in
covert communication, potentially leading to unauthorized data transfer or
the synchronization of malicious activities across different tenants. This
poses a critical challenge in maintaining the security and integrity of FPGA-
accelerated cloud systems, where isolation between tenants is presumed but
not always guaranteed.

FPGA-MPSoC

Shared 
Infrastructure

Benign Tenant 1

Benign Design 2

Malicious Tenant 1

Malicious Tenant 2

Covert Channel

Figure 4.2: Problem Statement: Multiple tenants on an FPGA-MPSoC whether in software or
hardware use covert channel intra-chip communication. This leads to threats of data leakage or
possibility to coordinate attacks on the system.

4.3 Contributions

The key contributions of this chapter are as follows:

• It introduces a thermal-based covert-channel attack, where tempera-
ture variations in the FPGA are used to encode and transmit sensitive
information between colluding tenants and breaking the TEE isolation.

• It proposes a novel power-based covert-channel attack that allows
multiple malicious tenants to coordinate and synchronize fully duplex
communication.

• It proposes countermeasures for covert channels, both on the software
and hardware level.
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4.4 Previous FPGA-based Covert Channels

Covert channels have been vastly demonstrated for FPGA-based systems over
the recent years. The PDN has been the main mechanism exploited to imple-
ment channels in multi-tenant FPGAs and FPGA-MPSoCs. In this context, the
attacks have targeted the device’s voltage [78, 82, 87] and frequency [42, 68]
as the medium to modulate the power, obtaining fast transmission speeds and
low error rates. Other approaches for covert channels use non conventional
means to modulate different resources on FPGA such as PCIe usage for cloud
systems [79] or internal wiring [77] in multi-tenant FPGA systems.

4.5 Novel Covert Channel Attacks

This chapter shows that the threat of covert channels is more complex than
previously shown in the literature. It exploits one vulnerability in FPGA-
MPSoCs to break the isolation in TEEs. Moreover, it shows how covert
communication can be established on FPGA-MPSoCs in a multiparty man-
ner.

4.5.1 Through-Fabric: Cross-world attack on FPGA-MPSoC

The first covert channel attack is a thermal covert channel on TEE-enhanced
FPGA-MPSoCs. On FPGA-MPSoCs, the usage of hardware accelerators by
Trusted Applications (TAs) introduces a vulnerability exposed by Through-
Fabric. As isolation focuses on separation between applications on the PS
side, an attacker can still use the PL shared medium, even if the accelerators
are separated, to leak data.

4.5.1.1 Threat Model and Assumptions

The basic threat model for the thermal covert channel follows the same prin-
ciple as other covert channels [144], where a malware and a spy application
communicate with each other in an illegitimate way.

The spy or receiver application, runs in the normal world as a Customer
Application (CA). On the other hand, a malware transmitter, which is a
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malicious or colluding application that gets triggered by an unaware innocent
application to perform a security-critical operation on its behalf, is assumed to
function following the same model as other TEE-focused covert channels [55,
144]. In the context of TEEs, this colluding program is a Trusted Application
(TA) that executes in isolation in the secure world through the OP-TEE
framework, while the triggering program is a Customer Application (CA) in
the normal world. In a practical scenario, this colluding application could
be provided by a dishonest vendor, or a vulnerable TA could be exploited by
an attacker. The spy or receiver application runs in the normal world as a
CA belonging to the same or even potentially a different tenant. Neither the
transmitter nor the receiver require any privileged permissions to perform
any of the operations involved in the attack. A real example of this type of
colluding application is the recent xz utils vulnerability [148], where through
an elaborate supply chain attack, an adversary inserted a backdoor into xz
utils, a widely used open source library, and almost succeeded in merging
malicious updates into major Linux distributions before detection.

Differently from other FPGA-based approaches in the state-of-the-art, Through-
Fabric uses a completely benign hardware accelerator to modulate the temper-
ature of the PL. Moreover, neither the transmitter nor the receiver modules of
the attacker require to implement any extra hardware on the FPGA logic.

4.5.1.2 System Overview

To get Through-Fabric towork, several system components are involved. They
can be divided into two main parts: software and hardware. The software
part establishes the communication cross-worlds. As for the hardware part,
the transmitter software uses it as the heating mechanism, illustrating the
feasibility of the attack without the need for any custom modifications to the
hardware.

Software: A simplified overview of the software components of the system
is depicted as a flow in Figure 4.3. In the normal world, the innocent CA
intends to perform hardware-accelerated AES decryption on a ciphertext
through the decryption TA, which resides in the secure world. To do so, the
innocent CA uses the OP-TEE client API (1) to invoke the AES decryption TA,
unaware of its malicious nature. In turn, the OP-TEE client API routes the
request to the OP-TEE driver (2) in the Linux kernel. On the Linux kernel side
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Figure 4.3: Overview of the software components of Through-Fabric

of the normal world, the OP-TEE driver then directs the request to the secure
monitor (3) on the secure world, which itself handles the communication
between worlds by routing the request to the OP-TEE Trusted Operating
System (4). Through the internal API, the OP-TEE OS framework determines
the malicious AES decryption TA as the one invoked and passes control to
it to handle the request (5). Finally, the TA uses the hardware accelerator
API (6) to perform the decryption. In a normal (benign) operation, at this
point, the execution control would return in a reversed path back to the CA
with the ciphertext decrypted. However, due to its malicious nature, before
returning control, the TA leverages the hardware accelerator again (6) to
encode and leak secret data (for example, key or plaintext) by modulating the
temperature of the programmable logic on the FPGA.

Notably, the TA is configured to keep the execution context (instance) after
the sessions ends, using the TA_FLAG_INSTANCE_KEEP_ALIVE flag [144]. This
allows the TA to store and further leak private data after the transaction has
finished.

In the normal world, another malicious application (i.e., the receiver CA,
potentially owned by a different tenant) continuously reads the tempera-
ture sensor of the FPGA (7) to detect the beginning of the transmission and
decode the secret being sent by the TA, hence establishing an illegitimate
communication channel between the secure and normal world.
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Hardware: To demonstrate the attack, an existing hardware accelerator is
used as the heating mechanism. The processor residing in the trusted world
is connected to one accelerator on the PL. The connection is done via an
AXI crossbar. The benign AES 128 bit decryption engine from [135] is the
accelerator used to heat the chip. It is available as open source and is highly
parallelized. The AES engine receives the cipher text and decryption key as
input from the processor and returns the plain text in one clock cycle.

Notably, while a custom and more power hungry hardware accelerator (e.g.,
ring oscillators) would benefit the transmission by heating faster, depending
on the attacker to compromise the hardware or implement their own logic
could be either impractical or easy to detect [10, 11]. The decision to employ
a completely benign module is to match a realistic use case. The selected AES
engine performs a security-related operation, which justifies its use from the
secure world, while also being a tested accelerator provided by an honest
vendor.

4.5.1.3 Transmitter

The transmitter module of the attack is implemented within the malicious
decryption TA. Algorithm 1 shows the implementation logic for the trans-
mission. Upon being invoked ((5) in Figure 4.3), the TA performs the normal
(benign) decryption of the ciphertext. However, as a malicious application,
the TA proceeds to leak the newly decrypted plaintext by modulating the
temperature of the FPGA. To do so, it first computes the number of decryp-
tions needed to encode a bit of ‘1’, and the time it requires to wait to encode a
bit of ‘0’, using the desired bit rate and the latency accelerator. Then for each
bit in the secret, the TA performs the extra decryptions for each bit value
that is a ‘1’, or waits for the corresponding time for each bit of ‘0’. Finally,
the application returns the plaintext normally to the calling CA.

In the case of a long secret, in order to avoid suspiciously long decryption de-
lays, the transmitter module can leverage the TA_FLAG_INSTANCE_KEEP_ALIVE
flag, to save it, while only leaking a few bytes at a time per call, especially
with short ciphertext decryptions. On further calls, the attacker can obfuscate
the transmission of the rest of the message by leveraging the decryption of
longer ciphertexts.
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Algorithm 1: TA transmitter for the TCC
Input: 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 : encrypted text from innocent CA
Result: 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 : decrypted text

1 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ← HwAESDecrypt(ciphertext); /* Performs normal

decryption */

2 𝑁 ← 1/(𝑏𝑖𝑡_𝑟𝑎𝑡𝑒 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑎𝑐𝑐) ; /* Calculate the required number

of decryptions to heat up enough to encode a ‘1’ */

3 𝑡𝑑𝑜𝑤𝑛 ← 1/(2 ∗ 𝑏𝑖𝑡_𝑟𝑎𝑡𝑒);
4 for bit in secret do
5 if 𝑏𝑖𝑡 is 1 then
6 for i = 0 to N-1 do
7 HwAESDecrypt(𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑝𝑢𝑡 ) ; /* Perform extra

decryptions to increase temperature */

8 end
9 else
10 TEE_Wait(𝑡𝑑𝑜𝑤𝑛) ; /* Sleeps to cool down the hardware */

11 end
12 end
13 return 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ;

4.5.1.4 Receiver

The receiver is implemented as an application that runs in the normal world. It
performs three simple steps which are shown as the three loops in algorithm 2.
The first step (line 2 to line 6) is to continuously collect the data from the
PL temperature sensor and store it in an array of size 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . This
step involves only reading data from a register. Once it collected the samples,
it filters out the data to the desired frequency of communication (line 7 to
line 11). The receiver performs this by calculating the Fast Fourier Transform
(FFT) over a moving window and keeping only the bins that correspond to
the frequency of communication.

The final step is to decode the filtered data into the corresponding sent bits
(line 12 to line 27). To achieve this, the receiver applies two criteria: an
absolute value and a gradient. During the moving window corresponding to
each bit, if a value higher than a precomputed high threshold (𝜌1) is achieved,
then a bit value ‘1’ is interpreted. Similarly, if the maximum value is lower
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Algorithm 2: Normal world receiver for the TCC
Result:𝑚𝑠𝑔: demodulated message

1 𝑠 ← 0;
2 while 𝑠 < 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
3 𝑡𝑒𝑚𝑝𝑠 [𝑠] ← 𝑟𝑒𝑎𝑑𝑇𝑒𝑚𝑝 () ; /* Get new temperature reading */

4 𝑠𝑙𝑒𝑒𝑝 (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒);
5 s++;
6 end
7 𝑁 ← 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 ; /* Compute number of windows */

8 for i in N do
9 𝑋 ← 𝐹𝐹𝑇 (𝑡𝑒𝑚𝑝𝑠 [𝑖 : 𝑖 +𝑤𝑖𝑛_𝑠𝑖𝑧𝑒]); /* Computes FFT */

10 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [𝑖] ← 𝑋 [𝜔𝑘 ] ; /* Filter the data at 𝜔𝑘 */

11 end
12 for j in N do
13 𝑏𝑖𝑡𝑤 ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [( 𝑗 ∗𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 : 𝑗 ∗𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 +𝑤𝑖𝑛_𝑠𝑖𝑧𝑒] ; /* get

the demodulated bit window */

14 if 𝑚𝑎𝑥 (𝑏𝑖𝑡𝑤) > 𝜌1 then
15 𝑚𝑠𝑔[ 𝑗] ← 1 ; /* if high absolute change bit is ‘1’ */

16 else
17 if 𝑚𝑎𝑥 (𝑏𝑖𝑡𝑤) < 𝜌2 then
18 𝑚𝑠𝑔[ 𝑗] ← 0 ; /* if low absolute change bit is ‘0’ */

19 else
20 if |𝑠𝑙𝑜𝑝𝑒 (𝑏𝑖𝑡𝑤) | > 𝛿𝐻 then
21 𝑚𝑠𝑔[ 𝑗] ← 𝑛𝑜𝑡 (𝑚𝑠𝑔[ 𝑗 − 1]) ; /* bit flipped */

22 else
23 𝑚𝑠𝑔[ 𝑗] ←𝑚𝑠𝑔[ 𝑗 − 1] ; /* bit stayed the same */

24 end
25 end
26 end
27 end
28 return𝑚𝑠𝑔;

than the pre-computed low threshold (𝜌2) then a bit value ‘0’ is interpreted.
However, when multiple bits of the same value are sent sequentially, the
temperature saturates to a value between. To solve this, the gradient between
two consecutive samples is computed as a moving slope. If the slope of the
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readings from the moving window is greater than the precompute threshold
for a high slope 𝛿𝐻 , it means that a rapid change of temperature occurred.
Consequently, a bit with value opposite to the previously received bit is
transmitted, and the value is toggled based on the last received bit. Otherwise,
if the slope is low, it means that the same value is received and no toggling
occurs.

To set the thresholds 𝜌1, 𝜌2, and 𝛿𝐻 a subset of the sent data is analyzed.
Each bit is sent over a period 𝑇 and an interval of temperature samples
𝑡 is recorded. The temperature recorded for the ‘1’ bits in the dataset 𝑡1.
Similarly, the temperatures for ‘0’ bits are collected in the data set 𝑡0. The
high threshold (𝜌1) is set as 𝜌1 = 𝜇 (𝑚𝑎𝑥 (𝑡1)) − 𝜎 (𝑚𝑎𝑥 (𝑡1)) with 𝜇 being
the average and 𝜎 being standard deviation. The low threshold (𝜌2), is set
as 𝜌2 = 𝜇 (𝑚𝑎𝑥 (𝑡0)) + 𝜎 (𝑚𝑎𝑥 (𝑡0)). Finally, for the slope threshold 𝛿𝐻 , 𝑡𝑔 is
collected, which is the dataset of any bits that are of opposite value to the
previous bit. Then 𝛿𝐻 is calculated as 𝛿𝐻 = 𝜇 (𝑚𝑎𝑥 (𝑡𝑔) −𝑚𝑖𝑛(𝑡𝑔))/𝑇 .

Processing System AES System AXI Communication 

Figure 4.4: Floor plan of the implemented system on the ZCU102 UltraScale+ FPGA evaluation
board

4.5.1.5 Evaluation Platform

Through-Fabric is run on a ZCU102 FPGA-MPSoC [197] which is supported
by OP-TEE. The design is implemented using Vivado 2018. The MPSoC
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contains a quad-core ARM CORTEX A-53 processor and a PL with 200k LUTs.
The AES accelerator is open source from [135]. It uses 11k LUTs and the PS
to PL AXI interface uses 3.1k LUTs, at a clock frequency of 100MHz. The
normal world operating system is a custom Linux distribution built using the
PetaLinux SDK from Xilinx. Figure 4.4 shows the implemented system on
the FPGA.

4.5.2 Covert-Hammer: Synchronizing Covert Communication
from Multiple Tenants

In the usual case of covert communication, one party transmits, while other
parties, usually only one, receive [82, 144]. In contrast, this chapter proposes
a covert channel synchronization protocol for multiple tenants in hardware
that goes beyond the traditional case where one is a transmitter and the
other is a receiver. Rather, there are several malicious tenants, all of them are
transmitting and receiving via the synchronization protocol.

4.5.2.1 System Overview, Assumptions and Goals

The system targeted by Covert-Hammer is illustrated in Figure 4.5. It is fully
operating on the PL side with no involvement from the PS. It is a multi-
tenant setup where at least two tenants are malicious and other tenants are
benign. The setup also includes a static region that is designed by the CSP.
Among others, the static region serves as a clock source for the different
tenants and their communication interface with the outside world. This
communication is essential for the tenants so they can get input data or
communicate intermediate/final results for the customers renting the area on
the FPGA-MPSoC. The static design also ensures that there is no intra-FPGA
communication between the tenants.

Covert-Hammer assumes that each malicious tenant knows how many other
malicious tenants are going to participate in the communication. However,
other than having the same clock, the malicious tenants do not have any other
means of synchronization nor can they know whether or not they reside on
the same FPGA-MPSoC with other malicious tenants or the number of the
malicious tenants on the FPGA-MPSoC. Therefore, the aim is to establish a
synchronization protocol to coordinate the communication and allow them
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Clock Source
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Tenant 2

(Benign)

Tenant 1

(Malcious)
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(Malicious)
Static Region

Multi-tenant Region

Figure 4.5: Expanded structural overview for the system targeted by Covert-Hammer. At least
two malicious tenants coordinate their covert channel communication. The static region provides
the needed infrastructure to all tenants.

to communicate reliably. The transmitting tenants uses seemingly-benign
power wasters, same as those used for power-hammering, which makes it
hard for the CSP to detect that they are malicious [16].

Moreover, the goal is to have a simple and robust synchronization protocol.
The aim is to avoid using any sophisticated error correction or modulation
schemes to ensure that the receiver is as lightweight as possible.

4.5.2.2 Covert Synchronization Protocol

The synchronization protocol is simple. It has 𝑛 communication slots for a
communication between 𝑛 tenants with one slot per tenant. Each slot consists
of 150 cycles at 100MHz, the sending tenant generates a short voltage peak
of 10 cycles, waits for 40 cycles, and repeats it once again. This is followed by
staying silent for 50 cycles. Then a final voltage peak of 10 cycles is generated
at the middle of the last 40 cycles.

This design is simple yet effective. Generating two voltage peaks (which are
sensed by the listening malicious tenants) acts as synchronization. If the other
malicious tenants do not exactly detect two peaks, they understand that this
is not real communication but rather random noise, and no synchronization
occurs. The silence for 50 cycles serves to increase the resilience to noise. It
ensures that the two previous peaks are not just part of some ongoing noisy
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pattern detected mistakenly. This is important as the existence of several
benign tenants may coincidentally produce such a pattern.

4.5.2.3 Design of the Malicious Tenants

Receiver

FSM

Transmitter

detection

modulation

clk

enable

Figure 4.6: Figures of the design inside the two communication tenants with the connections to
the state machine

The malicious tenant is able to: (i) send covert messages and (ii) receive covert
messages. To perform these tasks, it uses the design from Figure 4.6. As
mentioned above, the attacker sends peaks via the covert channel. Therefore,
the attacker uses “power wasters” to send the peaks. Unlike previous works,
the sender uses seemingly benign “power wasters” and successfully modulates
them. By continuously enabling and then disabling the power wasters, the
attacker causes sufficient power disturbances for communication, but not
enough for power-hammering, i.e., no faults are injected to neighboring
tenants or crash happens to the chip.

For receiving, it is necessary to detect the generated pattern reliably from the
other tenants. As the tenants are using a covert channel for communication,
there is no direct way to receive this pattern. Therefore, the tenants have to
implement the receiver to detect the pattern generated by malicious tenants.
This pattern causes a power disturbance that affects the timing of the circuits
implemented on the FPGA. Therefore, the power disturbance can be detected
by measuring the speed of a circuit. In order to detect these changes, the
tenants implement Time to Digital Converters (TDCs) as a cascade of buffers
based on the TDC design from [80]. Each buffer has a delay, and in case
power disturbances exist, the delay of each buffer increases. When a a pulse
is sent to the TDC and measure how long it needs to go through all buffers.
When a high-power disturbance exists, the signal takes longer than expected
to traverse all buffers. Hence, by monitoring the speed of signals traversing
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the TDC, tenants can reliably detect the peaks. In total, seven TDCs are used
to enable reliable detection via majority voting. The TDCs are designed to be
lightweight and cause no significant overhead.

idle
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Detect 
Peaks

start 
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Figure 4.7: State machine controlling the malicious tenant.

Creating the covert/synchronization message, figuring out the proper com-
munication slot, and receiving is controlled via the state machine shown
in Figure 4.7. When a malicious tenant is uploaded, it does not know if other
malicious tenants reside on the FPGA or not. Therefore, it directly starts
sending the covert message. If it receives the correct number 𝑛 messages
from the 𝑛 tenants, this means that all the needed tenants are there and
the attack can start right away. However, if it receives less messages from
number 𝑡 it knows that not all the necessary tenants are there and waits for
their upload. Based on the number 𝑡 , it assigns itself the appropriate slot in
upcoming communications. For example, if it is the first malicious tenant to
be uploaded, it will receive 𝑡 = 0messages. Therefore, it will self-assign slot 0.
Then when the next tenant comes, it will send its request for synchronization
and will get only 𝑡 = 1 messages and it will assume slot 1. This stacks nicely
and in a conflict-free manner.

If the communication does not start right away, the finite state machine stays
in the idle phase and continuously checks for the power disturbance via the
TDCs. Once it detects the first peak, meaning that a new malicious tenant is
uploaded, it waits for 𝑡 slots and then sends its message in its correct slot. If all
𝑛 messages are received, the communication is started. The communication
is done in a cyclic manner, each malicious tenant sending covert messages
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during its slot. The malicious tenants can use this communication to perform
any coordinated attacks needed, e.g., coordinated power hammering [4],
inject faults in NNs [43], or use the TDCs to perform analysis on the benign
tenants [122].

4.5.2.4 Validation on Hardware

Implementation on the ZCU102 Board: Similar to Through-Fabric the im-
plementation of the Covert-Hammer system is on a Xilinx ZCU102 FPGA
development board containing an UltraScale+ Zynq MPSoC. Synthesis, place-
ment, and routing are performed using Vivado 2022.2 running on an Intel
i9-12900 system with 64 GiB of memory. A complete run starting from syn-
thesis to bitstream generation takes between 30 and 45 minutes, depending
on the system and the configuration.

Latch-based Tenant Latch-based Communication
AES-based Tenant AES-based Communication
Static Design Benign Tenant

Figure 4.8:Floor-plan of the implemented systemwith themalicious tenants on the ZCU102 FPGA
development board. In this floorplan, a latch-based transmitter and an AES-based transmitter
are used for the malicious tenants.

The implemented system has three tenant slots alongside the static design as
Figure 4.8 shows. Two slots are for malicious tenants, and the final one is for
a benign tenant. The sizes for each tenant slot are given in Table 4.2. For the
benign tenant,they are three different designs based on circuits from three
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benchmarks, ISCAS [44], Groundhog [104], and Berkeley [157]. The circuits
used from each benchmark are stated in Table 4.1

Table 4.1: Circuits used from each benchmark as background applications to evaluate the robust-
ness of the covert communication.

ISCAS Groundhog Berkeley
s208_1 GH09.B.1 ucsb_152_tap_fir–0
s420_1 GH09.B.2 ava–1
s526n GH09.B.4 top_rs_decode–3
s9234_1 GH09.B.6 uoft_raytracer–3

For malicious tenants, they explore four different designs as the transmitter
part. They use self-oscillating latch-based attacks from [126], AES-based
attacks from [159], DES-based, and SHA-based attacks from [10, 16]. All
these attacks can bypass any offline checks performed by commercial service
providers [125]. Moreover, since three of the attacks are based on benign
circuits (AES, DES, and SHA), it will be even harder to detect them by most
of the offline detection tools.

Table 4.2: Size of tenant slots in three tenant setup. The malicious tenant slots are given more
resources to be able to fine-tune the transmission.

Tenant malicious 1 malicious 2 Victim
Size (LUTs) 69520 72048 34152
% of LUTs 27.8% 28.8% 13.7%

For the receiver part, the malicious tenants implement it using TDCs. The
tenants use the same design from [80] Each TDC is designed as a long delay
chain and uses 8 carry chains and 77 registers. The 7 TDCs increase the
robustness of the communication and this design allows to have them with a
low overhead. The receiver including TDCs uses only 0.6% of the available
FPGA resources which is negligible.

Implementation on HACC Cloud Setup: The evaluation extends to Hetero-
geneous Accelerated Compute Cluster (HACC) [97]. HACC is a cloud setup
hosted at several universities and run by AMD. It contains servers accelerated
with cloud FPGA boards from Xilinx, e.g., Alveo U200. It natively supports

80



4.6 Performance of the Covert Channels

only single-tenant designs. However, it is possible to have the FPGA parti-
tioned into reconfigurable regions to mimic the multi-tenant scenario. The
target is the Alveo U200 FPGAs in their infrastructure. It is significantly
bigger than the ZCU102 FPGA with almost 10× the resources. Therefore, a
CSP can divide the FPGA into 15 tenant regions, each with 6% of the FPGA
resources (roughly the same size as 60% of the ZCU102) while keeping 10%
for the static design.

Malicious Tenant Benign Tenant Static Design

Figure 4.9: Floorplan of the implemented system on the Alveo U200 board on the HACC cloud.
Up to ten malicious tenants residing on the same FPGA. All four transmitters were successfully
uploaded to the FPGA.

Figure 4.9 shows the final design. Ten tenant regions are assigned to malicious
tenants, while five are kept for victim tenants. For all four transmitter designs,
they were able to be synthesized, generated the bitstream, and uploaded to
the Alveo U200 within the HACC system. This proves that the offline checks
performed by AMD in the cloud setup does not catch these stealthy attacks.
Moreover, the AMD HACC shows its traffic (how many single-tenants are
active at any moment) to its users. This traffic data is used to emulate a
multi-tenant scenario where five tenants have to share an FPGA to evaluate
whether having an attack from multiple tenants is possible or not.

4.6 Performance of the Covert Channels

Based on the implemented systems, the performance of the proposed covert
channels , Through-Fabric and Covert-Hammer, is evaluated under realistic
conditions. The performance analysis covers both the transmitter and receiver
efficiency, as well as the robustness of the channels in various scenarios. For
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Through-Fabric, the evaluation id for the reliability of transmitting data using
thermal modulation. For Covert-Hammer the effects of noise and number of
communicating tenants on the robustness of the channel are evaluated.

4.6.1 Performance of Through-Fabric

Performance of the Through-Fabric covert channel is done by analyzing both
the transmitter and receiver. The focus is on the AES accelerator’s modulation
impact on PL temperature and data transmission and the receiver’s noise
filtering and decoding accuracy.

4.6.1.1 Transmitter & Receiver

(a) Unfiltered “0000_0000” (b) Unfiltered “1010_1010”

(c) Unfiltered “1100_1000” (d) Unfiltered “1000_1000”

Figure 4.10: Temperature of the PL based on sending the different 8-bit messages. Each message
has a slightly different profile.
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By modulating the usage of the AES accelerator, the transmitter creates
changes in the temperature profile of the PL. This is apparent from Fig-
ure 4.10, as with sending each different packet of 8-bits the PL temperature
profile is different. However, the temperature is affected not only by the
usage of the accelerator. For example, the ambient temperature and different
noise sources cause the temperature to fluctuate. Therefore, even with the
different temperature profiles, it is necessary that the receiver applies further
filtering.

(a) Filtered “0000_0000” (b) Filtered “1010_1010”

(c) Filtered “1100_1000” (d) Filtered “1000_1000”

Figure 4.11: Data received by the receiver after applying filtering from algorithm 2. It can be seen
that ‘0’ bits and ‘1’ bits are differentiable.

On the receiver side, after applying algorithm 2, the receiver is able to filter
out all the effects from other sources. Figure 4.11 shows the same four packets
after applying the filtering at the transmit frequency. For sending all zeros,
the temperature stays at a very low level. For alternating between ‘0’ and ‘1’,
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the peaks are very distinct. When mixing zeros and ones in a series, they are
still differentiable using the latter part of algorithm 2.

4.6.1.2 Channel metrics

In order to evaluate the effectiveness of the Thermal Covert Channel (TCC),
the compromised Trusted Application (TA) is run. It performs several con-
secutive descriptions using the AES accelerator, in order to send 8, 000 bits
encoded in 8-bit packets on the FPGA-MPSoC board. Table 4.3 shows the
result metrics for the new cross-world thermal covert channel from this exper-
iment including bit error rate (BER), packet error rate (PER), and transmission
rate. As it can be seen, the channel is effective under the tested scenario,
achieving a transmission rate of 2 bps, which is on par with similar TCCs on
non-CPU devices [86, 101]. Moreover, the attack was able to produce very
low error rates, in a range similar to other state-of-the-art approaches for
thermal covert channels (1-11%) [142]. Notably, since the attack is performed
within the OP-TEE environment, its effectiveness shows how the isolation
and data confidentially principles of the TEE have been effectively broken by
the attack.

Table 4.3: Thermal covert channel evaluation metrics

Bits Packets Transmission
rate (bps)

BER
(%)

PER
(%)

8000 1000 2 1.9 4.3

4.6.1.3 Comparison to state of the art

Other works exploited covert channels on FPGAs before. However, as Ta-
ble 4.4 shows, the contribution is distinct from them in several ways. First,
the contribution is the first to exploit a temperature-based covert channel be-
tween CPUs using the FPGA. The second distinction is that the contribution
neither requires special malicious hardware for the transmitter nor for the
receiver. Finally, none of the related works showed that they were able to
break TEE on FPGAs.
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Table 4.4: Comparison to related works. The contribution does not need any malicious hardware
on the transmitter or receiver side.

Work
Requires
Mal. (HW)
Transmitter

Requires
Mal. (HW)
Receiver

Covert
Channel

Break
TEE

Through-Fabric ✗ ✗ temperature ✓
Ref. [82] ✓ ✓ voltage ✗
Ref. [42] ✓ ✓ frequency ✗
Ref. [87] ✗ ✓ voltage ✗
Ref. [78] ✓ ✓ voltage ✗
Ref. [68] ✗ ✓ frequency ✗
Ref. [79] ✗ ✗ PCIe ✗
Ref. [77] ✓ ✓ inter. wiring ✗

4.6.2 Performance of Covert-Hammer

Subsequently, the focus shifts to evaluating the performance of Covert-
Hammer across the two implemented systems. The emphasis is placed on the
efficacy of the synchronization process rather than on the communication
itself. This focus is based on the notion that once synchronization is achieved,
each tenant involved in communication reliably secures their designated
time slot. Consequently, even in the presence of message errors, the overall
communication process remains operational.

4.6.2.1 Robustness of the Covert Channel on ZCU102

For coordinated covert communications, the feature evaluated is the robust-
ness of the covert channel. This metric is of high importance because if the
covert channel is noisy and not robust, then the attacking tenants will not be
able to synchronize and the attack will fail. To evaluate the robustness the
used metric is the correct packet rate.

Figure 4.12 shows the correct packet rate of the channel. The different bench-
marks did not cause any significant change in the correct packet rate. There-
fore, the detailed analysis for them is excluded from the subsequent results as
it would be redundant. For the transmitter tenants themselves, not all of them

85



4 Identifying and Mitigating Covert Channels on FPGA-Accelerated Cloud Systems

80%

90%

100%

DES SHA AES Latch

C
o

rr
e

ct
 P

ac
ke

t 
R

at
e

Controller (Sender)

ISCAS Groundhog Berkeley

Figure 4.12: The correct packet rate of the covert channel. Using the different attackers as the
transmitter with noise from benign benchmarks shows that the covert channel is robust. The
correct packet rate never drops below 95%.

are as robust as each other. When acting as a transmitter, the latch-based
attacker has a correct packet rate higher than 99.5%. AES and SHA-based
attackers have correct packet rates of around 98% and 96% respectively. The
lowest correct packet rate is the one from the DES-based attackers of 95%,
which is still significantly robust.

4.6.2.2 Evaluation on the AMD HACC Cloud Setup

The evaluation is extended to the HACC setup from AMD. The evaluation
focuses the chances of uploading several malicious tenants to the same FPGA
and the success of the covert channel communication between several ten-
ants.

Success of having Multiple Malicious co-Tenants: HACC does not offer multi-
tenancy. However, based on the recorded traffic of the cloud setup, it is
possible to emulate such a scenario. In one location, HACC has 50 FPGAs.
The traffic is recorded and instead of assigning each tenant an FPGA, the
assumption is that five tenants will share an FPGA. The assumption that the
CSP will cluster tenants on the same FPGA whenever possible.
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The average usage time of a user during the recorded period was one hour
and the maximum allowed was five hours. Each malicious tenant reserves
the maximum period. Moreover, the assumption is that the malicious tenants
will be uploaded separated by 15 minutes. The attacker will flood a system
with upload requests until the FPGAs are all full.
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Figure 4.13:Attack success rate of coordinated malicious tenants on the Alveo U200 at the HACC
cloud setup.

Figure 4.13 shows the success rate of the attack. An attack is successful if the
minimum number of tenants needed is uploaded to an FPGA while having
at least one victim residing with them. The success rate gets lower as the
number of malicious tenants increases. If the attack needs two tenants to be
successful, it has a chance of success 70%, while for four tenants, the chance
of success of uploading the tenants together is around 30%. Note that these
results are highly dependent on the clustering policy of the CSP. If a different
policy is used, e.g., considering the tenant’s period of usage, or differently
sized tenants are needed, the results would change.

Success of Establishing Covert Communication: Next, the covert commu-
nication in on the Alveo board is evaluated using the HACC setup shown
in Figure 4.9. The number of communicating tenants range from two to
ten. For simplicity, all the malicious tenants use the same type of power
wasters. Communication degrades significantly when the number of tenants
communicating increases. This makes sense as if only one of the tenants
fails in the communication even once and the whole system fails because the
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slot assignment fails. Moreover, based on the type of the power-waster that
launches the communication, the failures increase. For DES-based, the com-
munications fail most significantly, while for latch-based, the communication
is more stable and successful.
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Figure 4.14: Communication success rate on the Alveo U200, with each extra tenant the ability
to establish the communication drops significantly.

4.7 Proposed Countermeasures

In addition to introducing novel covert channel attacks, this chapter also pro-
poses countermeasures to mitigate them. The two covert channel attacks may
include components within both hardware and software, or may be confined
exclusively to hardware. Therefore, the chapter proposes countermeasures at
both the hardware and software levels.

4.7.1 Hardware-based Countermeasure

The first proposal is to use Ring Oscillators (ROs) as a hardware-based counter-
measure. Ring oscillators are implemented as a chain of Runtime-Configurable
ROs (RCROs) as shown in Figure 4.15. The building blocks of the RCRO are
the Configrubale Inverters (CIs). CIs have two types: Simple CIs (SCIs) and
Complex CIs (CCIs). A chain of RCROs consists of 65 CIs (13 CCIs and 52
SCIs). This mix of CIs helps to generate random noise. For SCIs, if the 𝑠𝑒𝑙 bit
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Figure 4.15: Runtime-Configurable Ring Oscillator.

is set, the output of the previous inverter in the chain is used as the input,
rather than its own output being applied to the input as immediate feedback.
For CCIs, not only the output signal of the previous SCI or its own feedback
can be used as an input signal, but also the output signal of the previous CCI
in the chain. For this additional case, a second 𝑐_𝑠𝑒𝑙 control bit is required
for each CCI. If the 𝑐_𝑠𝑒𝑙 control bit is not set, the CCI behaves like an SCI.
However, if both the 𝑠𝑒𝑙 control bit and the 𝑐_𝑠𝑒𝑙 control bit are set, the output
signal of the preceding CCI in the chain is selected as the input signal and the
SCIs that are between the two CCIs are skipped to reduce the length of the
chain by four inverters. Since the 𝑐_𝑠𝑒𝑙 control bit can be set individually for
each CCI, it is possible to change the chain length at any time by changing
the value of 𝑐_𝑠𝑒𝑙 . Depending on the configuration, the chain can have a
variable length between 13 (all SCIs are skipped) and 65 CIs (all SCIs are used)
with a step size of 4 CIs.

The behavior of 𝑐_𝑠𝑒𝑙 and 𝑠𝑒𝑙 is controlled by a central control module. When
the countermeasure is activated, the control module obtains a random number
𝑅 from an Random Number Generator (RNG) and then enables all CIs for 𝑅
clock cycles, and then disables them for 𝑅 clock cycles. Then a new number 𝑅
is generated and the process is repeated. This generated signal is forwarded
by the control module to the ring oscillators as an enable signal so that these
are always active or inactive for a random number of cycles. This generates
random noise in the time domain. To generate random noise in the power
domain, the 𝑐_𝑠𝑒𝑙 signals for each CCI are also controlled by the RNG, Thus,
a random number of SCIs is skipped at each run to vary both the power
consumption and the frequency of the noise. Consequently, the noise does
not contain any regular patterns that could be filtered out. This is in contrast
to using all RCROs all the time, which would have a regular pattern.
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The effectiveness of the countermeasure is evaluated using the Test Vector
Leakage Assessment (TVLA) [36]. It uses two sets of power traces, the first set
is generated by always choosing the same fixed input data. In the second set,
the plain texts are chosen randomly. Then a Welch’s t-test is applied to the
two data sets to determine whether they differ significantly from each other.
If the t-value stays in the range of −4.5 < 𝑡 < 4.5 the system is considered
secure, otherwise leakage exists [36].

The TVLA method is run on the system, once with the countermeasure
activated and another with the countermeasure deactivated. For each, the
evaluation is done by collecting 120K traces, 60K are with fixed input, and 60K
with random input. Based on the traces, the t-value is calculated. Figure 4.16
shows the TVLA results. For the unprotected case (shown in Figure 4.16a)
the t-value rapidly grows out of the secure range.
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Figure 4.16: Test vector leakage assessment (TVLA) results
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4.7.2 Software-based countermeasure
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Figure 4.17: Delay added to the acceleration request for different number of requests per second
from the same application.

For a software-based countermeasure, the idea is to implement an application-
specific delay countermeasure. Similar to the classical use for memory con-
tention on spinning processors [35], an increasing delay penalty can be
applied to a TA using the accelerator with an abnormal frequency of requests.
In this case, after the application has invoked the API method to use the
accelerator, before queuing the request, the method checks the number of
times this particular application has requested the accelerator in a period of
time. If the number of times is greater than the threshold for normal use,
then a delay is added to the request. Since the transmitter requires to use the
accelerator multiple times to encode the bits as temperature variations, each
use would be increasingly longer, disturbing the timings of the channel. A
simple yet flexible function to obtain the delay for a number of requests per
second (𝑛) can be described as follows:

delay(𝑛) = min
(
𝛼 · (𝑛 − threshold)𝛽 , max_delay

)
(4.1)

where 𝛼 is a scaling factor that determines the severity of the penalty, 𝛽 deter-
mines how sharply the penalty increases, and the threshold is the number of
requests considered as normal use.𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 limit is as an upper boundary
for the delay. Figure 4.17 shows the delay for different configurations of 𝛼
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and 𝛽 , with a threshold of 5 requests per second and a𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 of 30 sec-
onds. As it can seen, this function can be used to enforce different degrees of
delay penalty depending on the frequency of the requests to the particular
accelerator.

4.8 Summary

Covert channel attacks pose a significant threat as they exploit the shared
nature of multi-tenant FPGA-MPSoC resources, allowing colluding tenants to
leak data. This chapter explores two such covert channel attacks, one based
on power consumption and the other on thermal emissions, and propose
countermeasures to mitigate these threats. It demonstrates that the threat
of covert channels is more complex than what has been shown previously
in the literature and can break TEE on FPGA-MPSoCs via the use of benign
accelerators. Moreover, it demonstrates how a covert communication can
be established in a multi-party manner on FPGA-MPSoCs. It also proposes a
noise-generating countermeasure with random, variable frequencies using
ring oscillator chains of different lengths on the hardware level and a timing-
based countermeasure on the software level.
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5 Data Leakage Mitigation in Cloud
Systems Using FPGA-Accelerated
Homomorphic Encryption

This chapter tries to fully eliminate the threat of data leakage from accelerated
cloud systems. The landscape of computing infrastructure is changing with
the adoption of cloud computing. It allows organizations to use on-demand
services, freeing them from the burden of owning and maintaining their com-
puting infrastructure. However, this transformation comes with challenges,
mainly the escalating concerns over privacy and security. These concerns
stem from the fact that data processing has to be done in plaintext within the
infrastructure of the CSP. However, if the CSP has a vulnerable security, the
users’ data can be breached [191] and such attacks are not uncommon [107,
129].

In response to these concerns, HE emerges as a robust solution. It allows
processing directly on encrypted data, i.e., without even providing the cloud
servers the keys to decrypt the data first. HE ensures that sensitive informa-
tion remains confidential throughout computational processes. HE applica-
tions span various domains, e.g., the healthcare sector, artificial intelligence,
electronic voting systems, financial data processing, and encrypted search
engines [21, 103, 109, 155]. Despite the promise of HE applications, practical
implementation encounters obstacles, most notably the substantial computa-
tional and memory overhead of homomorphic operations. On the algorithmic
side, there are mathematical optimizations. The most prominent of them
is Fast Fully Homomorphic Encryption over the Torus (TFHE), which is
post-quantum secure [54].

This chapter is based on contributions from [8, 9].
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5.1 Motivational Example

Consider a scenario in which sensitive financial data must be processed within
a public cloud system. Using classical approaches, this data would be sent
to the server in plaintext, exposing it to potential breaches. Figures 5.1a and
5.1b compare this traditional method with a homomorphic approach. In the
classical case, as shown in Figure 5.1a, the plaintext data is vulnerable once
it reaches the server. In contrast, HE allows the data to remain encrypted
throughout the computation process, as depicted in Figure 5.1b, ensuring that
even if the server is compromised, the data remains secure. This example
underscores the necessity of efficient HE implementations, particularly for
applications where data confidentiality is crucial.

User (Client) Cloud (Server)

Encrypt Decrypt

Processing

EncryptDecrypt

(a) Classical case

User (Client) Cloud (Server)

Homomorphic 
Processing

H Encrypt

H Decrypt

(b) Homomorphic case

Figure 5.1: Client/Server computation flow. In the classical case, plaintext data is processed on
the server side which might lead to data breach. In contrast, When Homomorphic Encryption is
used, data is processed on the server side while encrypted. Thus, no data breach is possible.

5.2 Problem Statement

HE is both computationally and memory bound [192] as one step of HE typi-
cally involves the processing of MiBs of data which limits its usage in public
cloud systems. HBM, as integrated in newer generations of FPGAs [184],
can be used to resolve such memory bottlenecks when FaaS is provided by
the CSP. Previous works tackled using HBM-enabled FPGAs to accelerate
approximate versions of HE [192, 193]. However, such accelerators are mainly
suitable for ML computations, but not suitable for accuracy-critical applica-
tions. This chapter implements HBMorphic an accurate accelerator for TFHE
on an HBM-enabled FPGA to speed up its operation.
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5.3 Contributions

This chapter contributions are summarized as follows:

• HBMorphic is the first accelerator to address the memory bottlenecks
of fully accurate TFHE using HBM.

• HBMorphic carefully analyzes the data access pattern and maps the
independently accessed data across memory channels to fully utilize
the HBM bandwidth.

• To speed up computations in TFHE, HBMorphic uses a fast, parame-
terizable, recursive multiplier (using the Karatsuba algorithm) that can
easily scale to various TFHE accelerator implementations and even
offer a trade-off between resource utilization and performance.

5.4 Previous Homomorphic Encryption (HE)
accelerators

Previous HE accelerators exist and can be grouped into three groups. The first
group contains accelerators targeting TFHE [45, 74, 194]. They do not focus on
solving the memory bottleneck, but work under the assumption that the data
will be available when needed. They apply Fast Fourier Transform (FFT) or
Number Transform Theory (NTT), which lower the multiplications overhead
at the cost of reduced accuracy due to numerical errors [170], i.e., they are
not suitable for applications requiring full accuracy.

The second group contains HE accelerators that use Karatsuba-based multi-
pliers [69, 113, 140, 141, 179]. They either target SHE or implement a generic
multiplier that can be used for HE. In both cases, the multiplier is less com-
plex than the one implemented in this chapter and is not suitable for TFHE
acceleration.

The final group contains HE accelerators that use HBM [192, 193]. Both
accelerators target the Cheon-Kim-Kim-Song (CKKS) scheme that can work
in an FHE-like mode. However, CKKS uses approximate arithmetic and
therefore cannot be used for processing that requires the highest accuracy like
health-related algorithms, electronic voting, and financial data processing.
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5.5 HBMorphic’s Design & Implementation

The aim is to design HBMorphic as an accelerator that will speed up the
bottleneck of PBS. HBMorphic uses accurate multipliers, so that it can be
used for all applications. Moreover, it uses HBM to reap the parallelism
offered by 3D memories and reduce memory contention.

5.5.1 System Overview

HBMorphic is built as a full system on the FPGA to accelerate the PBS step
of TFHE and evaluate the benefit of using HBM. Figure 5.2 shows the compo-
nents of the system. For accelerating PBS a Karatsuba-based accelerator is
implemented. The full system contains a MicroBlaze softcore to (i) commu-
nicate with the outer world, e.g., loading the data over Ethernet to memory,
(ii) give the Karatsuba-based accelerator the addresses of the data, and (iii)
communicate back the results. The system has an HBM interface to read and
write the data, it is accessible both via MicroBlaze (to initialize the data) and
via the accelerator to use the data. Similarly, the system has interfaces for
two off-chip DRAMs, which is used for comparison purposes between data
access via HBM and DRAM.

Karatsuba 
Accelerator

On-chip 
HBM

Off-chip 
DRAM

Off-chip 
DRAM

MicroBlaze

AXI-S

AXI-I

Figure 5.2: System overview, MicroBlaze initializes the data, and the Karatsuba-based accelerator
accesses the data from HBM and accelerates the PBS. The off-chip DRAM interfaces are used to
evaluate the benefit of HBM.

For communication between the components of the system uses Advanced
eXtensible Interface (AXI). The different AXI connection types allow opti-
mization of the connections for different purposes. The AXI Smartconnects
(AXI-S in Figure 5.2) are optimized for speed, which is important to not slow
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down the AXI bandwidth. The accelerator use them to communicate with
the different memory components to get the highest throughput. In contrast,
MicroBlaze uses the AXI Interconnect (AXI-I in Figure 5.2) for communi-
cation. It cannot be optimized for speed, but this is not a problem as the
MicroBlaze will not even saturate a slow AXI connection. This allows the
AXI Interconnect to be much smaller than the AXI Smartconnects.

5.5.2 Custom HBM Interface

The accelerator is implemented on a VCU128 board containing an UltraScale+
FPGA including an HBM [184]. The HBM has 32 Pseudo Channels (PCs),
each of size 256MiB. The chip includes a generic interface containing an
ASIC interconnect between the PCs and the FPGA. It can be bypassed by
implementing a custom interface to get higher throughput. The design would
work the same on other FPGAs or FPGA boards that include HBM with
similar specifications.

HBMorphic implements its own custom HBM interface to obtain the highest
throughput possible. Figure 5.3 shows the interface for the TFHE-777 accel-
erator that performs the external product step of PBS. For one PBS, a total of
25MiB is read. The data needed for the external product is packed in 777 3D
arrays, each of the size {4, 4, 512} of 32 bit words. The interface distributes
the 32 PCs evenly across the 3D arrays to minimize memory contention. Each
PC is used to read only 256 words, distributing the load symmetrically.

To access each of the PCs independently, HBMorphic creates 32 AXI memory
interfaces, each of which is capable of managing the read and write requests
for one PC. The Karatsuba-based accelerator is contained in an AXI wrapper
with 32 independent ports. Each PC has a data output width of 64 bits.

The frequency of the HBM is higher than the frequency of the logic imple-
mented on the FPGA. Therefore, each port has a bitwidth of 512 bit to pack
four words from each PC together. The 256 words are read sequentially over
16 read operations. To amortize the latency as much as possible HBMorphic
uses double buffering. Therefore, the data is already available immediately
when it is needed. Note that the memory interface does not focus on only
having parallel instances of the AXI memory modules but rather on partition-
ing the memory in channel granularity. This granularity helps in distributing
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the data reading load equally across all channels and reaching the highest
possible bandwidth.
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Figure 5.3: The HBM interface for TFHE-777. The 32 Pseudo Channels are divided equally to get
the data packed over a 3D array. For each of the 777 multiplications, 256 32 bit words are read.

5.5.3 Accelerating the External Product of PBS

The external product allows a ciphertext multiplication whose result is an
encryption of the product of plaintexts. Note that the mathematics of TFHE
is performed over polynomials of size 𝑛. It is called ‘external’ because it
combines the homomorphic ciphertext with the external new bootstrapping
key in a homomorphic ciphertext form. It is defined as follows

𝐴𝑖 = (𝐵𝐾𝑖 · ((𝐴𝑖−1 ∗𝐶𝑖 ) −𝐴𝑖−1)) +𝐴𝑖−1 (5.1)

The computation goes from 𝑖 = 0 to 𝑖 = 𝑛. 𝐴𝑖 is the ith coefficient of the
new ciphertext, 𝐵𝐾 is the bootstrapping key in ciphertext form, 𝐶 is the
homomorphic ciphertext, 𝐴−1 is initialized to𝑉 , which is the optional lookup
table that can be performed during the PBS.

A naive polynomial multiplication requires 𝑛2 scalar multiplications. The
Karatsuba multiplier [113] reduces the needed scalar multiplications to 𝑛1.58,
which makes a significant reduction for large values of 𝑛. For example,
for 𝑛 = 512, the number of scalar multiplications reduces from 262,144 to
19,683.
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Figure 5.4: Recursive Karatsuba Multiplier. At level 𝑖 , each recursive unit contains three sub-
recursive units alongside a splitter to generate the sub-signals to each recursive unit and a
recombiner that produces the final product of the level. The 0 denotes the lower half of the
polynomial and the 1 denotes the upper half of the polynomial.

The Karatsuba multiplier is implemented using SystemVerilog which sup-
ports recursive calls of HDL designs. Figure 5.4 shows the design of the
Karatsuba multiplier. Each unit includes a splitter, recombiner, and three
recursive instances of the Karatsuba multiplier. The number of polynomials
given to each recursive unit, e.g., 𝑥1𝑖 , equals half the number of polynomials
of the main input 𝑥𝑖 . The accelerator is parameterizable. It takes two main
parameters for input; the first is the polynomial size and the second is the
stopping size. By default, the Karatsuba algorithm requires implementing
𝑙𝑜𝑔2 (polynomial size) levels of the Karatsuba recursive unit. In the final stage,
it will implement the actual multipliers. Hence, it gets a fully parallel imple-
mentation. However, as the polynomial can be of high value, the ‘stopping
size’ as a second parameter is needed. It switches from a parallel implementa-
tion to a sequential implementation at the configured level. In the end, the
number of levels implemented would be 𝑙𝑜𝑔2 (polynomial size/stopping size).
This makes the accelerator very easy to fine-tune, based on the resource
constraints of any FPGA on which it would be implemented.

Algorithm 3 shows how the recursive Karatsuba works as implemented in
SystemVerilog. It starts by splitting the input numbers, 𝑥 and 𝑦, into two
halves each: 𝑥0, 𝑥1, 𝑦0, and 𝑦1. Then it recursively computes the products
𝑥0×𝑦0, (𝑥0+𝑥1)×(𝑦0+𝑦1), and 𝑥1×𝑦1. These products are combined to obtain
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Algorithm 3: The Recursive Hardware Multiplication
Input: 𝑥𝑖 , 𝑦𝑖 : Input arrays of scalars
Output: 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜 : Output array of products
procedure KaratsubaMultiplication(𝑥𝑖 , 𝑦𝑖 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜 )
initialize 𝑥0_𝑦0, 𝑥1𝑥0_𝑦1𝑦0, 𝑥1_𝑦1
split 𝑥𝑖 and 𝑦𝑖 into halves 𝑥0, 𝑥1, 𝑦0, 𝑦1
if InputPolynomialSize is StoppingSize

perform Karatsuba multiplication for the 3 halves
𝑥0_𝑦0← KaratsubaMul(𝑥0, 𝑦0)
𝑥1𝑥0_𝑦1𝑦0← KaratsubaMul(𝑥1 + 𝑥0, 𝑦1 + 𝑦0)
𝑥1_𝑦1← KaratsubaMul(𝑥1, 𝑦1)

else
recursively call KaratsubaMultiplication for each half
𝑥0_𝑦0← KaratsubaMultiplication(𝑥0, 𝑦0)
𝑥1𝑥0_𝑦1𝑦0← KaratsubaMultiplication(𝑥1 + 𝑥0, 𝑦1 + 𝑦0)
𝑥1_𝑦1← KaratsubaMultiplication(𝑥1, 𝑦1)

recombine the results of the recursive calls
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜 ← Recombine(𝑥0_𝑦0, 𝑥1𝑥0_𝑦1𝑦0, 𝑥1_𝑦1)
return 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜
end procedure
procedure KaratsubaMul(𝑎, 𝑏)
initialize 𝑝
if 𝑎 or 𝑏 is a single scalar

return 𝑎 × 𝑏
else

split 𝑎 and 𝑏 into halves 𝑎0, 𝑎1, 𝑏0, 𝑏1
recursively call KaratsubaMul for each pair of halves
𝑝 ← KaratsubaMul(𝑎0, 𝑏0)
𝑝 ← 𝑝+ KaratsubaMul(𝑎1, 𝑏1)
𝑝 ← 𝑝+ ((𝐾𝑎𝑟𝑎𝑡𝑠𝑢𝑏𝑎𝑀𝑢𝑙 (a0 + a1,b0 + b1) - p)
-𝐾𝑎𝑟𝑎𝑡𝑠𝑢𝑏𝑎𝑀𝑢𝑙 (a0,b0)−KaratsubaMul(𝑎1, 𝑏1))
return 𝑝

end procedure
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the final result. When the input size reaches the stopping size, the algorithm
switches to simple multiplication instead of further recursion. The Karatsuba
Multiplication procedure takes two input arrays, 𝑥𝑖 and 𝑦𝑖 , and computes
their product, storing the result in the output array product. Initializes the
arrays to hold intermediate results and splits the input arrays into halves.
Depending on the input size, it performs either simple multiplication or
calls itself recursively for each half. The KaratsubaMul procedure is a helper
function that performs the actual multiplication of two arrays. Recursively
splits the input arrays and computes the products of smaller halves. These
products are then combined to obtain the final result.

5.5.4 Accelerator Implementation

Table 5.1: TFHE Parameters used for the accelerator implementation. Two variants are imple-
mented, TFHE-777 and TFHE-50 based on Rust code from [53].

Parameter TFHE-777 TFHE-50
Learning with error dimension 777 50

Generalized learning with error dimension 3 2
Polynomial size 512 64

Bootstrapping base log 18 18
Scalar size 32 32

Bootstrapping level 1 1

For the accelerator, two different variants of TFHE are implemented: TFHE-
777 and TFHE-50. Both versions are equivalent on the algorithmic level. The
main difference is the volume of the processed data, and subsequently, the
overhead from processing each of them. The key size of TFHE-50 is smaller
than TFHE-777 and therefore, TFHE-50 is not considered fully secure [53].

The complete parameters for each TFHE variant are shown in Table 5.1. The
data for the accelerators are packed in 4D arrays of dimensions [learning
with error dimension, generalized learning with error dimension+1, general-
ized learning with error dimension+1, Polynomial size] of 32 bit words. The
multiplication is done learning with error dimension times over the sub-3D
arrays of the data.

The accelerator is parameterized to build 𝑙𝑜𝑔2 (polynomial size/stopping size)
levels of the Karatsuba algorithm. Ideally, the stopping size should to be equal
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Algorithm 4: TFHE-777 Accelerator Operation
Input: 𝐴: 4D arrays containing cipher text and key
Result: 𝑅: new cipher text
init(HBM) ; /* MicroBlaze loads arrays to HBM */

start(load(A[0])) ; /* start loading first array using the 32 PCs

of HBM */

for i in 777 do
Wait for load(A[i]) ; /* Wait until the data is loaded */

if i < 776 then
start(load(A[i+1])) ; /* start loading the data of the next

array from the 32 PCs */

end
[𝑥,𝑦] ← first_split(𝐴𝑖 , 𝑅𝑖−1) ; /* Calculate the first two values

for the multiplier */

init(Karatsuba𝑟 (x,y,polynomial_size)) ; /* Load the data to

the recursive Karatsuba multiplier */

Run algorithm 3
𝑅 [𝑖] ← recombine(𝑝𝑟 ) ; /* Calculate the ciphertext

component over all the recursively calculated products */

end
return 𝑅;

to 1, i.e., everything is parallel. The FPGA from the VCU128 board has
6840 Digital Signal Processing (DSP) slices, each of which can be used as a
multiplier. For TFHE-50, the polynomial size is 64. This means that there are
6 levels of the Karatsuba recursive unit with an overall of 729 multipliers. This
is fine as they can all be mapped to the DSP slices. However, for the TFHE-777,
with a polynomial size of 512, it would need to build 9 levels that would use
19,683 multipliers. This is much more than the available DSP slices. Therefore,
it uses a stopping size of 2, which reduces the number of needed DSP slices
to 6,561. This fits on the FPGA, leaving a couple of hundred DSP slices for
any other computations needed. The downside is that the multiplier is now
3× slower than its maximum theoretical throughput if all levels were parallel.
Algorithm 4 shows the steps needed to run the implemented accelerator for
TFHE-777. First, the MicroBlaze initializes and makes sure that the data is
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written to HBM. Then the accelerator starts loading the first of the 777 3D
arrays, and once all data is there, the accelerator starts executing. In parallel
to accelerator execution, the next array is loaded from HBM to amortize
the delays. This double buffering is done into Block RAM (BRAM) on the
FPGA. Moreover, the intermediate result between one step and the next is
also written to BRAM because it is used to calculate the next value.
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Figure 5.5: Design of the final multiplier in the recursive Karatsuba for TFHE-777. Not enough
DSPs are available, therefore, 3 multiplications share the same multiplier.

Figure 5.5 shows the design of the final stage of the multiplier when acceler-
ating TFHE-777. The last three multiplications use the same multiplier. Two
adders that are implemented in LUTs prepare the 𝑥1𝑥0 and the 𝑦1𝑦0 terms.
Then, via muxes and demuxes, the products are produced. The selection
line of the muxes is controlled via a finite state machine. It has 4 values, ‘0’
the muxes are turned off, they get constant 0 as input and the equivalent
output from the demux is disconnected. Then the values ‘1’, ‘2’, and ‘3’ con-
trol the output of the multiplications of the terms 𝑥0𝑦0, 𝑥1𝑥0𝑦1𝑦0, and 𝑥1𝑦1
respectively.

5.6 Performance of HBMorphic

HBMorphic is evaluated on a VCU128 board [184], using Vivado 2022.2. The
maximum frequency achieved by the design is 75MHz. To validate the results,
the ciphertexts and bootstrapping keys are generated using the rust code
from [53].

To be able to evaluate several metrics, the implementation of each of the TFHE-
50 and TFHE-777 use once the Karatsuba Multiplier and once using a normal
multiplier. Moreover, for the memory interface, three different variations are
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AXI Infrastructure DRAM Interface HBM
HBM Interface AcceleratorMicroblaze

Figure 5.6: HBMorphic floorplan on the VCU128 board taken from the synthesized design on
Vivado 2022.2. The accelerator implemented accelerates TFHE-50. The vertical stacking of HBM
is not visible in this 2D representation.

used. The first one uses the off-chip DRAM to have a baseline without any
HBM usage. The second one uses the on-chip HBMwith the generic interface
fromXilinx [186]. The final one uses the proposed customHBM interface. The
same optimization is done for both the custom and generic HBM interfaces.
The HBM interface enables request and coherency in reordering, look ahead
pre-charge and activate, and data is set to be accessed in a linear mode. For
the generic interface, the address space considers the whole memory as one
address space and let the storage of the data be done over all channels. For
the custom interface, each channel is considered as a separate memory to be
read and written independently from each other.

Figure 5.6 shows the synthesis and implementation results for HBMorphic
when accelerating TFHE-50 using the Karatsuba multiplier and the custom
HBM interface. The exact resource utilization is listed in Table 5.2 but the
figure gives an initial idea. As expected, the Karatsuba multiplier takes up the
majority of the design, with AXI bus components scattered over the system.
The HBM interface is of significant size as well and is implemented very close
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Figure 5.7: Maximum programmable bootstrappings per second for both variants of TFHE using
the different multipliers and memory interfaces.

to the HBM to handle the data right away. The DRAM interface is also of a
significant size, while the MicroBlaze is almost invisible.

5.6.1 Performance of the Accelerator

The first metric evaluated is how many PBSs per second can be performed
using the accelerator. To be able to evaluate the benefit of the Karatsuba
multiplier and the custom HBM interface, for each TFHE variant, the evalua-
tion uses six different combinations between the multiplier and the memory
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interface with the Karatsuba multiplier and the custom HBM interface being
the solution HBMorphic.

Figure 5.7 shows the performance of TFHE. For TFHE-50, using the off-chip
DRAM achieves the lowest number of PBS as expected. The execution is
dominated by the memory accesses. The Karatsuba multiplier is effective in
comparison to the normal multiplier, reaching on average 4.9× improvement
in PBS per second when using the same memory interface. Even using the
Karatsubamultiplier with the generic HBM interface is performing 4.7× better
than the normal multiplier using the customHBM interface. The customHBM
interface in general outperforms the generic interface. Using HBMorphic, i.e.,
the custom interface and the Karatsuba multiplier can perform 49715 PBS per
second in comparison to 18835 PBS per second using the generic interface.
In comparison to the DRAM baseline, HBMorphic has a 211× speedup.

For the TFHE-777 the same trends generally hold with a few differences.
First, since the data and computations are significantly more, the PBS per
second achieved using the Karatsubamultiplier and the customHBM interface
(HBMorphic) is 2627. Second, the difference between using custom and
generic interfaces is smaller as the Karatsuba multiplier achieves 1763 PBS
using the generic interface. Third, using the custom or the generic interface
makes little difference for the normal multiplier as it is now dominated by
the computation of the multiplication, not the data loading. This makes sense
as the number of multiplications grows from roughly 642 to roughly 5122.
This huge increase in the multiplications makes HBMorphic have a higher
speedup in comparison to the DRAM baseline of 438×.

5.6.2 HBM Bandwidth Utilization

Next, the HBM bandwidth utilization of the accelerator is evaluated. For this
evaluation, the combinations using DRAM are omitted as they have no HBM
utilization. The focus is only on the TFHE-777 as it is the more secure and
also the more data-intensive of the two variants implemented, leaving only
with 4 combinations. The accelerator’s memory access pattern of the data is
tracked for 10 seconds using the HBM monitor from Xilinx [184].

The theoretical maximum bandwidth of the HBM on the VCU128 board is
460GiB/s. However, based on the Xilinx documentation, practically the limit
is 90% of this theoretical bandwidth [186]. For the normal multiplier, it
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Figure 5.8: HBM Bandwidth utilization for the TFHE-777 different implementations. The custom
interface with the Karatsuba multiplier reaches a peak of 406GiB/s. The theoretical maximum
bandwidth is 460GiB/s

Table 5.2: Resource utilization on the VCU128 board. For TFHE-777 the FPGA is almost fully
utilized.

Module LUT Register BRAM DSP F7 Muxes F8 Muxes Carry8
TFHE-777 891,684 189,705 1,586 6,613 2,720 1,472 1,965
TFHE-50 332,242 31,843 254 1,348 936 489 876

Custom HBM interf. 113,574 76,257 151 0 0 0 138
Generic HBM interf. 38,648 39,194 105 0 0 0 56

MicroBlaze 1,192 810 0 0 34 0 19
DRAM controller 30,236 35,712 51 6 856 0 112

AXI bus 19,771 34,226 0 0 65 32 0

made no difference between the custom and generic interfaces. In general,
it never broke the 100GiB/s mark. Using HBMorphic, i.e., the Karatsuba
multiplier in combination with the HBM custom interface, leads to the highest
bandwidth utilization as Figure 5.8 shows. It reaches a maximum of 406GiB/s
and a minimum of 371GiB/s. The highest bandwidth that the Karatsuba
multiplier with the generic interface achieves is just 316GiB/s, which is
lower than the lowest bandwidth utilization provided by the custom interface.
HBMorphic reaches 88% of the theoretical bandwidth, which is very close to
the 90%mark that Xilinx mentions as the maximum practical bandwidth [186].
HBMorphic is able to achieve this as the Karatsuba multiplier requires only
1.04 microseconds to finish multiplication and needs 777 multiplications for
one PBS. Fetching one 64-bit word from the HBM using the interface took
an average of 132 nanoseconds. Leveraging the parallel nature of HBM all
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channels are used in a contention-less manner to utilize the full bandwidth,
reaching 400GiB/s.

5.6.3 FPGA Resource Utilization

The accelerator is designed to use the most possible resources and make it
as parallel as possible. Moreover, the HBM interface implemented has an
increased cost. Table 5.2 shows the resource utilization for each implemented
module. All the components reside simultaneously on the FPGA except for
TFHE-777 and TFHE-50; only one of them exists on the FPGA at one time.
The resource utilization for TFHE-777 is notably high, however, this is by
design as the goal is to use all possible DSPs alongside the needed LUTs. The
design of TFHE-777 is semi-sequential as the number of DSPs on the FPGA is
not enough for a fully parallel version and therefore the difference between
it and TFHE-50 is not higher than 3×. The custom HBM interface is notably
large, however, this was expected based on [186]. It should be noted that it
still fits alongside the TFHE-777 on the FPGA. Moreover, if the accelerator
would be used in an ASIC design, then it would replace the generic HBM
interface from Xilinx, reducing the overhead correspondingly.

5.6.4 Comparison to Related Work

Table 5.3: Comparison to other works constructing FHE accelerators
Accelerator HBM Algorithm Accuracy
HBMorphic ✓ TFHE full
Ref. [45] ✗ TFHE partial
Ref. [192] ✓ CKKS low
Ref. [194] ✗ TFHE partial
Ref. [193] ✓ CKKS low
Ref. [74] ✗ TFHE partial

HBMorphic is compared to the state of the art in Table 5.3. This evaluation is
limited to accelerators for FHE, excluding PHE and SHE accelerators. More-
over, the evaluation is qualitative rather than quantitative. The reason for
this is that each accelerator targets a different board with different frequency

108



5.6 Performance of HBMorphic

specifications and the algorithms that are accelerated are not similar. Acceler-
ators from [45, 74, 194] have a partial accuracy because they use NTT and FFT
multipliers that are not accurate. Moreover, they work under the assumption
that the data will be available, i.e., the do not consider any memory bandwidth
or data latency. Accelerators from [192, 193] use HBM to resolve the memory
bottleneck. However, they have even lower accuracy as they do not only use
NTT and FFT multipliers but also target CKKS, which by its design supports
only approximate calculations. Therefore, the accelerator is the only one that
has full accuracy and is capable of effectively loading the data.

5.6.5 Discussion

To reach maximum speedup using HBMorphic, the memory access patterns
of TFHE was analyzed. Based on these patterns, a custom HBM interface is
designed and implemented to minimize the data contention. This is successful
as HBMorphic increases the HBM bandwidth utilization from 69% (using the
generic interface from Xilinx) to 88%. This higher bandwidth utilization leads
to speedups of 2.6×, for TFHE-50, and 1.5×, for TFHE-777, to the performance
of the accelerator.

While the custom HBM interface reduced the memory bottleneck signifi-
cantly, the computation overhead was still significant. Using a Karatsuba
multiplier greatly helps in getting more speedup without any accuracy loss.
Another approach would have been to use FFT or NTT but it would have
leads to accuracy losses. Designing the Karatsuba multiplier in a parameter-
izable way helps in adapting the accelerator to other boards with different
specifications.

The memory interface is 3× larger than the generic interface, which leads
to a speedup of 2.6× at best. However, comparing the overall overhead, the
design becomes only 8% larger for TFHE-777 which is a reasonable overhead.
However, the accelerator itself is quite large, as HE usually happens in cloud
systems that often offer FaaS, such large FPGAs are usually available.

The ability to fine-tune both the HBM interface and the accelerator gives
the edge to FPGAs over GPU. For example, Ref. [174] uses a GPU coupled
with HBM to accelerate HE. The accelerator they build uses an NTT-based
multiplier and achieves 2.9× speedup at best. This number is similar to
HBMorphic’s speedup but with a less accurate NTT-based multiplier instead
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of an accurate but slow multiplier, in concept, if HBMorphic uses an NTT-
based multiplier it should be able to get an even higher speed up than the
2.6× because of the reduction in the number of multiplications.

5.7 Summary

This chapter tackles the threat of data leakage from cloud systems. It intro-
duces HBMorphic, a fully homomorphic encryption accelerator on an FPGA
with HBM when CSPs offer FaaS. HBMorphic accelerates the state-of-the-art
TFHE algorithm which enables processing on encrypted data, and hence,
if data is leaked it is in encrypted format using an accurate and fast Karat-
suba multiplier. HBMorphic implements the Karatsuba multiplier recursively
and in a parameterized way to adapt it to the resource requirements of the
system. To load the data with high throughput, HBMorphic uses custom
HBM interface. Using this interface and the Karatsuba algorithm HBMorphic
has a speedup of 211× and 438× for both variants of TFHE: TFHE-777 and
TFHE-50 respectively compared to a baseline implementation using DRAM
and a normal multiplier. Compared to the state-of-the-art, HBMorphic is the
only TFHE accelerator that supports accurate calculations along with fully
benefiting from HBM bandwidth.
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6 Eliminating Fault Injection
Threats in Multi-tenant FPGAs

Although HE can stop data leakage, an attacker can still try to inject faults
into computations and cause them to corrupt. This is relevant in a multi-
tenant FPGA setup in accelerated cloud systems. In a multi-tenant setup,
the reconfigurable fabric of the FPGA is partitioned into a static region and
multiple PRRs. The static region handles supervisory tasks such as managing
the reconfiguration of the PRRs, while the PRRs are used by the tenants for
their specific designs. This capability allows CSPs to virtualize FPGA re-
sources effectively, allowing multiple tenants to share a single FPGA without
disrupting each other’s operations.

However, this multi-tenant environment introduces significant security chal-
lenges. Research has demonstrated vulnerabilities in FPGAs that can be
exploited through remote fault attacks [11, 64, 80, 119]. Such attacks have
escalated to actual FaaS in accelerated cloud systems [4, 125], enabling large-
scale DoS attacks that can cause significant financial losses for CSPs. These
attacks typically target the FPGA’s PDN, causing strong voltage fluctuations
that lead to sudden shutdowns [80]. Despite existing countermeasures, such
as design rule checks and bitstream verification [49, 121, 126], recent mali-
cious designs that use seemingly benign circuits to induce faults or cause
DoS remain hard to detect [16, 159].

6.1 Motivational Example

Consider a situation where a CSP provides FaaS to several tenants by letting
them share the same FPGA. However, one of these tenants is malicious and

This chapter is based on contributions from [10, 11].
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Figure 6.1: System model of a multi-tenant FPGA in a cloud environment. The FPGA is divided
into a static partition responsible for management tasks and multiple tenant regions (PRRs), one
of which is occupied by a malicious tenant attempting a power-hammering attack.

has designed a circuit intended to exploit the FPGA’s PDN. This malicious
design, which occupies one of the PRRs, utilizes a large number of oscillators
or carefully crafted input patterns to create strong voltage fluctuations. These
fluctuations can destabilize the FPGA, affecting the operations of neighboring
tenants who are also utilizing their own PRRs.

As illustrated in Figure 6.1, while the other tenants are running legitimate
operations within their allocated PRRs, the malicious tenant’s design begins
to induce significant voltage drops across the FPGA. This could lead to compu-
tational errors, data corruption, or even a complete DoS for the entire FPGA.
The legitimate tenants, unaware of the malicious activity, may experience
unexpected crashes or incorrect outputs, leading to potential data loss and
significant downtime.

What makes this scenario particularly dangerous is that the malicious design
can be crafted to appear benign during initial security checks. By using
standard cryptographic modules or seemingly benign logic, the malicious
tenant’s design can bypass bitstream verification processes. However, once
deployed, the design behaves differently, triggering the power-hammering
attack.

The impact of such an attack is not limited to the malicious tenant’s PRR; it
can extend to the entire FPGA, disrupting all tenants’ operations. For CSPs,
this not only results in a loss of service, but can also lead to financial losses
due to potential reputation damage.

This example illustrates the critical need for robust security measures that
can detect and mitigate such attacks in real-time, ensuring that malicious
tenants cannot disrupt the operations of others. The development of advanced
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countermeasures is essential to maintain the integrity and reliability of cloud-
based FPGA services.

6.2 Threat Model

The threat model assumes a multi-tenant FPGA environment, where both
victim and attacker have their own PRRs. The attacker seeks to exploit
vulnerabilities within the FPGA’s PDN to induce faults, disrupt the victim’s
computations, or cause a full system crash (i.e., DoS).

The attacker in this model is capable of deploying malicious designs that
can evade traditional security checks. These designs may include circuits
that appear benign during design rule checks, but are capable of causing
significant harm once deployed. For example, a seemingly innocuous AES
encryption module can be modified to induce strong voltage fluctuations
when processing specific input patterns [159]. Additionally, the attacker may
utilize multiple self-oscillating circuits that do not rely on external clocks,
further complicating detection [126].

6.3 Contributions

The contributions of this chapter are:

• Development of the first online countermeasure against Power-Hammer
attacks in multi-tenant FPGAs, capable of handling self-oscillating at-
tacks that do not rely on a clock.

• Introduction of a novel reconfiguration-based approach that disables
all interconnects in a malicious PRR, faster than existing methods,
without affecting other tenants.

• Comprehensive evaluation of various Power-Hammering attacks on
multi-tenant FPGAs.

• Proposal of an offline FPGA design classification system that identifies
and extracts relevant features from the metadata of a tenant design,
categorizing its risk level with better accuracy than state-of-the-art
methods.
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6.4 Tenant Design Analysis and Bitstream Reverse
Engineering

To effectively counter Power-Hammering attacks, it is crucial to thoroughly
understand the structure of the FPGA bitstream, which will later be pivotal
in developing robust countermeasures. The process begins with an in-depth
analysis of both malicious and benign tenant designs to identify features
indicative of potential security threats.

A key focus of the analysis is on the power consumption estimates of the
bitstreams for tenant designs. Although power consumption might seem
a straightforward metric, the analysis shows that it is not reliable enough
to detect malicious designs published earlier [138]. These designs often
use highly regular structures, such as mux-based, latch-based, or glitch-
amplification-based configurations. These repetitive structures, composed of
small building blocks, make power estimation inaccurate. Therefore, detection
cannot solely rely on power consumption; a deeper examination of bitstream
metadata is required.

Repetition in bitstream elements is another critical factor. Although repetitive
structures are an indicator of many malicious designs, they can also appear in
simple benign designs with low resource usage. For instance, benign designs
with minimal active logic and large unused areas often display high repetition
in their bitstreams because the unused resources are configured similarly
to each other. This can lead to false positives, where benign designs are
mistakenly flagged as malicious. In contrast, complex benign designs like
Bitcoin miners or clusters of diverse modules exhibit high power consumption
and low repetition, making them easily distinguishable from simple malicious
designs. However, complexity increases when malicious designs are based
on benign modules, such as AES-based [159]. These designs mimic complex
benign designs, showing both high power consumption and low repetition,
which complicates detection.

The analysis goes deeper and reverse engineer the bitstream configuration
for Xilinx FPGAs, particularly the 7-series and UltraScale+ architectures [26,
183] to reveal how these devices are programmed and reconfigured, which
is vital to the design of countermeasures. Figure 6.2 shows the bitstream
structure for both (a) the 7-series and (b) the UltraScale+ FPGAs.

114



6.4 Tenant Design Analysis and Bitstream Reverse Engineering

Select PRR 

Shutdown PRR 
without turning 

interconnects to Z 

Design payload 

Fixe
d

 
Fixed

 
V

ariab
le 

R
eco

n
figu

ratio
n

 Flo
w

 

(a) 7-Series

Select PRR 

Shutdown PRR 
and turning 

interconnects to Z 

Design payload 

Deselect PRR 

Fixed
 

V
ariab

le 

R
eco

n
figu

ratio
n

 Flo
w

 

V
ariab

le
 

V
ariab

le 

(b) UltraScale+

Figure 6.2:Partial bitstream structure of 7-Series and UltraScale+ FPGA (major differences shown
in red bold font)

In the 7 series, the bitstream begins with a section that selects the PRR to
be reconfigured by writing data to specific frames, the smallest addressable
entities in the configuration data. This selection process is always a fixed size,
regardless of the PRR size or design complexity. Next, the bitstream includes
a shutdown command (SHUTDOWN) that disconnects the interface between
the static logic and the PRR. The logic within the PRR continues running
until the design payload, which has a variable size depending on the PRR,
is overwritten. This structure means that if a detection mechanism detects
an attack and tries to reconfigure the PRR with a benign blank bitstream
(bitstreamwithout any logic implemented) it will be slow, as it must overwrite
a large portion of the PRR before stopping a potential attack.

The UltraScale+ architecture (Figure 6.2 (b)) introduces several key differences.
Unlike the 7-series, the selection part of the bitstream is no longer fixed but
scales with the size of the PRR. Additionally, a new, variable-sized deselection
section appears after the design payload, which is not documented by Xilinx.
The shutdown command has also changed from SHUTDOWN to AGHIGH, which
puts all interconnects of the selected PRR into a high impedance state (’Z’).
Hence, if a detection mechanism detects an attack and performs reconfigura-
tion with a benign blank bitstream, it will effectively stop the attack before
the design payload is reconfigured.
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Figure 6.3: Implemented attacks, derived from benign modules. With small modifications,
removing sequential elements, and special toggling input patterns, they lead to successful attacks

Despite these improvements, there is still a risk that an attack could succeed
before the countermeasure takes effect. If the malicious design is activated
immediately after reconfiguration, even the rapid detection and response
by voltage sensors might not be fast enough. The need for the deselection
block of the malicious bitstream and the selection block of the benign blank
bitstream to be reconfigured before executing the AGHIGH command introduces
significant delays.

Although using bitstream compression [153] can speed up reconfiguration by
reusing data across frames, the tests show that this approach, while making
reconfiguration five times faster, is still insufficient to stop many attacks [11].
Thus, a faster and more effective method is required to prevent crashes.

This detailed understanding of the bitstream structure not only explains the
shortcomings of existing countermeasures, but also provides the foundation
for developing more effective solutions.

6.5 Extending the Seemingly-benign Power
Hammering Attacks

To further show the threat from Power Hammering, malicious tenant designs
similar to the AESmalicious design from [159] are designed. These designs are
more stealthy than the attacks from Figure 2.6. These malicious tenant designs
are based on the Data Encryption Standard (DES), Secure Hash Algorithm
(SHA), and Reed-Solomon, as depicted in Figure 6.3. The malicious DES-
based design in Figure 6.3a utilizes unrolled DES S-boxes as the fundamental
building block. Multiple blocks are interconnected in a chain with adjustable
chain lengths to fit the size of the tenant region. The output of each block
serves as the input for the subsequent block. The key for each block is
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computed by XORing the output of the preceding block with the original key.
This process amplifies the toggling along the path, thereby increasing the
power consumption.

The malicious SHA-based design also employs a chain of interconnected
SHA sub-functions (shown in Figure 6.3b). Each sub-function receives six
inputs, which are mixed to produce the various components of the SHA
algorithm, resulting in six outputs. The output of one sub-function can be
directly connected to the next’s input, with the chain’s length configurable
as desired. Note that only the first input originates from the registers and
that no combinational loops are present in the design.

As the Reed-Solomon encoder inherently comprises a chain of multiply-
accumulate operations, the registers between the adder stages are simply
removed to transform it into a malicious design (see Figure 6.3c). This mod-
ification results in a lengthy combinational path which can be configured
as desired. The inputs originate from tenant-internal registers initialized by
constants and subsequently inverted in every cycle to enhance toggling.

Furthermore, to improve detection difficulty, the concept of hiding these
malicious designs among benign ones to avoid detection by current state-
of-the-art solutions is explored by integrating malicious designs alongside a
cluster of ISCAS sequential circuits [44]. Consequently, a bitstream scanner
would identify slightly modified benign designs and encounter additional
circuits introducing randomness to the structural design. This combined
setup presents a more complicated functionality resembling a standard design,
performing tasks beyond solely cryptographic operations or encoding.

6.6 Meta-Scanner: Identifying Malicious FPGA
Designs

The main goal is to develop an offline scanner that allows the CSP to analyze
tenant designs before uploading them to an FPGA. This should be done
without a time-consuming and extensive netlist analysis. The idea is to classify
tenant designs into three categories: high risk (RED), mid risk (YELLOW), and
low risk (GREEN), which removes the burden from runtime countermeasures
to identify the malicious tenant before starting the countermeasure.
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Figure 6.4: Basic principle of the proposed Meta-Scanner and loading flow. Bitstreams classified
as being high-risk are not loaded. Other bitstreams are loaded but with careful placement.

6.6.1 System Overview

The focus is mainly on detecting malicious tenant designs. After correctly
classifying the risk level of each tenant design, CSPs are able to decide whether
to upload it or not. The assumption is that CSPs perform security checks or
attestation of the FPGA design through a hypervisor as explained by previous
works [198]. Moreover, CSPs can combine the risk classification with other
data they might have. Usually, CSPs can have access to more information
about their users, e.g., their history of previous tenancy on FPGAs. Hence,
they may have some trust metric for users.

The steps for using Meta-Scanner are shown in Figure 6.4. Normally, a tenant
would upload a design as an HDL code or as a netlist to the CSP. The CSP
then generates the bitstream and extracts the features used by the scanner
from the metadata. Then, based on the scanner, the CSP can correctly assess
the risk category of the bitstream.

The hypervisor should never upload RED tenants (see Figure 6.4), as they are
very likely to exhibit malicious behavior, whereas GREEN tenants can always
be uploaded, as they are incapable of showing malicious behavior. YELLOW
tenants can be uploaded to an FPGA, but special care must be taken. When
ensuring that at most one YELLOW tenant is executing on an FPGA, then
online countermeasures can target the potentially malicious tenant, allowing
them to shut it down as soon as it measures any malicious activity. Instead, if
two or more YELLOW tenants were on the same FPGA, it would no longer
be known which of them started the malicious activity. Thus, the online
countermeasures would no longer be able to localize and stop the activity
fast enough before a crash occurs.
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6.6.2 Metadata Extraction

The idea is to identify the area utilization of a tenant and its internal regularity
by extracting corresponding properties directly from its bitstream. For every
reconfigurable region, the synthesis tools for partially reconfigurable designs
create a blank bitstream (shown in Figure 6.5a) that reconfigures the region
into an empty state. A normal design bitstream for the same region can be
seen in Figure 6.5b. It has the same structure as the blank bitstream. For
unused regions, the frame data is identical to the frame data of the blank
bitstream. Hence, any frame with data identical to the corresponding frame
in the blank bitstream can be seen as empty.

Header 

Empty Frames 

Static Routing 

Empty Frames 

Static Routing 

Empty Frames 

… 

Trailer 

(a) Blank Bitstream

Header 

Design Frames 

Static Routing 

Design Frames 

Static Routing 

Design Frames 
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Trailer 

(b) Design Bitstream

Figure 6.5: Bitstream Structure for blank bitstream and design bitstream. Both bitstreams will
have the same static routing, but the design bitstream will have the content of the frames
different.

Based on the bitstream structure, 5 features are extracted as follows. Note
that the equations use the annotation from Table 6.1.

Table 6.1: Annotation of the mathematical explanation for the features
Variable Explanation

𝐵𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚𝐿𝑒𝑛 Number of frames per bitstream
𝑁𝑈𝐹𝑟𝑎𝑚𝑒𝑠 Number of unique frames
𝑁𝐵𝐹𝑟𝑎𝑚𝑒𝑠 Number of blank (empty) frames

𝑁𝑜𝑛𝐵𝐹𝑟𝑎𝑚𝑒𝑠 Non Blank Frames
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• Repetition: The number of non-unique frames. If there are for instance
100 frames with identical data, that adds 100 to the Repetition. Nothing
is added to the Repetition for a unique frame (i.e., no other frame has the
same data). A higher Repetition indicates a higher risk of self-oscillating
structures, as they normally consist of many repeated frames.

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 𝐵𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚𝐿𝑒𝑛 − (𝑁𝑈𝐹𝑟𝑎𝑚𝑒𝑠 + 𝑁𝐵𝐹𝑟𝑎𝑚𝑒𝑠 )

• Utilization: The number of frames different from the frame data at the
same position in the blank bitstream. This helps to identify complex designs
that use a large degree of their resources.

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐵𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚𝐿𝑒𝑛 − 𝑁𝐵𝐹𝑟𝑎𝑚𝑒𝑠

• Average Frame Frequency (AvgFrameFreq): is based on a histogram of
all non-blank frames in the bitstream, i.e., of those frames that are different
than the corresponding frame in the blank bitstream. The frequency of the
histogram’s bins denotes how many frames belong to that bin, i.e., how
many frames have the same data. The AvgFrameFreq is equal to the average
over the frequencies divided by the largest frequency. If the AvgFrameFreq
is near one, it indicates a low degree of repetition, while if it is close to
zero, it indicates a higher degree of repetition.

𝐴𝑣𝑔𝐹𝑟𝑎𝑚𝑒𝐹𝑟𝑒𝑞 =
𝑚𝑒𝑎𝑛(ℎ𝑖𝑠𝑡 (𝑁𝑜𝑛𝐵𝐹𝑟𝑎𝑚𝑒𝑠 ))
𝑚𝑎𝑥 (ℎ𝑖𝑠𝑡 (𝑁𝑜𝑛𝐵𝐹𝑟𝑎𝑚𝑒𝑠 ))

• Standard Deviation of the Frame Frequency (StdFrameFreq): The
metric calculates the standard deviation of the frame frequencies and then
divides it by the largest frame frequency. This helps to identify how much
repetition exists. A low deviation means that there is a high degree of repe-
tition and a high deviation means that there is a low degree of repetition.

𝑆𝑡𝑑𝐹𝑟𝑎𝑚𝑒𝐹𝑟𝑒𝑞 =
𝑠𝑡𝑑 (ℎ𝑖𝑠𝑡 (𝑁𝑜𝑛𝐵𝐹𝑟𝑎𝑚𝑒𝑠 ))
𝑚𝑎𝑥 (ℎ𝑖𝑠𝑡 (𝑁𝑜𝑛𝐵𝐹𝑟𝑎𝑚𝑒𝑠 ))

• Estimated Power: This feature estimates the design’s power consumption.
It is the only feature not directly calculated from the bitstream but is
reported by the synthesis tools after the design is placed and routed. Note
that for the Amazon Cloud, the CSP has access to this information, as
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the place and route of a tenant design is performed under the control of
Amazon.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑖𝑣𝑎𝑑𝑜𝑃𝑜𝑤𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

Using these five features covers all the important aspects of high utilization,
high power, regular structures, and regular structures hidden with some
irregularities, which are essential for classifying the designs. Overall, they
were effective enough to keep the accuracy, recall, and precision around
97%.

6.6.3 Proposed Classification

To demonstrate the feasibility of a machine learning approach, a set of 475
different tenant designs was first manually labeled. Then they were tested
on a ZCU102 FPGA board according to the three risk classes and evaluating
various classifiers on the set. The tenant designs are labeled according to the
following principles:

RED (high risk): These tenant designs contain actual attack circuits, which
are intentionally designed as malicious using different approaches both from
the literature [29, 119, 120, 159, 176]. The hypervisor should never load them
to tenant regions on the cloud FPGAs.

YELLOW (mid risk): If a circuit contains a lot of resources and may be used
in combination with another similar design on the same FPGA to invoke
crashes, id labeled as a YELLOW design. The hypervisor can permit these
designs but requires consideration regarding the mapping into FPGA regions.
Note that this definition includes completely benign but resource-intensive
as well as intentional malicious designs. For instance, additional logic may be
added to confuse offline bitstream checker and hide the attack, or attackers
might use reduced variants of the RED designs based on multiple seemingly-
benign modules. Multiple YELLOW-labeled tenants should not be present at
any given time in the FPGA to prevent attacks. If at most a single YELLOW
design is deployed per FPGA, runtime countermeasures will be fast enough
to disable it in case of any detected malicious activity.

GREEN (low risk): Tenant designs from the GREEN category are considered
harmless and can be arbitrarily placed into different FPGA regions by the
hypervisor. They are neither resource-intensive nor contain known malicious
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structures such as self-oscillating circuits. Attacks are highly unlikely, even
if combined with YELLOW designs on the same FPGA.

Based on the recommendations in [91], the evaluation uses 10-fold cross-
validation for different classification methods. SVM, Multi Layer Perceptron
(MLP), and Random Forest (RF) are tested. RF performed the best on the
dataset and was used it in all further experiments. The scikit-learn python
library [154] is used to implement the classifier and focus on optimizing the
recall for classification of the RED bitstream class by setting the class weights
to 200, 30 and 1 for RED, YELLOW and GREEN respectively. This approach
prevents the misclassification of attack bitstreams into a lower-risk class.
Thus, it maximizes the security at the cost of very few lower-risk bitstreams
not being loaded to the FPGA.

6.6.4 Dataset Generation

To evaluate the effectiveness of Meta-Scanner in fulfilling its goal, the dataset
of the bitstreams is generated. Table 6.2 summarizes the terminology used to
describe the dataset generation.

Table 6.2: Terminology used for data generation.
Term Explanation

Basic Design HDL code of one module, e.g., DES or JPEG
Tenant Design One basic design or several of them in a cluster
Tenant region PRR on the FPGA assigned to one tenant
Floorplan Partitioning the FPGA into different tenant regions
Bitstream Tenant design in binary, uploaded on the FPGA

A set of bitstreams is built for metadata extraction and solution testing,
based on 26 basic designs (9 malicious, 17 benign). These are configured
into 475 tenant designs. The 9 malicious designs are state-of-the-art and
three new designs. The 17 benign designs come from various benchmarks
and some in-house designs like JPEG compression and RSA SHA. They
are mixed to create tenant designs. Table 6.3 details the designs, sources,
and usage frequency. Real tenant designs from CSPs are inaccessible. AWS
Marketplace [32] cores are typically either simple designs for integration [62]
or complete systems with indirect hardware access [100]. Thus, benchmarks
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were used for evaluation as done by [16, 50], covering applications including
Neural Networks and Bitcoin mining.

Table 6.3: Basic Designs for Bitstream Generation
Basic Design Benchmark #Bitstreams
JPEG Own Designs 61
RISCV RISC-V River SoC 15
AVA decoder Berkeley 42
RSA Own Designs 46
Cluster of seq. circuits ISCAS Sequential 64
Serial keyboard Groundhog 24
PID Controller Groundhog 45
FIR Berkeley 28
FFT Groundhog 40
Bitcoin miner Opencores 22
AES Attack Attack from [159] 59
Mux Attack Attack from [126] 5
Shift register attack Attack from [159] 20
RAM Attack Attack from [29] 19
Reed-Solomon attack Own Designs 19
DES* Berkeley 25
SHA* Own Designs 25
Glitch Attack Attack from [138] 20
Latch Attack Attack from [126] 20
Neural Network Opencores 38
Ethernet Opencores 38
CRC Opencores 57
SPI Opencores 57
Manchester encoder Opencores 38
IIR Opencores 38
DCT HLS 25
* Used both maliciously and benignly

The bitstreams are generated for the ZCU102 FPGA board, utilizing its Xil-
inx UltraScale+ FPGA for measurements to establish labeling ground truths.
These bitstreams are then loaded onto the FPGA board. The focus lies in
detecting the success of attacks, which determines the labeling of the bit-
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streams. The same bitstreams can be used across multiple target FPGA boards,
mirroring a cloud scenario from the user’s perspective.

AES Attack 
Victim 2 Victim 1 Static Design 

Ben. Clus. Attack 

(a) AES and benign cluster coordinated tenant attacks

SHA Attack 
Victim 2 Victim 1 Static Design 

DES Attack 

(b) SHA and DES coordinated tenant attacks

Figure 6.6: Floor-planning of tenants where multiple tenants have different resource assignments
and utilization on the same FPGA.

Various strategies are employed to create tenant regions. For example, Fig-
ure 6.6 demonstrates the implementation of coordinated attacks frommultiple
tenants. The FPGA’s floor plan is divided into four regions, with two hosting
malicious designs and the other two hosting benign ones. One region utilizes
50% of the resources, while the other three each utilize 15%, leaving 9% for the
static design. In the example shown in Figure 6.6, the 50% region is positioned
in the middle of the FPGA. However, for another floor plan, the 50% region
can be placed at the top or bottom of the floor plan, not necessarily in the mid-
dle. This contributes to diversifying the bitstreams by avoiding constraining
them into fixed regions but instead across several different regions.

A CSP typically maintains several floor plans to accommodate various types of
users. For instance, the 50% tenant region from Figure 6.6 can be substituted
with two smaller tenant regions, each utilizing 25% of the resources. Six
different floor plans are the basis to generate 24 distinct tenant regions for
placing tenant designs. The sizes of these regions vary, ranging from 50% of
the FPGA resources to 15% of the FPGA resources.

Not all tenant designs were used in all the tenant regions as they might
not fit into them, i.e., they need more resources than the region provides.
Those tenant designs that did not fit were either modified, like changing
the RISC-V dual core to a single core, or diversifying the designs further by
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the following modifications: (i) mixing them more, e.g., substituting a large
FFT module with a smaller controller module and a Manchester encoder,
(ii) increasing the repetition within the design, e.g., adding multiple JPEG
compression instances after removing a large DES module. Moreover, hiding
some malicious modules with benign modules makes the attacks stealthier,
similar to [50]. The generated tenant designs are categorized into 153 GREEN
ones, 120 RED ones, and 177 YELLOW ones.

6.7 LoopBreaker: Online Countermeasure against
Power Hammering

As the YELLOW class exists and false negatives can occur, the offline coun-
termeasure has to be complemented by an online countermeasure. Using the
blank bitstream to deconfigure a malicious tenant is too slow. Therefore, The
aim is to disable the interconnects as fast as possible. This is achieved by
generating a carefully designed LoopBreaker bitstream. Other works have
already studied the composition of the bitstream [178] and have even suc-
cessfully generated bitstreams with a smaller size [166] by partitioning the
design payload of regular bitstreams into multiple smaller bitstreams. That
allowed them to fulfill latency constraints of the reconfiguration process in
real-time scenarios.

This approach ignores the payload and uses the AGHIGH command to change
all interconnects to the ‘Z’ state. Each part of the bitstream (i.e., select, shut-
down, payload, and deselect, as shown in Figure 6.2) is separated into a
custom bitstream. This allows individual configuration of selection, deselec-
tion, shutdown, and payload, facilitating precise control over a potentially
malicious PRR. Splitting an existing bitstream into its parts doesn’t result in
valid bitstreams. Specific synchronization/desynchronization steps must be
added to each part to validate the bitstream. Some desynchronization steps
are required in the generated bitstreams for functionality, while others must
be omitted to maintain the ‘Z’ state. For instance, the desynchronization
includes the GRESTORE and DGHIGH commands, which revert the interconnects
to normal. Additionally, NOP commands must be inserted at specific points.
Following certain commands, NOPs must be added—too few cause errors,
while too many cause delays.
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FPGA 

PRR1 PRR2 PRRN 
… 

Voltage-drop 
Sensor 

Reconfiguration 
Manager 

Trigger 
LoopBreaker 

Figure 6.7: Multi-tenant FPGA with sensor and reconfiguration manager included

After correctly using the commands, the Cyclic Redundancy Check (CRC)
checks of the bitstream data need to be treated properly. As the detailed CRC
calculation rules are not documented, these checks need to be disabled when
manipulating the bitstreams. However, simply disabling the CRC calculation
does not work, because several commands require a specific CRC check. To
identify these commands, a detailed analysis had to be performed. After
identifying all these commands, the required CRC can be replaced by CRC
reset commands. Simply removing the CRC check commands does not work,
as the bitstream would no longer function correctly.

An analysis of the bitstream structure enabled the creation of different bit-
streams (selection, shutdown, and deselection). The most crucial is the shut-
down bitstream, known as LoopBreaker, which disables interconnects. There
are two versions of this bitstream: one for the 7-series with 89 commands
and one for the UltraScale+ with 310 commands. The length difference arises
from the varying number of NOPs following each command. Additionally,
the 7-series does not execute the AGHIGH command but instead performs the
SHUTDOWN command, preventing further DPR after applying the LoopBreaker
bitstream. Once all tenants have finished processing, the FPGA needs re-
configuring with the full bitstream. This prevents crashes, allowing tenants
to continue work. In contrast, UltraScale+ FPGAs can normally perform
subsequent DPRs.

Figure 6.7 shows the full multi-tenant system that is used with LoopBreaker.
The connections to external components (e.g., RAM) are not shown as they
are not needed for the following explanations. When a tenant is reconfigured
into a PRR, reconfiguration of its deselect part is skipped, in order not to
miss an attack in case it starts attacking immediately. In this way, the PRR
is still selected, which allows us to disable it quickly if needed. The voltage
drop-sensor monitors the system and, upon sensing an attack, notifies the
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reconfiguration manager, which then reconfigures the LoopBreaker bitstream
to disable the PRR. In case that no attack was detected, during which another
PRR reconfiguration shall be performed, then the reconfiguration manager
first reconfigures the deselect bitstream, before reconfiguring the new bit-
stream. Based on hints from Meta-scanner (e.g., a YELLOW tenant exists on
the FPGA) then the reconfiguration manager can also reconfigure the select
bitstream for that specific PRR, in order to be prepared for an attack.

6.8 Performance of Attacks and Countermeasures

The tenant designs are implemented using Vivado 2019.1 to evaluate the
proposed Meta-Scanner and LoopBreaker. The bitstreams were uploaded to a
ZCU102 board. For the reconfiguration manager CoRQ [56] is used. Meta-
Scanner is implemented in Python and tested on an AMD Ryzen 5 6-Core
processor with 24GiB main memory.

6.8.1 Ground Truth of Seemingly-benign Attacks

To label the novel malicious tenant designs they are run on a ZCU102 board
to see if they crash the FPGA. Table 6.4 shows the results. The utilization (%)
is based on the total LUTs available in the ZCU102 FPGA board. Any version
of malicious designs having the size Table 6.4 or larger is labeled as RED.

Furthermore, smaller stealthy malicious designs are labeled as YELLOW due
to their potential to coordinate attacks, substantiated by the findings pre-
sented in Table 6.4. Initially, when both tenants, SHA and DES, are malicious
and deploy weakened versions of their attacks, a coordinated attack becomes
feasible. Secondly, in scenarios where only one tenant (AES) is malicious
but cannot execute an attack independently, it can exploit the presence of a
resource-intensive benign tenant. When executed concurrently, the benign
tenant inadvertently facilitates an attack, resulting in a system crash. Con-
sequently, any benign large design capable of instigating an attack when
combined with the small AES attack is classified as "YELLOW."
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Table 6.4: Minimum time and utilization needed for achieving crashes using seemingly-benign
attacks.

Attack based on Crash speed Crash FPGA
utilization

AES∗ [159] 12 𝜇s 18.5%
Reed-Solomon∗ 167 𝜇s 38.7%

DES∗ 90 𝜇s 27.0%
SHA∗ 34 𝜇s 21.9%

SHA + DES+ 60 𝜇s 14.6% + 18.0%
AES + benign

cluster+ >2 Min 13.9% + 34.0%
∗ attack from single tenant
+ attack from multiple coordinated tenants

Table 6.5: Results of 10-Fold Cross Validation across 475 Total Bitstreams. Mean Accuracy:
0.979 ± 0.02. Mean accuracy of detecting newly introduced attacks: 0.968.

class precision recall f1score support FPR FNR
GREEN 0.990 0.979 0.984 17.8 0.007 0.020
YELLOW 0.969 0.978 0.972 17.7 0.015 0.016

RED 0.977 0.985 0.979 12.0 0.008 0.021
New RED 1.0 0.963 0.978 1.7 0.000 0.018

6.8.2 Performance of Meta-Scanner

The metadata from bitstream generation trains the random forest classifier.
Data is split with 10% for testing using scikit-learn split method [154]. A

Table 6.6: Comparison with the state of the art. The numbers are based on the dataset, and tools
are assumed to detect the mentioned attacks correctly. This conservative comparison ensures
fairness. Only for the classifier, the mean accuracy ± standard deviation is presented.

Metric M-S Ref. [121] Ref. [126] Ref. [49] Ref. [64] Ref. [50] Ref. [16]
Accuracy 0.979 ± 0.02 0.789 0.756 0.709 0.840 0.825 0.836

Hidden Attacks ✓ ✗ ✗ ✗ ✓ ✗ ✓
Partial Bitstreams ✓ ✓ ✓ ✓ ✗ ✗ ✓

Cryptographic Attacks ✓ ✗ ✗ ✗ ✗ ✓ ✓
Non-Cryptographic Attacks ✓ ✗ ✗ ✗ ✗ ✗ ✗

Short circuit Attacks ✓ ✗ ✗ ✗ ✗ ✗ ✗
Coordinated Attacks ✓ ✗ ✗ ✗ ✗ ✗ ✗
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10-fold cross-validation on 475 bitstreams is shown in Table 6.5. The RED
class has the highest recall and precision to avoid banning legitimate and
uploading malicious designs, achieved by fine-tuning class weights. The
GREEN and YELLOW classes also have high precision and recall, and the
classifier’s mean accuracy is 0.979. For novel attack designs, inference shows
a mean accuracy of 0.95, precision of 1.0, and recall of 0.963. FPR and FNR
are at most 0.021 as shown in Table 6.5, which is low. The FPR for YELLOW
is about twice that of the other classes since errors in RED or GREEN often
result in YELLOW. The FNR for YELLOW is slightly lower than the other
classes but remains low overall.

Table 6.6 compares the scanner to the five state-of-the-art approaches [49,
50, 64, 121, 126]. As they can only classify into two classes (attack vs. no
attack), the YELLOW and GREEN classes are considered as ‘no attack’, to
give them an advantage and to have a conservative comparison. However,
all state-of-the-art approaches have significantly lower accuracy compared
to Meta-Scanner. Note that for the tools from [50, 64] the tool does not
even support partial bitstreams in its current format. However, for a fair
comparison, the conservative assumption is that they could be updated to
support them. Meta-Scanner is the only tool that detects BRAM short circuit
malicious designs and non-cryptographic seemingly-benignmalicious designs
(Reed-Solomon-based and shift-register-based).
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Figure 6.8: Mean detection accuracy depending on basic designs.

Moreover, Figure 6.8 shows the accuracy of classifying each basic design to
the correct classes. The accuracy is defined as the number of samples correctly

129



6 Eliminating Fault Injection Threats in Multi-tenant FPGAs

classified, divided by the total number of samples used for the inference. Many
of the accuracy values are at 1.0, which means that no false positives nor false
negatives occur for this basic design. Overall, all accuracy values are higher
than 0.85. DES and SHA (which are both used as benign designs as well as
malicious designs hidden using ISCAS circuits) have a high accuracy of 1.0.
Hence, the scanner was able to correctly detect hidden malicious designs, and
differentiate between using a module for an attack or using it as a true benign
design. Moreover, the scanner can detect all the new malicious designs with
high accuracy.

Additionally, the timing overhead is evaluated. The CSP performs Place &
Route, feature extraction from the metadata, and scanning (inference of the
classifier). Table 6.7 shows the results of running the scanner on the AMD
Ryzen 5 6-Core processor with 24GiB main memory. On average, Place &
Route for one bitstream needed 27 minutes, while the feature extraction
needs less than two seconds and the inference needs less than 10 milliseconds.
Hence, the feature extraction and inference have negligible overhead. The
feature extraction takes more time than the inference as it needs to parse
the bitstream frame by frame. Moreover, the time needed for training is also
measured, Meta-Scanner needs on average 2 minutes to train the decision
tree.

Table 6.7: Timing overhead of the Classifier
Training Feature Extract Inference P&R

Time needed 2 min 1.6 s 5.0 ms 27 min

6.8.3 LoopBreaker’s Worst Case Performance

To evaluate LoopBreaker the more aggressive self-oscillating attacks are used
as they consume higher power and can lead to successful attacks faster than
the seemingly-benign ones. LoopBreaker and Blanking require 1.56 µs and
200 µs, respectively, to successfully stop an attack. Note that bitstream com-
pression is used for the Blanking solution, otherwise it would take longer (i.e.,
1ms). Figure 6.9 shows the latency until an attack leads to a crash or a timing
fault. For each attack type and attacker size (i.e., Y-axis in Figure 6.9), they
are tested with different toggling frequencies, the experiments are repeated
20 times and the fastest observed time until a fault/crash occurred is reported.
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Figure 6.9: Observed attack latency leading to timing faults or crashes compared to LoopBreaker
(1.5 µs) and Blanking Bitstream (200 µs) execution times. If execution time exceeds attack latency,
faults/crashes occur. LoopBreaker prevents all crashes when the attacker uses up to 30 % of the
FPGA area.

As a general trend, a larger attacker size typically needs a shorter time for the
attack to be successful. The two vertical lines in Figure 6.9 (i.e., LoopBreaker
and baseline Blanking) show the time needed from the start of the attack
until the solution successfully stops it.

Attacks that are faster than the countermeasure, cannot be prevented. Note
that this evaluation did not only calculate whether or not a countermeasure
should theoretically prevent an attack (by comparing times), but they are
experimentally tested that, by running the attack and the automated detection
and prevention on the FPGA boards. Figure 6.9 shows that the Blanking
solution could only prevent a small portion of the crash attacks, whereas
LoopBreaker can stop most of them. Only crashes due to RO-based attacks
that use attacker size larger than 30 % of the available FPGA area, could not be
prevented by LoopBreaker. However, RO-based attacks can be easily detected
by offline methods, i.e., before even reconfiguring the malicious tenant to
the FPGA. The more realistic latch-based attacks would all be prevented by
LoopBreaker, whereas Blanking was too slow for most of them. Note that
attacker sizes larger than 50 % could lead to even faster attacks, however, that
would not leave enough space for a same-sized second tenant and thus is
irrelevant for multi-tenant systems.
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attacking using 30% of FPGA area filled with latches
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Figure 6.10: Probability of crashes and timing faults (bars) under latch-based attacks (see Fig-
ure 2.6(b)) from a 30% FPGA area attacker at various toggling frequencies (X-axis). The Loop-
Breaker solution results in 0 % crashes and significantly reduces timing faults.

Most timing faults occur so fast after the start of the attack. Not even Loop-
Breaker could prevent them. However, no timing fault went undetected by the
sensor used. Therefore, the malicious tenant could be stopped as fast as possi-
ble to prevent any additional faults in the other tenants’ region. Additionally,
the detection of the attack (and thus the increased likelihood of timing faults)
is reported to the system manager, which can then inform the tenants to
take appropriate measures (e.g., rollback in case they were not protected by
redundancy measures like Triple Modular Redundancy (TMR)).

6.8.4 LoopBreaker’s Average Case Performance

So far only the worst case attack scenario was considered. However, attackers
might not have possession of an FPGA with the same setup as the one in the
cloud environment. Therefore, they cannot perform a full characterization and
thus do not know the most destructive toggling frequency. Figure 6.10 shows
the effect of different toggling frequencies on the probability of an attack
leading to a crash or timing fault. The attacks considered here use enhanced
latches (from Figure 2.6(b)) and an attacker size of 30 % of the available FPGA
area. Altogether, 10 different toggling frequencies are evaluated as shown
in Figure 6.10. These 10 frequencies represent the decades from 10Hz up to
100MHz. Furthermore, the measurement results for 700 kHz and 2MHz, had
a distinctive behavior that is worth mentioning.

At 700 kHz, the attack primarily causes faults without crashes, though oc-
casionally crashes occur post-attack. At 2MHz, no crashes or timing faults
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were observed. The reasons are unclear, but high MHz frequencies seem
less crash-inducing; no crashes were seen at 10MHz and 50MHz without
countermeasures. Notably, LoopBreaker does not experience crashes in bench-
marked scenarios (30% latch-based attacks) and significantly reduces timing
fault probability compared to Blanking, from 10Hz to 1MHz.

Table 6.8:Probability of successful crash and fault, depending on the attack type, countermeasure
type and attacker size

Attacker size for Attacker size for

Attack Type Countermeasure
Ring Oscillator (RO)-based attacks Latch-based attacks

7.5% 15% 22.5% 30% 45% 25.5% 30% 45%

Probability
that the

Attack leads
to a Crash

Worst case
No countermeasure 40% 100% 100% 100% 100% 100% 100% 100%

Blanking 0% 100% 100% 100% 100% 0% 100% 100%
LoopBreaker 0% 0% 0% 100% 100% 0% 0% 0%

Average case
No countermeasure 9.3% 70% 70% 100% 100% 19.5% 70% 70%

Blanking 0% 40% 40% 70% 100% 0% 40% 40%
LoopBreaker 0% 0% 0% 40% 100% 0% 0% 0%

Probability
that the

Attack leads
to a Timing

Fault

Worst case
No countermeasure 0% 100% 100% 100% 100% 100% 100% 100%

Blanking 0% 100% 100% 100% 100% 100% 100% 100%
LoopBreaker 0% 100% 100% 100% 100% 100% 100% 100%

Average case
No countermeasure 0% 90% 90% 100% 100% 39.5% 90% 90%

Blanking 0% 90% 90% 100% 100% 39.5% 79% 90%
LoopBreaker 0% 90% 90% 100% 100% 20% 42.5% 90%

Table 6.8 shows the detailed results for different combinations of attack type,
countermeasure type, attacker size and toggling frequencies. In addition to
the latch-based attacks, at attacker sizes of 30 % (as shown in Figure 6.10), the
results are of RO-based attacks and different attacker sizes, ranging from 7.5 %
to 45 % (i.e., the biggest size that leaves enough space for a second same-sized
tenant). Due to the limited success of Mux-based attacks (i.e., leading to no
crashes and much less timing faults than RO-based or Latch-based attacks),
they are excluded from this analysis for brevity. Each probability is calculated
based on 20 runs of the specific combination. Table 6.8 shows two cases for
each scenario: An average case where the attacker uses a random toggling
frequency, and the worst case where the most-destructive toggling frequency
is used.

By looking at the evaluation of crashes (in the upper half of Table 6.8), it
is noticeable that LoopBreaker countermeasure is at least as good as the
Blanking countermeasure, and most of the time is even better. For RO-based
attacks, LoopBreaker can prevent all crashes up to an attacker size of 22.5 %,
whereas Blanking is only able to prevent crashes up to an attacker size of
7.5% (i.e., an attacker that uses 3 times less area). For latch-based attacks,
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LoopBreaker can even prevent crashes in all evaluated scenarios, whereas
Blanking can only prevent crashes up to an attacker size of 25.5 %.

Fault evaluation (lower half of Table 6.8) shows that for RO-based attacks,
Blanking and LoopBreaker perform no better than no countermeasure. Most
timing faults occur too quickly for LoopBreaker to prevent, but the attack
is detected and reported. For Latch-based attacks with random toggling
frequency, LoopBreaker reduces the probability of timing faults more effec-
tively than Blanking. Crucially, LoopBreaker significantly reduces crashes,
keeping multi-tenant systems operational, even when an attacker uses more
than 22.5 % of the available FPGA resources and knows the most-destructive
toggling frequency.

6.9 Summary

This chapter addresses fault injection in multi-tenant FPGAs via power ham-
mering. It proposes Meta-Scanner for offline detection of fault attacks in
cloud FPGA instances. By analyzing bitstream metadata, Meta-Scanner im-
plements a classifier for scanning. Using machine learning, Meta-Scanner
categorizes client bitstreams into high-risk (blocked), low-risk (mapped arbi-
trarily), and mid-risk (allowed with restrictions) classes. The random forest
classifier achieves 0.979 ± 0.02 accuracy on 475 bitstreams, demonstrating
feasibility. Meta-Scanner has low overhead and adapts to new attacks. Com-
plementing this, LoopBreaker provides online countermeasures, using partial
reconfiguration and a voltage sensor to disable malicious tenants. The method
stops attacks in 1.5 µs, making it the first effective online approach against
Power-Hammering.
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7 Conclusion

The advancements in accelerated cloud systems present both opportunities
and challenges, particularly in securing sensitive data and computations. This
dissertation presents a thorough work across multiple domains, addressing
the critical issues of authentication, covert-channel mitigation, data leakage
prevention, and fault injection threats in accelerated cloud systems. These
topics remain vital in the quest for secure and efficient computational systems,
especially as modern industries expand into the areas of AI, IoT, and real-time
systems.

7.1 Summary of Key Contributions

The first key contribution of this dissertation lies in the exploration and devel-
opment of Machine Learning-resilient Physical Unclonable Functions (PUFs)
for client-server authentication with resource-constrained client devices. By
leveraging the inherent unpredictability of PUFs, this approach significantly
enhances the security of cloud-connected devices. The proposed approach,
designed for client devices with limited computational and storage resources,
ensures that the authentication protocol remains lightweight and efficient,
without sacrificing security. It introduces two PUFs, an FPGA-based one
(CaPUF) and an NVM-based one (ANV-PUF). Both PUFs are able to mitigate
the modeling-based attacks with a modeling accuracy of around 50%, similar
to flipping a coin. Moreover, the reliability challenges for both types of PUFs
are analyzed. CaPUF cannot be used as a secondary accelerator when DPR is
used. ANV-PUF can be used for generating 107 response bits before it suffers
endurance degradation.

The second contribution addressed the critical challenge of covert-channel at-
tacks in FPGA-MPSoCs. In FPGA-MPSoCs, malicious users can exploit these
covert channels to leak sensitive information. In this dissertation, thermal
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and power-based covert channels were studied, illustrating their potential for
misuse in real-world scenarios. The experimental results demonstrated the
severity of these vulnerabilities when not properly mitigated. First, Through-
Fabric shows how the usage of accelerators can be manipulated to break
TEE and leak data via thermal covert channels. Second, Covert-Hammer
shows how multiple malicious users can coordinate among themselves a
communication protocol to exchange and lak data via power covert channels.
Finally, to mitigate such attacks, countermeasures in hardware and software
are presented. For hardware, it illustrates using ROs to induce noise and
hinder covert channel communication. For software, adding increased delays
when using the accelerator adds temporal noise to lower the success of the
attacks.

The third major contribution focused on the use of Homomorphic Encryp-
tion (HE) to eliminate the threat of data leakage in cloud systems. By accelerat-
ing HE with FPGA and HBM integration, this contribution in the dissertation
demonstrates that secure computations could be performed directly on en-
crypted data, significantly reducing the risk of exposing plaintext data during
processing. This approach preserves user privacy while allowing for complex
computations, a necessary feature in fields such as healthcare, finance, and
government services where sensitive data is frequently processed. The pro-
posed scheme HBMorphic is able to achieve up to 438× improvement of the
bottleneck of the TFHE scheme.

Lastly, the dissertation tackled the issue of fault injection in multi-tenant
FPGAs. In these environments, an attacker can deliberately introduce faults
into computations, thereby compromising the integrity of the system. The
research focused on enhancing the security of FPGA reconfigurable fabrics,
which are particularly vulnerable in multi-tenant settings where power re-
sources are shared among users. The proposed solutions involved a combined
approach with offline and online defense mechanisms. Meta-Scanner is the
offline defense mechanism. It uses a 3-class classifier to detect the level of the
threat of a tenant design by analyzing its metadata. High-threat designs are
banned, mid-threat designs are uploaded but targeted by the online mecha-
nism in case they start an attack and low-threat designs are uploaded without
any security measures. LoopBreaker the online mechanism turns all the
interconnects of a suspicious tenant’s area into high impedance in case an
attack is detected. Meta-Scanner is capable of detecting the correct class of
the designs with an accuracy of 98%. Moreover, LoopBreaker needs only
1.5 𝜇𝑠 which is fast enough to stop all the mid-threat attacks.
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7.2 Future Work

Building upon the findings of this dissertation, several directions for future
research can be identified. As the technological landscape evolves, it is
essential that security mechanisms adapt to new challenges while maintaining
system efficiency.

1. Enhancing PUF-based Authentication: While the current PUF-based
authentication methods have proven effective, future research can focus on
improving their reliability and the ability to use them for key generation.
Moreover, studying the possibility of using PUFs in mutual attestation and
peer to peer authentication can be further explored. Finally, further investi-
gation into the long-term reliability of PUFs in real-world conditions, such
as temperature fluctuations, noisy environments, and aging effects, will be
critical in ensuring their continued viability for security applications.

2. Improving Covert-Channel Mitigation Techniques: The mitigation
strategies for covert-channel attacks presented in this dissertation provide
a base, but they can be further optimized. Future research could explore
the integration of machine learning techniques for the automatic detection
of anomalous behavior indicative of a covert-channel attack. Additionally,
real-time monitoring systems that adjust resource allocation dynamically
in response to potential threats could enhance the security of multi-FPGA-
MPSoCs. A promising direction would involve creating adaptive algorithms
capable of learning and predicting attack vectors before they occur, thus
offering preemptive protection against covert channel threats.

3. Optimizing FPGA-Accelerated Homomorphic Encryption: While
this dissertation demonstrated the feasibility of FPGA-accelerated HE, further
improvements in performance and energy efficiency are possible. Future
research could focus on optimizing the hardware architecture to support
more homomorphic operations, which would broaden the applicability of
HE to more varied and demanding cloud applications. Additionally, efforts
to reduce the power consumption of FPGA-accelerated HE systems will be
important for making these solutions practical and sustainable.

4. Advanced Fault Injection Detection Mechanism: The current fault in-
jection detectionmechanisms can be expanded through the use of AI. Specially
for online countermeasures, analyzing patterns of the power disturbance can
detect anomalies and allocate the malicious tenant.
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7 Conclusion

7.3 Final Remarks

This dissertation presents significant advances in improving the security of
accelerated cloud systems. The results presented across four key contributions
PUF-based authentication, covert-channel attack mitigation, homomorphic
encryption, and fault injection prevention—demonstrate that these systems
can be both secure and efficient. By addressing these critical challenges, this
dissertation establishes a path to a more secure cloud systems capable of
supporting the growing demands of modern computing applications.
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