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Abstract

Despite their proven potential, modern machine learning methods are often not readily applicable
to practical settings, such as many modeling or optimization problems that arise in engineering
and science. The reason is that it is usually impossible or too expensive to collect a sufficient
amount of data to apply expressive modeling techniques or to find sufficiently accurate optimiza-
tion solutions. Frequently, however, a large amount of historical data collected over time by
solving similar problem instances (“tasks”) is available. Meta-learning is a promising framework
for conditioning machine learning algorithms on such data to solve novel tasks in a more data
efficient manner.

Given the scarcity of data for novel tasks, the success of a meta-learning approach depends on
an accurate quantification of the resulting predictive uncertainty, for which modern algorithms
employ the paradigm of Bayesian inference. The resulting computations typically require so-
phisticated numerical approximation techniques to become efficient enough for practical appli-
cations. In this work, we show that state-of-the-art approaches for Bayesian meta-learning are
often suboptimal in terms of the accuracy of these approximate Bayesian inferences. As a result,
the predictive accuracy and uncertainty estimates do not meet the requirements for practical ap-
plications of meta-learning.

To bridge this gap, we develop novel algorithms that improve the performance of Bayesian meta-
models and meta-optimizers without sacrificing computational efficiency. We first focus on the
Bayesian modeling aspect and propose Bayesian Context Aggregation (BA) and Gaussian Mix-
ture Neural Processes (GMM-NP) to achieve higher quality approximate Bayesian inferences. We
show that these techniques not only significantly improve predictive performance, but also en-
able more efficient and accurate solutions to expensive optimization problems compared to the
state of the art. In the second part of this work, we focus exclusively on such optimization prob-
lems and develop MetaBO, a novel algorithm that accelerates Bayesian optimization by directly
meta-learning its optimization strategy.
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Kurzfassung

Trotz ihres erwiesenen Potenzials sind moderne Methoden des maschinellen Lernens in der Pra-
xis oft nicht ohneWeiteres anwendbar, z.B. für viele Modellierungs- oder Optimierungsprobleme,
die in Technik und Wissenschaft auftreten. Dies liegt daran, dass es sich in der Regel als unmög-
lich oder zu teuer erweist, eine ausreichende Menge an Daten zu sammeln, um aussagekräftige
Modellierungsverfahren anzuwenden oder hinreichend genaue Optimierungslösungen zu finden.
Häufig ist jedoch eine große Menge an historischen Daten verfügbar, die im Laufe der Zeit durch
die Lösung ähnlicher Problemstellungen („Aufgaben“) gesammelt wurden. Das Meta-Lernen ist
ein vielversprechender Ansatz für die Konditionierung von Algorithmen des maschinellen Ler-
nens auf solche Daten, um neue Aufgaben dateneffizienter zu lösen.

Angesichts der Knappheit der Daten für neue Aufgaben hängt der Erfolg des Meta-Lernens von
einer genauen Quantifizierung der resultierenden Vorhersageunsicherheit ab. Um dieses Problem
zu lösen, verwenden moderne Algorithmen das Paradigma der Bayes’schen Inferenz. Die daraus
resultierenden Berechnungen erfordern in der Regel ausgefeilte numerischeApproximationstech-
niken, um für praktische Anwendungen effizient genug zu sein. In dieser Arbeit zeigen wir, dass
moderne Ansätze des Bayes’schen Meta-Lernens in Bezug auf die Genauigkeit dieser approxima-
tiven Bayes’schen Inferenzen oft suboptimal sind. Dies hat zur Folge, dass die Vorhersagegenau-
igkeit und die Unsicherheitsschätzungen nicht den Anforderungen für praktische Anwendungen
des Meta-Lernens entsprechen.

Um diese Lücke zu schließen, entwickeln wir neuartige Algorithmen, die die Leistungsfähigkeit
von Bayes’schen Meta-Modellen und Meta-Optimierern verbessern, ohne deren Recheneffizienz
zu stark zu beeinträchtigen. Wir konzentrieren uns zunächst auf den Aspekt der Bayes’schenMo-
dellierung und schlagen die Bayes’sche Kontextaggregation (BA) und Gaussian Mixture Neural
Processes (GMM-NP) vor, um qualitativ hochwertigere approximative Bayes’sche Inferenzen zu
erzielen. Wir zeigen, dass diese Techniken nicht nur die Vorhersagequalität erheblich verbessern,
sondern auch effizientere und genauere Lösungen für teure Optimierungsprobleme im Vergleich
zum Stand der Technik ermöglichen. Im zweiten Teil dieser Arbeit konzentrieren wir uns aus-
schließlich auf solche Optimierungsprobleme und entwickeln MetaBO, einen neuartigen Algo-
rithmus, der die Bayes’sche Optimierung durch direktes Meta-Lernen der Optimierungsstrategie
beschleunigt.
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1 Introduction and Summary of Contributions

Driven by algorithmic advances and the availability of increasingly powerful GPU-based hard-
ware, the field of machine learning has produced a wealth of impressive results in recent
years [Ros62, Rum86, LeC89, Rad21, He16, Kri12, Sim15, Bro21, Kin13, Goo14, Rez15, Din17,
Soh15a, Ho20, Rom22, Mni15a, Sil17, Jum21, Vas17, Dev19, Rad19, Bro20, Ram21, Tou23, Ope24,
Bub23]. One particularly successful branch that has revolutionized machine learning over the
past decade is deep learning, which uses neural networks (NNs) as powerful general-purpose
computational models to learn from data [LeC15, Goo16, Bis23]. Modern NNs have an excep-
tionally large number of adjustable parameters to achieve the expressiveness necessary to solve
many problems of practical interest with satisfactory accuracy, with recent large language models
(LLMs) exceeding the trillion-parameter threshold [Ope24].

To train such models, vast amounts of training data are required [Den09, Gok19, Sch21, Raf20,
Bro20, Rad21, Kap20]. For a single task, sufficiently large datasets are typically not available,
which renders naive approaches that start from randomly initialized NNs futile. An effective
approach to remedy this problem is transfer learning [Zhu21, Hui21, Hos22, Hu21], which uses
models pre-trained on large and diverse datasets to exhibit inductive biases towards a given type
of task in the form of general-purpose data representations [Ben13]. These representations can
then be refined and combined in novel ways to solve an application-specific target task from a
similar domain. Fine-tuning a model in this way requires learning relatively few new parameters
and can therefore be achieved with little training data from the target task.

This approach has recently been successfully scaled, notably through the development of the
transformer architecture [Vas17], resulting in foundation models that can be fine-tuned for a
wide range of target tasks [Sut19, Bom21]. Such models are currently transforming many ar-
eas of machine learning, such as natural language processing [Rad19, Dev19, Bro20, Ope24] or
vision [Dos21], and are also being recognized in other fields of engineering and science [Che21,
Ngu23, Yu23, Zvy23, Aze24, Bod24]. Interestingly, recent LLMs, which represent a special type of
foundationmodel, exhibit emergent abilities that allow them to learn novel tasks from a few context
examples provided in the prompt, without the need for fine-tuning [Ram21, Rad19, Bro20, Wei22,
Cab23, Gar23]. Such few-shot learning capabilities are an example of meta-learning [Osw23],
where a model learns how to learn tasks quickly, enabling generalization to unseen tasks from
little context data.

Few-shot learning is particularly attractive for many problems encountered in engineering and
science. Typical problems include modeling the dynamics or steady-state behavior of technical
or physical systems, as well as identifying or optimizing their parameters [Gal14, Vol17, Pre07,
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1 Introduction and Summary of Contributions

Sha16]. In such settings, data acquisition usually requires expensive real-world experiments, so
that the datasets for a given task often consist of only a handful of examples, making it impossible
to train NNs of reasonable expressiveness from scratch. Unfortunately, however, the few-shot
behavior of current LLMs can be difficult to control and interpret [Bow23], they can be expensive
to train and evaluate [Str19, Pat21, Bal24], and they do not provide reliable estimates of predictive
uncertainty [Pap24], which still limits their applicability to scientific data.

More specialized approaches do not rely on the emergent abilities of LLMs, but explicitly en-
force meta-learning by building the multitask structure of the learning problem into the model
architecture or training algorithm [Sch87, Thr98, Vil05, Hui21, Hos22]. The resulting meta-model
learns data representations tailored for few-shot learning, is equipped with some kind of adap-
tation mechanism that allows it to solve tasks of a given type from a few context examples, and
is trained on a structured meta-dataset of many related tasks of similar type. To solve an un-
seen target task of the same type, the adaptation mechanism is simply evaluated on the available
context dataset.

The meta-learning approach depends on the availability of a meta-dataset of tasks similar to the
target task. Fortunately, the data available in engineering and science problems often has such
a multitask structure because similar tasks must be solved repeatedly. For example, a family of
similar modeling tasks arises when a particular type of technical system, such as a car engine,
is constantly being developed further or exists in several related designs. Similarly, determining
optimal settings for machining workpieces made of varying materials or under varying ambient
conditions gives rise to a family of related optimization tasks. In such situations, the number of
context data examples for any given task is relatively small, but the joint meta-dataset of exam-
ples from all tasks accumulated over time can be massive, allowing a powerful meta-model to be
trained. The central goal of this work is to develop meta-learning approaches suitable for such
modeling and optimization problems.

A common approach tometa-modeling is tomodel each task conditional on a latent task descriptor,
so that the adaptation mechanism corresponds to an operation that computes the task descriptor
from the context dataset. During a meta-training phase, the parameters of the meta-model are
optimized on the meta-dataset for predictive performance. Tomake predictions for the target task
at test time, the parameters are fixed and the target task descriptor is determined from the context
data using the adaptation mechanism. The inductive biases learned during the meta-training
phase then restrict the predictions to hypotheses compatible with the meta-data, while the target
task descriptor determines which of these hypotheses is also compatible with the context data.

Due to task ambiguity, few-shot context datasets are typically compatible with a range of hy-
potheses, reflecting epistemic uncertainty about the task descriptor. A major focus of this work
is the accurate quantification of this uncertainty, which is essential for many real-world applica-
tions [Pap24]. A principled treatment is enabled by adopting a probabilistic modeling approach
and using Bayesian inference as the adaptation mechanism, which quantifies epistemic uncer-
tainty in terms of a probability distribution over the space of task descriptors. Methods that
compute such task posterior distributions define the field of Bayesian meta-learning (BML).
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To obtain models of reasonable complexity, modern BML approaches parameterize the proba-
bilistic meta-models using deep NNs [Hui21, Hos22]. In such models, task posterior inference is
computationally intractable, so Bayesian inference requires approximations. In this context, the
neural process (NP) [Gar18c] represents a particularly appealing NN-based parameterization, as it
defines a comparatively low-dimensional task descriptor space, which allows to draw from a rich
toolbox of approximate Bayesian inference techniques [Mac03, Gel13, Bis06]. In its vanilla form,
the NP uses amortized variational inference [Kin13] to compute a Gaussian mean-field approxima-
tion of the task posterior distribution using an encoder NN . A deep set [Zah17] parameterization
allows to feed context sets of variable sizes through this encoder, while preserving the invari-
ance of the Bayesian inference problem to permutations of the context examples. In essence, this
amounts to processing each context example individually using a shared NN and computing the
task posterior distribution from the arithmetic mean of the resulting representations.

In Volpp et al. [Vol21], we show that this mean aggregation operation handles task ambiguity
suboptimally, and propose a novel Bayesian context aggregation (BA) scheme. The central insight
is to weight each context example according to its information content about the correct hypoth-
esis. We achieve this by reinterpreting context aggregation as task descriptor inference, so that
the weights emerge naturally as the solution to a Bayesian inference problem that can be com-
puted efficiently from the context data. We demonstrate that BA improves the performance of
NP-based BML models in few-shot learning scenarios, and subsequent work successfully applies
it in domains such as computer vision [Gao22] and robotics [Li23].

As a deep set variant, BA still operates within the framework of amortized variational inference
and computes a Gaussian mean-field task posterior approximation that is trained using reparam-
eterized Euclidean gradients [Kin13]. In Volpp et al. [Vol23], we study the impact of these design
choices and show that they can introduce significant approximation errors that degrade predic-
tive performance. To mitigate this, we propose the Gaussian mixture neural process (GMM-NP),
which computes an expressive GMM approximation of the task posterior distribution that cap-
turesmultimodality and correlations. We show that this yields significantly improved predictions,
and that the GMM approximations can be computed in a robust and efficient manner building on
trust regions and natural gradients for variational optimization [Are23]. Recent work [Dah23]
further demonstrates the effectiveness of our approach for few-shot learning material properties
in mesh-based simulations.

To approach meta-optimization problems, we consider Bayesian optimization, a powerful algo-
rithm for global optimization of objective functions that are expensive to evaluate [Sha16]. BO
formulates an optimization strategy in terms of an acquisition function (AF) that trades off explo-
ration of unknown regions of the search space against exploitation of regions known to yield high
objective values. The AF is computed from the predictions of a probabilistic surrogate model of the
history of objective function evaluations, so the effectiveness of BO depends critically on well-
calibrated uncertainty estimates. In Volpp et al. [Vol23], we show that replacing this surrogate
model with our meta-models yields global meta-optimizers that can efficiently solve expensive
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optimization problems, underscoring the quality of the epistemic uncertainty estimates that result
from our improved approximate inference techniques.

This approach to meta-optimization leaves the AF of BO untouched and injects inductive biases
towards the given type of optimization problem through a meta-surrogate model. In Volpp et al.
[Vol20], we develop MetaBO, a complementary approach that does not modify the probabilistic
surrogate model and instead meta-learns the AF. To this end, we represent the AF as a NN that
computes the next evaluation location from the probabilistic predictions of a standard surrogate
model. To induce inductive biases towards the given type of optimization problem, we train
this neural AF to maximize optimization performance on the meta-dataset using reinforcement
learning (RL) [Sut18], a powerful method for optimizing sequential decision-making problems
such as the optimization strategy of BO.

In addition to the main articles described above, student theses supervised in the context of this
work explore several other aspects of the BML problem, namely meta-overfitting [Vas21], the
accurate evaluation of Bayesian meta-models [Flo22], and stable gradient-based optimization of
Gaussian observation models [Meg22]. Furthermore, two co-authored research articles study
problems in the related fields of Bayesian deep learning [Sel23] and RL [Doe19].

The organization of this work is as follows. In Sec. 2.1, we develop the theoretical background
necessary for understanding Bayesian meta-learning. In particular, we motivate Bayesian infer-
ence as a powerful paradigm for generalizing from small datasets, study the asymptotic behav-
ior of Bayesian inferences, discuss various sources of uncertainty that arise in general learning
problems, derive modern approximate inference techniques, and introduce BO. In Sec. 2.2, this
groundwork allows us to derive a Bayesian meta-model architecture proposed by Heskes [Hes00]
and Bakker et al. [Bak03] which forms the basis of the NP [Gar18c], and to introduce several
alternative meta-learning approaches. Building on these ideas, we then develop our novel meta-
learning algorithms, Bayesian context aggregation in Sec. 3, GMM-NP in Sec. 4, and MetaBO in
Sec. 5. In Sec. 6 we summarize our work and assess possible avenues for future research.
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2 Theoretical Background

Wenow summarize the theoretical background necessary for themethods developed in this work.
First, we review general concepts from Bayesian inference with a focus on modern approxima-
tion schemes. We then introduce Bayesian optimization, as well as a generic Bayesian multitask
model from which many current meta-learning approaches are derived, and present the neural
process [Gar18c], a specific instantiation of this model. We conclude the chapter with an over-
view of related meta-learning methods.

2.1 Bayesian Inference

In this section, we review Bayesian inference, the statistical framework underlying Bayesian
meta-learning.

2.1.1 Single-Task Datasets

We consider a function 𝑓 ∶ 𝒳 → 𝒴, where𝒳 ⊂ ℝ𝑑𝑥 and 𝒴 ⊂ ℝ𝑑𝑦 with 𝑑𝑥, 𝑑𝑦 ∈ ℕ. 𝑓 is assumed
to be black-box, in the sense that we can obtain information about it only by collecting evaluations
at arbitrary input locations in𝒳. From a dataset of such evaluations, we aim to infer a model that
summarizes our knowledge about 𝑓, a statistical method called regression [Bis06, Mur23, Mac03].

Specifically, we consider a dataset 𝒟𝑐 of inputs 𝒙𝑐𝑛 ∈ 𝒳 and corresponding targets 𝒚𝑐𝑛 ∈ 𝒴,

𝒟𝑐 = { (𝒙𝑐𝑛, 𝒚𝑐𝑛) ∈ 𝒳 × 𝒴 ∣ 𝑛 ∈ {1, … ,𝑁𝑐} }, (2.1)

which we assume to be generated by noise-corrupted evaluations of 𝑓, i.e.,¹

𝒙𝑐𝑛 ∼ 𝑝𝒟(𝒙), 𝜺𝑐𝑛 ∼ 𝑝𝒟(𝜺 ∣ 𝒙𝑐𝑛), 𝒚𝑐𝑛 = 𝑓 (𝒙𝑐𝑛) + 𝜺𝑐𝑛. (2.2)

¹ In this work, we follow the common convention in the field of machine learning to formulate problems in terms of
random variables and their probability density functions, leaving the definitions of the underlying sample space and
probability measure implicit [Was04]. Furthermore, to unclutter notation, we often use the same symbol (e.g., 𝑝 or 𝑝𝒟)
to denote different probability density functions and distinguish them by “dummy” arguments. Similarly, our notation
does not distinguish between random variables and their realizations, since the interpretation is usually clear from the
context [Bis06, Gel13]. We also use the terms “probability distribution”, “probability density”, and “probability density
function” interchangeably.
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The inputs 𝒙𝑐𝑛 are distributed according to a probability density 𝑝𝒟 (𝒙) on 𝒳, and the random
variables 𝜺𝑐𝑛 with density 𝑝𝒟 (𝜺 ∣ 𝒙𝑐𝑛) describe an additive noise process on 𝒴. In general, the
noise may be heteroscedastic, i.e., the density 𝑝𝒟 (𝜺 ∣ 𝒙) may depend on the input location. Note
that we use the superscript 𝑐 to indicate the correspondence to what we call a context dataset
in meta-learning.

Following Eq. (2.2), we assume that the data tuples (𝒙𝑐𝑛, 𝒚𝑐𝑛) that make up 𝒟𝑐 are sampled inde-
pendently and identically (i.i.d.) from a joint distribution

𝑝𝒟 (𝒙, 𝒚) = 𝑝𝒟 (𝒚 ∣ 𝒙) 𝑝𝒟 (𝒙) , (2.3)

defined by the distributions 𝑝𝒟 (𝒙) and 𝑝𝒟 (𝒚 ∣ 𝒙). Note that 𝑝𝒟 (𝒚 ∣ 𝒙) is defined implicitly
by Eq. (2.2) through the function 𝑓 and the additive noise process. We call 𝑝𝒟 (𝒙, 𝒚) the data
distribution of the regression problem we aim to solve. In the following, we will refer to one
such regression problem as a task. Since there is only one regression problem involved in our
current setting, we call it a single-task problem to distinguish it from the multitask problems we
will study later in this work.

Our goal is to use 𝒟𝑐 as a training dataset to infer a model that generalizes to an unobserved
test dataset

𝒟𝑡 = { (𝒙𝑡𝑚, 𝒚𝑡𝑚) ∈ 𝒳 × 𝒴 ∣ 𝑚 ∈ {1, … ,𝑁𝑡} }, (2.4)

that was not used for training, i.e., 𝒟𝑐 ∩ 𝒟𝑡 = ∅. The underlying assumption that makes this
approach reasonable is that the training and test datasets share statistical structure, in the sense
that observing the training data provides information about the generative process of the test
data. Typically, we assume that the training and test datasets are identically distributed, i.e., that
(𝒙𝑡𝑚, 𝒚𝑡𝑚) ∼ 𝑝𝒟(𝒙, 𝒚) for 𝑚 ∈ {1,… ,𝑁𝑡}.

2.1.2 Bayesian Modeling

Let us now consider model inference, given data of the structure introduced in the previous sec-
tion. Since inferences are inherently uncertain due to noise and finite training data, we use a
probabilistic modeling approach that allows for a rigorous mathematical treatment of this uncer-
tainty [Was04, Gel13, Bis06, Hül21]. The assumption of i.i.d. data motivates its description in
terms of a parametric model, i.e., a family of conditional probability distributions¹

{𝑝 (𝒚 ∣ 𝒙, 𝒛) ∣ 𝒛 ∈ 𝒵}, (2.5)

that describe the data as conditionally independent given 𝒛 [Fin30, Fin37, Hew55, Kin78, Ric06,
Gel13]. We call the set 𝒵 ⊂ ℝ𝑑𝑧 the hypothesis space and each 𝒛 ∈ 𝒵 a hypothesis.²

¹ Note that we do not model the distribution 𝑝𝒟 (𝒙) of the inputs.
² We will use the terms “hypothesis” and “parameter” interchangeably throughout this work.
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A major focus of this work is generalization from small training datasets 𝒟𝑐 , in the sense that
𝒟𝑐 is compatible with many different hypotheses 𝒛 ∈ 𝒵. In such cases, it is nonsensical to settle
on a point estimate, i.e., a single hypothesis ̂𝒛 ∈ 𝒵, to describe the data. In fact, for reasonably
flexible models, this approach bears the risk of overfitting, where 𝑝 (𝒚 ∣ 𝒙, ̂𝒛) explains𝒟𝑐 well but
generalizes poorly to the test dataset 𝒟𝑡 . To avoid overfitting, we follow a Bayesian approach to
generalization, which uses a Bayesian model average (BMA) [Mac03, Bis06, Gel13, Wil20, Pap24],
i.e., a weighted combination of predictions with all hypotheses in 𝒵, with higher weights given
to hypotheses that better explain the training data. In this way, we express and quantify the
predictive uncertainty arising due to the lack of training data, rather than relying on a single
and likely wrong hypothesis. Intuitively, high predictive uncertainty is expressed by a BMA that
assigns significant weights to several conflicting hypotheses, while a BMA that contains only
consistent hypotheses indicates low predictive uncertainty.

Specifically, a Bayesian approach computes a reweighting of hypotheses in 𝒵, starting from an
initial weighting chosen according to our prior belief about the plausibility of hypotheses. This
belief can be expressed formally in terms of a probability distribution 𝑝 (𝒛) over𝒵 [Cox46, Cox61].
In this way, 𝒛 is promoted to a latent (i.e., unobserved) random variable, and Bayesian predictions
follow by a straightforward application of the rules of probability theory [Mac03, Bis06, Gel13].
We will refer to the parametric model {𝑝 (𝒚 ∣ 𝒙, 𝒛) ∣ 𝒛 ∈ 𝒵} together with the specification of the
prior distribution 𝑝 (𝒛) as the Bayesian model, or simply as the model.

Our conditional independence assumptions are summarized in the probabilistic graphical
model [Kol09, Bis06] Fig. 2.1. The joint distribution over all unobserved variables factorizes as

𝑝 (𝒚𝑡1∶𝑁𝑡 , 𝒛 ∣ 𝒙𝑡1∶𝑁𝑡 , 𝒟𝑐) =
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡𝑚 ∣ 𝒙𝑡𝑚, 𝒛) 𝑝 (𝒛 ∣ 𝒟𝑐) , (2.6)

where we have introduced the shorthand notation 𝒚𝑡1∶𝑁𝑡 ≡ {𝒚𝑡𝑚 ∈ 𝒴 ∣ 𝑚 ∈ {1, … ,𝑁𝑡} }, which
we also use for other quantities such as 𝒙𝑡1∶𝑁𝑡 . Marginalizing this distribution over hypotheses
yields Bayesian predictions in terms of a predictive distribution. In the absence of training data, i.e.,
for𝒟𝑐 = ∅, we obtain the prior predictive distribution as a superposition of 𝑝 (𝒚 ∣ 𝒙, 𝒛), weighted
by the corresponding prior probability densities, i.e.,

𝑝 (𝒚𝑡1∶𝑁𝑡 ∣ 𝒙𝑡1∶𝑁𝑡) = ∫
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡𝑚 ∣ 𝒙𝑡𝑚, 𝒛) 𝑝 (𝒛) d𝒛. (2.7)

Similarly, in the case 𝒟𝑐 ≠ ∅, we obtain the posterior predictive distribution

𝑝 (𝒚𝑡1∶𝑁𝑡 ∣ 𝒙𝑡1∶𝑁𝑡 , 𝒟𝑐) = ∫
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡𝑚 ∣ 𝒙𝑡𝑚, 𝒛) 𝑝 (𝒛 ∣ 𝒟𝑐) d𝒛. (2.8)

Comparing this expression with Eq. (2.7), we observe that hypotheses have been reweighted in
the sense that they are now multiplied by the posterior probability densities 𝑝 (𝒛 ∣ 𝒟𝑐).

7



2 Theoretical Background

𝒛

𝒙𝑐𝑛

𝒚𝑐𝑛

𝒙𝑡𝑚

𝒚𝑡𝑚
𝑁𝑐 𝑁𝑡

Figure 2.1: Probabilistic graphical model [Kol09] derived from the assumption of independent and identically distributed
training data (left plate) and test data (right plate) [Kin78]. It defines the joint probability distribution over
unobserved variables 𝒚𝑡1∶𝑁𝑡 and 𝒛 in terms of a parametric model {𝑝 (𝒚 ∣ 𝒙, 𝒛) ∣ 𝒛 ∈ 𝒵} and a prior distribu-
tion 𝑝 (𝒛) over hypotheses.

For any fixed training set 𝒟𝑐 , Eq. (2.8) defines a set of probability distributions over the finite-
dimensional¹ space 𝒴𝑁𝑡 , parameterized by the inputs 𝒙𝑡1∶𝑁𝑡 . Note that this set of distributions
is consistent in the sense that it is invariant with respect to permutations of the target tuples
(𝒙𝑡𝑚, 𝒚𝑡𝑚), and that marginalizing out a subset of the variables 𝒚𝑡1∶𝑁𝑡 yields the distribution over
the corresponding subspace. Under these consistency conditions, the Kolmogorov extension theo-
rem asserts the existence of a unique probability distribution over the infinite-dimensional space
of functions 𝒳 → 𝒴 (formalized by the concept of a stochastic process) that has the above distri-
butions as its finite-dimensional marginal distributions [Øks10, Gar18c, Foo20a]. Thus, we can
consider this stochastic process as being defined by the finite-dimensional marginal distributions
Eq. (2.8).

The posterior distribution 𝑝 (𝒛 ∣ 𝒟𝑐) formally expresses our posterior belief about the correspond-
ing hypotheses, obtained by updating our prior belief with the information about the correct
hypothesis contained in the training data 𝒟𝑐 . This update is given by Bayes’ theorem [Bay63,
Cox61], which expresses the posterior distribution as

𝑝 (𝒛 ∣ 𝒟𝑐) =
𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝒛) 𝑝 (𝒛)

𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐)
. (2.9)

The quantity 𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝒛), read as a function of the hypothesis 𝒛, is called the likelihood
function, and its value at 𝒛 is called the likelihood of 𝒛. Under our model, the likelihood function
factorizes as

𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝒛) =
𝑁𝑐

∏
𝑛=1

𝑝 (𝒚𝑐𝑛 ∣ 𝒙𝑐𝑛, 𝒛) . (2.10)

The normalizing factor in the denominator is called the marginal likelihood, or evidence,

𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐) = ∫
𝑁𝑐

∏
𝑛=1

𝑝 (𝒚𝑐𝑛 ∣ 𝒙𝑐𝑛, 𝒛) 𝑝 (𝒛) d𝒛. (2.11)

¹ For the sake of this discussion, let 𝒴 denote the vector space ℝ𝑑𝑦 .
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Intuitively, themarginal likelihood describes the probability of generating the training data𝒚𝑐1∶𝑁𝑐 ,
if we were to sample randomly from the prior distribution 𝑝 (𝒛) [Mac03, Wil20].¹

2.1.3 Asymptotic Behavior of Bayesian Inferences

In the previous section, we motivated a Bayesian modeling approach for a small training dataset
𝒟𝑐 as a method to avoid overfitting. This involves quantifying our belief about the degree of
compatibility of hypotheses 𝒛 ∈ 𝒵 with 𝒟𝑐 in terms of a posterior distribution 𝑝 (𝒛 ∣ 𝒟𝑐), and
incorporating this belief into predictions using the predictive distribution Eq. (2.8). We will now
examine how Bayesian predictions behave in the complementary setting of a large training data-
set, i.e., we consider the asymptotic behavior of 𝑝 (𝒛 ∣ 𝒟𝑐) in the limit 𝑁𝑐 → ∞. We will find
that in this limit the posterior distribution is well approximated by a point estimate, reflecting
the intuition that we should be able to determine the best hypothesis with certainty when we
have infinite training data.

Our considerations will also reveal in which sense and in which situations this point estimate is
asymptotically correct. To make this precise, we shall distinguish the well-specified case, where
the data distribution belongs to the parametric model, i.e., where there exists a “true” hypothesis
𝒛 ∈ 𝒵 with 𝑝𝒟 (𝒚 ∣ 𝒙) = 𝑝 (𝒚 ∣ 𝒙, 𝒛), from the misspecified case, where there is no such hypoth-
esis in 𝒵. We will see that Bayesian inferences asymptotically yield the true hypothesis in the
well-specified case, and “come as close as possible” (in a sense we will formalize below) in the
misspecified case. We will keep the discussion relatively informal and refer the interested reader
to the literature for further details and proofs [Lap10, Doo49, Cam53, Vaa00, Was04, Ric06, Kle12,
Gel13, Gey13, Fan16].

Let us first introduce the Kullback-Leibler (KL) divergence [Kul51], which is defined for probability
densities 𝑝 and 𝑞 over the same space as

KL [𝑝 ∣∣ 𝑞] = 𝔼𝑝(𝒚) [log
𝑝 (𝒚)
𝑞 (𝒚) ] . (2.12)

The KL divergence is an example of a statistical divergence [Ama16]. In particular, it is positive
definite, i.e., for any 𝑝 and 𝑞 it holds that KL [𝑝 ∣∣ 𝑞] ≥ 0, with equality if and only if 𝑝 = 𝑞.

In the following, we assume that there exists a unique hypothesis ̄𝒛 ∈ 𝒵 that minimizes the KL
divergence between the data distribution and the model, i.e.,

̄𝒛 = argmin
𝒛∈𝒵

𝔼𝑝𝒟(𝒙){KL [𝑝𝒟 (⋅ ∣ 𝒙) ∣∣ 𝑝 (⋅ ∣ 𝒙, 𝒛)] }. (2.13)

¹ Note that due to our notation conventions described in Sec. 2.1.1, the expression for the marginal likelihood Eq. (2.11)
appears equivalent in structure to the prior predictive distribution Eq. (2.7). However, these quantities are conceptually
very different. Eq. (2.7) describes the joint probability density function of unobserved function values 𝒚𝑡1∶𝑁𝑡 , which
arises as the marginal density of the underlying stochastic process at locations 𝒙𝑡1∶𝑁𝑡 . In contrast, Eq. (2.11) is the real
number obtained by evaluating the marginal density at locations 𝒙𝑐1∶𝑁𝑐 on the observed data 𝒚𝑐1∶𝑁𝑐 .
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Since we are not modeling the input distribution 𝑝𝒟 (𝒙), both the data and the model distributions
come with the same factor 𝑝𝒟 (𝒙), which canceled out in the fraction in Eq. (2.12). 𝑝 (𝒚 ∣ 𝒙, ̄𝒛) is
called the forward KL projection of the data distribution onto the parametric model. In the well-
specified case, ̄𝒛 coincides with the true hypothesis (by positive definiteness of the KL divergence),
which we will thus also denote by ̄𝒛. In the misspecified case, such a true hypothesis does not
exist, and ̄𝒛 can be interpreted as the hypothesis that brings the distribution 𝑝 (𝒚 ∣ 𝒙, 𝒛) closest
to the data distribution in terms of KL divergence.

We can now state the Bernstein-von Mises theorem [Doo49], which is the central result describing
the asymptotic behavior of Bayesian inferences. It asserts that, under suitable regularity condi-
tions, the posterior distribution 𝑝 (𝒛 ∣ 𝒟𝑐) asymptotically approaches a Normal distribution with
mean ̄𝒛.¹ An important condition for this to hold is that the prior distribution must be supported
at ̄𝒛, i.e., 𝑝( ̄𝒛) > 0. Furthermore, the theorem asserts that Bayesian inferences are asymptotically
certain, i.e., the limiting Normal distribution (and, thus, the posterior distribution) becomes more
and more concentrated around ̄𝒛 as the training dataset 𝒟𝑐 grows.

We gain further insight into the role of ̄𝒛 using a similar result from frequentist statistics about
the maximum likelihood estimator (MLE),

̂𝒛 = argmax
𝒛∈𝒵

1
𝑁𝑐

𝑁𝑐

∑
𝑛=1

log𝑝 (𝒚𝑐𝑛 ∣ 𝒙𝑐𝑛, 𝒛) , (2.14)

which states that, under suitable regularity conditions, theMLE is consistent for ̄𝒛, i.e., its sampling
distribution becomes more and more concentrated around ̄𝒛 for large 𝒟𝑐 [Was04]. In this sense,
Bayesian and frequentist inferences are equivalent for large training datasets. Moreover, this
observation implies asymptotic consensus, i.e., that Bayesian predictions asymptotically become
independent of the prior distribution 𝑝 (𝒛). In fact, Eq. (2.14) is independent of 𝑝 (𝒛), so the
consistency of the MLE for ̄𝒛 implies the asymptotic independence of 𝑝 (𝒛 ∣ 𝒟𝑐) from the prior
distribution.

These results show that for large training datasets it is meaningful to approximate the posterior
distribution with a point estimate at ̂𝒛, i.e.,

𝑝 (𝒛 ∣ 𝒟𝑐) ≈ 𝛿 (𝒛 − ̂𝒛) for 𝑁𝑐 →∞. (2.15)

Here, 𝛿 (𝒛) denotes the Dirac delta distribution [Dir30, Sch50]. Using Eq. (2.15) in the predictive
distribution Eq. (2.8), yields the plugin approximation [Mur23] of the predictive distribution

𝑝 (𝒚𝑡1∶𝑁𝑡 ∣ 𝒙𝑡1∶𝑁𝑡 , 𝒟𝑐) ≈
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡𝑚 ∣ 𝒙𝑡𝑚, ̂𝒛) for 𝑁𝑐 →∞. (2.16)

¹ The convergence is in probability with respect to the data distribution𝑝𝒟 (𝒙, 𝒚), using the total variation as the distance
measure between the posterior distribution and the limiting Normal distribution.
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2.1 Bayesian Inference

In summary, for large training datasets, Bayesian predictions are well approximated by predic-
tions with the single “best” hypothesis ̄𝒛 ∈ 𝒵, which can be estimated from the training data
𝒟𝑐 by ̂𝒛.

2.1.4 Sources of Uncertainty

We now examine various sources of uncertainty that arise in general learning problems and how
these uncertainties are quantified in Bayesian modeling [Hül21]. First, assume that the ground
truth data generating process 𝑝𝒟 (𝒚 ∣ 𝒙) was known. Since the targets 𝒚 are corrupted by noise
according to Eq. (2.2), the dependence of 𝒚 on the inputs 𝒙 is non-deterministic. Therefore, al-
though we know the data generating process, it is impossible to predict the exact value of 𝒚 for
a given 𝒙. This type of uncertainty about the targets 𝒚 is called aleatoric uncertainty. It is char-
acterized by the property that it cannot be reduced, e.g., by collecting more data or by extending
the hypothesis space 𝒵, because it is an intrinsic property of the data generating process.

In practice, we do not know𝑝𝒟 (𝒚 ∣ 𝒙) andwant to infer amodel of it from training data𝒟𝑐 drawn
from this distribution. This model inference process reveals two additional sources of uncertainty.
To uncover the first type of uncertainty, consider the limit𝑁𝑐 →∞, in which Bayesian inference
yields the hypothesis ̄𝒛 with certainty, so that the point estimate Eq. (2.15) becomes valid. Recall
from Sec. 2.1.3 that for a misspecified model the limiting hypothesis ̄𝒛 is erroneous in the sense
that 𝑝 (𝒚 ∣ 𝒙, ̄𝒛) ≠ 𝑝𝒟 (𝒚 ∣ 𝒙). This discrepancy is due to model uncertainty, i.e., our uncertainty
about the correct choice of the hypothesis space 𝒵 [Hül21]. In the limit 𝑁𝑐 →∞, Bayesian pre-
dictions for 𝒚 at 𝒙 are given in terms of the plugin approximation 𝑝 (𝒚 ∣ 𝒙, ̄𝒛) Eq. (2.16), so that the
predictive uncertainty is described as being entirely aleatoric in nature. In the absence of model
uncertainty, we can choose a well-specified model with 𝑝 (𝒚 ∣ 𝒙, ̄𝒛) = 𝑝𝒟 (𝒚 ∣ 𝒙), and the pre-
dictive uncertainty correctly captures the underlying aleatoric uncertainty. In the misspecified
case, however, the plugin approximation does not recover the ground truth data generating pro-
cess, and Bayesian predictions incorrectly describe the remaining uncertainty as purely aleatoric,
although it is in fact a combination of aleatoric and model uncertainty (Fig. 2.3(b)).

The second type of uncertainty is approximation uncertainty, which we define following Hüller-
meier et al. [Hül21] as the uncertainty about the correct hypothesis due to the finite amount of
training data (𝑁𝑐 < ∞). In Bayesian modeling, this type of uncertainty is quantified by the poste-
rior distribution 𝑝 (𝒛 ∣ 𝒟𝑐), and translated into predictive uncertainty by means of the predictive
distribution Eq. (2.8). This way of quantifying approximation uncertainty is the key distinguish-
ing feature of a Bayesian modeling approach compared to the use of point estimates such as ̂𝒛
Eq. (2.14). For small training data sets, such point estimates are necessarily inaccurate and the
resulting predictions overly confident because many hypotheses are compatible with the training
data. In fact, in this regime, the posterior distribution can have rich structure, which explains
why Bayesian predictions are often superior [Bis94, Gar18a, Wil20, Pap24].

Both approximation and model uncertainty are characterized by the property that they are due
to uncertainty about the perfect model, i.e., about the model that recovers the ground truth data
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generating process 𝑝𝒟 (𝒚 ∣ 𝒙). Therefore, they can — at least in principle — be reduced. In fact,
approximation uncertainty decreases as more training data are observed, and model uncertainty
can be reduced by extending the hypothesis space𝒵 in a way that makes the model well-specified.
We subsume these types of reducible uncertainties under the notion of epistemic uncertainty.

2.1.5 Model Parameterization

Having outlined the general approach of Bayesian modeling, we will now discuss several archi-
tectural and computational aspects in more detail. First, we consider the choice of the hypothesis
space 𝒵, i.e., the parameterization of the model {𝑝 (𝒚 ∣ 𝒙, 𝒛) ∣ 𝒛 ∈ 𝒵} and of the prior distribu-
tion 𝑝 (𝒛).

In Sec. 2.1.3, we established that the posterior distribution asymptotically contracts around a hy-
pothesis ̄𝒛. While we showed that this is true regardless of the concrete choice of the prior dis-
tribution 𝑝 (𝒛), we did not yet investigate how 𝑝 (𝒛) affects the efficiency of this contraction in
terms of the amount of training data required to arrive at a good estimate of ̄𝒛. While formal
convergence rates can be established [Kle12], we restrict our attention to a view put forward by
MacKay [Mac03] and Wilson et al. [Wil20], which emphasizes the marginal likelihood Eq. (2.11)
as a useful quantity to reason about this problem. First, recall from Sec. 2.1.2 that the marginal
likelihood Eq. (2.11) quantifies how much probability a Bayesian model assigns to a given data-
set by marginalization with respect to the prior distribution 𝑝 (𝒛). The marginal likelihood thus
allows a quantitative comparison of different model choices, in contrast to 𝑝 (𝒛), which has no
meaning independent of the model parameterization.

We define the support of a Bayesian model as the set of datasets that have a non-vanishing
marginal likelihood [Wil20]. Note that a well-specified model with 𝑝( ̄𝒛) > 0 is necessarily sup-
ported at the training dataset𝒟𝑐 . Furthermore, we define the strength of amodel’s inductive biases
towards a given dataset as the marginal likelihood of that dataset [Wil20]. Intuitively, a Bayesian
model with stronger inductive biases towards𝒟𝑐 will converge to the limiting hypothesis ̄𝒛more
efficiently. For example, a simple model that is supported on only a small subset of the dataset
space will necessarily put high prior probability mass on a small set of datasets and, thus, will
have strong inductive biases towards a small class of problems. If the problem at hand happens to
belong to this class, the posterior distribution will efficiently contract around this solution when
observing the data. However, due to its truncated support, the model will be misspecified for most
problems, where it will contract around an incorrect solution ̄𝒛 with 𝑝 (𝒚 ∣ 𝒙, ̄𝒛) ≠ 𝑝𝒟 (𝒚 ∣ 𝒙).

These considerations make it clear that we should parameterize our Bayesian model in a way that
spends probability mass only datasets that are a priori realistic, implying as strong an inductive
bias as possible toward those datasets. This is in contrast to a model that wastes probability mass
on exotic datasets that will never be observed. In a generic single-task setting in engineering or
science, where no specific prior knowledge is available about the task, we often use a deep learning
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approach [LeC15, Goo16, Wil20, Bis23], i.e., we parameterize the model as

𝑝 (𝒚 ∣ 𝒙, 𝒛) = 𝒩(𝒚 ∣ 𝝁𝒛 (𝒙) , diag (𝝈2𝒛 (𝒙))) . (2.17)

Here, 𝝁𝒛 ∶ 𝒳 → ℝ𝑑𝑦 and 𝝈2𝒛 ∶ 𝒳 → ℝ𝑑𝑦
+ are functions defined by a multi-layer perceptron

(MLP), a specific form of a neural network (NN), with weights 𝒛 ∈ 𝒵 ⊂ ℝ𝑑𝑧 . This approach is
popular because MLPs allow a flexible parameterization of general functions, provided that the
dimensionality 𝑑𝑧 of the weight space is chosen large enough [Hor89, Nea96]. Furthermore, by
virtue of the backpropagation algorithm [Lei20, Lin76, Rum86, Goo16], NNs allow for an efficient,
gradient-based computation [Cur44, Rob51, Rum86, Duc11, Hin12, Kin15] of the MLE estimate
Eq. (2.14). For concreteness, we have defined a factorized Gaussian model, with 𝒩(𝒚 ∣ 𝝁, 𝜮) de-
noting the Gaussian probability density function with mean 𝝁 ∈ ℝ𝑑𝑦 and covariance matrix¹
𝜮 ∈ ℝ𝑑𝑦×𝑑𝑦 , which is often a reasonable choice for regression problems [Bis06]. Note, how-
ever, that it may be unsuitable, e.g., when the target space 𝒴 is bounded, or when we consider
classification problems where 𝒴 is a discrete set.

Choosing an appropriate prior distribution 𝑝 (𝒛) for such a Bayesian neural network (BNN) can
be intricate and remains an active field of research [For22a, Mur23]. In fact, mapping any kind of
prior belief about the task onto a probability distribution over the high-dimensional weight space
𝒵 is inherently non-trivial [Rob07], and even choosing non-informative priors [Jef46, Jay68, Ber91,
Kas96] often proves computationally intractable. In a single-task setting, we therefore often use
a simple isotropic Gaussian prior of the form

𝑝 (𝒛) = 𝒩(𝒛 ∣ 𝝁𝒛,0, diag (𝝈2𝒛,0)) (2.18)

with 𝝁𝒛,0 ∈ ℝ𝑑𝑧 and 𝝈2𝑧,0 ∈ ℝ𝑑𝑧
+ . While this choice is appealing from a computational point of

view and allows a simple interpretation in terms of L2-regularization [Bis06], it can be suboptimal
with respect to the properties of the resulting Bayesian inferences [For22b].

As discussed in Sec. 1, we often do not operate in a single-task setting, but have prior knowledge
about the target task in the form of a meta-dataset of similar tasks. The meta-learning approach
discussed below will allow us to learn inductive biases towards a given class of tasks from such
a meta-dataset. Specifically, we will see that Bayesian meta-learning expresses these inductive
biases in terms of a Bayesian posterior distribution over hypotheses, conditioned on the meta-
dataset. To learn the target task, this posterior distribution then serves as a conventional prior
distribution. Because it is informed by the meta-dataset, we call it a meta-prior to distinguish it
from the conventional priors such as Eq. (2.18), which are chosen independently from data.

¹ We use the notation diag (𝝈2) with 𝝈2 ∈ ℝ𝑑𝑦 to denote the 𝑑𝑦 × 𝑑𝑦 diagonal matrix with diagonal entries 𝝈2.
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2.1.6 Approximate Bayesian Inference

In the previous sections, we motivated the Bayesian approach to modeling by its ability to in-
corporate an estimate of approximation uncertainty into predictions, leading to improved gen-
eralization for small training datasets compared to point estimates. Approximation uncertainty
is quantified by the posterior distribution 𝑝 (𝒛 ∣ 𝒟𝑐) over hypotheses 𝒛 ∈ 𝒵. A drawback of this
approach is that it is computationally intractable to compute 𝑝 (𝒛 ∣ 𝒟𝑐) in all but the simplest
cases, so that we usually have to resort to approximations. We now provide a brief introduction
to approximate Bayesian inference, with a focus on developing a conceptual understanding of the
difficulties of scaling inference to higher dimensions 𝑑𝑧. As we will see later, in meta-learning
we can restrict Bayesian inference to only those latent features that differ from task to task, so
that 𝑑𝑧 can be kept comparatively low, allowing the use of sophisticated approximate inference
techniques.

First, note that the computation of the posterior distribution according to Bayes’ theorem Eq. (2.9)
requires the marginal likelihood Eq. (2.11) as a normalizing factor. Computing the marginal like-
lihood involves solving an integral over the hypothesis space𝒵, which turns out to be analytically
intractable for reasonably complex models, such as the NN-based parameterization presented in
Sec. 2.1.5. The reason is that the prior distribution is non-conjugate to the likelihood, which means
that the resulting posterior distribution is not from the same (and usually simple) family of prob-
ability distributions as the prior [Mac03, Mur23, Bis06, Gel13]. Rather, the posterior distribution
can have an exceedingly complex shape [Gar18a, Dra18, Wil20, Izm21, Bet18], rendering the com-
putation of its normalization constant, i.e., the marginal likelihood, analytically intractable.

Moreover, in modern applications of Bayesian learning, such as BNNs, the posterior distribution
𝑝 (𝒛 ∣ 𝒟𝑐) is not the primary object of interest. In fact, as mentioned in Sec. 2.1.5, it can be difficult
to extract useful information from distributions over high-dimensional hypothesis spaces [Rob07,
For22a]. Rather, we are usually more interested in predictive quantities derived from the predic-
tive distribution Eq. (2.8). However, the predictive distribution is not only given in terms of an
expectation with respect to the intractable posterior distribution, but it itself requires marginal-
ization. Since this is intractable for the same reasons discussed above, the success of Bayesian
modeling depends largely on the availability of approximate inference techniques that yield both
accurate and computationally feasible approximations of posterior expectations of the general
form

𝔼𝑝(𝒛 ∣𝒟𝑐) [𝑔(𝒛)] = ∫𝑔 (𝒛) 𝑝 (𝒛 ∣ 𝒟𝑐) d𝒛, (2.19)

where 𝑔 ∶ 𝒵 → ℝ is some real-valued function on 𝒵.

14



2.1 Bayesian Inference

2.1.6.1 Monte Carlo Estimator

Given that we can evaluate the posterior density 𝑝 (𝒛 ∣ 𝒟𝑐) up to a normalizing constant, we could
try to obtain a numerical approximation of the posterior expectation Eq. (2.19) using Quasi-Monte
Carlomethods, which approximate the marginalization integral by numerical quadrature [Pre07],
i.e., using an exhaustive discretization of the hypothesis space 𝒵. While such approaches provide
low-variance estimates, they become computationally infeasible as soon as𝒵 has more than a few
dimensions, due to their exponential scaling behavior in the dimensionality 𝑑𝑧 of𝒵 [Gel13, Bet18].

To escape this curse of dimensionality, we need to distribute computation non-exhaustively over
the hypothesis space, an insight that lies at the heart of Monte Carlo (MC) approximations. Such
methods aim to focus on hypotheses 𝒛 ∈ 𝒵 that have dominating contributions to the poste-
rior expectation. Assuming that 𝑔 (𝒛) does not take high values in the tails of 𝑝(𝒛 ∣ 𝒟𝑐), these
hypotheses lie in the typical set of 𝑝 (𝒛 ∣ 𝒟𝑐), which is the region of 𝒵where the differential prob-
ability mass 𝑝 (𝒛 ∣ 𝒟𝑐) d𝒛 is concentrated. Unfortunately, it can be extremely difficult to quantify
the typical set in higher dimensions, since it is usually not located where the posterior density
𝑝 (𝒛 ∣ 𝒟𝑐) is highest, and its volume decreases relative to the volume of 𝒵 as 𝑑𝑧 increases [Bet18,
Mac03, Bis06]. This observation explains why approximate Bayesian inference generally becomes
more difficult in higher dimensions.

The typical set perspective motivates the MC estimator

𝔼𝑝(𝒛 ∣𝒟𝑐) [𝑔 (𝒛)] ≈
1
𝑆

𝑆
∑
𝑠=1

𝑔 (𝒛𝑠) , 𝒛𝑠 ∼ 𝑝 (𝒛 ∣ 𝒟𝑐) , (2.20)

which focuses computation on posterior samples 𝒛𝑠 . Since, by construction, samples from the
posterior distribution concentrate in its typical set, this estimator has appealing properties: it is
consistent, with its standard error decreasing as 𝑆−1/2 (regardless of 𝑑𝑧), so that in many cases
relatively few independent samples can be sufficient to estimate the posterior expectation with
reasonable accuracy [Gel13, Bis06, Mac03, Bet18].¹

In practice, however, the Monte Carlo approach does not resolve the difficulty of scaling poste-
rior expectations to higher dimensions 𝑑𝑧 because it requires exact, independent samples from
the posterior distribution. Obviously, such samples are not available when the posterior distribu-
tion is intractable, so the problem just got shifted from efficiently approximating marginalization
integrals to efficiently obtaining independent posterior samples, which is conceptually equivalent
to locating and quantifying the typical set of the posterior distribution.

¹ Note that in the special case of marginal likelihood estimation, i.e., 𝑔 (𝒛) = 𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝒛) and 𝒛𝑠 ∼ 𝑝 (𝒛), this
approach can be inefficient if the prior 𝑝 (𝒛) puts significant probability mass away from where 𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝒛)
has high values [Nea01, Gro15].
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2.1.6.2 Markov Chain Monte Carlo and Variational Inference

Let us now discuss methods for computing posterior samples to evaluate Eq. (2.20). The Mar-
kov Chain Monte Carlo (MCMC) family of approximate inference algorithms explores the typical
set using correlated samples generated by a Markov chain [Met53, Has70, Gem84, Dua87, Nea93,
Mac03, Bet18]. These algorithms are generally considered the gold standard because they pro-
duce exact posterior samples in the limit of infinite compute resources [Bis06]. Unfortunately,
they can be difficult to scale to problems with large training datasets or to complex observation
models [Izm21, Bet15].

An alternative is variational inference (VI) [Jor99, Mac03, Bis06], which computes a tractable vari-
ational approximation ̂𝑞 (𝒛) of the posterior distribution. This approximation is defined as the
reverse KL projection of the posterior distribution onto a variational family, i.e., onto some set 𝒬
of probability distributions over 𝒵, i.e.,

̂𝑞 ∈ argmin
𝑞∈𝒬

KL [𝑞 ∣∣ 𝑝 (⋅ ∣ 𝒟𝑐)] . (2.21)

This form of optimization objective produces approximations that are well suited for generative
purposes, since the reverse KL projection is mode-seeking in the sense that it tends to not put
probability mass in regions of 𝒵 where the posterior distribution has no support [Bis06, Mac03].

The optimization problem Eq. (2.21) is intractable because it requires knowledge of the posterior
distribution 𝑝 (𝒛 ∣ 𝒟𝑐). However, we can transform it into an equivalent, but tractable, optimiza-
tion problem that only depends on the likelihood and the prior,

̂𝑞 ∈ argmax
𝑞∈𝒬

ELBO [𝑞;𝒟𝑐] , (2.22)

where we have introduced the evidence lower bound (ELBO). The ELBO is a real-valued functional
on 𝒬 of the form

ELBO [𝑞;𝒟𝑐] = 𝔼𝑞(𝒛) [
𝑁𝑐

∑
𝑛=1

log𝑝 (𝒚𝑐𝑛 ∣ 𝒙𝑐𝑛, 𝒛) + log 𝑝 (𝒛)𝑞 (𝒛) ] . (2.23)

The equivalence of Eq. (2.21) with Eq. (2.22) can be established by realizing that the marginal
likelihood Eq. (2.11) enjoys a decomposition of the form

log𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐) = KL [𝑞 ∣∣ 𝑝 (⋅ ∣ 𝒟𝑐)] + ELBO [𝑞;𝒟𝑐] , (2.24)

which holds for arbitrary 𝑞 ∈ 𝒬. Since the the marginal likelihood is independent of 𝑞 and the
ELBO bounds it from below (by positive definiteness of the KL divergence), minimizing the KL
divergence is equivalent to the maximizing the ELBO.

Variational approaches generally exhibit better scaling properties than MCMC because the vari-
ational family 𝒬 can be chosen in a way that allows cheap posterior sampling, and because they
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reformulate inference as an optimization problem amenable to efficient stochastic gradient-based
optimization [Rob51, Rum86, Duc11, Kin15]. In fact, modern formulations [Hof13, Ran14, Kuc17,
Kin13, Mur23] define a parametric approximation, where variational parameters 𝝓 ∈ Φ ⊂ ℝ𝑑𝜙

label the elements 𝑞𝝓 (𝒛) of 𝒬. The variational optimization problem Eq. (2.22) on 𝒬 then reduces
to a standard optimization problem on Φ of the form

̂𝝓 ∈ argmax
𝝓∈Φ

ELBO (𝝓;𝒟𝑐) , (2.25)

where we have overloaded notation by using ELBO (𝝓;𝒟𝑐) to denote the real-valued function on
Φ defined by 𝝓 ↦ ELBO [𝑞𝝓; 𝒟𝑐].

2.1.6.3 Gradient Estimation

In many applications of practical interest, such as NN-based parametric models Eq. (2.17), we
can easily compute the gradient ∇𝒛𝑝 (𝒚 ∣ 𝒙, 𝒛) using standard automatic differentiation soft-
ware [Pas19, Mar15]. Furthermore, many variational families 𝒬 of continuous probability dis-
tributions allow a reparameterization of the expectation in Eq. (2.23) in terms of a distribution that
does not depend on 𝝓 [Dev96]. In such cases, we obtain an unbiased and, i.p., low-variance es-
timate of the gradient ∇𝝓ELBO (𝝓;𝒟𝑐) for stochastic optimization from an MC estimate (2.20)
of the reparameterized expectation [Kin13, Rez14, Kin19]. To distinguish this form of gradient
estimation from the more sophisticated approaches discussed below, we will refer to it as repa-
rameterized Euclidean gradient estimation.

Reparameterized Euclidean gradients are cheap to compute and simple to implement, so they are
readily applicable even to complex parameterizations of 𝒬. An important example is amortized
inference [Ger14, Kin19, Amo23] where 𝝓 parameterizes an inference model 𝑓𝝓 (𝒟𝑐) that defines
a mapping from the space of training datasets 𝒟𝑐 to 𝒬. Amortized inference allows modeling
the inference process as a function of the training dataset 𝒟𝑐 . Therefore, in a single-task setting,
where the training dataset 𝒟𝑐 is fixed, such an approach is not necessary. However, in the mul-
titask settings studied later in this work, inference has to be repeated for many similar datasets
𝒟𝑐 , and this method can lead to significant speedups.

A drawback of the simplicity of Euclidean gradients is that they can lead to suboptimal con-
vergence rates, because they ignore that 𝒬, which carries the structure of a statistical mani-
fold [Ama16], has non-Euclidean geometry. Replacing the Euclidean metric onΦwith the natural
Fisher information metric on 𝒬 to measure distances between probability distributions yields the
natural gradient, which can speed up convergence considerably [Ama98, Hon08, Kha17]. Sim-
ilarly, the natural gradient can be combined with an information-geometric trust region [Pet10,
Abd15, Are20, Sch15] that controls the step size through constraints in 𝒬 instead of using a stan-
dard learning rate to further stabilize convergence. While natural gradients and information-
geometric trust regions have been successfully applied to many types of problems [Are20, Kha23],
they remain more difficult to compute and implement than Euclidean gradients.
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2.1.6.4 Variational Inference Gap

The challenge of VI is to find a 𝑞 ̂𝝓 (𝒛) that approximates the posterior distribution 𝑝 (𝒛 ∣ 𝒟𝑐)well,
so that samples from 𝑞 ̂𝝓 (𝒛) yield accurate estimates of posterior expectations using Eq. (2.20).
This implies that the typical sets of 𝑞 ̂𝝓 (𝒛) and 𝑝 (𝒛 ∣ 𝒟𝑐) should have large overlap, because
then samples from 𝑞 ̂𝝓 (𝒛) will concentrate in the typical set of 𝑝 (𝒛 ∣ 𝒟𝑐) [Bet18]. The degree
to which this has been achieved can be quantified by KL [𝑞 ̂𝝓 ∣∣ 𝑝(⋅ ∣ 𝒟𝑐)], the so-called varia-
tional inference gap [Cre18], which, according to Eq. (2.24), is equivalent to the ELBO looseness
log𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐)− ELBO [𝑞 ̂𝝓; 𝒟𝑐]. For an arbitrarily flexible choice of the variational family
𝒬, 𝑞 ̂𝝓 will exactly match the posterior distribution, resulting in a vanishing variational inference
gap and a tight ELBO.

However, since we have assumed that it is intractable to work with the exact posterior distribu-
tion, we must use a constrained variational family 𝒬. This necessarily introduces approximation
inaccuracies, resulting in a variational approximation gap that persists even in the limit of infinite
computation, a property that distinguishes VI from asymptotically exact MCMC methods. In the
case of amortized inference, the accuracy of the variational approximation is further degraded
by inaccuracies introduced by the inference model 𝑓𝝓 (𝒟𝑐), resulting in an additional variational
amortization gap. Both gaps add up to the variational inference gap [Cre18].

2.1.6.5 Parameterization of Variational Families

A common approach to constrain𝒬 is themean-field approximation [Par98, Wai08], which defines
𝑞𝝓 (𝒛) to decompose into independent factors as

𝑞𝝓 (𝒛) =
𝑑𝑧
∏
𝑖=1

𝑞𝝓𝑖 (𝑧𝑖) , (2.26)

where 𝒛 = (𝑧1, … , 𝑧𝑑𝑧) ∈ 𝒵 and 𝝓 = (𝝓1, … , 𝝓𝑑𝑧) ∈ Φ. This approximation is popular because it
keeps Φ low-dimensional compared to more structured approximations, and allows for compu-
tationally cheap and robust variational optimization, sampling, and amortization [Hin93, Gra11,
Hof13, Blu15, Kin19, Ble17, Hon08, Far20].

However, the mean-field assumption is often unrealistic because it does not allow correlations
and multiple modes to be captured, properties commonly exhibited by posterior distributions in
Bayesian learning [Bis94, Gar18a, Wil20]. This can result in suboptimal approximations that gen-
erally underestimate the posterior variance, and, thus, lead to overconfident epistemic uncertainty
estimates [Tur11, Foo20b, Bis06, Mur23]. Therefore, a wide range of research explores more ex-
pressive variational families, such as structured mean-field [Sau95] or mean-field mixtures [Jaa98,
Bis97], hierarchical [Ran16, Maa16] or nonparametric variational approximations [Ger12], as well
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as normalizing flows [Rez15, Kin16]. Recently, highly accurate full-covariance Gaussian mix-
ture (GMM) variational approximations have been achieved using natural gradients [Lin20] and
information-geometric trust region step size control [Are23].

2.1.6.6 Variational Expectation Maximization

We have seen that maximizing the ELBO Eq. (2.23) with respect to the variational parameters
𝝓 ∈ Φ is equivalent to computing the reverse KL projection of the posterior distribution onto
the variational family 𝒬. We now briefly discuss the expectation maximization (EM) algo-
rithm [Dem77, Bis06], another instance of ELBO maximization that will be relevant for the type
of meta-model studied later in this work. We will find that certain dimensions of the hypothesis
space are determined well by the training data, so that they allow a point estimate. Let us denote
the subspace of the hypothesis space for which we use a point estimate by Θ ⊂ ℝ𝑑𝜃 , and the
remaining space of parameters that require distributional estimates again by 𝒵, and let 𝜽 ∈ Θ.
The marginal likelihood Eq. (2.11) and the posterior distribution Eq. (2.9) then become functions
of 𝜽, and the decomposition Eq. (2.24) reads

log𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝜽) = KL [𝑞𝝓 ∣∣ 𝑝 (⋅ ∣ 𝒟𝑐, 𝜽)] + ELBO (𝝓, 𝜽;𝒟𝑐) . (2.27)

Note that we have also made the dependence of the ELBO on 𝜽 explicit in the notation.

As before, maximizing the ELBOwith respect to 𝝓 (holding 𝜽 fixed) will minimize the KL term, i.e.,
improve the variational approximation 𝑞𝝓 of the posterior distribution. Assume for the moment a
fully flexible variational family𝒬, so that we can compute a perfect approximation with vanishing
KL term, corresponding to a tight ELBO. We then call this maximization an exact E-step. Then,
by positive definiteness of the KL divergence, maximizing the ELBO with respect to 𝜽 (holding
𝝓 fixed) must necessarily also increase the marginal likelihood. This maximization is called the
M-step. Since the marginal likelihood remains constant during the E-step and increases during
the M-step we converge to a maximum marginal likelihood estimate (MMLE), i.e.,

̂𝜽 ∈ argmax
𝜽∈Θ

𝑝 (𝒚𝑐1∶𝑁𝑐 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝜽) , (2.28)

by iterating successive E- and M-steps.¹ In this way, we can break down the potentially complex
problem of maximizing the marginal likelihood w.r.t 𝜽 into a sequence of simpler E- and M-steps.
The same convergence guarantee holds when we perform only partial E- and M- steps, e.g., by
taking single stochastic gradient steps in Φ and Θ, respectively [Bis06].

Since we are forced to work with a constrained variational family 𝒬, we can only perform ap-
proximate E-steps by maximizing the ELBO within 𝒬. Replacing the exact E-step with such an
approximate version defines a variant of EM called variational EM [Nea98]. Variational EM is still

¹ If the E- and M-steps converge only to a local maximum of the ELBO, the resulting value for 𝜽 will also be only a local
maximum of the marginal likelihood.
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guaranteed to converge because both the E- and the M-steps increase the ELBO. However, this no
longer implies convergence to a (local) maximumof themarginal likelihood, so variational EM can
give results different from ̂𝜽. We can gain an intuitive understanding of this effect by realizing that
an M-step maximizes 𝔼𝑞𝝓 [log𝑝 (𝒚𝑐1∶𝑁𝑐 , 𝒛 ∣ 𝒙𝑐1∶𝑁𝑐 , 𝜽)] with respect to 𝜽, which adapts the model
in a way that increases the quality of hypotheses 𝒛 that are likely under the current approximation
𝑞𝝓 (𝒛). In this way, the approximation assumptions become self-fulfilling, biasing the optimiza-
tion towards a solution that is generally different from the optimal solution ̂𝜽 [Tur11, Goo16].
Despite these shortcomings, variational EM remains a computationally efficient algorithm for
finding approximate maximum marginal likelihood estimates of latent variable models [Kin19].

2.1.7 Bayesian Optimization

In this section, we give a brief overview of Bayesian Optimization (BO) [Sno12, Sha16, Spr16],
a powerful global optimization algorithm that is widely used to optimize black-box functions
that are expensive to evaluate. To reduce the number of required function evaluations, BO uses
a Bayesian model to quantify the current belief about the function. Its data efficiency depends
heavily on the quality of the epistemic uncertainty estimates of this model (Sec. 2.1.4), which is
why BO serves as an important use case and benchmark for Bayesian models.

To derive BO, we consider an objective function 𝑓 ∶ 𝒳 → 𝒴, where𝒳 ⊂ ℝ𝑑𝑥 is a compact set and
𝒴 ⊂ ℝ𝑑𝑦 . Our goal is to find a global optimum

𝒙opt ∈ argmax
𝒙∈𝒳

𝑓(𝒙). (2.29)

BO considers the black-box setting, where we have to decide for the 𝑡-th optimization iterate
𝒙𝑡 ∈ 𝒳 based only on the optimization history

ℋ𝑡 = { (𝒙𝑛, 𝒚𝑛) ∈ 𝒳 × 𝒴 ∣ 𝑛 ∈ {1, … , 𝑡 − 1} }, (2.30)

where 𝒚𝑛 denotes the noise-corrupted objective function evaluation at 𝒙𝑛. The data generating
process is thus similar to Eq. (2.2), except that the inputs 𝒙𝑛 are not drawn randomly from a
distribution 𝑝𝒟 (𝒙) over 𝒳, but are chosen sequentially by the optimization algorithm.

The decision for an appropriate iterate 𝒙𝑡 based onℋ𝑡 constitutes an instance of the exploration-
exploitation dilemma [Sut18]. On the one hand, we want to exploit what we have learned so
far about 𝑓, i.e., we want to place 𝒙𝑡 in regions where we expect high objective function values
based on ℋ𝑡 . On the other hand, we do not want to miss regions of 𝒳 that might yield even
better results but that we have not yet explored.

From our discussion in the previous sections, we know that modelingℋ𝑡 using Bayesian regres-
sion provides a well-founded solution. In fact, a Bayesian model provides a predictive distribution
𝑝 (𝒚𝑡 ∣ 𝒙𝑡,ℋ𝑡) Eq. (2.8) that quantifies our belief about the objective function based on the opti-
mization history ℋ𝑡 . Thus, such a surrogate model can be used to trade off exploration against
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exploitation. In BO, this is achieved by defining an acquisition function (AF) 𝛼𝑡 ∶ 𝒳 → ℝ that
depends only on the surrogate model and defines the iterate 𝒙𝑡 through the surrogate optimiza-
tion problem

𝒙𝑡 ∈ argmax
𝒙∈𝒳

𝛼𝑡 (𝒙𝑡) . (2.31)

Fig. 2.2 illustrates this approach.

Figure 2.2: Illustration of Bayesian optimization of a black-box objective function𝑓 (black, dashed). We show a Gaussian
process (GP) surrogate model (blue), fitted to the optimization historyℋ𝑡 (red dots), and the UCB acquisition
function (AF)𝛼UCB (green). The next optimization iterate is defined as the maximum location of the AF and is
indicated by a green vertical dashed line. Note that we use the shorthand notations 𝜇 (𝒙) ≡ 𝔼𝑝(𝒚𝑡 ∣𝒙,ℋ𝑡) [𝒚𝑡]
and 𝜎2 (𝒙) ≡ 𝕍𝑝(𝒚𝑡 ∣𝒙,ℋ𝑡) [𝒚𝑡] for the predictive mean and variance of the GP, respectively.

Depending on the specific properties of the optimization problem at hand, a number of surrogate
models [Ras05, Hut11, Spr16] and AFs [Tho33, Kus64, Moc75, Jon98, Sri10, Hen12, Hen14] have
been proposed in the literature. A prototypical instantiation of BO is given by a Gaussian Process
(GP) [Ras05] surrogate model with the upper confidence bound (UCB) AF [Sri10], defined as

𝛼UCB
𝑡 (𝒙𝑡) = 𝔼𝑝(𝒚𝑡∣𝒙𝑡,ℋ𝑡) [𝒚𝑡] + 𝜅𝑡√𝕍𝑝(𝒚𝑡∣𝒙𝑡,ℋ𝑡) [𝒚𝑡]. (2.32)

The expectation and variance are computed with respect to the predictive distribution of the sur-
rogate model, and the corresponding terms conceptually encourage exploitation and exploration,
respectively. 𝜅𝑡 > 0 is a scalar hyperparameter trading off these terms against each other.

A drawback of the nonparametric nature of GPs is that they can be difficult to scale to large
datasets. Therefore, parametric surrogate models, as discussed in the previous sections, can be
an interesting alternative [Spr16]. For such models, it is generally non-trivial to compute the
required predictive expectation and variance in Eq. (2.32), but it is usually straightforward to
compute approximate function samples from the underlying stochastic process (Sec. 2.1.2) from
approximate posterior samples (Sec. 2.1.6). In such cases, Thompson sampling, where we greedily
maximize these function samples, is a simple alternative AF with appealing theoretical proper-
ties [Tho33, Kan18].
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While the surrogate optimization problem Eq. (2.31) can be a complex optimization problem it-
self [Wil18], it is typically cheaper to solve than the original problem Eq. (2.29) because no eval-
uations of the objective function 𝑓 are required to evaluate the AF. In particular, gradients of the
AF can often be easily obtained, e.g., by implementing the surrogate model and the AF in modern
automatic differentiation frameworks [Mar15, Pas19, van20, Bal20], which enables efficient local
optimization strategies for solving the surrogate optimization problem.

2.2 Bayesian Meta-Learning

In the previous sections, we introduced Bayesian modeling for a single-task problem, i.e., for a
training dataset generated according to Eq. (2.2). We now turn our attention to settings where
we have available a collection of many such datasets that share statistical structure. By apply-
ing Bayesian inference to this type of problem, we will be able to take advantage of this shared
structure to speed up inference on unseen datasets.

2.2.1 Meta-Datasets and Meta-Learning

What distinguishes the problems studied in the remainder of this work from the single-task prob-
lems considered in Sec. 2.1 is that we consider inference from a meta-dataset 𝒟meta. A meta-
dataset is defined as a dataset that is itself structured into 𝐿 datasets𝒟ℓ of the form Eq. (2.1), i.e.,

𝒟ℓ = { (𝒙ℓ,𝑛, 𝒚ℓ,𝑛) ∈ 𝒳 × 𝒴 ∣ 𝑛 ∈ {1, … ,𝑁ℓ} }. (2.33)

The meta-dataset is defined as the disjoint union

𝒟meta = ̇
⋃

𝐿

ℓ=1
𝒟ℓ. (2.34)

Note that this construction differs from simply pooling the data (i.e., forming ⋃ℓ𝒟ℓ), since we
retain the additional information of how the data tuples (𝒙, 𝒚) are grouped into distinct datasets.

We assume that the datasets 𝒟ℓ are generated according to Eq. (2.2), i.e., by noise-corrupted
evaluations of unknown functions 𝑓ℓ ∶ 𝒳 → 𝒴, i.e.,

𝒙ℓ,𝑛 ∼ 𝑝𝒟ℓ (𝒙), 𝜺ℓ,𝑛 ∼ 𝑝𝒟ℓ (𝜺 ∣ 𝒙ℓ,𝑛), 𝒚ℓ,𝑛 = 𝑓ℓ (𝒙ℓ,𝑛) + 𝜺ℓ,𝑛, (2.35)

where the 𝑓ℓ share their domain 𝒳 ⊂ ℝ𝑑𝑥 and codomain 𝒴 ⊂ ℝ𝑑𝑦 . If this setting involves 𝐿 > 1
such tasks, we call it a multitask problem. In general, the probability distributions 𝑝𝒟ℓ (𝒙) over 𝒳
and 𝑝𝒟ℓ (𝜺 ∣ 𝒙) over 𝒴 may be task-dependent, which we indicate by the subscripts ℓ. Following
Eq. (2.35), we assume that𝒟ℓ is composed of independent samples from the joint data distribution

𝑝𝒟ℓ (𝒙, 𝒚) = 𝑝𝒟ℓ (𝒚 ∣ 𝒙) 𝑝𝒟ℓ (𝒙) , (2.36)
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where 𝑝𝒟ℓ (𝒚 ∣ 𝒙) is defined implicitly by Eq. (2.35) through 𝑓ℓ and the noise process 𝑝𝒟ℓ .

We want to perform inference from the meta-dataset 𝒟meta, i.e., we consider this dataset as the
training dataset. Consequently, we call𝒟meta themeta-training dataset and the individual𝒟ℓ the
training datasets, and we aim to generalize to a meta-test dataset

𝒟meta,∗ = ̇
⋃

𝐾

𝑘=1
𝒟∗
𝑘 (2.37)

of test datasets

𝒟∗
𝑘 = {(𝒙∗𝑘,𝑚, 𝒚∗𝑘,𝑚) ∈ 𝒳 × 𝒴 ∣ 𝑚 ∈ {1, … ,𝑁∗

𝑘}} . (2.38)

As in the single-task case, this endeavor is only reasonable if we assume that themeta-training and
meta-test datasets share statistical structure, so that observing the meta-training data provides
information about the generative process of the meta-test data.

Recall our discussion in Sec. 1, where we introduced meta-learning as an approach that learns
a data representation that facilitates the solution of related tasks, such as those in 𝒟meta and
𝒟meta,∗. Crucially, meta-learning is derived from the multitask formulation Eq. (2.35), as opposed
to transfer learning, which pre-trains the representation on a single large dataset and then fine-
tunes the model to a given test task.¹ Meta-learning is in this sense similar to another approach
known as multitask learning, but while multitask learning considers a fixed set of tasks that are
learned jointly in order to benefit from a shared data representation, meta-learning aims at a
representation that allows efficient generalization to unseen tasks at test time [Ben13, Zhu21,
Hui21, Hos22, Bis23].

As discussed in Sec. 1, we are particularly interested in the few-shot learning scenario, where
we have observed a small context dataset 𝒟𝑐,∗

𝑘 ⊂ 𝒟∗
𝑘 from a test dataset 𝒟∗

𝑘 . A meta-learning
approach provides an adaptation mechanism that allows efficient inference from𝒟𝑐,∗

𝑘 to identify
properties of the test task that enable high-quality predictions on the unobserved target dataset
𝒟𝑡,∗
𝑘 ⊂ 𝒟∗

𝑘 . When a test dataset 𝒟∗
𝑘 is completely unobserved, i.e., when 𝒟𝑐,∗

𝑘 = ∅ and we rely
solely on 𝒟meta to make predictions about 𝒟∗

𝑘 , we say that we are making zero-shot predictions.
Tab. 2.1 summarizes the datasets involved in the meta-learning problem.

¹ This single dataset can still be diverse and generated from different tasks. However, in it’s vanilla formulation [Mur23,
Bis23], transfer learning uses the pooled dataset ⋃𝒟ℓ and ignores the substructure we indicated in Eq. (2.34) by the
disjoint union. However, recall from Sec. 1, that the boundaries between transfer and meta-learning are becoming
increasingly blurred [Zhu21], especially with the advent of large foundation models [Vas17], which are technically also
trained in a multitask fashion.
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Table 2.1: Datasets involved in the meta-learning problem.

Name Symbol Purpose
training datasets 𝒟ℓ all available data from the ℓ-th training task
meta-training dataset 𝒟meta = ⋃̇𝒟ℓ dataset of all training datasets
test datasets 𝒟∗

𝑘 all available data from the 𝑘-th test task
meta-test dataset 𝒟meta,∗ = ⋃̇𝒟∗

𝑘 dataset of all test datasets
(test) context datasets 𝒟𝑐,∗

𝑘 ⊂ 𝒟∗
𝑘 used for adaptation to 𝒟∗

𝑘 during meta-testing
(test) target datasets 𝒟𝑡,∗

𝑘 ⊂ 𝒟∗
𝑘 used for testing on 𝒟∗

𝑘 during meta-testing

2.2.2 A Bayesian Meta-Model

Let us now discuss Bayesian Meta-Learning (BML), i.e., Bayesian modeling for meta-datasets of
the form Eq. (2.34). Throughout this text, we will be particularly interested in the zero- or few-
shot settings, where the context datasets𝒟𝑐,∗

𝑘 are empty or small, respectively. Here, a single-task
learning approach, where we ignore the meta-training dataset 𝒟meta and make inferences based
on the context datasets 𝒟𝑐,∗

𝑘 alone, using the single-task model structure discussed in Sec. 2.1.2,
will not provide satisfactory results, because predictionswould be affected by large approximation
uncertainty (Sec. 2.1.4).

Similarly, any attempt to incorporate 𝒟meta using such a single-task model will necessarily fail
because such a model is misspecified due to its inability to represent the substructure of𝒟meta of
individual datasets. This becomes apparent if we consider a naive pooling approach, where we
incorporate𝒟meta by ignoring this substructure and perform inference on a large dataset contain-
ing all the data from𝒟meta and𝒟𝑐,∗

𝑘 . Obviously, the model will then contract around an incorrect
solution for𝒟𝑐,∗

𝑘 . In fact, while the predictions will show comparatively little approximation un-
certainty (because the model is informed by a large amount of data), the model misspecification
will be expressed by a large model uncertainty (Sec. 2.1.4, Fig. 2.3).

These examples show that a single-task model cannot reduce epistemic uncertainty to a level
sufficient for predictions of reasonable quality in a few-shot setting. To take advantage of 𝒟meta,
we need to modify the model structure to obtain a well-specified model with a hypothesis space
that contains a hypothesis that correctly describes the substructure of 𝒟meta. As visualized in
Fig. 2.3, this will allow the model to learn inductive biases towards𝒟meta and efficiently contract
around the correct solution for 𝒟𝑐,∗

𝑘 .

To this end, we extend the hypothesis space to 𝒵meta, where each dataset is described by its own
parameter, i.e.,

𝒛meta ≡ (𝒛1, … , 𝒛𝐿, 𝒛∗1, … , 𝒛∗𝐾) ∈ 𝒵meta, 𝒵meta ≡ 𝒵𝐿+𝐾 . (2.39)

Here, the parameter 𝒛ℓ ∈ 𝒵 shall describe the ℓ-th training dataset 𝒟ℓ , and 𝒛∗𝑘 ∈ 𝒵 the 𝑘-th test
dataset 𝒟∗

𝑘 . Consequently, we call these parameters task descriptors.
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𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗)

𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗, 𝒟𝑐,∗)

𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗)

𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗, 𝒟meta,pooled ⋃ 𝒟𝑐,∗)

𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗, 𝒟meta)

𝑝 (𝒚𝑡,∗ ∣ 𝒙𝑡,∗, 𝒟meta ⋃̇𝒟𝑐,∗)
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(c) Meta-learning approach.

Figure 2.3: Comparison of three Bayesian models for data drawn from linear functions (𝑑𝑥 = 𝑑𝑦 = 1). The slopes are
sampled uniformly from [−1.0, 1.0] ⊂ ℝ to generate a meta-training dataset 𝒟meta. Top row: Schematic
visualization of the predictive distributions in dataset space (adapted from [Wil20]). Each small cross repre-
sents a training dataset𝒟ℓ ⊂ 𝒟meta, corresponding to a line with a given slope. The thick cross represents a
test dataset𝒟∗ generated from the same data distribution (with a slope of−0.4). Before observing data from
the test task, predictions are made with the prior predictive distribution (light shaded area with thick black
outline). The colored contours visualize the posterior predictive distribution for 𝒟∗, given a small context
dataset𝒟𝑐,∗ ⊂ 𝒟∗. Bottom row: Visualization of the posterior predictive distributions in (𝑥, 𝑦)-space. The
two thick black crosses represent 𝒟𝑐,∗, the thick black line represents the predictive mean, and the shaded
area represents two predictive standard deviations around the mean, indicating the predictive uncertainty.
As discussed in Sec. 2.1.4, this uncertainty is a combination of aleatoric and epistemic uncertainty. To visual-
ize the amount of epistemic uncertainty, we show noiseless function samples (light black lines), which show
more variability with more epistemic uncertainty. Panel a: Single-task approach with a general model that
ignores 𝒟meta and uses only 𝒟𝑐,∗ for training. While the predictive distribution includes the ground truth
function, it does not contract significantly around it due to the lack of training data. Therefore, the predictions
are affected by a large amount of epistemic uncertainty (approximation uncertainty), so that function sam-
ples show high variability and are unlikely to represent lines. Close to the training data, however, predictive
uncertainty is correctly estimated to be mainly of aleatoric kind. Panel b: Naive pooling approach, train-
ing the single-task model from (a) on the pooled meta-dataset 𝒟meta,pooled = ⋃ℓ𝒟ℓ (indicated by the light
crosses in the bottom row) together with𝒟𝑐,∗. Since this model is misspecified for𝒟meta (because it ignores
its substructure of individual tasks), it contracts around a suboptimal solution. Model uncertainty, the cause
of this model misspecification, is translated to predictive uncertainty of aleatoric kind, which represents a
wrong estimate of the ground truth aleatoric uncertainty due to noise. In fact, the model computes a large
predictive standard deviation, but the function samples show no variability, reflecting negligible epistemic
uncertainty due to the large amount of training data. Note that all function samples are approximately equal
to the predictive mean (which itself is approximately equal to the zero function due to the symmetry of the
data). In effect, the predictive distribution is factorized and assigns a negligible probability density to the
test data set. Panel c: Meta-learning approach that incorporates knowledge about the substructure of𝒟meta,
reflecting less model uncertainty. During the training phase, it uses 𝒟meta to learn inductive biases towards
linear functions in the form of a meta-prior (Sec. 2.1.5), as indicated by a prior predictive distribution that
includes only the training datasets. This allows the posterior predictive distribution to efficiently contract
around 𝒟∗ using the context dataset 𝒟𝑐,∗. As a result, the predictions exhibit negligible epistemic uncer-
tainty and correctly quantify the remaining ground truth aleatoric uncertainty.
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Formally, we define the datasets to be generated independently, in the sense that the joint dis-
tribution factorizes as

𝑝 (𝒚1∶𝐿,1∶𝑁 , 𝒚∗1∶𝐾,1∶𝑁 , 𝒛1∶𝐿, 𝒛∗1∶𝐾 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝒙∗1∶𝐾,1∶𝑁)

≡
𝐿
∏
ℓ=1

𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒛ℓ) 𝑝 (𝒛ℓ)
𝐾
∏
𝑘=1

𝑝 (𝒚∗𝑘,1∶𝑁 ∣ 𝒙∗𝑘,1∶𝑁 , 𝒛∗𝑘) 𝑝 (𝒛∗𝑘) .
(2.40)

Note that we simplify notation by assuming that all datasets consist of the same number of
𝑁ℓ = 𝑁∗

𝑘 = 𝑁 data points. The extension to datasets of different sizes is straightforward.

Note that without any additional structure, such a model would be equivalent to 𝐿 + 𝐾 inde-
pendent single-task models trained on their respective datasets. This would not allow learning a
representation of the structure shared between the tasks and using it for predictions. This moti-
vates to further extend the parameter space by a (task-)global parameter 𝜽 ∈ Θ ⊂ ℝ𝑑𝜽 , conditional
on which the datasets and their corresponding task descriptors are independent, i.e.,

𝑝 (𝒚1∶𝐿,1∶𝑁 , 𝒚∗1∶𝐾,1∶𝑁 , 𝒛1∶𝐿, 𝒛∗1∶𝐾 , 𝜽 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝒙∗1∶𝐾,1∶𝑁)

≡ 𝑝 (𝜽)
𝐿
∏
ℓ=1

𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒛ℓ, 𝜽) 𝑝(𝒛ℓ ∣ 𝜽)
𝐾
∏
𝑘=1

𝑝 (𝒚∗𝑘,1∶𝑁 ∣ 𝒙∗𝑘,1∶𝑁 , 𝒛∗𝑘, 𝜽) 𝑝(𝒛∗𝑘 ∣ 𝜽).
(2.41)

This means that 𝜽 describes the structure that is common to all tasks, while the task descriptors
describe the properties that vary from task to task, so that 𝒛ℓ captures the information needed
in addition to 𝜽 to describe 𝒟ℓ (and likewise for 𝒛∗𝑘 and 𝒟∗

𝑘). Thus, for the example of linear
functions from Fig. 2.3, 𝜽 would capture the linearity of the functions and the task descriptors
would capture their slopes. This model structure has been proposed for multitask learning by
Heskes [Hes00] and Bakker et al. [Bak03] and is visualized in Fig. 2.4.

𝜽

𝒛ℓ 𝒛∗𝑘

𝒙ℓ,𝑛

𝒚ℓ,𝑛

𝒙∗𝑘,𝑚

𝒚∗𝑘,𝑚
𝑁 𝑁

𝐿 𝐾

Figure 2.4: Bayesian multitask model that respects the decomposition of the data into individual tasks. The global param-
eter 𝜽 describes the structure that is shared between tasks, while the task descriptors 𝒛ℓ describe the features
that vary between tasks.
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2.2 Bayesian Meta-Learning

2.2.2.1 The Multitask Posterior Distribution

Let us first consider zero-shot predictions, i.e., predictions conditioned only on the meta-training
dataset 𝒟meta. Using the conditional independence assumptions induced by the multitask model
Fig. 2.4, the posterior distribution over the parameters (𝜽, 𝒛1∶𝐿, 𝒛∗1∶𝐾) factorizes into a global poste-
rior 𝑝 (𝜽 ∣ 𝒟meta), training task posteriors 𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽), and test task priors 𝑝 (𝒛∗𝑘 ∣ 𝜽) according to

𝑝 (𝒛1∶𝐿, 𝒛∗1∶𝐾 , 𝜽 ∣ 𝒟meta) = 𝑝 (𝜽 ∣ 𝒟meta)
𝐿
∏
ℓ=1

𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽)
𝐾
∏
𝑘=1

𝑝(𝒛∗𝑘 ∣ 𝜽). (2.42)

The resulting predictive distribution (Sec. 2.1.2) over the unobserved meta-test dataset reads

𝑝 (𝒚∗1∶𝐾,1∶𝑁 ∣ 𝒙∗1∶𝐾,1∶𝑁 , 𝒟meta)

= ∫(
𝐾
∏
𝑘=1

∫
𝑁
∏
𝑚=1

𝑝 (𝒚∗𝑘,𝑚 ∣ 𝒙∗𝑘,𝑚, 𝒛∗𝑘, 𝜽) 𝑝 (𝒛∗𝑘 ∣ 𝜽) d𝒛∗𝑘)𝑝 (𝜽 ∣ 𝒟meta) d𝜽.
(2.43)

Note that the predictive distribution is independent of the training task posteriors and depends
only on the global posterior and the test task priors.

According to Bayes’ theorem Eq. (2.9), the global posterior reads

𝑝 (𝜽 ∣ 𝒟meta) =
𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝜽) 𝑝 (𝜽)

𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁)
. (2.44)

The likelihood term in this equation is the marginal likelihood Eq. (2.11),

𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝜽) = ∫𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝒛1∶𝐿, 𝜽) 𝑝(𝒛1∶𝐿 ∣ 𝜽) d𝒛1∶𝐿

=
𝐿
∏
ℓ=1

∫
𝑁
∏
𝑛=1

𝑝 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ, 𝜽) 𝑝(𝒛ℓ ∣ 𝜽) d𝒛ℓ

=
𝐿
∏
ℓ=1

𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝜽) ,

(2.45)

which factorizes into training task marginal likelihoods 𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝜽). As discussed in
Sec. 2.1.6, computing marginal likelihoods is intractable for all but the simplest models and will
require approximation.

The training task marginal likelihoods, in turn, serve as the normalizing constants of the training
task posteriors

𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽) =
𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒛ℓ, 𝜽) 𝑝 (𝒛ℓ ∣ 𝜽)

𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝜽)
. (2.46)
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2 Theoretical Background

Since the global posterior Eq. (2.44) depends on the training task marginal likelihoods, and com-
puting them is equivalent to inferring the training task posteriors, we can say that inference of
the global posterior requires inference of the training task posteriors, even though they do not
appear in the zero-shot predictive distribution Eq. (2.43).

2.2.2.2 Empirical Bayes for the Global Posterior

We now discuss inference of the global posterior Eq. (2.44), which requires the training task
marginal likelihoods as well as the global marginal likelihood 𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁), both of
which are intractable. To compute an approximation, we use the MMLE ̂𝜽 Eq. (2.28) for 𝜽, i.e.,

𝑝 (𝜽 ∣ 𝒟meta) ≈ 𝛿 (𝜽 − ̂𝜽) , (2.47)

where

̂𝜽 ∈ argmax
𝜃∈Θ

𝑝 (𝒚1∶𝐿,1∶𝑁 ∣ 𝒙1∶𝐿,1∶𝑁 , 𝜽) . (2.48)

Intuitively, this is a reasonable approximation because the global posterior is informed by the full
meta-dataset.¹ In Sec. 2.2.2.4 we will discuss the computation of the MMLE using variational EM
as introduced in Sec. 2.1.6.6.

Under the plugin approximation Eq. (2.16), the predictive distribution Eq. (2.43) now reads

𝑝 (𝒚∗1∶𝐾,1∶𝑁 ∣ 𝒙∗1∶𝐾,1∶𝑁 , 𝒟meta) ≈ 𝑝 (𝒚∗1∶𝐾,1∶𝑁 ∣ 𝒙∗1∶𝐾,1∶𝑁 , ̂𝜽)

=
𝐾
∏
𝑘=1

∫
𝑁
∏
𝑚=1

𝑝 (𝒚∗𝑘,𝑚 ∣ 𝒙∗𝑘,𝑚, 𝒛∗𝑘, ̂𝜽) 𝑝 (𝒛∗𝑘 ∣ ̂𝜽) d𝒛∗𝑘.
(2.49)

Note that the predictive distribution now factorizes over the test datasets, and that, due to the
asymptotic consensus property of Bayesian predictions (Sec. 2.1.3), the predictive distribution is
independent of the choice of the global prior 𝑝 (𝜽). Note also that the test task priors and the
parametric model are now governed by the parameter ̂𝜽 learned on the meta-dataset𝒟meta. Since
this is in contrast to a standard Bayesian prior that is chosen independently of the data, we refer to
this approach as empirical Bayes [Mac92b, Bis06, Gel13]. As alluded to in Sec. 2.1.5, through this
mechanism, i.e., by means of the meta-prior Eq. (2.47), we incorporate learned inductive biases
towards 𝒟meta into the predictions in BML.

2.2.2.3 Task Posteriors, Test-Task Adaptation, and Task Ambiguity

Having discussed the global posterior and zero-shot predictions, we now study the role of the
task posteriors in more detail. We have already seen that the inference of the global posterior

¹ Following Sec. 2.1.3, the approximation will be correct in the limit 𝐿 → ∞ of infinitely many training tasks [Bak03].
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2.2 Bayesian Meta-Learning

Eq. (2.44) requires the inference of the training task posteriors Eq. (2.46), due to its dependence on
the training taskmarginal likelihoods Eq. (2.45). Let us now consider the test task posteriors. These
are required for few-shot learning, i.e., for adaptation to the test datasets. To see this, we assume
the availability of context datasets 𝒟𝑐,∗

𝑘 ⊂ 𝒟∗
𝑘 that we want to incorporate into the predictions

(Sec. 2.2.1). This is done by conditioning Eq. (2.43) on all available context data𝒟𝑐,∗
1∶𝐾 ≡ ⋃̇

𝐾
𝑘=1𝒟

𝑐,∗
𝑘 ,

and predicting the remaining target data 𝒟𝑡,∗
1∶𝐾 , i.e.,

𝑝 (𝒚𝑡,∗1∶𝐾,1∶𝑁𝑡 ∣ 𝒙𝑡,∗1∶𝐾,1∶𝑁𝑡 , 𝒟meta ∪̇𝒟𝑐,∗
1∶𝐾)

= ∫(
𝐾
∏
𝑘=1

∫
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡,∗𝑘,𝑚 ∣ 𝒙𝑡,∗𝑘,𝑚, 𝒛∗𝑘, 𝜽) 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑐,∗
𝑘 , 𝜽) d𝒛∗𝑘)𝑝 (𝜽 ∣ 𝒟meta ∪̇𝒟𝑐,∗

1∶𝐾) d𝜽.
(2.50)

Note the appearance of the test task posteriors 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑐,∗
𝑘 , 𝜽), which quantify the belief about

the hypothesis 𝒛∗𝑘 after observing the context data 𝒟𝑐,∗
𝑘 .

Note also that the global posterior is now conditioned on both the meta-training data 𝒟meta and
the context data 𝒟𝑐,∗

1∶𝐾 , describing the refinement of the global posterior using the context data.
Since we have assumed that 𝒟meta alone is large enough to pin down 𝜽 accurately, we can safely
neglect the influence of the context datasets and make the approximation

𝑝 (𝜽 ∣ 𝒟meta ∪̇𝒟𝑐,∗
1∶𝐾) ≈ 𝑝 (𝜽 ∣ 𝒟meta) ≈ 𝛿 (𝜽 − ̂𝜽) , (2.51)

where we used Eq. (2.47). The plugin approximation for the predictive distribution then reads

𝑝 (𝒚𝑡,∗1∶𝐾,1∶𝑁𝑡 ∣ 𝒙𝑡,∗1∶𝐾,1∶𝑁𝑡 , 𝒟meta ∪̇𝒟𝑐,∗
1∶𝐾) ≈ 𝑝 (𝒚𝑡,∗1∶𝐾,1∶𝑁𝑡 ∣ 𝒙𝑡,∗1∶𝐾,1∶𝑁𝑡 , 𝒟𝑐,∗

1∶𝐾 , ̂𝜽)

=
𝐾
∏
𝑘=1

∫
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡,∗𝑘,𝑚 ∣ 𝒙𝑡,∗𝑘,𝑚, 𝒛∗𝑘, ̂𝜽) 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑐,∗
𝑘 , ̂𝜽) d𝒛∗𝑘

=
𝐾
∏
𝑘=1

𝑝 (𝒚𝑡,∗𝑘,1∶𝑁𝑡 ∣ 𝒙𝑡,∗𝑘,1∶𝑁𝑡 , 𝒟𝑐,∗
𝑘 , ̂𝜽) .

(2.52)

Note that the predictive distribution still factorizes, and that, following our discussion in
Sec. 2.1.2, each of the factors 𝑝 (𝒚𝑡,∗𝑘,1∶𝑁𝑡 ∣ 𝒙𝑡,∗𝑘,1∶𝑁𝑡 , 𝒟𝑐,∗

𝑘 , ̂𝜽) is a Kolmogorov-consistent set of
finite-dimensional joint distributions (for fixed𝒟𝑐,∗

𝑘 and ̂𝜽), which uniquely specifies a stochastic
process with the joint distributions as its finite-dimensional marginals.

The approximation Eq. (2.51) allows to split BML into two phases, which can be performed se-
quentially. In the first phase, the so-calledmeta-training phase, we learn inductive biases towards
the meta-dataset 𝒟meta by computing the MMLE ̂𝜽. In the subsequent meta-test phase, we infer
the test task posteriors based on a fixed ̂𝜽 in order to compute predictions with Eq. (2.52). Note
that the two phases are independent in the sense that the meta-training phase can be performed
without knowledge of the context datasets𝒟𝑐,∗

𝑘 , while the meta-dataset𝒟meta is not required for
the meta-test phase.
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2 Theoretical Background

We have now identified the inference of the training task posteriors 𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽) and the test
task posteriors 𝑝 (𝒛∗𝑘 ∣ 𝒟

𝑐,∗
𝑘 , 𝜽) as problems of central importance for BML. As usual, the required

computations won’t be analytically tractable and will require approximation. While the global
posterior 𝑝 (𝜽 ∣ 𝒟meta) is informed by the entire meta-dataset 𝒟meta and allows a point estimate
̂𝜽 Eq. (2.51), the task posteriors are conditioned only on training datasets𝒟ℓ or few-shot context

datasets 𝒟𝑐,∗
𝑘 . Because these datasets are comparatively small, many different task descriptors

can be compatible with the data, reflecting approximation uncertainty (Sec. 2.1.4). In the context
of meta-learning, we call this concept task ambiguity. Consequently, the task posterior distri-
butions can have rich structure, so we shall aim for distributional approximations to quantify
approximation uncertainty and obtain robust Bayesian predictions.

The quality of the task posterior approximations will have a significant impact on the quality of
the resulting predictions, both explicitly through the test task posteriors that appear in the pre-
dictive distribution Eq. (2.52), and implicitly through the training task posteriors, which influence
the quality of the MMLE ̂𝜽 (Sec. 2.1.6.6). Therefore, the derivation of accurate and efficient ap-
proximation schemes for task posterior distributions in BML is a major focus of this work. The
BML setting is particularly interesting in this regard because, in principle, it allows for task pos-
terior approximations that are accurate and still relatively efficient to find. To see this, recall
from Sec. 2.1.6.2 that approximate inference becomes more difficult as the dimensionality 𝑑𝑧 of
the hypothesis space 𝒵 increases. The interesting feature of BML is that 𝑑𝑧 can be kept com-
paratively small because the task descriptors need to describe only those properties that are not
shared across tasks and, thus, not already captured by the global parameter estimate ̂𝜽.

2.2.2.4 Variational EM for the Meta-Model

We now apply variational EM (Sec. 2.1.6.2) to compute approximations for the global and task
posteriors introduced in the previous sections. For the global posterior, we motivated an MMLE
point estimate ̂𝜽 Eq. (2.48), and for each of the task posteriors we now define a parametric vari-
ational family 𝒬 of approximating distributions

𝑞𝝓ℓ (𝒛ℓ) ≈ 𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽) , 𝑞𝝓𝑐,∗𝑘 (𝒛∗𝑘) ≈ 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑐,∗
𝑘 , 𝜽) , (2.53)

with variational parameters 𝝓ℓ, 𝝓𝑐,∗𝑘 ∈ Φ ⊂ ℝ𝑑𝝓 .

The decomposition Eq. (2.27) of the ℓ-th training task marginal likelihood Eq. (2.45) reads

log𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝜽) = KL [𝑞𝝓ℓ ∣∣ 𝑝 (⋅ ∣ 𝒟ℓ, 𝜽)] + ELBO (𝝓ℓ, 𝜽;𝒟ℓ) , (2.54)

with the ELBO Eq. (2.23)

ELBO (𝝓ℓ, 𝜽;𝒟ℓ) = 𝔼𝑞𝝓ℓ (𝒛ℓ) [
𝑁
∑
𝑛=1

log𝑝 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ, 𝜽) + log 𝑝 (𝒛ℓ ∣ 𝜽)𝑞𝝓ℓ (𝒛ℓ)
] . (2.55)
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2.2 Bayesian Meta-Learning

Note the appearance of the training task priors 𝑝 (𝒛ℓ ∣ 𝜽). According to Eq. (2.45), the ELBO for
the full meta-dataset 𝒟meta is then given by

ELBO (𝝓1∶𝐿, 𝜽;𝒟meta) =
𝐿
∑
ℓ=1

ELBO (𝝓ℓ, 𝜽;𝒟ℓ) , (2.56)

where we denote the set of all training task variational parameters by 𝝓1∶𝐿 ≡ {𝝓1, … , 𝝓𝐿} .

In the meta-training phase, we jointly optimize the ELBO with respect to the global parameter
and the variational parameters to obtain the training task posterior approximations 𝑞 ̂𝝓1∶𝐿 and the
MMLE ̂𝜽, i.e.,

( ̂𝝓1∶𝐿, ̂𝜽) ∈ arg max
(𝜽,𝝓1∶𝐿)

ELBO (𝝓1∶𝐿, 𝜽;𝒟meta) , (2.57)

where (𝜽, 𝝓1∶𝐿) ∈ Θ × Φ𝐿. Recall that the approximations 𝑞 ̂𝝓1∶𝐿 can be discarded after the meta-
training phase, as they are only needed for global posterior inference, but do not enter the pre-
dictions Eq. (2.52). Nevertheless, the quality of the approximations affects the quality of the pre-
dictions because it controls the size of the variational inference gap and, thus, the accuracy of
the estimate ̂𝜽 (Sec. 2.1.6).

In the meta-test phase, we compute predictions for the test tasks 𝒟𝑡,∗
𝑘 using Eq. (2.52). To eval-

uate this equation, we fix the MMLE ̂𝜽 according to Eq. (2.51) and use variational inference to
approximate the test task posteriors 𝑞 ̂𝝓𝑐,∗𝑘

(𝒛∗𝑘) ≈ 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑐,∗
𝑘 , ̂𝜽), i.e.,

̂𝝓𝑐,∗𝑘 ∈ arg max
𝝓𝑐,∗𝑘 ∈Φ

ELBO (𝝓𝑐,∗𝑘 , ̂𝜽;𝒟𝑐,∗
𝑘 ) . (2.58)

Note that the maximization can be performed independently for each test dataset, since ̂𝜽 is fixed.

2.2.2.5 Task Amortization

In the previous section, we discussed variational task posterior approximations of the form
Eq. (2.53). Note that the computation of a task posterior approximation for a given dataset is in-
dependent of the other datasets, in the sense that we define independent variational distributions
with parameters 𝝓1∶𝐿 and 𝝓𝑐,∗1∶𝐾 for each of the datasets 𝒟1∶𝐿 and 𝒟𝑐,∗

1∶𝐾 , respectively.

In meta-learning, where we assume similar datasets, we can speed up approximate inference
by sharing information about the approximate inference process between datasets through task
amortization (Sec. 2.1.6.3). To this end, we use a global variational parameter 𝝓 ∈ Φ to parameter-
ize an inference model 𝑓𝝓 (𝒟) that defines a mapping from the space of datasets to the variational
family 𝒬, and which is trained to approximate inference as a function of a dataset 𝒟. Notation-
wise, we suppress the inference model and indicate task amortization by adding the dataset as an
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argument of the variational distributions, i.e.,

𝑞𝝓ℓ (𝒛ℓ) = 𝑞𝑓𝝓(𝒟ℓ) (𝒛ℓ) ≡ 𝑞𝝓 (𝒛ℓ; 𝒟ℓ) , 𝑞𝝓𝑐,∗𝑘 (𝒛∗𝑘) = 𝑞𝑓𝝓(𝒟𝑐,∗
𝑘 ) (𝒛∗𝑘) ≡ 𝑞𝝓 (𝒛∗𝑘; 𝒟

𝑐,∗
𝑘 ) . (2.59)

The variational optimization problem Eq. (2.57) for the meta-training phase now reads

( ̂𝝓, ̂𝜽) ∈ argmax
(𝜽,𝝓)

ELBO (𝝓, 𝜽;𝒟meta) , (2.60)

where the ELBO now depends on the two parameters (𝜽, 𝝓) ∈ Θ × Φ, both of which are shared
between tasks. In the same spirit as in Eq. (2.51), we can assume that ̂𝝓 can be computed from
𝒟meta with sufficient accuracy, so we can fix ̂𝝓 together with ̂𝜽 after the meta-training phase. In
this way, the per-task optimization Eq. (2.58) usually required to compute the test task posterior
approximations during themeta-test phase can be replaced by a simple evaluation of the inference
model on the context sets 𝒟𝑐,∗

𝑘 , which can significantly speed up test task posterior inference.
Note, however, that task amortization introduces a variational amortization gap (Sec. 2.1.6.4) and,
thus, comes at the cost of degrading the quality of the task posterior approximations, which in
turn affects the quality of the MMLE estimate ̂𝜽.

2.2.3 Performance Metrics for Bayesian Meta-Learning and
Meta-Optimization

In this work, we use two different performance metrics to evaluate the predictive performance of
BML models and optimization algorithms. First, note that since the true predictive distribution
Eq. (2.52) is intractable due to the intractability of the test task posteriors 𝑝 (𝒛∗𝑘 ∣ 𝒟

𝑐,∗
𝑘 , ̂𝜽), predic-

tions are given in terms of the approximate predictive distribution, which we obtain by replacing
the test task posteriors with their variational approximations 𝑞 ̂𝝓𝑐,∗𝑘

(𝒛∗𝑘), i.e.,

𝑞 (𝒚𝑡,∗1∶𝐾,1∶𝑁𝑡 ∣ 𝒙𝑡,∗1∶𝐾,1∶𝑁𝑡 , 𝒟𝑐,∗
1∶𝐾 , ̂𝜽) ≡

𝐾
∏
𝑘=1

∫
𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡,∗𝑘,𝑚 ∣ 𝒙𝑡,∗𝑘,𝑚, 𝒛∗𝑘, ̂𝜽) 𝑞 ̂𝝓𝑐,∗𝑘
(𝒛∗𝑘) d𝒛∗𝑘. (2.61)

More generally, if a BML algorithm uses a task posterior approximation scheme other than varia-
tional inference, we define the approximate predictive distribution accordingly, i.e., by replacing
the test task posteriors with their respective approximations.

Our first metric is the (approximate) predictive likelihood, which we obtain by evaluating the ap-
proximate predictive distribution on the test target datasets. Since this quantity can vary over
many orders of magnitude, it is usually more meaningful to report its logarithm [Mac03, Gro15].
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2.2 Bayesian Meta-Learning

To obtain a numerical estimate, we compute an MC estimate Eq. (2.20) of the approximate pre-
dictive likelihood, which gives

log 𝑞 (𝒚𝑡,∗1∶𝐾,1∶𝑁𝑡 ∣ 𝒙𝑡,∗1∶𝐾,1∶𝑁𝑡 , 𝒟𝑐,∗
1∶𝐾 , ̂𝜽)

⪆
𝐾
∑
𝑘=1

log 1𝑆
𝑆
∑
𝑠=1

𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡,∗𝑘,𝑚 ∣ 𝒙𝑡,∗𝑘,𝑚, 𝒛∗𝑘,𝑠, ̂𝜽) , 𝒛∗𝑘,𝑠 ∼ 𝑞 ̂𝝓𝑐,∗𝑘
(𝒛∗𝑘) .

(2.62)

Note that the estimator on the right-hand side of this equation is not unbiased for the log ap-
proximate predictive likelihood, but merely represents a stochastic lower bound [Gro15, Bur16].¹
Nevertheless, the estimator is consistent [Bur16] and, thus, provides a useful metric for eval-
uating the predictive performance of BML models. In practice, however, the MC estimate can
have high variance, so that many samples may be required to obtain an accurate estimate [Gro15,
Bur16, Dub20]. As discussed in Sec. 2.1.6.1, this can be particularly severe in situations where
𝑞 ̂𝝓𝑐,∗𝑘

(𝒛∗𝑘) is a poor approximation of 𝑝 (𝒛∗𝑘 ∣ 𝒟
𝑡,∗
𝑘 , ̂𝜽), such as for simple variational families or

small context sets 𝒟𝑐,∗
𝑘 .

To evaluate the performance of a global optimization algorithm such as BO (Sec. 2.1.7), we run it
for a fixed budget of optimization steps and report the simple regret metric, defined as the differ-
ence between the best objective function evaluation observed so far and the true optimum [Sha16].
Note that downstream tasks such as optimization are also an excellent alternative evaluation
strategy for BML models besides the approximate predictive likelihood [Far22]. In fact, BO is
an archetypal proxy for assessing the quality of Bayesian predictions, since its success depends
heavily on the quality of the surrogatemodel’s epistemic uncertainty estimates (Sec. 2.1.7). Specif-
ically, we can train a BML model on a meta-dataset obtained from evaluations of a set of similar
objective functions. At test time, we can then use the resulting model as the surrogate for BO
and report the simple regret metric.

2.2.4 The Neural Process

We now discuss the neural process (NP) [Gar18c], a popular family of NN-based instantiations of
the Bayesian meta-model introduced in Sec. 2.2.2.

¹ Denote by 𝑀 the approximate predictive likelihood and by �̂� its MC estimate. From our discussion in Sec. 2.1.6
we know that this estimate is unbiased, i.e., 𝔼 [�̂�] = 𝑀. In contrast, log �̂� is not an unbiased estimator for the
log approximate predictive likelihood log𝑀. In fact, by Jensen’s inequality [Jen06], log �̂� underestimates log𝑀 in
expectation, since𝔼 [log �̂�] ≤ log𝔼 [�̂�] = log𝑀. Moreover, Markov’s inequality [Mar84] implies that its exceedingly
unlikely for log �̂� to significantly overestimate log𝑀 [Gro15, Bur16], which is why we call log �̂� a stochastic lower
bound on log𝑀.
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2.2.4.1 Model Architecture

In its standard formulation [Gar18c], the NP is defined by a factorized Gaussian parametric model
(Sec. 2.1.5) of the form

𝑝 (𝒚 ∣ 𝒙, 𝒛, 𝜽) = 𝒩(𝒚 ∣ 𝝁𝒚,𝜽(𝒙, 𝒛), diag (𝝈2𝒚,𝜽(𝒙, 𝒛))) , (2.63)

where 𝝁𝒚,𝜽 ∶ 𝒳×𝒵 → ℝ𝑑𝑦 and 𝝈2𝒚,𝜽 ∶ 𝒳×𝒵 → ℝ𝑑𝑦
+ are functions defined by a NN with weights

given by the global parameter 𝜽 ∈ Θ. We call this NN the decoder (network). The task priors are
fixed, i.e., 𝜽-independent, isotropic Gaussian distributions of the form Eq. (2.18),

𝑝 (𝒛ℓ ∣ 𝜽) = 𝒩(𝒛ℓ ∣ 𝝁𝒛,0, diag (𝝈2𝒛,0)) , (2.64)

and likewise for 𝑝 (𝒛∗𝑘 ∣ 𝜽). Here, 𝝁𝑧,0 ∈ ℝ𝑑𝑧 and 𝝈2𝑧,0 ∈ ℝ𝑑𝑧
+ . Since the NP is trained using an

empirical Bayes approach (Sec. 2.2.2.2), we do not need to specify the global prior 𝑝 (𝜽).

The NP uses amortized mean-field variational inference with Gaussian posterior approximations
(Sec. 2.1.6) of the form

𝑞𝝓 (𝒛ℓ; 𝒟ℓ) = 𝒩(𝒛ℓ ∣ 𝝁𝒛,𝝓 (𝒟ℓ) , diag (𝝈2𝒛,𝝓 (𝒟ℓ))) , (2.65)

and likewise for 𝑞𝝓 (𝒛∗𝑘; 𝒟
𝑐,∗
𝑘 ). The inference model (𝝁𝒛,𝝓, 𝝈2𝒛,𝝓) is defined by a NN with weights

𝝓 ∈ Φ, mapping from the space of datasets with elements in 𝒳×𝒴 to ℝ𝑑𝑧 and ℝ𝑑𝑧
+ , respectively.

This inference model is called the encoder (network).

2.2.4.2 Context Aggregation

A peculiarity that distinguishes the NP architecture from similar models with an encoder-decoder
structure, such as Kingma et al. [Kin13], is that the encoder network Eq. (2.65) operates on a
space of sets with elements in 𝒳 × 𝒴. To simplify the notation, we denote the sets 𝒟ℓ and 𝒟𝑐,∗

𝑘
generically by 𝒟 in this section. The set structure implies that the number |𝒟| of input tuples
(𝒙, 𝒚) ∈ 𝒳 × 𝒴 of the encoder network Eq. (2.65) is not fixed, and that the mapping must be
invariant with respect to permutations of the input tuples. These properties prevent the use of a
standard NN architecture with separate input nodes for each (𝒙, 𝒚) ∈ 𝒟. Instead, the NP uses a
(context) aggregation mechanism, resulting in a so-called set encoder (Fig. 2.5).

Zaheer et al. [Zah17] and Wagstaff et al. [Wag19] characterize the general structure of such set
encoders. First, each data tuple (𝒙𝑛, 𝒚𝑛) ∈ 𝒟 is mapped to a latent observation of the form

𝒓𝑛 = enc𝒓,𝝓 (𝒙𝑛, 𝒚𝑛) ∈ ℛ ⊂ ℝ𝑑𝑟 , 𝑛 ∈ {1, … , |𝒟|} . (2.66)

For the NP, enc𝒓,𝝓 ∶ 𝒳 × 𝒴 → ℛ is defined by a NN whose weights we denote generically by 𝝓,
since we consider it to be part of the encoder network. Then, a permutation invariant aggregation
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operation is applied to the set {𝒓1, … , 𝒓|𝒟|} of latent observations to obtain an aggregated latent
observation ̄𝒓 ∈ ℛ. While the standard NP and many of its variants [Gar18c, Gar18b] use mean
aggregation (MA), i.e.,

̄𝒓 ≡ 1
𝑁

|𝒟|
∑
𝑛=1

𝒓𝑛, (2.67)

max aggregation [Nad20] as well as attentive [Kim19] or functional [Gor20, Foo20a] aggregation
operations have also been explored in the literature. After aggregation, ̄𝒓 is mapped onto the
parameters of the approximate task posterior distribution Eq. (2.65),

𝝁𝒛,𝝓 (𝒟) = enc𝝁𝑧,𝝓 ( ̄𝒓) , 𝝈2𝒛,𝝓 (𝒟) = enc𝝈2𝑧,𝝓 ( ̄𝒓) , (2.68)

using additional NNs enc𝝁𝑧,𝝓 ∶ ℛ → ℝ𝑑𝑧 and enc𝝈2𝑧,𝝓 ∶ ℛ → ℝ𝑑𝑧
+ .

Context
Aggregation

𝒓1

𝒓|𝒟|

enc𝒓,𝝓

enc𝒓,𝝓

(𝒙1, 𝒚1)

(𝒙|𝒟|, 𝒚|𝒟|)

… … ̄𝒓
enc𝝁𝑧,𝝓

enc𝝈2𝑧,𝝓

𝝁𝒛

𝝈2𝒛
∼ 𝒛

𝝁𝒚,𝜽

𝝈2𝒚,𝜽

𝒙

𝝁𝒚

𝝈2𝒚

Figure 2.5: Computational diagram of the neural process (NP) architecture [Gar18c]. The NP is a NN-based instantiation
of the Bayesian multitask model Fig. 2.4, which uses a set encoder to compute variational approximations of
the task posteriors and a factorized Gaussian parametric model. See text for details.

2.2.4.3 The Train-as-you-test Paradigm

In Sec. 2.2.2.4, we determined an approximate maximizer ̂𝜽 ∈ Θ of the marginal likelihood
Eq. (2.45) through variational EM, i.e., by maximizing the ELBO Eq. (2.56). This ELBO decom-
poses into ELBOs on the task-specific marginal likelihoods, i.e.,

log𝑝 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝜽) ≥ ELBO (𝝓, 𝜽;𝒟ℓ) . (2.69)

Furthermore, in Sec. 2.2.3, we defined the log approximate predictive likelihood Eq. (2.61), which
decomposes into terms of the form

log 𝑞 (𝒚𝑡,∗𝑘,1∶𝑁𝑡 ∣ 𝒙𝑡,∗𝑘,1∶𝑁𝑡 , 𝒟𝑐,∗
𝑘 , 𝜽) , (2.70)

as a central evaluation metric. Comparing these equations, we observe that Eq. (2.70) is informed
by the context set𝒟𝑐,∗

𝑘 , while Eq. (2.69) is based on the prior belief about the task descriptors. This
reveals a mismatch between the meta-training and meta-test phases, since we optimize Eq. (2.69)
in the meta-training phase, but use Eq. (2.70) to evaluate the performance of the model at meta-
test time.
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To resolve this mismatch, Garnelo et al. [Gar18c] modify the NP training objective and instead
optimize a lower bound on the log approximate predictive likelihood with respect to the training
datasets 𝒟ℓ , i.e., on

log 𝑞 (𝒚𝑡ℓ,1∶𝑁𝑡 ∣ 𝒙𝑡ℓ,1∶𝑁𝑡 , 𝒟𝑐
ℓ, 𝜽) ≡ log∫

𝑁𝑡

∏
𝑛=1

𝑝 (𝒚𝑡ℓ,𝑛 ∣ 𝒙𝑡ℓ,𝑛, 𝒛ℓ, 𝜽) 𝑞𝝓 (𝒛ℓ; 𝒟𝑐
ℓ) d𝒛ℓ. (2.71)

Here, we have defined an artificial context-target split of the training datasets into training context
datasets 𝒟𝑐

ℓ ⊂ 𝒟ℓ and training target datasets 𝒟𝑡
ℓ ⊂ 𝒟ℓ . The corresponding ELBOs

log 𝑞 (𝒚𝑡ℓ,1∶𝑁𝑡 ∣ 𝒙𝑡ℓ,1∶𝑁𝑡 , 𝒟𝑐
ℓ, 𝜽) ≥ ELBO (𝝓, 𝜽;𝒟ℓ, 𝒟𝑐

ℓ) (2.72)

read

ELBO (𝝓, 𝜽;𝒟ℓ, 𝒟𝑐
ℓ) = 𝔼𝑞𝝓(𝒛ℓ ;𝒟ℓ) [

𝑁𝑡

∑
𝑛=1

log𝑝 (𝒚𝑡ℓ,𝑛 ∣ 𝒙𝑡ℓ,𝑛, 𝒛ℓ, 𝜽) + log
𝑞𝝓 (𝒛ℓ; 𝒟𝑐

ℓ)
𝑞𝝓 (𝒛ℓ; 𝒟ℓ)

] . (2.73)

We then use∑𝐿
ℓ=1 ELBO (𝝓, 𝜽;𝒟ℓ, 𝒟𝑐

ℓ), possibly averaged over many different artificial context-
target splits, as an alternative objective during meta-training. We say that such an approach
follows the train-as-you-test paradigm because the meta-training procedure now mimics how the
model will be used at meta-test time, as we optimize a lower bound on the evaluation metric
Eq. (2.71) of interest. The standard formulation of Garnelo et al. [Gar18c] uses reparameterized
Euclidean gradients (Sec. 2.1.6.3) to optimize the objective jointly with respect to 𝝓 and 𝜽.

There exists empirical evidence [Le18] that following the train-as-you-test paradigm can im-
prove the predictive performance of NP models. Another alternative NP objective that follows
this paradigm and often exhibits even better performance is neural process maximum likelihood
(NPML) [Gor19, Foo20a, Dub20]. Here, we bypass a variational approach and directly maximize
an MC estimate of Eq. (2.71) of the form Eq. (2.62), i.e.,

log 𝑞 (𝒚𝑡ℓ,1∶𝑁𝑡 ∣ 𝒙𝑡ℓ,1∶𝑁𝑡 , 𝒟𝑐
ℓ, 𝜽) ⪆ log 1𝑆

𝑆
∑
𝑠=1

𝑁𝑡

∏
𝑛=1

𝑝 (𝒚𝑡ℓ,𝑛 ∣ 𝒙𝑡ℓ,𝑛, 𝒛ℓ,𝑠, 𝜽) , 𝒛ℓ,𝑠 ∼ 𝑞𝝓 (𝒛ℓ; 𝒟𝑐
ℓ) ,

(2.74)

which can also be optimized jointly for 𝝓 and 𝜽 using reparameterized gradients. This objec-
tive still recovers the true posterior distribution 𝑝 (𝒛ℓ ∣ 𝒟𝑐

ℓ, 𝜽) if the approximation 𝑞𝝓 (𝒛ℓ; 𝒟𝑐
ℓ)

is rich enough [Gor19]. For finite model capacity, however, it encourages distributions that al-
low accurate predictions rather than focusing also on approximating the posterior distribution
well [Dom18, Dub20].

Let us briefly discuss the relative merits of the NP objectives Eq. (2.73) and Eq. (2.74) [Dub20].
First, note that both the ELBO and NPML are lower bounds on the log approximate predictive
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likelihood. However, recall from Sec. 2.2.3 that NPML is a consistent estimator, so it recovers
the true value in the limit of infinite samples, while the ELBO underestimates the log approx-
imate predictive likelihood by a fixed variational inference gap (Sec. 2.1.6).¹ On the downside,
NPML generally results in computationally more demanding training procedures. To see this,
note that an MC estimate of the expectation in Eq. (2.73) provides an unbiased estimate of the
ELBO, so single-sample estimates are usually sufficient to achieve robust convergence of stochas-
tic gradient-based optimization to the true maximum of the ELBO [Rob51, Rum86, Duc11, Kin15].
In contrast, NPML represents a biased estimate of the log approximate predictive likelihood, so
many samples may be required to achieve robust convergence. This is exacerbated by the fact that
the variance of the ELBO estimator is typically lower than that of NPML for the same number
of samples, in particular because for the ELBO we use samples from the approximate posterior
𝑞𝝓 (𝒛ℓ; 𝒟ℓ), whereas for NPML we use the less-informed distributions 𝑞𝝓 (𝒛ℓ; 𝒟𝑐

ℓ) (Sec. 2.1.6 and
Sec. 2.2.3).

2.2.5 Alternative Meta-Learning Approaches

In the previous sections, we studied a Bayesian multitask model (Fig. 2.4) and derived the NP as
a specific NN-based instantiation. This architecture forms the basis of the meta-modeling and
meta-optimization approaches developed in Sec. 3 and Sec. 4. In Sec. 5, we develop an alternative
approach to meta-optimization, which is not based on a multitask model architecture, but di-
rectly meta-learns an optimization strategy. Before introducing these methods, we conclude this
introductory chapter with a brief overview of alternative approaches to meta-learning. As it is an
active field of research, it is beyond the scope of this work to provide a complete and consistent
picture of the landscape of current meta-learning approaches, let alone a thorough evaluation of
their relative merits. Therefore, we will only briefly touch on the methods that seem most related
to those studied in this work, and refer the reader to recent surveys for a more comprehensive
discussion [Vin17, Van19, Wan20b, Hui21, Hos22].

Recall from Sec. 2.1.3 that we motivated the Bayesian multitask model by the observation that a
naive application of a single-task model in the multitask setting yields erroneous solutions un-
der a standard Bayesian learning procedure because such a model is misspecified for the struc-
tured meta-dataset 𝒟meta (Fig. 2.3). To alleviate this, the multitask model makes the hierarchical
structure of 𝒟meta Eq. (2.34) explicit by distinguishing between task descriptors 𝒛ℓ and a global
parameter 𝜽. This allows the application of standard approximate inference techniques such as
variational EM (Sec. 2.1.6.6) for parameter estimation.

An important representative of this model-based approach to meta-learning [Vin17] is the NP
introduced in Sec. 2.2.4 [Gar18c]. It builds on the conditional NP (CNP) [Gar18b], which defines
the basic encoder-decoder architecture but does not explicitly model epistemic uncertainty about

¹ Note that this variational inference gap is not given by the KL divergences of the distributions 𝑞𝝓 (𝒛ℓ ; 𝒟ℓ) from the
posterior distribution 𝑝 (𝒛ℓ ∣ 𝒟ℓ, 𝜽) of the Bayesian model Fig. 2.4, since we are now considering a different model in
which the distributions 𝑞𝝓 (𝒛ℓ ; 𝒟𝑐

ℓ) replace the priors 𝑝 (𝒛ℓ ∣ 𝜃).
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the task descriptor. The NP extends the CNP to an instance of the multitask model Fig. 2.4 using
ideas from previous works that study several variants of the multitask model and its variational
optimization objective [Edw17, Hew18, Le18]. Gordon et al. [Gor19] propose NPML Eq. (2.74) as
an alternative optimization objective. A range of methods [Jha23] extend the NP architecture, e.g.,
by attentive computation paths to avoid underfitting [Kim19], or by bootstrapped [Lee20], graph-
based [Lou19], hierarchical [Wan20a], or transformer-based [Ngu22] latent representations.

A parallel line of research aims to avoid the complexities of approximate task posterior infer-
ence (Sec. 2.1.6, [Gho20]) by performing meta-learning within the CNP framework [Gar18b].
The CNP is mathematically equivalent to an NP with a task posterior approximation of the form
𝑝 (𝒛 ∣ 𝒟𝑐, 𝜽) ≈ 𝛿 (𝒛 − 𝒓𝝓 (𝒟𝑐)), where the function 𝒓𝝓 (𝒟𝑐) is parameterized by a set encoder as
introduced in Sec. 2.2.4.2. The resulting predictive distribution Eq. (2.52) then reads

𝑝 (𝒚𝑡,∗𝑘,1∶𝑁𝑡 ∣ 𝒙𝑡,∗𝑘,1∶𝑁𝑡 , 𝒟𝑐,∗
𝑘 , 𝜽) =

𝑁𝑡

∏
𝑚=1

𝑝 (𝒚𝑡,∗𝑘,𝑚 ∣ 𝒙𝑡,∗𝑘,𝑚, 𝒓𝝓 (𝒟
𝑐,∗
𝑘 ) , 𝜽) . (2.75)

Since this expression does not require marginalization, the parameters 𝝓 and 𝜽 can be efficiently
optimized during the meta-training phase by maximum likelihood on the meta-dataset 𝒟meta

(Sec. 2.1.2). At meta-test time, the maximum likelihood estimate is fixed, and the predictive dis-
tribution is obtained by a single forward pass through the architecture. Note that although the
CNP does not explicitly model epistemic uncertainty about the task descriptor, it can learn during
meta-training to estimate this uncertainty together with the noise variance through the output
variance of the decoder. However, a severe limitation of the CNP architecture is that predic-
tions do not model correlations between the outputs, i.e., between the elements of the set 𝒚𝑡,∗𝑘,1∶𝑁𝑡 ,
since Eq. (2.75) factorizes over them. Consequently, the CNP does not allow to draw coherent
function samples. A range of works study methods to overcome this problem, i.e., to model cor-
relations in the output space without resorting to marginalization [Bru20, Gor20, Foo20a, Mar21,
Mar22, Bru23].

We now turn our attention to optimization-based meta-learning methods, which can generally
be characterized by a bi-level optimization scheme during the meta-training phase [Vin17,
Hui21]. At the inner level, a base learner performs task-specific adaptation based on a context
dataset, while the outer learner optimizes the parameters of the base learner on the meta-dataset
𝒟meta for efficient adaptation. Notable representatives of this approach include early work by
Schmidhuber [Sch87, Sch92], Bengio et al. [Ben91], and Hochreiter et al. [Hoc01], as well as
hypernetworks [Ha17, Zha20] and recurrent architectures trained by gradient descent [And16,
Rav17, Che17] or reinforcement learning [Li16, Li17a]. Arguably the most prominent class of
optimization-based meta-learning methods is model-agnostic meta-learning (MAML) [Fin17],
which allows any single-task model to be transformed into a meta-model without changing the
model architecture. In fact, MAML makes the multitask structure of𝒟meta explicit in the bi-level
optimization objective and is, thus, in a sense complementary to the model-based approaches
studied so far, which make the multitask structure explicit in the model architecture, but leave
the optimization procedure unchanged.
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Formally, we consider a single-task parametric model {𝑝 (𝒙 ∣ 𝒚, 𝒛) ∣ 𝒛 ∈ 𝒵 ⊂ ℝ𝑑𝒛 } Eq. (2.5). To
obtain an optimization-based meta-learning algorithm, we need to define the base learner, i.e.,
how to adapt to a context dataset 𝒟𝑐,∗

𝑘 (Sec. 2.2.1). MAML represents the base learner as 𝐾 steps
of gradient ascent (Sec. 2.1.5) on the log-likelihood function with respect to 𝒟𝑐,∗

𝑘 , starting from
some 𝜽MAML ∈ 𝒵. Our choice of the peculiar notation 𝜽MAML for an element of𝒵will become clear
below. For each dataset𝒟𝑐,∗

𝑘 , this base learner can be described as a function 𝑔 (⋅,𝒟𝑐,∗
𝑘 ) ∶ 𝒵 → 𝒵

mapping 𝜽MAML to the updated parameters, i.e.,

𝑔 (𝜽MAML, 𝒟𝑐,∗
𝑘 ) = 𝜽MAML + 𝛼∇𝒛 log𝑝 (𝒚𝑐,∗𝑘,1∶𝑁𝑐 ∣ 𝒙𝑐,∗𝑘,1∶𝑁𝑐 , 𝒛) |||𝜽MAML

, (2.76)

where 𝛼 ∈ ℝ is a learning rate parameter, and where we have set 𝐾 = 1 to avoid cluttering
the notation.

Note that the parameter 𝑔 (𝜽MAML, 𝒟𝑐,∗
𝑘 ) ∈ 𝒵 is task-specific in the sense that it depends on the

context dataset𝒟𝑐,∗
𝑘 . Therefore, it corresponds conceptually to the task descriptor 𝒛∗𝑘 Eq. (2.39) of

the Bayesian multitask model Fig. 2.4. Moreover, 𝜽MAML ∈ 𝒵 is analogous to a point estimate for
the global parameter 𝜽 of the multitask model, since adaptation starts from the same parameter
𝜽MAML for all tasks, which explains our notation. Unlike the multitask model, however, MAML’s
task descriptors and global parameter live in the same space 𝒵, i.e., in particular, they have have
the same dimensionality 𝑑𝒛.

From Eq. (2.76), we see that the base learner is parameterized by 𝜽MAML, which is therefore to
be optimized by the outer learner on 𝒟meta during the meta-training phase. MAML fully em-
braces the train-as-you-test paradigm (Sec. 2.2.4.3) and defines 𝜽MAML as the maximizer of the
log-likelihood function with respect to the training target datasets 𝒟𝑡

ℓ , evaluated at the corre-
sponding adapted parameters 𝑔 (𝜽MAML, 𝒟𝑐

ℓ), i.e,

𝜽MAML ∈ argmax
𝜽∈𝒵

𝐿
∑
ℓ=1

log𝑝 (𝒚𝑡ℓ,1∶𝑁𝑡 ∣ 𝒙𝑡ℓ,1∶𝑁𝑡 , 𝑔 (𝜽,𝒟𝑐
ℓ)) . (2.77)

Intuitively, MAML optimizes for an initialization 𝜽MAML that allows efficient adaptation through𝐾
steps of gradient descent. In its standard form, MAML’s outer learner determines a local solution
to this optimization problem by gradient ascent (with a learning rate parameter 𝛽 ∈ ℝ), i.e.,
by iterating

𝜽 ← 𝜽 + 𝛽∇𝜽

𝐿
∑
ℓ=1

log𝑝 (𝒚𝑡ℓ,1∶𝑁𝑡 ∣ 𝒙𝑡ℓ,1∶𝑁𝑡 , 𝑔 (𝜽,𝒟𝑐
ℓ)) (2.78)

until convergence. Note that this requires second-order gradients with respect to 𝜽. A broad range
of research aims to improve various aspects of MAML, such as performance, training stability, and
computational requirements [Li17c, Ant19, Nic18, Rus18b, Raj19, Fin19].
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2 Theoretical Background

So far, we have discussed MAML in the deterministic limit, where we do not model epistemic
uncertainty (Sec. 2.1.4). In fact, we have used point estimates 𝜽MAML and 𝑔 (𝜽MAML, 𝒟𝑐,∗

𝑘 ) for both
the global parameter and the task descriptors, respectively. Grant et al. [Gra18] demonstrate the
equivalence of this approach to an empirical Bayes (Sec. 2.2.2.2) procedure that computes point
estimates for the task descriptors in a fully hierarchical [Gel13] variant of the Bayesian multitask
model (Fig. 2.4) that lacks the edge between the global parameter 𝜽 and the target variables 𝒚. A
number of approaches compute distributional task posterior approximations for this model within
the MAML framework, i.e., by approximating task posterior inference by gradient descent from a
meta-learned initialization [Gra18, Fin18, Rav19, Kim18]. Related methods perform approximate
inference based on PAC-Bayesian [Ami17] or nonparametric inference techniques [Kim24].

Operating in a fully hierarchical variant of Fig. 2.4 means that the parametric model 𝑝 (𝒚 ∣ 𝒙, 𝒛)
now depends solely on the task descriptors 𝒛 ∈ 𝒵 (instead of on both 𝒛 and 𝜽), so that the global
parameter 𝜽 influences predictions only through the task priors 𝑝 (𝒛 ∣ 𝜽). For reasonably ex-
pressive parameterizations of this model, such as modern NN-based instantiations [Gra18, Fin18,
Rav19, Kim18, Kim18], the dimensionality 𝑑𝑧 of 𝒵, and, thus, the complexity of the resulting
approximate inference problem (Sec. 2.1.6), tends to be considerably higher than for NP-like ap-
proaches (Sec. 2.2.4). To see this, note that the full weight space of the decoder now receives a
distributional treatment, while for the NP this is only the case for the input space of the decoder,
whose dimensionality can be chosen independently of the expressiveness of the decoder archi-
tecture. However, the fully hierarchical approach allows learning from the data the degree to
which the components of the decoder’s weight vector are shared across tasks, whereas the NP
imposes an a-priori partitioning of the hypothesis space into fully shared decoder weights and
fully task-specific task descriptors [Rav19].
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3 Bayesian Context Aggregation for Neural
Processes

In Sec. 2.2, we discussed the central importance of accurate task posterior approximations for solv-
ing the BML problem and introduced the standard formulation of the NP model, which computes
amortized task posterior approximations using a set encoder with mean aggregation [Gar18c].

Figure 3.1: Schematic visualization of the distribution of task ambiguity in the space 𝒳 × 𝒴 of data tuples. Similar to
Fig. 2.3, the tasks are lines through the origin with varying slopes. Intuitively, the task ambiguity associated
with a given context example (𝒙, 𝒚) ∈ 𝒳 × 𝒴 decreases with its distance from the origin. A context example
close to the origin (red dot) has a high task ambiguity because it could have been generated by lines with a
wide range of slopes (depending on the noise level). Consequently, it provides little information about the
slope (which is encoded by the task descriptor 𝒛 ∈ 𝒵), so adding it to the context set𝒟𝑐 does not significantly
influence the task posterior distribution𝑝 (𝒛 ∣ 𝒟𝑐, 𝜽). Conversely, the green context example carries less task
ambiguity because it is compatible with a smaller range of tasks. Our Bayesian context aggregation allows
such non-uniform task ambiguity distributions to be incorporated in a natural and efficient manner into the
computation of amortized task posterior approximations.

In this chapter, we investigate how the context aggregation operation affects task posterior infer-
ence. While mean aggregation (like any other permutation invariant aggregation operation) in
combination with the set encoder structure introduced in Sec. 2.2.4.2 can represent arbitrary func-
tions on sets (given suitably expressive encoder NNs) [Zah17, Wag19, Gor20], we show that mean
aggregation Eq. (2.67) yields a suboptimal parameterization of the task posterior approximation
for NP models. Specifically, we observe that the distribution of task ambiguity (Sec. 2.2.2.3) in the
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space 𝒳 × 𝒴 of data tuples is typically non-uniform, which implies that the importance of a data
tuple for task posterior inference varies depending on its location (Fig. 3.1). Mean aggregation,
however, assigns the same weight to each data tuple in the context set, which makes it unneces-
sarily difficult to learn to incorporate task ambiguity into the approximate inference scheme.

Following this observation, we develop a more efficient parameterization of context aggregation
for NP set encoders, called Bayesian context aggregation. The central idea is to formulate con-
text aggregation as task posterior inference by reinterpreting the latent observations 𝒓𝑛 ∈ ℛ
computed by the encoder NN enc𝒓,𝝓 in Eq. (2.66) as samples from a Gaussian observation model
𝑝 (𝒓𝑛 ∣ 𝒛) = 𝒩(𝒓𝑛 ∣ 𝒛, diag (𝝈2𝑟𝑛)). The observation model is centered at the task descriptor
𝒛 ∈ 𝒵 and, crucially, the latent observation variances𝝈2𝑟𝑛 are computed by additional encoder NN
heads. Context aggregation then amounts to computing the posterior distribution 𝑝 (𝒛 ∣ 𝒓1∶𝑁),
which is available in closed form through simple Gaussian conditioning [Bis06]. The latent ob-
servations 𝒓𝑛 then appear weighted by the corresponding inverse variances 𝝈−2𝑟𝑛 in the resulting
parameterization of the task posterior approximation, allowing for a natural and efficient incor-
poration of non-uniform task ambiguity distributions into amortized approximate task posterior
inference.

The remainder of this chapter has been published as [Vol21] Volpp, Michael; Flürenbrock, Fabian;
Großberger, Lukas; Daniel, Christian, and Neumann, Gerhard: “Bayesian Context Aggregation for
Neural Processes”. In: International Conference on Learning Representations (2021). Reprinted
with permission from the authors.

3.1 Introduction

Estimating statistical relationships between physical quantities from measured data is of central
importance in all branches of science and engineering and devising powerful regression models
for this purpose forms amajor field of study in statistics andmachine learning. When judging rep-
resentative power, neural networks (NNs) are arguably the most prominent member of the regres-
sion toolbox. NNs cope well with large amounts of training data and are computationally efficient
at test time. On the downside, standard NN variants do not provide uncertainty estimates over
their predictions and tend to overfit on small datasets. Gaussian processes (GPs) may be viewed as
complementary to NNs as they provide reliable uncertainty estimates but their cubic (quadratic)
scaling with the number of context data points at training (test) time in their basic formulation
affects the application on tasks with large amounts of data or on high-dimensional problems.

Recently, a lot of interest in the scientific community is drawn to combinations of aspects of NNs
and GPs. Indeed, a prominent formulation of probabilistic regression is as a multi-task learning
problem formalized in terms of amortized inference in conditional latent variable (CLV) models,
which results in NN-based architectures which learn a distribution over target functions. Notable
variants are given by the Neural Process (NP) [Gar18c] and the work of Gordon et al. [Gor19],
which presents a unifying view on a range of related approaches in the language of CLV models.
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Inspired by this research, we study context aggregation, a central component of such models, and
propose a new, fully Bayesian, aggregation mechanism for CLV-based probabilistic regression
models. To transform the information contained in the context data into a latent representation
of the target function, current approaches typically employ a mean aggregator and feed the out-
put of this aggregator into a NN to predict a distribution over global latent parameters of the
function. Hence, aggregation and latent parameter inference have so far been treated as separate
parts of the learning pipeline. Moreover, when using a mean aggregator, every context sample
is assumed to carry the same amount of information. Yet, in practice, different input locations
have different task ambiguity and, therefore, samples should be assigned different importance in
the aggregation process. In contrast, our Bayesian aggregation mechanism treats context aggre-
gation and latent parameter inference as one holistic mechanism, i.e., the aggregation directly
yields the distribution over the latent parameters of the target function. Indeed, we formulate
context aggregation as Bayesian inference of latent parameters using Gaussian conditioning in
the latent space. Compared to existing methods, the resulting aggregator improves the handling
of task ambiguity, as it can assign different variance levels to the context samples. This mecha-
nism improves predictive performance, while it remains conceptually simple and introduces only
negligible computational overhead. Moreover, our Bayesian aggregator can also be applied to
deterministic model variants like the Conditional NP (CNP) [Gar18b].

In summary, our contributions are (i) a novel Bayesian Aggregation (BA) mechanism for context
aggregation in NP-based models for probabilistic regression, (ii) its application to existing CLV
architectures as well as to deterministic variants like the CNP, and (iii) an exhaustive experimental
evaluation, demonstrating BA’s superiority over traditional mean aggregation.

3.2 Related Work

Prominent approaches to probabilistic regression are Bayesian linear regression and its kernelized
counterpart, the Gaussian process (GP) [Ras05]. The formal correspondence of GPs with infinite-
width Bayesian NNs (BNNs) has been established in Neal [Nea96] and Williams [Wil96]. A broad
range of research aims to overcome the cubic scaling behaviour of GPs with the number of context
points, e.g., through sparse GP approximations [Smo01, Law02, Sne05, Qui05], by deep kernel
learning [Wil16], by approximating the posterior distribution of BNNs [Mac92a, Hin93, Gal16,
Lou17], or, by adaptive Bayesian linear regression, i.e., by performing inference over the last
layer of a NN which introduces sparsity through linear combinations of finitely many learned
basis functions [Laz10, Hin08, Sno12, Cal16]. An in a sense complementary approach aims to
increase the data-efficiency of deep architectures by a fully Bayesian treatment of hierarchical
latent variable models (“DeepGPs”) [Dam13].

A parallel line of research studies probabilistic regression in the multi-task setting. Here, the
goal is to formulate models which are data-efficient on an unseen target task by training them
on data from a set of related source tasks. More general approaches of this kind employ the
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meta-learning framework [Sch87, Thr98, Vil05], where a model’s training procedure is formu-
lated in a way which incentivizes it to learn how to solve unseen tasks rapidly with only a few
context examples (“learning to learn”, “few-shot learning” [Fei06, Lak11]). A range of such meth-
ods trains a meta-learner to learn how to adjust the parameters of the learner’s model [Ben91,
Sch92], an approach which has recently been applied to few-shot image classification [Rav17],
or to learning data-efficient optimization algorithms [Hoc01, Li16, And16, Che17, Per18, Vol20].
Other branches of meta-learning research aim to learn similarity metrics to determine the rel-
evance of context samples for the target task [Koc15, Vin16, Sne17, Sun17], or explore the ap-
plication of memory-augmented neural networks for meta-learning [San16]. Finn et al. [Fin17]
propose model-agnostic meta-learning (MAML), a general framework for fast parameter adapta-
tion in gradient-based learning methods.

A successful formulation of probabilistic regression as a few-shot learning problem in amulti-task
setting is enabled by recent advances in the area of probabilistic meta-learning methods which
allow a quantitative treatment of the uncertainty arising due to task ambiguity, a feature particu-
larly relevant for few-shot learning problems. One line of work specifically studies probabilistic
extensions of MAML [Gra18, Rav17, Rus18b, Fin18, Kim18]. Further important approaches are
based on amortized inference in multi-task CLV models [Hes00, Bak03, Kin13, Rez14, Soh15b],
which forms the basis of the Neural Statistician proposed by Edwards et al. [Edw17] and of the NP
model family [Gar18c, Kim19, Lou19]. Gordon et al. [Gor19] present a unifying view on many of
the aforementioned probabilistic architectures. Building on the conditional NPs (CNPs) proposed
by Garnelo et al. [Gar18b], a range of NP-based architectures, such as Garnelo et al. [Gar18c]
and Kim et al. [Kim19], consider combinations of deterministic and CLV model architectures.
Recently, Gordon et al. [Gor20] extended CNPs to include translation equivariance in the input
space, yielding state-of-the-art predictive performance.

In this paper, we also employ a formulation of probabilistic regression in terms of amulti-task CLV
model. However, while in previouswork the context aggregationmechanism [Zah17,Wag19]was
merely viewed as a necessity to consume context sets of variable size, we take inspiration from
Becker et al. [Bec19] and emphasize the fundamental connection of latent parameter inference
with context aggregation and, hence, base ourmodel on a novel Bayesian aggregationmechanism.

3.3 Preliminaries

We present the standard multi-task CLV model which forms the basis for our discussion and
present traditional mean context aggregation (MA) and the variational inference (VI) likelihood
approximation as employed by the NP model family [Gar18b, Kim19], as well as an alternative
Monte Carlo (MC)-based approximation.
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3.3 Preliminaries

3.3.1 Problem Statement

We frame probabilistic regression as a multi-task learning problem. Let ℱ denote a family of
functions 𝑓ℓ ∶ ℝ𝑑𝑥 → ℝ𝑑𝑦 with some form of shared statistical structure. We assume to have
available data sets𝒟ℓ ≡ {(𝑥ℓ,𝑖, 𝑦ℓ,𝑖)}𝑖 of evaluations 𝑦ℓ,𝑖 ≡ 𝑓ℓ(𝑥ℓ,𝑖)+ 𝜀 from a subset of functions
(“tasks”) {𝑓ℓ}

𝐿
ℓ=1 ⊂ ℱ with additive Gaussian noise 𝜀 ∼ 𝒩(0, 𝜎2𝑛). From this data, we aim to learn

the posterior predictive distribution 𝑝 (𝑦ℓ ∣ 𝑥ℓ, 𝒟𝑐
ℓ) over a (set of) 𝑦ℓ , given the corresponding

(set of) inputs 𝑥ℓ as well as a context set 𝒟𝑐
ℓ ⊂ 𝒟ℓ .

3.3.2 The Multitask CLV Model

We formalize the multi-task learning problem in terms of a CLV model [Hes00, Gor19] as shown
in Fig. 3.2.

𝑧ℓ

𝜃

𝑥𝑐ℓ,𝑛

𝑦𝑐ℓ,𝑛

𝑥𝑡ℓ,𝑚

𝑦𝑡ℓ,𝑚
𝑁ℓ 𝑀ℓ

𝐿

Figure 3.2: Multitask CLV model with task-specific global latent variables 𝑧ℓ and a task-independent variable 𝜃 describ-
ing statistical structure shared between tasks.

The model employs task-specific global latent variables 𝑧ℓ ∈ ℝ𝑑𝑧 , as well as a task-independent
latent variable 𝜃, capturing the statistical structure shared between tasks. To learn 𝜃, we split
the data into context sets 𝒟𝑐

ℓ ≡ {(𝑥𝑐ℓ,𝑛, 𝑦𝑐ℓ,𝑛)}
𝑁ℓ
𝑛=1 and target sets 𝒟𝑡

ℓ ≡ {(𝑥𝑡ℓ,𝑚, 𝑦𝑡ℓ,𝑚)}
𝑀ℓ
𝑚=1 and

maximize the posterior predictive likelihood function

𝐿
∏
ℓ=1

𝑝 (𝑦𝑡ℓ,1∶𝑀ℓ ∣ 𝑥
𝑡
ℓ,1∶𝑀ℓ , 𝒟

𝑐
ℓ, 𝜃) =

𝐿
∏
ℓ=1

∫𝑝 (𝑧ℓ ∣ 𝒟𝑐
ℓ, 𝜃)

𝑀ℓ

∏
𝑚=1

𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑧ℓ, 𝑥𝑡ℓ,𝑚, 𝜃) d𝑧ℓ (3.1)

w.r.t. 𝜃. In what follows, we omit task indices ℓ to avoid clutter.

3.3.3 Likelihood Approximation

Marginalizing over the task-specific latent variables 𝑧 is intractable for reasonably complex mod-
els, so one has to employ some form of approximation. The NP-family of models [Gar18c, Kim19]

45



3 Bayesian Context Aggregation for Neural Processes

uses an approximation of the form

log𝑝 (𝑦𝑡1∶𝑀 ∣ 𝑥𝑡1∶𝑀 , 𝒟𝑐, 𝜃) ⪆ 𝔼𝑞𝜙(𝑧∣𝒟𝑐∪𝒟𝑡) [
𝑀
∑
𝑚=1

log𝑝 (𝑦𝑡𝑚 ∣ 𝑧, 𝑥𝑡𝑚, 𝜃) + log
𝑞𝜙 (𝑧 ∣ 𝒟𝑐)

𝑞𝜙 (𝑧 ∣ 𝒟𝑐 ∪ 𝒟𝑡)] .

(3.2)

Being derived using a variational approach, this approximation utilizes an approximate posterior
distribution 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) ≈ 𝑝 (𝑧 ∣ 𝒟𝑐, 𝜃). Note, however, that it does not constitute a proper ev-
idence lower bound for the posterior predictive likelihood since the intractable latent posterior
𝑝 (𝑧 ∣ 𝒟𝑐, 𝜃) has been replaced by 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) in the nominator of the rightmost term [Le18]. An
alternative approximation, employed for instance in Gordon et al. [Gor19], also replaces the in-
tractable latent posterior distribution by an approximate distribution 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) ≈ 𝑝 (𝑧 ∣ 𝒟𝑐, 𝜃)
and uses a Monte-Carlo (MC) approximation of the resulting integral based on 𝐾 latent sam-
ples, i.e.,

log𝑝 (𝑦𝑡1∶𝑀 ∣ 𝑥𝑡1∶𝑀 , 𝒟𝑐, 𝜃) ≈ − log𝐾 + log
𝐾
∑
𝑘=1

𝑀
∏
𝑚=1

𝑝 (𝑦𝑡𝑚 ∣ 𝑧𝑘, 𝑥𝑡𝑚, 𝜃) , (3.3)

where 𝑧𝑘 ∼ 𝑞𝜙 (𝑧 ∣ 𝒟𝑐). Note that both approaches employ approximations 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) of the
latent posterior distribution 𝑝 (𝑧 ∣ 𝒟𝑐, 𝜃) and, as indicated by the notation, amortize inference in
the sense that one single set of parameters 𝜙 is shared between all tasks. This enables efficient
inference at test time, as no per-task optimization loops are required. As is standard in the liter-
ature [Gar18c, Kim19], we represent 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) and 𝑝 (𝑦𝑡𝑚 ∣ 𝑧, 𝑥𝑡𝑚, 𝜃) by NNs and refer to them
as the encoder (enc, parameters 𝜙) and decoder (dec, parameters 𝜃) networks, respectively. These
networks set the means and variances of factorized Gaussian distributions, i.e.,

𝑞𝜙 (𝑧 ∣ 𝒟𝑐) = 𝒩(𝑧 ∣ 𝜇𝑧, diag (𝜎2𝑧)) , 𝜇𝑧 = enc𝜇𝑧,𝜙 (𝒟𝑐) , 𝜎2𝑧 = enc𝜎2𝑧,𝜙 (𝒟
𝑐) , (3.4)

and

𝑝 (𝑦𝑡𝑚 ∣ 𝑧, 𝑥𝑡𝑚, 𝜃) = 𝒩(𝑦𝑡𝑚 ∣ 𝜇𝑦, diag (𝜎2𝑦)) , 𝜇𝑦 = dec𝜇𝑦,𝜃 (𝑧, 𝑥𝑡𝑚) , 𝜎2𝑦 = dec𝜎2𝑦,𝜃 (𝑧, 𝑥
𝑡
𝑚) .
(3.5)

3.3.4 Context Aggregation

The latent variable 𝑧 is global in the sense that it depends on the whole context set𝒟𝑐 . Therefore,
some form of aggregation mechanism is required to enable the encoder to consume context sets
𝒟𝑐 of variable size. To represent a meaningful operation on sets, such an aggregation mechanism
has to be invariant to permutations of the context data points. Zaheer et al. [Zah17] characterize
possible aggregation mechanisms w.r.t. this permutation invariance condition, resulting in the
structure of traditional aggregation mechanisms depicted in Fig. 3.3a.
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𝑧̄𝑟𝑟𝑛
𝑥𝑐𝑛

𝑦𝑐𝑛
𝑁

(a) Traditional mean aggregation (MA).

𝑧𝑟𝑛
𝑥𝑐𝑛

𝑦𝑐𝑛
𝑁

(b) Our Bayesian aggregation (BA).

Figure 3.3: Comparison of aggregation mechanisms in CLV models. Dashed lines correspond to learned components
of the posterior approximation 𝑞𝜙 (𝑧 ∣ 𝒟𝑐). BA avoids the detour via a mean-aggregated latent observation
̄𝑟 and aggregates 𝒟𝑐 directly in the statistical description of 𝑧. This allows to incorporate a quantification

of the information content of each context tuple (𝑥𝑐𝑛, 𝑦𝑐𝑛) as well as of 𝑧 into the inference in a principled
manner, while MA assigns the same weight to each context tuple.

Each context data tuple (𝑥𝑐𝑛, 𝑦𝑐𝑛) is first mapped onto a latent observation

𝑟𝑛 = enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) ∈ ℝ𝑑𝑟 . (3.6)

Then, a permutation-invariant operation is applied to the set {𝑟𝑛}
𝑁
𝑛=1 to obtain an aggregated

latent observation ̄𝑟. One prominent choice, employed for instance in Garnelo et al. [Gar18b],
Kim et al. [Kim19], and Gordon et al. [Gor19], is to take the mean, i.e.,

̄𝑟 = 1
𝑁

𝑁
∑
𝑛=1

𝑟𝑛. (3.7)

Subsequently, ̄𝑟 is mapped onto the parameters 𝜇𝑧 and 𝜎2𝑧 of the approximate posterior distribu-
tion 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) using additional encoder networks, i.e., 𝜇𝑧 = enc𝜇𝑧,𝜙 ( ̄𝑟) and 𝜎2𝑧 = enc𝜎2𝑧,𝜙 ( ̄𝑟).
Note that three encoder networks are employed here: (i) enc𝑟,𝜙 to map from the context pairs to
𝑟𝑛, (ii) enc𝜇𝑧,𝜙 to compute 𝜇𝑧 from the aggregated mean ̄𝑟 and (iii) enc𝜎2𝑧,𝜙 to compute the vari-
ance 𝜎2𝑧 from ̄𝑟. In what follows, we refer to this aggregation mechanism as mean aggregation
(MA) and to the networks enc𝜇𝑧,𝜙 and enc𝜎2𝑧,𝜙 collectively as “ ̄𝑟-to-𝑧-networks”.

3.4 Bayesian Context Aggregation

We propose Bayesian Aggregation (BA), a novel context data aggregation technique for CLV
models which avoids the detour via an aggregated latent observation ̄𝑟 and directly treats the
object of interest, namely the latent variable 𝑧, as the aggregated quantity. This reflects a cen-
tral observation for CLV models with global latent variables: context data aggregation and hid-
den parameter inference are fundamentally the same mechanism. Our key insight is to define a
probabilistic observation model 𝑝(𝑟 ∣ 𝑧) for 𝑟 which depends on 𝑧. Given a new latent obser-
vation 𝑟𝑛 = enc𝑟,𝜙(𝑥𝑐𝑛, 𝑦𝑐𝑛), we can update 𝑝(𝑧) by computing the posterior 𝑝(𝑧 ∣ 𝑟𝑛) = 𝑝(𝑟𝑛 ∣
𝑧)𝑝(𝑧)/𝑝(𝑟𝑛). Hence, by formulating context data aggregation as a Bayesian inference problem,
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we aggregate the information contained in 𝒟𝑐 directly into the statistical description of 𝑧 based
on first principles.

3.4.1 Bayesian Context Aggregation via Gaussian Conditioning

BA can easily be implemented using a factorized Gaussian observation model of the form

𝑝 (𝑟𝑛 ∣ 𝑧) = 𝒩(𝑟𝑛 ∣ 𝑧, diag(𝜎2𝑟𝑛)) , 𝑟𝑛 = enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) , 𝜎2𝑟𝑛 = enc𝜎2𝑟 ,𝜙 (𝑥
𝑐
𝑛, 𝑦𝑐𝑛) . (3.8)

Note that, in contrast to standard variational auto-encoders (VAEs) [Kin13], we do not learn the
mean and variance of a Gaussian distribution, but we learn the latent observation 𝑟𝑛 (which can
be considered as a sample of 𝑝(𝑧)) together with the variance 𝜎2𝑟𝑛 of this observation. This archi-
tecture allows the application of Gaussian conditioning while this is difficult for VAEs. Indeed,
we impose a factorized Gaussian prior

𝑝0 (𝑧) ≡ 𝒩(𝑧 ∣ 𝜇𝑧,0, diag (𝜎2𝑧,0)) , (3.9)

and arrive at a Gaussian aggregationmodel which allows to derive the parameters of the posterior
distribution 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) in closed form¹ (cf. App. A.1):

𝜎2𝑧 = [(𝜎2𝑧,0)
⊖ +

𝑁
∑
𝑛=1

(𝜎2𝑟𝑛)
⊖]

⊖

, 𝜇𝑧 = 𝜇𝑧,0 + 𝜎2𝑧 ⊙
𝑁
∑
𝑛=1

(𝑟𝑛 − 𝜇𝑧,0) ⊘ (𝜎2𝑟𝑛) . (3.10)

Here ⊖,⊙ and⊘ denote element-wise inversion, product, and division, respectively. These equa-
tions naturally lend themselves to efficient incremental updates as new context data (𝑥𝑐𝑛, 𝑦𝑐𝑛) ar-
rives by using the current posterior parameters 𝜇𝑧,old and 𝜎2𝑧,old in place of the prior parameters,
i.e.,

𝜎2𝑧,new = [(𝜎2𝑧,old)
⊖ + (𝜎2𝑟𝑛)

⊖]
⊖
, 𝜇𝑧 = 𝜇𝑧,old + 𝜎2𝑧,new ⊙ (𝑟𝑛 − 𝜇𝑧,old ) ⊘ (𝜎2𝑟𝑛) . (3.11)

BA employs two encoder networks, enc𝑟,𝜙 and enc𝜎2𝑟 ,𝜙, mapping context tuples to latent obser-
vations and their variances, respectively. In contrast to MA, it does not require ̄𝑟-to-𝑧-networks,
because the set {𝑟𝑛}

𝑁
𝑛=1 is aggregated directly into the statistical description of 𝑧 by means of

Eq. (3.10), cf. Fig. 3.3b. Note that our factorization assumptions avoid the expensive matrix in-
versions that typically occur in Gaussian conditioning and which are difficult to backpropagate.
Using factorized distributions renders BA cheap to evaluate with only marginal computational

¹ Note that an extended observation model of the form 𝑝 (𝑟𝑛 ∣ 𝑧) = 𝒩(𝑟𝑛 ∣ 𝑧 + 𝜇𝑟𝑛 , diag(𝜎2𝑟𝑛)), with
𝜇𝑟𝑛 given by a third encoder output, does not lead to a more expressive aggregation mechanism. In-
deed, the resulting posterior variances would stay unchanged and the posterior mean would read
𝜇𝑧 = 𝜇𝑧,0 +𝜎2𝑧 ⊙∑𝑁

𝑛=1 (𝑟𝑛 −𝜇𝑟𝑛 −𝜇𝑧,0) ⊘ (𝜎2𝑟𝑛). Therefore, we would just subtract two distinct encoder
outputs computed from the same inputs, resulting in exactly the same expressivity, which is why we set 𝜇𝑟𝑛 ≡ 0.
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overhead in comparison to MA. Furthermore, we can easily backpropagate through BA to com-
pute gradients to optimize the parameters of the encoder and decoder networks. As the latent
space 𝑧 is shaped by the encoder network, the factorization assumptions are valid because the
network will find a space where these assumptions work well. Note further that BA represents
a permutation-invariant operation on 𝒟𝑐 .

3.4.2 Discussion

BA includes MA as a special case. Indeed, Eq. (3.10) reduces to the mean-aggregated latent obser-
vation Eq. (3.7) if we impose a non-informative prior and uniform observation variances 𝜎2𝑟𝑛 ≡ 1.¹
This observation sheds light on the benefits of a Bayesian treatment of aggregation. MA assigns
the same weight 1/𝑁 to each latent observation 𝑟𝑛, independent of the amount of information
contained in the corresponding context data tuple (𝑥𝑐𝑛, 𝑦𝑐𝑛), as well as independent of the uncer-
tainty about the current estimation of 𝑧. Bayesian aggregation remedies both of these limitations:
the influence of 𝑟𝑛 on the parameters 𝜇𝑧,old and 𝜎2𝑧,old describing the current aggregated state is
determined by the relative magnitude of the observation variance 𝜎2𝑟𝑛 and the latent variance
𝜎2𝑧,old, cf. Eq. (3.11). This emphasizes the central role of the learned observation variances 𝜎2𝑟𝑛 :
they allow to quantify the amount of information contained in each latent observation 𝑟𝑛. BA can
therefore handle task ambiguity more efficiently than MA, as the architecture can learn to assign
little weight (by predicting high observation variances 𝜎2𝑟𝑛 ) to context points (𝑥𝑐𝑛, 𝑦𝑐𝑛) located in
areas with high task ambiguity, i.e., to points which could have been generated by many of the
functions in ℱ. Conversely, in areas with little task ambiguity, i.e., if (𝑥𝑐𝑛, 𝑦𝑐𝑛) contains a lot of
information about the underlying function, BA can induce a strong influence on the posterior
latent distribution. In contrast, MA has to find ways to propagate such information through the
aggregation mechanism by encoding it in the mean-aggregated latent observation ̄𝑟.

3.4.3 Likelihood Approximation with Bayesian Context Aggregation

We show that BA is versatile in the sense that it can replace traditional MA in various CLV-based
NP architectures as proposed, e.g., in Garnelo et al. [Gar18c] and Gordon et al. [Gor19], which
employ samples from the approximate latent posterior 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) to approximate the likelihood
(as discussed in Sec. 3.3), as well as in deterministic variants like the CNP [Gar18b].

¹ As motivated above, we consider ̄𝑟 as the aggregated quantity of MA and the distribution over 𝑧, described by 𝜇𝑧 and
𝜎2𝑧, as the aggregated quantity of BA. Note that Eq. (3.10) does not necessarily generalize 𝜇𝑧 and 𝜎2𝑧 after nonlinear
̄𝑟-to-𝑧-networks.
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3.4.3.1 Sampling-Based Likelihood Approximations

BA is naturally compatible with both the VI and MC likelihood approximations for CLV models.
Indeed, BA defines a Gaussian latent distribution from which we can easily obtain samples 𝑧 in
order to evaluate Eq. (3.2) or Eq. (3.3) using the decoder parameterization Eq. (3.5).

3.4.3.2 Bayesian Context Aggregation for Conditional Neural Processes

BA motivates a novel, alternative, method to approximate the posterior predictive likelihood
Eq. (3.1), resulting in a deterministic loss function which can be efficiently optimized for 𝜃 and
𝜙 in an end-to-end fashion. To this end, we employ a Gaussian approximation of the posterior
predictive likelihood of the form

𝑝 (𝑦𝑡1∶𝑀 ∣ 𝑥𝑡1∶𝑀 , 𝒟𝑐, 𝜃) ≈ 𝒩(𝑦𝑡1∶𝑀 ∣ 𝜇𝑦, Σ𝑦) . (3.12)

This is inspired by GPs which also define a Gaussian likelihood. Maximizing this expression yields
the optimal solution 𝜇𝑦 = �̃�𝑦 , Σ𝑦 = Σ̃𝑦 , with �̃�𝑦 and Σ̃𝑦 being the first and second moments of the
true posterior predictive distribution. This is a well-known result known as moment matching,
a popular variant of deterministic approximate inference used, e.g., in Deisenroth et al. [Dei11b]
and Becker et al. [Bec19]. �̃�𝑦 and Σ̃𝑦 are functions of themoments 𝜇𝑧 and 𝜎2𝑧 of the latent posterior
𝑝 (𝑧 ∣ 𝒟𝑐, 𝜃) which motivates the following decoder parameterization:

𝜇𝑦 = dec𝜇𝑦,𝜃 (𝜇𝑧, 𝜎2𝑧 , 𝑥𝑡𝑚) , 𝜎2𝑦 = dec𝜎2𝑦,𝜃 (𝜇𝑧, 𝜎
2
𝑧 , 𝑥𝑡𝑚) , Σ𝑦 = diag (𝜎2𝑦) . (3.13)

Here, 𝜇𝑧 and 𝜎2𝑧 are given by the BA Eqs. (3.10). Note that we define the Gaussian approximation
to be factorized w.r.t. individual 𝑦𝑡𝑚, an assumption which simplifies the architecture but could be
dropped if a more expressive model was required. This decoder can be interpreted as a “moment
matching network”, computing the moments of 𝑦 given the moments of 𝑧. Indeed, in contrast
to decoder networks of CLV-based NP architectures as defined in Eq. (3.5), it operates on the
moments 𝜇𝑧 and 𝜎2𝑧 of the latent distribution instead of on samples 𝑧 which allows to evaluate
this approximation in a deterministic manner. In this sense, the resulting model is akin to the
CNP which defines a deterministic, conditional model with a decoder operating on the mean-
aggregated latent observation ̄𝑟. However, BA-based models trained in this deterministic manner
still benefit from BA’s ability to accurately quantify latent parameter uncertainty which yields
significantly improved predictive likelihoods. In what follows, we refer to this approximation
scheme as direct parameter-based (PB) likelihood optimization.

3.4.3.3 Discussion

The concrete choice of likelihood approximation or, equivalently, model architecture depends
mainly on the intended use-case. Sampling-based models are generally more expressive as they
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can represent complex, i.e., structured, non-Gaussian, posterior predictive distributions. More-
over, they yield true function samples while deterministic models only allow approximate func-
tion samples through auto-regressive (AR) sampling schemes. Nevertheless, deterministic models
exhibit several computational advantages. They yield direct probabilistic predictions in a single
forward pass, while the predictions of sampling-basedmethods are only defined through averages
over multiple function samples and hence require multiple forward passes. Likewise, evaluating
the MC-based likelihood approximation Eq. (3.3) during training requires to draw multiple (𝐾)
latent samples 𝑧. While the VI likelihood approximation Eq. (3.2) can be optimized on a single
function sample per training step through stochastic gradient descent [Bis06], it has the disad-
vantage that it requires to feed target sets𝒟𝑡 through the encoder which can impede the training
for small context sets 𝒟𝑐 as discussed in detail in App. A.2.

3.5 Empirical Evaluation

We present experiments to compare the performances of BA and of MA in NP-based models. To
provide a complete picture, we evaluate all combinations of likelihood approximations (PB/de-
terministic Eq. (3.12), VI Eq. (3.2), MC Eq. (3.3)) and aggregation methods (BA Eq. (3.10), MA
Eq. (3.7)), resulting in six different model architectures, cf. Fig. A.1 in App. A.5.2. Two of these ar-
chitectures correspond to existing members of the NP family: MA + deterministic is equivalent to
the CNP [Gar18b], and MA + VI corresponds to the Latent-Path NP (LP-NP) [Gar18c], i.e., the NP
without a deterministic path. We further evaluate the Attentive Neural Process (ANP) [Kim19],
which employs a hybrid approach, combining LP-NPwith a cross-attentionmechanism in a paral-
lel deterministic path¹, as well as an NP-architecture using MA with a self-attentive (SA) encoder
network. Note that BA can also be used in hybrid models like ANP or in combination with SA,
an idea we leave for future research. In App. A.4 we discuss NP-based regression in relation to
other methods for (scalable) probabilistic regression.

The performance of NP-based models depends heavily on the encoder and decoder network ar-
chitectures as well as on the latent space dimensionality 𝑑𝑧. To assess the influence of the aggre-
gation mechanism independently from all other confounding factors, we consistently optimize
the encoder and decoder network architectures, the latent-space dimensionality 𝑑𝑧, as well as
the learning rate of the Adam optimizer [Kin15], independently for all model architectures and for
all experiments using the Optuna [Aki19] framework, cf. App. A.5.3. If not stated differently, we
report performance in terms of the mean posterior predictive log-likelihood over 256 test tasks
with 256 data points each, conditioned on context sets containing𝑁 ∈ {0, 1, … ,𝑁max} data points
(cf. App. A.5.4). For sampling-based methods (VI, MC, ANP), we report the joint log-likelihood
over the test sets using a Monte-Carlo approximation with 25 latent samples, cf. App. A.5.4. We
average the resulting log-likelihood values over 10 training runs with different random seeds

¹ For ANP, we use original code from https://github.com/deepmind/neural-processes
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and report 95% confidence intervals. We publish source code to reproduce the experimental re-
sults online.¹

3.5.1 GP Samples

We evaluate the architectures on synthetic functions drawn from GP priors with different kernels
(RBF, weakly periodic, Matern-5/2), as proposed by Gordon et al. [Gor20], cf. App. A.5.1. We
generate a new batch of functions for each training epoch. The results (Fig. 3.4 and Tab. 3.1) show
that BA consistently outperforms MA, independent of the model architecture.
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Figure 3.4: Posterior predictive log-likelihood on functions drawn fromGP priors with RBF, weakly periodic, andMatern-
5/2 kernels in dependence of the context size 𝑁. BA consistently outperforms MA, independent of the like-
lihood approximation, with MC being the most expressive choice. PB represents an efficient, deterministic
alternative, while the VI approximation tends to perform worst, in particular for small𝑁.

Table 3.1: Posterior predictive log-likelihood on functions drawn from GP priors with RBF, weakly periodic, and Matern-
5/2 kernels, averaged over context sets with𝑁 ∈ {0, 1, … , 64} points. Cf. Fig. 3.4 for a discussion.

BA MA
RBF GP PB/det. 1.37 ± 0.15 0.94 ± 0.04

VI 1.40 ± 0.04 0.45 ± 0.12
MC 1.62 ± 0.05 1.07 ± 0.05
ANP 0.98 ± 0.02

Weakly Periodic GP PB/det. 1.13 ± 0.08 0.76 ± 0.02
VI 0.89 ± 0.03 0.07 ± 0.14
MC 1.30 ± 0.06 0.85 ± 0.04
ANP 1.02 ± 0.02

Matern-5/2 GP PB/det. −0.50 ± 0.07 −0.68 ± 0.01
VI −0.79 ± 0.01 −1.09 ± 0.10
MC −0.33 ± 0.01 −0.90 ± 0.15
ANP 0.25 ± 0.02

¹ https://github.com/boschresearch/bayesian-context-aggregation
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Interestingly, despite employing a factorized Gaussian approximation, our deterministic PB ap-
proximation performs at least on-par with the traditional VI approximation which tends to per-
form particularly poorly for small context sets, reflecting the intricacies discussed in Sec. 3.4.3.
As expected, the MC approximation yields the best results in terms of predictive performance, as
it is more expressive than the deterministic approaches and does not share the problems of the
VI approach. As shown in Tab. 3.2 and Tab. A.3, App. A.6, our proposed PB likelihood approxi-
mation is much cheaper to evaluate compared to both sampling-based approaches which require
multiple forward passes per prediction.

Table 3.2: Relative evaluation runtimes and number of parameters of the optimized network architectures on RBF GP.
Also cf. Tab. A.3.

BA MA
Runtime PB/det. 1 1.4

VI 18 25
MC 32 27

#Parameters PB/det. 72k 96k
VI 63k 77k
MC 122k 153k

We further observe that BA tends to require smaller encoder and decoder networks as it is more ef-
ficient at propagating context information to the latent state as discussed in Sec. 3.4.1. The hybrid
ANP approach is competitive only on the Matern-5/2 function class. Yet, we refer the reader to
Tab. A.4, App. A.6, demonstrating that the attention mechanism greatly improves performance
in terms of MSE.

3.5.2 Quadratic Functions

We further seek to study the performance of BA with very limited amounts of training data. To
this end, we consider two quadratic function classes, each parameterized by three real parameters
from which we generate limited numbers 𝐿 of training tasks. The first function class is defined on
a one-dimensional domain, i.e., 𝑥 ∈ ℝ, and we choose 𝐿 = 64, while the second function class, as
proposed by Perrone et al. [Per18], is defined on 𝑥 ∈ ℝ3 with 𝐿 = 128, cf. App. A.5.1. As shown in
Tab. 3.3, BA again consistently outperformsMA, often by considerably large margins, underlining
the efficiency of our Bayesian approach to aggregation in the regime of little training data.
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Table 3.3: Posterior predictive log-likelihood on 1D and 3D quadratic functions with limited numbers 𝐿 of training tasks,
averaged over context sets with𝑁 ∈ {0, 1, … , 20} data points. BA outperforms MA by considerable margins
in this regime of little training data.

BA MA
Quadratic 1D, 𝐿 = 64 PB/det. 1.42 ± 0.20 0.47 ± 0.25

VI 1.48 ± 0.05 −0.32 ± 0.55
MC 1.71 ± 0.23 1.27 ± 0.06
ANP 0.69 ± 0.08

Quadratic 3D, 𝐿 = 128 PB/det. −2.46 ± 0.12 −2.73 ± 0.10
VI −2.53 ± 0.07 −3.45 ± 0.12
MC −1.79 ± 0.07 −2.14 ± 0.05
ANP −3.08 ± 0.02

On the 1D task, all likelihood approximations perform approximately on-par in combination with
BA, while MC outperforms both on the more complex 3D task. Fig. 3.5 compares prediction
qualities.

BA+PB BA+VI BA+MC

MA+det. MA+VI MA+MC ANP

Figure 3.5: Predictions on two instances (dashed lines) of the 1D quadratic function class, given 𝑁 = 3 context data
points (circles). We show mean and standard deviation predictions (solid line, shaded area), and 10 function
samples (AR samples for deterministic methods). Cf. also App. A.6.

3.5.3 Dynamics of a Furuta Pendulum

We study BA on a realistic dataset given by the simulated dynamics of a rotary inverted pen-
dulum, better known as the Furuta pendulum [Fur92], which is a highly non-linear dynamical
system, consisting of an actuated arm rotating in the horizontal plane with an attached pendu-
lum rotating freely in the vertical plane (Fig. 3.6), parameterized by two masses, three lengths,
and two damping constants.
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Figure 3.6: A Furuta pendulum as distributed by the Quanser company (QUBE™ Servo 2). Image source: https://www.
quanser.com

The regression task is defined as the one-step-ahead prediction of the four-dimensional system
state with a step-size of Δ𝑡 = 0.1 s, as detailed in App. A.5.1. The results (Tab. 3.4) show that BA
improves predictive performance also on complex, non-synthetic regression tasks with higher-
dimensional input- and output spaces.

Table 3.4: Posterior predictive log-likelihood on the dynamics of a Furuta pendulum, averaged over context sets with
𝑁 ∈ {0, 1, … , 20} state transitions. BA performs favorably on this real-world task.

BA MA
Furuta Dynamics PB/det. 7.50 ± 0.27 7.06 ± 0.12

VI 7.32 ± 0.18 5.57 ± 0.21
MC 8.25 ± 0.33 7.55 ± 0.24
ANP 4.74 ± 0.16

Further, they are consistent with our previous findings regarding the likelihood approximations,
with MC being strongest in terms of predictive likelihood, followed by our efficient deterministic
alternative PB.

3.5.4 2D Image Completion

We consider a 2D image completion experiment where the inputs 𝑥 are pixel locations in im-
ages showing handwritten digits, and we regress onto the corresponding pixel intensities 𝑦,
cf. App. A.6. Interestingly, we found that architectures without deterministic paths were not
able to solve this task reliably which is why we only report results for deterministic models. As
shown in Tab. 3.5, BA improves performance in comparison to MA by a large margin.
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Table 3.5: Predictive log-likelihood on a 2D image completion task on MNIST, averaged over𝑁 ∈ {0, 1, … , 392} context
pixels.

BA MA
2D Image Completion PB/det. 2.75 ± 0.20 2.05 ± 0.36

ANP 1.62 ± 0.03

This highlights that BA’s ability to quantify the information content of a context tuple is particu-
larly beneficial on this task, as, e.g., pixels in the middle area of the images typically convey more
information about the identity of the digit than pixels located near the borders.

3.5.5 Self-attentive Encoders

Another interesting baseline for BA is MA, combined with a self-attention (SA) mechanism in
the encoder. Indeed, similar to BA, SA yields non-uniform weights for the latent observations 𝑟𝑛,
where a given weight is computed from some form of pairwise spatial relationship with all other
latent observations in the context set (cf. App. A.3 for a detailed discussion). As BA’s weight for 𝑟𝑛
only depends on (𝑥𝑛, 𝑦𝑛) itself, BA is computationally more efficient: SA scales like𝒪(𝑁2) in the
number 𝑁 of context tuples while BA scales like 𝒪(𝑁), and, furthermore, SA does not allow for
efficient incremental updates while this is possible for BA, cf. Eq. (3.11). Tabs. 3.6 and 3.7 show a
comparison of BA with MA in combination with various different SA mechanisms in the encoder.

We emphasize that we compare against BA in its vanilla form, i.e., BA does not use SA in the
encoder. The results show that Laplace SA and dot-product SA do not improve predictive per-
formance compared to vanilla MA, while multihead SA yields significantly better results. Never-
theless, vanilla BA still performs better or at least on-par and is computationally more efficient.
While being out of the scope of this work, according to these results, a combination of BA with
SA seems promising if computational disadvantages can be accepted in favour of increased pre-
dictive performance, cf. App. A.3.

3.6 Conclusion and Outlook

Weproposed a novel Bayesian Aggregation (BA)method for NP-basedmodels, combining context
aggregation and hidden parameter inference in one holistic mechanism which enables efficient
handling of task ambiguity. BA is conceptually simple, compatible with existing NP-based model
architectures, and consistently improves performance compared to traditional mean aggregation.
It introduces only marginal computational overhead, simplifies the architectures in comparison to
existing CLVmodels (no ̄𝑟-to-𝑧-networks), and tends to require less complex encoder and decoder
network architectures. Our experiments further demonstrate that the VI likelihood approxima-
tion traditionally used to train NP-based models should be abandoned in favor of a MC-based
approach, and that our proposed PB likelihood approximation represents an efficient determin-
istic alternative with strong predictive performance. We believe that a range of existing models,
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e.g., the ANP or NPs with self-attentive encoders, can benefit from BA, especially when a reliable
quantification of uncertainty is crucial. Also, more complex Bayesian aggregation models are
conceivable, opening interesting avenues for future research.

Table 3.6: Comparison of the posterior predictive log-likelihood of our BA with traditional MA, combined with a self-
attention (SA) mechanism in the encoder (BA does not use an SA mechanism), using the PB likelihood ap-
proximation. We provide results for Laplace SA (L-SA), dot-product SA (DP-SA), and mulihead SA (MH-SA)
and repeat the results for BA and MA without SA (“no SA”). While L-SA and DP-SA do not increase predictive
performance compared to MA without SA, MH-SA results in significant improvements. Nevertheless, vanilla
BA still performs better or at least on-par, while being computationally more efficient.

BA + PB MA + PB
RBF GP no SA 1.37 ± 0.15 0.94 ± 0.04

L-SA 0.74 ± 0.06
DP-SA 0.89 ± 0.04
MH-SA 1.46 ± 0.14

Weakly Periodic GP no SA 1.13 ± 0.08 0.76 ± 0.02
L-SA 0.59 ± 0.02
DP-SA 0.71 ± 0.02
MH-SA 1.13 ± 0.15

Matern-5/2 GP no SA −0.50 ± 0.07 −0.68 ± 0.01
L-SA −1.03 ± 0.01
DP-SA −0.76 ± 0.01
MH-SA −0.64 ± 0.01

Quadratic 1D, 𝐿 = 64 no SA 1.42 ± 0.20 0.47 ± 0.25
L-SA 0.15 ± 0.32
DP-SA 0.47 ± 0.24
MH-SA 1.49 ± 0.11

Quadratic 3D, 𝐿 = 128 no SA −2.46 ± 0.12 −2.73 ± 0.10
L-SA −2.94 ± 0.41
DP-SA −2.95 ± 0.13
MH-SA −2.13 ± 0.25

Furuta Dynamics no SA 7.50 ± 0.27 7.06 ± 0.12
L-SA 7.13 ± 0.12
DP-SA 7.04 ± 0.20
MH-SA 7.40 ± 0.46
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Table 3.7: Comparison of the posterior predictive log-likelihood of our BA with traditional MA, combined with a self-
attention (SA) mechanism in the encoder (BA does not use an SA mechanism), using the MC likelihood ap-
proximation. We provide results for Laplace SA (L-SA), dot-product SA (DP-SA), and mulihead SA (MH-SA)
and repeat the results for BA and MA without SA (“no SA”). While L-SA and DP-SA do not increase predictive
performance compared to MA without SA, MH-SA results in significant improvements. Nevertheless, vanilla
BA still performs better or at least on-par, while being computationally more efficient.

BA + MC MA + MC
RBF GP no SA 1.62 ± 0.05 1.07 ± 0.05

L-SA 0.93 ± 0.05
DP-SA 0.98 ± 0.03
MH-SA 1.44 ± 0.09

Weakly Periodic GP no SA 1.30 ± 0.06 0.85 ± 0.04
L-SA 0.77 ± 0.03
DP-SA 0.82 ± 0.03
MH-SA 1.29 ± 0.04

Matern-5/2 GP no SA −0.33 ± 0.01 −0.90 ± 0.15
L-SA −0.80 ± 0.02
DP-SA −0.86 ± 0.01
MH-SA −0.59 ± 0.03

Quadratic 1D, 𝐿 = 64 no SA 1.71 ± 0.23 1.27 ± 0.06
L-SA 1.19 ± 0.09
DP-SA 1.32 ± 0.14
MH-SA 1.66 ± 0.12

Quadratic 3D, 𝐿 = 128 no SA −1.79 ± 0.07 −2.14 ± 0.05
L-SA −2.19 ± 0.11
DP-SA −2.18 ± 0.07
MH-SA −1.71 ± 0.05

Furuta Dynamics no SA 8.25 ± 0.33 7.55 ± 0.24
L-SA 7.80 ± 0.13
DP-SA 7.67 ± 0.14
MH-SA 8.39 ± 0.20
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4 Accurate Task Posterior Inference with
Gaussian Mixture Models

In Sec. 3, we introduced Bayesian context aggregation (BA), a novel context aggregation
scheme for NP-based BML models. While BA improves the parameterization of the task pos-
terior approximation, it still operates within the standard NP approximate inference scheme
with amortized Gaussian mean-field approximations and reparameterized Euclidean gradients
(Sec. 2.2.4) [Gar18c].
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(b) GMM-NP (ours).

Figure 4.1: Comparison of standard NPs [Gar18c] and our GMM-NP architecture. We train instances of these architec-
tures with a 𝑑𝑧 = 2 dimensional hypothesis space 𝒵 on a meta dataset 𝒟meta generated from sinusoidal
functions whose amplitudes and phases vary from task to task. Top row: True (unnormalized) task posterior
distributions𝑝 (𝒛 ∣ 𝒟𝑐,∗, 𝜽) (contours), given a context set𝒟𝑐,∗ ⊂ 𝒟∗ with two examples from an unseen test
dataset 𝒟∗, along with the corresponding task posterior approximations (Gaussian ellipses). Bottom row:
Samples from the corresponding predictive distributions (blue), test data 𝒟∗ (black dots), and context data
𝒟𝑐,∗ (red crosses). Panel (a): Standard NPs use Gaussian mean-field VI, which yields a crude task posterior
approximation and results in suboptimal predictions. Panel (b): GMM-NP uses an expressive full-covariance
Gaussian mixture task posterior approximation (we use three mixture components in this example), resulting
in significantly improved predictive performance.
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In this chapter, we investigate the impact of these design choices and show that they lead to a
significant variational inference gap and, consequently, to suboptimal solutions for the MMLE
̂𝜽 (Sec. 2.1.6.4). This observation leads us to develop GMM-NP, a novel NP variant that uses a

non-amortized mixture of full-covariance Gaussians to approximate the task posterior (Fig. 4.1).
We demonstrate that this approach yields significantly improved predictive performance, and
that it can be implemented efficiently following recent work combining natural gradients and
information-geometric trust regions (Sec. 2.1.6.3) [Are23, Lin20].

The remainder of this chapter has been published as [Vol23] Volpp, Michael; Dahlinger, Philipp;
Becker, Philipp; Daniel, Christian, and Neumann, Gerhard: “Accurate Bayesian Meta-Learning by
Accurate Task Posterior Inference”. In: International Conference on Learning Representations
(2023). Reprinted with permission from the authors.

4.1 Introduction

Driven by algorithmic advances in the field of deep learning (DL) and the availability of increas-
ingly powerful GPU-assisted hardware, the field of machine learning achieved a plethora of im-
pressive results in recent years [Par18, Rad19, Mni15b]. These were enabled to a large extent by
the availability of huge datasets, which enables training expressive deep neural network (DNN)
models. In practice, e.g., in industrial settings, such datasets are unfortunately rarely available,
rendering standard DL approaches futile. Nevertheless, it is often the case that similar tasks arise
repeatedly, such that the number of context examples on a novel target task is typically relatively
small, but the joint meta-dataset of examples from all tasks accumulated over time can be mas-
sive, s.t. powerful inductive biases can be extracted using meta-learning [Hos22]. While these
inductive biases allow restricting predictions to only those compatible with the meta-data, there
typically remains epistemic uncertainty due to task ambiguity, as the context data is often not
informative enough to identify the target task exactly. Bayesian meta-learning (BML) aims at an
accurate quantification of this uncertainty, which is crucial for applications like active learning,
Bayesian optimization [Sha16], model-based reinforcement learning [Chu18], robotics [Dei11a],
and in safety-critical scenarios.

A prominent BML approach is the Neural Process (NP) [Gar18c] which employs a DNN-based
conditional latent variable (CLV) model, in which the Bayesian belief about the target task is en-
coded in a factorized Gaussian task posterior (TP) approximation, and inference is amortized over
tasks using set encoders [Zah17]. This architecture can be optimized efficiently using variational
inference (VI) with standard, reparameterized gradients [Kin13]. A range of modifications, such
as adding deterministic, attentive, computation paths [Kim19], or Bayesian set encoders [Vol21],
have been proposed in recent years to improve predictive performance. Interestingly, the VI
scheme with an amortized, factorized Gaussian TP, optimized using standard gradients, remains
largely unaltered. Yet, it is well known that (i) the factorized Gaussian assumption rarely holds in
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Bayesian learning [Mac03, Wil20], (ii) amortized inference can yield suboptimal posterior approx-
imations [Cre18], and (iii) natural gradients are superior to standard gradients for VI in terms of
optimization efficiency and robustness [Kha18a].

Building on these insights and on recent advances in VI [Lin20, Are23], we propose GMM-NP, a
novel NP-based BML algorithm that employs (i) a full-covariance Gaussian mixture (GMM) TP
approximation, optimized in a (ii) non-amortized fashion, using (iii) robust and efficient trust re-
gion natural gradient (TRNG)-VI. We demonstrate through extensive empirical evaluations and
ablations that our approach yields tighter evidence lower bounds, more efficient model optimiza-
tion, and, thus, markedly improved predictive performance, outperforming the state-of-the-art
both in terms of epistemic uncertainty quantification and accuracy. Notably, GMM-NP does not
require complex architectural modifications, which shows that accurate TP inference is crucial
for accurate BML, an insight we believe will be valuable for future research.

4.2 Related Work

Multitask learning aims to leverage inductive biases learned on a meta-dataset of similar tasks
for improved data efficiency on unseen target tasks of similar structure. Notable variants in-
clude transfer-learning [Zhu21], that refines and combines pre-trained models [Gol17, Kri12],
and meta-learning [Sch87, Thr98, Vil05, Hos22], which makes the multi-task setting explicit in
the model design by formulating fast adaptation mechanisms in order to learn how to solve tasks
with little context data (“few-shot learning”). A plethora of architectures were studied in the liter-
ature, including learner networks that adapt model parameters [Ben91, Sch92, Rav17], memory-
augmented DNNs [San16], early instances of Bayesian meta-models [Edw17, Hew18], and algo-
rithms that that make use of learned measures of task similarity [Koc15, Vin16, Sne17].

Arguably the most prominent meta-learning approaches are the Model-agnostic Meta-learning
(MAML) and the Neural Process (NP) model families, due to their generality and flexibility. While
the original MAML [Fin17] and Conditional NP [Gar18b] formulations do not explicitly model the
epistemic uncertainty arising naturally in few-shot settings due to task ambiguity, both model
families were extended to fully Bayesian meta-learning (BML) algorithms that explicitly infer
the TP based on a CLV formulation [Hes00, Bak03]. Important representatives are Probabilis-
tic MAML [Gra18, Fin18] and Bayesian MAML [Kim18], as well as several NP-based BML ap-
proaches that inspire our work. These include the Standard NP [Gar18c], which was extended by
attentive computation paths to avoid underfitting [Kim19], or by Bayesian set encoders [Zah17,
Wag19, Vol21] for improved handling of task ambiguity, as well as by hierarchical [Wan20a],
bootstrapped [Lee20], or graph-based [Lou19] latent distributions. While the original NP formu-
lation employs an amortized, reparameterized, stochastic gradient VI objective [Kin13, Rez14],
Monte-Carlo (MC)-based objective functions were also studied [Gor19, Vol21].

From a more general perspective, VI emerged as a central tool in many areas of probabilistic ma-
chine learning, which require tractable approximations of intractable probability distributions,
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typically arising as the posterior in Bayesian models [Gel13, Kol09, Nea96, Wil20]. While early
approaches [Att00] allow analytic updates, more complex algorithms employ stochastic gradi-
ents w.r.t. the variational parameters [Ran14, Kin13, Blu15]. Such approaches are straightfor-
ward to implement and computationally efficient for factorized Gaussian variational distribu-
tions, but ignore the information geometry of the loss landscape, leading to suboptimal con-
vergence rates [Kha18a]. Natural gradient (NG)-VI [Ama98] alleviates this problem and recent
work [Hof13, Win05, Kha18a, Kha18b] successfully applies this idea at scale to complex mod-
els, requiring only first-order gradient information [Lin19]. Further extensions enable NG-VI for
structured variational distributions such as mixture models by decomposing the NG update into
individual updates per mixture component [Are18, Lin20] which, in combination with trust re-
gion (TR) step size control [Abd15, Are23], yields robust and efficient VI algorithms for versatile
and highly expressive variational distributions such as Gaussian mixture models (GMMs).

4.3 Preliminaries

We now briefly recap the TRNG-VI algorithm [Lin20, Are23] as well as the NP model [Gar18c],
which form the central building blocks of our GMM-NP model.

4.3.1 Trust Region Natural Gradient VI with Gaussian Mixture Models

4.3.1.1 Variational Inference

We consider a probability distribution 𝑝 (𝒛) over a random variable 𝒛 ∈ ℝ𝑑𝑧 , which is intractable
in the sense that we know it only up to some normalization constant 𝑍, i.e., 𝑝 (𝒛) = ̃𝑝 (𝒛) / 𝑍
with 𝑍 = ∫𝑝 (𝒛) d𝑧 and tractable ̃𝑝(𝒛). We seek to approximate 𝑝 (𝒛) by a tractable distribution
𝑞𝝓 (𝒛), parameterized by 𝝓. Variational inference (VI) frames this task as the minimization w.r.t. 𝝓
of the reverse Kullback-Leiber (KL) divergence [Kul51]

KL [𝑞𝝓||𝑝] ≡ −𝔼𝑞𝝓(𝒛) [log
̃𝑝 (𝒛)

𝑞𝝓 (𝒛)
] + log𝑍 ≡ −ℒ (𝝓) + log𝑍, (4.1)

where we introduced evidence lower bound (ELBO) ℒ (𝝓). As 𝑍 is independent of 𝝓, minimizing
the KL divergence is equivalent to maximizing the ELBO.

4.3.1.2 Natural Gradients

A standard approach employs stochastic, reparameterized gradients [Kin13] w.r.t. 𝝓 for optimiza-
tion. While this is computationally efficient, it ignores the geometry of the statistical manifold
defined by the set of probability distributions 𝑞𝝓, which can lead to suboptimal convergence
rates [Kha18a]. A more efficient solution is to perform updates in the natural gradient (NG)
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direction, i.e., the direction of steepest ascent w.r.t. the Fisher information metric [Ama98]. State-
of-the-art approaches estimate the NG from first-order gradients of 𝑝 (𝒛) by virtue of Stein’s
lemma [Lin19], yielding efficient NG-VI algorithms that scale to complex problems [Kha18b,
Lin20, Are23].

4.3.1.3 Trust Regions

Selecting appropriate step sizes for updates in 𝝓 can be intricate, which is why Abdolmaleki et al.
[Abd15] propose a (zero-order) algorithm that incorporates a trust region constraint of the form
KL [𝑞𝝓||𝑞𝝓old] ≤ 𝜀, which restricts the updates in distribution space and can be enforced with
manageable computational overhead (a scalar, convex optimization problem in the Lagrangean
parameter for the constraint). As shown by Arenz et al. [Are23], such trust regions can easily be
combined with gradient information, and allowmore aggressive updates in comparison to setting
the step size directly, while still ensuring robust convergence.

4.3.1.4 VI with Gaussian Mixture Models

The quality of the approximation depends on the expressiveness of the distribution family 𝑞𝝓. In
settings where 𝑝 corresponds to the Bayesian posterior of complex latent variable models [Mac03,
Wil20], simple Gaussian approximations do not yield satisfactory results, as 𝑝 typically is mul-
timodal. In such cases, Gaussian mixture models (GMMs) are an appealing choice, as they
provide cheap sampling, evaluation, and marginalization while allowing expressive approxima-
tions [Are18]. However, a naive application of VI is futile because gradients are coupled between
GMM components, leading to computationally intractable updates. Fortunately, Arenz et al.
[Are18] and Lin et al. [Lin20] show that updating the components and weights individually is
possible, while preventing a collapse of the approximation onto a single posterior mode. This
leads to two state-of-the-art algorithms for NG-VI with variational GMMs, that differ most
notably in the way the step sizes for the updates are controlled: iBayes-GMM [Lin20], which
directly sets step sizes for the updates, and TRNG-VI [Are23], which employs trust regions for
more efficient and robust convergence.

4.3.2 Bayesian Meta-Learning with Neural Processes

4.3.2.1 The Multitask Latent Variable Model

We aim to fit a generative model to a meta-dataset 𝒟 = 𝒟1∶𝐿, consisting of regression tasks
𝒟ℓ = {𝒙ℓ,1∶𝑁 , 𝒚ℓ,1∶𝑁} with inputs 𝒙ℓ,𝑛 ∈ ℝ𝑑𝑥 and corresponding evaluations 𝒚ℓ,𝑛 ∈ ℝ𝑑𝑦 of
unknown functions 𝑓ℓ , i.e., 𝒚ℓ,𝑛 = 𝑓ℓ (𝒙ℓ,𝑛) + 𝜺𝑛, where 𝜺𝑛 denotes (possibly heteroskedastic)
noise. Tasks are assumed to share statistical structure as formalized in the multi-task CLV model
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(Fig. 4.2), defining the joint probability distribution

𝑝𝜽 (𝒚1∶𝐿,1∶𝑁 , 𝒛1∶𝐿 ∣ 𝒙1∶𝐿,1∶𝑁) =∏
ℓ,𝑛

𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑝 (𝒛ℓ) , (4.2)

where 𝒛ℓ ∈ ℝ𝑑𝑧 denote latent task descriptors and 𝜽 denotes task-global parameters that capture
shared statistical structure.

𝜽

𝒚ℓ,𝑛 𝒛ℓ𝒙ℓ,𝑛

𝑁

𝐿

Figure 4.2: Multitask CLV model with task-local latent variables 𝒛ℓ and a global latent variable 𝜽, capturing structure
shared between tasks.

Having observed context data 𝒟𝑐
∗ = {𝒙𝑐∗,1∶𝑀∗ , 𝒚

𝑐
∗,1∶𝑀∗ } ⊂ 𝒟∗ from a target task 𝒟∗, predictions

are provided in terms of the marginal predictive distribution

𝑝𝜽 (𝒚∗,1∶𝑁∗ ∣ 𝒙∗,1∶𝑁∗ , 𝒟𝑐
∗) = ∫∏

𝑛
𝑝𝜽 (𝒚∗,𝑛 ∣ 𝒙∗,𝑛, 𝒛∗) 𝑝𝜽 (𝒛∗ ∣ 𝒟𝑐

∗) d𝑧∗, (4.3)

with the task posterior (TP) distribution

𝑝𝜽 (𝒛∗ ∣ 𝒟𝑐
∗) =

∏𝑚 𝑝𝜽(𝒚𝑐∗,𝑚 ∣ 𝒙𝑐∗,𝑚, 𝒛∗)𝑝 (𝒛∗)
𝑝𝜽 (𝒟𝑐∗)

. (4.4)

4.3.2.2 The Neural Process

In its standard formulation, the Neural Process (NP) [Gar18c] defines a factorized Gaussian like-
lihood

𝑝𝜽 (𝒚 ∣ 𝒙, 𝒛) ≡ 𝒩(𝒚 ∣ dec𝝁𝜽 (𝒙, 𝒛) , diag (𝜎2n)) , (4.5)

where the decoder dec𝝁𝜽 is a DNN with weights 𝜽, and observation noise variance 𝜎2n. As the TP
is intractable for this likelihood choice, NP computes a factorized Gaussian approximation

𝑞𝝓 (𝒛∗ ∣ 𝒟𝑐
∗) ≡ 𝒩(𝒛∗ ∣ enc𝝁𝝓 (𝒟𝑐

∗) , diag(enc𝜎𝝓 (𝒟𝑐
∗))) (4.6)

with deep set encoders [Zah17, Wag19] enc𝝁𝝓 , enc𝝈𝝓 , parameterized by 𝝓. The parameters 𝜱 ≡ (𝜽, 𝝓)
are optimized jointly on the meta-data by stochastic gradient ascent on the ELBO ∑𝐿

ℓ=1ℒℓ (𝜱)
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w.r.t. the approximate log marginal predictive likelihood defined by

log 𝑞𝜱 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐
ℓ) ≡ log∫∏

𝑛
𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑞𝝓 (𝒛ℓ ∣ 𝒟𝑐

ℓ) d𝑧ℓ (4.7)

≥ 𝔼𝑞𝝓(𝒛ℓ ∣𝒟ℓ) [∑
𝑛

log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) + log
𝑞𝝓 (𝒛ℓ ∣ 𝒟𝑐

ℓ)
𝑞𝝓 (𝒛ℓ ∣ 𝒟ℓ)

] ≡ ℒℓ (𝜱) , (4.8)

where 𝒟𝑐
ℓ ⊂ 𝒟ℓ , and stochastic gradients w.r.t. 𝝓 are estimated using the reparameterization

trick [Kin13]. Note that NP amortizes inference (the variational parameters 𝝓 are shared across
tasks) and that it re-uses 𝑞𝝓 (𝒛ℓ ∣ ⋅) to compute the variational distribution 𝑞𝝓 (𝒛ℓ ∣ 𝒟ℓ), taking
advantage of its deep set encoder, which allows to condition it on datasets of arbitrary size.

4.4 Bayesian Meta-Learning with GMM Task Posteriors

4.4.1 Motivation

Our work is motivated by the observation that the current state-of-the-art approach for training
NP-based BML models is suboptimal. Concretely, we identify three interrelated issues with the
optimization objective Eq. (4.8):

(I1) Expressivity of the Variational Distribution. 𝑞𝝓 is a (i) factorized, (ii) unimodal
Gaussian distribution, (iii) amortized over tasks. In effect, this parameterization only
allows crude approximations of the TP distribution [Mac03, Cre18].

(I2) Optimization of the Variational Parameters. (i) Naive gradients of Eq. (4.8), ignoring
the information geometry of 𝑞𝝓, with (ii) direct step size control are employed for
optimization, yielding brittle convergence at suboptimal rates [Kha18a, Are23].

(I3) Optimization of the Model Parameters. Due to the suboptimal VI scheme (I1, I2), the
TP approximation is poor, resulting in a loose ELBO Eq. (4.8). In effect, optimization
w.r.t. the model parameters 𝜽 is inefficient, cf. App. B.1.4.1 for a detailed discussion.

Armed with these insights, we develop a novel BML algorithm that is close in spirit to the NP but
solves (I1-I3) through TRNG-VI with GMM TP approximations.

4.4.2 Model

Our algorithm builds on the standard multi-task CLV architecture Eq. (4.2) and retains the likeli-
hood parameterization using a decoder DNN, dec𝝁𝜽 (𝒙, 𝒛), as this allows for expressive BML mod-
els. Under this parameterization, the log marginal likelihood for a single task reads

log𝑝𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁) = log∫∏
𝑛
𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑝 (𝒛ℓ) d𝑧ℓ ≡ log𝑍ℓ (𝜽) , (4.9)
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where 𝑍ℓ (𝜽) is the normalization constant of the TP

𝑝𝜽 (𝒛ℓ ∣ 𝒟ℓ) =
̃𝑝ℓ (𝒛ℓ)
𝑍ℓ (𝜽)

(4.10)

with

̃𝑝(𝒛ℓ) ≡∏
𝑛
𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑝 (𝒛ℓ) . (4.11)

In contrast to Eq. (4.7), we do not condition the left hand side on a context set𝒟𝑐
ℓ , which yields a

tractable integrand ̃𝑝(𝒛ℓ) that does not require further approximation. To tackle (I1), we approx-
imate 𝑝𝜽 (𝒛ℓ ∣ 𝒟ℓ) by an expressive variational GMM of the form

𝑞𝝓ℓ (𝒛ℓ) ≡ ∑
𝑘
𝑤ℓ,𝑘𝑞𝝓ℓ (𝒛ℓ ∣ 𝑘) ≡ ∑

𝑘
𝑤ℓ,𝑘𝒩(𝒛ℓ ∣ 𝝁ℓ,𝑘, 𝜮ℓ,𝑘) , (4.12)

with∑𝑘 𝑤ℓ,𝑘 = 1. Note that we train individual GMMs with parameters 𝝓ℓ ≡ {𝑤ℓ,𝑘, 𝝁ℓ,𝑘, 𝜮ℓ,𝑘},
𝑘 ∈ {1, … , 𝐾} for each task ℓ, to not impair approximation quality by introducing inaccuracies
through amortization.

4.4.3 Update Equations for the Variational Parameters

To ensure efficient and robust optimization of 𝝓ℓ (I2), we employ TRNG-VI as proposed by Arenz
et al. [Are23], with the update equations

𝜮ℓ,𝑘,new = [ 𝜂
𝜂 + 1𝜮

−1
ℓ,𝑘,old −

1
𝜂 + 1𝑹ℓ,𝑘]

−1

, (4.13a)

𝝁ℓ,𝑘,new = 𝜮ℓ,𝑘,new[
𝜂

𝜂 + 1𝜮
−1
ℓ,𝑘,old𝝁ℓ,𝑘,old +

1
𝜂 + 1(𝒓ℓ,𝑘 − 𝑹ℓ,𝑘𝝁ℓ,𝑘,old)], (4.13b)

𝑤ℓ,𝑘,new ∝ exp 𝜌ℓ,𝑘, (4.13c)

where 𝑹ℓ,𝑘 , 𝒓ℓ,𝑘 , and 𝜌ℓ,𝑘 are defined as expectations that can be approximated from per-
component samples using MC and require at most first-order gradients of ̃𝑝 (𝒛ℓ), which are
readily available using standard automatic differentiation software [Mar15, Pas19]. Due to space
constraints, we move details to App. B.1.1. The optimal value for the trust region parameter 𝜂 ≥ 0
is defined by a scalar convex optimization problem that can be solved efficiently by a bracketing
search, which also ensures positive definiteness of the new covariance matrix 𝜮ℓ,𝑘,new.
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4.4.4 Updates for the Model Parameters

To optimize the model parameters 𝜽, we decompose the log marginal likelihood log𝑍ℓ (𝜽) ac-
cording to Eq. (4.1) as

log𝑍ℓ (𝜽) = 𝔼𝑞𝝓ℓ (𝒛ℓ) [∑
𝑛

log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) + log 𝑝 (𝒛ℓ)
𝑞𝝓ℓ (𝒛ℓ)

] + KL [𝑞𝝓ℓ (⋅) || 𝑝𝜽 (⋅ ∣ 𝒟ℓ)] ,

(4.14)

where the first term on the right hand side is the ELBO w.r.t. log𝑍ℓ (𝜽), which we denote by
ℒ (𝜽). We expectℒ (𝜽) to be comparably tight, as our inference scheme allows accurate GMM TP
approximations 𝑞𝝓ℓ , s.t., the KL term will be small. Consequently, maximization of 𝑍ℓ (𝜽) w.r.t. 𝜽
can be performed efficiently by maximization of ℒ (𝜽) (I3), cf. also App. B.1.4.1. As is standard,
we use the Adam optimizer [Kin15] to perform updates in 𝜽, with MC gradient estimates from
samples 𝒛ℓ,𝑠 ∼ 𝑞𝝓ℓ (𝒛ℓ):

∇𝜽ℒ (𝜽) ∝ ∑
𝑠,𝑛

∇𝜽 log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ,𝑠) . (4.15)

4.4.5 Meta-Training

The goal of any BML algorithm is to compute accurate predictions with well-calibrated uncer-
tainty estimates according to Eq. (4.7), based on samples from the approximate TP 𝑞𝝓∗ (𝒛∗) ≈
𝑝𝜽 (𝒛 ∣ 𝒟𝑐

∗), conditioned on a context set 𝒟𝑐
∗ from a target task. During a meta-training stage on

meta-data𝒟1∶𝐿, we aim to encode inductive biases in the model parameters 𝜽, s.t. small (few-shot)
context sets𝒟𝑐

∗ suffice for accurate predictions. To find versatile solutions that work for variable
context set sizes, it is necessary to emulate this during meta-training by evaluating gradients for
𝜽 on samples 𝒛ℓ,𝑠 from approximate TPs informed by a range of context set sizes. Standard NPs
achieve this by sampling a minibatch of auxiliary subtasks, with a random number of datapoints,
from𝒟1∶𝐿 for each step in the parameters 𝜱 (cf. Sec. B.3.2). Our algorithm uses a similar approach:
starting from a fixed set of randomly initialized variational GMMs 𝝓ℓ , and a randomly initialized
model 𝜽, we iterate through the meta-data in minibatches of auxiliary subtasks, and perform one
update step in 𝝓ℓ for all subtasks in the minibatch, according to Eqs. (4.13), followed by one gra-
dient step in 𝜽. Thus, variational and model parameters evolve jointly in a similar fashion as
for standard NP, resulting in a meta-training stage with comparable computational complexity,
cf. App. B.5.6. As this approach retains a fixed set of variational GMMs over the whole course
of meta-training (one for each auxiliary subtask), we accordingly sample a fixed set of auxiliary
subtasks at the beginning of meta-training. We summarize our algorithm in App. B.1, Alg. 1.
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4.4.6 Predictions

As our architecture does not amortize inference over tasks and, thus, does not learn a set encoder
architecture, the variational GMMs learned during meta-training are not required for predictions
on test tasks and can be discarded. To make predictions, we fix the model parameters 𝜽 and fit
a new variational GMM 𝑞𝝓∗ to 𝒟𝑐

∗ by iterating Eqs. (4.13) until convergence. Afterwards, we can
cheaply generate arbitrarily many samples 𝒛∗,𝑠 ∼ 𝑞𝝓∗ (𝒛∗), and generate corresponding function
samples, evaluated at arbitrary input locations 𝒙∗, by a single forward pass through the decoder
DNN to approximate the predictive distribution according to Eq. (4.7), cf. App. B.1, Alg. 2.

4.5 Empirical Evaluation

Our empirical evaluation aims to study the effect on the predictive performance of (i) our im-
proved TRNG-VI approach as well as of (ii) expressive variational GMM TP approximations in
NP-based BML, in (iii) comparison to the state-of-the-art on (iv) a range of practically relevant
meta-learning tasks. To this end, we evaluate our GMM-NP architecture on a diverse set of BML
experiments, and present comparisons to state-of-the-art BML algorithms, namely the original
NP with mean context aggregation (MA-NP) [Gar18c], the NP with Bayesian context aggregation
(BA-NP) [Vol21], the Attentive NP (ANP) [Kim19], as well as the Bootstrapping (Attentive) NP
(B(A)NP) [Lee20]. Tab. B.1 in App. B.2 gives an overview of the architectural differences of these
algorithms. We move details on data generation to App. B.4, and on the baseline implementations
to App. B.2. For a fair comparison, we employ a fixed experimental protocol for all datasets and
models: we first perform a Bayesian hyperparameter search (HPO) to determine optimal algo-
rithm settings, individually for each model-dataset combination. We then retrain the best model
with 8 different random seeds and report the median log marginal predictive likelihood (LMLHD)
as well as the median mean squared error (MSE), both in dependence of the context set size. To
foster reproducibility, we provide further details on our experimental protocol in App. B.3, the
resulting hyperparameters and architecture sizes in App. B.5.7, and publish our source code.¹
Lastly, we include a detailed discussion of limitations and computational resources in App. B.5.6.

4.5.1 Synthetic Datasets

We first study two synthetic function classes [Fin17, Fin18] on which predictions can be easily
visualized: (i) sinusoidal functions with varying amplitudes and phases, as well as (ii) a mix of
these sinusoidal functions with affine functions with varying slopes and intercepts. Fig. 4.3 shows
that our GMM-NP outperforms all baselines by a large margin over the whole range of context
sizes, both in terms of LMLHD and MSE.

¹ https://github.com/ALRhub/gmm_np
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Figure 4.3: Panels (a), (b): LMLHD and MSE on two synthetic function classes. Panels (c) – (f): function samples of
models trained on the affine-sinusoidal class (b), given one context example (red) from a sinusoidal instance
(black). GMM-NP outperforms the baselines, as it accurately quantifies epistemic uncertainty through diverse
samples. BA-NP also shows variability in its samples, but does not achieve competitive performance due to
its inaccurate TP approximation. ANP and BANP produce essentially deterministic predictions that fail to
give reasonable estimates of the predictive distribution. Cf. also Figs. B.5, B.6 in App. B.5.4.

This indicates that GMM-NP’s improved TP approximation indeed yields improved epistemic
uncertainty estimation (higher LMLHD). Interestingly, GMM-NP also shows improved accuracy
(lower MSE) and, notably, achieves this without any additional architectural modifications
like parallel deterministic paths with attention modules. This is particularly pleasing, as the
results show that such deterministic paths indeed improve accuracy, but degrade epistemic
uncertainty estimation massively: (B)ANP performs worst in terms of LMLHD. This is further
substantiated by (i) observing that MA-NP and BA-NP, both of which don’t employ deterministic
paths, are among the best baselines w.r.t. LMLHD, and (ii) by visualizing model predictions
(Figs. 4.3, B.5, B.6), demonstrating that (B)ANP compute essentially deterministic function sam-
ples that fail to correctly estimate the predictive distribution, while our GMM-NP estimates
uncertainty well through variable samples. BNP does not achieve competitive performance,
presumably because the bootstrapping approach does not work well for small context sets.

4.5.2 Ablation: Task Posterior Inference

We now demonstrate that GMM-NP’s improved performance can indeed be explained by the
improved TRNG-VI algorithm with accurate GMM TP approximation. To this end, we compare:
(i) BA-NP, i.e., amortized VI with reparameterized gradients and unimodal, factorized Gaussian
TP (SGD-VI, diag, 𝐾 = 1), (ii) our GMM-NP, i.e., non-amortized TRNG-VI and full-covariance
GMM TP (TRNG-VI, full, 𝐾 > 1), as well as two models employing TRNG-VI, but a unimodal
Gaussian TP with (iii) full, and (iv) diagonal covariance. The results are shown in Fig. 4.4.
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Figure 4.4: LMLHD and ELBO looseness over context set size for different versions of our algorithm (blue). Our im-
proved TRNG-VI inference scheme yields tighter ELBOs than standard SGD-VI (orange) and, thus, improved
performance (cf. text and App. B.1.4.1 for details).

In addition, we compare (v) an architecturewith full-covarianceGMMTP, but trainedwith iBayes-
GMM [Lin20], i.e., with direct step size control instead of trust regions (Fig. B.1, App. B.5.1).

4.5.2.1 VI Algorithm

Considering the LMLHD metric, we observe a significant performance boost when keeping the
traditional factorized Gaussian approximation, but switching from SGD-VI to TRNG-VI, indicat-
ing that the standard SGD-VI approach is indeed suboptimal for BML. To study this further, we
estimate the looseness of the ELBO (cf. App. B.3.3), i.e., the median (over tasks) value of the KL di-
vergence KL [𝑞𝝓ℓ (⋅) || 𝑝𝜽 (⋅ ∣ 𝒟ℓ)] between the true and approximate TPs. We observe that TRNG-
VI provides ELBOs that are tighter by at least one order of magnitude in comparison to SGD-VI.
As discussed above, this allows for more efficient optimization of the model parameters 𝜽, ex-
plaining the performance gain. Lastly, we find that trust regions yield tighter ELBOs than direct
step size control and, consequently, improve predictive performance, cf. Fig. B.1, App. B.5.1

4.5.2.2 Posterior Expressivity

We now study the effect of increasing the expressiveness of the TP approximation. This discus-
sion is supplemented by Fig. 4.5, where we visualize the TP and its approximation for a 𝑑𝑧 = 2
dimensional latent space. First, we observe tighter ELBOs and improved performance when con-
sidering full-covariance (but still unimodal) Gaussian TP approximations, and this effect is par-
ticularly pronounced for small context sets. This is intuitive, as small context sizes leave a lot
of task ambiguity, leading to highly correlated latent dimensions (Fig. 4.5). If we now switch
to multimodal TP approximations, i.e., our full GMM-NP architecture with 𝐾 > 1 components
(𝐾 optimized by HPO), we observe a further increase in performance, as the multimodality of
the true TP can be captured more accurately (Figs. 4.5,B.7). This effect is especially pronounced
for the affine-sinusoidal mix, but also present for the purely sinusoidal function class. As more
complex function classes exhibit stronger task ambiguity, the TP will likely exhibit multimodal,
correlated structure over wider ranges of context sizes, s.t. an accurate TP approximation will be
even more important.
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Figure 4.5: Visualization of our GMM-NP model for a 𝑑𝑧 = 2 dimensional latent space, trained on a meta-dataset of
sinusoidal functions with varying amplitudes and phases, after having observed a single context example (red
cross, right panel) from an unseen task (black dots, right panel). Left panel: unnormalized task posterior (TP)
distribution (contours) and GMMTP approximation with𝐾 = 3 components (ellipses, mixture weights in%).
Right panel: corresponding function samples from our model (blue lines). A single context example leaves
much task ambiguity, reflected in a highly correlated, multi-modal TP. Our GMM approximation correctly
captures this: predictions are in accordance with (i) the observed data (all samples pass close to the red context
example), and with (ii) the learned inductive biases (all samples are sinusoidal), cf. also Fig. B.7 in App. B.5.5

4.5.3 Bayesian Optimization

One important application area for probabilistic regression models is as the surrogate model of
Bayesian optimization (BO), a global black-box optimization algorithm well-known for its sam-
pling efficiency [Sha16]. BO serves as an interesting experiment to benchmark Bayesian models,
as it relies on well-calibrated uncertainty estimates in order to trade-off exploration against ex-
ploitation, which is crucial for efficient optimization. As proposed by Garnelo et al. [Gar18c],
we use Thompson sampling [Rus18a] as the BO acquisition function and present results on four
function classes: (i) 1D functions sampled from Gaussian process (GP) priors with RBF kernels
with varying lengthscales and signal variances [Kim19], and (ii) three function classes [Vol20] ob-
tained by randomly translating and scaling the global optimization benchmark functions Forrester
(1D) [For08], Branin (2D) [Pic13], and Hartmann-3 (3D) [Sze78]. In Figs. 4.6a, 4.6b, B.2, we re-
port the median simple regret, i.e., the difference of the current incumbent value to the function’s
minimum, over BO iteration. We observe that our GMM-NP model represents a more powerful
BO surrogate compared to the baselines, providing further evidence that TRNG-VI with GMM
TP approximations yields superior epistemic uncertainty estimates. Due to space constraints, we
move the results for RBF-GP and 1D Forrester, as well as for the LMLHD and MSE metrics to
App. B.5.2, Figs. B.2, B.3.
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Figure 4.6: Panels (a), (b): simple regret over iteration, when using BMLmodels as Bayesian optimization (BO) surrogates
(further results in App. B.5.2). As BO relies onwell-calibrated uncertainty predictions, the results demonstrate
that GMM-NP provides superior uncertainty estimates. Panel (c): log marginal likelihood (LMLHD) and MSE
on one-step ahead predictions of 4D Furuta pendulum dynamics. While GMM-NP generally performs best,
BANP also shows strong results.

4.5.4 Dynamics Modeling

We further investigate a challenging dynamics modeling problem on a function class obtained
by simulating a Furuta pendulum [Fur92], a highly non-linear 4D dynamical system, as pro-
posed by Volpp et al. [Vol21]. The task is to predict the difference of the next system state
𝒙next ∈ ℝ4 to the current system state 𝒙 ∈ ℝ4, i.e., we study one-step ahead dynamics pre-
dictions 𝒙 → 𝒚 = Δ𝒙 ≡ 𝒙next − 𝒙 ∈ ℝ4. The function class is generated by simulating 𝐿 = 64
episodes of𝑁 = 64 time steps each (Δ𝑡 = 0.1 s), where for each episode we randomly sample the
7 physical parameters of the pendulum (3 lengths, 2 masses, 2 friction coefficients). The results
(Fig. 4.6c) show that GMM-NP outperforms the baselines in terms of LMLHD by a large margin,
demonstrating its applicability to complex dynamics prediction tasks where reliable uncertainty
estimates are required, e.g., in robotics applications [Dei11a]. Interestingly, while neither ANP
nor BNP can reliably solve this task, BANP performs strongly, reaching GMM-NPs asymptotic
performance in terms of LMLHD and yielding even slightly better MSE for small context sets.

4.5.5 Image Completion

To show that our architecture scales to large meta-datasets, we provide results on a 2D image
completion experiment on the MNIST database of handwritten digits [LeC10], as proposed by
Garnelo et al. [Gar18c]. The task is to predict pixel intensities 𝑦 ∈ ℝ at 2D pixel locations 𝒙 ∈ ℝ2,
given a set of context pixels. To obtain a realistic regression task, we add Gaussian noise to each
context pixel. The meta-dataset consists of 𝐿 = 60000 images with 𝑁 = 784 pixels each. The
results (Fig. 4.7) are consistent with our previous findings: GMM-NP yields markedly improved
performance, outperforming the baselines over the whole range of context sizes.
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Figure 4.7: Results on 2D image completion on MNIST. Panels (b), (c) visualize predictions on an unseen task showing
the digit “6”. The first row shows the context pixels, the remaining rows show five corresponding samples.
The results are consistent with earlier observations (e.g., Fig. 4.3): our GMM-NP model shows highly variable
samples for small context sets, yielding an accurate estimate of epistemic uncertainty, and contracts properly
around the ground truth when more context information is available. ANP yields crisp predictions but mas-
sively overfits to the noise, explaining bad LMLHD and MSE scores. We provide further results in App. B.5.3,
Fig. B.4.

The architectures with deterministic paths ((B)ANP) fail at properly estimating epistemic uncer-
tainties, leading to low LMLHD values, i.p., for large context sizes. Figs. 4.7b, 4.7c, and B.4 explain
why this is the case: GMM-NP (and also, to some extent, BA-NP) generate meaningful images of
high variability, corresponding to well-calibrated uncertainty estimates. In contrast, (B)ANP pro-
duce essentially deterministic samples that overfit the noise in the context data. While these
samples might appear less blurry than those of GMM-NP and BA-NP, they represent inferior
solutions of the regression problem.

4.6 Conclusion and Outlook

We proposed GMM-NP, a novel BML algorithm inspired by the NP model architecture. Our ap-
proach focuses on accurate task posterior inference, a central algorithmic building block that
until now has been treated by amortized inference with set encoders optimized using standard,
reparameterized gradients. We demonstrate that this approach leads to suboptimal task poste-
rior approximations and, thus, inefficient optimization of model parameters. We apply modern
TRNG-VI techniques that enable expressive variational GMMs, which yields tight ELBOs, effi-
cient optimization, and markedly improved predictive performance in terms of both epistemic
uncertainty estimation and accuracy. Despite its simplicity, GMM-NP outperforms the state-of-
the-art on a range of experiments and demonstrates its applicability in practical settings, i.p.,
when meta and context data is scarce. This demonstrates that complex architectural extensions,
like Bayesian set encoders or deterministic, attentive computation paths are not required – in fact,
we observe that deterministic modules degrade epistemic uncertainty estimation. Therefore, we
hope that our work inspires further research on accurate task posterior inference as this turns
out to suffice for accurate BML.
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5 Meta-Learning Acquisition Functions for
Bayesian Optimization

In Secs. 3 and 4, we developed improved task posterior inference schemes for NP-based BML
models and showed that these methods yield powerful surrogate models for multitask Bayes-
ian optimization (BO) (Sec. 4.5.3). Recall from Sec. 2.1.7 that in addition to the Bayesian surrogate
model, BO requires the specification of an optimization strategy based on the probabilistic predic-
tions of the surrogate model in the form of an acquisition function (AF).This raises the interesting
question of whether meta-learning optimization could also be performed at the AF level instead
of the surrogate model level.

Figure 5.1: Visualization of our MetaBO algorithm for meta-learning BO. We keep the standard BO loop (Fig. 2.2)
and only replace the AF (green) with a NN operating on the predictions of a GP surrogate model (blue)
that fits the optimization history ℋ𝑡 (red) and computes Bayesian predictions 𝜇 (𝒙) ≡ 𝔼𝑝(𝒚𝑡 ∣𝒙,ℋ𝑡) [𝒚𝑡] and
𝜎2 (𝒙) ≡ 𝕍𝑝(𝒚𝑡 ∣𝒙,ℋ𝑡) [𝒚𝑡]. We train the neural AF 𝛼𝜽 (𝒙) to maximize optimization performance on a meta-
dataset of similar optimization problems. In this way, we inject inductive biases towards this class of problems
into the optimization algorithm, which allows unseen problem instances to be solved in a data-efficient way.

In this chapter, we explore this idea and develop MetaBO, a novel algorithm for multitask BO
that injects learned inductive biases towards a meta-dataset of similar optimization tasks into the
AF (Fig. 5.1). This AF is parameterized by a NN that operates on the predictions of a standard
single-task surrogate model, such as a Gaussian process (GP). Therefore, it can serve as a plug-
in replacement for standard AFs in any BO framework. While the NP-based BML algorithms
studied previously are optimized for predictive performance, MetaBO optimizes its neural AF
directly for optimization performance using reinforcement learning (RL) [Sut18]. This results in
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a bi-level optimization scheme, where the RL algorithm is the outer learner and the neural AF
is the base learner, so that MetaBO can be regarded as an instance of optimization-based meta-
learning (Sec. 2.2.5). We demonstrate that the resulting algorithm yields strong performance on
a number of challenging meta-optimization tasks.

The remainder of this chapter has been published as [Vol20] Volpp, Michael; Fröhlich, Lukas P.; Fis-
cher, Kirsten; Doerr, Andreas; Falkner, Stefan; Hutter, Frank, and Daniel, Christian: “Meta-Learning
Acquisition Functions for Transfer Learning in Bayesian Optimization”. In: International Confer-
ence on Learning Representations (2020). Reprinted with permission from the authors.

5.1 Introduction

Global optimization of black-box functions is highly relevant for a wide range of real-world tasks.
Examples include the tuning of hyperparameters in machine learning, the identification of con-
trol parameters, or the optimization of system designs. Such applications oftentimes require the
optimization of relatively low-dimensional (≲ 10𝐷) functions where each function evaluation is
expensive in either time or cost. Furthermore, there is typically no gradient information available.

In this context of data-efficient global black-box optimization, Bayesian optimization (BO) has
emerged as a powerful solution [Moc75, Bro10, Sno12, Sha16]. BO’s data efficiency originates
from a probabilistic surrogate model which is used to generalize over information from individ-
ual data points. This model is typically given by a Gaussian process (GP), whose well-calibrated
uncertainty prediction allows for an informed exploration-exploitation trade-off during optimiza-
tion. The exact manner of performing this trade-off, however, is left to be encoded in an acquisi-
tion function (AF). There is a wide range of AFs available in the literature which are designed to
yield universal optimization strategies and therefore come with minimal assumptions about the
class of target objective functions.

To achieve optimal data-efficiency on new instances of previously seen tasks, however, it is crucial
to incorporate the information obtained from these tasks into the optimization. Therefore, trans-
fer learning is an important and active field of research. Indeed, in many practical applications,
optimizations are repeated numerous times in similar settings, underlining the need for special-
ized optimizers. Examples include hyperparameter optimization which is repeatedly done for the
same machine learning model on varying datasets or the optimization of control parameters for
a given system with varying physical configurations.

Following recent approaches [Swe13, Feu18, Wis18], we argue that it is beneficial to perform
transfer learning for global black-box optimization in the framework of BO to retain the proven
generalization capabilities of its underlying GP surrogate model. To not restrict the expressivity
of this model, we propose to implicitly encode the task structure in a specialized AF, i.e., in the
optimization strategy. We realize this encoding via a novel method which meta-learns a neural

76



5.2 Related Work

AF, i.e., a neural network representing the AF, on a set of source tasks. The meta-training is per-
formed using reinforcement learning, making the proposed approach applicable to the standard
BO setting, where we do not assume access to objective function gradients.

Our contributions are (1) a novel transfer learning method allowing the incorporation of im-
plicit structural knowledge about a class of objective functions into the framework of BO through
learned neural AFs to increase data-efficiency on new task instances, (2) an automatic and prac-
tical meta-learning procedure for training such neural AFs which is fully compatible with the
black-box optimization setting, i.e, not requiring objective function gradients, and (3) the demon-
stration of the efficiency and practical applicability of our approach on a challenging simulation-
to-real control task, on two hyperparameter optimization problems, as well as on a set of syn-
thetic functions.

5.2 Related Work

The general idea of improving the performance or convergence speed of a learning system on a
given set of tasks through experience on similar tasks is known as learning to learn, meta-learning
or transfer learning and has attracted a large amount of interest in the past while remaining an
active field of research [Sch87, Hoc01, Thr98, Lak16].

In the context of meta-learning optimization, a large body of literature revolves around learning
local optimization strategies. One line of work focuses on learning improved optimizers for the
training of neural networks, e.g., by directly learning update rules [Ben91, Run00] or by learning
controllers for selecting appropriate step sizes for gradient descent [Dan16]. Another direction
of research considers the more general setting of replacing the gradient descent update step by
neural networks which are trained using either reinforcement learning [Li16, Li17a] or in a su-
pervised fashion [And16, Met19]. Finn et al. [Fin17], Nichol et al. [Nic18], and Flennerhag et al.
[Fle19] propose approaches for initializing machine learning models through meta-learning to be
able to solve new learning tasks with few gradient steps.

We are currently aware of only one work tackling the problem of meta-learning global black-box
optimization [Che17]. In contrast to our proposed method, the authors assume access to gradient
information and choose a supervised learning approach, representing the optimizer as a recurrent
neural network operating on the raw input vectors. Based on statistics of the optimization history
accumulated in its memory state, this network directly outputs the next query point. In contrast,
we consider transfer learning applications where gradients are typically not available.

A number of articles address the problem of increasing BO’s data-efficiency via transfer learn-
ing, i.e., by incorporating information obtained from similar optimizations on source tasks into
the current target task. A range of methods accumulate all available source and target data in
a single GP and make the data comparable via a ranking algorithm [Bar13], standardization or
multi-kernel GPs [Yog14], multi-task GPs [Swe13], the GP noise model [The16], or by regressing
on prediction biases [Shi17]. These approaches naturally suffer from the cubic scaling behaviour
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of GPs, which can be tackled for instance by replacing the GP model, e.g., with Bayesian neural
networks with task-specific embedding vectors [Spr16] or with adaptive Bayesian linear regres-
sion with basis functions shared across tasks via a neural network [Per18]. Recently, Garnelo et
al. [Gar18c] proposed Neural Processes as another interesting alternative for GPs with improved
scaling behavior. Other approaches retain the GP surrogate model and combine individual GPs
for source and target tasks in an ensemble model with the weights adjusted according to the GP
uncertainties [Sch16a], dataset similarities [Wis16], or estimates of the GP generalization per-
formance on the target task [Feu18]. Similarly, Golovin et al. [Gol17] form a stack of GPs by
iteratively regressing onto the residuals w.r.t. the most recent source task. In contrast to our pro-
posedmethod, many of these approaches rely on hand-engineered dataset features to measure the
relevance of source data for the target task. Such features have also been used to pick promising
initial configurations for BO [Feu15a, Feu15b].

The method being closest in spirit and capability to our approach is proposed by Wistuba et al.
[Wis18]. It is similar to the aforementioned ensemble techniques with the important difference
that the source and target GPs are not combined via a surrogate model but via a new AF, the so-
called transfer acquisition function (TAF). This AF is defined to be aweighted superposition of the
predicted improvements according to the source GPs and the expected improvement according
to the target GP. Viewed in this context, our method also combines knowledge from source and
target tasks in a new AF which we represent as a neural network. Our weighting of source and
target data is implicitly determined in ameta-learning phase and is automatically regulated during
the optimization on the target task to adapt online to the specific objective function at hand.
Furthermore, our method does not store and evaluate many source GPs because the knowledge
from the source datasets is encoded directly in the network weights of the learned AF. This
allows our method to incorporate large amounts of source data while the applicability of TAF is
restricted to a comparably small number of source tasks.

5.3 Preliminaries

We are aiming to find a global optimum 𝑥∗ ∈ argmax𝑥∈𝒟 𝑓(𝑥) of some unknown objective
function 𝑓 ∶ 𝒟 → ℝ on the domain 𝒟 ⊂ ℝ𝐷 . The only means of acquiring information about
𝑓 is via (possibly noisy) evaluations at points in 𝒟. Therefore, at each optimization step 𝑡 ∈
{1, 2, … }, the optimizer has to decide for the iterate 𝑥𝑡 ∈ 𝒟 solely based on the optimization history
ℋ𝑡 ≡ {𝑥𝑖, 𝑦𝑖}

𝑡−1
𝑖=1 with 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖. Here, 𝜖 ∼ 𝒩(0, 𝜎2𝑛) denotes independent and identically

distributed Gaussian noise. In particular, the optimizer does not have access to gradients of 𝑓.
To assess the performance of global optimization algorithms, it is natural to use the simple regret
𝑅𝑡 ≡ 𝑓(𝑥∗) − 𝑓(𝑥+𝑡 )where 𝑥+𝑡 is the input location corresponding to the best evaluation found by
an algorithm up to and including step 𝑡. The proposed method relies on the framework of BO and
is trained using reinforcement learning. Therefore, we now shortly introduce these frameworks.
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5.3.1 Bayesian Optimization

In Bayesian optimization (BO) [Sha16], one specifies a prior belief about the objective function 𝑓
and at each step 𝑡 builds a probabilistic surrogate model conditioned on the current optimization
history ℋ𝑡 . Typically, a Gaussian process (GP) [Ras05] is employed as the surrogate model in
which case the resulting posterior belief about 𝑓(𝑥) follows a Gaussian distribution with mean
𝜇𝑡(𝑥) ≡ 𝔼 {𝑓 (𝑥) |ℋ𝑡} and variance 𝜎2𝑡 (𝑥) ≡ 𝕍 {𝑓 (𝑥) ∣ ℋ𝑡}, for which closed-form expressions
are available. To determine the next iterate 𝑥𝑡 based on the belief about 𝑓 given ℋ𝑡 , a sam-
pling strategy is defined in terms of an acquisition function (AF) 𝛼𝑡(⋅ ∣ ℋ𝑡) ∶ 𝒟 → ℝ. The
AF outputs a score value at each point in 𝒟 such that the next iterate is defined to be given
by 𝑥𝑡 ∈ argmax𝑥∈𝒟 𝛼𝑡(𝑥 ∣ ℋ𝑡). The strength of the resulting optimizer is largely based upon
carefully designing the AF to trade-off exploration of unknown versus exploitation of promising
areas in 𝒟.

There is a wide range of general-purpose AFs available in the literature. Popular choices are prob-
ability of improvement (PI) [Kus64], GP-upper confidence bound (GP-UCB) [Sri10], and expected
improvement (EI) [Moc75]. In our experiments, we will use EI as a not pre-informed baseline AF,
so we state its definition here,

EI𝑡(𝑥) ≡ 𝔼𝑓(𝑥){max [𝑓(𝑥) − 𝑓(𝑥+𝑡−1), 0] ∣ ℋ𝑡} , (5.1)

and note that it can be written in closed form if 𝑓(𝑥) follows a Gaussian distribution.

To perform transfer learning in the context of BO, Wistuba et al. [Wis18] introduced the transfer
acquisition framework (TAF) which defines a new AF as a weighted superposition of EI on the
target task and the predicted improvements on the source tasks, i.e.,

TAF𝑡(𝑥) ≡
𝑤𝑀+1EI

𝑀+1
𝑡 (𝑥) +∑𝑀

𝑗=1𝑤𝑗𝐼𝑗𝑡 (𝑥)

∑𝑀+1
𝑗=1 𝑤𝑗

, (5.2)

with the predicted improvement

𝐼𝑗𝑡 (𝑥) ≡ max (𝜇𝑗(𝑥) − 𝑦𝑗,max
𝑡−1 , 0) . (5.3)

TAF stores separate GP surrogate models for the source and target tasks, with 𝑗 ∈ {1, … ,𝑀}
indexing the source tasks and 𝑗 = 𝑀 + 1 indexing the target task. Therefore, EI𝑀+1

𝑡 denotes EI
according to the target GP surrogate model and 𝜇𝑗 denotes the mean function of the 𝑗-th source
GP model. 𝑦𝑗,max

𝑡 denotes the maximum of the mean predictions of the 𝑗-th source GP model
on the set of iterates {𝑥𝑖}

𝑡
𝑖=1. The weights 𝑤𝑗 ∈ ℝ are determined either based on the predicted

variances of the source and target GP surrogate models (TAF-ME) or, alternatively, by a pairwise
comparison of the predicted performance ranks of the iterates (TAF-R).
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5.3.2 Reinforcement Learning

Reinforcement learning (RL) allows an agent to learn goal-oriented behavior via trial-and-error
interactions with its environment [Sut18]. This interaction process is formalized as a Markov
decision process: at step 𝑡 the agent senses the environment’s state 𝑠𝑡 ∈ 𝒮 and uses a policy
𝜋 ∶ 𝒮 → 𝒫(𝒜) to determine the next action 𝑎𝑡 ∈ 𝒜. Typically, the agent explores the envi-
ronment by means of a probabilistic policy, i.e., 𝒫(𝒜) denotes the probability measures over 𝒜.
The environment’s response to 𝑎𝑡 is the next state 𝑠𝑡+1, which is drawn from a probability dis-
tribution with density 𝑝(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡). The agent’s goal is formulated in terms of a scalar reward
𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), which the agent receives together with 𝑠𝑡+1. The agent aims to maximize
the expected cumulative discounted future reward 𝜂(𝜋) when acting according to 𝜋 and starting
from some state 𝑠0 ∈ 𝒮, i.e., 𝜂(𝜋) ≡ 𝔼𝜋[∑

𝑇
𝑡=1 𝛾𝑡−1𝑟𝑡 ∣ 𝑠0]. Here, 𝑇 denotes the episode length

and 𝛾 ∈ (0, 1] is a discount factor.

5.4 MetaBO Algorithm

5.4.1 Neural Acquisition Functions

Wedevise a global black-box optimizationmethod that is able to automatically identify and exploit
structural properties of a given class of objective functions for improved data-efficiency. We stay
within the framework of BO, enabling us to exploit the powerful generalization capabilities of a
GP surrogate model. The actual optimization strategy which is informed by this GP is classically
encoded in a hand-designed AF. Instead, we meta-train on a set of source tasks to replace this
AF by a neural network but retain all other elements of the proven BO-loop (middle panel of
Fig. 5.2). To distinguish the learned AF from a classical AF 𝛼𝑡 , we call such a network a neural
acquisition function and denote it by 𝛼𝑡,𝜃 , indicating that it is parameterized by a vector 𝜃. We
dub the resulting algorithm MetaBO.

Let ℱ be the class of objective functions for which we aim to learn a neural acquisition function
𝛼𝑡,𝜃 . For instance, ℱ may be the set of objective functions resulting from different physical con-
figurations of a laboratory experiment or from evaluating the loss function of a machine learning
model on different data sets. Often, such objective functions share structure which we aim to
exploit for data-efficient optimization on further instances from the same function class. In many
relevant cases, it is straightforward to obtain approximations toℱ, i.e., a set of functionsℱ′ which
capture relevant properties of ℱ but are much cheaper to evaluate (e.g., by using numerical sim-
ulations or results from previous hyperparameter optimization tasks [Wis18]). During an offline
meta-training phase, MetaBO makes use of such cheap approximations to identify the implicit
structure of ℱ and to adapt 𝜃 to obtain a data-efficient optimization strategy customized to ℱ.
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MetaBO Training Loop Neural AF in the BO loop Policy architecture 

Figure 5.2: Different levels of the MetaBO framework. Left panel: structure of the training loop for meta-learning neural
AFs using RL (PPO). Middle panel: the classical BO loop with a neural AF 𝛼𝑡,𝜃. At test time, there is no
difference to classical BO, i.e.,𝑥𝑡 is given by the argmax of theAF output. During training, the AF corresponds
to the RL policy evaluated on an adaptive set 𝜉𝑡 ⊂ 𝒟. The outputs are interpreted as logits of a categorical
distribution from which the actions 𝑎𝑡 = 𝑥𝑡 ∈ 𝜉𝑡 are sampled. This sampling procedure is detailed in the
right panel. We indicate by the dotted curve and tiny two-headed arrows that 𝛼𝑡,𝜃 is a function defined
on the whole domain 𝒟 which can be evaluated at arbitrary points 𝜉𝑡,𝑛 to form the categorical distribution
representing the policy 𝜋𝜃.

Typically, the minimal set of inputs to AFs in BO is given by the pointwise GP posterior prediction
𝜇𝑡(𝑥) and 𝜎𝑡(𝑥). To perform transfer learning, the AF has to be able to identify relevant structure
shared by the objective functions in ℱ. In our setting, this is achieved via extending this basic
set of inputs by additional features which enable the neural AF to evaluate sample locations.
Therefore, in addition to the mean 𝜇𝑡(𝑥) and variance 𝜎𝑡(𝑥) at potential sample locations, the
neural AF also receives the input location 𝑥 itself. Furthermore, we add to the set of input features
the current optimization step 𝑡 and the optimization budget 𝑇, as these features can be valuable
for adjusting the exploration-exploitation trade-off [Sri10]. Therefore, we define

𝛼𝑡,𝜃(𝑥) ≡ 𝛼𝑡,𝜃[𝜇𝑡(𝑥) , 𝜎𝑡(𝑥) , 𝑥, 𝑡, 𝑇] . (5.4)

This architecture allows learning a scalable neural AF, as we still base our architecture only on the
pointwise GP posterior prediction. Furthermore, neural AFs of this form can be used as a plug-in
feature in any state-of-the-art BO framework. In particular, if differentiable activation functions
are chosen, a neural AF constitutes a differentiable mapping𝒟 → ℝ and standard gradient-based
optimization strategies can be used to find its maximum in the BO loop during evaluation. We
further emphasize that after the training phase the resulting neural AF is fully defined, i.e., there
is no need to calibrate any AF-related hyperparameters.

5.4.2 Training Procedure

In the general BO setting, gradients of ℱ are assumed to be unavailable. This is oftentimes also
true for the functions in ℱ′, for instance, when ℱ′ comprises numerical simulations or results
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from previous optimization runs. Therefore, we resort to RL as the meta-algorithm, as it does not
require gradients of the objective functions. Specifically, we use the Proximal Policy Optimization
(PPO) algorithm as proposed in Schulman et al. [Sch17]. Tab. 5.1 translates the MetaBO-setting
into RL parlance.

Table 5.1: The MetaBO setting in the RL framework.

RL MetaBO
Policy 𝜋𝜃 Neural AF 𝛼𝑡,𝜃
Episode Optimization run on 𝑓 ∈ ℱ′

Episode length 𝑇 Optimization budget 𝑇
State 𝑠𝑡 [𝜇𝑡(𝜉𝑡,𝑛) , 𝜎𝑡(𝜉𝑡,𝑛) , 𝜉𝑡,𝑛, 𝑡, 𝑇]

𝑁

𝑛=1
Action 𝑎𝑡 Sampling point 𝑥𝑡 ∈ 𝜉𝑡
Reward 𝑟𝑡 Negative simple regret −𝑅𝑡
Transition 𝑝( 𝑠𝑡+1| 𝑠𝑡, 𝑎𝑡) Noisy evaluation of 𝑓, GP update

We aim to shape the mapping 𝛼𝑡,𝜃(𝑥) during meta-training in such a way that its maximum lo-
cation corresponds to a promising sampling location 𝑥 for optimization. The meta-algorithm
PPO explores its state space using a parameterized stochastic policy 𝜋𝜃 from which the actions
𝑎𝑡 = 𝑥𝑡 are sampled depending on the current state 𝑠𝑡 , i.e., 𝑎𝑡 ∼ 𝜋𝜃 ( ⋅ | 𝑠𝑡). As the meta-algorithm
requires access to the global information contained in the GP posterior prediction, the state 𝑠𝑡 at
optimization step 𝑡 formally corresponds to the functions 𝜇𝑡 and 𝜎𝑡 (together with the aforemen-
tioned additional input features to the neural AF). To connect the neural AF 𝛼𝑡,𝜃 with the policy
𝜋𝜃 and to arrive at a practical implementation, we evaluate 𝜇𝑡 and 𝜎𝑡 on a discrete set of points
𝜉𝑡 ≡ {𝜉𝑡,𝑛}

𝑁

𝑛=1
⊂ 𝒟 and feed these evaluations through the neural AF 𝛼𝑡,𝜃 one at a time, yield-

ing one scalar output value 𝛼𝑡,𝜃(𝜉𝑡,𝑛) = 𝛼𝑡,𝜃[𝜇𝑡(𝜉𝑡,𝑛) , 𝜎𝑡(𝜉𝑡,𝑛) , 𝜉𝑡,𝑛, 𝑡, 𝑇] for each point 𝜉𝑡,𝑛.
These outputs are interpreted as the logits of a categorical distribution, i.e., we arrive at the policy
architecture

𝜋𝜃 ( ⋅ | 𝑠𝑡) ≡ Cat [𝛼𝑡,𝜃(𝜉𝑡,1) , … , 𝛼𝑡,𝜃(𝜉𝑡,𝑁)] , (5.5)

cf. Fig. 5.2, right panel. Therefore, the proposed policy evaluates the same neural acquisition
function 𝛼𝑡,𝜃 at arbitrarily many input locations 𝜉𝑡,𝑛 and preferably samples actions 𝑥𝑡 ∈ 𝜉𝑡 with
high 𝛼𝑡,𝜃(𝑥𝑡). This incentivizes the meta-algorithm to adjust 𝜃 such that promising locations 𝜉𝑡,𝑛
are attributed high values of 𝛼𝑡,𝜃(𝜉𝑡,𝑛).

Calculating a sufficiently fine static set 𝜉 of evaluation points is challenging for higher dimen-
sional settings. Instead, we build on the approach proposed by Snoek et al. [Sno12] and contin-
uously adapt 𝜉 = 𝜉𝑡 to the current state of 𝛼𝑡,𝜃 . At each step 𝑡, 𝛼𝑡,𝜃 is first evaluated on a static
and relatively coarse Sobol grid [Sob67] 𝜉global spanning the whole domain𝒟. Subsequently, local
maximizations of 𝛼𝑡,𝜃 are started from the 𝑘 points corresponding to the best evaluations. We
denote the resulting set of local maxima by 𝜉local,𝑡 . Finally, we define 𝜉𝑡 ≡ 𝜉local,𝑡 ∪ 𝜉global. The
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adaptive local part of this set enables the RL agent to exploit what it has learned so far by pick-
ing points which look promising according to the current neural AF while the static global part
maintains exploration. We refer the reader to App. C.2.1 for details.

The final characteristics of the neural AF are controlled through the choice of reward function.
For the presented experiments we emphasized fast convergence to the optimum by using the
negative simple regret as the reward signal, i.e., we set 𝑟𝑡 ≡ −𝑅𝑡 .¹ This choice does not penalize
explorative evaluations which do not yield an immediate improvement and additionally serves as
a normalization of the functions 𝑓 ∈ ℱ′. We emphasize that the knowledge of the true maximum
is only required during training and that cases in which it is not known at training time do not
limit the applicability of our method, as a cheap approximation (e.g., by evaluating the function
on a coarse grid) can also be utilized.

The left panel of Fig. 5.2 depicts the resulting training loop graphically. The outer loop corre-
sponds to the RL meta-training iterations, each performing a policy update step 𝜋𝜃i → 𝜋𝜃𝑖+1 . To
approximate the gradients of the PPO loss function, we record a batch of episodes in the inner
loop, i.e., a set of (𝑠𝑡, 𝑎𝑡, 𝑟𝑡)-tuples, by rolling out the current policy 𝜋𝜃i . At the beginning of each
episode, we draw some function 𝑓 from the training set ℱ′ and fix an optimization budget 𝑇. In
each iteration of the inner loop we determine the adaptive set 𝜉𝑡 and feed the state 𝑠𝑡 through the
policy which yields the action 𝑎𝑡 = 𝑥𝑡 . We then evaluate 𝑓 at 𝑥𝑡 and use the result to compute
the reward 𝑟𝑡 and to update the optimization history: ℋ𝑡 → ℋ𝑡+1 = ℋ𝑡 ∪ {𝑥𝑡, 𝑦𝑡}. Finally, the
GP is conditioned on the updated optimization historyℋ𝑡+1 to obtain the next state 𝑠𝑡+1.

5.5 Empirical Evaluation

We trained MetaBO on a wide range of function classes and compared the performance of the
resulting neural AFs with the general-purpose AF expected improvement (EI)² as well as the
transfer acquisition function framework (TAF) which proved to be the current state-of-the-art
solution for transfer learning in BO in an extensive experimental study [Wis18]. We tested both
the ranking-based version (TAF-R) and the mixture-of-experts version (TAF-ME). We refer the
reader to App. C.1 for a more detailed experimental investigation of MetaBO’s performance.

If not stated differently, we report performance in terms of the median simple regret 𝑅𝑡 over 100
optimization runs on unseen test functions as a function of the optimization step 𝑡 together with
30%/70% percentiles (shaded areas). We emphasize that all experiments use the same MetaBO
hyperparameters, making our method easily applicable in practice. Furthermore, MetaBO does
not increase evaluation time considerably compared to standard AFs, cf. App. C.1.2, Tab. C.2. In
addition, even the most expensive of our experiments (the simulation-to-real task, due to the

¹ Alternatively, a logarithmically-transformed version of this reward signal, 𝑟𝑡 ≡ − log10𝑅𝑡, can be used in situations
where high-accuracy solutions shall be rewarded.

² We also evaluated probability of improvement (PI) as well as GP-upper confidence bound (GP-UCB) but do not present
the results here to avoid clutter, as EI performed better in all our experiments.
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simulation in the BO loop) required not more than 10h of training time on a moderately complex
architecture (10 CPU workers, 1 GPU), which is fully justified for our intended offline transfer
learning use-case. To foster reproducibility, we provide a detailed exposition of the experimental
settings in App. C.2 and make the source code of MetaBO available online.¹

5.5.1 Global Optimization Benchmark Functions

We evaluated our method on a set of synthetic function classes based on the standard global
optimization benchmark functions Branin (𝐷 = 2), Goldstein-Price (𝐷 = 2), and Hartmann-3
(𝐷 = 3) [Pic13]. To construct the training set ℱ′, we applied translations in [−0.1, 0.1]𝐷 as well
as scalings in [0.9, 1.1].

As TAF stores and evaluates one source GP for each source task, its applicability is restricted
to a relatively small amount of source data. For the evaluations of TAF and MetaBO, we there-
fore picked a random set of 𝑀 = 50 source tasks from the continuously parameterized family
ℱ′ of available objective functions and spread these tasks uniformly over the whole range of
translations and scalings (MetaBO-50, TAF-R-50, TAF-ME-50). We used 𝑁TAF = 100 data points
for each source GP of TAF. We also tested both flavors of TAF for 𝑀 = 20 source tasks (with
𝑁TAF = 50) and observed that TAF’s performance does not necessarily increase with more source
data, rendering the choice of suitable source tasks cumbersome. Fig. 5.3 shows the performance
on unseen functions drawn randomly from ℱ′.
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(c) Hartmann-3 (𝐷 = 3)

Figure 5.3: Performance on three global optimization benchmark functions with random translations sampled uniformly
from [−0.1, 0.1]𝐷 and scalings from [0.9, 1.1]. To test TAF’s performance, we randomly picked 𝑀 =
50 source tasks from this function class and evaluated both the ranking-based version (TAF-R-50) and the
mixture-of-experts version (TAF-ME-50). We trained MetaBO on the same set of source tasks (MetaBO-50).
In contrast to TAF, MetaBO can also be trained without manually restricting the set of available source tasks.
The corresponding results are labelled “MetaBO”. MetaBO outperformed EI by clear margin, especially in
early stages of the optimization. After few steps used to identify the specific instance of the objective function,
MetaBO also outperformed both flavors of TAF over wide ranges of the optimization budget. Results for TAF-
20 can be found in App. C.1.4, Fig. C.7.

To avoid clutter, we move the results for TAF-20 to App. C.1.4, cf. Fig. C.7. MetaBO-50 outper-
formed EI by large margin, in particular at early stages of the optimization, by making use of the

¹ https://github.com/boschresearch/MetaBO

84

https://github.com/boschresearch/MetaBO


5.5 Empirical Evaluation

structural knowledge about ℱ′ acquired during the meta-learning phase. Furthermore, MetaBO-
50 outperformed both flavors of TAF-50 over wide ranges of the optimization budget. This is due
to its ability to learn sampling strategies which go beyond a combination of a prior over 𝒟 and
a standard AF (as is the case for TAF). Indeed, note that MetaBO spends some initial non-greedy
evaluations to identify specific properties of the target objective function, resulting in much more
efficient optimization strategies. We investigate this behaviour further on simple toy experiments
and using easily interpretable baseline AFs in App. C.1.1.

We further emphasize that MetaBO does not require the user to manually pick a suitable set of
source tasks but that it can naturally learn from the whole set ℱ′ of available source tasks by
randomly picking a new task from ℱ′ at the beginning of each BO iteration and aggregating
this information in the neural AF weights. We also trained this full version of MetaBO (labelled
“MetaBO”) on the global optimization benchmark functions, obtaining performance compara-
ble with MetaBO-50. We demonstrate below that for more complex experiments, such as the
simulation-to-real task, MetaBO’s ability to learn from the full set of available source tasks is cru-
cial for efficient transfer learning. We also investigate the dependence of MetaBO’s performance
on the number of source tasks in more detail in App. C.1.2.

As a final test on synthetic functions, we evaluated the neural AFs on objective functions outside
the training distribution. This can give interesting insights into the nature of the problems under
consideration. We move the results of this experiment to App. C.1.3.

5.5.2 Simulation-to-Real Task

Sample efficiency is of special interest for the optimization of real world systems. In cases where
an approximate model of the system can be simulated, the proposed approach can be used to
improve the data-efficiency on the real system. To demonstrate this, we evaluated MetaBO on
a 4𝐷 simulation-to-real experiment. The task was to stabilize a Furuta pendulum [Fur92] for 5 s
around the upper equilibrium position using a linear state-feedback controller. We applied BO
to tune the four feedback gains of this controller [Frö20]. To assess the performance of a given
controller, we employed a logarithmic quadratic cost function [Ban17]. If the controller was not
able to stabilize the system or if the voltage applied to the motor exceeded some safety limit,
we added a penalty term proportional to the remaining time the pendulum would have had to
be stabilized for successfully completing the task. We emphasize that the cost function is rather
sensitive to the control gains, resulting in a challenging black-box optimization problem.

To meta-learn the neural AF, we employed a fast numerical simulation based on the nonlinear
dynamics equations of the Furuta pendulum which only contained the most basic physical ef-
fects. In particular, effects like friction and stiction were not modeled. The training distribution
was generated by sampling the physical parameters of this simulation (two lengths, two masses),
uniformly on a range of 75% – 125% around the measured parameters of the hardware (Quanser
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QUBE – Servo 2,¹ Fig. 5.4c). We also used this simulation to generate 𝑀 = 100 source tasks for
TAF (𝑁TAF = 200).

Fig. 5.4a shows the performance on objective functions from simulation. Again, MetaBO learned
a sophisticated sampling strategy which first identifies the target objective function and adapts its
optimization strategy accordingly, resulting in very strong optimization performance. In contrast,
TAF’s superposition of a prior over 𝒟 obtained from the source tasks with EI on the target task
leads to excessive explorative behaviour. We move further experimental results for TAF-50 to
App. C.1.4, Fig. C.8.
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(b) Evaluation on hardware in (c). (c) Exp. setup.3

Figure 5.4: Performance on a simulation-to-real task (cf. text). MetaBO and TAF used source data from a cheap numerical
simulation. (a) Performance on an extended training set in simulation. (b) Transfer to the hardware depicted
in (c), averaged over ten BO runs. MetaBO learned robust neural AFs with very strong optimization perfor-
mance and online adaption to the target objectives, which reliably yielded stabilizing controllers after less
than ten BO iterations while TAF-ME-100, TAF-R-100, and EI explore too heavily. Comparing the results for
MetaBO and MetaBO-50 in simulation, we observe that MetaBO benefits from its ability to learn from the
whole set of available source data, while TAF’s applicability is restricted to a comparably small number of
source tasks. We move the results for TAF-50 to App. C.1.4, Fig. C.8.

By comparing the performance of MetaBO and MetaBO-50 in simulation, we find that our archi-
tecture’s ability to incorporate large amounts of source data is indeed beneficial on this complex
optimization problem. The results in App. C.1.2 underline that this task indeed requires large
amounts of source data to be solved efficiently. This is substantiated by the results on the hard-
ware, on which we evaluated the full version of MetaBO and the baseline AFs obtained by training
on data from simulation without any changes. Fig. 5.4b shows that MetaBO learned a neural AF
which generalizes well from the simulated objectives to the hardware task and was thereby able
to rapidly adjust to its specific properties. This resulted in very data-efficient optimization on
the target system, consistently yielding stabilizing controllers after less than ten BO iterations.
In comparison, the benchmark AFs required many samples to identify promising regions of the
search space and therefore did not reliably find stabilizing controllers within the budget of 25
optimization steps.

¹ https://www.quanser.com/products/qube-servo-2
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As it provides interesting insights into the nature of the studied problem, we investigateMetaBO’s
generalization performance to functions outside the training distribution in App. C.1.3. We em-
phasize, however, that the intended use case of our method is on unseen functions drawn from
the training distribution. Indeed, by measuring the physical parameters of the hardware system
and adjusting the ranges from which the parameters are drawn to generate ℱ′ according to the
measurement uncertainty, the training distribution can be modelled in such a way that the true
system parameters lie inside of it with high confidence.

5.5.3 Hyperparameter Optimization

We testedMetaBO on two 2𝐷-hyperparameter optimization (HPO) problems for RBF-based SVMs
and AdaBoost. As proposed in Wistuba et al. [Wis18], we used precomputed results of training
these models on 50 datasets¹ with 144 parameter configurations (RBF kernel parameter, penalty
parameter 𝐶) for the SVMs and 108 configurations (number of product terms, number of itera-
tions) for AdaBoost. We randomly split these datasets into 35 source datasets used for training
MetaBO as well as for TAF and evaluated the resulting optimization strategies on the remaining
15 datasets. To determine when to stop the meta-training of MetaBO, we performed 7-fold cross
validation on the training datasets. We emphasize that MetaBO did not use more source data than
TAF in this experiment, underlining again its broad applicability in situations with both scarce
and abundant source data. The results (Fig. 5.5) show that MetaBO learned very data-efficient
neural AFs which surpassed EI und TAF on both experiments.
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Figure 5.5: Performance on two 2𝐷 hyperparameter optimization tasks (SVM and AdaBoost). We trained MetaBO on
precomputed data for 35 randomly chosen datasets and used the same datasets as source tasks for TAF. The
remaining 15 datasets were used for this evaluation. MetaBO learned very data-efficient sampling strategies
on both experiments, outperforming the benchmark methods by clear margin. Note that the optimization
domain is discrete and therefore tasks can be solved exactly, corresponding to zero regret.

5.5.4 General Function Classes

Finally, we evaluated the performance ofMetaBO on function classeswithout any particular struc-
ture except a bounded correlation lengthscale. As there is only little structure present in this func-
tion class which could be exploited in the transfer learning setting, it is desirable to obtain neural

¹ Visualizations of the objective functions can be found on http://www.hylap.org
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AFs which fall back at least on the performance level of general-purpose AFs such as EI. We
performed two different experiments of this type. For the first experiment, we sampled the ob-
jective functions from a GP prior with squared-exponential (RBF) kernel with lengthscales drawn
uniformly from ℓ ∈ [0.05, 0.5].¹ For the second experiment, we used a GP prior with Matern-5/2
kernel with the same range of lengthscales. For the latter experiment we also used the Matern-5/2
kernel (in contrast to the RBF kernel used in all other experiments) as the kernel of the GP surro-
gate model to avoid model mismatch. For both types of function classes we trained MetaBO on
𝐷 = 3 dimensional tasks and excluded the 𝑥-feature to study a dimensionality-agnostic version
of MetaBO. Indeed, we evaluated the resulting neural AFs without retraining for dimensionalities
𝐷 ∈ {3, 4, 5}. The results (Fig. 5.6) show that MetaBO is capable of learning neural AFs which
perform better than or at least on on-par with EI on these general function classes.
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Figure 5.6: Performance of MetaBO trained on 𝐷 = 3-dimensional objective functions sampled from a GP prior with
RBF kernel (upper row) and Matern-5/2 kernel (lower row) with lengthscales drawn randomly from ℓ ∈
[0.05, 0.5]. Panels (a, d) show the performance on these training distributions. As we excluded the 𝑥-
feature from the neural AF inputs during training, the resulting AFs can be applied to functions of different
dimensionalities. We evaluated each AF on𝐷 = 4 and𝐷 = 5 without retraining MetaBO. We report simple
regret w.r.t. the best observed function value, determined separately for each function in the test set.

5.6 Conclusion and Outlook

We introduced MetaBO, a novel method for transfer learning in the framework of BO. Via a flex-
ible meta-learning approach, we inject prior knowledge directly into the optimization strategy
of BO using neural AFs. The experiments show that our method consistently outperforms exist-
ing methods, for instance in simulation-to-real settings or on hyperparameter search tasks. Our

¹ We normalized the optimization domain to 𝒟 = [0, 1]𝐷.
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approach is broadly applicable to a wide range of practical problems, covering both the cases of
scarce and abundant source data. The resulting neural AFs can represent search strategies which
go far beyond the abilities of current approaches which often rely on weighted superpositions of
priors over the optimization domain obtained from the source data with standard AFs. In future
work, we aim to tackle the multi-task multi-fidelity setting [Val18], where we expect MetaBO’s
sample efficiency to be of high impact.
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In this work, we developed novel algorithms for Bayesian meta-learning (BML), with a focus on
probabilistic modeling and global black-box optimization problems commonly encountered in
engineering and science. In Sec. 2, we studied a generic Bayesian multitask model (Fig. 2.4) and
demonstrated the central importance of accurate task posterior approximations. We then iden-
tified and addressed several shortcomings in the current practice of approximate task posterior
inference in neural process (NP)-type instantiations of this model.

In Sec. 3, we showed that context aggregation in vanilla NPs ignores that task ambiguity is dis-
tributed non-uniformly in the space of context data tuples, resulting in a suboptimal parameteri-
zation of the set encoder. To alleviate this problem, we developed Bayesian context aggregation
(BA), which allows learning about the task ambiguity distribution during the meta-training phase
and incorporating this information into predictions in a principled manner through a weighted
aggregation scheme. In a series of experiments, we demonstrated that BA leads to improved
predictive performance with negligible computational overhead.

In Sec. 4, we considered further standard design choices for task posterior inference in NPs.
In particular, we examined the influence of the amortized inference scheme with set encoders,
the Gaussian mean-field assumption, and the variational optimization with reparameterized Eu-
clidean gradients. We showed that these design choices can introduce a significant variational
inference gap, which harms meta-training and leads to suboptimal predictive performance. By
replacing this inference scheme with non-amortized, full-covariance Gaussian mixture approxi-
mations, optimized with natural gradients and trust-region step size control, we obtained signif-
icantly improved predictive performance that far exceeds the state of the art.

In addition to meta-modeling, we studied Bayesian meta-optimization, which is important for
a range of applications that require the optimization of expensive black-box functions. First,
we showed in Sec. 4 that our novel Bayesian meta-models provide powerful surrogate models for
Bayesian optimization (BO) due to the high quality of their epistemic uncertainty estimates. In the
second part of this work (Sec. 5), we developed MetaBO, a complementary approach to Bayesian
meta-optimization in which the surrogate model remains untouched and inductive biases towards
the meta-dataset are injected via the acquisition function.

We conclude this workwith some considerations regarding the relationship between the proposed
approaches, their practical applicability, as well as possible future research directions. Our results
highlight the importance of accurate task posterior approximations for accurate BML. While this
was to be expected from theoretical and empirical studies in Bayesian learning, such as Bayesian

91



6 Conclusion and Outlook

deep learning [Wil20, Sel23] or variational autoencoders [Kin19, Cre18], the NP model exhibits
unique features, namely set-conditional inference in comparatively low-dimensional latent spaces
(Sec. 2.2.5), which motivate specialized techniques such as our BA and GMM-NP. Our experimen-
tal results demonstrate the potential of such methods and motivate further research. In particular,
it would be interesting to bridge the gap between amortized and non-amortized task posterior ap-
proximations as employed by BA and GMM-NP, respectively. While amortized approximations
such as BA can be computed efficiently, they are typically restricted to the Gaussian mean-field
case and can therefore introduce a significant amortization gap. More accurate inference tech-
niques such as GMM-NP can reduce this gap and lead to improved predictive performance, but
incur computational overhead due to their non-amortized nature. This motivates research such as
the recent work by Tailor et al. [Tai23], which explores extensions of BA to obtainmore expressive
set-based amortization methods that go beyond the Gaussian mean-field assumption.

In the context of task posterior approximation techniques, it would also be interesting to fur-
ther investigate the relative merits of different NP objectives, such as the ELBO Eq. (2.73), which
spends model capacity on both predictive performance and the quality of the task posterior ap-
proximation, and NPML Eq. (2.74), which focuses exclusively on approximations that allow ac-
curate predictions (Sec. 2.2.4.3) [Dub20]. While our results in Sec. 3 favor NPML in amortized
inference settings where predictive performance is of interest, which is consistent with the liter-
ature [Gor19, Dub20], it is not yet clear whether more expressive or non-amortized task posterior
approximations could still benefit from NPML, or whether a variational approach like the one
used in Sec. 4 is then generally more efficient due to a tighter ELBO and a simpler optimization
problem for the global parameters. Moreover, for applications that require meaningful task pos-
terior approximations, the ELBO may be the preferable objective, since the KL term in Eq. (2.73)
explicitly encourages consistency across different context sets from the same task. However, it
is unclear whether such an explicit term, which is missing in NPML, is necessary, or whether
the approximate task posteriors are implicitly regularized toward consistency to a sufficient de-
gree. The same question arises for variational objectives not derived from the train-as-you-test
paradigm (Sec. 2.2.4.3) [Hew18, Edw17, Le18], such as the one used for GMM-NP in Sec. 4. In this
context, it would be particularly interesting to study to what extent this consistency is induced by
approaches such as our BA and GMM-NP compared to simpler aggregation methods not derived
from Bayesian principles (Sec. 2.2.4.2).

Another related question targeting task posterior approximations of different expressiveness and,
hence, computational complexity, is whether to use the NP [Gar18c] or the CNP [Gar18b] frame-
work (Sec. 2.2.5) for Bayesian meta-learning. Our methods proposed in Secs. 3 and 4 are rooted
in the NP framework, which explicitly quantifies epistemic uncertainty about the task descriptor
through approximate task posterior distributions. This allows complex predictive distributions
to be specified in a natural manner through Bayesian marginalization, and naturally models cor-
relations in the output space. On the downside, approximate task posterior inference can be
computationally more demanding and less robust than the simple maximum likelihood training
procedure of the CNP. In addition, unlike the CNP, the NP does not provide analytic expressions
for the predictive likelihood, which can complicate downstream tasks such as BO as well as the
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evaluation of model performance (Sec. 2.2.3). A major drawback of the CNP, on the other hand,
is that it defines a factorized predictive distribution, which prevents the computation of coherent
function samples, rendering the CNP inapplicable to a range of downstream applications. While
a number of methods address this issue [Bru20, Gor20, Foo20a, Mar21, Mar22, Bru23], the field of
BML currently lacks a concise comparison of the predictive quality of recent NP- and CNP-based
methods, which warrants a comprehensive empirical comparison.

In addition to comparing different task posterior approximation methods within the NP frame-
work, it would be interesting to investigate the more general question of the relative merits of
fully hierarchical approaches to BML and methods derived from the Bayesian multitask model
Fig. 2.4. As discussed in Sec. 2.2.5, the former compute distributional estimates for all variables
governing the parametric model, with examples including Bayesian instantiations of the model-
agnostic meta-learning family [Fin17, Gra18, Fin18, Kim18, Rav19] and related approaches such
as Amit et al. [Ami17] and Kim et al. [Kim24]. While the complexity of the resulting inference
problemmakes highly expressive task posterior approximation schemes such as our GMM-NP sig-
nificantly more difficult to apply, it is currently unclear whether a distributional treatment of all
variables, albeit with a simple task posterior approximation, is preferable [Kim24]. Furthermore,
it would be interesting to study a combined approach where we use an NP-style parameterization
of Fig. 2.4, but still compute a distributional estimate for the decoder weights in the spirit of fully
hierarchical approaches. This would allow to retain highly expressive task posterior inference
schemes for the NP task descriptors, but still enable a Bayesian treatment of the decoder parame-
ters, which could improve the robustness of the resulting model, e.g., against out-of-distribution
data [Sel23].

In the preceding paragraphs we have argued for an extensive empirical evaluation of architec-
tural and algorithmic design choices in the field of BML. This requires accurate and standardized
performance evaluation protocols in order to provide reliable comparisons, which we believe
are currently lacking in the field of BML. In fact, it is well known that computing accurate es-
timates of performance metrics such as the approximate predictive likelihood Eq. (2.62) can be
intricate and highly error-prone [Mac03, Gro15, Dub20, Far22]. This should motivate the applica-
tion of more powerful and robust estimation methods such as annealed importance sampling or
bidirectional Monte Carlo [Nea01, Gro15, Wu17, Cre18, Flo22], the incorporation of calibration
metrics [Guo17, Kul18, Sel23], or downstream metrics [Far22] such as optimization performance
as explored in Sec. 4.

An interesting aspect of meta-learning that seems to be underrepresented in the current main-
stream research landscape is the application of meta-learned models to study the physics under-
lying a particular type of system in engineering or science. A simple application of such models
would be to study physical processes for material constants or geometries that have not been
observed in experiment [Dah23], without the need for expensive simulations or data collection.
Moreover, meta-learned models could be combined with recent methods from the field of physics-
informed machine learning [Car19, Vad21, Kar21] to discover physical concepts [Ite20, Ros20,
Rai19] in the form of symbolic representations of physical laws [Udr20], symmetries [Coh16,
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Che19, Pol20, Kri20, Bra22], or representations of the differential equations governing their time
evolution [Li21, Wan21, Ric23].

Another open question arising from our research is whether meta-learning BO should be handled
by BML surrogate models, as explored in Secs. 3 and 4, or by meta-learned acquisition functions
(AFs), as in MetaBO (Sec. 5). While this question can only be answered conclusively by an exten-
sive empirical study, we believe that a combined approach has the potential to work best. Indeed,
if optimization performance is the ultimate metric of interest, it should make sense to derive an
approach that is optimized for exactly that metric, as this would allow learning task representa-
tions that are tailored to efficiently solve the optimization problem [Ghu23]. While MetaBO is
conceptually well motivated in this sense, we believe that it would benefit from further research.
An obvious shortcoming is that MetaBO handles task ambiguity in a non-Bayesian manner, as the
prior of the GP surrogate model is not informed by the meta-data, and a point estimate is used for
the meta-learned neural AF weights. Within the MetaBO framework, i.e., without meta-learning
the surrogate model, a Bayesian treatment could be achieved by developing meta-learned AFs
that maintain a Bayesian belief about the task descriptor. Alternatively, one could combine prob-
abilistic modeling and optimization through a single shared representation, as proposed in Chen
et al. [Che17] and in several works derived from our MetaBO approach [Hsi21, Mar23]. Given
that recent developments in machine learning show that fewer architectural inductive biases tend
to produce better results [Sut19, Vas17], this may be the most promising route.

This brings us back to the introductory discussion in Sec. 1. It remains to be seen whether the
BML approaches discussed in this work will soon become obsolete by exploiting the zero- or few-
shot learning capabilities of general foundation models, such as large language models (LLMs).
Although the meta-learning paradigm abandons purely task-specific learning approaches in favor
of achieving more general capabilities, it still employs specialized architectural and algorithmic
design choices to achieve cross-task transfer. Now that the generative AI revolution is in full
swing, and general transformer-based [Vas17] foundation models are becoming the go-to ap-
proach for solving all kinds of problems, it is hard to imagine that such “explicit” meta-learning
approaches will survive in their current form [Sut19]. However, while it seems likely that it
will soon be possible to overcome the current shortcomings of LLMs [Bow23], it is not yet clear
whether general approaches will be able to continue their unprecedented growth [Bah21, Kap20,
Cab23] or whether the demands on the amount [Uda24] and quality [Guo24] of training data, as
well as on compute, memory, and energy [Str19, Pat21, Bal24], will become prohibitive and revive
interest in specialized methods of smaller scale. Exciting times are ahead!
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A Bayesian Context Aggregation for Neural
Processes

We present the derivation of the Bayesian aggregation update equations (Eqs. (3.10), (3.11)) in
more detail. To foster reproducibility, we describe all experimental settings as well as the hyper-
parameter optimization procedure used to obtain the results reported in Sec. 3.5, and publish the
source code online.¹ We further provide additional experimental results and visualizations of the
predictions of the compared architectures.

A.1 Derivation of the Bayesian Aggregation Update
Equations

We derive the full Bayesian aggregation update equations without making any factorization as-
sumptions. We start from a Gaussian observation model of the form

𝑝 (𝑟𝑛 ∣ 𝑧) ≡ 𝒩(𝑟𝑛 ∣ 𝑧, Σ𝑟𝑛) ,
𝑟𝑛 = enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) ,

Σ𝑟𝑛 = encΣ𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) ,
(A.1)

where 𝑟𝑛 and Σ𝑟𝑛 are learned by the encoder network. If we impose a Gaussian prior in the latent
space, i.e.,

𝑝 (𝑧) ≡ 𝒩(𝑧 ∣ 𝜇𝑧,0, Σ𝑧,0) , (A.2)

we arrive at a Gaussian aggregation model which allows to derive the parameters of the posterior
distribution, i.e., of

𝑞𝜙 (𝑧 ∣ 𝒟𝑐) = 𝒩 (𝑧 ∣ 𝜇𝑧, Σ𝑧) (A.3)

¹ https://github.com/boschresearch/bayesian-context-aggregation
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in closed form using standard Gaussian conditioning [Bis06]:

Σ𝑧 = [(Σ𝑧,0)
−1 +

𝑁
∑
𝑛=1

(Σ𝑟𝑛)
−1]

−1

, (A.4a)

𝜇𝑧 = 𝜇𝑧,0 + Σ𝑧
𝑁
∑
𝑛=1

(Σ𝑟𝑛)
−1 (𝑟𝑛 − 𝜇𝑧,0) . (A.4b)

As the latent space 𝑧 is shaped by the encoder network, it will find a space where the following
factorization assumptions work well (given 𝑑𝑧 is large enough):

Σ𝑟𝑛 = diag (𝜎2𝑟𝑛) ,
𝜎2𝑟𝑛 = enc𝜎2𝑟 ,𝜙 (𝑥

𝑐
𝑛, 𝑦𝑐𝑛) ,

Σ𝑧,0 = diag (𝜎2𝑧,0) .
(A.5)

This yields a factorized posterior, i.e.,

𝑞𝜙 (𝑧 ∣ 𝒟𝑐) = 𝒩(𝑧 ∣ 𝜇𝑧, diag (𝜎2𝑧)) , (A.6)

with

𝜎2𝑧 = [(𝜎2𝑧,0)
⊖ +

𝑁
∑
𝑛=1

(𝜎2𝑟𝑛)
⊖]

⊖

, (A.7a)

𝜇𝑧 = 𝜇𝑧,0 + 𝜎2𝑧 ⊙
𝑁
∑
𝑛=1

(𝑟𝑛 − 𝜇𝑧,0) ⊘ (𝜎2𝑟𝑛) . (A.7b)

Here ⊖, ⊙ and ⊘ denote element-wise inversion, product, and division, respectively. This is the
result Eq. (3.10) from the main part of this paper.

A.2 Discussion of VI Likelihood Approximation

To highlight the limitations of the VI approximation, we note that decoder networks of models
employing the PB or the MC likelihood approximation are provided with the same context infor-
mation at training and test time: the latent variable (which is passed on to the decoder in the form
of latent samples 𝑧 (for MC) or in the form of parameters 𝜇𝑧, 𝜎2𝑧 describing the latent distribution
(for PB)) is in both cases conditioned only on the context set𝒟𝑐 . In contrast, in the variational ap-
proximation Eq. (3.2), the expectation is w.r.t. 𝑞𝜙, conditioned on the union of the context set𝒟𝑐

and the target set𝒟𝑡 . As𝒟𝑡 is not available at test time, this introduces a mismatch between how
the model is trained and how it is used at test time. Indeed, the decoder is trained on samples from
𝑞𝜙 (𝑧 ∣ 𝒟𝑐 ∪ 𝒟𝑡) but evaluated on samples from 𝑞𝜙 (𝑧 ∣ 𝒟𝑐). This is not a serious problem when

126



A.3 Self-Attentive Encoder Architectures

the model is evaluated on context sets with sizes large enough to allow accurate approximations
of the true latent posterior distribution. Small context sets, however, usually contain too little
information to infer 𝑧 reliably. Consequently, the distributions 𝑞𝜙 (𝑧 ∣ 𝒟𝑐) and 𝑞𝜙 (𝑧 ∣ 𝒟𝑐 ∪ 𝒟𝑡)
typically differ significantly in this regime. Hence, incentivizing the decoder to yield meaningful
predictions on small context sets requires intricate and potentially expensive additional sampling
procedures to choose suitable target sets 𝒟𝑡 during training. As a corner case, we point out that
it is not possible to train the decoder on samples from the latent prior, because the right hand
side of Eq. (3.2) vanishes for 𝒟𝑐 = 𝒟𝑡 = ∅.

A.3 Self-Attentive Encoder Architectures

Kim et al. [Kim19] propose to use attention-mechanisms to improve the quality of NP-based re-
gression. In general, given a set of key-value pairs {(𝑥𝑛, 𝑦𝑛)}

𝑁
𝑛=1, 𝑥𝑛 ∈ ℝ𝑑𝑥 , 𝑦𝑛 ∈ ℝ𝑑𝑦 , and a

query 𝑥∗ ∈ ℝ𝑑𝑥 , an attention mechanism 𝒜 produces a weighted sum of the values, with the
weights being computed from the keys and the query:

𝒜({(𝑥𝑛, 𝑦𝑛)}
𝑁
𝑛=1 , 𝑥∗) =

𝑁
∑
𝑛=1

𝑤 (𝑥𝑛, 𝑥∗) 𝑦𝑛. (A.8)

There are several types of attention mechanisms proposed in the literature [Vas17], each defining
a specific form of the weights. Laplace attention adjusts the weights according to the spatial
distance of keys and query:

𝑤L (𝑥𝑛, 𝑥∗) ∝ exp (−||𝑥𝑛 − 𝑥∗||1) . (A.9)

Similarly, dot-product attention computes

𝑤DP (𝑥𝑛, 𝑥∗) ∝ exp (𝑥𝑇𝑛𝑥∗/√𝑑𝑥) . (A.10)

A more complex mechanism is multihead attention, which employs a set of 3𝐻 learned linear
mappings {ℒ𝐾

ℎ }
𝐻
ℎ=1, {ℒ

𝑉
ℎ }

𝐻
ℎ=1, {ℒ

𝑄
ℎ }

𝐻

ℎ=1
, where 𝐻 is a hyperparameter. For each ℎ, these map-

pings are applied to keys, values, and queries, respectively. Subsequently, dot-product attention
is applied to the set of transformed key-value pairs and the transformed query. The resulting 𝐻
values are then again combined by a further learned linear mappingℒ𝑂 to obtain the final result.

Self-attention (SA) is defined by setting the set of queries equal to the set of keys. Therefore, SA
produces again a set of 𝑁 weighted values. Combining SA with an NP-encoder, i.e., applying
SA to the set {𝑓𝑥(𝑥𝑛) , 𝑟𝑛}

𝑁
𝑛=1 of inputs 𝑥𝑛 and corresponding latent observations 𝑟𝑛 (where we

also consider a possible nonlinear transformation 𝑓𝑥 of the inputs) and subsequently applying
MA yields an interesting baseline for our proposed BA. Indeed, similar to BA, SA computes a
weighted sum of the latent observations 𝑟𝑛. Note, however, that SAweighs each latent observation
according to some form of spatial relationship of the corresponding input with all other latent
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observations in the context set. In contrast, BA’s weight for a given latent observation is based
only on features computed from the context tuple corresponding to this very latent observation
and allows to incorporate an estimation of the amount of information contained in the context
tuple into the aggregation (cf. Sec. 3.4.1). This leads to several computational advantages of BA
over SA: (i) SA scales quadratically in the number𝑁 of context tuples, as it has to be evaluated on
all 𝑁2 pairs of context tuples. In contrast, BA scales linearly with 𝑁. (ii) BA allows for efficient
incremental updates when context data arrives sequentially (cf. Eq. (3.11)), while using SA does
not provide this possibility: it requires to store and encode the whole context set𝒟𝑐 at once and
to subsequently aggregate the whole set of resulting (SA-weighted) latent observations.

The results in Tabs. 3.6, 3.7, Sec. 3.5 show that multihead SA leads to significant improvements
in predictive performance compared to vanilla MA. Therefore, a combination of BA with self-
attentive encoders seems promising in situations where computational disadvantages can be ac-
cepted in favour of increased predictive performance. Note that BA relies on a second encoder
output 𝜎2𝑟𝑛 (in addition to the latent observation 𝑟𝑛) which assesses the information content in
each context tuple (𝑥𝑛, 𝑦𝑛). As each SA-weighted 𝑟𝑛 is informed by the other latent observations
in the context set, obviously, one would have to also process the set of 𝜎2𝑟𝑛 in a manner consistent
with the SA-weighting. We leave such a combination of SA and BA for future research.

A.4 Neural Process-based Models in the Context of
Scalable Probabilistic Regression

We discuss in more detail how NP-based models relate to other existing methods for (scalable)
probabilistic regression, such as (multi-task) GPs [Ras05, Bar13, Yog14, Gol17], Bayesian neural
networks (BNNs) [Mac92a, Gal16], and DeepGPs [Dam13].

NPs are motivated in Garnelo et al. [Gar18b, Gar18c], Kim et al. [Kim19], as well as in our Sec. 3.1,
as models which combine the computational efficiency of neural networks with well-calibrated
uncertainty estimates (like those of GPs). Indeed, NPs scale linearly in the number 𝑁 of context
and𝑀 of target data points, i.e., like 𝒪(𝑁 +𝑀), while GPs scale like 𝒪(𝑁3 +𝑀2). Furthermore,
NPs are shown to exhibit well-calibrated uncertainty estimates. In this sense, NPs can be counted
as members of the family of scalable probabilistic regression methods.

A central aspect of NP training which distinguishes NPs from a range of standard methods is that
they are trained in a multi-task fashion (cf. Sec. 4.3). This means that NPs rely on data from a
set of related source tasks from which they automatically learn powerful priors and the ability
to adapt quickly to unseen target tasks. This multi-task training procedure of NPs scales linearly
in the number 𝐿 of source tasks, which makes it possible to train these architectures on large
amounts of source data. Applying GPs in such a multi-task setting can be challenging, especially
for large numbers of source tasks. Similarly, BNNs as well as DeepGPs are in their vanilla forms
specifically designed for the single-task setting. Therefore, GPs, BNNs, and DeepGPs are not
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directly applicable in the NP multi-task setting, which is why they are typically not considered
as baselines for NP-based models, as discussed in [Kim19].

The experiments presented in Garnelo et al. [Gar18b, Gar18c] and Kim et al. [Kim19] focus mainly
on evaluating NPs in the context of few-shot probabilistic regression, i.e., on demonstrating the
data-efficiency of NPs on the target task after training on data from a range of source tasks. In
contrast, the application of NPs in situations with large (> 1000) numbers of context/target points
per task has to the best of our knowledge not yet been investigated in detail in the literature.
Furthermore, it has not been studied how to apply NPs in situations where only a single or very
few source tasks are available. The focus of our paper is a clear-cut comparison of the performance
of our BA with traditional MA in the context of NP-based models. Therefore, we also consider
experiments similar to those presented in [Gar18b, Gar18c, Kim19] and leave further comparisons
with existing methods for (multi-task) probabilistic regressions for future work.

Nevertheless, to illustrate this discussion, we provide two simple GP-based baseline methods: (i) a
vanilla GP, which optimizes the hyperparameters on each target task individually and does not
use the source data, and (ii) a naive but easily interpretable example of a multi-task GP, which
optimizes one set of hyperparameters on all source tasks and uses it for predictions on the target
tasks without further adaptation. The results in Tab. A.1 show that those GP-based models can
only compete with NPs on function classes where either the inductive bias as given by the kernel
functions fits the data well (RBF GP), or on function classes which exhibit a relatively low degree
of variability (Quadratic 1D). Onmore complex function classes, NPs produce predictions of much
better quality, as they incorporate the source data more efficiently.

Table A.1: Comparison of the predictive log-likelihood of NP-based architectures with two simple GP-based baselines,
(i) Vanilla GP (optimizes the hyperparameters individually on each target task and ignores the source data)
(ii) Multitask GP (optimizes one set of hyperparameters on all source tasks and uses them without further
adaptation on the target tasks). Both GP implementations use RBF-kernels. As in the main text, we average
performance over context sets with sizes𝑁 ∈ {0,… , 64} for RBF GP and𝑁 ∈ {0,… , 20} for the other exper-
iments. Multitask GP constitutes the optimal model (assuming it fits the hyperparameters perfectly) for the
RBF GP experiment, which explains its superior performance. On the Quadratic 1D experiment, Multitask
GP still performs better than the other methods as this function class shows a relatively low degree of vari-
ability. In contrast, on more complex experiments like Quadratic 3D and the Furuta dynamics, none of the
GP variants is able to produce meaningful results given the small budget of at most 20 context points, while
NP-based methods produce predictions of high quality as they incorporate the source data more efficiently.

NPs with MC-loss GP
BA MA Vanilla Multitask

RBF GP 1.62 ± 0.05 1.07 ± 0.05 1.96 2.99
Quadratic 1D, 𝐿 = 64 1.71 ± 0.23 1.27 ± 0.06 −1.56 2.11
Quadratic 3D, 𝐿 = 128 −1.79 ± 0.07 −2.14 ± 0.05 −472.76 −173.78
Furuta Dynamics 8.25 ± 0.33 7.55 ± 0.24 −6.16 −2.47
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A.5 Experimental Details

We provide details about the data sets as well as about the experimental setup used in our ex-
periments in Sec. 3.5.

A.5.1 Data Generation

In our experiments, we use several classes of functions to evaluate the architectures under con-
sideration. To generate training data from these function classes, we sample 𝐿 random tasks (as
described in Sec. 3.5), and𝑁tot random input locations 𝑥 for each task. For eachminibatch of train-
ing tasks, we uniformly sample a context set size 𝑁 ∈ {𝑛min, … , 𝑛max} and use a random subset
of 𝑁 data points from each task as context sets𝒟𝑐 . The remaining𝑀 = 𝑁tot −𝑁 data points are
used as the target sets𝒟𝑡 (cf. App. A.5.3 for the special case of the VI likelihood approximation).
Tab. A.2 provides details about the data generation process.

A.5.1.1 GP Samples

We sample one-dimensional functions 𝑓 ∶ ℝ → ℝ from GP priors with three different stationary
kernel functions as proposed by Gordon et al. [Gor20].

A radial basis functions (RBF) kernel with lengthscale 𝑙 = 1.0:

𝑘RBF (𝑟) ≡ exp (−0.5𝑟2) . (A.11)

A weakly periodic kernel:

𝑘WP (𝑟) ≡ exp (−2 sin (0.5𝑟)2 − 0.125𝑟2) . (A.12)

A Matern-5/2 kernel with lengthscale 𝑙 = 0.25:

𝑘M5/2 (𝑟) ≡ (1 + √5𝑟
0.25 +

5𝑟2
3 ⋅ 0.252 ) exp (−√5𝑟0.25) . (A.13)

A.5.1.2 Quadratic Functions

We consider two classes of quadratic functions. The first class 𝑓𝑄,1D ∶ ℝ → ℝ is defined on a
one-dimensional domain and parameterized by three parameters 𝑎, 𝑏, 𝑐 ∈ ℝ:

𝑓𝑄,1D (𝑥) ≡ 𝑎2 (𝑥 + 𝑏)2 + 𝑐. (A.14)
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The second class 𝑓𝑄,3D ∶ ℝ3 → ℝ is defined on a three-dimensional domain and also parame-
terized by three parameters 𝑎, 𝑏, 𝑐 ∈ ℝ:

𝑓𝑄,3D (𝑥1, 𝑥2, 𝑥3) ≡ 0.5𝑎 (𝑥21 + 𝑥22 + 𝑥23) + 𝑏 (𝑥1 + 𝑥2 + 𝑥3) + 3𝑐. (A.15)

This function class was proposed in Perrone et al. [Per18].

For both function classes we add Gaussian noise with standard deviation 𝜎𝑛 to the evaluations,
cf. Tab. A.2.

Table A.2: Input spaces and parameters used to generate data for training and testing the architectures discussed in
the main part of this paper. U (𝑎, 𝑏) denotes the uniform distribution on the interval [𝑎, 𝑏], and, likewise
U {𝑎, 𝑎 + 𝑛} denotes the uniform distribution on the set {𝑎, 𝑎 + 1,… , 𝑎 + 𝑛}.

Symbol Description Value/Sampling distribution
GP Samples

𝑥 Input U (−2.0,+2.0)
𝑁tot Number of data points per task 128
{𝑛min, …𝑛max} Context set sizes during training {3, … , 50}

1D Quadratic Functions
𝑥 Input U (−1.0,+1.0)
𝑎 Parameter U (−0.5,+1.5)
𝑏 Parameter U (−0.9,+0.9)
𝑐 Parameter U (−1.0,+1.0)
𝜎𝑛 Noise standard deviation 0.01
𝑁tot Number of data points per task 128
{𝑛min, …𝑛max} Context set sizes during training U{0, … , 20}

3D Quadratic Functions
𝑥1, 𝑥2, 𝑥3 Inputs U (−1.0,+1.0)
𝑎, 𝑏, 𝑐 Parameters U (+0.1,+10.0)
𝜎𝑛 Noise standard deviation 0.01
𝑁tot Number of data points per task 128
{𝑛min, …𝑛max} Context set sizes during training U{0, … , 20}

Furuta Dynamics
𝜃arm, 𝜃pend Input angles U (0.0, 2𝜋 rad)
̇𝜃arm, ̇𝜃pend Input angular velocities U (−2𝜋 rad/0.5 s, 2𝜋 rad/0.5 s)

𝑚arm Mass arm U (6.0 ⋅ 10−2 kg, 6.0 ⋅ 10−1 kg)
𝑚pend Mass pendulum U (1.5 ⋅ 10−2 kg, 1.5 ⋅ 10−1 kg)
𝑙arm Length arm U (5.6 ⋅ 10−2 m, 5.6 ⋅ 10−1 m)
𝐿arm Distance joint arm — mass arm U (1.0 ⋅ 10−1 m, 3.0 ⋅ 10−1 m)
𝐿pend Distance joint pend.— mass pend. U (1.0 ⋅ 10−1 m, 3.0 ⋅ 10−1 m)
𝑏arm Damping constant arm U (2.0 ⋅ 10−5 Nms, 2.0 ⋅ 10−3 Nms)
𝑏pend Damping constant pendulum U (5.6 ⋅ 10−5 Nms, 5.6 ⋅ 10−3 Nms)
𝜎𝜏,arm Action noise standard dev.arm 0.5Nm
𝜎𝜏,pend Action noise standard dev.pend. 0.5Nm
𝑁tot Number of data points per task 256
{𝑛min, …𝑛max} Context set sizes during training U{0, … , 20}

2D Image Completion MNIST
𝑥1, 𝑥2 Input pixel locations U {0, 27} (scaled to [0, 1])
𝑁tot Number of data points per task 28 ⋅ 28
{𝑛min, …𝑛max} Context set sizes during training U{0, … , 28 ⋅ 28/2}
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A.5.1.3 Furuta Pendulum Dynamics

We consider a function class obtained by integrating the non-linear equations of motion gov-
erning the dynamics of a Furuta pendulum [Fur92, Caz11] for a time span of Δ𝑡 = 0.1 s. More
concretely, we consider the mapping

Θ (𝑡) → Θ (𝑡 + Δ𝑡) − Θ (𝑡) , (A.16)

where

Θ = [𝜃arm (𝑡) , 𝜃pend (𝑡) , ̇𝜃arm (𝑡) , ̇𝜃pend (𝑡)]
𝑇

(A.17)

denotes the four-dimensional vector describing the dynamical state of the Furuta pendulum. The
Furuta pendulum is parameterized by seven parameters (two masses, three lengths, two damping
constants) as detailed in Tab. A.2. During training, we provide 𝐿 = 64 tasks, corresponding to 64
different parameter configurations. We consider the free system and generate noise by applying
random torques at each integration time step (Δ𝑡Euler = 0.001 s) to the joints of the arm and pen-
dulum drawn from Gaussian distributions with standard deviations 𝜎𝜏,pend, 𝜎𝜏,arm, respectively.

A.5.1.4 2D Image Completion

For this task, we use the MNIST database of 28 × 28 images of handwritten digits [LeC10], and
define 2D functions mapping pixel locations 𝑥1, 𝑥2 ∈ {0, … 27} (scaled to the unit square) to the
corresponding pixel intensities 𝑦 ∈ {0, … , 255} (scaled to the unit interval), cf. Tab. A.2. One
training task corresponds to one image drawn randomly from the training set (consisting of 60000
images) and for evaluation we use a subset of the test set (consisting of 10000 images).

A.5.2 Model Architectures

We provide the detailed architectures used for the experiments in Sec. 3.5 in Fig. A.1. For ANP
we use multihead cross attention and refer the reader to Kim et al. [Kim19] for details about the
architecture.

A.5.3 Hyperparameters and Hyperparameter Optimization

To arrive at a fair comparison of our BA with MA, it is imperative to use optimal model architec-
tures for each aggregation method and likelihood approximation under consideration. Therefore,
we optimize the number of hidden layers and the number of hidden units per layer of each en-
coder and decoder MLP (as shown in Fig. A.1), individually for each model architecture and each
experiment. For the ANP, we also optimize the multihead attention MLPs. We further optimize
the latent space dimensionality 𝑑𝑧 and the learning rate of the Adam optimizer. For this hyperpa-
rameter optimization, we use the Optuna framework [Aki19] with TPE Sampler and Hyperband
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pruner [Li17b]. We consistently use a minibatch size of 16. Further, we use 𝑆 = 10 latent sam-
ples to evaluate the MC likelihood approximation during training. To evaluate the VI likelihood
approximation, we sample target set sizes between𝑁tot and𝑁 in each training epoch, cf. Tab. A.2.
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Figure A.1: Model architectures used for our experiments in Sec. 3.5. For the ANP architecture we refer the reader to Kim
et al. [Kim19]. Orange rectangles denote MLPs. Blue rectangles denote aggregation operations. Variables in
green rectangles are sampled from normal distributions with parameters given by the incoming nodes. To
arrive at a fair comparison, we optimize all MLP architectures, the latent space dimensionality 𝑑𝑧, as well as
the Adam learning rate, individually for all model architectures and all experiments, cf. App. A.5.3.

A.5.4 Evaluation Procedure

To evaluate the performance of the various model architectures we generate 𝐿 = 256 unseen test
tasks with target sets𝒟𝑡

ℓ consisting of𝑀 = 256 data points each and compute the average poste-
rior predictive log-likelihood 1

𝐿
1
𝑀
∑𝐿

ℓ=1 log𝑝 (𝑦𝑡ℓ,1∶𝑀 ∣ 𝑥𝑡ℓ,1∶𝑀 , 𝒟𝑐
ℓ, 𝜃), given context sets 𝒟𝑐

ℓ of
size 𝑁.

Depending on the architecture, we approximate the posterior predictive log-likelihood accord-
ing to:

• For BA + PB likelihood approximation:

1
𝐿
1
𝑀

𝐿
∑
ℓ=1

𝑀
∑
𝑚=1

log𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑥𝑡ℓ,𝑚, 𝜇𝑧,ℓ, 𝜎2𝑧,ℓ, 𝜃) . (A.18)
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• For MA + deterministic loss (= CNP):

1
𝐿
1
𝑀

𝐿
∑
ℓ=1

𝑀
∑
𝑚=1

log𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑥𝑡ℓ,𝑚, ̄𝑟ℓ, 𝜃) . (A.19)

• For architectures employing sampling-based likelihood approximations (VI, MC-LL) we
report the joint log-likelihood over all data points in a test set, i.e.

1
𝐿
1
𝑀

𝐿
∑
ℓ=1

log∫𝑞𝜙 (𝑧ℓ ∣ 𝒟𝑐
ℓ)

𝑀
∏
𝑚=1

𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑥𝑡ℓ,𝑚, 𝑧ℓ, 𝜃) d𝑧ℓ

≈ 1
𝐿
1
𝑀

𝐿
∑
ℓ=1

log 1𝑆
𝑆
∑
𝑠=1

𝑀
∏
𝑚=1

𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑥𝑡ℓ,𝑚, 𝑧ℓ,𝑠, 𝜃)

= − 1
𝑀 log 𝑆 + 1

𝐿
1
𝑀

𝐿
∑
𝑙=1

𝑆
logsumexp

𝑠=1
(

𝑀
∑
𝑚=1

log𝑝 (𝑦𝑡ℓ,𝑚 ∣ 𝑥𝑡ℓ,𝑚, 𝑧ℓ,𝑠, 𝜃)) ,

(A.20)

where 𝑧ℓ,𝑠 ∼ 𝑞𝜙 (𝑧 ∣ 𝒟ℓ). We employ 𝑆 = 25 latent samples.

To compute the log-likelihood values given in tables, we additionally average over various context
set sizes 𝑁 as detailed in the main part of this paper.

We report the mean posterior predictive log-likelihood computed in this way w.r.t. 10 training
runs with different random seeds together with 95% confidence intervals

A.6 Additional Experimental Results

We provide additional experimental results accompanying the experiments presented in Sec. 3.5:

• Results for relative evaluation runtimes and numbers of parameters of the optimized
network architectures on the full GP suite of experiments, cf. Tab. A.3.

• The posterior predictive mean squared error on all experiments, cf. Tab. A.4.

• The context-size dependent results for the predictive posterior log-likelihood for the 1D
and 3D Quadratic experiments, the Furuta dynamics experiment, as well as the 2D image
completion experiment, cf. Fig. A.2.

• More detailed plots of the predictions on one-dimensional experiments (1D Quadratics
(Figs. A.3, A.4), RBF-GP, (Figs. A.5, A.6), Weakly Periodic GP (Figs. A.7, A.8), and
Matern-5/2 GP (Figs. A.9, A.10)).
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Table A.3: Relative evaluation runtimes and numbers of parameters of the optimized network architectures on the GP
tasks. The deterministic methods (PB, det.) are much more efficient regarding evaluation runtime, as they
require only on forward pass per prediction, while the sampling-based approaches (VI, MC) require multiple
forward passes (each corresponding to one latent sample) to compute their predictions. We use 𝑆 = 25 la-
tent samples, as described in App. A.5.4. Furthermore, BA tends to require less complex encoder and decoder
network architectures compared to MA, because it represents a more efficient mechanism to propagate infor-
mation from the context set to the latent state.

BA MA
RBF GP Runtime PB/det. 1 1.4

VI 18 25
MC 32 27

#Parameters PB/det. 72k 96k
VI 63k 77k
MC 122k 153k

Weakly Periodic GP Runtime PB/det. 1 1.4
VI 11 10
MC 22 15

#Parameters PB/det. 51k 87k
VI 48k 72k
MC 87k 89k

Matern-5/2 GP Runtime PB/det. 1 1.1
VI 6.5 11
MC 15 19

#Parameters PB/det. 53k 100k
VI 32k 35k
MC 108k 104k
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Table A.4: Posterior predictive mean squared error (MSE) on all experiments presented in this paper. We average over
the same context set sizes as used to compute the posterior predictive log-likelihood, cf. Sec. 3.5, and again
use 𝑆 = 25 latent samples to compute the mean prediction of sampling-based methods. Our BA consistently
improves predictive performance compared to MA not only in terms of likelihood (as shown in Sec. 3.5), but
also in terms of MSE. Furthermore, while ANP tends to perform poorly in terms of likelihood (cf. Sec. 3.5), it’s
MSE is improved greatly by the attention mechanism.

BA MA
RBF GP PB/det. 0.0623 ± 0.0009 0.0687 ± 0.0010

VI 0.0736 ± 0.0005 0.0938 ± 0.0036
MC 0.0637 ± 0.0007 0.0741 ± 0.0012
ANP 0.0550 ± 0.0009

Weakly Periodic GP PB/det. 0.0679 ± 0.0007 0.0761 ± 0.0014
VI 0.0879 ± 0.0017 0.1326 ± 0.0518
MC 0.0677 ± 0.0008 0.0832 ± 0.0009
ANP 0.0592 ± 0.0009

Matern-5/2 GP PB/det. 0.2452 ± 0.0088 0.3021 ± 0.0035
VI 0.3702 ± 0.0100 0.6292 ± 0.1077
MC 0.2321 ± 0.0019 0.5166 ± 0.1438
ANP 0.1890 ± 0.0012

Quadratics 1D, 𝐿 = 64 PB/det. 0.1447 ± 0.0095 0.1513 ± 0.0091
VI 0.1757 ± 0.0128 0.1833 ± 0.0154
MC 0.1473 ± 0.0107 0.1636 ± 0.0082
ANP 0.1330 ± 0.0037

Quadratics 3D, 𝐿 = 128 PB/det. 190.5 ± 1.4 195.4 ± 1.5
VI 253.1 ± 18.0 278.1 ± 40.5
MC 196.8 ± 2.6 206.7 ± 5.3
ANP 192.5 ± 2.7

Furuta Dynamics PB/det. 0.1742 ± 0.0092 0.1989 ± 0.0095
VI 0.2269 ± 0.0088 0.2606 ± 0.0165
MC 0.1758 ± 0.0124 0.1977 ± 0.0154
ANP 0.1516 ± 0.0073

2D Image Completion PB/det. 0.0348 ± 0.0010 0.0417 ± 0.0026
ANP 0.0215 ± 0.0003
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Figure A.2: Posterior predictive log-likelihood in dependence of the context set size 𝑁 for the 1D and 3D Quadratic
experiments, the Furuta dynamics experiment as well as the 2D image completion experiment.
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Figure A.3: Predictions on two instances (dashed lines) of the 1D quadratic function class, given 𝑁 = 3 context data
points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10
function samples (for deterministic methods we employ AR sampling).
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Figure A.4: Predictions on two instances (dashed lines) of the 1D quadratic function class, given 𝑁 = 19 context data
points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10
function samples (for deterministic methods we employ AR sampling).
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Figure A.5: Predictions on two instances (dashed lines) of the RBF GP function class, given𝑁 = 20 context data points
(circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10 function
samples (for deterministic methods we employ AR sampling).
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Figure A.6: Predictions on two instances (dashed lines) of the RBF GP function class, given𝑁 = 60 context data points
(circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10 function
samples (for deterministic methods we employ AR sampling).
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(a) BA + PB (b) MA + det. (CNP)

(c) BA + VI (d) MA + VI (LP-NP) (e) ANP

(f) BA + MC-LL (g) MA + MC-LL

Figure A.7: Predictions on two instances (dashed lines) of the Weakly Periodic GP function class, given𝑁 = 20 context
data points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with
10 function samples (for deterministic methods we employ AR sampling).
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(a) BA + PB (b) MA + det. (CNP)

(c) BA + VI (d) MA + VI (LP-NP) (e) ANP

(f) BA + MC-LL (g) MA + MC-LL

Figure A.8: Predictions on two instances (dashed lines) of the Weakly Periodic GP function class, given𝑁 = 60 context
data points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with
10 function samples (for deterministic methods we employ AR sampling).
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Figure A.9: Predictions on two instances (dashed lines) of the Matern-5/2 GP function class, given𝑁 = 20 context data
points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10
function samples (for deterministic methods we employ AR sampling).
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Figure A.10: Predictions on two instances (dashed lines) of the Matern-5/2 GP function class, given𝑁 = 60 context data
points (circles). We plot mean and standard deviation (solid line, shaded area) predictions together with 10
function samples (for deterministic methods we employ AR sampling).
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Gaussian Mixture Models

This appendix provides further details that supplement the main part of our paper.

B.1 Algorithmic Details

In this section we lay out the full set of variational update equations and provide pseudocode for
our GMM-NP algorithm.

B.1.1 Variational Update Equations

We provide the full set of equations required to compute the TRNG update for the variational
parameters 𝝓ℓ ≡ {𝑤ℓ,𝑘, 𝝁ℓ,𝑘, 𝜮ℓ,𝑘}, 𝑘 ∈ {1, … , 𝐾}, parameterizing our GMM TP approximation as

𝑞𝝓ℓ (𝒛ℓ) ≡ ∑
𝑘
𝑤ℓ,𝑘𝑞𝝓ℓ (𝒛ℓ ∣ 𝑘) ≡ ∑

𝑘
𝑤ℓ,𝑘𝒩(𝒛ℓ ∣ 𝝁ℓ,𝑘, 𝜮ℓ,𝑘) (B.1)

with∑𝑘 𝑤ℓ,𝑘 = 1. The TRNG-VI update equations, as proposed by Arenz et al. [Are23], read

𝜮ℓ,𝑘,new = [ 𝜂
𝜂 + 1𝜮

−1
ℓ,𝑘,old −

1
𝜂 + 1𝑹ℓ,𝑘]

−1

, (B.2a)

𝝁ℓ,𝑘,new = 𝜮ℓ,𝑘,new[
𝜂

𝜂 + 1𝜮
−1
ℓ,𝑘,old𝝁ℓ,𝑘,old +

1
𝜂 + 1(𝒓ℓ,𝑘 − 𝑹ℓ,𝑘𝝁ℓ,𝑘,old)], (B.2b)

𝑤ℓ,𝑘,new ∝ exp 𝜌ℓ,𝑘, (B.2c)

where 𝑹ℓ,𝑘 , 𝒓ℓ,𝑘 , and 𝜌ℓ,𝑘 are defined as expectations that can be approximated from per-
component samples using MC:

𝑹ℓ,𝑘 = 𝔼𝑞𝝓ℓ,old (𝒛ℓ ∣𝑘)[𝜮
−1
ℓ,𝑘,old(𝒛ℓ − 𝝁ℓ,𝑘,old)∇𝑇

𝒛ℓℎℓ,𝑘 (𝒛ℓ) ], (B.3a)

𝒓ℓ,𝑘 = 𝔼𝑞𝝓ℓ,old (𝒛ℓ ∣𝑘)[∇𝒛ℓℎℓ,𝑘 (𝒛ℓ) ], (B.3b)

𝜌ℓ,𝑘 = 𝔼𝑞𝝓ℓ,old (𝒛ℓ ∣𝑘)[ℎℓ,𝑘 (𝒛ℓ) − log 𝑞𝝓ℓ,old (𝒛ℓ ∣ 𝑘) ]. (B.3c)
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Here, we defined

ℎℓ,𝑘 (𝒛ℓ) ≡ log ̃𝑝ℓ(𝒛ℓ) + log 𝑞𝝓ℓ,old (𝒛ℓ|𝑘) − log 𝑞𝝓ℓ,old (𝒛ℓ) . (B.4)

The optimal value for the Lagrangean parameter 𝜂 ≥ 0 that enforces the trust region constraint

KL [𝑞𝝓||𝑞𝝓old] ≤ 𝜀, (B.5)

is defined by a scalar convex optimization problem that can be solved efficiently by a bracketing
search, which also ensures positive definiteness of the new covariance matrix 𝜮ℓ,𝑘,new.

B.1.2 GMM Initialization

We provide details on the initialization of the variational GMMs before meta-training and testing.
As we use the same procedure for each task, we drop task indices ℓ to avoid clutter. Given a
number 𝐾 of components for the GMM task posterior (TP) 𝑞𝝓(𝑧) Eq. (4.12), we use a prior 𝑝(𝑧)
with 𝐾 components. To initialize the means 𝜇𝑘 , covariances Σ𝑘 , and mixture weights 𝑤𝑘 for
𝑘 ∈ {1, … , 𝐾}, we use the same simple heuristic as Arenz et al. [Are23]:

• Draw the means 𝜇𝑘 from a 𝑑𝑧-dimensional standard Normal distribution,

• The covariances Σ𝑘 are initialized as diagonal matrices (with 1 on the diagonal),

• The weights are initialized uniformly as 𝑤𝑘 = 1/𝐾.

B.1.3 Algorithm Summary

We provide pseudocode for the meta-training stage of our GMM-NP algorithm in Alg. 1 and for
the prediction stage in Alg. 2.

B.1.4 Discussion of Convergence Properties

B.1.4.1 Convergence of the ELBO

Our algorithm inherits the convergence guarantee of the variational Bayes algorithm as discussed,
e.g., in Bishop [Bis06]. In general, convergence of variational Bayes is independent of the concrete
optimization strategy used for (𝜙, 𝜃): as long as both the E-step (step in 𝜙) and the M-step (step in
𝜃) increase the ELBO objective (first term in Eq. (4.14)), the algorithm is guaranteed to converge to
a local optimum of the ELBO. While in standard, reparameterized, variational Bayes (as employed
by the baseline methods studied in Sec. 4.5) (𝜙, 𝜃) are optimized jointly using, e.g., Adam [Kin15],
our method alternates between a step in 𝜙 using TRNG-VI [Are23] and a step in 𝜃 using Adam.
Nevertheless, both steps increase the ELBO, so our algorithm will converge.
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Algorithm 1 GMM-NP (Meta-Training)
Require: Meta-data 𝒟ℓ = {𝒙ℓ,1∶𝑁 , 𝒚ℓ,1∶𝑁}, ℓ ∈ 1 ∶ 𝐿

Sample variably-sized auxiliary tasks �̃� ̃ℓ = {𝒙 ̃ℓ,1∶𝑁 ̃ℓ , 𝒚 ̃ℓ,1∶𝑁 ̃ℓ }, ̃ℓ ∈ 1 ∶ �̃�, cf. Sec. B.3.2
Initialize variational parameters 𝝓1∶�̃� = {𝑤1∶�̃�,1∶𝐾 , 𝝁1∶�̃�,1∶𝐾 , 𝜮1∶�̃�,1∶𝐾}
Initialize model parameters 𝜽
while not converged do

for each minibatch of tasks 𝐼 ⊂ {1, … , �̃�} do
Sample 𝒛ℓ,𝑘,𝑠 ∼ 𝑞𝝓ℓ (𝒛ℓ ∣ 𝑘) for ℓ ∈ 𝐼, 𝑘 ∈ 1 ∶ 𝐾, 𝑠 ∈ 1 ∶ 𝑆
Evaluate ℎℓ,𝑘 (𝒛ℓ,𝑘,𝑠, �̃�ℓ) for ℓ ∈ 𝐼, 𝑘 ∈ 1 ∶ 𝐾, 𝑠 ∈ 1 ∶ 𝑆, Eq. (B.4)
Update variational parameters 𝝓ℓ for ℓ ∈ 𝐼, Eq. (4.13)
Sample 𝒛ℓ,𝑠 ∼ 𝑞𝝓ℓ (𝒛ℓ) for ℓ ∈ 𝐼, 𝑠 ∈ 1 ∶ 𝑆
Estimate ∇𝜽ℒ (𝜽) , ∝ ∑𝑠,𝑛 ∇𝜽 log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ,𝑠), Eq. (4.14)
Perform step in 𝜽 using Adam

end for
end while
return Model parameters 𝜽

Algorithm 2 GMM-NP (Prediction)
Require: Context data 𝒟𝑐

∗ = {𝒙𝑐∗,1∶𝑀∗ , 𝒚
𝑐
∗,1∶𝑀∗ }, model parameters 𝜽, target inputs 𝒙𝑡∗,1∶𝑁∗

Initialize variational parameters 𝝓∗ = {𝑤∗,1∶𝐾 , 𝝁∗,1∶𝐾 , 𝜮∗,1∶𝐾}
while not converged do

Sample 𝒛∗,𝑘,𝑠 ∼ 𝑞𝝓∗ (𝒛∗ ∣ 𝑘) for 𝑘 ∈ 1 ∶ 𝐾, 𝑠 ∈ 1 ∶ 𝑆
Evaluate ℎ∗,𝑘 (𝒛∗,𝑘,𝑠, 𝒟𝑐

∗) for 𝑘 ∈ 1 ∶ 𝐾, 𝑠 ∈ 1 ∶ 𝑆, Eq. (B.4)
Update variational parameters 𝝓∗, Eq. (4.13)

end while
Sample 𝒛∗ ∼ 𝑞𝝓∗ (𝒛∗)
return Predictions 𝒚𝑡∗,𝑛 = dec𝜽 (𝒙𝑡∗,𝑛, 𝒛∗), 𝑛 ∈ 1 ∶ 𝑁∗

B.1.4.2 Convergence of the Marginal Likelihood

As discussed in Sec. 4.4, our GMM-NP algorithm is designed to improve the convergence be-
haviour w.r.t. the marginal likelihood Eq. (4.14) in comparison to existing NP-based BML ap-
proaches. Recall that the convergence guarantee of the classical expectation-maximization (EM)
algorithm w.r.t. the marginal likelihood is lost as soon as the E-step becomes intractable, i.e., as
soon as the posterior distribution cannot be computed exactly, and, thus, has to be approximated
by a variational distribution, cf., e.g., [Bis06]. This is the case for most models of reasonable
complexity, e.g., for the variational autoencoder [Kin13] or the NP model family [Gar18c]. Our
GMM-NP model is no exception here, as we build on the NP model for which the TP distribution
cannot be computed analytically. Convergence of the marginal likelihood when using the ELBO
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(first term in Eq. (4.14)) as a surrogate objective is guaranteed if the ELBO is tight after the E-step,
which is the setting of the aforementioned EM algorithm and only the case for a perfect TP ap-
proximation, i.e., if KL [𝑞𝜙(𝑧)||𝑝𝜃(𝑧 ∣ 𝒟𝑐)] = 0, cf. also App. B.3.3. For imperfect approximations,
the tightness of the bound is controlled by the variational gap KL [𝑞𝜙(𝑧)||𝑝𝜃(𝑧 ∣ 𝒟𝑐)] > 0. A better
approximate posterior 𝑞𝜙(𝑧) yields a tighter ELBO, which in turn brings us closer to the EM set-
ting, i.e., typically improves convergence. Our GMM-NP algorithm builds exactly on this insight:
we use an expressive TP approximation by a full-covariance GMM and a powerful optimizer for
𝜙 (TRNG-VI, [Are23]) to obtain a tighter ELBO than existing BML approaches in order to achieve
optimization of the model parameters in a way that efficiently maximizes the marginal likelihood.

B.2 Baseline Algorithms

Tab. B.1 gives an overview of the architectural differences of the BML approaches we compared
in our empirical evaluation (Sec. 4.5).

Table B.1: Comparison of state-of-the-art approaches for Bayesianmeta-learning (TRNGD= trust region natural gradient
descent, RSGD = reparameterized stochastic gradient descent, SGD = stochastic gradient descent, SE = set
encoder, MA = mean aggregation, BA = Bayesian aggregation, SA = self attention, CA = cross attention).

TP Approx. VI Approach Amortization Det. Path
GMM-NP (ours) Full-cov. GMM TRNGD none none
MA-NP [Gar18c] Diag. Gaussian RSGD SE + MA none
BA-NP [Vol21] Diag. Gaussian RSGD SE + BA none
BNP [Lee20] Non-parametric SGD SE + MA none
ANP [Kim19] Diag. Gaussian RSGD SA + SE + MA CA
BANP [Lee20] Non-parametric SGD SA + SE + MA CA

To compute our results, we consistently use code by the original authors. We also provide source
code for our proposed GMM-NP algorithm:

• Source code four our GMM-NP algorithm:
https://github.com/ALRhub/gmm_np,

• MA-NP, ANP:
https://github.com/deepmind/neural-processes,

• BA-NP:
https://github.com/boschresearch/bayesian-context-aggregation,

• BNP, BANP:
https://github.com/juho-lee/bnp.
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B.3 Experimental Protocol

B.3 Experimental Protocol

To foster reproducibility, we provide details on our experimental protocol.

B.3.1 Model Hyperparameters

To arrive at a fair comparison of our GMM-NP model with the baseline approaches, we op-
timize model hyperparameters individually for each model-dataset combination presented in
Sec. 4.5. Concretely, we perform a Bayesian hyperparameter sweep with 256 trials for each
model-dataset combination over the parameters detailed below. For the image completion ex-
periment on MNIST, we employ a grid search with fewer trials to keep the computational effort
manageable. For hyperparameters not mentioned below, we consistently use standard settings
proposed by the original authors. To implement the hyperparameter search, we use the wandb
sweep functionality [Bie20].

B.3.1.1 Observation Noise Parametrization

As detailed in Sec. 4.3.2, all compared models (including our GMM-NP) employ a Gaussian like-
lihood of the form

𝑝𝜽 (𝒚 ∣ 𝒙, 𝒛) ≡ 𝒩(𝒚 ∣ dec𝝁𝜽 (𝒙, 𝒛) , diag (𝜎2n)) , (B.6)

where the mean is computed by a decoder DNN dec𝝁𝜽 receiving the input location 𝒙 and a latent
sample 𝒛. However, different parameterizations of the observation noise variance 𝜎2n are used
in the literature. As it is not clear which setting is fairest, we also treat the observation noise
parameterization as a hyperparameter. Concretely, for each model-dataset combination, we test
the following settings for the observation noise (with individual hyperparameter sweeps) and
report the best performing one:

1 𝜎2n = 𝜎2n,true with 𝜎2n,true being the true noise variance on the data,

2 𝜎2n ∈ ℝ is a single float value, optimized jointly with 𝜽,
3 𝜎2n = dec𝝈𝜽 (𝒙), i.e., observation noise is parameterized by a second decoder network,

optimized jointly with dec𝝁𝜽 , but receiving only the input location,

4 𝜎2n = dec𝝈𝜽 (𝒙, 𝒛), i.e., observation noise is parameterized by a second decoder network,
optimized jointly with dec𝝁𝜽 , and also receiving both the input location and the latent
sample.

For all compared models, and regardless of the parameterization, we bound the observation noise
from below using a softplus transformation s.t. 𝜎n ≥ 𝜎n,min = 0.1, as proposed by [Gar18c, Kim19,
Lee20].
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B.3.1.2 DNN Architectures

For all experiments and all baseline models, we use encoder and decoder DNNs with two hidden
layers. Likewise, our GMM-NP model uses a decoder DNN with two hidden layers. We optimize
the number of hidden units per layer within the bounds {8, … , 64}.

B.3.1.3 Latent Dimensionalities

For baseline models with parametric latent distributions (all except B(A)NP), we optimize the
latent dimension 𝑑𝑧 within the bounds {1, … , 64}. As our GMM-NP algorithm employs full co-
variance matrices, we restrict the bounds for 𝑑𝑧 to {1, … , 8} for a fair comparison.

B.3.1.4 Number of GMM components

For our GMM-NP algorithm, as well as for iBayes-GMM [Lin20] used for the comparison in
Sec. B.5.1, we optimize the number of GMM components within the bounds {1, … , 10}.

B.3.1.5 Learning Rates and Trust Region Bounds

All algorithms use the Adam optimizer with standard settings to update DNN weights. We op-
timize the corresponding learning rates on a log-uniform scale within the bounds [10−5, 10−1].
We use the same settings to optimize the step size for the GMM updates of the variational param-
eters of the iBayes-GMM algorithm [Lin20] used for the comparison in Sec. B.5.1. As proposed by
Arenz et al. [Are23], we optimize the Lagrangean parameter 𝜂 of our GMM-NP algorithm using
a bracketing search on the interval [10−3, 10−1].

B.3.2 Auxiliary Subtask Generation for Meta-Training

We describe the procedure to sample auxiliary subtasks during meta-training in more detail,
cf. Sec. 4.4.

B.3.2.1 Nomenclature

Recall from Sec. 4.3.2 that we define a meta-task as the set of all available (noisy) evaluations𝒟ℓ ,
ℓ ∈ {1, … , 𝐿} from an unknown function 𝑓ℓ and that each meta-task contains 𝑁 examples. Thus,
a meta-task 𝒟ℓ is all data a BML algorithm has available to learn about 𝑓ℓ during meta-training.
A subtask of meta-task 𝒟ℓ is defined as an arbitrary subset of 𝒟ℓ .
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B.3.2.2 Auxiliary Subtask Sampling

As described in Sec. 4.4, standard NP meta-training samples auxiliary subtasks from the meta-
data for each minibatch step in order to provide the decoder with samples from task posterior
approximations informed by a range of context sizes. We use the following standard proce-
dure [Gar18c, Kim19, Lee20] to sample auxiliary subtasks to evaluate the optimization objectives
of the baseline approaches (e.g., Eq. (4.8) for standard NP). Given a minibatch 𝐼 ⊂ {1, … , 𝐿} of
meta-tasks𝒟ℓ , ℓ ∈ 𝐼, we first sample auxiliary subtasks �̃�ℓ with a size �̃� drawn uniformly from
�̃� ∈ {𝑁min + 1,… ,𝑁max} with 𝑁min ≥ 1 and 𝑁max ≤ 𝑁. Then, we sample context sets �̃�𝑐

ℓ ⊂ ̃𝒟ℓ
of size𝑀, drawn uniformly from𝑀 ∈ {1,… , �̃�}. �̃�𝑐

ℓ and ̃𝒟ℓ are then used in Eq. (4.8) to compute
the ELBO objective for the current minibatch.

As described in Sec. 4.4, our GMM-NP algorithm uses a similar approach: we employ auxiliary
subtasks with sizes �̃� drawn uniformly from �̃� ∈ {𝑁min, … ,𝑁max} to evaluate the updates for the
variational GMM parameters and the model parameters. Note that our algorithm does not require
to sample context sets during meta training from the auxiliary subtasks. Furthermore, recall that
we train one variational GMM for each auxiliary subtask and retain those GMMs over the whole
course of meta training, so we fix a set of �̃� auxiliary subtasks at the beginning of meta-training
(in contrast to standard NPs, which sample new subtasks for each minibatch).

We use the following settings for 𝑁min, 𝑁max in our experiments: 𝑁min = 1, 𝑁max = 𝑁, except
for MNIST image completion where we use 𝑁max = 𝑁/2. Further, we use �̃� = 32𝐿, except for
MNIST image completion where we use �̃� = 8.

B.3.3 Metrics

For each model-dataset combination, we retrain the best hyperparameter setting determined ac-
cording to Sec. B.3.1 with 8 different random seeds used for model initialization, and report the
median value together with (5%, 95%) percentiles of the metrics computed according to the for-
mulae provided below. For all experiments (except the MNIST image completion experiment), we
evaluate all metrics on 𝐿 = 256 unseen test tasks 𝒟1∶𝐿 with 𝒟ℓ = {𝒚ℓ,1∶𝑁 , 𝒙ℓ,1∶𝑁} and 𝑁 = 64,
from which we sample context sets 𝒟𝑐

ℓ ⊂ 𝒟ℓ . For the image completion experiment we use
𝐿 = 1024 and 𝑁 = 784 (the number of pixels per image). We report the results in dependence
of the context set size.

B.3.3.1 Log Marginal Predictive Likelihood (LMLHD)

For a given task ℓ the LMLHD is defined by Eq. (4.7), which we restate here for convenience:

log 𝑞𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐
ℓ) ≡ log∫

𝑁
∏
𝑛=1

𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑞 (𝒛ℓ ∣ 𝒟𝑐
ℓ) d𝑧ℓ. (B.7)
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Here, we use the generic notation 𝑞 (𝒛ℓ ∣ 𝒟𝑐
ℓ) to denote the task posterior TP approximation,

the concrete form of which depends on the BML model under consideration. As the integral is
analytically intractable, we resort to an MC approximation. To this end, we sample 𝑆 = 1024
samples 𝒛ℓ,𝑠 ∼ 𝑞 (𝒛ℓ ∣ 𝒟𝑐

ℓ) in the test set and compute [Vol21]

log 𝑞𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐
ℓ) ≡ log∫

𝑁
∏
𝑛=1

𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) 𝑞 (𝒛ℓ ∣ 𝒟𝑐
ℓ) d𝑧ℓ

≈ log 1𝑆
𝑆
∑
𝑠=1

𝑁
∏
𝑛=1

𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ,𝑠)

= − log 𝑆 +
𝑆

logsumexp
𝑠=1

𝑁
∑
𝑛=1

log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ,𝑠) .

(B.8)

where logsumexp denotes the numerically stable implementation of the function log∑𝑠 exp(𝑥𝑠),
available in any scientific computing framework. We then compute the median of this expression
over all tasks of the test set.

B.3.3.2 Mean Squared Error (MSE)

We report the MSE w.r.t. the mean prediction. That is, for a given task ℓ, we again draw 𝑆 = 1024
samples 𝒛ℓ,𝑠 ∼ 𝑞 (𝒛ℓ ∣ 𝒟𝑐

ℓ) and compute

MSE (𝒚ℓ,1∶𝑁 , 𝒙ℓ,1∶𝑁) ≡
1
𝑁

𝑁
∑
𝑛=1

(1𝑆
𝑆
∑
𝑠=1

dec𝝁𝜽 (𝒙ℓ,𝑛, 𝒛ℓ,𝑠) − 𝒚ℓ,𝑛)
2

. (B.9)

We then compute the median of this expression over all tasks of the test set.

B.3.3.3 ELBO Looseness

For a given task ℓ, we define the ELBO looseness as the KL-divergence between the approximate
task posterior 𝑞 (𝒛ℓ ∣ 𝒟ℓ) and the task posterior in the model 𝑞𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐

ℓ) Eq. (B.7),
which we denote by 𝑞𝜽 (𝒛ℓ ∣ 𝒟ℓ, 𝒟𝑐

ℓ) ≡
𝑝𝜽(𝒚ℓ,1∶𝑁∣𝒙ℓ,1∶𝑁,𝒛ℓ)𝑞(𝒛ℓ ∣𝒟𝑐

ℓ)
𝑞𝜽(𝒚ℓ,1∶𝑁∣𝒙ℓ,1∶𝑁,𝒟𝑐

ℓ)
. This decomposes as

KL [𝑞 (𝒛ℓ ∣ 𝒟ℓ) || 𝑞𝜽 (𝒛ℓ ∣ 𝒟ℓ, 𝒟𝑐
ℓ)] = log 𝑞𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐

ℓ)

− 𝔼𝑞(𝒛ℓ ∣𝒟ℓ) [
𝑁
∑
𝑛=1

log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) + log 𝑞 (𝒛ℓ ∣ 𝒟
𝑐
ℓ)

𝑞 (𝒛ℓ ∣ 𝒟ℓ)
] .

(B.10)
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The second term is the ELBO,

ℒ (𝜽,𝒟𝑐
ℓ, 𝒟ℓ) ≡ 𝔼𝑞(𝒛ℓ ∣𝒟ℓ) [

𝑁
∑
𝑛=1

log𝑝𝜽 (𝒚ℓ,𝑛 ∣ 𝒙ℓ,𝑛, 𝒛ℓ) + log 𝑞 (𝒛ℓ ∣ 𝒟
𝑐
ℓ)

𝑞 (𝒛ℓ ∣ 𝒟ℓ)
] , (B.11)

where we made its dependence on both the test set 𝒟ℓ and the context set 𝒟𝑐
ℓ ⊂ 𝒟ℓ explicit

(in contrast to our notation in the main part of this paper). We say that the ELBO is tight if its
looseness is zero. Then, log 𝑞𝜽 (𝒚ℓ,1∶𝑁 ∣ 𝒙ℓ,1∶𝑁 , 𝒟𝑐

ℓ) = ℒ (𝜽,𝒟𝑐
ℓ, 𝒟ℓ), and the optimization of the

ELBO w.r.t. 𝜽 is equivalent to the optimization of the LMLHD.

For our ablation study (Sec. 4.5.2), we estimate the looseness of the ELBO by computing the
difference of an importance-weighted MC estimate with proposal distribution 𝑞 (𝒛ℓ ∣ 𝒟ℓ)
of the LMLHD and an MC estimate of the ELBO Eq. (B.11), each with 𝑆 = 1024 samples
𝒛ℓ,𝑠 ∼ 𝑞 (𝒛ℓ ∣ 𝒟ℓ).

B.4 Data Generation

We provide details on the meta-datasets we use to train the models we compare in Sec. 4.5. Con-
cretely, we provide

• the dimension 𝑑𝑥 of inputs 𝒙ℓ,𝑛 ∈ ℝ𝑑𝑥 ,

• the domain 𝒞 ⊂ ℝ𝑑𝑥 from which we uniformly sample 𝒙ℓ,𝑛,
• the dimension 𝑑𝑦 of targets 𝒚ℓ,𝑛 ∈ ℝ𝑑𝑦 ,

• an expression for the function 𝑓ℓ ∶ ℝ𝑑𝑥 → ℝ𝑑𝑦 , s.t., 𝒚ℓ,𝑛 = 𝑓ℓ (𝒙ℓ,𝑛) + 𝜺𝑛,
• the noise standard deviation 𝜎, s.t., 𝜺𝑛 ∼ 𝒩(0, 𝜎2),
• the number 𝐿 of meta-tasks and the number 𝑁 of datapoints for each meta-task.

We denote the uniform distribution on (𝑎, 𝑏)𝑑 ⊂ ℝ𝑑 by U (𝑎, 𝑏)𝑑 .

Sinusoidal Functions:

• 𝑑𝑥 = 1
• 𝒞 = [−5.0, 5.0]
• 𝑑𝑦 = 1
• 𝑓ℓ (𝑥) = 𝐴ℓ sin (𝑥 − 𝜙ℓ), 𝐴ℓ ∼ U (0.1, 5.0), 𝜙ℓ ∼ U (0.0, 𝜋)
• 𝜎 = 0.25
• 𝐿 = 64, 𝑁 = 16

Mix of Affine and Sinusoidal Functions:
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• 𝑑𝑥 = 1
• 𝒞 = [−5.0, 5.0]
• 𝑑𝑦 = 1
• 𝑓1ℓ (𝑥) = 𝑎ℓ𝑥 + 𝑏ℓ , 𝑎ℓ ∼ U (−3.0, 3.0), 𝑏ℓ ∼ U (−3.0, 3.0),
𝑓2ℓ (𝑥) = 𝐴ℓ sin (𝑥 − 𝜙ℓ), 𝐴ℓ ∼ U (0.1, 5.0), 𝜙ℓ ∼ U (0.0, 𝜋)
𝑓ℓ is given either by 𝑓1ℓ or 𝑓2ℓ with probability 0.5.

• 𝜎 = 0.25
• 𝐿 = 64, 𝑁 = 16

RBF-GP samples:

• 𝑑𝑥 = 1
• 𝒞 = [−2.0, 2.0]
• 𝑑𝑦 = 1
• 𝑓ℓ is drawn from a Gaussian process prior with RBF kernel with lengthscale
𝑙ℓ ∼ U (0.5, 1.0) and signal variance 𝑠ℓ ∼ U (0.5, 1.0).

• 𝜎 = 0.1
• 𝐿 = 64, 𝑁 = 16

Forrester 1D:

• 𝑑𝑥 = 1
• 𝑑𝑦 = 1
• We use the parameterized Forrester function [For08] as defined on
https://www.sfu.ca/~ssurjano/forretal08.html.

• 𝜎 = 0.25
• 𝐿 = 64, 𝑁 = 16

Branin 2D:

• 𝑑𝑥 = 2
• 𝑑𝑦 = 1
• We use the definition given on https://www.sfu.ca/~ssurjano/branin.html and apply
translations 𝝉ℓ ∼ U (−0.25, 0.25)2 to 𝒙, and scale the function values by
𝑠ℓ ∼ U (0.75, 1.25).

• 𝜎 = 0.25
• 𝐿 = 64, 𝑁 = 16
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Hartmann 3D:

• 𝑑𝑥 = 3
• 𝑑𝑦 = 1
• We use the definition given on https://www.sfu.ca/~ssurjano/hart3.html and apply
translations 𝝉ℓ ∼ U (−0.25, 0.25)3 to 𝒙, and scale the function values by
𝑠ℓ ∼ U (0.75, 1.25).

• 𝜎 = 0.1
• 𝐿 = 64, 𝑁 = 16

4D Furuta Dynamics Prediction:

• 𝑑𝑥 = 4
• 𝑑𝑦 = 4
• We use the dynamics equations given in Cazzolato et al. [Caz11] to simulate episodes,
starting from the pendulum balancing in the upright position. The input is the current
system state 𝒙 ∈ ℝ4, the target is the difference to the next system state 𝒙next ∈ ℝ4, i.e.,
𝒚 = Δ𝒙 ≡ 𝒙next − 𝒙 ∈ ℝ4.

• Noise is generated by random actions on the joints.

• 𝐿 = 64, 𝑁 = 64

2D MNIST Image Completion:

• 𝑑𝑥 = 2
• 𝑑𝑦 = 1
• We use the MNIST handwritten image database [LeC10]. Each image corresponds to one
task. The input 𝒙 is the pixel location, the target 𝑦 is the pixel intensity.

• 𝜎 = 0.25
• 𝐿 = 60000, 𝑁 = 784

B.5 Further Experimental Results

We provide further experimental results for the experiments presented in Sec. 4.5.

B.5.1 Ablation: Trust Regions

In Fig. B.1 we compare two methods for step size control for natural gradient VI, namely direct
step size control as proposed by [Lin20] and trust region step size control [Are23], as used by
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our GMM-NP algorithm. We observe that trust regions lead to more robust optimization of the
variational parameters, and, thus, to tighter ELBOs. This allows more efficient optimization of
the model parameters, leading to improved predictive performance.

0 5 10 15
context size

100

50

LMLHD
GMM-NP (ours): TRNG-VI, full, K>1 NG-VI, full, K>1
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(a) Sinusoidal functions.
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(b) Mix of affine and sinusoidal functions.

Figure B.1: Log marginal predictive likelihood (LMLHD) and ELBO looseness over context size for our trust region nat-
ural gradient VI (TRNG-VI)-based [Are23] GMM-NP algorithm in comparison to iBayes-GMM [Lin20] that
uses direct step size control instead of trust regions (NG-VI). Trust regions improve variational optimization,
leading to tighter ELBOs, and, consequently, to improved predictive performance.

B.5.2 Bayesian Optimization Experiments

We provide the full set of results for our Bayesian optimization experiments, cf. Sec. 4.5.3: Fig. B.2
shows the optimization regret for all four evaluated function classes, and Fig. B.3 the correspond-
ing results for LMLHD and MSE.

B.5.3 2D Image Completion on MNIST

Fig. B.4 shows the full set of predictions on the 2D image completion experiment on MNIST.

B.5.4 Visualization of Model Predictions

Figs. B.5 and B.6 show further visualization of predictions of models trained on the mix of affine
and sinusoidal functions.

B.5.5 Visualization of Latent Space Structure

We provide further visualizations similar to Fig. 4.5 of the task posterior approximation and cor-
responding function samples of our GMM-NP, when trained on the sinusoidal function class.
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Figure B.2: Simple regret over optimization iteration, when using BMLmodels as Bayesian Optimization (BO) surrogates
on various function classes. As BO relies on well-calibrated uncertainty predictions, the results demonstrate
that GMM-NP provides superior uncertainty estimates.
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Figure B.3: Log marginal predictive likelihood (LMLHD) and mean squared error (MSE) over context size on various
function classes. GMM-NP generally performs favorably, showing accurate predictions with well-calibrated
uncertainties.
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(a) GMM-NP (ours). (b) BA-NP. (c) ANP. (d) BANP.

Figure B.4: Predictions on an unseen instance of the MNIST 2D image completion task, showing the digit “6”. The
first row of each panel shows the context pixels (ranging from zero pixels in the left column to the full
image in the right column). The remaining rows show five samples from the BML models, conditioned
on the context pixels shown in the first row. The results are consistent with observations from the other
experiments (e.g., Fig. B.5): our GMM-NPmodel shows highly variable samples for small context sets, yielding
an accurate estimate of epistemic uncertainty, and contracts properly around the ground truth when more
context information is available. BA-NP also shows variable samples, albeit of lower quality. ANP and BANP
yield crisp predictions but massively overfit to the noise, explaining their low LMLHD scores. Note also that
BANP does not allow predictions for empty context sets.
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Figure B.5: Function samples computed by various BMLmodels (columns), trained on a function class consisting of a mix
of affine and sinusoidal functions (cf. Sec. 4.5.1), when provided with increasing amounts of context examples
(red crosses, rows) from an unseen sinusoidal representative function. We observe that our GMM-NP model
accurately quantifies epistemic uncertainty through the variability of its function samples. BA-NP also shows
variable samples, but does not achieve the same predictive performance due to its inaccurate approximation
of the task posterior distribution. ANP and BANP, both of which employ deterministic computation paths
with attention modules, produce essentially deterministic predictions that massively overfit the context data
and fail to give a reasonable estimate of the predictive distribution. Therefore, these models have to quantify
epistemic uncertainty through the likelihood noise variance, which is ineffective, cf. Fig. B.6. Note also that
BANP does not provide predictions for empty context sets.
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Figure B.6: This figure shows the same data as Fig. B.5, but for each function sample we also show a band of ±1 standard
deviation of the observation noise, as computed by the decoder DNN. GMM-NP quantifies epistemic uncer-
tainty correctly through its task posterior approximation, and thus does not have to rely on the decoder DNN
to quantify epistemic uncertainty through the observation noise. In contrast, ANP and BANP fail to produce
variable function samples, and have to make up for that by quantifying epistemic uncertainty through the
observation noise, which is ineffective. Note also that BANP does not provide predictions for empty context
sets.
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(a) A small context set (one single example indicated by the red cross) yields a highly correlated, multi-modal task posterior distribution.
Our GMM approximation correctly captures this, s.t., amplitudes and phases of the predicted sinusoidal functions are in accordance
with the observed context data point.
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(b) A second example on another instance of the sinusoidal function class, where the task posterior shows pronounced multimodality,
which translates into a bimodal predictive distribution.
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(c) Larger context sizes (three examples, red crosses) leave less task ambiguity, resulting in a unimodal and nearly isotropic task posterior
distribution. Our GMM approximation again correctly approximates this distribution, making use of only two of the 𝐾 = 3 mixture
components (the mixture weight of the orange component is close to zero, so no samples from this component are observed).

Figure B.7: Visualization of our GMM-NP model for a 𝑑𝑧 = 2 dimensional latent space, trained on sinusoidal functions
with varying amplitudes and phases, cf. Sec. 4.5.1. Left panels: unnormalized task posterior distribution
(contours) and variational GMM approximation with 𝐾 = 3 components (ellipses, mixture weights in %).
Right panels: corresponding samples from our model (blue lines), when having observed a context data set
(red crosses), together with unobserved ground truth data (black dots). The visualizations show that (i) the
true task posterior distribution can be highly correlated and multimodal, i.p., for small context sets (panels
a,b), (ii) our variational task posterior approximation correctly approximates this distribution, which (iii)
leads to expressive predictive distributions that incorporate both the inductive priors learned from the meta-
dataset (all samples are sinusoidal in shape) and the additional information contained in the context set (all
samples pass close to the context data).
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B.5.6 Runtime Comparison

B.5.6.1 Discussion of Limitations

As the meta-training stage of GMM-NP requires computational effort comparable to standard NP
(cf. Sec. 4.4), the only computational overhead of our algorithm occurs at test time, due to the
optimization loop required to fit a variational GMM to𝒟𝑐

∗. While this can be trivially parallelized
for multiple test tasks, it incurs a higher computational burden in comparison to the single for-
ward pass through NP’s set encoder (we provide an evaluation of the runtime of our algorithm
on the synthetic tasks studied in Sec. 4.5.1 below). We leave a detailed examination for future
work, but mention two possible remedies: (i) for problems where test data arrives sequentially,
we expect that a few update steps in 𝝓∗ suffice to reach convergence, and (ii) it might be possible
to find amortized approximations to Eqs. (4.13), similar in spirit to standard NP, that retain the
advantages of TRNG-VI.

B.5.6.2 Meta-Training

Fig. B.8 shows the learning curves for meta-training corresponding to the results presented in the
main part of this paper. As discussed in Sec. 4.4, GMM-NP incurs a computational cost comparable
to the baseline methods.

B.5.6.3 Test-time Adaptation

As discussed in Sec. 4.4, GMM-NP does not amortize TP inference, i.e., it does not learn a set
encoder architecture, but adapts new variational GMMs at test time. Naturally, this incurs a
higher computational cost in comparison to amortized architectures, which compute predictions
on test tasks in a single forward pass through their set-encoder – decoder architecture. In Fig. B.9,
we show the learning curves for fitting variational GMMs (by iterating Eqs. (4.13)) to the test tasks
and for the range of context sizes used to compute the results presented in Sec. 4.5.1. GMM-NP’s
TRNG-VI optimization converges in approximately 0.1 s – 1 s per test task (depending on the
context set size).
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(b) Learning curves on the mix of affine and sinusoidal function class.

Figure B.8: Learning curves for meta-training on the synthetic datasets, cf. Sec. 4.5.1. For each method, we show the
learning curves for the 8 seeds used to compute the results presented in the main text. For GMM-NP, we
show the loss for the decoder parameters 𝜽, for the other methods we show the joint loss for the encoder and
decoder parameters (𝝓, 𝜽). Note that for GMM-NP, convergence of 𝜽 implies convergence of the variational
parameters 𝝓. As discussed in Sec. 4.4, GMM-NP incurs a computational cost comparable to the baseline
methods.
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Figure B.9: Learning curves for fitting variational GMMs to the test tasks by TRNG-VI [Are23], as used by our GMM-NP
(Sec. 4.4), on the synthetic datasets (Sec. 4.5.1). The quantity labelled “Loss (adapt)” is the expected negative
log density of the unnormalized TP under the GMM TP approximation. Note that this is not the loss function
optimized by iterating Eqs. (4.13), but it serves as a proxy to judge convergence. We show results in terms
of wall clock time per test task (left panels) and in terms of TRNG-VI steps (right panels), for the range of
context sizes used to compute the results in the main text. GMM-NP’s TRNG-VI optimization converges in
approximately 0.1 s – 1 s per test task (depending on the context set size).

B.5.7 Analysis of HPO results

As discussed in Secs. 4.5 and B.3, we optimized architectural hyperparameters individually for
each model-dataset combination presented in our empirical evaluation, in order to arrive at a fair
comparison of our GMM-NP with the baseline methods. In Tab. B.2, we provide the resulting
settings for the latent dimensionality 𝑑𝑧, and the number of parameters of the BML models com-
pared in Sec. 4.5.1. While the number of variational parameters during meta-training is naturally
comparably high for non-amortizing methods such as GMM-NP, we observe that the expressive
GMM-NP TP approximation allows comparably lightweight decoders and small latent dimen-
sions. This is intuitive, as simple TP approximations require (i) large latent dimensions to encode
relevant information in the latent space, together with (ii) expressive decoder architectures to
transform the simple latent distribution into an expressive predictive distribution. Note further
that the variational parameters belonging to different tasks are not coupled in non-amortizing
architectures such as ours, which allows trivial parallelization of the variational optimization be-
tween tasks, explaining why the computational cost is easily manageable, cf. Sec. B.5.6. Note also
that the number of variational parameters one has to store and adapt for GMM-NP to make pre-
dictions on unseen test tasks is comparably small because the variational GMMs learned during
meta-training can be discarded as they are not required for predictions at test time.
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Table B.2: Results of our hyperparameter optimization on the sinusoidal function class and on the mix of affine and
sinusoidal functions. We provide the settings for the latent dimensionality 𝑑𝑧 and the number of parameters
of the BML models compared in Sec. 4.5.1 (i.e., the number of decoder parameters |𝜽| as well as the number of
encoder / variational parameters |𝝓|). If attentive modules are present, their parameters are counted as being
part of the encoder. For our GMM-NP, we also provide the number of GMM-components 𝐾. Furthermore, as
GMM-NP does not amortize TP-inference but learns separate variational GMMs for each subtask generated
from themeta-dataset (cf. Secs. 4.4 and B.3.2), we also provide the total number of variational GMMparameters
during meta-training. Note that these variational GMMs are decoupled and can be optimized in parallel.
Furthermore they are not required for predictions at test time and can be discarded after meta-training.

𝑑𝑧 𝐾 |𝜽| |𝝓| (per task) |𝝓| (meta-training)
Sinusoid GMM-NP (ours) 3 4 121 39 79872

MA-NP 10 - 2298 2595 2595
BA-NP 27 - 7334 7386 7386
BNP 56 - 12770 19488 19488
ANP 19 - 4096 10335 10335
BANP 40 - 6562 28320 28320

Line-Sine GMM-NP (ours) 4 4 2289 59 120832
MA-NP 19 - 2562 3679 3679
BA-NP 30 - 11592 11650 11650
BNP 54 - 11882 18144 18144
ANP 30 - 4496 14448 14448
BANP 32 - 4226 18304 18304
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C.1 Additional Experimental Results

C.1.1 Interpretation of Neural AF Search Strategies

We provide additional experimental results to demonstrate that MetaBO’s neural AFs learn rep-
resentations that go beyond some kind of standard AF combined with a prior over 𝒟.

C.1.1.1 Emergence of Non-Greedy Search Strategies

To obtain intuition about the kind of search strategies MetaBO is able to learn, we devised two
classes of one-dimensional toy objective functions.

The first class of objective functions (Rhino-1, cf. Fig. C.1) is generated by applying random trans-
lations sampled uniformly from 𝑡 ∈ [−0.2, 0.2] to a function which is given by the superposition
of two Gaussian bumps with different heights and widths and fixed distance,

𝑓R1(𝑥, 𝑡) ≡ 0.5 ⋅ 𝒩(𝑥 ∣ 𝜇 = 0.3 − 𝑡, 𝜎 = 0.1) + 3.0 ⋅ 𝒩(𝑥 ∣ 𝜇 = 0.7 − 𝑡, 𝜎 = 0.01) , (C.1)

where we define𝒩(𝑥 ∣ 𝜇, 𝜎) ≡ exp(−1/2 ⋅ (𝑥 − 𝜇)2/𝜎2). The second class of objective functions
(Rhino-2, cf. Fig. C.2) is given by uniformly sampling the parameter ℎ ∈ [0.6, 0.9] of the function

𝑓R2(𝑥, ℎ) ≡ ℎ ⋅ 𝒩(𝑥 ∣ 𝜇 = 0.2, 𝜎 = 0.1) + 2.0 ⋅ 𝒩(𝑥 ∣ 𝜇 = ℎ, 𝜎 = 0.01) − 1.0. (C.2)

For both of these function classes it is intuitively clear that the optimal search strategy involves a
first non-greedy evaluation to identify the specific instance of the target function. Indeed, for all
instances of these function classes, the smaller and wider bumps overlap and encode information
about the position of the sharp global optimum. Therefore, an optimal strategy spends the first
evaluation at a fixed position 𝑥0 where all smaller and wider bumps have non-negligible heights
𝑦0. Then, for both function classes, the global optimum 𝑥∗ can be determined exactly from 𝑦0 (if
we assume noiseless evaluations), such that 𝑥∗ can be found in the second step. Figs. C.1, C.2 show
thatMetaBO indeed learns such non-greedy optimization strategies, which go far beyond a simple
combination of a prior over 𝒟 with some kind of standard AF. As mentioned in the main part of
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this paper, we suppose that MetaBO employs similar strategies on more complex function classes.
For instance, we observe in the experiments on the global optimization benchmark functions
(Fig. 5.3) that MetaBO consistently starts with higher regret than the pre-informed TAF which
suggests that it learned to spend a few non-greedy evaluations at the beginning of an optimization
run to identify the specific instance of the target function.

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure C.1: Visualization of three BO episodes with neural AFs on the 1𝐷 Rhino-1 task. Each column of this figure
correspond to one episode with three optimization steps. The uppermost row corresponds to the prior state
before the objective function was queried. The fourth row depicts the state after three evaluations. Each
subfigure shows the GP mean (dashed blue line), GP standard deviation (blue shaded area), and the ground
truth function (black) in the upper panel as well as the neural AF in the lower panel. Dashed red lines
indicate the maxima of the ground truth function and of the neural AF. Red and green crosses indicate the
recorded data (the red cross corresponds to themost recent data point). Each instance of this task is generated
by randomly translating an objective function with two peaks of different heights and widths. The distance
between the local and global optimum is the same for each instance. MetaBO learns a sophisticated sampling
strategy, spending a non-greedy evaluation at the beginning of each episode at a position where the smaller
but wider peaks overlap for every instance of the function class to gain information about the location of the
global optimum. Using this strategy, MetaBO is able to find the global optimum very efficiently.
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Figure C.2: Visualization of three episodes from the 1𝐷 Rhino-2 task. Each column of this figure correspond to one
episode with two optimization steps. The uppermost row corresponds to the prior state before the objective
function was queried. The third row depicts the state after two evaluations. Each subfigure shows the GP
mean (dashed blue line), GP standard deviation (blue shaded area), and the ground truth function (black) in
the upper panel as well as the neural AF in the lower panel. Dashed red lines indicate the maxima of the
ground truth function and of the neural AF. Red and green crosses indicate the recorded data (the red cross
corresponds to the most recent data point). Each instance of this task is generated by sampling the height ℎ
of a wide bump at a fixed location 𝑥 = 0.2 and placing a sharp peak at 𝑥 = ℎ. MetaBO learns a sophisticated
sampling strategy, spending a non-greedy evaluation at 𝑥 ≈ 0.2 at the beggining of each episode to gain
information about the location of the global optimum. Using this strategy, MetaBO is able to find the global
optimum very efficiently.

C.1.1.2 Additional Baseline Methods

To provide further evidence that MetaBO’s neural AFs learn representations that go beyond a
simple prior over𝒟 combined with some kind of standard AF, we show results for two additional
baseline AFs which rely on such a naive combination.

We define the AF GMM-UCB as the following convex combination of a Gaussian Mixture Model
(GMM) and the standard AF UCB:

GMM − UCB (𝑥) ≡ 𝑤 ⋅ GMM (𝑥) + (1 − 𝑤) ⋅ UCB (𝑥) . (C.3)

The GMM is defined to have 𝑛comp components and is fitted to the best designs from each of the
𝑀 source tasks. Further, UCB is defined as

UCB (𝑥) ≡ 𝜇(𝑥) + 𝛽𝜎(𝑥) , (C.4)
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and we choose 𝛽 = 2 as is common in BO.

Furthermore, we define EPS-GREEDY as the AFwhich, in each optimization step, samples without
replacement from the set of best designs of each of the source tasks with probability 𝜖, and uses
standard EI with probability 1 − 𝜖.

Note that these baseline methods are similar in spirit to the TAF-approach evaluated in the main
part of this paper. Indeed, TAF, GMM-UCB, and EPS-GREEDY all rely on some kind of prior over
𝒟 determined using the source data which is combined through a weighted superposition with
some standard AF. However, TAF uses more principled methods (TAF-ME, TAF-R) to adaptively
determine the weights of this superposition.

To obtain optimal performance of GMM-UCB and EPS-GREEDY, we chose the parameters for
these methods by grid search on the test set¹ w.r.t. the median simple regret summed from 𝑡 = 0
to 𝑡 = 𝑇 = 30. To tune 𝑤 for GMM-UCB we tested 10 linearly spaced points in [0.0, 1.0] as well
as a schedule which reduces 𝑤 from 1.0 to 0.0 over the course of one episode. Furthermore, we
tested numbers of GMM-components 𝑛comp ∈ {1, 2, 3, 4, 5}. Similarly, for EPS-GREEDY we tested
𝜖 on 10 linearly spaced points in [0.0, 1.0] and also evaluated a schedule which reduces 𝜖 from
1.0 to 0.0 over an episode.

In Fig. C.3 we display the performance of GMM-UCB and EPS-GREEDY on the global optimiza-
tion benchmark functions Branin, Goldstein-Price, and Hartmann-3 with the optimal parameter
configurations (cf. Tab. C.1) and with 𝑀 = 50 source tasks. MetaBO outperforms both GMM-
UCB and EPS-GREEDY, which provides additional evidence that neural AFs learn representations
which go beyond a simple combination of standard AFs with a prior over 𝒟.
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(c) Hartmann-3 (𝐷 = 3)

Figure C.3: Performance on three global optimization benchmark functions with random translations sampled uniformly
from [−0.1, 0.1]𝐷 and scalings from [0.9, 1.1]. We present results for two additional baseline methods
(GMM-UCB, EPS-GREEDY) which rely on a weighted superposition of a prior over𝒟 obtained from𝑀 = 50
source tasks and a standard AF and can thus be easily interpreted. As MetaBO produces more sophisticated
search strategies, these approaches are not able to surpass MetaBO’s performance.

¹ This yields an upper bound on the possible performance of GMM-UCB and EPS-GREEDY, as in practice one would have
to estimate the parameters using a separate validation set.
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Table C.1: Optimal parameters of GMM-UCB and EPS-GREEDY (determined on the test set).

𝑤 𝑛comps 𝜖
Branin 0.22 3 linear schedule
Goldstein-Price 0.22 1 0.55
Hartmann-3 0.11 2 linear schedule

C.1.2 Dependence on the Number of Source Tasks

Weargued in themain part of this paper that onemain advantage ofMetaBO over existing transfer
learning methods for BO is its ability to process a very large amount of source data because it
does not store all available data in GP models (in contrast to TAF) but rather accumulates the data
in the neural AF weights. For tasks where source data are abundant (e.g., when they come from
simulations, cf. Fig. 5.4), this frees the user from having to select a small subset of representative
source tasks by hand, which can be intricate or even impossible for complex tasks. In addition,
we showed in our experiments that MetaBO’s applicability is not restricted to such cases, but
that it also performs favourably with the same amount of source data as presented to the baseline
methods on tasks which do not require a very large amount of source data to be solved efficiently
(cf. Figs. 5.3, 5.5).

In Fig. C.4 we provide further evidence for this aspect by plotting the performance of MetaBO for
different numbers𝑀 of source tasks on the Branin function and on functions from the simulation
of the Furuta pendulum stabilization task. The results indicate that on the Branin function a
small number of source tasks is already sufficient to obtain strong optimization performance. In
contrast, the more complex stabilization task requires a much larger amount of source data to
be solved reliably.

We emphasize that MetaBO’s evaluation runtime does not depend on the number 𝑀 of source
tasks because a neural AF evaluation only requires one forward pass through a neural AF of
fixed size. Therefore, it scales well to the regime of abundant source data. In contrast, TAF-ME’s
runtime scales linearly in the number 𝑀 of source tasks and quadratically in the number 𝑁 of
data points per source task, while TAF-R shows an even stronger dependence on 𝑀 due to the
computation of the pairwise ranks. We underline this scaling behavior by presenting measured
evaluation runtimes in Tab. C.2.
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(a) Branin function
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(b) Furuta pendulum in simulation

Figure C.4: Dependence of MetaBO’s performance on the number of source tasks provided during training on the Branin
function (cf. Fig. 5.3a) and on the stabilization task for the Furuta pendulum in simulation (cf. Fig. 5.4a). We
show the number of steps MetaBO requires to reach a given performance in terms of median regret over 100
test functions in dependence of the number 𝑀 of source tasks. As in the main part of this paper, we chose
a constant budget of 𝑇 = 30 on the Branin function and of 𝑇 = 50 on the stabilization task. The dashed
red line indicates the number of source tasks seen by the full version of MetaBO (a new function is sampled
from the training distribution at the beginning of each optimization episode) at the point of convergence of
meta-training. For the Branin function we chose the regret threshold 𝑅 = 10−3, which corresponds to the
median final performance of TAF after 𝑡 = 30 steps as presented in the main part of this paper (Fig. 5.3a). For
the Furuta stabilization task, we chose the regret threshold 𝑅 = 1.0, which corresponds approximately to
the regret that has to be reached in simulation to allow stabilization on the real system. The results show that
on the Branin function already a small number of source tasks is enough to obtain a powerful optimization
strategy. In contrast, neural AFs trained on the more complex simulation-to-real task benefit from MetaBO’s
ability to process a very large amount of source tasks.

Table C.2: Comparison of evaluation runtimes per BO episode with budget 𝑇 = 30 in s for various AFs, averaged over
10 BO runs. We showMetaBO’s runtime for𝑀 = 50 source tasks as well as for the full version (where a new
function is sampled from the training distribution in each BO run). For TAF, we indicate𝑀 and the number
𝑁 of data points per source task by TAF-ME-𝑀-𝑁 and TAF-R-𝑀-𝑁. Note that the absolute figures of the
reported runtimes obviously depend on the hardware architecture used for the evaluation.

Branin Goldstein-Price Hartmann-3
EI 0.13 0.13 0.16
MetaBO-50 0.60 0.55 0.82
MetaBO-full 0.62 0.59 0.81
TAF-ME-50-100 13 14 24
TAF-ME-50-200 29 28 35
TAF-ME-100-100 17 19 30
TAF-ME-100-200 47 49 65
TAF-R-50-100 50 50 56
TAF-R-50-200 61 60 69
TAF-R-100-100 100 100 110
TAF-R-100-200 120 120 140
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C.1.3 Generalization Behavior

As described in the main part of this paper, MetaBO’s primary use case is transfer learning, i.e.,
to speed up optimization on target functions similar to the source objective functions. Put differ-
ently, we are mainly interested in MetaBO’s performance on unseen functions drawn from the
training distribution. Nevertheless, studying MetaBO’s generalization performance to functions
outside of the training distribution can give interesting insights into the nature of the tasks we
considered in the main part. Therefore, we present a study of MetaBO’s generalization perfor-
mance on the global optimization benchmark functions (Fig. C.5) as well as on the simulation-
to-real experiment (Fig. C.6).

The results on the simulation-to-real task show that the neural AF generalizes better to heavy
and long than to lightweight and short pendula. We suppose that this result is related to the fact
that lightweight and short pendula show much faster dynamics due to their small moments of
inertia than heavier and longer ones and are thus much harder to stabilize. Put more precisely,
the change of the optimization landscape is much more pronounced when moving to lighter and
smaller pendula than in the other direction. Similar conclusions can be drawn for the translated
and scaled global optimization benchmark functions.
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(a) Branin (𝐷 = 2)
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(b) Goldstein-Price (𝐷 = 2)
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(c) Hartmann-3 (𝐷 = 3)

Figure C.5: Generalization of neural AFs to functions outside of the training distribution (translations 𝑡 ∈ [−0.1, 0.1],
scalings 𝑠 ∈ [0.9, 1.1], red square) on Branin, Goldstein-Price, and Hartmann-3. We evaluated the neural
AFs on 100 test distributions with disjoint ranges of translations and scalings, each corresponding to one tile
of the heatmap. The 𝑥- and 𝑦-labels of each tile denote the lower bounds of the translations 𝑡 and scalings
𝑠 of the respective test distribution from which the parameters were sampled uniformly (for each dimension
we sampled the translation and its sign independently). The color encodes the number of optimization steps
required to reach a given regret threshold. White tiles indicate that this threshold could not be reached
withtin 𝑇 = 30 optimization steps. The regret threshold was fixed for each function separately: we set it to
the 1%-percentile of the set of regrets corresponding to function evaluations on a Sobol grid of one million
points in the domain of the original objective functions.
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Figure C.6: Generalization of neural AFs to functions outside of the training distribution (75% to 125% of measured
physical parameters, red square) on the simulation-to-real task. We evaluated neural AFs on test distribu-
tions with disjoint ranges of physical parameters (masses and lengths of the pendulum and arm). We sampled
each physical parameter 𝑝𝑖 uniformly on [𝑓 ⋅ 𝑝𝑖,measured, (𝑓 + 0.2) ⋅ 𝑝𝑖,measured]. Therefore, 𝑓 = 0.9 corre-
sponds to the interval containing the measured parameters. We plot 𝑓 on the 𝑥-axis and the number of steps
required to reach a regret threshold of 𝑅 = 1.0 on the 𝑦-axis. Following our experience, this corresponds
approximately to the regret that has to be reached in simulation to allow stabilization on the real system. We
emphasize that the intended use case of MetaBO is on systems inside of the training distribution marked in
red, as this distribution is chosen such that the true parameters are located inside of it with high confidence
when taking into account the measurement uncertainty. Note that for small 𝑓 the system becomes very hard
to stabilize (lightweight and short pendula) such that the optimization landscape differs significantly from
the training distribution, which is why the regret threshold cannot be reached within 30 steps for 𝑓 ≤ 0.5.

C.1.4 Full Set of Results from Main Part

C.1.4.1 Global Optimization Benchmark Functions

We provide the full set of results for the experiment on the global optimization benchmark func-
tions. In Fig. C.7 we also include results for TAF with M = 20, showing that TAF’s performance
does not necessarily increase with more source data.

C.1.4.2 Simulation-to-Real Experiment

We provide the full set of results for the experiment on the global optimization benchmark func-
tions, including the results for TAF-50, cf. Fig. C.8.
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(c) Hartmann-3 (𝐷 = 3)

Figure C.7: Performance on three global optimization benchmark functions with random translations sampled uniformly
from [−0.1, 0.1]𝐷 and scalings from [0.9, 1.1]. To test TAF’s performance, we randomly picked 𝑀 source
tasks from this function class and evaluated both the ranking-based version (TAF-R-𝑀) and the mixture-of-
experts version (TAF-ME-𝑀). We show results for 𝑀 ∈ {20, 50}. Note that TAF’s performance does not
necessarily increase with more source data. We trained MetaBO on the same set of source tasks as TAF-
50 (MetaBO-50). In contrast to TAF, MetaBO can also be trained without manually restricting the set of
available source tasks. The corresponding results are labelled “MetaBO”. MetaBO outperformed EI by clear
margin, especially in early stages of the optimization. After few steps used to identify the specific instance
of the objective function, MetaBO also outperforms both flavors of TAF over wide ranges of the optimization
budget.
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(a) Evaluation in simulation.
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(b) Evaluation on hardware in (c). (c) Exp. setup.3

Figure C.8: Performance on a simulation-to-real task (cf. text). MetaBO and TAF used source data from a cheap nu-
merical simulation. (a) Performance on an extended training set in simulation. (b) Transfer to the hardware
depicted in (c), averaged over ten BO runs. MetaBO learned robust neural AFs with very strong early-time
performance and online adaption to the target objectives, which reliably yielded stabilizing controllers after
less than ten BO iterations while TAF-ME-50, TAF-ME-100, TAF-R-50, TAF-R-100, and EI explore too heav-
ily. Comparing the results for MetaBO and MetaBO-50 in simulation, we observe that MetaBO benefits from
its ability to learn from the whole set of available source data, while TAF’s applicability is restricted to a
comparably small number of source tasks.

C.2 Experimental Details

To foster reproducibility, we provide a detailed explanation of the settings used in our experiments
and make source code available online.¹

¹ https://github.com/boschresearch/MetaBO
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C.2.1 General Implementation Details

In what follows, we explain all hyperparameters used in our experiments and summarize them in
Tab. C.3. We emphasize that we used the same MetaBO hyperparameters for all our experiments,
making our method easily applicable in practice.

Table C.3: Parameters of the MetaBO framework used in our experiments.

Description Value in experiments
BO/AF parameters
Cardinality 𝑁MS of multistart grid

Branin, Goldstein-Price 1000
Hartmann-3 2000
Simulation-to-real 10000
GPs (𝐷 = 1, 2, 3, 4, 5) 500, 1000, 2000, 3000, 4000

Cardinality 𝑁LS of local search grid 𝑁MS

Number 𝑘 of multistarts 5
MetaBO parameters
Cardinality of 𝜉global 𝑁MS

Cardinality of 𝜉local,𝑡 𝑘
Neural AF architecture 200 - 200 - 200 - 200, relu activations
PPO parameters [Sch17]
Batch size 1200
Number of epochs 4
Number of minibatches 20
Adam learning rate 1 ⋅ 10−4
CPI-loss clipping parameter 0.15
Value network architecture 200 - 200 - 200 - 200, relu activations
Value coefficient in loss function 1.0
Entropy coefficient in loss function 0.01
Discount factor 𝛾 0.98
GAE-𝜆 [Sch16b] 0.98

C.2.1.1 Gaussian Process Surrogate Models

We used the implementation GPy [GPy12] with squared-exponential kernels (Matern-5/2 ker-
nels for the corresponding experiments on general function classes) with automatic relevance
determination and a Gaussian noise model and tuned the corresponding hyperparameters (noise
variance, kernel lengthscales, kernel signal variance) offline by fitting a GP to the objective func-
tions in the training and test sets using type-2 maximum likelihood. We also used the resulting
hyperparameters for the source GPs of TAF. We emphasize that our method is fully compatible
with other (online) hyperparameter optimization techniques, which we did not use in our exper-
iments to arrive at a consistent and fair comparison with as few confounding factors as possible.
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C.2 Experimental Details

C.2.1.2 Baseline AFs

As is standard, we used the parameter-free version of EI. For TAF, we follow Wistuba et al.
[Wis18] and evaluate both the ranking-based (TAF-R) as well as the product-of-experts (TAF-
ME) versions. We detail the specific choices for the number of source tasks𝑀 and the number of
datapoints 𝑁TAF contained in each source GP in the main part of this paper.

For EI we used the midpoint of the optimization domain 𝒟 as initial design. For TAF we did not
use an initial design as it utilizes the information contained in the source tasks to warmstart BO.
Note that MetaBO also works without any initial design.

C.2.1.3 Maximization of the AFs

Our method is fully compatible with any state-of-the-art method for maximizing AFs. In partic-
ular, our neural AFs can be optimized using gradient-based techniques. We chose to switch off
any confounding factors related to AF maximization and used a hierarchical gridding approach
for all evaluations as well as during training of MetaBO. For the experiments with continuous
domains 𝒟, i.e., all experiments except the HPO task, we first put a multistart Sobol grid with
𝑁MS points over the whole optimization domain and evaluated the AF on this grid. Afterwards,
we implemented local searches from the 𝑘 maximal evaluations via centering 𝑘 local Sobol grids
with 𝑁LS points, each spanning approximately one “unit cell” of the multistart grid, around the
𝑘 maximal evaluations. The AF maximum is taken to be the maximal evaluation of the AF on
these 𝑘 Sobol grids. For the HPO task, the AF maximum can be determined exactly because the
domain is discrete.

C.2.1.4 Reinforcement Learning Method

We use the trust-region policy gradient method Proximal Policy Optimization (PPO) [Sch17] as
the algorithm to train the neural AF.

C.2.1.5 Reward Function

If the true maximum of the objective functions is not known at training time, we compute 𝑅𝑡
with respect to an approximate maximum and define the reward to be given by 𝑟𝑡 ≡ −𝑅𝑡 . This is
the case for the experiment on general function classes (GP samples) where we used grid search
to approximate the maximum as well as for the simulation-to-real task on the Furuta pendulum
where we used the performance of a linear quadratic regulator (LQR) controller as an approximate
maximum. For the experiments on the global optimization benchmark functions as well as on the
HPO tasks, we do know the exact value of the global optimum. In these cases, we use a logarithmic
transformation of the simple regret, i.e., 𝑟𝑡 ≡ − log10 𝑅𝑡 as the reward signal. Note that we also
consistently plot the logarithmic simple regret in our evaluations for these cases.
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C.2.1.6 Neural AF Architecture

We used multi-layer perceptrons with relu-activation functions and four hidden layers with 200
units each to represent the neural AFs.

C.2.1.7 Value Function Network

To reduce the variance of the gradient estimates for PPO, a value function 𝑉𝜋 (𝑠𝑡), i.e., an es-
timator for the expected cumulative reward from state 𝑠𝑡 , can be employed [Sch16b]. In this
context, the optimization step 𝑡 and the budget 𝑇 are particularly informative features, as for a
given sampling strategy on a given function class they allow quite reliable predictions of future
regrets. Thus, we propose to use a separate neural network to learn a value function of the form
𝑉𝜋 (𝑠𝑡) = 𝑉𝜋 (𝑡, 𝑇). We used an MLP with relu-activations and four hidden layers with 200 units
each for the value network.

C.2.1.8 Computation Time

For training MetaBO, we employed ten parallel CPU-workers to record the data batches and one
GPU to perform the policy updates. Depending on the complexity of the objective function eval-
uations, training a neural AF for a given function class took between approximately 30min and
10 h on this moderately complex architecture.
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