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Abstract - Modern vehicles offer a multitude of features, adapting to individual preferences. Addressing the chal-
lenge of efficiently testing a wide range of automotive system variants within a virtual test environment is crucial in
the face of the growing complexity of these vehicles. With numerous configuration options and frequent software
updates, there’s a pressing need for a standardized approach to variant-aware reconfiguration. In response to
this challenge, we propose a delta-based reconfiguration of a virtual test environment with modular components.
This reconfiguration process allows a dynamic and efficient adaption based on selected features of the Module
under Test (MuT). Leveraging feature models, we define relationships between features and their impact on the
MuT and test environment configuration. Our paper introduces a concept for variant-aware reconfiguration. This
concept utilizes a 150 % model, representing a superset of a module containing all necessary assets to derive any
variant. Additionally, we employ delta analysis to reduce reconfiguration efforts by identifying only the necessary
adjustments based on changes in selected features.
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Introduction
Automotive systems can be configured in a wide
range of variants to adapt to different customer needs
or product classes (Becker, Weber, and Wierczoch,
2008). Looking at the German car market alone, one
can see that the variety of models has already grown
to well over 3000 in the last decade. This is with-
out taking into account the numerous configuration
options for the end customer’s equipment (Braun,
2018). The recent large-scale introduction of Over
the Air (OTA) updates continuously expands this vari-
ant space by adding new variants of software func-
tions after production (Schindewolf, Guissouma, and
Sax, 2021). Considering not only software variants
but the entire buildable space of a modern vehicle,
the number of possible variants increases up to 10100

(Zengler, 2023).
To integrate a new module version, such as
enhanced Advanced Driver Assistance Systems
(ADAS) functionality, into a vehicle variant space,
compatibility testing is essential. To achieve seam-
less and efficient test coverage over the life-cycle of
a vehicle, the virtual test environment must include or
interact with variant management (Guissouma, et al.,
2019). Modeling the vehicle variants in the test en-
vironment makes it possible to evaluate the effects
of changes to individual components on the entire
affected variant space. Reconfiguration of the test
environment is crucial to handle the variant space
effectively. While Original Equipment Manufacturers
(OEMs) typically maintain databases of variants and
versions of assets in their system, there is no stan-
dardized method for deriving and implementing the
test environment for a specific variant. In addition
to the environmental simulation consisting of sen-

sors and actuators, the test environment must de-
rive all necessary assets such as libraries, source
code, configuration files, or functional components to
validate the functionality of the system incorporating
the Module under Test (MuT) (Isermann and Scha,
1999). Therefore, establishing a systematic approach
to variant aware (VA) reconfiguration within the virtual
test environment is crucial for reducing testing efforts
and ensuring seamless integration.

Research question
How can a virtual test environment of an automotive
system, including a simulation of the driving environ-
ment, be reconfigured efficiently for a wide range of
system variants?

To answer this research question, the contribution of
this paper can be summarized in the following three
points:

1. Introducing an architectural model for a virtual test
environment with variable elements.

2. Building on 1., we define a method for system-
atic test environment (re-)configuration of a MuT
based on a set of selected features.

3. To evaluate the method from 2., we present results
from a proof-of-concept implementation for a real-
istic Software in the Loop (SiL) environment from
the automotive domain.
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Figure 1: 150% architecture model of a variable wind-
shield wiper system

State of the Art
Software-in-the-Loop in Automotive
The software used in Eletronic Control Units (ECUs)
can be split into different abstraction layers. While the
lower layers, which are close to the hardware, fol-
low standardized specifications, the behavioral logic
is implemented in specifically developed modules
at the application level (AUTOSAR Layered Soft-
ware Architecture 2022). These modules form the
core of a vehicle’s software, which is why a func-
tion and integration test at the application level is
recommended. During development, such software
modules undergo an iterative development process,
which leads to a high degree of variability. The con-
nection of these modules to be tested to the target
environment and the target hardware therefore in-
volves significant effort. This effort can be avoided
by simulating the runtime environment. SiL enables
scalable testability throughout the development pro-
cess. The simulation of the runtime environment em-
ulates the necessary interfaces and their interactions
with the MuT. Communication-abstracting software
architectures such as AUTOSAR or Robot Operation
System 2 (ROS2) (Macenski, et al., 2022) contribute
to reducing the effort required for software interfaces
to a manageable level (Sax, 2008). Virtual test envi-
ronments can be used to run SiL tests. The degree
of virtualization varies. Common virtualization tools
can virtualize sensors and actuators as well as the
environment and execute pre- and post-processing
steps (Kang, Yin, and Berger, 2019). As can be seen
in section ,,Architecture of the Virtual Test Environ-
ment”, we understand a virtual test environment to
be the virtualization of the vehicle environment and
its interface.

Feature Modeling in AUTOSAR
Nowadays, it is common for Electric/Electronic (E/E)
engineering to be based on a product line approach,
where a product line consists of a set of reusable arti-
facts and rules on how we can use a subset of these
artifacts to construct a product. In turn, the product
under development in the E/E engineering process
is not just a single vehicle variant, but a whole ve-
hicle family. That is why, as of version four, the AU-
TOSAR standard supports variant handling in shape
of a feature model in the problem space and concepts
to define variants in the solution space. Decoupling
the solution space and problem space allows the ve-
hicle manufacturer to develop the feature model and

the AUTOSAR model with one toolset while their sup-
pliers are free to enhance the given models with their
preferred toolset.
In the solution space many elements of the Soft-
ware, Communication and Network layers of the AU-
TOSAR model can contain a variation point (AU-
TOSAR Generic Structure Template 2023). Variation
points contain the conditions under which this ele-
ment is part of a certain variant. If an element does
not contain any variation point, then it is part of ev-
ery possible variant. The constraints used in vari-
ation points are based on system constants. Thus,
we define a specific variant by the values, which we
assign to the system constants. To derive a specific
variant, we must assign all system constants a value,
and evaluate all variation points. These system con-
stants often find their way into the implementation in
the form of precompile statements. Furthermore, AU-
TOSAR supports binding of values to system con-
stants at various times (System Design Time, Code
Generation Time, Pre-Compile Time, Link Time). In
this way, we can exchange variants, variation points
and system constants via AUTOSAR-ECU-Extract
files, which do not only describe a single variant, but
a set of variants which the supplier can enhance and
implement.
In the problem space, AUTOSAR supports the op-
tional use of a feature model (AUTOSAR Feature
Model Exchange Format 2023) that is based on the
FODA (Feature Oriented Domain Analysis) approach
(Kang, et al., 1990). This feature model allows us to
describe relationships of several types between fea-
tures. For features, that share the same parent fea-
ture, these are: mandatory (all must be used), alter-
native (requires XOR), multiple (requires OR) and op-
tional. For modelling relationships between any two
features of a given feature model, there exist sev-
eral pre-defined types (for example requires and ex-
cludes), as well as the option to define additional
proprietary relationship types. Finally, the AUTOSAR
standard uses a feature map to connect a valid fea-
ture selection in the problem space to a variant in the
solution space. Input for a feature map is a valid fea-
ture selection and output is a set of system constant
and value pairs which can be used to derive a variant
as described before.

150 % Architecture Model
In combination with feature models (s. section “Fea-
ture Modeling in AUTOSAR”), 150 % architecture
models are used to efficiently develop and main-
tain the variants in the solution space of the prod-
uct line engineering process. Such a model is noth-
ing else than a redundancy-free superset of all com-
mon and variable architectural elements in the prod-
uct line (Hummell and Hause, 2015). Its main pur-
pose is to derive specific system variants based on
mapping relations to the used variability model, e.g.
feature model.
By selecting a valid feature combination, the corre-
sponding 100 % architecture can be derived as a
subset of the 150 % architecture model. Additionally,
it is possible to generate families of similar prod-
ucts, also called 120% models, based on partial fea-
ture selections (Vector Informatik GmbH, 2024). One
common way to configure the components constitut-
ing the 150% model in the software domain is us-
ing pre-processor annotations in the variable code
base (Apel, et al., 2013).
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Figure 2: Determine the reconfiguration demand based on a feature selection

Figure 1 shows an example of a simple 150% ar-
chitecture of a windshield wiper system. It consists
of two ECUs: a mandatory Body Control Module
(BCM), which exists in all valid variants, and an op-
tional Roof-ECU, which shall be included only in con-
vertible car variants. The BCM can be configured in
two different variants by choosing one of the al-
ternative software components threeLevels-SWC or
fourLevels-SWC.

Methodology
Taxonomy
For the understanding of the concept of this paper,
the following definitions are chosen:
• Feature: a characteristic or end-user-visible be-

havior of a system (Apel, et al., 2013).
• Component: “functionally or logically distinct part

of a system. A component can be hardware or
software and can be subdivided into other compo-
nents” (ISO, 2017).

• Module: a set of system elements, with a physical
or notional boundary and is detachable from the
system. It can be a subsystem or component, as
long as it can be detached and developed sepa-
rately from the rest of the system (Efatmaneshnik,
Shoval, and Qiao, 2020). A module may have a
specific set of features, which may differ in differ-
ent variants of the module.

• Asset: an “item, such as design, specifications,
source code, documentation, test suites, or man-
ual procedures, that has been designed for use in
multiple contexts“ (ISO, 2017).

Architecture of the Virtual Test
Environment
The proposed concept leverages a modular architec-
ture as shown in Figure 3, which is designed to dy-
namically adapt the virtual test environment based on

Legend

Sensor/Actor Simulation
Asset

Module
under Test Connection

Simulated Driving Environment

Virtual Testbench

Figure 3: Modular architecture of a virtual testbench
design

the selected features and their dependencies on the
current MuT. The environment and vehicle simula-
tion embedded in the Simulated Driving Environment
is responsible for the input and output of sensors and
actuators. It thus not only represents the connection
to the sensors and actuators but also to the entire en-
vironment in which the vehicle or the MuT operates.
This part can be generated by a driving simulator as
described in (Kang, Yin, and Berger, 2019) and is
executed on a dedicated server. A service-orientated
architecture ensures seamless communication with
the virtual testbench.
The Virtual Testbench emulates all necessary sys-
tem components such as perceptions components,
pre- and postprocessing components, controllers,
configurations, etc. for the operation of the MuT.
These system components, which are necessary but
do not belong to the MuT, are subsequently referred
to as assets. Such assets are executed on a dedi-
cated computing unit, which may or may not be the
same as the MuT computing unit. The separation of
the test environment into the driving environment and
MuT-dependent system components makes it possi-
ble to reconfigure and modularise the test environ-
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Figure 4: Rearrangement, Rebuild and Simulation virtual testbench
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Figure 5: Interaction with the virtual testbench

ment independently of the vehicle and environment
simulation software used.

Concept for variant-aware
(Re-)configuration
The reconfiguration process outlined in Figure 2 and
Figure 4 can be divided into two main phases and
four phases in total:
1. Reconfiguration

a. Reconfiguration Demand (RD)
b. Rearrangment (RA)
c. Rebuild (RB)

2. Simulation (SIM)
It fits seamlessly into the typical interaction scenario
shown in Figure 5. A test engineer initiates the in-
teraction by selecting certain features based on a
product line description (see section “State of the
Art“ ), e.g. testing new variants. A concrete, build-
able variant is derived from this selection with the
help of the feature model. Before the process is con-
tinued, it is checked whether the simulation envi-
ronment needs to be reconfigured to fulfill the cur-
rent MuT, so that unnecessary configurations are
avoided. The entire simulation process takes place in

four different phases. Firstly, the RD is determined,
as shown in fig 2. This first phase sets the stage
for the subsequent adjustments, ensuring alignment
with the selected features and the current test bench
configuration ct, which reflects the current iteration.
This configuration provides a set of necessary as-
sets Act , which includes both the MuT assets Amut
and the dependent simulation assets As of the test-
bench. By comparing the current set of assets with
those from the previous test run, additional MuT as-
sets Amut and simulation assets As can be identified.
The simulation environment configuration st can be
derived and created using the asset properties avail-
able in the 150 % model. The first phase is completed
by storing the assets-, MuT-, and simulation metain-
formation. The next three phases can be described
as RA, RB and SIM and are shown in Figure 4. The
RA adapts the current workspace to the number of
assets determined according to eq. 1 for the MuT

Vt = (Vt−1/Amut, o) ∪ Amut, a (1)

where Amut,o denotes the obsolete assets and
Amut,a denotes the additional assets. Similarly, the
testbench is rearranged as eq. 2:

St = (St−1/As, o) ∪ As, a (2)

Depending on the metainformation stored in phase
RD, this means that the corresponding assets are
loaded from a database, cloud storage, local stor-
age, etc. into the simulation workspace of the corre-
sponding computing unit. Or removed from it. Once
all the necessary assets are available, you can move
on to the next phase, the RB. The newly added as-
sets are compiled and integrated into the simulation.
Once this process is complete, the actual simulation
starts, referred to below as phase SIM. Once the sim-
ulation is complete, the simulation results are avail-
able to the test engineer, and the configuration ct is
saved for the next run.
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Figure 6: Histogram of the duration of the rearrange-
ment and rebuild phases

Results and discussion
In our case study, we analyze the effectiveness of
the VA reconfiguration approach using a proof of
concept implementation. The feature model shown
in Figure 7 serves as the basis for our study. The
MuT is a monitoring component that observes vehi-
cle dynamic states based on vehicle speed and en-
gine rpm data. Ignoring horizontal dependencies, the
feature model according to Apel, et al., 2013 shows
378 valid variants of how the MuT and its compo-
nents can be configured. The features that belong to
the branch of sensors and actuators fall into the area
of the simulated driving environment and are simu-
lated with the use of the CARLA simulation (Dosovit-
skiy, et al., 2017). This variant space can be config-
ured directly using the simulation configuration st. For
this purpose, a configuration file is generated in the
RB phase, which is read in by our simulated driving
environment adapter for the CARLA simulator and
processed at the start of the SIM phase. The con-
figuration file consists of all necessary sensors, and
actors configured according to the current selection.
Besides it provides a scenario definition which is later
carried out in the simulation phase to test the MuT.
The CARLA adapter provides a ROS2 communica-
tion interface and instantiates for each sensor and
actor publisher and subscriber. The leaves of the pre-
processing branch are parts of the virtual testbench
and are necessary to operate the MuT. Those as-
sets are deployed on a central processing unit that
shares the same local network as the simulated driv-
ing environment. The components pp1 and pp2 con-
tained therein form the variants pp1.1 to pp2.3 using
an annotation-based approach (Apel, et al., 2013).
Certain variants of these assets can be generated by
deriving a header file and associated attributes for
preprocessor directives.
The assets included in the virtual testbench and the
source code of the MuT are located in an online
repository, from which assets are loaded as required
in the RA phase. Cloning and version checkout are
performed by the help of git. To ensure dynamic com-
munication between the simulated driving environ-
ment, the simulation assets, and the MuT, we utilize

Table 1: Time consumed by the different configura-
tion phases

Method RD / ms RA / s RB / s SIM / s
BF 0.30 1.97 ± 0.28 20.62 ± 2.65 12.45 ± 8.95
VA 0.30 0.01 ± 0.18 9.96 ± 6.05 12.42 ± 1.42

a service-oriented approach using ROS2. This ab-
straction allows us to offer services with which the
MuT can interact, regardless of the exact variants. To
demonstrate the advantage of a VA approach, all 378
variants were reconfigured and simulated in a ran-
dom order. In addition to our proposed approach, the
reconfiguration was carried out using a brute force
(BF) methodology. Therefore the virtual testbench is
prepared and simulated for each variant regardless
of the past. The average times required for the indi-
vidual phases with standard deviation can be seen in
tab. 1.
The RB and SIM phases, in particular, are responsi-
ble for the overall duration of the process. The con-
figuration we use does not change the actual sce-
nario of the simulation, only the inputs and outputs
and vehicle-specific properties such as the model of
the car or the sensor type are changed, so it is to
be expected that the simulation time between the
VA and BF approach is quite similar. Only statistical
deviations in the server communication or execution
cycles of the simulation environment lead to deviat-
ing execution times of the SIM phase. It is clear to
see, though, that the VA approach requires consider-
ably lower RA and RB times. This is emphasized in
Figure 6. Since a large part of the variant space is
mapped in the reconfiguration of the simulated driv-
ing environment, many simulation runs can be car-
ried out without significant recompilation. This leads
to the accumulation of low rearrangement and rebuild
times in the left-hand side of the plot. Only in the case
of a few unfavorable sequences of variants does the
VA approach require comparably long rearrangement
and rebuild times as the BF approach. As Figure 6
shows, there are a few configurations that have long
RA and RB times despite the VA approach. This can
be explained by an unsuitable sequence for selecting
the variants. This indicates that the approach can be
enhanced even further. The current process provides
metainformation about the variant to be created first.
This property can be utilized, and if determined, can
be collected across the variant space. A suitable es-
timation of the RA and RB time for variants and an
appropriate cost function could be used to determine
a reconfiguration and simulation sequence to cover
the variant space cost-effectively.

Conclusions
In this paper, an approach for variant aware recon-
figuration of SiL environments in the automotive con-
text was presented. The continuously growing num-
ber of vehicle variants, driven by a multitude of con-
figurable features and software updates, requires a
systematic approach to efficiently test the large vari-
ant space along the lifecycle. We introduces a variant
aware modular test environment that can reconfigure
itself according to the demands of the current Mod-
ule under Test using a 150 % model that serves as a
superset of all assets occurring in the variant space.
These demands can be derived based on the pre-
sented feature model. With the help of the proposed
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Figure 7: Feature model of the system used in the case study.

delta analysis of different feature selections, the re-
configuration effort can be significantly reduced com-
pared to a brute force approach, as the case study
with 378 variants has shown. In particular, it can be
shown that most of the configuration process can be
ascribed to the rearrangement of the necessary and
unnecessary assets and the compilation process, for
which the proposed delta approach provides a suit-
able remedy.
Nevertheless, it can be seen that an unsuitable se-
quence of feature selections can lead to consider-
able reconfiguration effort. This fact suggests that the
sequence of testing many feature selections should
be optimized by estimating the reconfiguration effort
beforehand. Besides investigating the optimization of
the variant selection order, we plan, in future work,
to integrate the introduced approach into a CI/CD
pipeline for agile analysis and validation of automo-
tive software updates.
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