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Abstract

Minimal perfect hash functions (MPHFs) are data structures that map a set of 𝑛 keys to
{1, . . . , 𝑛} bijectively. To store them, at least 𝑛 · log2 𝑒 ≈ 1.4427𝑛 bits are necessary. Pre-
vious MPHFs reach as low as 1.489 bits per key by finding seeded hash functions that split
the keys into two sets of equal size repeatedly and handling a base case. However, storing all
those seeds individually—even with an entropy optimal encoding—wastes up to log2 𝑒 bits
per split. We introduce Symbiotic Random Search (SRS) which solves this problem by uti-
lizing a special search pattern. By bounding the number of attempts to find a splitting hash
function in one go and backtracking if none was found, SRS creates a combined encoding
of all splitting seeds. SRS can waste arbitrarily little 𝜔 > 0 bits per split on average. The
expected work required for SRS to find such an encoding is linear in 1/𝜔 . SRS can be applied
whenever a data structure shall be found by trying candidates, this search can be performed
step by step and using little space is a goal. SRS-RecSplit—SRS applied to RecSplit—reaches
a space usage of 1.442 91 bits per key in practice with reasonable construction time—just
0.000 21 bits overhead. For similar construction time, it reaches as low as 1/192 the space
overhead of the previous record holder. For a similar overhead, SRS-RecSplit’s construction
is up to 101 times faster. Furthermore, SRS-RecSplit’s theoretical construction time being
linear in the inverse overhead makes it reach even smaller overheads more easily than its
competitors, which have an exponential relationship between these metrics.

Zusammenfassung

Minimale perfekte Hashfunktionen (MPHFs) sind Datenstrukturen, die eine Menge aus 𝑛
Schlüsseln bijektiv auf {1, . . . , 𝑛} abbilden. Um diese abzuspeichern werden mindestens 𝑛 ·
log2 𝑒 ≈ 1.4427𝑛 Bits benötigt. Bisherige MPHFs erreichen bis zu 1.489 Bits pro Schlüssel,
indem sie geseedete Hashfunktionen finden, welche die Schlüssel wiederholt in zwei gleich
große Teile aufteilen und einen Basisfall gesondert handhaben. Allerdings werden durch das
individuelle Abspeichern der Seeds bis zu log2 𝑒 Bits pro Unterteilung verschwendet, selbst
bei Verwendung einer entropieoptimalen Codierung. Wir präsentieren Symbiotic Random
Search (SRS) welches dieses Problem durch ein spezielles Suchmuster löst. Durch das Be-
schränken der Anzahl an Versuchen eine teilende Hashfunktion in einem Anlauf zu finden
und durch Backtracking, falls keine Hashfunktion gefunden wurde, erzeugt SRS eine gemein-
same Codierung aller aufteilender Seeds. SRS kann im Durchschnitt beliebig wenige 𝜔 > 0
Bits pro Teilung verschwenden. Die erwartete Arbeit dafür ist linear in 1/𝜔 . SRS kann immer
dann angewandt werden, wenn eine Datenstruktur durch zufälliges Ausprobieren gefunden
werden soll, diese Suche Schritt für Schritt vorgenommen werden kann und ein geringer
Platzverbrauch ein Ziel ist. SRS-RecSplit – SRS angewandt auf RecSplit – erreicht in Pra-
xis einen Platzverbrauch von 1.442 91 Bits pro Schlüssel bei zumutbarer Konstruktionszeit
– nur 0.000 21 Bits Overhead. Für eine ähnliche Konstruktionszeit erreicht es bis zu 1/192
des Overheads des bisherigen Rekordhalters, für einen ähnlichen Overhead ist SRS-RecSplits
Konstruktion bis zu 101-mal schneller. Des Weiteren erlaubt SRS-RecSplits theoretische Kon-
struktionszeit – linear im Kehrwert des Overheads – kleinere Overheads einfacher zu errei-
chen als es bei seinen Konkurrenten mit einem exponentiellen Zusammenhang der Fall ist.
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1. Introduction

Minimal perfect hash functions (MPHFs) are data structures, which map a set of 𝑛 keys (ar-
bitrary objects) bijectively to {1, . . . , 𝑛}. Their applications range from networking [LPB06]
to database systems [FHCD92] and bioinformatics [CLM16]. To store an MPHF, at least
𝑛 ·log2 𝑒 ≈ 1.4427𝑛 bits are necessary (see Subsection 2.5.1 for more details). Apart from prac-
tical relevance, improving MPHFs is an interesting algorithmic exercise, trying to get closer
and closer to a theoretical space limit. In practice, the previous most compact approach—
bipartite ShockHash-RS [LSW24]—reaches 1.489 bits per key for an acceptable construction
time (more details on this approach in Subsection 3.4.2).

This approach is based on RecSplit [EGV19], which uses seeded hash functionswith codomain
{0, 1} to recursively split the keys into equally sized parts. RecSplit splits until only small
groups of keys are left, which form the leafs of a splitting tree. In these leafs, RecSplit searches
an MPHF directly using a seeded hash function with a larger codomain. In the end, all the
seeds are near optimally encoded and stored (more details in Section 3.3). We will show that
splitting an MPHF in parts and storing a seed for each part separately wastes up to log2 𝑒 bits
per seed, despite encoding each of them optimally (Subsection 4.2.3).

To avoid these losses, we introduce Symbiotic Random Search (SRS, Section 4.3). SRS searches
seeds cleverly, which allows for a more compact representation. In general, SRS provides a
scheme for searching successes in a sequence of Bernoulli processes—called tasks—each con-
sisting of a sequence of Bernoulli trials that can be successful or not. SRS represents a suc-
cessful trial in each task using only an arbitrarily small overhead compared to when merging
all tasks into one (which is successful when all singular tasks would be) and representing
the geometrically distributed first successful trial. Not merging tasks has the advantage of
expecting to find successful trials faster. This is why RecSplit breaks the problem of finding
an MPHF into smaller parts. To achieve its space advantage over the individual encoding of
successful trials, SRS limits the number of successive trials performed for one task (or hash
functions tested for one splitting when applied to RecSplit). If a successful trial was found,
SRS advances to the next task, where the specific trials performed will depend on the success-
ful trial found for the previous task. If no successful trial was found in the limited number
of tries, SRS backtracks to the previous task to find another successful trial there before con-
tinuing with the current task. In essence, SRS can be applied whenever a randomized data
structure shall be found by trying out candidates, and whose search can be split into parts,
but optimal space usage shall be retained.

Applying SRS to RecSplit yields SRS-RecSplit (Section 4.4). Apart from using SRS to search
splitting seeds, SRS-RecSplit also uses binary splittings all the way down, omitting leafs of
larger sizes. SRS-RecSplit reaches space usage as low as 1.442 91 bits per key, which is just
0.000 21 bits above the lower bound (Chapter 7). For similar construction time, we reach
as low as 1/192 of the space overhead of the previous record. For a similar overhead, SRS-
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1. Introduction

RecSplit’s construction is up to 101 times faster. What is even more remarkable is that SRS-
RecSplit’s theoretical runtime is linear in 1/𝜔 for any overhead of 𝜔 > 0 bits above the
lower bound. This also makes it for SRS-RecSplit easier to reach a lower space overhead in
practice compared to previous approaches, which have an exponential relationship between
space overhead and construction time [EGV19 | LSW24]. In detail, SRS-RecSplit achieves con-
struction in expected time O

(
𝑛3/2 log𝑛

𝜔

)
and O(log𝑛) query time for input size 𝑛 and a space

overhead of 𝜔 bits per key (Section 5.3). These are suboptimal as SRS-RecSplit—as presented
here—omits an initial partitioning step the way original RecSplit does. However, this step
can still be added on top to reach expected linear construction and constant query time.

1.1. Outline

This thesis is structured the following: First, we arrange a common baseline and understand-
ing of notation in Chapter 2 Theoretical Foundations. We recite some useful basic theorems
and warm up with the geometric probability distribution and its entropy, hash functions in
general, and minimal perfect hash functions in particular. In Chapter 3 Related Work, we
give an overview of some other MPHF algorithms and describe RecSplit as a basis for SRS-
RecSplit in more detail. In Chapter 4 Algorithm, we first introduce the abstract problem
SRS solves, present two obvious but suboptimal approaches, and then propose SRS as a so-
lution (Section 4.3). Then, we use SRS to construct SRS-RecSplit (Section 4.4). Afterward,
in Chapter 5 Analysis, we provide proof for the properties of SRS and SRS-RecSplit stated
before. Chapter 6 Implementation provides and discusses implementation details. Then, we
provide experimental results for our implementation of first SRS on a generic problem and
then SRS-RecSplit in Chapter 7 Experiments. We will also compare SRS-RecSplit to RecSplit
and bipartite ShockHash-RS. Finally, in Chapter 8 Conclusion, we sum up our results and look
out to what remains to be explored.

2



2. Theoretical Foundations

This chapter provides an overview of some fundamentals useful for following along with this
thesis. First, we introduce some notations used throughout this thesis and bring tomind some
useful basic theorems. Then, we take a look at the geometric probability distribution that we
will meet a couple of times throughout this thesis. We also introduce entropy as it will be an
important tool for analysis. Finally, we introduce hashing and in particular minimal perfect
hash functions (MPHFs).

2.1. Notation

We use the following notation throughout this thesis:

ℕ+ are the natural numbers excluding zero. ℕ0 := ℕ+ ∪ {0}.
[𝑛] := (0, 𝑛] ∩ ℤ = {1, . . . , 𝑛} for 𝑛 ∈ ℕ0

[𝑛]0 := [0, 𝑛) ∩ ℤ = {0, . . . , 𝑛 − 1} for 𝑛 ∈ ℕ0

Note: Brackets [·] are also used for array indexing and the Iverson bracket.

Iverson Bracket [𝑃] =
{
1 𝑃

0 ¬𝑃
for some statement 𝑃 [Knu92].

Big O notation for parameters that have an upper bound like 𝑝 ∈ (0, 1) will be bound
above instead of below, e.g. for 𝑝 ∈ (0, 1), 𝑛 ∈ ℕ0, it is 𝑝 < 𝑝0, not 𝑝 > 𝑝0 in
𝑔 ∈ O(𝑓 ) ⇐⇒ ∃𝛼 > 0, 𝑛0, 𝑝0 ∀𝑛 > 𝑛0, 𝑝 < 𝑝0 : 𝑔(𝑛, 𝑝) ≤ 𝛼 𝑓 (𝑛, 𝑝).
This way, the same notation can also be used for behavior close to zero.
Furthermore, O(𝑓 ) is considered a set and thus set notation is used.

𝐴 ⊕ 𝐵 := {𝑎 ⊕ 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}, 𝑎 ⊕ 𝐵 := {𝑎} ⊕ 𝐵 for commonly used ⊕ ∈ {+,−, ·, . . . }.
𝑋 ∼ Distr means random variable 𝑋 has probability distribution Distr.

ℙ(𝑋 ) denotes the probability of event 𝑋 happening, 𝔼[𝑌 ], 𝐻 [𝑌 ] denote the expected
value and entropy of a random variable 𝑌 , respectively. 𝑖 .𝑖 .𝑑 means independently
identically distributed. 𝑋 is the complement of event 𝑋 .

RAlg denotes the runtime or work of algorithm Alg, SAlg its space usage.

𝑓 |𝑆 means 𝑓 restricted to domain 𝑆 , for 𝑓 : 𝑋 → 𝑌, 𝑆 ⊆ 𝑋(𝑈
𝑛

)
:= {𝑆 ⊆ 𝑈 | |𝑆 | = 𝑛} for a set𝑈 , 𝑛 ∈ ℕ0

Reasonable, as for finite set𝑈 we have |
(𝑈
𝑛

)
| =

( |𝑈 |
𝑛

)
.

𝑓 (𝑎, ·) is understood as 𝑥 ↦→ 𝑓 (𝑎, 𝑥).

3



2. Theoretical Foundations

1 2 3 4 5

100

101

102

𝑛

𝑛!√
2𝜋𝑛

(𝑛
𝑒

)𝑛

Figure 2.1.: Stirling’s approximation for the factorial. Stirling’s approximation is close, even
for small 𝑛.

2.2. Basic Theorems

This section provides some well-known bounds that will be used throughout this thesis.

Stirling’s Approximation. Wewill oftenwant to approximate terms containing factorials,
for example, the probability of finding a minimal perfect hash function at random, as we will
see later on, is 𝑛!

𝑛𝑛 . For that, we will make use of Stirling’s approximation [e.g., Rom00]. It
states for 𝑛 ∈ ℕ+

𝑛! ∼
√
2𝜋𝑛

(𝑛
𝑒

)𝑛
∈ Θ

(√
𝑛
𝑛𝑛

𝑒𝑛

)
where 𝑎𝑛 ∼ 𝑏𝑛 means 𝑎𝑛

𝑏𝑛
→ 1 (𝑛 → ∞). As shown in Figure 2.1, Stirling’s approximation is

close even for small 𝑛. Applying this to 𝑛𝑛

𝑛! we get

𝑛𝑛

𝑛!
∼ 𝑛𝑛

√
2𝜋𝑛(𝑛𝑒 )𝑛

=
𝑒𝑛

√
2𝜋𝑛

∈ Θ

(
𝑒𝑛
√
𝑛

)
.

Bernoulli’s Inequality. For some proofs, it is helpful to recall Bernoulli’s inequality [Einb]:
For 𝑎 ∈ [−1,∞), 𝑛 ∈ ℕ0 it holds

(1 + 𝑎)𝑛 ≥ 1 + 𝑛𝑎.

2.3. Geometric Distribution and Entropy

When searching for minimal perfect hash functions at random, we will regularly encounter
the geometric distribution. The geometric distribution Geo1(𝑝) describes the number of
times a Bernoulli trial (success or fail) with success probability 𝑝 ∈ (0, 1] needs to be per-
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2.3. Geometric Distribution and Entropy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

𝑖

ℙ(𝑋 = 𝑖) with 𝑋 ∼ Geo1(0.1)

Figure 2.2.: Probability mass function of the Geo1 distribution.

formed until and including the first success [Kle20]. More formally, if 𝑋 ∼ Geo1(𝑝) then
ℙ(𝑋 = 𝑖) = (1 − 𝑝)𝑖−1𝑝, 𝑖 ∈ ℕ+, see Figure 2.2. Furthermore, it has an expected value of
𝔼[𝑋 ] = 1

𝑝 .

We writeGeo1 because often it is also interesting to consider the number of times a Bernoulli
trial has to be repeated before the first success occurs, which is a distribution on ℕ0 instead
of ℕ+. If 0 is included in the outcomes, we write Geo0. As a result, if 𝑋 ∼ Geo1(𝑝) then
𝑋 − 1 ∼ Geo0(𝑝).

2.3.1. Entropy

Apart from the expected value, another important property of a random variable is its entropy
𝐻 [𝑋 ] [Sha48]. When 𝑋 can take on 𝑘 ∈ ℕ+ different values with probabilities 𝑝𝑖 , 𝑖 ∈ [𝑘],
its entropy is defined as 𝐻 [𝑋 ] = −∑

𝑖∈[𝑘 ] 𝑝𝑖 log2 𝑝𝑖 ∈ [0,∞). Entropy can be interpreted in
many ways:

First, it can be seen as the expected information gained knowing the value of a random
variable. The higher the entropy the more information can be expected to gain from the
variable. For example, for 𝑋 ∼ Uniform([𝑛]) for 𝑛 ∈ ℕ+, its entropy is

𝐻 [𝑋 ] =
𝑛∑
𝑖=1

−1

𝑛
log2

1

𝑛
= log2 𝑛.

With a uniform distribution, we gain an equal amount of information from each possible
value of 𝑋 ∈ [𝑛]. When 𝑛 = 1, we now that always 𝑋 = 1 and thus we do not learn
anything new when “evaluating” 𝑋—we get 𝐻 [𝑋 ] = 0. As 𝑛 gets larger, we can “encode”
more different outcomes for 𝑋 while each singular outcome becomes less likely—𝑋 carries
more information.

5



2. Theoretical Foundations

0 0.2 0.4 0.6 0.8 1

0

2

4

6

𝑝

𝐻 [𝑋 ] with 𝑋 ∼ Ber(𝑝)
𝐻 [𝑋 ] with 𝑋 ∼ Geo(𝑝)

Figure 2.3.: Entropy of the Bernoulli and geometric distribution.

This leads to the second interpretation of entropy: the expected number of bits necessary to
store𝑋 . This interpretation is motivated by Shannon’s source coding theorem [Sha48], which
effectively states that given a sequence of i.i.d. random variables (𝑋𝑖)𝑖∈[𝑚], 𝑚 ∈ ℕ+ with
entropy𝐻 [𝑋𝑖], 𝑖 ∈ [𝑚], at least𝑚 ·𝐻 [𝑋1] bits are required in expectation to losslessly encode
(𝑋𝑖)𝑖∈[𝑚] . As a result, we will use entropy as a measure for required storage throughout
this thesis. Moreover, this is justified as there exist codes that come close to this bound—in
particular Golomb Rice codes for geometrically distributed 𝑋𝑖 [Gol66 | RP71 | GvV75].

Note that when we only store a single geometrically distributed variable 𝑋 by storing its
binary representation with a variable length, we just use 𝔼[log2𝑋 ] as expected space usage.
This only works for single values where we can assume to know the length of the binary
representation through other means (e.g., having the total size of the data structure stored
somewhere). Otherwise, for multiple values, we would not know where one value ends and
another one starts.

Looking at further examples, we can determine the entropy of a Bernoulli trial𝑋 ∼ Ber(𝑝), 𝑝 ∈
[0, 1] to be 𝐻 [𝑋 ] = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝), see Figure 2.3. The aforementioned geo-
metric distributions 𝑋 ∼ Geo0(𝑝),Geo1(𝑝) both have entropy [GvV75]

𝐻Geo(𝑝) := 𝐻 [𝑋 ] = − log2 𝑝 −
1−𝑝
𝑝 log2(1 − 𝑝).

Subsection 4.2.3 and Section 5.1 will take a closer look at some properties of 𝐻Geo.

2.4. Hashing

In essence, hashing allows for a mapping of data points, called keys, to codes, called hash
codes or hashes, often of a fixed size [Kno75]. This is mainly done for easier or more efficient
handling of the data itself. As the space of hash codes is smaller than the sometimes even
infinite data space, some data points will get assigned the same hash. This is called a hash col-
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lision. Typically, it is required that hash codes are assigned in a jumbled way. Requirements
range from an even distribution of hashes to similar data getting assigned dissimilar hashes,
or even the inability to find collisions efficiently in cryptographic applications [MvOV18]. A
function providing such a mapping is called a hash function.

One big field for applications of non-cryptographic hash functions is hash tables [MS08].
These data structures use hashing to associate keys with values, so that—given a key—a value
can be queried efficiently. For that, hash tables commonly use the hash code assigned to a key
as an index into an array, where then possible collisions are handled in some way. Here, it is
important that hash functions can be evaluated quickly while hashes are distributed evenly.
In practice, accessing a value given a key often is possible in expected constant time, but
collisions lead to a worse worst-case bound.

For this thesis, we assume having a randomly drawn seeded hash function (𝑓𝑖 : 𝑈 → [𝑛])𝑖∈ℕ0

with seeds 𝑖 ∈ ℕ0 for some universe of keys𝑈 and𝑛 ∈ ℕ+, such that hash codes are uniformly
and independently distributed:

∀𝑖 ∈ ℕ0, 𝑥 ∈ 𝑈 : 𝑓𝑖 (𝑥) 𝑖 .𝑖 .𝑑.∼ Uniform([𝑛]) .

We assume we do not need to store anything for such a sequence of seeded hash functions
and that they can be evaluated in constant time.

2.5. Minimal Perfect Hash Functions (MPHFs)

A perfect hash function on 𝑋 ⊆ 𝑈 is a data structure that is constructed for a set of keys
𝑋 . It provides a hash function 𝑓 : 𝑈 → [𝑛] that is injective on 𝑋 : ∀𝑥1, 𝑥2 ∈ 𝑋 : 𝑥1 ≠
𝑥2 =⇒ 𝑓 (𝑥1) ≠ 𝑓 (𝑥2). A minimal perfect hash function (MPHF) is a perfect hash function
with 𝑛 = |𝑋 |, making 𝑓 bijective on 𝑋 [FCH92]. Using an MPHF to get the hash for a key is
called a query.

Interesting properties of MPHFs are construction time, query time, and space usage. Optimal
values for that are linear construction time, constant query time, and log2 𝑒 bits per key space
usage. In this thesis, we will mostly focus on space usage with acceptable characteristics in
the other categories and explain, how they can further be improved.

Perfect hash functions have the advantage, that they have no collisions for any keys in𝑋 . This
allows for use in hash tables with worst-case constant query time [FKS84]. MPHFs further
allow for a minimally sized backing array in extremely tight memory constraints, creating
updatable retrieval data structures [MSSZ14]. Their downside is, however, that MPHF con-
struction requires the key set 𝑋 to be known at construction and most MPHFs cannot be
easily updated.

One easy way to provide such a minimal perfect hash function would be to store every ele-
ment of 𝑋 in order in an array. To calculate 𝑓 (𝑥) for 𝑥 ∈ 𝑋 , an algorithm could search for 𝑥
in the array and return the index as 𝑓 (𝑥) (see Algorithm 2.1).
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Algorithm 2.1: Wasteful MPHF
Data: 𝑥 ∈ 𝑋 , array 𝐴 of elements 𝑋
Result: 𝑓 (𝑥)

1 for 𝑖 ∈ [𝑛] do
2 if 𝐴[𝑖] = 𝑥 then
3 return i

This requires 𝑛𝐾 space to store the array 𝐴, where 𝐾 is the size of the elements in 𝑋 . One
goal is to store 𝑓 using as little space as possible. As 𝑓 (𝑥) can be arbitrary for 𝑥 ∉ 𝑋 , it is
possible to store much less than an array of 𝑋 .

2.5.1. Lower Bound

Let there be a finite universe 𝑈 with |𝑈 | = 𝑢 and 𝑛 ∈ ℕ+. In the following, we will consider
howmany 𝑓 : 𝑈 → [𝑛] are at least necessary so that for every𝑋 ∈

(𝑈
𝑛

)
at least one of them is

an MPHF. If we require at least 𝑘 different hash functions, we thus would need at least log2 𝑘
bits to differentiate between them [Meh84].

To estimate the minimal number 𝑘 of hash functions required, we consider an upper bound
on the number of sets 𝑋 ∈

(𝑈
𝑛

)
a single 𝑓 : 𝑈 → [𝑛] can be an MPHF for. Let 𝑥𝑖 := |𝑓 −1({𝑖}) |

be the number of times 𝑓 takes on 𝑖 ∈ [𝑛]. 𝑓 is an MPHF for all 𝑋 with one element in
𝑓 −1({1}), one in 𝑓 −1({2}) and so on. This yields a total number of

∏
𝑖∈[𝑛] 𝑥𝑖 sets 𝑋 . Using

the AM-GM inequality [Ste04] we see that this product is maximal when all 𝑥𝑖 are equal, as

𝑢

𝑛
=
1

𝑛

∑
𝑖∈[𝑛]

𝑥𝑖 ≥ 𝑛

√ ∏
𝑖∈[𝑛]

𝑥𝑖

with equality iff all 𝑥𝑖 are equal. Thus, we get∏
𝑖∈[𝑛]

𝑥𝑖 ≤
(𝑢
𝑛

)𝑛
.

Now, we can use this information to find a lower bound on the minimal number 𝑘 of hash
functions required to have an MPHF for every possible set 𝑋 ∈

(𝑈
𝑛

)
. We simply divide the

number of sets by the maximum number one hash function can cover to get the number of
hash functions at least required.

𝑘 ≥
(𝑢
𝑛

)(𝑢
𝑛

)𝑛 =
𝑢!

(𝑢 − 𝑛)! · 𝑛!
𝑛𝑛

𝑢𝑛
≥ (𝑢 − 𝑛 + 1)𝑛

𝑢𝑛
𝑛𝑛

𝑛!
=

(
1 − 𝑛 − 1

𝑢

)𝑛 𝑛𝑛
𝑛!
.

Assuming 𝑢 ∈ Ω(𝑛2), thus 𝑢 ≥ 𝛼𝑛2 for some 𝛼 > 0 and for almost all 𝑛 ∈ ℕ+, we can further
simplify

𝑘 ≥
(
1 − 𝑛 − 1

𝑢

)𝑛 𝑛𝑛
𝑛!

≥
(
1 − 𝑛

𝛼𝑛2

)𝑛 𝑛𝑛
𝑛!

=

(
1 − 1/𝛼

𝑛

)𝑛
︸        ︷︷        ︸
→𝑒−1/𝛼 (𝑛→∞)

𝑛𝑛

𝑛!
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Algorithm 2.2: Finding a MPHF by brute force.
Data: 𝑋 , Sequence of hash functions (𝑓𝑖 : 𝑈 → [𝑛])𝑖∈ℕ0 (𝑛 = |𝑋 |)
Result: Minimal perfect hash function for 𝑋

1 for 𝑖 ∈ ℕ0 (in ascending order) do
2 if 𝑓𝑖 |𝑋 is bijective then
3 return 𝑖

In the end, we need log2 𝑘 bits to differentiate between 𝑘 different hash functions. Thus, we
need at least per key in bits:

log2 𝑘

𝑛
≥

log2

((
1 − 1/𝛼

𝑛

)𝑛
𝑛𝑛

𝑛!

)
𝑛

=
log2(

(
1 − 1/𝛼

𝑛

)𝑛
𝛽𝑛

𝑒𝑛√
2𝜋𝑛

)
𝑛

(𝛽𝑛 :=
𝑛𝑛

𝑛!

√
2𝜋𝑛

𝑒𝑛︸     ︷︷     ︸
→1 (𝑛→∞)

by Stirling)

= log2 𝑒 + log2

(
1 − 1/𝛼

𝑛

)
+ 1

𝑛

(
log2

𝛽𝑛√
2𝜋

− 1

2
log2 𝑛

)
→ log2 𝑒 ≈ 1.44270 (𝑛 → ∞) (2.1)

In the limit for large 𝑛, we at least need log2 𝑒 ≈ 1.44270 bits per key. This bound is tight, as
we will see in Subsection 2.5.2.

This is in fact a lower bound: Suppose there exists an algorithm A that produces MPHFs
of size log2 𝑘

′ < log2 𝑘 bits (𝑘 ′ ∈ ℕ) for any 𝑋 ∈
(𝑈
𝑛

)
. This algorithm can at most produce

𝑘 ′ = 2log2 𝑘
′
< 2log2 𝑘 = 𝑘 different MPHFs. This contradicts the definition of 𝑘 as the minimal

number of such functions needed to have an MPHF for every 𝑋 ∈
(𝑈
𝑛

)
.

2.5.2. Naive MPHF

Now that we know a lower bound on space usage for MPHFs, we will look at a naive con-
struction, which matches this lower bound.

Given a seeded hash function (𝑓𝑖 : 𝑈 → [𝑛])𝑖∈ℕ0 (𝑛 ∈ ℕ+), each independently and uni-
formly chosen from the set of all functions [𝑛]𝑈 = {𝑓 | 𝑓 : 𝑈 → [𝑛]} (think of a seeded hash
function) and a set 𝑋 ∈

(𝑈
𝑛

)
, one strategy to find a minimal perfect hash function is to iterate

over 𝑖 ∈ ℕ0 until 𝑓𝑖 |𝑋 is bijective (see Algorithm 2.2).

Let𝑌 describe the number of functions checked for bijectivity until a bijective one is found. It
turns out 𝑌 ∼ Geo1(𝑝) with the probability 𝑝 of a single hash function 𝑓 = 𝑓𝑖 being bijective
(for any 𝑖 ∈ ℕ0) is:

𝑝 =
#of hash functions bijective on 𝑋

#of hash functions =
{𝑓 ∈ [𝑛]𝑈 | 𝑓 |𝑋 is bijective}

| [𝑛]𝑈 | =
𝑛𝑢−𝑛𝑛!

𝑛𝑢
=
𝑛!

𝑛𝑛
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2. Theoretical Foundations

The number of hash functions bijective on 𝑋 is given by the observation, that with 𝑥 ∈ 𝑈 \𝑋
𝑓 (𝑥) can be chosen freely in [𝑛]. However for 𝑋 = {𝑥0, . . . , 𝑥𝑛−1}, 𝑓 (𝑥0) can be chosen
arbitrarily from [𝑛], 𝑓 (𝑥1) can be chosen from [𝑛] \ {𝑓 (𝑥0)} and so on, resulting in:

| [𝑛] | |𝑈 \𝑋 | · | [𝑛] | · | [𝑛] \ {𝑓 (𝑢0)}| · · · · · 1 = 𝑛𝑢−𝑛𝑛!

As a result, the expected number of checks is𝔼[𝑌+1] = 1
𝑝 = 𝑛𝑛

𝑛! ∈ Θ
(
𝑒𝑛√
𝑛

)
as𝑌 is geometrically

distributed. Thus, the expected runtime of Algorithm 2.2 grows exponentially in 𝑛, rendering
it unfeasible for large 𝑛.

Considering the required space, this approach looks much better: If we simply store the index
𝑖 that Algorithm 2.2 returned using a binary encoding, we need expected bits:

𝔼[log2 𝑖] ≤ log2𝔼[𝑖] = log2𝔼[𝑌 ] ≤ log2
1

𝑝
= log2

𝑛𝑛

𝑛!
.

Looking at the derivation of Equation 2.1 we see that this approach reaches minimal space
usage in expectation.

To sum up, constructing an MPHF by brute force searching through hash functions provides
optimal space usage but has impractically exponential construction time. This thesis will
improve this approach, based on RecSplit [EGV19], to gain better construction time while
retaining near-optimal space usage.
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3. Related Work

In this chapter, we look at various MPHF implementations using different approaches to
get a picture of the state of research. First, we take a look at an older technique of bucket
placement. After that, we explore fingerprinting for MPHF construction. Then we describe
RecSplit [EGV19] on which the most recent, most space-efficient constructions are based on
and which also form a basis for the MPHF introduced in this thesis. Finally, we take a look at
some approaches using cuckoo hashing. Figure 3.1 gives an overview of the here presented
MPHF algorithms.

It shall be noted, that the provided numbers for space usage only point in a rough direction
and are not necessarily directly comparable. Those numbers state the best-achieved result for
a realistic runtime that was stated in each paper. Thus, they were not performed on the same
hardware and had different runtime constraints. Providing an accurate comparison between
all of them is out of the scope of this thesis.

3.1. Bucket placement

Some approaches try to construct MPHFs incrementally by partitioning the input keys into
buckets and finding injective hash functions on each bucket that do not collide with the
previous ones. Apart from mentioning [BBD09], we want to present one lineup of MPHFs
that build upon each other:

FCH. Fox et al. (FCH) [FCH92] construct an MPHF in three steps: First, they partition the
input keys into multiple buckets unevenly, such that 60% of the keys get mapped to 30% of
the buckets. Then, they order the buckets in decreasing size. Then, they assign hashes to
each key—bucket by bucket in the order of the previous step—that collide with previously
assigned hashes. For that, a global hash function is searched first that does not produce a
collision in any bucket. Afterward, for each bucket, FCH randomly search a displacement
value that is added to the hashes of each key until no collision occurs. To further increase
the chance of success, a second global hash function may be tried. In the end, two seeds for
partitioning and hash assignment, and for each bucket the displacement value (and whether
the second global hash function was used) are stored. Their approach reaches 2.5 bits per key
while having fast queries.

PTHash. PTHash [PT21] modifies FCH’s approach by changing the last step. Instead of
a displacement value that gets added on, PTHash applies a seeded random offset to each
hash. The advantage of this approach is that seeds for the offsets do not need to be searched

11
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8

RecSplit

SRS-RS

SicHash

PTHash

PHOBIC (bipartite) ShockHash-RS 1.489

1992 FCH

2021

2023

2024

2019

2.5

2.1

1.67

1.56

1.44291

2

FiPHa 2.582014

Bucket Placement

Fingerprinting

Cuckoo Hashing

RecSplit

Figure 3.1.: Non-exhaustive overview about MPHF algorithms as they are presented in this
chapter. Year of publication is shown on the left. Reached space usage per key is shown
next to the names. Arrows indicate how the algorithms got improved. Colors indicate the
concepts they are based on.

at random but can be tried out in order. Thus, they are compressible which then decreases
space usage. For compression, PTHash uses—amongst others—a lookup table linking buckets
to potentially multiply used seeds. PTHash reaches 2.1 bits per key while maintaining fast
queries.

PHOBIC. PHOBIC [Her+24] improves on PTHash by optimizing the non-uniform bucket
size distribution. Furthermore, PHOBIC performs another uniform partitioning step in the
beginning to encode the seed for the 𝑖th bucket of each partition together, as they have the
same statistical distribution. PHOBIC reaches as little as 1.67 bits per key.

3.2. Fingerprinting

Other approaches use fingerprinting for MPHF construction. FiPHa [MSSZ14] reaches 2.58
bits per key. It calculates a fingerprint (hashes in [𝑛] for input size 𝑛) for each key. For each
fingerprint that has no collision, a bit in a bit vector is set. All keys that cause a collision
get moved to the next layer. Here, the same is repeated for the remaining keys with a new
fingerprinting function. This is performed for a fixed number of layers when a fallbackMPHF
handles the remaining keys to achieve constant query time—or until no keys are left for
logarithmic query time. In the end, the bit vectors are concatenated and stored together with
a rank data structure [NP12].

To query a key, FiPHa calculates its fingerprint. If the bit indexed by the fingerprint is set,
FiPHa returns the rank of this bit. Otherwise, it repeats the same for the second layer staring
at the 𝑛th bit, which contains 𝑛 − rank(𝑛) keys.
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9

Bucketization

Splitting Tree

Bijecting Leafs

Input keys X

Figure 3.2.: Structure of RecSplit. First, the input keys are partitioned into buckets of ex-
pected constant size. Then, they are split recursively until they have a specified leaf size in
each node, where a bijection is searched directly. For simplicity, the splitting tree for only
one bucket is shown.

3.3. RecSplit

As the MPHF proposed in this thesis is based on RecSplit [EGV19], we describe it in more
detail. It allows for space usage down to 1.56 bits per key.

Let 𝑋 ⊆ 𝑈 be the input key set of size |𝑋 | = 𝑛 ∈ ℕ+ that should be mapped bijectively
to [𝑛]. First, RecSplit partitions the keys 𝑋 into buckets of expected constant size 𝑏. This
partitioning is done using an ordinary hash function with codomain [𝑛𝑏 ] where keys with
the same hash are grouped together. Then, RecSplit constructs a separate splitting tree for
each of these buckets as follows:

Using seeded hash functions this time, RecSplit again splits the buckets’ keys into two parts
(or more, depending on a splitting strategy). This time, however, an even split is achieved by
trying out seeds, until one is found where each hash value occurs equally often (a difference
of one is allowed for an odd number of keys). RecSplit then splits these two parts again and
again, until they reach a leaf size 𝑙 or smaller, see Figure 3.2. For these leafs, an MPHF is
searched using brute force similar to Subsection 2.5.2. All the seeds found are then encoded
using a Golomb–Rice encoding [Gol66 | RP71] and concatenated in preorder of the splitting
tree.

Afterward, these bit strings for each bucket are concatenated as well. Furthermore, the prefix
sums of bucket sizes and the bucket starting positions inside the bit string are encoded using
an Elias–Fano encoding [Eli74 | Fan71]. In the end, the encoded seeds, the starting positions
of the buckets therein and the prefix sum of bucket sizes form the MPHF data structure.
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To query the MPHF, a key is first hashed into its bucket and then the corresponding splitting
tree is descended, each time hashing the key with the current node’s seed to decide which
node to visit next. While traversing, RecSplit keeps track of the number of keys that lie left
of the current node. This way, RecSplit obtains an index of the queried key inside the bucket,
and using the prefix sum of bucket sizes it obtains the final hash value.

SRS-RecSplit (Section 4.4) mainly differs from RecSplit in the way it searches the splitting
hash functions, and that there are no big leafs—binary splittings are searched until all keys
are separated. The latter is possible because our approach does not waste up to log2 𝑒 bits
per splitting, as RecSplit does.

3.4. Cuckoo Hashing Based

Some approaches for MPHF construction are based on cuckoo hashing. Cuckoo hash ta-
bles [PR04] achieve constant lookup time by avoiding collisions. In their basic form, they
achieve this by using two hash functions and two arrays instead of one as described in Sec-
tion 2.4. On access, cuckoo hashing probes the array cell in each array that is indexed by the
hash of the queried key under the respective hash function. Cuckoo hash tables guarantee,
that if a key is contained in the hash table, it is in one of those two cells.

To insert a key in the hash table, cuckoo hashing tries to insert it in its cell in the first array.
If this cell is not empty, cuckoo hashing relocates the element stored there to its cell in the
second array. If this cell is occupied as well, the same is repeated there, moving the value to
the first array. This kicking out (that got cuckoo hashing its name) is repeated until either
an empty cell is eventually reached or a maximum number of iterations is exceeded. In the
latter case, the hash table needs to be rebuilt from the ground up with new hash functions.
Rebuilding happens rarely enough to achieve expected constant insertion time if both arrays
together are less than half full.

3.4.1. SicHash

SicHash [LSW23] makes use of a form of cuckoo hashing to construct an MPHF. It allows for
space usage down to 2 bits per key but achieves faster construction than, e.g., RecSplit for
larger space usage, especially for non-minimal perfect hash functions. SicHash first partitions
the input keys into buckets of the same expected size, similar to RecSplit. For each bucket,
a generalized irregular cuckoo hash table is constructed at full capacity, that uses 𝑑 different
hash functions instead of 2. Furthermore, it uses different 𝑑 for different keys, decided by
another hash function. As cuckoo hash table construction may fail, after some retries, each
cuckoo hash table has a seed for which construction succeeded. Then, for each key, SicHash
stores which of the 𝑑 hash functions was used in the cuckoo hash table using a retrieval data
structure [DHSW22] that can represent static functions with low space usage. In the end,
SicHash stores a prefix sum of bucket sizes, the seeds for the cuckoo hash tables, and the
retrieval data structure.
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To query the MPHF, SicHash first determines the bucket the key belongs to. Then, using the
retrieval data structure, it determines which of the 𝑑 hash functions was finally used for the
cuckoo hash table with the stored seed. Using this hash function, the key’s unique index
inside the bucked is determined, which then gets added to the sum of all previous bucket
sizes to get the final hash.

3.4.2. ShockHash

ShockHash [LSW24] uses ideas of SicHash to provide an alternative to finding anMPHF using
brute force, as done in RecSplit’s leafs, that requires less work by an exponential factor. For
that, it constructs an ordinary (only two hash functions) cuckoo hash table at full capacity
and stores the seed of the successful cuckoo hash table, as well as which of the two hash
functions was used for which key using a retrieval data structure. Before cuckoo hash table
construction, ShockHash performs an efficient check whether every hash is hit in the first
place to filter out hash functions that cannot lead to a successful construction early on. Then,
it checks whether construction can be successful using an algorithm to detect pseudoforests—
graphs with at most one edge more per component than a regular forest.

Unlike the cuckoo hash tables as described above, ShockHash (and SicHash) uses one com-
bined array, intowhich both hash functions index. A further improvement—bipartite ShockHash—
goes back to using separate arrays and hash functions. This allows for keeping a pool of hash
functions that hit every hash. Out of this pool, ShockHash then searches two hash functions
that together successfully form a cuckoo hash table.

To be efficient on large inputs, (bipartite) ShockHash-RS combines ShockHash with RecSplit
and reaches as low as 1.489 bits per key.

In theory, it would be possible to combine ShockHash-RS with SRS (Section 4.3) to achieve
lower space usage than ShockHash-RS on its own. However, as SRS-RecSplit (Section 4.4)
already reaches excellent space usage by splitting down to single keys, this would mainly
add further complexity. Yet, it is thinkable that using larger leafs would allow for better
cache efficiency and faster queries. In Section 7.3 we experimentally compare SRS-RecSplit
to bipartite ShockHash-RS as it represents the state of the art regarding low-space MPHFs.

15





4. Algorithm

This chapter describes what Symbiotic Random Search (SRS) can be used for, motivates why
its approach is necessary, and introduces the underlying algorithm. Furthermore, we will
apply SRS to constructing MPHFs, creating SRS-RecSplit.

4.1. Problem

Before we introduce SRS, we want to define the problem it is useful for and establish some
terminology. Given a sequence of tasks [𝑚], 𝑚 ∈ ℕ+, for each task 𝑗 ∈ [𝑚] there is a
Bernoulli process (𝑋 𝑖

𝑗 )𝑖∈ℕ0 where 𝑋 𝑖
𝑗
𝑖 .𝑖 .𝑑.∼ Ber(𝑝 𝑗 ) for every seed 𝑖 ∈ ℕ0, 𝑝 𝑗 ∈ (0, 1]. Let

𝑆 𝑗 = {𝑖 ∈ ℕ0 | 𝑋 𝑖
𝑗 = 1} ⊆ ℕ0 be the successful seeds for task 𝑗 .

The goal is to find and represent successful seeds 𝑖1, . . . , 𝑖𝑚 where ∀𝑗 ∈ [𝑚] : 𝑖 𝑗 ∈ 𝑆 𝑗 while
trying to minimize expected space usage and expected construction time. For that, testing
one seed—that is, one membership query on 𝑆 𝑗—shall take work at most𝑊𝑗 ( 𝑗 ∈ [𝑚]).

Example. This problem occurs in the RecSplit splitting tree (see Section 3.3 for more de-
tails). Here, tasks 𝑗 ∈ [𝑚] represent nodes of the splitting tree, 𝑝 𝑗 is the probability of finding
a splitting/bijection at node 𝑗 , 𝑋 𝑖

𝑗 indicates whether the seeded hash function ℎ𝑖 provides a
valid splitting/bijection for seed 𝑖 and thus 𝑆 𝑗 is the set of all splitting/bijecting seeds. In the
end, 𝑖 𝑗 ( 𝑗 ∈ [𝑚]) are represented and stored individually using a Golomb–Rice coding.

4.2. Two Obvious Solutions

There are two obvious approaches to solving this problem. In the following, we will consider
finding a successful seed for each task independently (IND) and one seed for all combined
(UNI), see Figure 4.1. We will see that IND has low work requirements, while UNI has good
space usage. In detail, we will see that IND, as used by RecSplit, wastes up to log2 𝑒 bits per
task compared to UNI.
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Figure 4.1.: Schematic representation of which successful seeds IND and UNI choose. Suc-
cessful seeds aremarked as a cross. Chosen seeds are highlightedwith a red box. IND chooses
the first successful seed for each task, UNI the first that is successful for both tasks.

4.2.1. Independent Search (IND)

Maybe the most natural approach, as done by RecSplit, is to consider each task 𝑗 ∈ [𝑚] inde-
pendently and then search through the seeds using brute force:

𝑖 𝑗 = min 𝑆 𝑗 ∼ Geo0(𝑝 𝑗 )

As a result, the work required is

𝔼[RIND] ≤ 𝔼


∑
𝑗∈[𝑚]

𝑊𝑗 (𝑖 𝑗 + 1)
 =

∑
𝑗∈[𝑚]

𝑊𝑗𝔼
[
𝑖 𝑗 + 1

]
=

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗
.

For the required space usage using an entropy optimal encoding, we get in bits

𝔼[SIND] =
∑
𝑗∈[𝑚]

𝐻 [𝑖 𝑗 ] =
∑
𝑗∈[𝑚]

𝐻Geo(𝑝 𝑗 )

where𝐻Geo(𝑝) = − log2 𝑝−
1−𝑝
𝑝 log2(1−𝑝) is the entropy of theGeo(𝑝) distribution (𝑝 ∈ (0, 1]),

see Section 5.1. This may seem like a good solution, as runtime is linear in𝑚 (for constant
𝑝 = 𝑝 𝑗 , 𝑗 ∈ [𝑚]). However, considering another approach, we will see that space usage is
not optimal.

4.2.2. Unified Search (UNI)

In this approach, we try to find a single seed 𝑖 ∈ ℕ0 that is successful for all tasks, that is,
∀𝑗 ∈ [𝑚] : 𝑖 ∈ 𝑆 𝑗 . We again evaluate them in ascending order by using brute force. In other
words,

𝑖 𝑗 = 𝑖 = min
⋂
𝑗∈[𝑚]

𝑆 𝑗 ∼ Geo0
©«

∏
𝑗∈[𝑚]

𝑝 𝑗
ª®¬ .

For the work required for finding this value, we get the following bounds (considering that
when one task fails, we immediately can try the next seed without evaluating the remaining
tasks):

𝔼[RUNI]
{
≤ 𝔼[𝑖 + 1] · ∑𝑗∈[𝑚]𝑊𝑗 =

∏
𝑗∈[𝑚]

1
𝑝 𝑗

· ∑𝑗∈[𝑚]𝑊𝑗

≥ 𝔼[𝑖 + 1] ·min𝑗∈[𝑚]𝑊𝑗 =
∏

𝑗∈[𝑚]
1
𝑝 𝑗

·min𝑗∈[𝑚]𝑊𝑗
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0.5

1

0.5

1

0

1

𝑝𝑞

𝐻Geo(𝑝) + 𝐻Geo(𝑞) − 𝐻Geo(𝑝𝑞)

Figure 4.2.: Discrepancy between 𝐻Geo(𝑝) +𝐻Geo(𝑞) and 𝐻Geo(𝑝𝑞). For small success prob-
abilities 𝑝, 𝑞 → 0, this approaches log2 𝑒 ≈ 1.44.

As we only need to store one seed, space usage using an entropy optimal encoding is

𝔼[SUNI] = 𝐻 [𝑖] = 𝐻Geo
©«

∏
𝑗∈[𝑚]

𝑝 𝑗
ª®¬ .

In the following, we will discover that this approach requires around log2 𝑒 fewer bits per
task than IND. However, UNI requires work exponential in𝑚.

4.2.3. Entropy Discrepancy between IND and UNI

To compare the space usage of UNI and IND, we need to look closer at the entropy of a
geometric distribution. For that, we compare the entropy of two individual geometrically
distributed random variables 𝑋 ∼ Geo0(𝑝) and 𝑌 ∼ Geo0(𝑞) with parameters 𝑝, 𝑞 ∈ (0, 1]
to a single variable 𝑍 ∼ Geo0(𝑝𝑞). We will find that 𝑋 and 𝑌 together have higher entropy
than 𝑍 .

For that, we analyze the entropy of a geometrically distributed variable as presented in Sec-
tion 5.1. Proofs are shown in Section 5.1.

Lemma 4.1: For 𝑝 ∈ (0, 1] it holds

𝐻Geo(𝑝) = − log2 𝑝 −
1 − 𝑝
𝑝

log2(1 − 𝑝) ∈ − log2 𝑝 + log2 𝑒 − log2 𝑒 ·
𝑝

2
−O

(
𝑝2

)
.

With this big O approximation, which tells us about the behavior of 𝐻Geo(𝑝) for small 𝑝 , we
compare the combined entropy of 𝑋 and 𝑌 with the entropy of 𝑍 .
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Corollary 4.2: For 𝑝, 𝑞 ∈ (0, 1] it holds

𝐻Geo(𝑝) + 𝐻Geo(𝑞) ∈ 𝐻Geo(𝑝𝑞) + log2 𝑒
(
1 − 𝑝 + 𝑞 − 𝑝𝑞

2

)
+O

(
𝑝2 + 𝑞2

)
.

We find that for small success probabilities 𝑝, 𝑞 there are up to log2 𝑒 bits overhead, see also
Figure 4.2. Applying this finding inductively, we get that𝑛 geometrically distributed variables
loose up to (𝑛 − 1) log2 𝑒 bits compared to a single geometrically distributed variable with
the combined probability:

Corollary 4.3: It holds for 𝑝𝑖 ∈ (0, 1], 𝑖 ∈ [𝑛], 𝑛 ∈ ℕ+

∑
𝑖∈[𝑛]

𝐻Geo(𝑝𝑖) ∈ 𝐻 ©«
∏
𝑖∈[𝑛]

𝑝𝑖
ª®¬ + log2 𝑒 ·

(
𝑛 − 1 −

∑
𝑖∈[𝑛] 𝑝𝑖 −

∏
𝑖∈[𝑛] 𝑝𝑖

2

)
+O ©«

∑
𝑖∈[𝑛]

𝑝2𝑖
ª®¬ . (4.1)

With these findings, we can compare the space usage of IND and UNI. As IND stores 𝑚
separate geometrically distributed seeds and UNI only one, we get with Corollary 4.3

𝔼[SIND] ∈ 𝔼[SUNI] + log2 𝑒 ·
(
𝑚 − 1 −

∑
𝑗∈[𝑚] 𝑝 𝑗 −

∏
𝑗∈[𝑛𝑚] 𝑝 𝑗

2

)
+O ©«

∑
𝑗∈[𝑚]

𝑝2𝑗
ª®¬ .

Thus, IND loses up to log2 𝑒 bits per additional task compared to UNI for small 𝑝 𝑗 ( 𝑗 ∈ [𝑚]).
This motivates us to search for another solution to the problem stated in Section 4.1, that
achieves IND’s linear work requirements and UNI’s space usage.
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6

l1 l2 l3 lmi0

i2

log2 k1 bits

Figure 4.3.: Storage representation for indices allowing for quick access of the seeds.

4.3. Symbiotic Random Search (SRS)

We now finally get to introduce Symbiotic Random Search (SRS). SRS solves the discrepancy
in space usage between IND and UNI while still only requiring work linear in 𝑚. More
precisely, SRS can reach space usage per task arbitrarily close to the one of UNI for large
enough𝑚.

In principle, SRS approaches the problem like IND. It searches for a successful seed for each
task, one at a time. However, it limits the number of seeds tested for one task in one go to
𝑘 𝑗 ∈ ℕ+. If a successful seed is found, SRS continues with the next task. If not, SRS backtracks
to the previous task and tries to find another successful seed there. In essence, SRS lets tasks
help each other out if they do not find a successful seed within their 𝑘 𝑗 tries. This gives SRS
its name.

On its own, retrying the same 𝑘 𝑗 seeds after the previous task found another successful seed
is not helpful as just the same failing seeds would be tested. However, in SRS, the concrete
tested seeds 𝑖 𝑗 consist of the last successful seed 𝑖 𝑗−1 of the previous task 𝑗 − 1 and an index
𝑙 𝑗 ∈ [𝑘 𝑗 ]0 by “concatenating” them (see also Figure 4.3). We use 𝜂 to represent concatenation:

𝑖 𝑗 := 𝑖 𝑗−1 · 𝑘 𝑗 + 𝑙 𝑗 ( 𝑗 ∈ [𝑚])

=
(
· · ·

(
(𝑖0 · 𝑘1 + 𝑙1) · 𝑘2 + 𝑙2

)
· . . .

)
· 𝑘 𝑗 + 𝑙 𝑗 =: 𝜂 (𝑖0, 𝑙1, . . . , 𝑙 𝑗 ) ∈ ℕ0.

This way, new seeds are always tested when retrying. In practice, it suffices to only consider
the least significant 𝑤 bits of the seeds 𝑖 𝑗 for some large enough 𝑤 ∈ ℕ0 (e.g., 𝑤 = 64),
allowing for efficient computation. Subsection 5.2.4 motivates why this is the case.

As stated above, only 𝑘 𝑗 seeds can be tested without finding another seed for a previous task.
Thus, SRS requires only log2 𝑘 𝑗 bits for task 𝑗 ∈ [𝑚] to store 𝑙 𝑗 . Furthermore, an unlimited
root seed 𝑖0 ∈ ℕ0 is required to determine 𝑖1 and allow for an unlimited number of retries.
This root seed will require only constant expected space, independent of 𝑚. Nevertheless,
SRS can find a solution in expected time linear in𝑚 if 𝑘 𝑗 are chosen correctly. Moreover, this
choice is possible for space usage per task arbitrarily close to UNI for large enough𝑚.

In the end, SRS only stores the root seed 𝑖0 and the sequence of indices (𝑙 𝑗 ) 𝑗∈[𝑚] (which
altogether are equivalent to the last seed 𝑖𝑚). Thus, the seeds 𝑖 𝑗 need to be calculable easily.
This calculation is especially convenient when 𝑘 𝑗 are powers of two, as then 𝑖0, (𝑙 𝑗 ) 𝑗∈[𝑚] can
be just concatenated in their binary representation without wasting any space, see Figure 4.3.
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Thus, we will try to use 𝑘 𝑗 to bound the number of immediate retries that are powers of two.
Later, Subsection 5.2.5 shows that

log2 𝑘 𝑗 = ⌈𝜎 ( 𝑗)⌉ − ⌈𝜎 ( 𝑗 − 1)⌉, 𝑗 ∈ [𝑚]

𝜎 ( 𝑗) :=
𝑗∑

𝑗 ′=1

(
𝜔 − log2 𝑝 𝑗 ′

)
, 𝑗 ∈ [𝑚] ∪ {0}

is a good choice for any𝜔 ∈ (0, 1], which introduces a runtime–space tradeoff. 𝜎 keeps track
of the total desired bits used up to task 𝑗 . This may not be a natural number, but by rounding,
the required bits are “averaged out” along the neighboring tasks.

Algorithm 4.1 describes SRS in detail. For each task (l. 3) we try out 𝑘 𝑗 indices (l. 4). We
combine an index 𝑙 𝑗 with the previous task’s seed—consisting of all previous indices and the
root seed 𝑖0—to the seed 𝑖 𝑗 for this try (l. 5). If this seed is a successful seed (l. 6) we continue
with the next task (l. 9). Once we find a successful seed in the final task, we are done (l. 7,8).
If none of the 𝑘 𝑗 indices lead to a successful seed (l. 10), we give up for now and go back to
the previous task where we continue with the next index. Should the latter happen in the
first task, we retry with a new root seed.

In abstract, SRS can be thought of as a depth-first search on a directed acyclic graph (DAG),
see Figure 4.4. For each task, there is a node for every possible seed. Out of each circular
node with a successful seed for its task (except for the last tasks), there are 𝑘 𝑗+1 edges leading
to nodes for the next task. Shown on the left with squares are additional nodes to allow for
an infinite number of retries which represent the possible root seeds 𝑖0. SRS now tries to find
a path from the leftmost pink node () to any node with a successful seed of the final task,
here shown with a checkmark on the right.

We will now quickly summarize SRS work and space requirements, as they are analyzed in
Section 5.2. Storing SRS = (𝑖0, 𝑙1, . . . , 𝑙𝑚) requires space usage

𝔼[SSRS] = 𝔼[log2 𝑖0] +
∑
𝑗∈[𝑚]

log2 𝑘 𝑗 ∈ O
(
log2

1

𝜔

)
+𝑚𝜔 −

∑
𝑗∈[𝑚]

log2 𝑝 𝑗 ,

see Subsection 5.2.3 and Subsection 5.2.5. Remembering

𝔼[SUNI] = 𝐻Geo
©«

∏
𝑗∈[𝑚]

𝑝 𝑗
ª®¬ ∈ − log2

∏
𝑗∈[𝑚]

𝑝 𝑗 +O(1) = −
∑
𝑗∈[𝑚]

log2 𝑝 𝑗 +O(1),

we can see that we can choose 𝜔 such that SRS’s space usage per task gets arbitrarily close
to the one of UNI if𝑚 is sufficiently large.

Analyzing the work required is less trivial, but in Section 5.2 we essentially get

𝔼[RSRS] ∈ O ©« 1𝜔
∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗

ª®¬
which is linear in𝑚.
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Figure 4.4.: SRS can be thought of as a depth-first search through a random
DAG with nodes 𝑉 =

⋃𝑚
𝑗=0(ℕ0 × [𝑘1]0 × · · · × [𝑘 𝑗 ]0) ∪ {()} and edges

𝐸 = {((𝑖0, 𝑙1, . . . , 𝑙 𝑗−1), (𝑖0, 𝑙1, . . . , 𝑙 𝑗−1, 𝑙 𝑗 )) ∈ 𝑉 2 | 𝑖 𝑗 = 𝜂 (𝑖0, 𝑙1, . . . , 𝑙 𝑗−1, 𝑙 𝑗 ) ∈ 𝑆 𝑗 , 𝑗 ∈ [𝑚]} ∪{
()

}
×ℕ0, starting at () and trying to reach any node in ℕ0 × [𝑘1]0 × · · · × [𝑘𝑚]0. Neigh-

bors are discovered in increasing order of their integer value. In the end, SRS will store
(𝑖0, 𝑙1, 𝑙2, 𝑙3, 𝑙4) = (1, 1, 3, 1, 0) as 1 01 11 1 02. Circle nodes are associated with an SRS task.
Not to be confused with the RecSplit splitting tree in Figure 4.5.

Algorithm 4.1: Construction of the SRS data structure. With 𝑖 𝑗 = 𝜂 (𝑖0, 𝑙1 . . . , 𝑙 𝑗 ), the
seeds can be retrieved.
Data: 𝑚 ∈ ℕ+, (𝑘 𝑗 ∈ ℕ+) 𝑗∈[𝑚], (𝑆 𝑗 ⊆ ℕ0) 𝑗∈[𝑚]
Result: (𝑖0, 𝑙1, . . . , 𝑙𝑚) ∈ ℕ0 × [𝑘1]0 × · · · × [𝑘𝑚]0

1 for 𝑖0 ∈ ℕ0 do
2 if not ⊥ return FindSeedTask(1, (𝑖0, 𝑙1, . . . , 𝑙𝑚))

3 Function FindSeedTask( 𝑗 ∈ [𝑚], (𝑖0, 𝑙1, . . . , 𝑙 𝑗−1) ∈ ℕ0 × [𝑘1]0 × · · · × [𝑘 𝑗−1]0):
Result: (𝑖0, 𝑙1, . . . , 𝑙𝑚) ∈ ℕ0 × [𝑘1]0 × · · · × [𝑘𝑚]0 or ⊥

4 for 𝑙 𝑗 ∈ [𝑘 𝑗 ]0 do
5 𝑖 𝑗 := 𝜂 (𝑖0, 𝑙1, . . . , 𝑙 𝑗 ) // Integer representation
6 if 𝑖 𝑗 ∈ 𝑆 𝑗 then
7 if 𝑗 =𝑚 then
8 return (𝑖0, 𝑙1, . . . , 𝑙𝑚)
9 if not ⊥ return FindSeedTask( 𝑗 + 1, (𝑖0, 𝑙1, . . . , 𝑙 𝑗 ))
10 return ⊥
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4.4. Applying SRS to MPHF Construction (SRS-RecSplit)

In this section, we use SRS to construct an MPHF. We use the recursive splitting idea of
RecSplit but search and store splitting indices using SRS. Furthermore, wewill perform binary
splittings all the way down to avoid leafs of larger sizes. In practice, SRS-RecSplit reaches a
space usage as low as 1.442 91 bits per key with reasonable construction time. For similar
construction time we beat the previous record holder—bipartite ShockHash-RS [LSW24]—by
having 1/192 of its overhead.

More importantly, the theoretical expected construction time of SRS-RecSplit is linear in 1
𝜔

were 𝜔 is the overhead per key—as opposed to most previous approaches having an expo-
nential characteristic therein [EGV19 | LSW24]. As we present SRS-RecSplit without bucke-
tization, it has expected construction time in O

(
𝑛3/2 log𝑛

)
and query time in O(log𝑛). We

mention using bucketization to gain expected linear construction and constant query time
briefly in Subsection 4.4.3.

In the following, we first consider only input sizes that are powers of two, as they allow for
easier explanation. Then, we look at the changes necessary to also handle non-power-of-
two inputs. Finally, we will briefly mention bucketization to reach optimal construction and
query time.

4.4.1. Construction for Power-of-Two Input Sizes

For simplicity, we will first look at cases where we want to construct an MPHF on 𝑋 ⊆ 𝑈
with |𝑋 | = 𝑛 = 2𝑟 for some 𝑟 ∈ ℕ+. SRS-RecSplit implicitly constructs a splitting tree, where
in each node, the input is split into two equally sized parts using appropriate hash functions.
This is repeated recursively until all keys are separated from each other. These hash functions
ℎ𝑠 : 𝑈 → {0, 1} (𝑠 ∈ ℕ0) are searched using SRS, where each node corresponds to one task.
In the end, only the information gathered by SRS will be stored1. Figure 4.5 shows how the
input set is split and the order in which SRS visits the splitting tasks. Section 5.3 shows that
construction for 𝑛 keys has runtime

𝔼
[
RSRS-RecSplit

]
∈ O

(
𝑛3/2 log𝑛

𝜔

)
while having space usage

𝔼
[
SSRS-RecSplit

]
∈ O

(
log2

1

𝜔

)
+ (𝑛 − 1) · 𝜔 + log2

𝑛𝑛

𝑛!

for any 𝜔 ∈ (0, 1], which is roughly the overhead per key. Comparing with the naive MPHF
construction in Subsection 2.5.2, we can see that we can reach space usage per key arbitrarily
close to the lower bound by choosing a small 𝜔 . However, we achieve this without the
exponential construction time of previous approaches. To perform a query—evaluating the
MPHF for a given key—the splitting tree is traversed again, collecting all the hashes for each
node along the path to the corresponding leaf. Thus, queries require work in O(log2 𝑛).
1In practice, also storing the input size and chosen overhead parameter 𝜔 is helpful. These are, however, not
accounted for in the bit-per-key space usage metric.
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Figure 4.5.: Splitting tree implicitly constructed by SRS-RecSplit. Black non-dashed arrows
show how the input keys are split in each layer. SRS tasks are represented by green markers.
The order in which SRS traverses these tasks is marked by blue dashed arrows. Not to be
confused with the SRS search tree in Figure 4.4.

We will now briefly describe the parameters that we have to supply to SRS. First, we have
𝑚 = 𝑛 − 1 splitting tasks, forming 𝑟 layers 𝑖 ∈ 𝑟, . . . , 1 (see Figure 4.5). In each layer 𝑖 (not
to be confused with the seeds 𝑖 𝑗 as used in Section 4.3), tasks have the same parameters
𝑝𝑖 = 2𝑖 !

22
𝑖 (2𝑖−1!)2

(see Subsection 5.3.3). On layer 𝑖 , 𝑆 𝑗 will be the set of seeds 𝑠 for which the
hash function ℎ𝑠 forms an even splitting on the keys corresponding to this task. Note, that
even though the keys corresponding to a task depend on which seeds were successful for all
ancestor tasks in the splitting tree, the sets of successful seeds 𝑆 𝑗 are nevertheless stochasti-
cally independent as we assume fully random hash functions, which we never2 evaluate for
the same key and seed twice. This dependence necessitates ordering an SRS task after all its
ancestors.
𝑊𝑖 will be in O

(
2𝑖

)
as for testing a seed we need to evaluate ℎ𝑠 on each key corresponding

to this task. To keep track of which keys correspond to which task, we partition the keys
accordingly in the place we store them for construction after finding an even spitting seed for
one task. Then, when we are in task 𝑐 of layer 𝑖 with task size 2𝑖 , we know the 𝑐th chunk of
2𝑖 keys belongs to this task. For the theoretical runtime, we can just use the same 𝜔 on each
layer. By using cleverly rounded bounds 𝑘 𝑗 as described in Subsection 5.2.5 over all layers,
we only have a size-dependent space overhead of (𝑛 − 1) ·𝜔 . In practice, it can be beneficial
to alter 𝜔 over the layers, using 𝜔𝑖 = 𝜔

√
2𝑖 on layer 𝑖 . Subsection 5.3.2 goes into detail why

this is advantageous in practice.

4.4.2. Non-Power-of-Two Input Sizes

Only being able to per construct MPHFs for power-of-two input sizes is not very useful.
Luckily, we can apply the same approach for non-power-of-two input sizes. However, instead
of splitting non-power-of-two inputs in a task into equally sized parts, we split them into the
largest possible power-of-two and the rest. This way, on each layer we have at most one
uneven task with a non-power-of-two input size, the rest being ordinary tasks, see Figure 4.6.
2If we limit seeds to the least significant𝑤 bits that is not quite true, Subsection 5.2.4 motivates why this is still
not a problem in practice.
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Figure 4.6.: Splitting tree for non-power-of-two input sizes. Some layers have an uneven
task where an uneven split is performed, separating out the next smaller power of two.

This fact is important for calculating the cleverly rounded bounds efficiently, as we do not
want to iterate through all tasks to access a specific seed when performing queries. Now,
calculating how many SRS tasks are required and the concrete splitting probabilities is a bit
more complicated, but still sufficiently efficiently possible. Subsection 5.3.3 shows that we
still need𝑚 = 𝑛−1 tasks and find uneven splits of size 𝑛 with 𝑝 (𝑛) ≈ 1/

√
2𝜋𝑛𝑞(1 − 𝑞) where

𝑞 := 2⌊log2 𝑛⌋

𝑛 .

4.4.3. Bucketization

Apart from space usage, the other important metrics of MPHFs are construction and query
time. For SRS-RecSplit to reach (expected) optimal results here, we can apply bucketization as
RecSplit does as well. We would choose a constant targeted bucket size 𝑏 and then partition
all keys into 𝑛/𝑏 buckets of expected size 𝑏 using a hash function with codomain 𝑛/𝑏. As
the input size to SRS-RecSplit as described above would be expected constant, we would
get expected construction time linear in 𝑛/𝑏 and thus 𝑛. Query time would be expected
constant. By setting a hard limit on maximal bucket size and choosing a bucketization hash
function accordingly, worst-case constant query time might also be possible. We could then
concatenate all the data SRS-RecSplit generates for each bucket. However, we then would
need to store starting positions for each bucket in this long bit string of all the SRS data.
Furthermore, we would need to keep a prefix sum of bucket sizes to calculate the final hashes.
These could be encoded using an Elias–Fano coding [Eli74 | Fan71] for monotone sequences.
As SRS-RecSplit reaches far smaller space overheads than RecSplit, it is unclear how large we
would need to choose buckets to not waste too much space on starting positions and bucket
sizes. Scaling bucket sizes with 1/𝜔—which leads to the number of buckets scaling with 𝜔—
seems promising to decrease the overheads of storing starting positions and bucket sixes for
small omega as well. Further analyzing SRS-RecSplit with bucketization is out of scope for
this thesis and remains future work.
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5. Analysis

This chapter provides more details on the conclusions and choices made in Chapter 4. First,
we will revisit the entropy function for geometrically distributed random variables in Sec-
tion 5.1, as this motivated the use of SRS in the first place. Then, we will prove the runtime
and space usage of SRS for various cases from easy to complex in Section 5.2. This will be the
largest part of this chapter. Finally, we will use these results to analyze runtime and space
usage of SRS-RecSplit in Section 5.3 for easy power-of-two input sizes, and also show what
changes for non-power-of-two cases.

5.1. Entropy of the Geometric Distribution

This section contains proofs for the lemmas given in Subsection 4.2.3 about the entropy of
the geometric distribution, 𝐻Geo(𝑝) = − log2 𝑝 −

1−𝑝
𝑝 log2(1 − 𝑝), 𝑝 ∈ (0, 1].

First, we approximate this function in big O notation.

Lemma 4.1: For 𝑝 ∈ (0, 1] it holds

𝐻Geo(𝑝) = − log2 𝑝 −
1 − 𝑝
𝑝

log2(1 − 𝑝) ∈ − log2 𝑝 + log2 𝑒 − log2 𝑒 ·
𝑝

2
−O

(
𝑝2

)
.

Proof. Let 𝑓 (𝑥) = −1−𝑥
𝑥 ln(1 − 𝑥), 𝑥 ∈ (0, 1].

As ln(1 − 𝑥) = −∑∞
𝑘=1

𝑥𝑘

𝑘 , 𝑥 ∈ [0, 1) [ASM65, p. 68],

𝑓 (𝑥) = −
(
1 − 1

𝑥

) ∞∑
𝑘=1

𝑥𝑘

𝑘
= −

∞∑
𝑘=1

𝑥𝑘

𝑘
+

∞∑
𝑘=1

𝑥𝑘−1

𝑘
= −

∞∑
𝑘=1

𝑥𝑘

𝑘
+

∞∑
𝑘=0

𝑥𝑘

𝑘 + 1

= −
∞∑
𝑘=1

𝑥𝑘

𝑘
+ 1 +

∞∑
𝑘=1

𝑥𝑘

𝑘 + 1
= 1 −

∞∑
𝑘=1

(
𝑥𝑘

𝑘
− 𝑥𝑘

𝑘 + 1

)
= 1 −

∞∑
𝑘=1

(
1

𝑘
− 1

𝑘 + 1

)
𝑥𝑘

= 1 −
∞∑
𝑘=1

1

𝑘 (𝑘 + 1)𝑥
𝑘 ∈ 1 − 𝑥

2
−O

(
𝑥2

)
, 𝑥 ∈ [0, 1)

Thus for 𝑝 ∈ (0, 1]

𝐻Geo(𝑝) = − log2 𝑝 −
1 − 𝑝
𝑝

log2(1 − 𝑝) = − log2 𝑝 + log2 𝑒 · 𝑓 (𝑝)

∈ − log2 𝑝 + log2 𝑒 − log2 𝑒 ·
𝑝

2
−O

(
𝑝2

)
.
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5. Analysis

Next, we use this approximation to look at the difference in entropy between two separate
geometric distributions and one combined.

Corollary 4.2: For 𝑝, 𝑞 ∈ (0, 1] it holds

𝐻Geo(𝑝) + 𝐻Geo(𝑞) ∈ 𝐻Geo(𝑝𝑞) + log2 𝑒
(
1 − 𝑝 + 𝑞 − 𝑝𝑞

2

)
+O

(
𝑝2 + 𝑞2

)
.

Proof. Let 𝑓 (𝑥) = −1−𝑥
𝑥 ln(1 − 𝑥), 𝑥 ∈ (0, 1]. Using Lemma 4.1 we get

𝐻 (𝑝) + 𝐻 (𝑞) − 𝐻 (𝑝𝑞) = − log2 𝑝 − log2 𝑞 + log2(𝑝𝑞) + log2 𝑒 (𝑓 (𝑝) + 𝑓 (𝑞) − 𝑓 (𝑝𝑞))

∈ log2 𝑒

(
1 − (𝑝 + 𝑞 − 𝑝𝑞)

2

)
−O

(
𝑝2 + 𝑞2

)
.

We lose up to log2 𝑒 bits for small 𝑝, 𝑞. We then apply this inductively, to get a similar state-
ment for 𝑛 geometrically distributed variables. Again, we lose up to log2 𝑒 bits for each
additional variable.

Corollary 4.3: It holds for 𝑝𝑖 ∈ (0, 1], 𝑖 ∈ [𝑛], 𝑛 ∈ ℕ+

∑
𝑖∈[𝑛]

𝐻Geo(𝑝𝑖) ∈ 𝐻 ©«
∏
𝑖∈[𝑛]

𝑝𝑖
ª®¬ + log2 𝑒 ·

(
𝑛 − 1 −

∑
𝑖∈[𝑛] 𝑝𝑖 −

∏
𝑖∈[𝑛] 𝑝𝑖

2

)
+O ©«

∑
𝑖∈[𝑛]

𝑝2𝑖
ª®¬ . (4.1)

Proof. Let 𝑝𝑖 ∈ (0, 1] (𝑖 ∈ ℕ+). For 𝑛 = 1 the statement is trivial. For the other 𝑛 proof by
induction over 𝑛 ∈ ℕ+ \ {1}: For 𝑛 = 2 the statement follows from Corollary 4.3 (COR).

Assume the statement holds for some fixed but arbitrary 𝑛 ∈ ℕ+ \ {1} (IH). It holds∑
𝑖∈[𝑛+1]

𝐻 (𝑝𝑖) =
∑
𝑖∈[𝑛]

𝐻 (𝑝𝑖) + 𝐻 (𝑝𝑛+1)

IH
= 𝐻

©«
∏
𝑖∈[𝑛]

𝑝𝑖
ª®¬ + 𝐻 (𝑝𝑛+1) + log2 𝑒 ·

(
𝑛 − 1 −

∑
𝑖∈[𝑛] 𝑝𝑖 −

∏
𝑖∈[𝑛] 𝑝𝑖

2

)
+O ©«

∑
𝑖∈[𝑛]

𝑝2𝑖
ª®¬

COR
= 𝐻

©«
∏

𝑖∈[𝑛+1]
𝑝𝑖

ª®¬ + log2 𝑒

(
1 −

∏
𝑖∈[𝑛] 𝑝𝑖 + 𝑝𝑛+1 −

∏
𝑖∈[𝑛] 𝑝𝑖 · 𝑝𝑛+1

2

)
+O ©«

∏
𝑖∈[𝑛]

𝑝2𝑖 + 𝑝2𝑛+1
ª®¬

+ log2 𝑒 ·
(
𝑛 − 1 −

∑
𝑖∈[𝑛] 𝑝𝑖 −

∏
𝑖∈[𝑛] 𝑝𝑖

2

)
+O ©«

∑
𝑖∈[𝑛]

𝑝2𝑖
ª®¬

= 𝐻 ©«
∏

𝑖∈[𝑛+1]
𝑝𝑖

ª®¬ + log2 𝑒 ·
(
(𝑛 + 1) − 1 −

∑
𝑖∈[𝑛+1] 𝑝𝑖 −

∏
𝑖∈[𝑛+1] 𝑝𝑖

2

)
+O ©«

∑
𝑖∈[𝑛+1]

𝑝2𝑖
ª®¬ .
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5.2. Analysis of SRS

1

1 2

p1 p2 pmpm−1

q2 qmqm−1q1

m − 1 mTask j =

Figure 5.1.: Tasks in the order in which SRS visits them. 𝑝 𝑗 is the probability that a single
seed in task 𝑗 is successful. 𝑞 𝑗 is the probability that FindSeedTask returns successfully from
task 𝑗 .

5.2. Analysis of SRS

We now analyze the runtime and space usage of SRS. We start with the work required for a
simpler case with 𝑝 𝑗 , 𝑘 𝑗 constant (Subsection 5.2.1) and then relax this requirement to only
requiring 𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 for some 𝜀 > 0 (Subsection 5.2.2). Then, we look at the space usage of
these cases (Subsection 5.2.3). Afterward, we motivate why it is enough to consider the last
𝑤 bits of the seeds in practice (Subsection 5.2.4). In the end, we consider cleverly rounded
bounds 𝑘 𝑗 (Subsection 5.2.5) to get to the final space usage as advertised in Section 4.3.

When looking at Algorithm 4.1 in Section 4.3, the following observations can be made:

If a single call to the recursive function FindSeedTask returns successfully (≠ ⊥), calls
to all following tasks must have returned successfully and all calls to previous tasks
will return successfully directly after. The main work is done while descending to task
𝑗 =𝑚.

When FindSeedTask fails (returns ⊥), some time after it is re-entered again with new
previous indices (𝑖0, 𝑙1, . . . , 𝑙 𝑗−1).

Let 𝑞 𝑗 = ℙ
(
FindSeedTask( 𝑗, 𝑖 𝑗−1) ≠ ⊥

)
for 𝑗 ∈ [𝑚] (see Figure 5.1). We set 𝑞𝑚+1 := 1 for

convenience as the𝑚th task has no subsequent tasks its success depends on. This probability
is independent of the seed 𝑖 𝑗−1 ∈ ℕ0, as (𝑖 ∈ 𝑆 𝑗 ) is i.i.d. for 𝑖 ∈ ℕ0. Let 𝑄 𝑗 be the work done
for a fixed task 𝑗 ∈ [𝑚], that is, the collective work of all calls to FindSeedTask( 𝑗, ·) without
work in subsequent calls to FindSeedTask( 𝑗 + 1, ·).

Furthermore, let 𝑌𝑗 be the number of times 𝑖 𝑗 ∈ 𝑆 𝑗 has to be tested until FindSeedTask( 𝑗, ·)
returns successfully. As 𝑌𝑗 ∼ Geo1(𝑝 𝑗𝑞 𝑗+1), we find that 𝔼

[
𝑄 𝑗

]
= 𝔼

[
𝑊𝑗𝑌𝑗

]
=

𝑊𝑗

𝑝 𝑗𝑞 𝑗+1
. Note,

that we do not consider work done for task 𝑗 + 1 here.

Considering the probability that FindSeedTask( 𝑗, ·) fails (1 − 𝑞 𝑗 ), we get

𝑞 𝑗 = 1 − (1 − 𝑝 𝑗𝑞 𝑗+1)𝑘 𝑗 ( 𝑗 ∈ [𝑚]) .
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
𝑞𝑚+1

𝑞𝑚
𝑞𝑚−1

𝑞∗

𝑥∗

𝑥◦

𝑓 with 𝑝 = 0.1, 𝑘 = 14
𝑔

𝑥 ↦→ 𝑥

Figure 5.2.:Node success recursion function 𝑓 (𝑥) = 1− (1−𝑝𝑥)𝑘 with its first two iterations
applied to 1 = 𝑞𝑚+1: 𝑞𝑚 = 𝑓 (1), 𝑞𝑚−1 = 𝑓 (𝑓 (1)), bound below by 𝑔(𝑥) = 1 − 𝑒−𝑝𝑘𝑥 , their
fixed points 𝑞∗, 𝑥∗ respectively, visible as intersection with 𝑥 ↦→ 𝑥 , and the lower bound 𝑥◦
thereof.

5.2.1. Constant 𝑝, 𝑘

For simplicity, we will first assume that ∀𝑗 ∈ [𝑚] : 𝑝 𝑗 = 𝑝, 𝑘 𝑗 = 𝑘, 𝑊𝑗 = 𝑊 . The lemmata
referenced in the following are provided at the end of this subsection. We can now define

𝑓 (𝑞) = 1 − (1 − 𝑝𝑞)𝑘 (𝑞 ∈ [0, 1])
which gives us 𝑞 𝑗 = 𝑓 (𝑞 𝑗+1) = 𝑓𝑚− 𝑗+1(𝑞𝑚+1) = 𝑓𝑚− 𝑗+1(1). One of the main observations
that makes SRS work is that for correctly chosen 𝑝, 𝑘 , the success probability of task 𝑗 = 1
(whose success depends on the success of all the following tasks up to 𝑗 =𝑚), and therefore
of the entire algorithm, is

𝑞1 = 𝑓
𝑚 (1) → 𝑞∗ > 0 (𝑚 → ∞) .

Here, 𝑞∗ is the fixed point of 𝑓 such that 𝑓 (𝑞∗) = 𝑞∗ ∈ (0, 1] (see Figure 5.2), which exists
according to Lemma 5.1 when 𝑝𝑘 > 1. As 𝑓 (𝑞) < 𝑞 for 𝑞 > 𝑞∗ (Lemma 5.2), we get

1 = 𝑞𝑚+1 ≥ 𝑞𝑚 ≥ · · · ≥ 𝑞1 ≥ 𝑞∗ > 0.

To approximate 𝑞∗ we can use 𝑔(𝑥) = 1− 𝑒−𝑝𝑘𝑥 ≤ 𝑓 (𝑥), 𝑥 ∈ [0, 1] (see Lemma 5.4). 𝑔’s fixed
point 𝑥∗, if it exists, is 𝑥∗ ≤ 𝑝∗ (Corollary 5.3). We then can determine a lower bound 𝑥◦ to
𝑔’s fixed point. By looking where 𝑔′(𝑥◦) = 1 we get 𝑥◦ = ln(𝑝𝑘 )

𝑝𝑘 requiring 𝑝𝑘 > 1 for the
fixed point to exists (Lemma 5.5). We could do the same for 𝑓 directly but using the simpler
𝑔 will result in a simpler lower bound and will be useful later. In the end, we will get

0 < 𝑥◦ ≤ 𝑥∗ ≤ 𝑞∗ ≤ 𝑞 𝑗 ( 𝑗 ∈ [𝑚]) .

For the work required for SRS, we thus obtain for any 𝜀 ∈ (0, 1] with 𝑝𝑘 ≥ 1 + 𝜀 > 1 and
𝜔 := log2(1 + 𝜀)

𝔼[𝑅SRS] =
∑
𝑗∈[𝑚]

𝔼[𝑄 𝑗 ] ≤
∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗𝑞 𝑗
≤ 𝑚𝑊

𝑝𝑥◦
=
𝑚𝑊

𝑝

𝑝𝑘

ln(𝑝𝑘) ≤ 𝑚𝑊

𝑝

1 + 𝜀
ln(1 + 𝜀) ∈ O

(
𝑚𝑊

𝑝𝜔

)
.
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We will now prove the lemmas that were required for this conclusion. First, we show that
the function 𝑓 (which on iteration on 𝑞𝑚+1 = 1 yields the success probabilities 𝑞 𝑗 of all the
tasks) has in fact a fixed point, and some other properties that are useful later on.

Lemma 5.1: Let 𝑓 : [0, 1] → [0, 1], 𝑞 ↦→ 1 − (1 − 𝑝𝑞)𝑘 , 𝑝 ∈ (0, 1], 𝑘 ∈ ℕ+, 𝑝𝑘 > 1.
Then, 𝑓 satisfies the requirements of Lemma 5.2 and has a fixed point 𝑞∗ ∈ (0, 1].

Proof. Let 𝑝, 𝑘, 𝑓 be as required.
It holds

𝑓 (0) = 1 − (1 − 0)𝑘 = 0

𝑓 ′(𝑞) = 𝑝𝑘 (1 − 𝑝𝑞)𝑘−1

𝑓 ′(0) = 𝑝𝑘 > 1

𝑓 ′′(𝑞) = −𝑝2𝑘 (𝑘 − 1)(1 − 𝑝𝑞)𝑘−2 ≤ 0 as 𝑘 ≥ 𝑝𝑘 > 1.

As 𝑓 (1) = 1 − (1 − 𝑝)𝑘 ≤ 1, there either is a fixed point at 𝑞∗ = 1 or at 𝑞∗ ∈ (0, 1) by
intermediate value theorem.

Now we show, that if we are above the fixed point of 𝑓 , we iterate closer and closer towards
it. This allows us to state 𝑞 𝑗+1 ≤ 𝑞 𝑗 and also helps in a later argument. Furthermore, we
show that this fixed point lies above the point where 𝑓 has slope 1. We use this point as an
approximation for the actual fixed point.

Lemma 5.2: Let 𝑓 ∈ 𝐶2(ℝ+
0), 𝑓 (0) = 0, 𝑓 ′(0) > 1, 𝑓 ′′ ≤ 0.

Given ∃𝑥 𝑓 ∈ ℝ+ : 𝑓 (𝑥 𝑓 ) = 𝑥 𝑓 it holds:

1) 𝑓 (𝑥) < 𝑥 for 𝑥 > 𝑥 𝑓

2) 𝑥 𝑓 > sup{𝑥 ∈ ℝ+
0 | 𝑓 ′(𝑥) ≥ 1}

Proof. Let 𝑓 be as required. We will show that 𝑓 , starting from 𝑓 (0) = 0, rises above 𝑖𝑑 : 𝑥 ↦→
𝑥 . If it has a fixed point 𝑥 𝑓 > 0, which is another intersection with 𝑖𝑑 , 𝑓 will dive below 𝑖𝑑
and stay there. The first phase above 𝑖𝑑 is the only time 𝑓 might reach 𝑓 ′(𝑥) = 1, which it
will if it comes back down, compare Figure 5.3.

Assume 𝑥 𝑓 ∈ ℝ+ such that 𝑓 (𝑥 𝑓 ) = 𝑥 𝑓 .

1) Let 𝑓 (𝑥) := 𝑓 (𝑥) − 𝑥, 𝑥 ∈ ℝ+
0. Then

𝑓 (𝑥 𝑓 ) = 0, 𝑓 ′(0) > 0, 𝑓 ′′(𝑥) ≤ 0.

As 𝑓 ′(0) > 0 ∃𝜀 ∈ (0, 𝑥 𝑓 ) : 𝑓 (𝜀) > 0. Using the mean value theorem we get

0 > 𝑓 (𝑥 𝑓 )︸︷︷︸
=0

−𝑓 (𝜀) = 𝑓 ′(𝜉) (𝑥 𝑓 − 𝜀)︸   ︷︷   ︸
>0

for a 𝜉 ∈ (𝜀, 𝑥 𝑓 ) =⇒ 𝑓 ′(𝜉) < 0.
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𝜀

𝜉
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𝑎
𝑓
𝑐

Figure 5.3.:Three functions with 𝑎(0) = 𝑏 (0) = 𝑓 (0) = 0, 𝑎′′, 𝑏′′, 𝑓 ′′ ≤ 0, and 𝑎′(0), 𝑓 ′(0) >
1 but not for except for 𝑏. 𝑎 has no positive fixed point (intersection with 𝑖𝑑), but 𝑓 has 𝑥 𝑓
and thus fulfills all the criteria. The plot also shows examples for 𝜀, 𝜉 from the proof. Note
that the proof uses 𝑓 (𝑥) := 𝑓 (𝑥) − 𝑥 instead of 𝑓 for simpler notation.

=⇒ 𝑓 (𝑥) = 𝑓 (𝑥 𝑓 ) +
∫ 𝑥

𝑥𝑓

©« 𝑓
′(𝜉)︸︷︷︸
<0

+
∫ 𝑥 ′

𝜉
𝑓 ′′(𝑥 ′′)︸  ︷︷  ︸

≤0

𝑑𝑥 ′′
ª®®®¬𝑑𝑥

′ < 𝑓 (𝑥 𝑓 ) = 0 for 𝑥 > 𝑥 𝑓

Thus, 𝑓 (𝑥) < 𝑥 for 𝑥 > 𝑥 𝑓 .

2) It holds

𝑓 ′(𝑥 𝑓 ) = 𝑓 ′(𝜉) +
∫ 𝑥𝑓

𝜉
𝑓 ′′(𝑥)︸︷︷︸

≤0

𝑑𝑥 ≤ 𝑓 ′(𝜉) < 0.

Thus,

𝑓 ′(𝑥) = 𝑓 ′(𝑥 𝑓 ) +
∫ 𝑥

𝑥𝑓

𝑓 ′′(𝑥)︸︷︷︸
≤0

𝑑𝑥 ≤ 𝑓 ′(𝑥) < 0 𝑥 ≥ 𝑥 𝑓 .

As a result,
(𝑥 ≥ 𝑥 𝑓 =⇒ 𝑓 ′(𝑥) < 1) ⇐⇒ (𝑓 ′(𝑥) ≥ 1 =⇒ 𝑥 < 𝑥 𝑓 ).

From this behavior of 𝑓 around its fixed point, we conclude: If we find a function 𝑔 that
bounds 𝑓 from below and if 𝑔 also has a fixed point, the fixed point of 𝑔 must be smaller than
the one of 𝑓 .

Corollary 5.3: Let 𝑓 , 𝑔 ∈ 𝐶2(ℝ+
0), 𝑔 ≤ 𝑓 , 𝑓 (0) = 0, 𝑓 ′(0) > 1, 𝑓 ′′ ≤ 0. It holds:

∃𝑥 𝑓 , 𝑔𝑓 ∈ ℝ+ : 𝑓 (𝑥 𝑓 ) = 𝑥 𝑓 , 𝑔(𝑥𝑔) = 𝑥𝑔 =⇒ 𝑥𝑔 ≤ 𝑥 𝑓
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Proof. Let 𝑓 , 𝑔 be as required. Let 𝑥 𝑓 , 𝑥𝑔 ∈ ℝ+ such that 𝑓 (𝑥 𝑓 ) = 𝑥 𝑓 , 𝑔(𝑥𝑔) = 𝑥𝑔. Following
Lemma 5.2, 𝑓 (𝑥) < 𝑥 for 𝑥 > 𝑥 𝑓 . Thus, 𝑔(𝑥) ≤ 𝑓 (𝑥) < 𝑥 for 𝑥 > 𝑥 𝑓 . As a result, 𝑔 cannot
have a fixed point at 𝑥 > 𝑥 𝑓 , thus 𝑥𝑔 ≤ 𝑥 𝑓 .

We now show that 𝑔(𝑥) = 1 − 𝑒−𝑝𝑘𝑥 is such a function that bounds 𝑓 from below, and thus
the previous statement on its fixed point applies.

Lemma 5.4: Let 𝑥, 𝑝 ∈ [0, 1], 𝑘 ∈ ℕ. It holds: 1 − (1 − 𝑝𝑥)𝑘 ≥ 1 − 𝑒−𝑝𝑘𝑥

Proof. Let 𝑥, 𝑘, 𝑝 be as required. It holds

(1 − 𝑝𝑥)𝑘 = (1 − 𝑝𝑥𝑘

𝑘
)𝑘

𝑛≥𝑘
≤ (1 − 𝑝𝑘𝑥

𝑛
)𝑛 𝑛→∞→ 𝑒−𝑝𝑘𝑥

as 1 ≥ 𝑝𝑥 =⇒ 𝑛 ≥ 𝑘 ≥ 𝑝𝑘𝑥 thus the exponential sequence (1 − 𝑎
𝑛 )𝑛 is increasing monoton-

ically in 𝑛 (𝑎 ∈ ℝ) [Eina].

Finally, we show in which cases 𝑔 also has a fixed point and again approximate this fixed
point from where 𝑔 has slope one. This will then give us a bound of 𝑓 ’s fixed point and
thereby the probability that SRS succeeds at any of its tasks.

Lemma 5.5: For 𝑔𝑎 : ℝ+ → ℝ+, 𝑥 ↦→ 𝑔𝑎 (𝑥) = 1 − 𝑒−𝑎𝑥 with 𝑎 ∈ ℝ+ the following holds:

∃𝑥∗ ∈ ℝ+
0 : 𝑔𝑎 (𝑥∗) = 𝑥∗ ⇐⇒ 𝑎 > 1 (5.1)

In that case 𝑥∗ >
ln𝑎

𝑎
(5.2)

Proof. Let 𝑎, 𝑔𝑎 be as required. It holds

𝑔 has a fixed point 𝑥∗ > 0 ⇐⇒ 𝑔(𝜖) > 𝜖 for some 𝜖 > 0 as 𝑔(𝑥) → 1 < ∞ for 𝑥 → ∞
⇐⇒ 𝑔′(0) = 𝑎 > 1 as 𝑔(0) = 0.

Suppose 𝑔 has a fixed point 𝑥∗. Following Lemma 5.2, 𝑥∗ > max 𝑓 ′−1({1}). It holds

𝑓 ′(𝑥) = 𝑎𝑒−𝑎𝑥 !
= 1 ⇐⇒ 𝑒−𝑎𝑥 = 𝑎−1 ⇐⇒ 𝑎𝑥 = ln𝑎 ⇐⇒ 𝑥 =

ln𝑎

𝑎
.

Thus, 𝑥∗ > ln𝑎
𝑎 .

To sum up, we showed that if we keep 𝑝 𝑗 = 𝑝, 𝑘 𝑗 = 𝑘 constant and limit 𝑝𝑘 ≥ 1 + 𝜀 > 1, all
the success probabilities 𝑞 𝑗 that SRS succeeds on task 𝑗 and all the following tasks are bound
by 𝑞 𝑗 ≥ 1+𝜀

ln(1+𝜀 ) . This makes SRS require work 𝔼[𝑅SRS] ∈ O
(
𝑚𝑊
𝑝𝜔

)
in those cases. Next on,

we will relax the conditions and show that our analysis also covers varying 𝑝 𝑗 , 𝑘 𝑗 as long as
they all fulfill the condition 𝑝𝑘 ≥ 1 + 𝜀 > 1 individually.
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l1 l2 l3 lmi0

i2

log2 k1 bits

Figure 5.4.: Storage representation for indices allowing to access seeds quickly. Already
shown as Figure 4.3 before.

5.2.2. Supporting Varying Task Probabilities 𝑝 𝑗

As𝑔 only depends on the product 𝑝𝑘 , we immediately see that the analysis of Subsection 5.2.1
also applies for varying 𝑝 𝑗 , 𝑘 𝑗 , 𝑗 ∈ [𝑚], as long as 𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 for all 𝑗 ∈ [𝑚].

In detail, we can define
𝑓𝑗 (𝑞) = 1 − (1 − 𝑝 𝑗𝑞)𝑘 𝑗 ( 𝑗 ∈ [𝑚])

and then can bound each individual 𝑓𝑗 by 𝑔(𝑥) = 1 − 𝑒−(1+𝜀 )𝑥 with

𝑞 𝑗 = 𝑓𝑗 (𝑓𝑗+1(· · · 𝑓𝑚 (1) · · · )) ≥ 𝑔𝑚− 𝑗+1(1) ≥ 𝑥∗ ≥ ln(1 + 𝜀)
1 + 𝜀 .

Here, we again approximated the fixed point 𝑥∗ of 𝑔 in the same way as in Subsection 5.2.1
and get work

𝔼[𝑅SRS] ≤
1 + 𝜀

ln(1 + 𝜀)
∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗
∈ O©« 1𝜔

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗

ª®¬.
5.2.3. Seed Representation

Now that we have an understanding of the work required for SRS, we want to take a look at
its space usage. For that, we need to revisit how seeds are represented. We need to ensure
that when FindSeedTask( 𝑗, ·) for some fixed 𝑗 ∈ [𝑚] is reentered, not the same—and thus
useless—tests 𝑖 𝑗 ∈ 𝑆 𝑗 are performed. For that, the tested seed 𝑖 𝑗 can not just be 𝑙 𝑗 ∈ [𝑘 𝑗 ]0 but
somehow must depend on the previously found seed 𝑖 𝑗−1. To achieve this dependence, we
set

𝑖 𝑗 := 𝑖 𝑗−1 · 𝑘 𝑗 + 𝑙 𝑗 ( 𝑗 ∈ [𝑚])

=
(
· · ·

(
(𝑖0 · 𝑘1 + 𝑙1) · 𝑘2 + 𝑙2

)
· . . .

)
· 𝑘 𝑗 + 𝑙 𝑗 =: 𝜂 (𝑖0, 𝑙1, . . . , 𝑙 𝑗 ) ∈ ℕ0.

In the end, we only store (𝑖0, 𝑙1, . . . , 𝑙𝑚) with a fixed-length binary encoding for the indices
𝑙 𝑗 and a variable-length binary encoding for the root seed 𝑖0.

To ensure seeds 𝑖 𝑗 can be calculated in O(1) we will only use 𝑘 𝑗 that are powers of two. This
way, 𝜂 just concatenates the binary representation of the indices 𝑙 𝑗 and the root seed 𝑖0 in the
order they are already stored, see Figure 5.4.
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For that, we set 𝑘 𝑗 to the smallest power of two that satisfies 𝑘 𝑗𝑝 𝑗 ≥ 1 + 𝜀, as required by
Section 5.2:

𝑘 𝑗 = 2

⌈
log2

1+𝜀
𝑝𝑗

⌉ 
≥ 1+𝜀

𝑝 𝑗

≤ 2
log2

1+𝜀
𝑝𝑗

+1
= 21+𝜀

𝑝 𝑗

As a result, storing SRS = (𝑖0, 𝑙1, . . . , 𝑙𝑚) needs

𝔼[SSRS] = 𝔼[log2 𝑖0] +
∑
𝑗∈[𝑚]

log2 𝑘 𝑗
∗
≤ log2𝔼[𝑖0] +

∑
𝑗∈[𝑚]

⌈
log2

1 + 𝜀
𝑝 𝑗

⌉
≤ log2

1

𝑥◦
+

∑
𝑗∈[𝑚]

(
log2

1 + 𝜀
𝑝 𝑗

+ 1

)
= log2

1 + 𝜀
ln(1 + 𝜀) +

∑
𝑗∈[𝑚]

(
− log2 𝑝 𝑗 + 1 + log2(1 + 𝜀)

)
= log2(1 + 𝜀) − log2 ln(1 + 𝜀) +

∑
𝑗∈[𝑚]

(
− log2 𝑝 𝑗 + 1 + log2(1 + 𝜀)

)
bits using Jensen’s inequality [Jen06] for ∗ and where 𝑥◦ = 1+𝜀

ln(1+𝜀 ) was the bound on 𝑞1 found
in Subsection 5.2.1. Recalling IND’s space usage (Subsection 4.2.1) and applying the big O
approximation for the entropy of the geometric distribution (Subsection 4.2.3) to it, we can
reformulate it for better comparison:

𝔼[SIND] =
∑
𝑗∈[𝑚]

𝐻 [𝑖 𝑗 ] =
∑
𝑗∈[𝑚]

𝐻 (𝑝 𝑗 ) ∈
∑
𝑗∈[𝑚]

(
− log2 𝑝 𝑗 + log2 𝑒 −O

(
𝑝 𝑗

) )
.

Knowing log2 𝑒 ≈ 1.44 > 1, we see that SRS can already get better than IND for small enough
𝜀, large enough 𝑚, and small 𝑝 𝑗 . Moreover, the +1 for every 𝑗 ∈ [𝑚] can be avoided by a
more intelligent rounding strategy, see Subsection 5.2.5. Next, we will motivate why we can
just use the𝑤 least significant bits of each seed in practice.

5.2.4. Windowed Seeds

Just using powers of two for 𝑘 𝑗 is not enough for O(1) seed access as with increasing𝑚, the
bit length of the seeds increases linearly. Thus, we no longer can expect that operations on
them can be performed inO(1). To solve this, we will only consider the last (least significant)
𝑤 bits of the concatenated indices as the actual seeds 𝑖 𝑗 and call this modification of SRS the
windowed case.

This modification leads to a couple of problems with our analysis. Firstly, it is now theo-
retically possible that windowed SRS cannot find a solution when none of the now only 2𝑤

testable seeds could be successful, if only with a small probability. In practice, this is no
problem because 𝑤 can be set large enough (e.g., 𝑤 = 64) so that not all 2𝑤 possible seeds
can be tested in any reasonable amount of time.

Another problem is that seeds might now be tested twice where they would not have been
in the non-windowed case. This happens when SRS backtracks enough tasks to cower𝑤 bits,
and then finds indices that result in exactly the same𝑤 as before, see Figure 5.5. In the non-
windowed case, this is not a problem, as the seeds differ in some bit in front of the last𝑤 bits
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Figure 5.5.: A seed collision occurred. After backtracking (2.), the same indices for all tasks
covering the last𝑤 bits were found again (3.). Windowed SRS will test the same seed consist-
ing solely of 𝑙3, 𝑙4, 𝑙5 again. Non-windowed SRS will not, as 𝑙2 and 𝑙 ′2 differ.

as SRS always increments some index. However, in the windowed case, only the last—now
identical—𝑤 bits are considered for the seed, and so the same seed is tested again. We call
this a seed collision. Seed collisions are a problem because SRS’ runtime analysis assumes that
new seeds are always tested with a success probability independent of every test before.

For simplicity, we nowwill again only consider the case where 𝑝, 𝑘,𝑊 do not vary among the
tasks. In the following, we will sketch a proof that for some 𝑤 ∈ Θ(log2𝑚), seed collisions
are unlikely enough. We then argue, that if a seed collision should happen, the algorithm
could be restarted with some new randomness and this would not change expected work.
We further will consider 𝑝 and 𝜔 to be a constant for our big O analysis and only let𝑚 be
variable.

Let one step of SRS be the part of the execution between testing two indices (𝑖 𝑗 ∈ 𝑆 𝑗 ). One
step thus requires work 𝑊 . Non-windowed SRS requires 𝔼[Steps non-windowed SRS] ∈
O

(
𝑚
𝑝𝜔

)
= O(𝑚) steps as shown in Subsection 5.2.1 for non-varying 𝑝, 𝑘,𝑊 . Let𝐶 denote the

event that a seed collision occurs during the first𝑚2 steps. Let T denote the number of steps
of an algorithm.

Lemma 5.6: For some 𝑤 ∈ Θ(log𝑚) in non-windowed SRS with non-varying 𝑝, 𝑘,𝑊 where
𝑝,𝜔 are considered constants, it holds for non-windowed SRS ℙ(𝐶) ∈ O

(
1
𝑚

)
.

Proof Sketch. Considering non-windowed SRS, for a seed collision to happen in one step, SRS
needs to have been at this task before, and now find another seed with the same last 𝑤 bits.
For that, SRS needed to have backtracked at least 𝑡 := 𝑤

log2 𝑘
tasks (assume we chose 𝑤 as

a multiple of log2 𝑘 for simplicity), see Figure 5.5. Then, SRS needs to find the exact same
𝑡 indices as before. As 𝐶 only considers the first𝑚2 steps, we get

ℙ(𝐶) ≤ 𝑚2 · ℙ(colission in a specific step) ≤ 𝑚4 · ℙ(specific last𝑤 bits reached).

We use that in the first𝑚2 steps there are at most𝑚2 indices that we could have found for
the same task before. This is a very generous approximation but sufficient for our purposes.
We get

ℙ(specific last𝑤 bits reached) = 𝑝𝑡 = 𝑝𝑤/log2 𝑘 .
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Thus, with𝑤 = 5 log2 𝑘 log2𝑚 ∈ Θ(log𝑚) we have

ℙ(𝐶) ≤ 𝑚4 · 𝑝−𝑤/log2 𝑘 =
1

𝑚
∈ O

(
1

𝑚

)
.

Now that we have argued that a seed collision happening in the first 𝑚2 steps is unlikely,
we want to motivate why seed collisions are not a problem in practice. For that, we provide
an adaptation of SRS that has runtime linear in 𝑚, regardless of any negative effect seed
collisions could have on the runtime of SRS. To be specific, we will run windowed SRS, but
restart after 𝑚2 steps. The idea is that when no seed collision occurred, it is unlikely SRS
reaches 𝑚2 steps before returning successfully. As seed collisions are rare, we only restart
SRS a constant expected number of times.

Corollary 5.7: Windowed SRS

when restarted after𝑚2 steps without ending successfully

with non-varying 𝑝, 𝑘,𝑊

and 𝑝,𝜔 are considered constants,

requires expected number of steps 𝔼[T ] ∈ O(𝑚).

Proof Sketch. Let𝑀 be the event, that SRS reaches𝑚2 steps. It holds for windowed SRS:

ℙ(𝑀) = ℙ(𝑀,𝐶) + ℙ
(
𝑀,𝐶

)
= ℙ(𝑀 | 𝐶) · ℙ(𝐶) + ℙ

(
𝑀 | 𝐶

)
· ℙ

(
𝐶
)

≤ 1 · ℙ(𝐶) + ℙ
(
𝑀 | 𝐶

)
· 1

∈ O
(
1

𝑚

)
+O

(
1

𝑚

)
= O

(
1

𝑚

)
.

Thereby we use Lemma 5.6 for ℙ(𝐶) ∈ O
(
1
𝑚

)
. As SRS without seed collisions is equivalent to

non-windowed SRS, we get ℙ
(
𝑀 | 𝐶

)
∈ O

(
1
𝑚

)
by using the definition of the expected value

operator

O(𝑚) ∋ 𝔼[Tnon-windowed SRS] =
∞∑
𝑡=0

𝑡 · ℙ(non-windowed SRS takes 𝑡 steps) ≥ 𝑚2 · ℙ(𝑀).

Now that we know that restarting is rare, be it because we had a seed collision (which voids
our runtime analysis from before) or just by chance, we can consider the total number of steps
required for windowed SRS with restarting (SRS-win-rest). We call it a new round when we
restart SRS.
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Let Σ be the event that SRS-win-rest is successful in less than𝑚2 steps. For the number of
steps TSRS-win-rest we get for sufficiently large𝑚

𝔼[TSRS-win-rest] =
∞∑
𝑟=1

𝔼[TSRS-win-rest | 𝑟 rounds] · ℙ(𝑟 rounds)

≤
∞∑
𝑟=1

(𝑚2(𝑟 − 1) + 𝔼[TSRS-win | Σ]) · ℙ(𝑟 rounds)

= 𝔼[TSRS-win | Σ] +𝑚2
∞∑
𝑟=1

(𝑟 − 1)( 𝛼
𝑚
)𝑟−1 = 𝔼[TSRS-win | Σ] +𝑚2

∞∑
𝑟=0

𝑟 ( 𝛼
𝑚
)𝑟

= 𝔼[TSRS-win | Σ] +𝑚2 𝛼/𝑚
(1 − 𝛼/𝑚)2 = 𝔼[TSRS-win | Σ] + 𝛼𝑚 1

(1 − 𝛼/𝑚)2
∈ 𝔼[TSRS-win | Σ] +O(𝑚)

using
∑∞

𝑟=0 𝑟𝑥
𝑟 = 𝑥

(1−𝑥 )2 for 0 < 𝑥 < 1. We reach 𝑟 rounds with probability less than
( 𝛼
𝑚

)𝑟−1
as we need to reach 𝑚2 rounds 𝑟 − 1 times (each requiring 𝑚2 steps), as ℙ(𝑀) ∈ O(1/𝑚)
(which provides the 𝛼 > 0) as shown above.

All that now remains is to evaluate the expected number of steps that windowed SRS will
reach given that it succeeded in less than𝑚2 steps. We intuitively get

𝔼[TSRS-win | Σ] = 𝔼[TSRS-win | 𝐶, Σ] · ℙ(𝐶 | Σ) + 𝔼
[
TSRS-win | 𝐶, Σ

]
· ℙ

(
𝐶 | Σ

)
∈𝑚2 · O(1) +O(𝑚) · 1 = O(𝑚).

We used that having a seed collision in less than 𝑚2 steps is even less likely than in 𝑚2.
Furthermore, without a seed collision, we already know non-windowed SRS requires O(𝑚)
steps in expectation, which only gets smaller when considering only executions with less
than𝑚2 steps until success.

Combining these results, we get 𝔼[TSRS-win-rest] ∈ O(𝑚).

To summarize, we argued that in SRS a seed collision rarely happens, and we theoretically
could restart SRS after𝑚2 steps if it did not finish successfully. We would still require only
O(𝑚) steps, regardless of the runtime we would get when having a seed collision. We should
note, that this is purely a theoretical construct and may not be implemented in practice. Next,
we will use a more clever choice for 𝑘 𝑗 to use even less space.

5.2.5. Clever Rounding of Bounds 𝑘 𝑗

In Subsection 5.2.3 we analyzed SRS’ space usage for power-of-two bounds 𝑘 𝑗 that satisfy
𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 > 1. However, requiring powers of two leads to having to choose bounds
up to twice as large as strictly necessary. Although not using powers of two with a clever
encoding scheme would be possible, we will choose another route to avoid this overhead that
is simpler to implement but may be harder to analyze. Instead, we will vary 𝑘 𝑗 such that only
on average, we get 𝑘 𝑗𝑝 𝑗 ≈ 1+𝜀. This has the effect, that some bounds will be larger and some
will be smaller, thus we cannot simply use our analysis from before. In the following, we
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will analyze SRS’ work for cases where the bounds are 𝑏-periodic for some 𝑏 ∈ ℕ+. The idea
is, that while in a period, some 𝑘 𝑗 might be too small, but overall average out and provide
enough tries to SRS to not lose its linear work requirement. We also show that choosing
𝑏-periodic bounds is not a limiting requirement, by proving that one can for every targeted
𝜀 (remember 𝜔 = log2(1 + 𝜀)) choose a smaller 𝜀 that leads to periodic bounds but does not
increase work asymptotically. Enforcing periodic bounds is again purely a theoretical tool
for analytical purposes and not implemented in practice.

Before coming to these analytical tricks, we will start simple with the choice of the bounds,
as it also will be implemented. As stated, we do want on “average” get 𝑘 𝑗 = 1+𝜀

𝑝 𝑗
, but only use

powers of two. For that, we thus define

𝜎 ( 𝑗) :=
𝑗∑

𝑗 ′=1

log2
1 + 𝜀
𝑝 𝑗 ′

∈ ℝ+
0 𝑗 ∈ [𝑚] ∪ {0}

to be the fractional number of bits we would have liked to spend for tasks 𝑗 ′ = 1 up to 𝑗 ′ = 𝑗 .
Then we can set

log2 𝑘 𝑗 = ⌈𝜎 ( 𝑗)⌉ − ⌈𝜎 ( 𝑗 − 1)⌉ ∈ ℕ0 𝑗 ∈ [ 𝑗] (5.3)
which ensures

∑𝑗
𝑗 ′=1 log2 𝑘 𝑗 = ⌈𝜎 ( 𝑗)⌉ ≈ 𝜎 ( 𝑗) for the total space usage of all indices and 𝑘 𝑗 to

be powers of two.

Space usage

Having made a choice for the bounds, we can now analyze the resulting space usage. By
adding up the expected space required for the root seed and the indices, we get

𝔼[SSRS] = 𝔼[log2 𝑖0] + ⌈𝜎 (𝑚)⌉ ≤ log2𝔼[𝑖0] + 1 +
∑
𝑗∈[𝑚]

− log2
1 + 𝜀
𝑝 𝑗

≤ log2
1

𝑞1
+𝑚 log2(1 + 𝜀) + 1 +

∑
𝑗∈[𝑚]

− log2 𝑝 𝑗

= log2
1

𝑞1
+𝑚 log2(1 + 𝜀) + 1 +

∑
𝑗∈[𝑚]

− log2 𝑝 𝑗

≤ log2
1

𝛼𝜀
+𝑚 log2(1 + 𝜀) + 1 +

∑
𝑗∈[𝑚]

− log2 𝑝 𝑗

∈ O
(
log2

1

𝜔

)
+𝑚𝜔 −

∑
𝑗∈[𝑚]

log2 𝑝 𝑗

with 𝑞1 being the probability for SRS to succeed on the first task. In the following work
analysis we will show 𝑞1 ≥ 𝑞† ∈ Ω(𝜀), thus 𝑞1 ≥ 𝛼𝜀 for a constant 𝛼 > 0. Also note that
𝜀 ∈ Θ(𝜔) as 𝜔 = log2(1 + 𝜀).

We recall the space usage of OPT (Subsection 4.2.2):

𝔼[SOPT] = 𝐻 ©«
∏
𝑗∈[𝑚]

𝑝 𝑗
ª®¬ ∈ − log2

∏
𝑗∈[𝑚]

𝑝 𝑗 +O(1) = O(1) −
∑
𝑗∈𝑚

log2 𝑝 𝑗 .
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5. Analysis

We can see that SRS’ space usage per task can get arbitrarily close to the one of UNI, by
choosing a small enough 𝜔 , given a sufficiently large𝑚. It now remains to show that 𝑞1 ∈
Ω(𝜀) and SRS still retains a linear work requirement. This is the difficult part.

Work analysis

Next, we endearingly analyze the work required for SRS with the above-stated choice of
bounds 𝑘 𝑗 . As stated above, ∀𝑗 ∈ [𝑚] : 𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 does not hold anymore, as some 𝑘 𝑗 are
rounded down. For simplicity, let again be 𝑝 𝑗 = 𝑝, 𝑗 ∈ [𝑚]. We have to revisit our runtime
analysis from Subsection 5.2.1 to verify that for the success probabilities of SRS in total still
holds 𝑞1 → 𝑞∗ ≥ 𝑞† > 0 for𝑚 → ∞ and for each individual task ∀𝑗 ∈ [𝑚] : 𝑞 𝑗 ≥ 𝑞† for some
𝑞∗, 𝑞† > 0 independent of𝑚.

We will proceed as follows: First, we will make the observation that if we choose 𝜀 in a
particular way, wewill get𝑏-periodic𝑘 𝑗 from the choice in (5.3). Assuming𝑏-periodic bounds
𝑘 𝑗 , we will set up a recursion function for 𝑞 𝑗 similar to 𝑓 from Subsection 5.2.1, this time
however applying it 𝑏 times recursively with different 𝑘 𝑗 for one period. We then analyze
its fixed point in a fashion similar to Subsection 5.2.1. This fixed point gives us a bound to
every 𝑏-th 𝑞 𝑗 . We now need to also approximate every 𝑞 𝑗 in between to get a lower bound on
every 𝑞 𝑗 . Having made a specific choice for 𝜀 and with it 𝑏 we will see that 𝑞 𝑗 ∈ Ω(𝜀). This
leads us to a runtime linear in 1/𝜀 in the end, as we hoped for. We will also go a step further
by showing that restricting our choices to 𝜀 as stated above is not a problem. For that, given
any 𝜀 ∈ (0, 1], we will choose a smaller 𝜀 < 𝜀 leading to less space usage that does meet the
requirements for periodicity. We then will use this 𝜀 instead for our analysis but in the end
show work still linear in 1/𝜀.

We will start by showing how 𝑏 and 𝜀 have to be chosen to make our analysis work. To
achieve 𝑏-periodic bound 𝑘 𝑗 , we require the targeted bits per task log2

1+𝜀
𝑝 to be a rational

number with denominator 𝑏 ∈ ℕ+. A good choice will be

𝑏 =

⌈
2

log2(1 + 𝜀)

⌉
because this will lead to our 1/𝜀 workwewant to achieve using the approximationwe achieve
later on.

For an arbitrary 𝜀 ∈ (0, 1], there exists 𝑎 ∈ ℕ+, 𝜉 ∈ [0, 1𝑏 ) such that

log2
1 + 𝜀
𝑝

=
𝑎

𝑏
+ 𝜉 .

Thus we try to choose 𝜀 ∈ (0, 1] such that

log2
1 + 𝜀
𝑝

=
𝑎

𝑏
= log2

1 + 𝜀
𝑝

− 𝜉 ∈ ℚ.

We then get

𝜀 ≥ 𝜀 = (1 + 𝜀) · 2−𝜉 − 1 > (1 + 𝜀) · 2− 1
𝑏 − 1 = (1 + 𝜀) · 2−1/⌈2/log2 (1+𝜀 ) ⌉ − 1

≥ (1 + 𝜀) · 2−
log2 (1+𝜀 )

2 − 1 =
√
1 + 𝜀 − 1 > 0
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5.2. Analysis of SRS

which we need for later. We now use 𝜀 for the analysis instead of 𝜀, and as a result are more
space efficient. We will see, that the runtime will still be linear in 1

𝜀 . Thus, we get

𝜎 ( 𝑗) =
𝑗∑

𝑗 ′=1

log2
1 + 𝜀
𝑝

= 𝑗
𝑎

𝑏
𝑗 ∈ [𝑚],

𝜎 (𝑏) = 𝑎 ∈ ℕ+.

We will quickly show that 𝑘 𝑗 are in fact 𝑏-periodic:

log2 𝑘 𝑗+𝑏 = ⌈𝜎 ( 𝑗 + 𝑏)⌉ − ⌈𝜎 ( 𝑗 + 𝑏 − 1)⌉ =
⌈
( 𝑗 + 𝑏) log2

1 + 𝜀
𝑝

⌉
−

⌈
( 𝑗 + 𝑏 − 1) log2

1 + 𝜀
𝑝

⌉
=

⌈
𝑗 log2

1 + 𝜀
𝑝

+ 𝑎
⌉
−

⌈
( 𝑗 − 1) log2

1 + 𝜀
𝑝

+ 𝑎
⌉

=

⌈
𝑗 log2

1 + 𝜀
𝑝

⌉
+ 𝑎 −

⌈
( 𝑗 − 1) log2

1 + 𝜀
𝑝

⌉
− 𝑎

= log2 𝑘 𝑗

=⇒ 𝑘 𝑗+𝑏 = 𝑘 𝑗 𝑗 ∈ [𝑚], 𝑗 ≤ 𝑚 − 𝑏

Now that we got that out of the way, we will start with the core part of our analysis. We
want to show that each task gets only visited an expected number of times in O(1/𝜀), which
in particular is independent of 𝑚. We will achieve this by showing that 𝑞 𝑗 ∈ Ω(𝜀), as the
rest follows with the expected value of a geometric distribution (see also Subsection 5.2.1 for
more details).

We remember that in Subsection 5.2.1 we had 𝑞 𝑗+1 = 𝑓 (𝑞 𝑗 ) := 1 − (1 − 𝑝𝑞 𝑗 )𝑘 𝑗 . We again
approximate 𝑓 (𝑥) = 1 − (1 − 𝑝𝑥)𝑘 ≥ 1 − 𝑒−𝑝𝑘𝑥 =: 𝑔𝑝𝑘 (𝑥) for 𝑥 ∈ (0, 1] (Lemma 5.4). For our
periodic case, we now consider for one period

𝑔(𝑥) :=
(
⃝𝑏

𝑖=1𝑔𝑝𝑘𝑏−𝑖+1

)
(𝑥) = 𝑔𝑝𝑘𝑏 (𝑔𝑝𝑘𝑏−1 (· · ·𝑔𝑝𝑘1 (𝑥) · · · )) .

Thereby, we get
𝑞𝑖𝑏+𝑏 ≥ 𝑔(𝑞𝑖𝑏) 𝑖 ∈ ℕ+, 𝑖𝑏 ≤ 𝑚 − 𝑏

where 𝑞 𝑗 = ℙ(FindSeedTask( 𝑗, ·) ≠ ⊥) for 𝑗 ∈ [𝑚]. Then, we determine a lower bound to
the fixed point 𝑥∗ of 𝑔 by finding where ℎ ≤ 𝑔 has ℎ′(𝑥◦) = 1. Using Lemma 5.8 (see below)
we get

𝑔(𝑥) ≤ 𝑎𝑥 − 𝑥2

2
𝑎

𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑝𝑘𝑏−𝑖+1︸             ︷︷             ︸
=:Σ

=: ℎ(𝑥), 𝑎 :=
𝑏∏
𝑗=1

𝑝𝑘𝑏 .

Thus,
1

!
= ℎ′(𝑥◦) = 𝑎 − 𝑎𝑥◦Σ ⇐⇒ 𝑥◦ =

1

Σ

𝑎 − 1

𝑎
.

With Lemma 5.2 and Corollary 5.3 from earlier we get

1

Σ

𝑎 − 1

𝑎
= 𝑥◦ ≤ 𝑥∗ ≤ 𝑞𝑖𝑏 𝑖 ∈ ℕ+, 𝑖𝑏 ≤ 𝑚.
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5. Analysis

We now want to reformulate this approximation for 𝑞𝑖𝑏 in terms of 𝜀. Taking a closer look at
𝑎, Σ, we find

𝑗∏
𝑗 ′=1

𝑘 𝑗 ′ = exp2

(
log2

𝑗∏
𝑗 ′=1

𝑘 𝑗 ′

)
= exp2

(
𝑗∑

𝑗 ′=1

log2 𝑘 𝑗 ′

)
= exp2(⌈𝜎 ( 𝑗)⌉) 𝑗 ∈ [𝑚]

=⇒
𝑏∏
𝑗=1

𝑘𝑏 = exp2(⌈𝜎 (𝑏)⌉) ≥ exp2

(
𝑏∑
𝑗=1

log2
1 + 𝜀
𝑞

)
=

(
1 + 𝜀
𝑝

)𝑏

=⇒ 𝑎 =
𝑏∏
𝑗=1

𝑝𝑘𝑏 ≥ (1 + 𝜀)𝑏

with exp2(𝑥) = 2𝑥 , 𝑥 ∈ ℝ and

Σ =
𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑝𝑘𝑏−𝑖+1 =
𝑏∑
𝑗=1

𝑝𝑏− 𝑗+1
𝑏− 𝑗+1∏
𝑖=1

𝑘𝑖 =
𝑏∑
𝑗=1

𝑝𝑏− 𝑗+1 exp2(⌈𝜎 (𝑏 − 𝑗 + 1)⌉)

≤
𝑏∑
𝑗=1

𝑝𝑏− 𝑗+1 exp2(𝜎 (𝑏 − 𝑗 + 1) + 1) =
𝑏∑
𝑗=1

𝑝𝑏− 𝑗+12

(
1 + 𝜀
𝑝

)𝑏− 𝑗+1
= 2

𝑏∑
𝑗=1

(1 + 𝜀)𝑏− 𝑗+1

≤ 2𝑏 · (1 + 𝜀)𝑏 .

In the end, we get

𝑞𝑖𝑏 ≥ 𝑥◦ ≥ (1 + 𝜀)𝑏 − 1

2𝑏 (1 + 𝜀)2𝑏
≥ 𝜀𝑏

2𝑏 (1 + 𝜀)2𝑏
=

𝜀

2(1 + 𝜀)2𝑏
> 0 for 𝜀 > 0, 𝑖 ∈ ℕ+, 𝑖𝑏 ≤ 𝑚.

Now that we have an approximation for every𝑏th task success probability—for each task after
a period—we nowneed to look inside a period and gain an approximation for𝑞𝑖𝑏−1, . . . , 𝑞𝑖𝑏−𝑏+1.
Here, we expect success probabilities to fall a bit for some tasks, as some of them get fewer
bits to work with. For these tasks, we revisit the recursion condition on 𝑞 𝑗+1 𝑗 ∈ [𝑚 − 1] and
get

𝑞 𝑗+1 = 1 − (𝑞 − 𝑝𝑞 𝑗 )𝑘 𝑗 ≥ 1 − exp(−𝑝𝑘 𝑗 · 𝑞 𝑗 )
⇐⇒ exp(−𝑝𝑘 𝑗 · 𝑞 𝑗 ) ≥ 1 − 𝑞 𝑗+1 ⇐⇒ −𝑝𝑘 𝑗 · 𝑞 𝑗 ≥ ln(1 − 𝑞 𝑗+1)

⇐⇒ 𝑞 𝑗 ≥
− ln(1 − 𝑞 𝑗+1)

𝑝𝑘𝑖

(∗)
≥
𝑞 𝑗+1
𝑝𝑘1

with

(∗) − ln(1 − 𝑥) ≥ 𝑥 ⇐⇒ 1 − 𝑥 ≤ 𝑒−𝑥
𝑦=−𝑥
⇐⇒ 1 + 𝑦 ≤ 𝑒𝑦 𝑥 ∈ ℝ.
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5.2. Analysis of SRS

Recursively applying this we get

𝑞𝑖𝑏−𝑠 ≥ ©«
𝑖𝑏−1∏
𝑗=𝑖𝑏−𝑠

𝑝𝑘 𝑗
ª®¬
−1

𝑞𝑖𝑏 = 𝑝−𝑠
exp2(⌈𝜎 (𝑖𝑏 − 𝑠 − 1)⌉)
exp2(⌈𝜎 (𝑖𝑏 − 1)⌉) 𝑞𝑖𝑏

= 𝑝−𝑠 exp2
(⌈
(𝑖𝑏 − 𝑠 − 1)𝑎

𝑏

⌉
−

⌈
(𝑖𝑏 − 1)𝑎

𝑏

⌉)
𝑞𝑖𝑏

≥ 𝑝−𝑠 exp2
(
(𝑖𝑏 − 𝑠 − 1)𝑎

𝑏
− (𝑖𝑏 − 1)𝑎

𝑏
− 1

)
𝑞𝑖𝑏

= 𝑝−𝑠 exp2
(
−𝑠 𝑎
𝑏
− 1

)
𝑞𝑖𝑏 =

𝑞𝑖𝑏

𝑝𝑠
(
1+𝜀
𝑝

)𝑠
· 2

=
𝑞𝑖𝑏

2(1 + 𝜀)𝑠 𝑠 ∈ [𝑏 − 1]

≥ 𝑞𝑖𝑏
2(1 + 𝜀)𝑏

.

Combining this result with the bound for 𝑞𝑖𝑏 and reformulating in terms of 𝜀, we get

𝑞 𝑗 ≥
𝜀

4 · (1 + 𝜀)3𝑏
≥

√
1 + 𝜀 − 1

4 · ((1 + 𝜀) · 2−𝜉 )3𝑏
≥

√
1 + 𝜀 − 1

4 · ((1 + 𝜀) · 20)3𝑏
≥

√
1 + 𝜀 − 1

4 · (1 + 𝜀)3𝑏

≥
√
1 + 𝜀 − 1

4 · (1 + 𝜀)3
(

2
log2 (1+𝜀 ) +1

) ≥
√
1 + 𝜀 − 1

4 · (1 + 𝜀)3
2

log2 (1+𝜀 ) (1 + 𝜀)3
≥

√
1 + 𝜀 − 1

4 · 26
log2 (1+𝜀 )
log2 (1+𝜀 ) (1 + 𝜀)3

≥
√
1 + 𝜀 − 1

28 · (1 + 𝜀)3 =: 𝑞†

𝜀≤1
≥ 2−11.5 · (1 + 𝜀 − 1) = 2−11.5𝜀

{
> 0

∈ Ω(𝜀)
𝑗 ∈ [𝑚]

as
√
𝑥 = 𝑥√

𝑥
≥ 𝑥√

2
for 𝑥 ∈ [0, 2]. We already plugged in 𝜀 ≥

√
1 + 𝜀 − 1, which now tells

us that choosing the a bit smaller 𝜀 which allowed for 𝑏-periodic bounds 𝑘 𝑗 is easily possible
and still get 𝑞 𝑗 ∈ Ω(𝜀). Inserting this in the work equation from Subsection 5.2.1 we finally
get

𝔼[RSRS] ≤
1

𝑞†

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝
∈ O ©«1𝜀

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝
ª®¬ = O ©« 1𝜔

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝
ª®¬ .

To sum up, we have shown that for any targeted 𝜔 = log2(1 + 𝜀) and non-varying 𝑝 = 𝑝 𝑗
we can choose a smaller 𝜀 which leads to periodic bounds 𝑘 𝑗 given by (5.3). In this periodic
case, we get success probabilities 𝑞 𝑗 ∈ Ω(𝜀) ⊆ Ω(𝜀). This should suffice to convince one that
also directly using 𝜀 that leads to non-periodic (or such with way larger period) would lead
to the same work requirement. Thus, we will not enforce using 𝜀 that leads to periodic 𝑘 𝑗 in
practice.

We still need to prove one lemma used when approximating the recursion function for one
period of 𝑞𝑖𝑏 .
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Lemma 5.8: Let 𝑔𝑎 = 1 − 𝑒−𝑎𝑥 for 𝑎 > 0, 𝑥 ∈ (0, 1], 𝑎𝑖 ∈ (0, 4] for 𝑖 ∈ [𝑏], 𝑏 ∈ ℕ+. Let
𝑎 =

∏𝑏
𝑖=1 𝑎𝑖 . It holds(

⃝𝑏
𝑖=1𝑔𝑎𝑖

)
(𝑥) = 𝑔𝑎1 (𝑔𝑎2 (· · ·𝑔𝑎𝑏 (𝑥) · · · )) ≥ 𝑎𝑥 − 𝑥2

2
𝑎

𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑎𝑖 𝑥 ∈ (0, 1] . (5.4)

Proof. Let 𝑔𝑎, 𝑎𝑖 𝑖 ∈ ℕ+, 𝑥 be as required. Proof by induction over 𝑏 ∈ ℕ+.

Let 𝑏 = 1, 𝑎 := 𝑎1. It holds (Induction Base IB):

𝑔𝑎 (𝑥) = −
∞∑
𝑖=1

(−𝑎𝑥)𝑖
𝑖!

=
2∑

𝑖=1

−(−𝑎𝑥)𝑖
𝑖!

+
∞∑
𝑖=3

−(−𝑎𝑥)𝑖
𝑖!

=
2∑

𝑖=1

− (−𝑎𝑥)𝑖
𝑖!

+
∞∑
𝑗=2

(
−(−𝑎𝑥)2𝑗−1
(2 𝑗 − 1)! + − (−𝑎𝑥)2𝑗

(2 𝑗)!

)

=
2∑

𝑖=1

− (−𝑎𝑥)𝑖
𝑖!

+
∞∑
𝑗=2

−(−𝑎𝑥)2𝑗−1
(2 𝑗 − 1)!

©«
1 − 𝑎𝑥

2 𝑗︸︷︷︸
≤1

ª®®®®®¬
≥ 𝑎𝑥 − 𝑥2

2
𝑎2 = 𝑎

(
𝑥 − 𝑥2

2
𝑎

)
= 𝑎𝑥

(
1 − 𝑎𝑥

2

)
Let (5.4) hold for an arbitrary, but fixed 𝑏 ∈ ℕ+ (Induction Hypothesis IH). In the following,
· shall bind weaker than

∏
. It holds:(

⃝𝑏+1
𝑖=1𝑔𝑎𝑖

)
(𝑥) =

(
⃝𝑏

𝑖=1𝑔𝑎𝑖

)
(𝑔𝑎𝑏+1 (𝑥))

IH
≥

𝑏∏
𝑖=1

𝑎𝑖 · 𝑔𝑎𝑏+1 (𝑥) −
𝑔𝑎𝑏+1 (𝑥)2

2

𝑏∏
𝑖=1

𝑎𝑖 ·
𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑎𝑖

IB
≥

𝑏∏
𝑖=1

𝑎𝑖 · 𝑎𝑏+1
(
𝑥 − 𝑥2

2
𝑎𝑏+1

)
− 1

2

(
𝑎𝑏+1𝑥

(
1 − 𝑥𝑎𝑏+1

2

))2 𝑏∏
𝑖=1

𝑎𝑖 ·
𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑎𝑖

=
𝑏+1∏
𝑖=1

𝑎𝑖 ·
(
𝑥 − 𝑥2

2
𝑎𝑏+1

)
− 𝑥2

2
𝑎2𝑏+1

(
1 − 𝑥𝑎𝑏+1

2

)2︸          ︷︷          ︸
≤1

𝑏∏
𝑖=1

𝑎𝑖 ·
𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑎𝑖

≥ 𝑥
𝑏+1∏
𝑖=1

𝑎𝑖 −
𝑥2

2
𝑎𝑏+1

𝑏+1∏
𝑖=1

𝑎𝑖 −
𝑥2

2
𝑎𝑏+1

𝑏+1∏
𝑖=1

𝑎𝑖 ·
𝑏∑
𝑗=1

𝑏∏
𝑖=𝑗

𝑎𝑖

= 𝑥
𝑏+1∏
𝑖=1

𝑎𝑖 −
𝑥2

2

𝑏+1∏
𝑖=1

𝑎𝑖 ·
(
𝑎𝑏+1 +

𝑏∑
𝑗=1

𝑎𝑏+1

𝑏∏
𝑖=𝑗

𝑎𝑖

)
= 𝑥

𝑏+1∏
𝑖=1

𝑎𝑖 −
𝑥2

2

𝑏+1∏
𝑖=1

𝑎𝑖 ·
𝑏+1∑
𝑗=1

𝑏+1∏
𝑖=𝑗

𝑎𝑖 .
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Varying 𝑝 𝑗

We now want to briefly think about how this result can be generalized for varying 𝑝 𝑗 . When
𝑝 𝑗 vary for 𝑗 ∈ [𝑚], 𝑘 𝑗 can in general not be made periodic by altering 𝜀 slightly. When 𝑝 𝑗
are blockwise constant, that is,

𝑝1 = · · · = 𝑝𝑠1, 𝑝𝑠1+1 = · · · = 𝑝𝑠1+𝑠2, 𝑝𝑠1+𝑠2+1 = · · · · · · = 𝑝𝑠1+𝑠2+···𝑠𝑟

for block sizes 𝑠𝑖 ∈ ℕ+, 𝑖 ∈ [𝑟 ], ∑
𝑖∈[𝑟 ] 𝑠𝑖 = 𝑚, we could just calculate the bounds 𝑘 𝑗 for

each block separately and thus would only waste one bit per block due to rounding. We will
have such a case later when applying SRS to MPHF construction. Then, however, we will just
assume our result holds even when calculating bounds for all tasks together and not waste
any precious bits.

5.2.6. Summary

We now want to give a quick summary of all the cases we analyzed SRS for. We started with
the most simple case of constant success probabilities 𝑝 and retry bounds 𝑘 for all𝑚 tasks.
We showed that, 𝑝𝑘 ≥ 1 + 𝜀 > 1 is necessary for SRS to require work in O

(
𝑚𝑊
𝜔𝑝

)
where

𝑊 is the work required to check one seed and 𝜔 = log2(1 + 𝜀). Then, we showed that the
same analysis can be applied when 𝑝 𝑗 , 𝑘 𝑗 vary, as long as 𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 holds for each of them.
Afterward, we discussed how to choose 𝑘 𝑗 such that we can store and retrieve seeds 𝑖 𝑗 easily.
To begin, we choose to just use the smallest power of two that fulfills the aforementioned
requirement. This makes us, however, waste up to one bit per task, while still being a bit
better than individually testing and encoding seeds for small 𝑝 𝑗 . We then discussed using
only the last 𝑤 bits of a seed (windowed case) for efficient operations on them, and argued
why that should not be a problem in practice. At last, we pushed space usage even further,
arbitrarily close (per task) to searching for one seed that is successful for all tasks (UNI). We
achieved this by cleverly rounding the bounds 𝑘 𝑗 up and down. For this, however, we needed
to reanalyze the work requirement and considered periodic 𝑘 𝑗 . Next, we will use these results
to analyze SRS applied to MPHF construction—SRS-RecSplit.
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5.3. Analysis of SRS-RecSplit

Now that we analyzed SRS extensively, we can use the results to easily analyze the runtime
and space usage of SRS-RecSplit, as described in Section 4.4. We first analyze SRS-RecSplit for
power-of-two inputs. Then, we show why varying the overhead parameter 𝜔 can be helpful
for practical performance. Finally, we provide some details on what changes when we also
allow non-power-of-two inputs.

5.3.1. Power-of-Two Input Size

For the simpler case of power-of-two input sizes, we will first analyze construction time, then
we will look at space usage.

Theorem 5.9: The power-of-two construction of SRS-RecSplit for 𝑋 ∈ 𝑈 , |𝑋 | = 𝑛 and overhead
parameter 𝜔 ∈ (0, 1], as described in Subsection 4.4.1, has runtime

𝔼
[
RSRS-RecSplit

]
∈ O

(
𝑛3/2 log𝑛

𝜔

)
.

Proof. From Section 4.3 we know SRS has runtime O
(
1
𝜔

∑
𝑗∈[𝑚]

𝑊𝑗

𝑝 𝑗

)
for𝑚 tasks, each with

success probability 𝑝 𝑗 and work requirement𝑊𝑗 to test a seed. We now need to figure out
the value of these parameters to get a construction time for SRS-RecSplit.

We will start with the number of tasks 𝑚. When an input set of keys 𝑋 ⊆ 𝑈 from some
universe𝑈 with a power of two size 𝑛 := |𝑋 | = 2𝑟 , 𝑟 ∈ ℕ+ is given, the splitting tree requires
𝑟 layers 𝑖 ∈ {𝑟, . . . , 1}, each containing 2𝑟−𝑖 splitting nodes of size 2𝑖 . This results in

𝑚 =
𝑟∑
𝑖=1

2𝑟−𝑖 =
𝑟−1∑
𝑖=0

2𝑖 = 2𝑟 − 1 = 𝑛 − 1

tasks.

We now continue to determine the success probabilities 𝑝 𝑗 . In our case, success means to
successfully find a seed, such that it splits the task’s keys into two parts of equal size. As
they are the same for each task in one layer of the splitting tree, we determine 𝑝𝑖 on layer
𝑖 ∈ 𝑟, . . . , 1. Let there be seeded hash functions ℎ𝑠 : 𝑈 → {0, 1} for seeds 𝑠 ∈ ℕ0 with
ℙ(ℎ𝑠 (𝑥) = 1) = 1

2 independently for all 𝑥 ∈ 𝑈 , 𝑠 ∈ ℕ0. Hash function ℎ𝑠 splits an input
𝑋𝑛 ⊆ 𝑈 of size |𝑋𝑛 | = 𝑛 evenly, iff exactly half of the keys in 𝑋𝑛 get hashed to 0:

#0𝑛 :=
��ℎ−1𝑠 ({0}) ∩ 𝑋𝑛

�� = 𝑛

2
.

As #0𝑛 ∼ Bin(𝑛, 12 ), it holds (using Stirling’s approximation in the second line)

ℙ

(
#0𝑛 =

𝑛

2

)
=

(
𝑛
𝑛
2

) (
1

2

)𝑛/2 (
1 − 1

2

)𝑛/2
= 2−𝑛

(
𝑛
𝑛
2

)
= 2−𝑛

𝑛!

(𝑛/2)!2

∈ Ω

(
2−𝑛

√
𝑛𝑛𝑛𝑒−𝑛

(
√
𝑛/2(𝑛/2)𝑛/2𝑒−𝑛/2)2

)
= Ω

(
1
√
𝑛

)
.
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Therefore, we get the probability of finding a splitting in layer 𝑖 with 𝑛 = 2𝑖 keys of

𝑝𝑖 = ℙ

(
#02𝑖 =

2𝑖

2

)
=

2𝑖 !

22
𝑖 (2𝑖−1!)2

∈ Ω

(
1
√
2𝑖

)
= Ω

(
2−𝑖/2

)
.

Next up, we determine𝑊𝑖 which is again the same on layer 𝑖 . Testing whether a seed splits
an input of size 𝑛 equally, requires evaluating ℎ𝑠 for each element and counting the results,
resulting in work O(𝑛). Thus, on layer 𝑖 we have

𝑊𝑖 ∈ O
(
2𝑖

)
.

This, however, does not cover all the work required. To keep track of which key belongs to
which task, we partition them after finding a successful seed. This partitioning requires work
inO(𝑛) for 𝑛 keys. We therefore can just include this work in𝑊𝑖 and no longer have to think
about it. More details on the exact partitioning scheme can be found in Chapter 6.

We nowplug these values into SRS’work equation. By summing over all layers of the splitting
tree and therein over every task we get

𝔼
[
RSRS-RecSplit

]
∈ O©« 1𝜔

𝑟∑
𝑖=1

2𝑟−𝑖∑
𝑗=1

(
𝑊𝑖

𝑝𝑖

)ª®¬ = O

(
1

𝜔

𝑟∑
𝑖=1

2𝑟−𝑖2𝑖
√
2−𝑖

)
= O

(
1

𝜔

𝑟∑
𝑖=1

𝑛
√
2𝑖

𝜔

)
= O

(
𝑛3/2 log𝑛

𝜔

)
.

Now we consider space usage.

Theorem 5.10: The power-of-two construction of SRS-RecSplit for𝑋 ∈ 𝑈 , |𝑋 | = 𝑛 and overhead
parameter 𝜔 ∈ (0, 1], as described in Subsection 4.4.1, has space usage

𝔼
[
SSRS-RecSplit

]
∈ O

(
log2

1

𝜔

)
+ (𝑛 − 1) · 𝜔 + log2

𝑛𝑛

𝑛!
.

Proof. According to Section 4.3, we get space usage

𝔼
[
SSRS-RecSplit

]
∈ O

(
log2

1

𝜔

)
+𝑚𝜔 −

𝑟∑
𝑖=1

2𝑟−𝑖∑
𝑗=1

(log2 𝑝𝑖) = O
(
log2

1

𝜔

)
+ (𝑛 − 1) · 𝜔 − log2

𝑟∏
𝑖=1

𝑝2
𝑟−𝑖

𝑖

= O
(
log2

1

𝜔

)
+ (𝑛 − 1) · 𝜔 + log2

𝑛𝑛

𝑛!

with 𝑛!
𝑛𝑛 =

∏𝑟
𝑖=1 𝑝

2𝑟−𝑖
𝑖 being the probability to find anMPHF for𝑛 elements, given by recursive

application of the invariance property presented in [EGV19].

Considering the space usage per task, we can see that it is arbitrarily close to the lower
bound when choosing small 𝜔 . For that, we remember the space usage of the naive MPHF
implementation shown in Subsection 2.5.2. Together with the derivation of the lower bound
(Subsection 2.5.1) we argued, that a space usage of log2 𝑛𝑛

𝑛! bits is optimal. When we use
small 𝜔 , the overhead dependent on 𝑛 decreases. For large 𝑛, the per task overhead caused
by O

(
log2

1
𝜔

)
gets arbitrary small as well.
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5.3.2. Adaptive Overheads 𝜔

There is one more trick we can apply. In practice, varying𝜔 across layers in the splitting tree
improves construction time. Although we do not get a better asymptotic construction time,
we will still provide a short analysis to understand why this is the case. The idea behind this
modification is that we want to negate the smaller probability of finding an even split on the
upper layers with larger task sizes. As we chain together multiple blocks of SRS tasks with
constant success probabilities 𝑝 as mentioned at the end of Subsection 5.2.5, nothing prevents
us from choosing different overhead parameters 𝜔 in each block—each layer.

If we would set𝜔𝑖 =
√
2𝑖𝜔 on layer 𝑖 for some𝜔 ∈ (0, 1], this would cancel out 𝑝𝑖 ∈ Ω

(
2−𝑖/2

)
.

If we would continue the construction time analysis with these values for 𝜔 we would reach
construction time in O

(
𝑛 log𝑛

𝜔

)
(with even O

( 𝑛
𝜔

)
possible for a different choice of 𝜔𝑖 ). We

would then show, that the total overhead over all tasks is still linear in 𝜔 (as there are many
more tasks with small 𝜔), on which also our runtime depends. Sadly, there is a catch. In
our analysis for SRS, we restricted 𝜔 to (0, 1]. If we increase 𝑛 here, we also get more layers
and thus larger 𝑖 making 𝜔𝑖 grow without bounds. Restricting 𝜔 to (0, 1] for SRS’ analysis is
necessary because when we make 𝜔 much larger, we do not get a linear work improvement
beyond some point. If we have already enough tries to find a successful seed—the bounds 𝑘 𝑗
being large enough—providing more tries just does not make that much of a difference. Thus,
if we do not bound 𝜔 from above, we no longer could state 𝔼[RSRS] ∈ O

(
𝑚𝑊
𝑝𝜔

)
as then big

O notation would also need to apply for 𝜔 → ∞.

In practice, as long as 𝜔𝑖 =
√
2𝑖𝜔 ≤

√
𝑛𝜔

!
≤ 1 we still can use these adaptive 𝜔𝑖 . 𝜔 would

then no longer be the actual overhead per key, but a fraction of that:
𝑟∑
𝑖=1

2𝑟−𝑖𝜔𝑖 =
𝑟∑
𝑖=1

2𝑟−𝑖2𝑖/2𝜔 = 𝑛𝜔
𝑟∑
𝑖=1

(
1
√
2

)𝑖
≤ 𝑛𝜔

∞∑
𝑖=1

(
1
√
2

)𝑖
= 𝑛𝜔

1

1 − 1/
√
2
≈ 3.41𝑛𝜔.

This allows us to choose larger𝜔 that lead to the same overhead but better construction time.
We use such adaptive overheads in our implementation, see Chapter 6. Further analyzing
possible advantages that could be gained by adaptive overheads 𝜔 remains future work.

5.3.3. Non-Power-of-Two Input Size

We will now consider SRS-RecSplit for non-power-of-two input sizes. As described in Sub-
section 4.4.2 we will split a set of non-power-of-two many keys into the next smallest power
of two and the rest. In the following, we will calculate the number of tasks required and what
the new splitting probabilities are.

Number of Tasks

First, we need to consider how many SRS tasks are necessary for an input 𝑋 ⊆ 𝑈 with size
|𝑋 | = 𝑛: We now have 𝑟 := ⌈log2 𝑛⌉ layers 𝑖 ∈ {𝑟, . . . , 1} with each

⌊
𝑛
2𝑖

⌋
ordinary tasks of size

2𝑖 , and possibly one remaining uneven task of size 𝑛−2𝑖
⌊
𝑛
2𝑖

⌋
iff its size would be > 2𝑖−1. This
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Figure 5.6.:This figure motivates the re-indexing to simplify the number of SRS tasks neces-
sary for SRS-RecSplit given a non-power-of-two input sizes. In each row 𝑖 we see the binary
representation of 𝑛 shifted to the right by 𝑖 bits. Each column represents the value of each
bit (2𝑘 ). The diagonal index 𝑗 determines which bit of 𝑛 we sum over (𝑎 𝑗 ). Given a sum over
𝑖 and 𝑗 , we want to sum over 𝑗 , 𝑘 .

is the case iff for one layer, there remains some of the input that is not covered by ordinary
tasks, but is more than a single ordinary task on the next layer can cover and thus needs to
be split beforehand. Thus, we get for the total number of tasks

𝑚 =
𝑟∑
𝑖=1

(⌊ 𝑛
2𝑖

⌋
+

[
𝑛 − 2𝑖

⌊ 𝑛
2𝑖

⌋
> 2𝑖−1

] )
(5.5)

where [𝑃] :=
{
1 𝑃

0 ¬𝑃
for some statement 𝑃 is the Iverson bracket.

We now want to simplify this expression. Looking at the binary representation of 𝑛 =∑𝑟
𝑗=0 2

𝑗𝑎 𝑗 , 𝑎 𝑗 ∈ {0, 1}, we can rewrite the first part of the sum as
𝑟∑
𝑖=1

⌊ 𝑛
2𝑖

⌋
=

𝑟∑
𝑖=1

𝑟∑
𝑗=𝑖

2𝑗−𝑖𝑎 𝑗 =
∑

1≤𝑖≤ 𝑗≤𝑟
2𝑗−𝑖𝑎 𝑗

=
∑

0≤ 𝑗≤𝑟, 0≤𝑘≤ 𝑗−1
2𝑘𝑎 𝑗 =

𝑟∑
𝑗=0

𝑎 𝑗

𝑗−1∑
𝑘=0

2𝑘 =
𝑟∑
𝑗=0

𝑎 𝑗 (2𝑗 − 1) = 𝑛 −
𝑟∑
𝑗=0

𝑎 𝑗

as Φ : {(𝑖, 𝑗) ∈ ℕ2
0 | 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 } → {( 𝑗, 𝑘) ∈ ℕ2

0 | 0 ≤ 𝑗 ≤ 𝑟, 0 ≤ 𝑘 ≤ 𝑗 − 1}, (𝑖, 𝑗) ↦→
( 𝑗, 𝑘 := 𝑗 − 𝑖) is bijective. Figure 5.6 provides an intuition behind this re-indexing.

For the second part of the sum of (5.5), considering again the binary representation of 𝑛,
the bracket equals 1 for layer 𝑖 iff the bits 𝑎𝑖−1 = 𝑎𝑖′ = 1 for some 𝑖′ < 𝑖 − 1 are set. If
𝑛 is not a power of two, thus 𝑎𝑟 = 0 (𝑟 = ⌈log2 𝑛⌉), we get 1 in the sum for every 𝑖 with
𝑎𝑖−1 = 1, 𝑖 ∈ {𝑟, . . . , 1} except the last (least significant) set bit, thus

𝑟∑
𝑖=1

[
𝑛 − 2𝑖

⌊ 𝑛
2𝑖

⌋
> 2𝑖−1

]
=

𝑟−1∑
𝑖=0

𝑎𝑖 − 1.

As a result, for non-power-of-two 𝑛, we also get

𝑚 = 𝑛 −
𝑟∑
𝑗=0

𝑎 𝑗 +
𝑟−1∑
𝑖=0

𝑎𝑖 − 1 = 𝑛 − 1 − 𝑎𝑟 = 𝑛 − 1.
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Uneven tasks

Next, we will consider the probability for a seed to perform an uneven split for tasks that
contain a non-power-of-two number of keys. These tasks split their keys into the next smaller
power of two and the rest.

More precisely, for task size 𝑛 with log2 𝑛 ∉ ℕ0, we need to split into parts of size 2⌊log2 𝑛⌋

and rest. For that, we need a hash function ℎ𝑠 : 𝑈 → {0, 1} for seeds 𝑠 ∈ ℕ0 with ℙ(ℎ𝑠 (𝑥) =
0) = 2⌊log2 𝑛⌋

𝑛 =: 𝑞 independently for all 𝑥 ∈ 𝑈 , 𝑠 ∈ ℕ0. For a given input set 𝑋𝑛 ⊆ 𝑈 with
size |𝑋𝑛 | = 𝑛 we get for the number #0𝑛 ∈ ℕ0 of keys hashed to 0 by ℎ𝑠 :

ℙ (#0𝑛 = 𝑛𝑞) =
(
𝑛

𝑛𝑞

)
𝑞𝑛𝑞 (1 − 𝑞)𝑛 (1−𝑞) = 𝑛!

(𝑛(1 − 𝑞))!(𝑛𝑞)!𝑞
𝑛𝑞 (1 − 𝑞)𝑛 (1−𝑞)

∼
√
2𝜋𝑛𝑛𝑛/𝑒𝑛 · 𝑞𝑛𝑞 (1 − 𝑞)𝑛 (1−𝑞)√

𝑛(1 − 𝑞)(𝑛(1 − 𝑞))𝑛 (1−𝑞)/𝑒𝑛 (1−𝑞) ·
√
2𝜋𝑛𝑞(𝑛𝑞)𝑛𝑞/𝑒𝑛𝑞

=
1√

2𝜋𝑛𝑞(1 − 𝑞)

≥ 2√
2𝜋𝑛 · (1 − 1/𝑛) · 1/2

=
1√

𝜋 (𝑛 − 1)
∈ Ω

(
1
√
𝑛

)
For the second line we applied Stirling approximation (see Section 2.2). Again, 𝑎𝑛 ∼ 𝑏𝑛
means the quotient 𝑎𝑛

𝑏𝑛
→ 1 (𝑛 → ∞). For the third line we used 𝑞 ∈

[
1
2 , 1 −

1
𝑛

]
which we

get because we split of at most half of the keys and at least 1/𝑛 when 𝑛 is just one larger than
a power of two.

Splitting probabilities being in Ω
(
𝑛−1/2

)
as they are in the power-of-tow case is important

for the construction time. We can apply a similar analysis as in Subsection 5.3.1 to get con-
struction time in O

(
𝑛3/2

𝜔

)
. Furthermore, we can apply the same analysis for space usage to

get O
(
log2

1
𝜔

)
+ (𝑛 − 1) · 𝜔 + log2

𝑛𝑛

𝑛! bits.
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6. Implementation

To validate the theoretical findings, we implemented SRS-RecSplit in Rust [Zie24]. The fol-
lowing presents some noteworthy considerations and implementation details. First, we look
at how the splittings in each SRS task are performed in practice and how and which hash
functions are used.

6.1. Hashing and Splitting

In SRS-RecSplit, in each SRS task, the input keys get split into two parts using a hash function.
This section explains how these splittings are performed in practice.

Master Hash Codes. First, to not have to hash larger keys multiple times, we create a
64-bit master hash code for each key, as also done by other implementations [EGV19]. This
master hash code is then used instead of the keys in every further step. We will call this
set of master hash codes𝑊 = {0, 1}64. We use WyHash2 to generate these master hash
codes [Yi24 |Tho22].

Splitting Hash Functions. To perform splittings, we need a seeded hash function ℎ𝑃𝑠 :
𝑊 → {0, 1} with different probabilities 𝑃 := ℙ(ℎ𝑠 (𝑥) = 0) independently for all 𝑥 ∈ 𝑈 , 𝑠 ∈
ℕ0 for even splits—but also for uneven splits for non-power-of-two input size cases. Hashes
under this hash function decide whether a key belongs to the left or right child.

For even splits where each child has the same size—requiring 𝑃 = 1/2—we construct ℎ1/2𝑠 by
considering only one bit of a uniform hash function ℎ̄ :𝑊 →𝑊 , and XORing (⊕) the seed 𝑠
to the master hash code: ℎ1/2𝑠 (𝑥) = ℎ̄(𝑠 ⊕ 𝑥) & 1. & marks the bitwise AND operation.

For uneven splits with 𝑃 = 2⌊log2 𝑛⌋

𝑛 , we use the same scheme, but using fixed point inver-
sion [EGV19] instead of bit masking:

ℎ𝑃𝑠 (𝑥) =
{
0

(
(ℎ̄(𝑠 ⊕ 𝑥) · 𝑛) ≫ log2 |𝑊 |

)
< 2⌊log2 𝑛⌋

1 otherwise
.

≫ is the bit-shift operator.

Hash Algorithm. Now, a choice of ℎ̄—independent of the choice made for the master hash
codes—still remains. As SRS-RecSplit spends most of its time on hashing, using a fast hash
function that is crucial. Wyhash2 [Yi24 |Tho22] has proven to be fastest under all tested,
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Table 6.1.: SRS-RecSplit construction time comparison using various hashing algorithms
with 𝑛 = 210, 𝜔 = 0.1. Fxhash does not terminate in any reasonable amount of time.

algorithm avg. std. div.

xxhash [Dou24] 3.64 ms 335 µs
std::hash [Com] 3.13 ms 257 µs
ahash [Kai24] 1.14 ms 41.1 µs
wyhash2 [Tho22] 1.13 ms 34.2 µs
fxhash [Chr24] - -

while still being of good enough quality for SRS to work (see Table 6.1). Fxhash produces too
similar hashes (the last bit is the same) given a seed just one larger, thus leading to SRS not
terminating in any reasonable amount of time.

Calculation of splitting probabilities. To figure out the number of bits log2 𝑘 𝑗 provided
for one task 𝑗 , it is necessary to know the probability 𝑝 𝑗 of a splitting in the splitting tree for
any seed to be successful, see Section 4.3.

For even splittings with the splitting probability 𝑝𝑖 determined in Subsection 4.4.1, we can
calculate its logarithm more efficiently with

log2 𝑝𝑖 = log2
2𝑖 !

22
𝑖 (2𝑖−1!)2

= log2

2𝑖−1∏
𝑡=1

2𝑡−1 + 𝑡
4𝑡

=
2𝑖−1∑
𝑡=1

log2

(
2𝑖

8𝑡
+ 1

4

)
for every task 𝑗 on layer 𝑖 ∈ [log2 𝑛] for power-of-two input sizes 𝑛. These values can be
precomputed and stored to cover any reasonable power-of-two input size.

For non-power-of-two input sizes 𝑛, some uneven splittings—splitting a non-power-of-two
input into the next smaller power-of-two and rest—are also necessary. The probabilities of
finding a successful splitting here, see Subsection 4.4.2, need to be computed on the fly as stor-
ing them for any possible input size is unfeasible. For efficient calculation, we use Stirling’s
approximation and simplify it to get

log2 𝑝 (𝑛) ≈ −
log2

(
2𝜋𝑛𝑞(1 − 𝑞)

)
2

where 𝑞 = 2⌊log2 𝑛⌋/𝑛.

Partitioning. After a successful split is found in one SRS task, its keys need to be parti-
tioned by their hash value of the current task so that they will be correctly assigned to the
child tasks of the splitting tree. For that, we apply Hoare partitioning [Hoa62] as it is done
in textbook Quicksort. We iterate from both ends of the key array until we find one key
on each side that belongs to the opposite side—as dictated by its hash value—and then swap
them. This algorithm requires runtime O(𝑀) for𝑀 keys.
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6.2. Other

There are a few other implementation details to note.

Floating Point Operations. To calculate how many bits to use for each task, SRS needs
to keep track of fractional bits, noted as 𝜎 in Subsection 5.2.5. For that, it is necessary to
work with non-integer values. Using 32-bit floating point numbers led to numerical errors
that caused these calculations to lead to different results in the construction and hashing of
keys afterward. Using 64-bit floating point numbers deferred this issue, for all tested input
sizes, however, using fixed point arithmetic would be possible. For a more stable algorithm,
the same equations (i.e., not replacing products for sums) should be used in the future.

Window Size. To allow forO(1) hashing, in practice only the last𝑤 bits of seeds are used
to seed the hash functions. In Subsection 5.2.4 we argued that this should not be a problem.
The implementation uses 𝑤 = 64 bits, which allows for sufficiently many possible splittings
that cannot be exhausted in any reasonable amount of time.

Adaptive Overheads. In our implementation, we use adaptive overheads 𝜔𝑖 = 𝜔
3.4

√
2𝑖

on each layer, as presented in Subsection 5.3.2. The rescaling factor of 3.4 is used to in the
end get approximately 𝜔 bits per key overhead when providing overhead parameter 𝜔 . We
also limit 𝑘 𝑗 ≤ 64 as larger values can occur in the first layers for large 𝜔 and 𝑛 because of
these adaptive overheads. Because of adaptive overheads, this prediction of space overhead
is not perfect and worse for small input sizes. In our experiments, we always show the real
overhead.

Layer Calculation. To calculate the layer 𝑖 ∈ ⌈log2 𝑛⌉, . . . , 1 in the splitting tree given a
task index 𝑗 ∈ [𝑛 − 1], we use the following formula: 𝑖 =

⌈
log2

⌈
𝑛
𝑗

⌉⌉
. To calculate a zero-

based index of the task inside the current layer, we use 𝑐 = 𝑗 −
⌊
𝑛
2𝑖

⌋
+ [trailingzeros(𝑛) ≥

𝑖] − 1. [𝑃] ∈ {0, 1} is again the Iverson bracket with [𝑃] = 1 ⇐⇒ 𝑃 for a statement 𝑃 .
trailingzeros(𝑛) is the number of trailing zeros (starting at the least significant bit) in the
binary representation of n.

Iterative Implementation. In practice, implementing SRS iteratively instead of with re-
cursive function calls as shown in Algorithm 4.1 in Section 4.3 is beneficial for several reasons:
First, a recursive implementation would lead to stack overflows on default stack sizes for
thousands of tasks, as required for SRS-RecSplit. Furthermore, the iterative implementation
needs fewer function calls. In preliminary experiments, we got a 30% shorter construction
time. However, the iterative implementation still uses a custom stack data structure for stor-
ing intermediate indices.
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This chapter evaluates the practical usability of SRS-RecSplit. First, we compare some of our
predictions about SRS made in Section 5.2 to real-world results for a problem simpler than
constructingMPHFs. Afterward, we test SRS-RecSplit’s runtime in various scenarios. Finally,
we compare SRS-RecSplit to state-of-the-art MPHF implementations.

Experimental Setup. All timed experiments were performed on an Intel® Core™ i7-11700
CPUwith 8 cores and 16 threads, 16MiB cache, and a base frequency of 2.50 GHzwith 4.9 GHz
turbo. Furthermore, 64 GB of DDR4 memory were available. We compiled our implementa-
tions with rustc 1.81.0 in release mode. For the comparison in Section 7.3 we used the refer-
ence implementations of RecSplit [Vig24] and ShockHash [Leh24] compiled with g++ version
11.4.0 with -O3. There, we used uniformly random 16-character alphanumerical strings, as
strings are the only type all implementations support natively. For other experiments, we
use random 8 byte integers as keys.

7.1. SRS

First, we show some experimental results for a simple application of SRS with constant suc-
cess probabilities 𝑝 𝑗 = 𝑝 and clever bounds 𝑘 𝑗 . Although not of particular relevance, tasks for
this implementation consisted of finding an MPHF of size 𝑡 = 10 by brute force, as it might
be required in RecSplit’s leafs. All tasks together thus can convert a 𝑡-perfect hash function,
with at most 𝑡 keys that get mapped to a single hash, into a perfect hash function (𝑡 = 1).

First, in Figure 7.1 we see that runtime is—as expected—linear in the number of tasks and the
inverse of the overhead 1/𝜔 . We remember, that when SRS finds a successful seed for one
task, but afterward fails to find one for the next task in its limited 𝑘 𝑗 tries, SRS tries to find
another successful seed in the previous task. In Figure 7.2a we can see that the number of
successful seeds SRS needed to find for a single task does not increase arbitrarily the farther
away from the last task we get. Instead, this number is bound by a constant (dependent on
𝜔). This makes SRS require work linear in𝑚. We also see a strong variation in the number
of seeds found for tasks close together. This variation is caused by the clever rounding of the
bounds 𝑘 𝑗 (see Subsection 5.2.5). Rounding leads to some tasks having more tries because
of rounding up, while others have fewer tries because their bound got rounded down. Thus,
the latter tasks cause more retries for their previous task. Figure 7.2b shows the number of
successful seeds found for tasks 1 to 30 in more detail. We can see jumps caused by the clever
rounding once in a while, providing one bit more to store a bound. The repeating pattern also
motivates the runtime analysis for periodic bounds, as shown in Subsection 5.2.5.
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Figure 7.1.: Number of seeds tested for SRS to be successful for different number of tasks
(7.1a) and overhead parameters (7.1b). Number of tested seeds in linear in both𝑚 and 1/𝜔 ,
as expected.
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(b) Zoomed in version of 7.2a on tasks 1 to 30.

Figure 7.2.: Number of successful seeds found in each task for 𝑚 = 1000, 𝜔 = 0.01 for
constant 𝑝 𝑗 with cleverly rounded bounds 𝑘 𝑗 , averaged over 100 samples. Cleverly rounding
the bounds to a next power of two causes the visible dips in Figure 7.2b. The last task always
requires only one successful seed, as then SRS terminates.
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Figure 7.3.: Query time of SRS-RecSplit for different input sizes.

7.2. SRS-RecSplit

We will now evaluate SRS-RecSplit as described in Section 4.3. Note that we do not use
bucketization. In Figure 7.4a we see SRS’ construction time per key for various input sizes
that are powers of two and not. This creates visible jumps in the measurements, as non-
power-of-two inputs are less efficient and less optimized. As SRS-RecSplit has construction
time in O

(
𝑛3/2 log𝑛

𝜔

)
, we expect to see per key construction time proportional to

√
𝑛 log𝑛,

which we do. In Figure 7.4b we do not quite see the expected runtime linear in 1/overhead,
especially considering the largest measurement. This may be due to cache inefficiencies as
SRS might backtrack out of the cached indices, but only considering the number of hash
function evaluations in Figure 7.4d, we do see a linear relationship. Figure 7.3 shows the
query time for different input key set sizes, where the expected logarithmic relationship is
visible.

7.3. Comparison with Other MPHF Implementations

We will now compare SRS-RecSplit to the previously best MPHF implementation regarding
space usage—bipartite ShockHash-RS—and RecSplit on which SRS-RecSplit is based. In Fig-
ure 7.5 we see the Pareto frontiers of each MPHF algorithm regarding construction time and
space usage. A Pareto frontier consists of measurements for different configurations that are
not dominated by any other measurement of the same algorithm. A point (𝑎, 𝑏) is Pareto
dominant over (𝑐, 𝑑) iff 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 where ≤ means “better” and at least one of the inequal-
ities is strict. Towards the top left is better, as this means a higher construction throughput
(keys per second) and lower space overhead regarding the lower bound of log2 𝑒 bits per key.
For a smaller input size of 𝑛 = 215 keys (Figure 7.5a), SRS-RecSplit beats ShockHash-RS for
even larger overheads and reaches a way smaller overhead, as low as 0.000 21 bits per key.
This leads to a space usage of 1.442 91 bits per key. Considering a larger input size of 𝑛 = 220

(Figure 7.5b), SRS-RecSplit is only competitive for very small overheads because its super-
linear construction time in the input size becomes a problem. This can, however, easily be
solved in the future by applying a bucketization scheme similar to what ShockHash-RS and
RecSplit use.
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(b) 𝑛 = 215. Practical construction time is not
quite linear in 1/overhead, however, the number
of hash function evaluations are, see Figure 7.4d.
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(c) 𝜔 = 0.01. Number of hash function evalua-
tions for different input sizes.
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Figure 7.4.:Construction time (top) of SRS-RecSplit and number of hash function evaluations
necessary for construction (bottom) for different input sizes (left) and overheads (right).
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Figure 7.5.: Pareto frontiers of MPHF algorithms, showing construction time vs. space over-
head above lower bound of log2 𝑒 . Both axes are logarithmic. The upper left is better.

Table 7.1.:Construction time and space measurements for each of the tested algorithms with
roughly comparable construction time or overhead for 𝑛 = 215. All values are per key. 𝑏 is
bucket size, 𝑙 is leaf size.

(a)Measurements with comparable construction time. SRS-RecSplit reaches 1/192 the space overhead
as bipartite ShockHash-RS uses.

time overhead space

RecSplit
𝑏 = 2000, 𝑙 = 14

170 μs 0.201 bits 1.643 bits

bip. ShockHash-RS
𝑏 = 2000, 𝑙 = 128

187 μs 0.122 bits 1.567 bits

SRS-RecSplit
𝜔 = 0.001

227 μs 0.000 634 bits 1.443 33 bits

(b) Measurements with comparable space overhead. SRS-RecSplit needs only 1/101 the construction
time as bipartite ShockHash-RS uses.

time overhead

RecSplit
𝑏 = 2000, 𝑙 = 16

1520 μs 0.178 bits

bip. ShockHash-RS
𝑏 = 2000, 𝑙 = 128

187 μs 0.122 bits

SRS-RecSplit
𝜔 = 0.1

1.85 μs 0.070 bits

59



7. Experiments

Table 7.1 shows some measurements out of the Pareto frontiers for roughly comparable con-
struction times or overheads, for 𝑛 = 215. SRS-RecSplit reaches 1/192 the space overhead
as bipartite ShockHash-RS uses for similar construction time and only needs 1/101 the con-
struction time for the same overhead.
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8. Conclusion

In this thesis, we introduced Symbiotic Random Search (SRS) to solve the entropy discrepancy
of up to log2 𝑒 bit, existing between two geometrically distributed random variables and one
combined one. SRS requires work linear in the number of tasks𝑚 and in the inverse of 𝜔—
the overhead per task towards the entropy of a single combined task.

To achieve these results, we analyzed SRS for the case of tasks with varying success prob-
abilities 𝑝 𝑗 and retry bounds 𝑘 𝑗 as long as 𝑝 𝑗𝑘 𝑗 ≤ 1 + 𝜀 = 2𝜔 using non-windowed seeds
(Subsection 5.2.1 and Subsection 5.2.2). We provided a sketch of a proof that work does not
change asymptotically for the case of constant 𝑝, 𝑘 with seeds limited to a window of𝑤 bits
for some𝑤 ∈ Θ(log𝑚) (Subsection 5.2.4). Furthermore, we proved that we get the same run-
time for tasks with equal success probabilities 𝑝 and rounding the retry bounds 𝑘 𝑗 to powers
of two, such that on average we spend at most 𝜔 bits per task more than minimum (Subsec-
tion 5.2.5). We argued, that this result can at least be applied for blockwise constant 𝑝 with
losing one additional bit per block. We take this as a strong hint that the same relationship
could also apply when combining all these relaxations of requirements.

Afterward, we applied SRS to MPHF construction and RecSplit in particular to get SRS-
RecSplit. We explained and analyzed a simple version that only works for power-of-two
inputs, and also shortly provided some details on the adaptation to make this version work
for non-power-of-two inputs. We then tested our implementation and reached space usage
as low as 1.442 91 bits per key. Moreover, we reached 1/192 of the overhead towards the op-
timum of the previous record holder for a similar construction time. For similar overheads,
constructing SRS-RecSplit is 101 times faster.

Future Work. There are a couple of ideas that can be developed further. First, integrating
bucketization into SRS-RecSplit to achieve expected linear construction and constant queries
remains one of the most important and promising tasks. Only this would truly make SRS-
RecSplit practically usable for large input sizes and competitive regarding construction and
lookup time. Additionally, further exploiting adaptive overhead parameters 𝜔 could provide
some improvements. Finally, we would like to see a more elegant proof for the work SRS
requires that may cover all cases.
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A. Appendix

A.1. Table of Symbols

In this section, we provide an overview of the most important symbols used in this thesis.

A.1.1. MPHF and SRS-RecSplit

Symbol Description

𝑛 ∈ ℕ+ MPHF size.
𝑈 Universe of keys.
𝑋 ⊆ 𝑈 Set of input keys.
𝑓𝑠 : 𝑈 → 𝐶 Seeded hash function for seed 𝑠 ∈ ℕ0. Codomain 𝐶 depends on context.

𝑟 = ⌈log2 𝑛⌉ Number of layers in SRS-RecSplit’s splitting tree.
𝑖 ∈ 𝑟, . . . , 1 Layer indices in SRS-RecSplit’s splitting tree.
𝑝𝑖 ,𝑊𝑖 , 𝜔𝑖 Same meaning as for SRS (see below), but applying for each task in layer 𝑖 .

A.1.2. SRS

Symbol Description

𝑚 ∈ ℕ+ Number of SRS tasks.
𝑗 ∈ [𝑚] Task indices.
𝑖 𝑗 ∈ ℕ0 Seeds.
𝑆 𝑗 ⊆ ℕ0 Set of successful seeds.
𝑝 𝑗 ∈ (0, 1] Success probability for 𝑖 𝑗 ∈ 𝑆 𝑗 .
𝑊𝑗 Work required for one test 𝑖 𝑗 ∈ 𝑆 𝑗 .
𝑘 𝑗 ∈ ℕ0 Bound on number of seeds tested in one go.
𝜎 ( 𝑗) ∈ ℝ+

0 Targeted bits to use for tasks 1 to 𝑗 .
𝑙 𝑗 ∈ [𝑘 𝑗 ]0 Indices of tries in each task, from which seeds are constructed:

𝑖 𝑗 = 𝜂 (𝑖0, 𝑙1, . . . , 𝑙 𝑗 ).
𝜂 Binary concatenation function.
𝑖0 ∈ ℕ0 Root seed required to achieve infinite retries.
𝑤 ∈ ℕ+ Seed window size used in practice for efficient handling of seeds.
𝜔 ∈ (0, 1] Overhead per Task in bits. 𝜔 = log2(1 + 𝜀).
𝜀 ∈ (0, 1] Bound on 𝑝 𝑗𝑘 𝑗 ≥ 1 + 𝜀 ( 𝑗 ∈ [𝑚]) for convergence of SRS’ success.
𝑞 𝑗 ∈ [0, 1] Probability, that SRS returns successful from task 𝑗 including all following.
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