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Zusammenfassung

Zukünftige weltraumgestützte SAR-Systeme werden mehrkanalige SAR-
Architekturen mit mehreren Empfangsstrahlen in Elevation verwenden, um
mehrere Abbildungsstreifen zu erfassen. Dies ermöglicht gleichzeitig eine hohe
Azimutauflösung und eine große Abbildungsstreifenbreite – Ziele, die mit heutigen
modernen SAR-Systemen im Wesentlichen unerreichbar sind. Eine inhärente
Herausforderung dieser Systeme ist jedoch das Auftreten von Entfernungsmehr-
deutigkeiten, die eine wesentliche Quelle für die Verschlechterung der Bildqualität
darstellen. Entfernungsmehrdeutigkeiten entstehen durch unerwünschte Radarechos,
die von außerhalb des betrachteten Abbildungsstreifens stammen.

Die derzeitigen Techniken zur Unterdrückung von Mehrdeutigkeiten in der Ent-
fernung basieren stark auf der Kenntnis der Richtcharakteristik der Antenne. Die
genaue Schätzung dieser Richtcharakteristik ist jedoch aufgrund von Faktoren wie
digitalen Kanalfehlern, Unsicherheiten in der Kalibrierung der Richtcharakteristik,
fehlerhafter Ausrichtung und Antennenverformungen herausfordernd. Infolgedessen
nehmen die Entfernungsmehrdeutigkeiten erheblich zu, was sich negativ auf die Bild-
qualität auswirkt.

In dieser Doktorarbeit wird ein neuartiges Verfahren zur Unterdrückung von Ent-
fernungsmehrdeutigkeiten vorgestellt, das unabhängig von der Kenntnis der Richt-
charakteristik ist. Dadurch wird das Verfahren robust gegenüber Fehlerquellen, die
typischerweise die durch die Entfernungsmehrdeutigkeiten verursachten Störungen
verstärken. Das Verfahren wird am Boden implementiert, wobei die heruntergelade-
nen SAR-Daten als Eingabe dienen. Dadurch wird die zusätzliche Komplexität der
Verarbeitung an Bord vermieden – ein häufiges Problem bei modernen Verfahren
zur Unterdrückung von Entfernungsmehrdeutigkeiten.

Das Schlüsselkonzept, das in dieser Doktorarbeit untersucht wird, ist das
Cocktailparty-Phänomen in mehrkanaligen SAR-Systemen mit mehreren Elevati-
onsstrahlen. Folglich wird die blinde Quellentrennung (Blind Source Separation,
BSS) als Technik eingesetzt, um dieses Cocktailparty-Problem im Mehrkanal-SAR
zu lösen, wobei die Statistik der Eingabedaten genutzt wird. Ergänzt durch eine Op-
timierungsstrategie, unterdrückt die in dieser Arbeit vorgestellte Methode erfolgreich
die Entfernungsmehrdeutigkeiten und überwindet so die Herausforderungen bei der
Implementierung von BSS, die durch die statistischen Nachteile mehrdeutiger SAR-
Daten entstehen. Die Arbeit stellt zudem eine Technik zur Behandlung homogener
SAR-Signale vor, bei denen BSS tendenziell schlechtere Ergebnisse liefert.
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Zusammenfassung

Die in dieser Arbeit durchgeführten Simulationen beziehen sich auf zwei etablierte
Arten von SAR-Systemen, die entweder planare Antennen oder Reflektorantennen
verwenden und jeweils unterschiedliche Probleme mit Entfernungsmehrdeutigkeiten
aufweisen. Darüber hinaus werden verschiedene Szenarien mit unterschiedlichen Ho-
mogenitätsgraden untersucht, von stark heterogenen bis hin zu extrem homogenen
SAR-Bildern, um die Robustheit der vorgeschlagenen Methode zu validieren.
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Abstract

Future spaceborne SAR systems will employ multichannel SAR architectures with
multiple receive beams in elevation to map multiple swaths, enabling the simulta-
neous achievement of high azimuth resolution and wide swath coverage — objectives
that are fundamentally unattainable in current state-of-the-art SAR systems. Ho-
wever, an inherent challenge in these systems is the occurrence of range ambiguities,
that are a significant source of image degradation. Range ambiguities arise from
unwanted radar echoes originating outside the imaged swath.

Current state-of-the-art techniques for suppressing range ambiguities heavily rely
on the knowledge of the antenna pattern. Yet, accurately estimating this pattern
poses challenges due to factors like digital channel errors, pattern calibration uncer-
tainties, mispointing, and antenna deformations. Consequently, range ambiguities
significantly increase, impacting the image quality.

This doctoral thesis introduces a novel range ambiguity suppression method inde-
pendent of antenna pattern knowledge, thereby offering robustness against error
sources that typically amplify the range ambiguity disturbance. The method will be
implemented on-ground, utilizing downlinked SAR data as input, thereby avoiding
the addition of complexity to on-board processing - a common issue in state-of-the-
art range ambiguity suppression techniques.

The key concept explored in this doctoral thesis is the cocktail party phenomenon
within multichannel SAR systems featuring multiple elevation beams. Consequently,
blind source separation (BSS) is employed as a technique to address this cocktail
party problem in multichannel SAR, relying on the statistics of the input data.
Alongside an optimization approach, the method in this thesis successfully suppres-
ses range ambiguities, overcoming challenges in implementing BSS due to statistical
disadvantages inherent in range ambiguous SAR data. The thesis also includes a
technique to handle homogeneous SAR signals, where BSS tends to perform poor-
ly.

Simulations conducted in this thesis cover two established types of SAR systems
based on either planar antennas or array-fed reflector antennas, each presenting dif-
ferent range ambiguity disturbances. Moreover, diverse scenes with varying levels of
homogeneity, ranging from highly heterogeneous SAR images to extremely homoge-
neous ones, are investigated to validate the proposed method’s robustness.
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1 Introduction

1.1 Background

The history of radar dates back to the late 19th - early 20th century when scientists
and engineers began to explore the possibilities of using radio waves to detect objects.
James Clerk Maxwell’s groundbreaking theory in 1865 laid the foundation, proposing
the existence of electromagnetic waves [1]. Just over two decades later, Heinrich
Hertz confirmed their existence in 1888 and even observed their reflection off metal
objects [2]. However, it was Christian Hülsmeyer in 1904 who took the concept a
step further. His Telemobiloscope – a device for detecting distant metallic objects
like ships, even in challenging conditions like darkness, fog, or rain – marked the
birth of practical radar principles [3].

Despite the Telemobiloscope’s limited adoption due to technological constraints,
radio communication thrived in the early 20th century. In 1897, Guglielmo Marconi’s
successful demonstration of wireless communication sparked global interest, fueling
rapid advancements in radio frequency (RF) technology [4]. Motivated by mostly
military applications in the 1930s, the development of practical radar systems gained
momentum. In 1935, Sir Robert Watson-Watt and his team further refined the radar
system, and their efforts led to the establishment of the Chain Home radar system
in the UK [5]. It was a network of ground-based radar stations used for detecting
incoming enemy aircraft during World War II.

In the 1940s, radar technology was miniaturized, allowing for installation in aircraft
and thus marking the transition from ground-based radar to aerial-based radar. Air-
borne radar systems provided critical advantages during World War II [6]. Airborne
radar enabled nighttime operations, navigation assistance, and detection of enemy
aircraft. It greatly enhanced the capabilities of military aircraft. The development of
airborne radar systems continued after the war, leading to advancements in target
tracking, terrain mapping, and weather detection.

After World War II, radar technology continued to evolve. Magnetron tubes and
other technological improvements led to smaller and more powerful radar systems [7].
In the 1950s, a new concept of aerial-based radar, known as synthetic aperture radar
(SAR), was invented by Carl Wiley [8]. SAR uses the motion of the radar platform to
create a virtual aperture, resulting in higher-resolution images [9]. In the late 1950s
and early 1960s, experimental SAR flights were conducted to validate the concept
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1 Introduction

of synthetic aperture imaging. These early flights involved mounting radar systems
on aircraft and collecting radar data while flying over specific areas of interest.
The collected data were processed using optical processing systems to create SAR
images.

Since 1960s, efforts were made to develop SAR systems that could be deployed on
satellites. In December 1964, the US Air Force launched a reconnaissance satellite
named Quill, which provided the first images of Earth from space using SAR [10].
Project Quill was probably the first, but most of the results are lost. In 1978, coin-
ciding with the era when digital computers attained the capability to process SAR
data, National Aeronautics and Space Administration (NASA) launched the first ci-
vilian spaceborne SAR satellite SEASAT [11], which stimulated a number of further
developments. In the 1990s, an innovation in planar SAR antenna technology was
introduced with the use of slotted waveguides as basic antenna elements, allowing
to transmit more power, adopted in the European ERS-1, ERS-2 [12], the Japa-
nese JERS-1 [13], the US/Italian/German Shuttle missions SIR-C/X-SAR [14] and
SRTM [15], and the Canadian Radarsat-1 [16]. These SAR missions demonstrated
the feasibility of spaceborne SAR imaging, allowing global coverage.

In the 2000s, SAR technology has witnessed continuous advancements, with a ma-
jor leap forward coming from the miniaturization of radio wave generators and the
availability of Transmit/Receive (TR) modules. This advancement paved the way
for a new generation of SAR satellites equipped with active phased array antennas,
such as the European ENVISAT ASAR [17], the Japanese ALOS PALSAR [18],
the Canadian Radarsat-2 [19], the Italian COSMO-SkyMed [20], and the German
TerraSAR-X (with its add-on TanDEM-X) [21]. While ScanSAR mode for broader
coverage was available in SRTM and Radarsat-1 using passive phase shifter, the
ScanSAR mode utilizing active phased array offers higher flexibility and faster re-
sponse time, providing rapid beam steering. Additionally, new operational imaging
modes like high-resolution Spotlight mode, implemented on TerraSAR-X, TanDEM-
X, and Radarsat-2, became available.

Today, SAR technology continues to evolve. NewSpace SAR is revolutionizing Earth
observation with constellations of smaller, cheaper satellites [22]. Companies like
ICEYE [23], Umbra Space [24], and Capella Space [25] are key players in this rapidly
evolving field with agile missions, prioritizing frequent updates over the traditional
SAR. While individual satellites may have limitations, the constellation design offers
rapid revisits for timely monitoring (such as floods, weather), expanded coverage for
broad trends (like deforestation, ship traffic), and potentially more affordable data,
making SAR technology more accessible and dynamic.
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1.2 Future Spaceborne SAR Systems

1.2 Future Spaceborne SAR Systems

The development of spaceborne SAR is a collaborative effort involving multiple
scientists and engineers. State-of-the-art spaceborne SAR missions represent an im-
pressive endeavor that combines cutting-edge technology, advanced satellite systems,
and sophisticated data processing techniques, ultimately revolutionizing Earth ob-
servation.

The driving requirement of state-of-the-art SAR missions is to achieve a high spatial
resolution and to image a wide swath. Notably, the TerraSAR-X mission, launched in
2007, has played a pivotal role in advancing SAR imaging with its exceptional spatial
resolution better than 1 meter for spotlight mode [21]. This remarkable level of
detail enables the detection of fine-scale features, facilitates precise mapping of land
surfaces, and supports diverse applications such as urban planning, environmental
monitoring, and infrastructure management.

Furthermore, state-of-the-art SAR missions strive to provide wide swath coverage for
efficient monitoring of vast areas. The Sentinel-1 mission, a prominent component of
the European Union’s Copernicus program, serves as an example of this capability.
Through its various imaging modes Sentinel-1 achieves a swath width of up to 400
km [26]. This extensive coverage allows for rapid data acquisition and facilitates
crucial applications such as disaster response, maritime surveillance, and land cover
monitoring.

While state-of-the-art spaceborne SAR systems have made significant advancements,
there exists still a fundamental trade-off between achieving high azimuth resolution
and wide-swath coverage in SAR systems. Increasing the azimuth resolution typical-
ly requires longer synthetic aperture associated with a higher Doppler bandwidth,
consequently demanding a higher pulse repetition frequency (PRF), thereby redu-
cing the unambiguous swath width that can be covered within a given time frame.
Conversely, widening the swath coverage requires wider antenna beams in elevation
paired with a lower PRF and, consequently, reduced azimuth resolution.

Future spaceborne synthetic aperture radar (SAR) systems are poised to address
the trade-off between high-resolution imaging and wide-swath coverage, enabling
the achievement of both capabilities simultaneously. Mission proposals like Tandem-
L [27], and missions such as NISAR [28] (which is going to be launched soon) have
been developed to embody this capability by employing multiple receive beams in
elevation to map a wider swath while maintaining a high PRF to preserve high
azimuth resolution. To realize this capability, these missions utilize multiple digital
channels in the receiver and employ digital beamforming (DBF) techniques. DBF
enables the simultaneous formation of multiple elevation beams, a capability that
cannot be achieved with other state-of-the-art SAR systems. These missions push
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the boundaries of SAR technology, paving the way for enhanced imaging capabilities
and a broader range of applications in remote sensing and Earth observation.

1.3 Motivation

One of the main disturbances which can cause a reduced SAR performance are range
ambiguities. Range ambiguities are defined as a disturbance due to the unwanted
echo that comes from the outside of the intended image swath. Figure 1.1 shows
how range ambiguities can affect an image, where the part of the imaged swath
supposed to be ocean is disturbed by range ambiguities coming from the echo of the
mountainous region on the left side. Typically, the unwanted echo of the mountains
in the picture is due to the high level of the antenna pattern sidelobes.

Figure 1.1: An example of range ambiguities in SAR, observed as a mountain-like appea-
rance in the ocean, which originates from a mountain scene outside the intended
SAR imaging area. The image is from [29].

In state-of-the-art SAR systems, which employ a single Tx/Rx beam, the range
ambiguities are suppressed by both the Tx and Rx beams. However, in a future SAR
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system where multiple Rx beams are utilized, the range ambiguities due to sidelobes
of the Rx beams are not attenuated by the Tx beam due to the wide illumination.
As a result, the range ambiguities in future SAR systems requires greater attention
than in state-of-the-art SAR systems where only a single Rx beam is used.

Some methods are suggested in the literature to suppress range ambiguities. Wave-
form variation methods like in [30] have been investigated using alternating up and
down chirp waveforms, which ultimately spread the energy of ambiguous signals in
the range dimension rather than eliminating them. Therefore, this technique is not
applicable in a scene with extended targets [31]. An enhanced technique using a
waveform diversity technique followed by a dual-focus post-processing step as pro-
posed in [32], [33] allows the suppression of range ambiguities, but is only suitable
for scenarios with very high range ambiguities, which are not common in real-world
scenarios. Azimuth phase coding (APC) is a technique to reduce the range ambigui-
ties rather than spread it [34]. This technique produces different azimuth frequency
displacements between the spectrum of the desired echo and the undesired echo from
a different ambiguous range region so that the undesired echoes can be suppressed
through Doppler filtering. Accordingly, the amount of the ambiguous energy that
can be removed depends on the Doppler oversampling rate. However, the Doppler
oversampling rate is usually limited for wide swath coverage, which may seriously
affect the suppression performance of APC. Another phase coding technique, named
pulse phase coding (PPC) as proposed in [35], [36], also requires higher PRF for ef-
fective suppression of range ambiguities. The range phase coding proposed in [37],
in combination with APC, can relax the requirement of the Doppler oversampling
rate, but at the cost of an increased range oversampling rate. Furthermore, multi-
frequency subpulse (MFSP) methods exploit the available radar signal bandwidth
to increase the imaged swath extension, without the emergence of range ambigui-
ties [38]. However, this comes at the cost of a reduced bandwidth, leading to a lower
resolution. Therefore, when high resolution imaging is desired, the MFSP method
may require a wide radar signal bandwidth. However, obtaining such a large band-
width may not always be feasible due to limitations imposed by the International
Telecommunication Union (ITU) or the instrument itself.

The established suppression techniques which are relevant for the case of multiple
elevation beam receive SAR systems are classified as deterministic techniques, in
the sense that they require the precise knowledge of the actual antenna pattern to
be able to effectively suppress the ambiguities. Some examples are the minimum
variance distortionless response (MVDR) [39], [40], and the linearly constrained mi-
nimum variance (LCMV) [41], [42] beam formers. Two challenges are associated
with deterministic techniques. First, they increase the on-board processing comple-
xity, as they are executed in real-time on the satellite. Second, they are susceptible
to errors or mismatches present in the actual pattern. The actual pattern is some-
thing that is extremely difficult to estimate due to the presence of the errors. As
regards the mentioned issue on the precise pattern knowledge, it is necessary to
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perform calibration to measure the actual pattern, which is very difficult to do in
reality due to geometry constraints, for instance in a spaceborne L-band reflector
system with an antenna diameter of 15 meters. Furthermore, real-time calibration
is desirable because the error changes with time, e.g., due to the temperature de-
formation. The state-of-the-art calibration technique for the previously mentioned
issue is to perform in-orbit calibration, i.e., the calibration is performed during the
commissioning and operational phase as proposed in [43], [44], [45], which estimates
the actual direct-radiating antenna pattern. However, this method requires a trans-
parency mode, i.e., a particular calibration mode that needs to be performed over
natural terrain with flat topography. Such scenes are not widely available over the
Earth in the context of real-time calibration.

This thesis focuses on exploiting the cocktail party phenomenon, a key concept un-
derpinning this work, within multichannel SAR systems featuring multiple elevation
beams. Consequently, a method based on blind source separation (BSS) is proposed,
serving as a technique to suppress range ambiguities without requiring precise anten-
na pattern knowledge. The method ensures robustness against various error types
contributing to inaccuracies in the antenna pattern model. Besides its robustness
against errors, the method is designed for on-ground implementation by utilizing
downlinked SAR data as its input, thereby avoiding additional on-board processing
complexity. Thus, the motivation behind this thesis lies in achieving a robust range
ambiguity suppression method without increasing on-board processing complexity,
which distinguishes it from current state-of-the-art techniques.

The idea to develop a method based on the BSS technique to suppress range ambi-
guities in SAR systems was initially presented in [46]. The first results, which are
also part of the material in this thesis, were presented in [47], [48]. The compre-
hensive analysis and results of using BSS in the case of multichannel SAR systems,
also part of this thesis, are presented in [49], [50], [51]. During the course of this
thesis, a similar method using BSS was developed and published in [52], [53]. As
shown later in Section 5.4, the method developed in [52], [53], which assumes a
real-valued mixing matrix and contains a single value, does not lead to satisfactory
results in practice [49]. The method developed in this thesis assumes a more realistic
scenario using a complex-valued mixing matrix with dependencies along the range
and Doppler directions, as applicable to the Tandem-L mission proposal [40]. The
assumption of a complex-valued mixing matrix is essential, as the range ambiguities
in multichannel SAR systems is closely related to the task of accurately estimating
not only the amplitude but also the phase of the mixing matrix.

1.4 Scope and Structure

The organization of this work is structured as follows:
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Chapter 2 explores SAR systems in relation to the issue of range ambiguities. It
provides the necessary background by reviewing the evolution from conventional
SAR to next generation SAR systems. This review includes an analysis of the key
technological differences between the two systems, as well as the limitations and
challenges associated with each. These factors serve as the driving motivation for
this thesis.

In Chapter 3, the concept of the cocktail party problem in SAR is introduced as the
central concept behind the thesis. It is followed by an exploration of blind source
separation (BSS), as the primary technique for solving the problem, along with a
numerical analysis of the limitations and challenges associated with implementing
BSS for a simple case of SAR signal.

Chapter 4 presents a comprehensive concept and solution for addressing the range
ambiguity disturbance in a multichannel SAR system. It aims to establish an under-
standing of how the method can be implemented as a robust approach to suppress
range ambiguities without increasing onboard complexity, which becomes the main
objective of this thesis.

In Chapter 5, the numerical analysis of the method is conducted using simulated
multichannel SAR data as an input. To ensure the realism of the data, a simulation
procedure is elaborated upon in this chapter, as there is currently no operational
system available. The simulation encompasses three different systems: first, a sys-
tem with a range- and Doppler-independent mixing matrix, which is artificial but
necessary for establishing the method’s relevance; second, a system with a planar
direct-radiating antenna; third, an array-fed reflector system. These three systems
correspond to different dependency of mixing matrices in range and Doppler. The
method is implemented and analyzed in each of these systems. Additionally, a rela-
tively heterogeneous scene is utilized in this chapter to specifically examine how the
method performs for different types of SAR systems.

In Chapter 6, a calibration method is proposed to complement the previously pre-
sented method. This calibration method serves as a solution to overcome the limi-
tation of the method when dealing with relatively homogeneous SAR images. The
chapter demonstrates how the method presented in Chapter 4 performs for various
types of scenes, ranging from extremely homogeneous to extremely heterogeneous
scenes. The method, without calibration, exhibits limited performance only in he-
terogeneous scenes. Therefore, a complementary calibration method is necessary to
enhance its performance in homogeneous scenes as well.

Chapter 7 serves as the concluding chapter of the thesis, offering a summary of the
material discussed throughout and providing an outlook on potential areas for fur-
ther research. In addition, Appendix A is included, covering relevant complementary
topics related to the thesis.

The new contributions of this thesis are summarized in the following:
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• analytical derivation of the cocktail party condition in the case of multichannel
SAR systems with multiple elevation receive beams (Chapter 3);

• development of a method for the suppression of range ambiguities in multichan-
nel SAR systems based on BSS for heterogeneous scenes, that does not rely
on the knowledge of the antenna pattern and does not increase the onboard
complexity (Chapter 4);

• development of a multiple elevation receive beams SAR simulator using
TerraSAR-X data to demonstrate the validity of the proposed method (Chap-
ter 5);

• validation of the proposed method in three different simulated scenarios: a
system with a range- and Doppler-independent mixing matrix, a system with
a Doppler-dependent mixing matrix (planar direct-radiating antenna archi-
tecture), and a system with a range- and Doppler-dependent mixing matrix
(array-fed reflector antenna architecture) (Chapter 5);

• extension of the proposed method for any type of backscattering surface (Chap-
ter 6).
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This chapter provides the necessary background to this thesis by examining the
technological evolution from conventional SAR to multichannel SAR systems. The
chapter starts by outlining the fundamental principles of conventional SAR systems
and then delves into their inherent limitations, specifically related to the issue of
range ambiguities. Section 2.2 then explores multichannel SAR systems and how
they surpass the constraints of conventional SAR systems. The challenges associated
with range ambiguities in multichannel SAR systems are further examined in Section
2.2.2, serving as the driving motivation behind the work in this thesis.

2.1 Conventional SAR Systems

2.1.1 Basic SAR Principle

In SAR, the motion of the antenna allows for the synthesis of a large virtual antenna,
which enables a higher azimuth resolution than what could be achieved with a
stationary physical antenna [9], [54]. This is known as a synthetic aperture.

Figure 2.1 shows the side-looking acquisition geometry of a spaceborne SAR instru-
ment, where the platform with an antenna of length La moves along the azimuth
direction while illuminating the swath. The synthetic aperture can be modeled as
the effective length of the antenna’s path while receiving the echo reflections of the
transmitted electromagnetic waves from an object within the real antenna beam-
width. The equation that describes the length of the synthetic aperture is given
by [9]

Ls =
0.886 ·R0 · λ

La
· Vs
Vg

, (2.1)

where R0 is the distance to the target at its closest approach; λ the free-space
wavelength; Vs the platform velocity; Vg the ground velocity; and the 0.886 factor
is due to the 3-dB width of the sinc function, which models the antenna pattern of
a planar antenna with uniform aperture excitation. It is noted that in the case of
a reflector antenna, this factor is different. Furthermore, the synthesized half-power
beamwidth along the azimuth direction is given by [9]

θbw,s =
0.886 · λ
2 · Ls

. (2.2)
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Figure 2.1: SAR data acquisition geometry, where Vs is the platform velocity; La the an-
tenna length; αD the Doppler angle; θs the look angle; θbw the real half-power
antenna beamwidth; ϕs the angle between the range elevation plane and the
spacecraft orbital plane; R the slant range; and R0 the distance to the target
at its closest approach.

Accordingly, the Doppler bandwidth is given by [9]

Bt =
2 · Vs
λ

· θbw, (2.3)

where θbw denotes the real half-power antenna beamwidth, and the azimuth resolu-
tion is given by [9]

δa =
0.886 · Vg

Bt
. (2.4)

From the relationships between azimuth resolution, Doppler bandwidth, and antenna
length, as shown in (2.2), (2.3), and (2.4) respectively, it is concluded that the
azimuth resolution is inversely proportional to the Doppler bandwidth, while the
Doppler bandwidth is also inversely proportional to the antenna length.

It is worth noting that while (2.3) represents the nominal Doppler bandwidth, the
processed Doppler bandwidth in SAR processing is typically lower to mitigate azi-
muth ambiguities [55].

It is also useful to mention that the Doppler angle, αD, is related to the look angle,
θs and the angle between the range elevation plane and the spacecraft orbital plane,
ϕs, as follows [56] :

cosαD = sin θs · cosϕs. (2.5)
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On the other hand, the Doppler (or azimuth) frequency is expressed by [56]

ft =
2 · Vs ·RE

λ
· αD

R
, (2.6)

where RE is the Earth radius; R the slant range distance.

Figure 2.2: Representation of the received SAR data of a point target in the two-
dimensional data memory. The target gets illuminated as the radar platform
moves from point A to point B.

Due to the relative motion between the radar platform and the ground target, the
slant range distance, R, to a target undergoes gradual changes over azimuth time,
t, as described by the following equation [9]

R(t) =

√
R2
0 + V 2

s · t2 ≈ R0 +
V 2
s · t2

2 ·R0
. (2.7)

The approximation is valid for low squint and moderate synthetic aperture length,
as the terms higher than the second order in the series expansion of the square root
in (2.7) are very small.

The phenomenon of changing distance between the radar platform and a point target
is known as range cell migration (RCM) [9], [54]. Figure 2.2 illustrates RCM for the
acquired raw data of a point target, where the position of the radar echoes changes
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systematically in correspondence to the varying target distance. Furthermore, it is
important to emphasize that throughout the remainder of this thesis, SAR data will
be presented in a similar format as shown in Figure 2.2, with the horizontal axis
denoting range and the vertical axis representing azimuth.

2.1.2 SAR Processing

Within a SAR system, upon reception of the receive (Rx) signal, the radar data
remain in their raw data form, necessitating further processing to yield image data,
often referred to as focused data [54]. One notable attribute of the received raw
data is the previously discussed range cell migration (RCM) effect, which requires
correction, because failure to adequately address RCM can lead to blurred target
images, i.e., a worsening of the resolution [9].

Understanding RCM and RCM correction (RCMC) is crucial to comprehend how
the method in this thesis deals with the range ambiguity disturbance, as discussed
later in Chapter 4. Therefore, this section primarily focuses on SAR processing with
respect to the RCMC. In fact, the distinctions among different SAR processing
techniques, such as the range-Doppler algorithm, chirp scaling algorithm (CSA),
omega-K, and SPECAN [9], [54], primarily revolve around their approaches for RCM
correction (RCMC). In this thesis, the extended chirp scaling (ECS) algorithm [57]
has been chosen as it is specifically designed to eliminate the need for an interpolator
in RCM correction. ECS operates on the principle of chirp scaling, allowing the
adjustment for range-variant RCM shifts through multiplication by phased weights,
rather than relying on a time-domain interpolator.

The SAR processing using the ECS algorithm comprises the application of five
major transfer functions as shown in Figure 2.3. These five functions are derived
from [57]. First, the phase center of the raw signal, in the range time and azimuth
frequency domain, is scaled in the range dimension using a chirp scaling function.
This operation equalizes the range migration trajectory of every point target to that
of a reference range, which is typically set to the mid range. The phase function of
the chirp scaling in the range-Doppler domain is given by

Hcs(ft, τ) = exp

[
j · π · k(ft; rref ) · ascl(ft) ·

(
τ −

2 ·R(ft; rref )

c

)2
]
, (2.8)

where ft denotes azimuth frequency; τ range time; k(ft; rref ) the modulation rate
of the chirp signal of a range reference rref . R(ft; rref ) express the range migration
in the range-Doppler domain, and ascl(ft) is the modified chirp scaling factor, given
by

ascl(ft) = a(ft) + (1− α) · 1 + a(ft)

α
, (2.9)
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Figure 2.3: Block diagram of the SAR processing using the ECS algorithm. The SAR data
signal representation in the range-time domain is shown on the left side for
three point targets. The dotted lines in the signal representation correspond to
the phase center of the signals in the range direction.

where α denotes a factor of scaling of the image in the range direction and a(ft) the
normal chirp scaling factor, given by

a(ft) =
1

β(ft)
− 1, (2.10)
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where β(ft) is the azimuth modulation term, defined as

β(ft) =

√
1−
(
ft · λ
2 · Vs

)2

. (2.11)

Second, the bulk RCM function is applied to remove the range migration trajectory,
resulting in the removal of RCM. The phase function of bulk RCMC is given by

Hrcmc(ft, fτ ) = exp

[
−j ·

4 · π · rref
c

· a(ft) · fτ
]
. (2.12)

Third, range compression is performed by multiplying the signal (in the range-
Doppler domain) with the range chirp function, given by

Hrc(ft, fτ ) = exp

[
j · π · 1

k(ft; rref · (1 + ascl(ft)))
· f2τ

]
. (2.13)

This third step results in range-compressed signals with a residual phase term, given
by

∆φ(ft) = 4π ·
k(ft; rref ) · ascl(ft) · (1 + a(ft))

c2 · (1 + ascl(ft))
· (r0 − rref )

2, (2.14)

which can be eliminated by multiplying the signal with a phase correction function
in the fourth step. The phase of phase correction is given by

Hpc(ft) = exp[j ·∆φ]. (2.15)

Finally, the azimuth compression is performed by multiplying the signal with the
azimuth chirp function in the Doppler domain, given by

Haz(ft, τ) = exp

[
j ·

4 · π · r0,scl
λ

· (β(ft)− 1)

]
, (2.16)

where r0,scl denotes the inversely scaled range position.

The algorithm’s five major steps work together to transform the raw data to image
data, where the RCM distortion is removed, resulting in a high-quality SAR image.

2.1.3 The Trade-off Between Range and Azimuth
Ambiguities

Range and azimuth ambiguities are often discussed together because they are interre-
lated in radar system design. In a SAR system, the distance to a target is determined
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by the delay of the received echo. The time delay and distance are related by the
following equation [54]

R =
c · τ
2

, (2.17)

where c is the propagation velocity of the electromagnetic’s wave and τ represents
the delay of the received echo. The factor of 2 accounts for the round-trip path of
the signal.

Figure 2.4: Visualization of the SAR timing through transmit pulse (brown) and return
echo (green) without (a) and with (b) range ambiguities.

The time interval between transmitted pulses is referred to as the pulse repetition
interval (PRI). As depicted in Figure 2.4(a), the echo from the first transmitted
pulse shall be received within a certain receiving-time window. Consequently, the
swath width in SAR must meet the following criterion [54]

Rmax −Rmin < c · PRI

2
, (2.18)

where Rmax and Rmin denote the maximum and minimum slant range of the imaged
swath, respectively. Consequently, the swath width extension the ground, by assu-
ming flat Earth approximation, can be expressed as [54]

Wg <
c

2
· PRI

sin η
=

c

2
· 1

PRF · sin η
, (2.19)

where η is the incident angle.
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Receiving two, or more, simultaneous echos, indicated by the black circle illustrated
in Figure 2.4(b), leads to range ambiguities, i.e., the radar is not able to determine
the correct range from the echo delay. This challenge arises because the system
cannot distinguish whether the received echo is associated with the first or second
pulse. This phenomenon is commonly known as a range ambiguity.

Figure 2.5: The side-looking SAR geometry illustrating the occurrence of range ambigui-
ties. The intended target is indicated by a black dot, while the range-ambiguous
targets are indicated by black crosses.

In other words, range ambiguities in SAR imaging occur when radar echoes from
multiple pulses arrive at the receiver within the same PRI. Figure 2.5 illustrates
the source of range ambiguities, where the echoes come not only from the intended
target, but also from two range-ambiguous targets. The slant range of a range-
ambiguous target is given by [54]

RRA = R +
k · c · PRI

2
, (2.20)

where R is the slant range of the intended unambiguous target, and k an integer
that denotes the order of the ambiguity. The factor of 1/2 accounts for the fact that
the radar pulse must travel to the target and back to the receiver.

To circumvent range ambiguities, according to (2.18), c · PRI/2 should exceed the
intended swath width that is to be imaged. One way to achieve this is to increase the
PRI. However, despite having a sufficiently long PRI, range ambiguities can occur
due to the presence of sidelobes in the antenna pattern. As shown in Figure 2.5, these
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sidelobes illuminate the ambiguous target and can result in range ambiguities. Hence,
it becomes crucial to carefully design an antenna pattern with minimal sidelobes to
effectively mitigate the occurrence of range ambiguities. In a single-channel SAR
system, achieving low sidelobes is typically done by designing antenna patterns (Tx
and Rx) with high gain within the illuminated swath and low gain outside the swath.
However, this becomes more challenging in the case of multichannel SAR systems
with multiple elevation beams, as will be discussed in the next section.

In SAR imaging, as discussed in Section 2.1.1, the antenna beamwidth and the syn-
thetic aperture’s length determine the azimuth resolution. Achieving high azimuth
resolution requires a larger Doppler bandwidth, as expressed in (2.4). Consequently,
a larger Doppler bandwidth necessitates a higher azimuth sampling rate. In SAR,
azimuth sampling is represented by the pulse repetition frequency (PRF) [9], mea-
ning that a high PRF, i.e., low PRI as PRF = 1/PRI, is required when dealing with
a large Doppler bandwidth, Bt. If the PRF is too low, aliasing can occur, known
in SAR as azimuth ambiguities. Although there are techniques to reduce azimuth
ambiguities in specific scenarios while keeping the PRF low [58], [59], [60], in gene-
ral, the PRF must be high enough to prevent such ambiguities by ensuring that the
Doppler shifts of the echoes from various azimuth positions do not overlap in the
range-Doppler domain. This can be accomplished by raising the PRF, which reduces
the time between successive radar pulses and increases the number of pulses used to
create the synthetic aperture. Consequently, it is strictly required to have following
condition [54]

PRF > Bt. (2.21)

However, as previously noted, increasing the PRF can also result in range ambi-
guities, creating a fundamental trade-off between range ambiguities and azimuth
ambiguities in conventional SAR systems.

2.2 Multichannel SAR Systems

In a multichannel SAR system, a channel refers to an independent pathway for
transmitting/receiving radar signals. Each channel corresponds to a separate trans-
mitter/receiver that illuminates/captures radar data. These channels can operate
simultaneously. In this thesis, multichannel SAR systems specifically refer to mo-
nostatic systems that utilize multiple elevation channels for reception, allowing for
multiple beams on receive [61]. In terms of system theory, such a SAR configuration
would be classified as a single-input multiple-output (SIMO) system.

The most significant advantage of a multichannel SAR system is the ability to allow
high azimuth resolution imaging and wide swath coverage of the target area [61].
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However, multichannel SAR systems are more complex, requiring multiple chan-
nels, receivers, and signal processing units, with significantly higher data processing
requirements than conventional SAR systems.

2.2.1 Signal Model

Digital beamforming (DBF) is a signal processing technique that is commonly sug-
gested in multichannel SAR systems to form and steer a narrow-high-gain beam
with low sidelobes [62], [63], [64], [65]. DBF in elevation involves the use of multiple
elevation channels to receive the SAR signal. In such a multichannel SAR system,
each elevation channel receives the same signal at slightly different time delay due
to the different positions of the elevation apertures. These time differences are com-
pensated for by a digital beamformer, which aligns the received signals in time and
sums them together to form a single output signal.

The basic equation for digital beamforming in SAR is given by [66]

x(τ) = wH(τ)y(τ), (2.22)

where x denotes an output signal; y the input signal vector from the multiple chan-
nels; and w the complex weight vector applied to each channel in the channel vec-
tor.

The flexibility to form multiple receive beams simultaneously is one of the greatest
advantages of DBF on receive, and it is a major benefit of using a multichannel sys-
tem over a single channel system. When multiple DBF beams are formed, equation
(2.22) can be rephrased as

x(τ) = WH(τ)y(τ), (2.23)

where x denotes a set of output signals, and W the complex weight matrix.

In addition to digital beamforming in elevation, the SCan-On-REceive (SCORE)
technique (also known as SweepSAR) [61], [67], is utilized to enhance the system’s
signal-to-noise ratio and reduce range ambiguities. This is achieved by steering recei-
ve beams in real-time to track the angle-of-arrival of the echoes as they move across
the ground swath [68]. Figure 2.6 illustrates how the SCORE is done by applying
time-variant weighting to the received echoes in each elevation channel. In a pla-
nar direct-radiating array antenna, all elevation channels are activated in order to
form a narrow high-gain beam, while in an array-fed reflector antenna, only a small
number of antennas are activated. During SCORE operation, the weights used to
compute the beams are stored in a lookup table, and a scanning law is implemented
by rapidly switching the weights based on the geometry. To ensure that the receiving
beam center precisely points to the direction of the central position, the weighting
vector and coefficient must be designed based on the central position of the pulse
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Figure 2.6: The illustration shows two simultaneous SCORE beams in (a) a planar direct-
radiating array antenna and (b) an array-fed reflector antenna. The top figures
display the SCORE beams, while the bottom figures show the schematic of
DBF on receive. The activated feed elements are shown in red, while the non-
activated elements are shown in black. The weighting elements are denoted by
wij , where i and j refer to the indices of active elements and formed beams,
respectively.

extension on the ground. As the pulse center changes over time, the weighting vec-
tor also becomes time-variant. The weighting coefficient for the k-th channel can be
determined using [69]

wk(τ) = exp

{
j · 2 · π · (k − 1) · d

λ
· sin

[
θ(τ)

]}
, (2.24)

where θ(τ) corresponds to the off-boresight angle associated with the correspon-
ding pulse central position; k the activated channel; and d the spacing between the
antenna elements.
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The use of multiple elevation receive beams allows for a high-resolution wide-swath
(HRWS) SAR system, but the issue of range ambiguities still persists, particularly
due to the considerable level of sidelobes at the location of range ambiguities. Unlike
in a conventional SAR system, where only a single Rx beam is used, the range
ambiguities cannot be attenuated by the Tx pattern in a wide-swath SAR with
multiple elevation beams. Figure 2.7 shows a comparison of the antenna pattern
between a conventional (single-channel) SAR system and a multichannel SAR with
multiple elevation Rx beams. In a conventional SAR system, the sidelobe level of the
Rx beam is attenuated by a the narrow Tx beam. However, in a SAR with multiple
elevation Rx beams, the sidelobe of the Rx beam is multiplied by the high-value of
a wide Tx beam, resulting in a higher range ambiguity value.

Figure 2.7: The figure provides a simplified illustration of the Tx and Rx elevation beams
in two different SAR systems. In the conventional SAR system shown in (a),
there is only one Tx beam (brown) and one Rx beam (red). In contrast, the
multiple elevation beams SAR system shown in (b) has one Tx beam (brown)
and multiple Rx beams (green, red, and blue), with the red Rx beam highligh-
ted. The position of the useful signal of the red Rx beam and its corresponding
range ambiguity signals are indicated by the solid and dotted lines, respective-
ly. The x and y axis indicate elevation angle and antenna gain, respectively.

In order to achieve the best SAR image quality, indicated by high SNR and minimum
range ambiguity disturbance, a variety of beamforming techniques are employed.
Among these techniques, the minimum variance distortionless response (MVDR) [70]
approach is a well-established method based on Capon’s method [71]. The goal of
this approach is to minimize the variance of the beamformer output. If the noise
and the underlying desired signal are uncorrelated, as is typically the case, then the
variance of the captured signals is the sum of the variances of the desired signal and
the noise. Hence, the MVDR solution seeks to minimize this sum, thereby mitigating
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the effect of the noise. The MVDR approach can be mathematically expressed as
follows

minimize wHRvw,

subject to gH(ϑ0) w = 1,
(2.25)

where w denotes the complex weighting vector; g(ϑ0) the array steering vectors to
the angle of interest ϑ0; and Rv the channel covariance matrix of thermal noise,
given by [70]

Rv = E{vvH}, (2.26)

where the vector v represents the stationary noise from the different channels. The
equation (2.25) is mainlobe-constrained, causing a beam pointing at ϑ0. The solution
is in closed form given by

w =
R−1

v g(ϑ0)
gH(ϑ0)R−1

v g(ϑ0)
(2.27)

The MVDR approach can be considered as a spatial matched filter that optimizes
the SNR. However, to address the issue of range ambiguities, the MVDR technique
should be modified to minimize the sidelobe level in the direction of range ambi-
guities. This modification of the MVDR approach is known as sidelobe-constrained
MVDR [72]

minimize wHRvw,

subject to gH(ϑ0)w = 1,∣∣gH(ϑk)w
∣∣2 ≤ ηSL, ϑk ∈

[
ϑ1 ϑ2 ...

]
.

(2.28)

Unlike equation (2.25), equation (2.28) imposes an additional sidelobe constraint
that results in small beam values below ηSL at ϑk, which corresponds to the angles
where the most dominant range ambiguities are expected to be located.

Another beamformer that is similar to a sidelobe-constrained MVDR is the linear
constraint minimum variance (LCMV) beamformer [70], which focuses on nullifying
the sidelobe level associated with range ambiguities. As compared to the sidelobe-
constrained MVDR, LCMV beamforming only contains sidelobe constraint, which
nullifies the sidelobes across all angles where range ambiguities occur. This method
optimizes sensitivity in the direction of interest while simultaneously suppressing
range ambiguities from certain other directions, and is described in [70]. The opti-
mization can be formulated as

minimize wHRvw,

subject to GHw = c,
(2.29)
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with the minimization function being identical to the one of the MVDR beamformer.
Here, the steering matrix G is given by

G =
[
g(ϑ1) g(ϑ2) ... g(ϑNdir

)
]
∈ CNact×Ndir , (2.30)

The steering matrix G consists of the steering vectors with Nact active antenna
elements for Ndir different directions. The constraint vector c can be in principle be
chosen freely. For example, a meaningful constraint vector could take the form

c =
[
1 0 ... 0

]T ∈ CNdir , (2.31)

where the ’1’ corresponds to the direction of the signal of interest and zeros are
placed in directions to be suppressed. Accordingly, the closed-form solution is given
by

w =
R−1

v G
GHR−1

v G
c. (2.32)

The LCMV beamformer is particularly suited for scenarios where range ambiguities
are present since it is designed to suppress them from specific directions. Additio-
nally, it can handle multiple constraints, which is an advantage over the MVDR
beamformer that is restricted to a single constraint. On the other hand, the LCMV
beamformer is more sensitive, i.e, less robust, to array imperfections like calibration
errors and mutual coupling than the MVDR beamformer [65].

The three previously discussed techniques; the mainlobe-constrained MVDR beam-
former (2.25), the sidelobe-constrained MVDR beamformer (2.28), and the LCMV
beamformer (2.29), share a common requirement of accurate knowledge of the com-
plex antenna pattern in order to have accurate complex weighting vectors, as seen in
(2.27) and (2.32). Failure to obtain this information accurately can result in spatial
mismatch, leading to a loss in SNR for the mainlobe-constrained MVDR beam-
former, and an increase of the range ambiguities for both the sidelobe-constrained
MVDR and LCMV beamformers. The challenges associated with obtaining accurate
information on the complex antenna pattern will be discussed in the next section.

2.2.2 The Challenge of Pattern Mismatch

In this section, challenges associated with obtaining accurate information about
complex antenna patterns are discussed, which makes it difficult to apply determi-
nistic techniques like the DBF approach (such as MVDR and LCMV) to suppress
range ambiguities.
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Digital Channel Errors

Digital channel errors refer to the discrepancies or imperfections that may occur
in the signal processing chain of a SAR system, which is particularly pronounced
due to the utilization of multiple onboard digital channels and extensive processing
in advanced SAR systems. These errors can arise due to various reasons, such as
quantization errors, non-idealities in the analog-to-digital conversion process, and
many more. The error model that is widely accepted is described as [73], [74]

ei = (1 + ξi) · ejζi , (2.33)

where ξ and ζ denote magnitude and phase errors, respectively, and the index i

refers to the channel.

A received DBF signal, in the presence of errors that are introduced by multiplicative
terms, can be expressed as [72]

x(τ) =
∑
i

[
wRX,i(τ) · ei ·

∑
k

yi,k(τ)

]
, (2.34)

where index i refers to the Rx channel; wRX,i to the complex-valued weight on the
Rx channel i; and y to the received signal. A non-zero index k refers to a range-
ambiguous signal, superimposed on the useful signal (k = 0). For simplicity, the
additive white Gaussian noise associated with the channel is omitted.

During the investigation in [72], the influence of errors was analyzed for two types
of antennas; planar phased array and array-fed reflector antennas; and using the
MVDR technique for DBF processing. The investigation shows that the presence of
digital channel errors can degrade the range ambiguity suppression performance by
up to 10 dB for array-fed reflector antennas and up to 30 dB for planar antennas. The
results show that the planar antenna is more susceptible to errors compared to the
reflector antenna. However, it should be noted that the investigation only considered
the following aspects: (i) one DBF signal (ii) without the use of a SCORE operation
(iii) the errors are included only in the received channel and not in the transmit
channel. Consequently, it was concluded that the degradation in the planar antenna
was more severe due to the higher number of activated RX channels as compared
to the reflector antenna.

When multiple DBF signals are taken into account, the number of activated Rx
channels will eventually increase for the case of reflector antennas. Additionally, the
SCORE operation will also result in more channels being activated as the Rx beams
sweep the received echo. Furthermore, in the case of reflector antennas, all Tx chan-
nels are activated in order to transmit a wide beam, and for planar antennas, the
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phase-only tapering beam [75] also requires all Tx channels to be activated. There-
fore, one could expect an ultimate deterioration of the range ambiguity performance
in both planar and array-fed reflector systems when all Tx and Rx channels are
activated.

Pattern Calibration Uncertainty

The antenna pattern calibration uncertainty is one of the error contributors in the
SAR system [76]. This uncertainty is particularly severe for multichannel SAR an-
tennas with large dimensions, such as those operating at P and L frequency bands; a
system like Tandem-L has an antenna diameter of 15 m [40]. The near-field method
is traditionally used for antenna pattern measurement in ground tests, but even with
these measurements, the working state and environment of the satellite in orbit are
different, leading to antenna pattern differences [77].

Pattern calibration uncertainty arises as the combined effect of measurement and
residual calibration errors. The measured antenna pattern deviates from the ideal
value due to errors in magnitude and phase. In particular, the DBF SAR operating
in SCORE is vulnerable to pattern errors because the combination is done on-board
the satellite and cannot be corrected later during on-ground processing. To overcome
this, on-board calibration which is under investigation in [78] becomes the solution.
Nevertheless, the investigation in [79] shows that accurate knowledge of the patterns
is crucial, as pattern calibration uncertainty has the potential to severely degrade
the expected performance.

Topographic Errors

To utilize the DBF technique effectively, it is necessary to have a precise information
of the relationship between time of arrival (ToA) and direction of arrival (DoA) in
order to steer the beam towards a specific direction and suppress the radar echoes in
the direction of ambiguity. However, due to the presence of topography, it is difficult
to obtain an accurate ToA and DoA relationship. Figure 2.8 illustrates how the
actual ToA/DoA model can be considerably different from the assumed one.

The presence of topographic variations within the swath can cause mispointing.
While the discussion of mispointing generally concerns the SCORE pattern loss
[80], [81] - i.e., measure of the antenna gain loss due to topographic height such as
mountains and relief - Figure 2.9 provides a simplified illustration of how mispointing
occurs with regard to range ambiguities, such as when using the LCMV beamformer
that positions nulls in the direction of the range ambiguities. This effect is more
significant for range ambiguities than for other factors. For instance, an example
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Figure 2.8: The relationship between time of arrival (ToA) and direction of arrival (DoA).
In (a), the typical assumption used during processing is shown. In (b), unmo-
deled terrain height can lead in reality to deviations from this assumption.

Figure 2.9: The impact of topography on mispointing in range ambiguity null-steering,
as indicated by the red circle. In (a), when using DBF, the null is positioned
in the direction of the range ambiguity. In (b), topographic distortion causes
mispointing of the null.

in [46] shows that a height offset of 1.5 km raises the ambiguities to an unacceptable
level of -17 dB.

It is important to note that even if null-steering takes into account the topography
at the zero-Doppler position, there may still be topographic variations within the
azimuth antenna footprint that cannot be accounted for through null-steering in
elevation. Consequently, when accounting for the full Doppler spectrum, the overall
effect of mispointing can become even more severe.

Deformation of the Reflector

The array-fed reflector antenna system is a promising antenna system for future
HRWS SAR systems [39], owing to its ability to generate a narrow-high-gain Rx
beam. This makes it more feasible to generate multiple Rx beams in elevation as
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compared to a planar array SAR system. However, achieving an accurate antenna
pattern for high-gain low-sidelobe DBF signals poses some significant challenges in
the reflector antenna system. One of them is the deformation of the antenna caused
by thermoelastic instability as shown in Figure 2.10.

Figure 2.10: Illustration of a deformed reflector antenna in two views: (a) a side-looking
view [82] showing both the undistorted and distorted beam using solid and
dashed lines, respectively, and (b) a surface projection in the xy plane [83].

There are different models of deformations described in [83], [84]

∆z = Ad sin

(
Nρ ·

π · ρ
2 · ρc

)
cos
(
Nφ · φ

2

)
, (2.35)

∆z = Ad sin

(
Nρ ·

π · ρ
2 · ρc

)
sin
(
Nφ · φ

2

)
, (2.36)

where they are modeled as a periodic function dependent on several parameters; ρc
denotes the radius of reflector; ρ the radius of deformed location; φ the angle of
deformed location; Nρ the number of quarter period deformations w.r.t. radius ρ;
Nφ the number of half period deformations w.r.t. angle φ; Ad the arbitrary value
of amplitude of deformation. The investigation in [83] shows that before DBF, the
radiation pattern experiences (i) a drop in the main lobe (ii) a change in beamwidth,
and (iii) an increase in the sidelobes. After DBF using MVDR, there is a stronger
effect in gain and beamwidth, while the peak-sidelobe ratio (PSLR) is less affected.
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However, the investigation in [83] only covers the main beam angle and does not
consider range ambiguities. Accordingly, it is indicated in [83] that the impact on the
sidelobes of the antenna pattern is more severe. Thus, it is clear that the shape of
the radiation pattern and DBF pattern undergo significant changes, which suggest
an increase in the range-ambiguity-to-signal ratio.

While the deformation models in (2.35) and (2.36) depend on both radius and angle,
there also exist other models [83], [85], [82]

∆z = Ad · cos
(
Nρ ·

π · ρ
2 · ρc

)
, (2.37)

∆z = 0.05 · λ · cos(Nφ · φ). (2.38)

The model in (2.37) only depends on radius, referred to as cosinusoidal in radius and
invariant with angle [83], while the model in (2.38) is independent of the radius and
affected only by the angle φ and wavelength λ, referred to as azimuthally-varying
cosine deformation [85], [82]. Accordingly, the investigation in [85], [82] shows that
when Nφ = 5, the sidelobe level in the radiation pattern significantly increases,
while the main lobe is less affected, leading to an increase in range-ambiguity-to-
signal ratio.

To sum up, the existing literature provides compelling evidence that antenna defor-
mation can potentially lead to range ambiguity issues.

Remark on Pattern Mismatches

The previously discussed challenges are classified as non-deterministic errors. When
these errors are considered together (i) it becomes apparent that obtaining an ac-
curate antenna pattern is an extremely challenging task, (ii) range ambiguities are
a crucial performance metric that are negatively impacted by antenna pattern in-
accuracies. Additionally, deterministic errors such as pulse extension loss [86], [87]
and pattern mismatches, caused by a limited set of weights over range and pulse
bandwidth [79], shall be taken into account. While including both non-deterministic
and deterministic errors, the presence of range ambiguities is expected to result in
a decline in performance.
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This chapter provides an overview of the relation between range ambiguity suppres-
sion in multichannel SAR systems and a phenomenon known as the cocktail party
problem. It also introduces the blind source separation (BSS) technique, a classical
method developed in response to cocktail party problem, which is the central focus
of this thesis. Section 3.1 presents a novel derivation of range ambiguity suppression
in multichannel SAR in terms of cocktail party condition, followed by the introduc-
tion of BSS and its application to SAR signals in Section 3.2. Section 3.3 delves
into the challenges encountered when implementing BSS for SAR signals, which are
demonstrated through a numerical analysis considering factors such as the number
of sources, the presence of out-of-swath ambiguous signals, and the value of the mi-
xing matrix. Finally, Section 3.4 provides concluding remarks. Part of the material
in this chapter has been published in [47], [49].

3.1 Cocktail Party Formulation in Multichannel
SAR

3.1.1 Cocktail Party Problem

The cocktail party problem is a classic problem which occurs when multiple people
talk at once during a social gathering, resulting in a mixture of different voices
that each individual must distinguish [88], [89]. This phenomenon has been modeled
in [90] as

x(t) = As(t), x1(t)
...

xM (t)

 =

 a1,1 · · · a1,N
... . . . ...

aM,1 · · · aM,N


 s1(t)

...
sN (t)

 ,
(3.1)

where M is the number of listeners; N the number of people talking; A is the mixing
matrix; x the vector of heard mixed voices; s the vector of simultaneously emitted
voices. The so called “cocktail party problem” denotes then the task of extracting the
useful source signals, i.e., the emitted voices, s, from the received voices, x, without
knowing A (see Figure 3.1).
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Figure 3.1: Illustration of the cocktail party problem.

It is worth to note that, when M = N , each emitted voice represents the useful
signal for one listener and a disturbance for all other listeners. This property of the
source signals is denoted as reciprocity. As shown in the next sections, it is of key
importance in the multichannel SAR context.

Finally, it is important to mention that the cocktail party model in (3.1) tries to
recover both the unknown signals s and the unknown mixing matrix A and relies
solely on the knowledge of x. Therefore, the components’ magnitudes of either A or s
cannot be uniquely determined, resulting in scaling uncertainties. Furthermore, the
columns’ order of A can be arranged arbitrarily, as changing the order of columns
in A leads to equally valid source estimates, resulting in permutation uncertainties.
These two uncertainties necessitate an additional constraint within the equation to
attain a unique solution. Such a constraint is available in the case of SAR, as derived
in the following sections.

3.1.2 Cocktail Party Problem in Multichannel SAR
Systems

One of the crucial topics in this thesis is the close relation of the cocktail party
problem with the range ambiguity suppression in multichannel SAR systems. This
relation is established by the presence of multiple receivers for the radar echoes,
which is in contrast to conventional SAR systems that rely on a single channel for
echo reception.

Figure 3.2 depicts the operational mode of a multichannel SAR where a wide Tx
beam is used to illuminate multiple subswaths that are simultaneously imaged by
multiple Rx beams. Due to the high PRF relative to the overall swath extension,
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Figure 3.2: Multichannel SAR system that utilizes multiple elevation Rx beams. The sys-
tem employs a wide Tx beam to cover a wide swath, while N Rx beams are
formed to map N -subswaths.

strong range-ambiguous echoes are received from the imaged swath. Specifically, the
received signal can be expressed as:

xi = si +
∑
k

si,RA(k), (3.2)

where xi denotes the signal received from the i-th Rx beam; si and sRA the corre-
sponding useful signal and range ambiguous signals, respectively, which are simulta-
neously received; and k the integer number indicating the order of the ambiguity.

The slant range of the range ambiguous target is given by

RRA = R0 +Dr(k), (3.3)

where R0 is the slant range of the useful target, and the ambiguity distance, i.e.,
the slant range displacement between useful signal and range ambiguous signal, is
given by

Dr(k) =
k · c · PRI

2
. (3.4)

It is worth to remark that the strong ambiguities are expected to originate exclusively
from within the imaged swath. However, there are also other ambiguities that arise
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outside the imaged swath, known as out-of-swath ambiguities, which are assumed to
be effectively suppressed by the Tx pattern 1. As a consequence, as first mentioned
in [46], a reciprocity property exists between the useful signals and the ambiguity
signals. Accordingly, the ambiguity of a useful signal is always represented by a
scaled version of another useful signal, where the scaling factor is given by a complex
number.

Figure 3.3: Zero-Doppler geometry showing two subswaths imaged simultaneously by two
beams. In beam 1, P returns the useful signal and Q the strong ambiguity; in
beam 2, Q returns the useful signal and P the strong ambiguity.

Regarding the reciprocity identification within multichannel SAR systems, let us
consider the scenario in Figure 3.3, characterized by two Rx beams and four point

1 The nadir echo, although technically considered a out-of-swath ambiguity as it originates
from outside the imaged swath, can still have a significant magnitude comparable to or
even stronger than strong ambiguities due to the specular reflection phenomenon. Nadir
echoes can be effectively suppressed using techniques like those proposed in [91] and [92].
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targets (O,P,Q, and U), separated by the distance of ambiguity. Based on (3.2),
the two Rx signals can be expressed as:

x1(τ, ft) = s1(τ, ft) +
∑
k

s1,RA(τ, ft, k),

= σP (ft) · g1(τ, ft, P (ft)) · rect
(
τ − 2 ·RP (ft)

c

)
· exp

(
−j · 4 · π

λ
·RP (ft)

)
· exp

(
j · π · kr

[
τ − 2 ·RP (ft)

c

]2)

+ σQ(ft) · g1(τ, ft, Q(ft)) · rect
(
τ −

2 ·RQ(ft)

c

)
· exp

(
−j · 4 · π

λ
·RQ(ft)

)
· exp

(
j · π · kr

[
τ −

2 ·RQ(ft)

c

]2)

+ σO(ft) · g1(τ, ft, O(ft)) · rect
(
τ − 2 ·RO(ft)

c

)
· exp

(
−j · 4 · π

λ
·RO(ft)

)
· exp

(
j · π · kr

[
τ − 2 ·RO(ft)

c

]2)
,

(3.5)

x2(τ, ft) = s2(τ, ft) +
∑
k

s2,RA(τ, ft, k),

= σQ(ft) · g2(τ, ft, Q(ft)) · rect
(
τ −

2 ·RQ(ft)

c

)
· exp

(
−j · 4 · π

λ
·RQ(ft)

)
· exp

(
j · π · kr

[
τ −

2 ·RQ(ft)

c

]2)

+ σP (ft) · g2(τ, ft, P (ft)) · rect
(
τ − 2 ·RP (ft)

c

)
· exp

(
−j · 4 · π

λ
·RP (ft)

)
· exp

(
j · π · kr

[
τ − 2 ·RP (ft)

c

]2)

+ σU(ft) · g2(τ, ft, U(ft)) · rect
(
τ − 2 ·RU (ft)

c

)
· exp

(
−j · 4 · π

λ
·RU (ft)

)
· exp

(
j · π · kr

[
τ − 2 ·RU (ft)

c

]2)
,

(3.6)

where g(τ, ft, Y (ft)) denotes the two-way antenna pattern, weighting the signal re-
ceived from Doppler-dependent target Y (ft), Y ∈ {O,P,Q, U} 2; σY the complex

2 In the following, for simplicity, it is assumed that the signal, received from a point target,
is weighted by the pattern value at the target location, i.e., the SCORE beam steering
during the pulse duration, particularly for long pulses, is neglected [87].
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amplitude of the echo received from Y; RY the distance between the receiver and
Y; and kr and λ the transmitted chirp rate and the radar wavelength, respectively.
It is noted that in the raw data, the Doppler frequency band is determined by the
illumination time. However, the azimuth envelope is omitted in the equation for a
simpler representation.

It is important to note that the derivation in (3.5) and (3.6) can be generalized
to distributed targets. Specifically, while in the point target case Y ∈ {O,P,Q, U}
represent individual point targets, in the distributed target case Y ∈ {O,P,Q, U}
represent range bins. In the distributed target case, the received signal at a range
bin consists of multiple scattering points. Furthermore, the target’s dependency on
Doppler, Y (ft), is due to the range cell migration (RCM) effect, which leads to
different target’s configuration within the same range bin but at different Doppler
locations. This will be explained in detail in Section 4.2.1 (when discussing Figure
4.3).

The expression of the two-way antenna pattern, g, presented here is kept general.
For specific types of antenna systems, such as a planar array antenna system, the an-
tenna pattern g can be elaborated further by factoring it into azimuth and elevation
antenna patterns denoted by

g = gt · gτ , (3.7)

where gt and gτ denote azimuth and elevation antenna pattern, respectively.

The strong ambiguity signal, sSA, comes from Q in (3.5), or P in (3.6); the out-of-
swath ambiguity, sWA, comes from O and U . It is then useful to compare the strong
ambiguity, s1,SA, in (3.5) to the useful signal, s2 in (3.6):

s1,SA(τ, ft) = σQ(ft) · g1(τ, ft, Q(ft)) · rect
(
τ −

2 ·RQ(ft)

c

)
· exp

(
−j · 4 · π

λ
·RQ(ft)

)
· exp

(
j · π · kr

[
τ −

2 ·RQ(ft)

c

]2)
,

(3.8)

s2(τ, ft) = σQ(ft) · g2(τ, ft, Q(ft)) · rect
(
τ −

2 ·RQ(ft)

c

)
· exp

(
−j · 4 · π

λ
·RQ(ft)

)
· exp

(
j · π · kr

[
τ −

2 ·RQ(ft)

c

]2)
.

(3.9)

From (3.8) and (3.9), it can be seen that the two signals differ only by a complex
constant, given by the relative antenna pattern level of g1 and g2 at the location Q.
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This shows that the range ambiguity level is solely determined by the ratio between
the sidelobe and mainlobe of the antenna patterns:

a12(τ, ft) =
s1,SA(τ, ft)

s2(τ, ft)
,

=
g1(τ, ft, Q(ft))

g2(τ, ft, Q(ft))
,

(3.10)

a21(τ, ft) =
s2,SA(τ, ft)

s1(τ, ft)
,

=
g2(τ, ft, P (ft))

g1(τ, ft, P (ft))
,

(3.11)

where a12 is the mixing ratio between the strong ambiguity signal s1,SA and the
useful signal s2, and a21 is the mixing ratio between the strong ambiguity signal
s2,SA and the useful signal s1.

Accordingly, (3.5) and (3.6) can be rewritten as follows:

x1(τ, ft) = s1(τ, ft) + a12(τ, ft) · s2(τ, ft)
+ s1,WA(τ, ft),

(3.12)

x2(τ, ft) = s2(τ, ft) + a21(τ, ft) · s1(τ, ft)
+ s2,WA(τ, ft).

(3.13)

Based on (3.5) to (3.13), the general case where N elevation Rx beams map N

subswaths can be written as

x(τ, ft) = A(τ, ft)s(τ, ft) + sWA(τ, ft) + n,x1(τ, ft)
...

xN (τ, ft)

 =

 1 · · · a1,N (τ, ft)
... . . . ...

aN,1(τ, ft) · · · 1


 s1(τ, ft)

...
sN (τ, ft)

+

s1,WA(τ, ft)
...

sN,WA(τ, ft)

+

n1
...

nN

 .

(3.14)
Here, n accounts for additive Gaussian noise.

It is important to note that the received SAR signals, x, the useful signals, s, and
the mixing matrix, A, depend on range-time, τ , and Doppler frequency, ft. In parti-
cular, A represents the relative value of the sidelobe to the mainlobe of the two-way
pattern, as written in (3.10) and (3.11). Accordingly, the diagonal elements, which
correspond to the useful signal, are unitary; while the off-diagonal elements, which
correspond to the range ambiguities, are complex coefficients, with amplitude lower
than 1.
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The dependence of A on τ and ft indicates that the cocktail party problem in a
multichannel SAR system is more complicated than in the classical cocktail party
problem (as described in Section 3.1.1). This complexity arises from the fact that
the mixing characteristics between the useful signals keep changing for different τ

and ft, which means that the values are τ - and ft-dependent. Depending on the
type of antenna used, the off-diagonal values of A might have a strong variation
versus τ and a moderate variation versus ft, since the useful and ambiguous signal
have a large angular separation in the range direction but are both located around
zero-Doppler.

With reference to (3.14), the problem to be solved in the multichannel SAR context
is to suppress the range ambiguities by extracting N useful signals, s, from N re-
ceived signals and mixed signals, x. The similarity with the cocktail party problem,
described in Section 3.1.1, is evident. In particular, also in the SAR case, the reci-
procity property applies, and the mixing matrix is unknown. The main differences
regard: (i) the presence of the out-of-swath ambiguous signals, sWA, in the SAR si-
gnal; (ii) the presence of the Gaussian noise, n, outside the mixing process; (iii) the
dependence of the SAR mixing matrix and signals on the range time and Doppler
frequency.

While the mixing matrix, which is analytically derived from the antenna pattern,
generally dependent on range time and Doppler, the extent of this dependence varies
based on SAR systems and their operational mode. Furthermore, different charac-
teristics of the mixing matrix lead to specific problems: a mixing matrix that is
range- and Doppler-independent; a mixing matrix that is Doppler-independent but
range-dependent; a mixing matrix dependent on both range and Doppler. This will
be numerically analyzed in more detail in Chapter 5.

It is worth to remark that the noise does not provide any information about the
mixing matrix. In fact, as shown in (3.14), it is introduced by each receive channel
on the already combined useful signals, s. Accordingly, an increasing noise level may
make the extraction of the N useful signals more challenging, as explained in more
detail in Section 3.3.5.

3.2 Higher-Order Blind Source Separation

The blind source separation (BSS) technique [90] is a signal processing technique
used to separate a set of mixed signals into their individual source components
without prior knowledge of the sources or the mixing process. In view of this, BSS
is considered a non-deterministic technique because the original sources cannot be
directly observed and therefore, the estimation of the source components relies on
assumptions and statistical models.
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Given a cocktail party problem as expressed in (3.1), the useful signal (wanted voice
in the case of the cocktail party) may be given by solving (3.1) for s thus:

s = Bx, (3.15)

where B is the separation matrix, and x is the vector with the mixed voices. There-
fore, the task of estimating the original voice signals, given the mixed voices as the
input, is tantamount to estimating the unmixing matrix, which is the matrix inverse
of the mixing process. In the multichannel SAR context, the BSS separation matrix
assumes the form

B ≈ A−1, (3.16)

where the approximation derives from the model mismatch between (3.14) and (3.1),
due to the presence of out-of-swath ambiguities and the additive noise.

The task of finding B is not possible to perform with conventional linear equation
methods. This is due to the fact that only N variables (mixed voices) are known
while the estimation of the unmixing matrix requires the estimation of N2 unmixing
matrix coefficients. Therefore, BSS uses a statistical technique based on statistical
properties of the input to solve the problem. The established techniques of perfor-
ming BSS can be categorized into two groups: second-order (SO) BSS such as the
algorithm for multiple unknown signals extraction (AMUSE) [93], second-order blind
identification (SOBI) [94], and higher-order (HO) BSS such as independent compo-
nent analysis (ICA) [95], and joint approximation diagonalization of eigen-matrices
(JADE) [96]. While SO BSS relies on the assumption that the useful signals are
decorrelated, the HO BSS relies on a stronger assumption, which is the indepen-
dence of the useful signals. In this thesis, higher-order BSS is utilized because it
is expected to offer greater robustness against noise compared to second-order me-
thods [97], [98], [99]. Additionally, the separation of the useful signals is expected
to satisfy the independence assumption due to the large distance between the range
ambiguities.

The idea behind the higher-order (HO) BSS algorithm is derived from the central
limit theorem [100], which says that the sum of an infinitely large number of inde-
pendent random variables will result in a Gaussian random variable. The concept
of the central limit theorem is then adopted to the case of SAR. However, since
SAR has limited number of sources, the received signal does not exactly follow a
Gaussian distribution. Nevertheless, it still provides an important principle for the
developed algorithm, where the received signal is more Gaussian compared to the
useful signals due to the fact that sum of a finite number of independent random
variables will result in a more Gaussian random variable than the original (useful)
one. This principle of Gaussianity difference between the received signals and the
useful signals is exploited to obtain the estimated useful signals [101]. Therefore, the
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Figure 3.4: The three linear transformations involved in the singular value decomposition
(SVD) of a matrix transformation [90], [102].

necessary assumption in higher-order BSS is that the independent sources need to
be non-Gaussian.

In addition to the non-Gaussianity criteria, the success of both HO and SO BSS
methods relies significantly on the structure of the mixing matrix. In the case of
HO BSS with a very low off-diagonal mixing matrix, i.e., its off-diagonal values
are very close to 0, the Gaussianity difference between the received signals and the
useful signals is very small so that it is very hard for the BSS method to exploit the
differences. This makes the method tend to perform worse in the case of a mixing
matrix with very low off-diagonal elements. On the other hand, a mixing matrix
with higher off-diagonal element values will lead to better separation performance
if compared to the lower value one. This will be numerically analysed in Section
3.3.6.

As discussed in [90], [102], ICA is based on a singular value decomposition (SVD)
of the mixing matrix A. SVD is a method used in linear algebra to decompose the
matrix A into several pieces. For any matrix, either square or rectangular, SVD
states [90]:

A = UΣVH , (3.17)

where the mixing matrix A, as shown in Figure 3.4, transforms the original sources
into mixed sources by decomposition into three simpler linear transformations: a
rotation VH , a stretch along axis Σ, and a second rotation U. The rotation matrices
V and U are unitary matrices, while Σ is a rectangular diagonal matrix with non-
negative real numbers on the diagonal.

In the case of SAR, the matrix A is invertible due to the independence of its rows,
which describe the strength of mixing for each beam. This independence ensures a
nonzero determinant. Accordingly, the unmixing matrix B can be described as:

B = A−1 = VΣ−1UH , (3.18)
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which describes the transformation from mixed sources into original sources as shown
in Figure 3.4.

Referring to the mixed signals, x, and the useful signals, s, as expressed in (3.1), the
covariance matrix of the mixed signals is expressed as follows [101]:

E[xxH ] = E[(As)(As)H ],

= E[(UΣVHs)(UΣVHs)H ],

= UΣVHE[ssH ]VΣUH .

(3.19)

Assuming that s has zero mean and unit variance and the elements forming the
vector s are independent from each other, it is obtained that E[ssH ] = I, where I

denotes the identity matrix. Furthermore, due to the defining property of unitary
matrix VH=V−1, (3.19) can be derived as [101]:

E[xxH ] = UΣ2UH . (3.20)

On the other hand, linear algebra states that any hermitian matrix is unitarily
diagonalizable by its eigenvectors, with real eigenvalues that are non-negative in the
case of covariance matrices, giving [103]

E[xxH ] = DΛDH , (3.21)

where D is a matrix whose columns are the eigenvectors of E[xxH ] and Λ is a dia-
gonal matrix whose diagonal elements are the real eigenvalues of E[xxH ], which are
also non-negative as the covariance matrix is also positive-semidefinite. By compa-
ring (3.20) and (3.21), it is inferred that U = D and Σ = Λ1/2. Hence, (3.18) can
be written as [103]:

B = VΛ−1/2DH . (3.22)

The step of obtaining the separation matrix B involves the preprocessing, which
determines D and Λ, and ICA steps, which determines the unitary matrix D. The
post-processing step is also subsequently implemented to overcome the problem
of scaling and permutation. These three steps will be discussed in the following
sections.

3.2.1 Preprocessing

In the singular value decomposition (SVD) method, as described in (3.22), the pre-
processing involves finding DH and Λ−1/2, which can be obtained through the ei-
genvalue decomposition of the covariance matrix of the mixed signals, as shown in
(3.21). The preprocessing consists of two steps: whitening and centering.
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Figure 3.5: The whitening as a part of the preprocessing step. The data undergo decor-
relation and normalization, resulting in a transformed data set that has equal
variances along all dimensions and no linear correlations between dimensions.

The first step is whitening which is considered crucial in the preprocessing step as
shown in Figure 3.5. This step ensures that the resulting data have unit variance and
are uncorrelated. The whitening step is done by performing a principal component
analysis (PCA), where the mixed signals undergo a rotation using the DH matrix
that aligns the eigenvectors of the covariance matrix of the mixed signals along the
Cartesian basis, followed by normalizing the variances by multiplying with Λ−1/2

such that the data have unit variance. The eigenvectors of the covariance matrix
of the data are termed the principal components of the data. Projecting a data set
onto the principal components removes linear correlations and provides a strategy
for dimensional reduction. The whitening matrix is then given by [101]

W = Λ−1/2DH . (3.23)

The second pre-processing step involves centering, which consists in subtracting the
mean from each of the mixed signals. The centering is necessary due to the fact that
the mixed signals in (3.19) should have a zero mean. By having zero mean signals,
an identity covariance matrix of the useful signals can be achieved.

In summary, the whitening process transforms the mixed signals x into a new da-
ta vector z, where each element has unit variance and the different elements are
uncorrelated from each other.

z = Wx. (3.24)

Independent component analysis (ICA) aims to find statistically independent com-
ponents in the data. Whitening helps in achieving this goal by removing correlations
between the components. In a whitened space, the components are only uncorrelated,
not necessarily independent. ICA can then further extract independent components
from this uncorrelated space, as described in the following section.
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3.2.2 Independent Component Analysis by Higher-Order
Cumulant Tensor

The objective of the ICA is to estimate a rotation matrix V, as shown in Figure 3.6,
such that, when applied to the whitening matrix W, it maximizes the independence
between the estimated sources [103].

Figure 3.6: The rotation matrix in ICA, used to to maximize the independence between
the signals.

One approach to accomplish this is to use a higher-order cumulant tensor [96], which
can be viewed as a generalization of a matrix or linear operator. Cumulant tensors
are, in turn, higher-order extensions of the covariance of z, with the covariance
matrix being the second-order cumulant tensor and the fourth-order cumulant tensor
being defined by the fourth-order cumulants. The fourth-order cumulants of z are
given by [104], [105]:

Kz = E[ziz
∗
j z

∗
kzl]− E[ziz

∗
j ]E[zlz

∗
k]

− E[ziz
∗
k]E[zlz

∗
j ]− E[zizl]E[z∗j z

∗
k],

(3.25)

where z is the vector with the whitened signals as a result of the pre-processing step
discussed in the previous section; indices 1 ≤ i, j, k, l ≤ N refer to the index of the
whitened signals, with N denoting the total number of whitened signals.

The fourth-order cumulants can be regarded as a fourth-order tensor due to having
four elements rather than the customary two. This fourth-order tensor essentially
captures the statistical relationship between the sources, with the independence of
the sources being linked to their non-Gaussian nature, due to the fact that statistical
independence implies that all cross-cumulants vanish, while Gaussianity implies that
all elements (also diagonal) vanish. In particular, when the sources are non-Gaussian
and if the sources are independent, the off-diagonal entries of the fourth-order cu-
mulant tensor will be vanish. To attain this independence, the rotation matrix V
must be generated to diagonalize the fourth-order cumulant tensor. However, this
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fourth-order cumulant tensor is a complex N4-dimensional tensor, which is a high-
dimensional array, making it typically unlikely that it can be exactly diagonalized by
V. This is because the degrees of freedom in the fourth-order cumulant tensor scales
as O(N4), which far exceeds the N2 degrees of freedom available in the rotation
matrix V [106]. This imbalance implies that it is generally impossible to eliminate
all off-diagonal elements, as the transformation does not have enough freedom to
fully diagonalize the tensor.

In order to overcome the complexity, an important step proposed in the joint ap-
proximation diagonalization of eigen-matrices (JADE) algorithm [96] involves imple-
menting a linear transformation into the space of N2-dimensional tensors, commonly
referred to as matrices, rather than the N4-dimensional tensor. The space of these
matrices is a linear space of dimension N × N , with the i, jth element of the ma-
trix obtained through the transformation denoted as Fij , also known as a cumulant
matrix, and defined as [103]

Fij(M) =
∑
kl

mklKz, (3.26)

where mkl are the elements of the matrix M that is transformed and indices 1 ≤
k, l ≤ N refer to the index of the whitened signals. It is important to note that the
cumulant matrix is diagonalizable by a unitary matrix, which becomes the aim of
the algorithm.

There is no strict guideline on how to choose M. In [96], it is suggested that M
should be the eigenmatrices of the cumulant tensor. The eigenmatrices are obtained
by reshaping the cumulant tensor through a stacking procedure into a matrix. Subse-
quently, the eigenvalue decomposition (EVD) is performed to obtain N2 eigenvalues
and N2 eigenvectors, where each eigenvector has a length of N2. The eigenvector
is then reshaped, using an unstacking procedure, to obtain N2 eigenmatrices with
shape N × N . The selection of eigenmatrices as the value of M leads to a another
representation of cumulant matrices, given by

F(Mr) = λrMr, (3.27)

where
{
λr,Mr

}
is a set of eigenvalues and eigenmatrices, respectively, with 1 ≤ r ≤

N2.

Due to the independence between sources, there are N(N − 1) zero eigenvalues and
N eigenvalues equal to the kurtosis of the sources [96]. This is, in fact, the great
advantage of choosing the eigenmatrices of the cumulant tensor because it reduces
the complexity from having N2 matrices to only N matrices.

The diagonalization process refer to a process where matrix V is used to diagonalize
a set of different matrices F(Mr). The aim is to make the matrices Q = VHF(Mr)V

42



3.2 Higher-Order Blind Source Separation

as diagonal as possible [103]. There are various methods to measure the diagonality
of a matrix Q, aiming to achieve a diagonal matrix wherein the sum of squares of
off-diagonal elements attains the minimum value. One approach involves calculating
this sum of squares of off-diagonal elements, expressed as

∑
k ̸=l q

2
kl. Alternatively, it

is expected that an orthogonal matrix V does not alter the total sum of squares of a
cumulant matrix. Therefore, minimizing the sum of squares of off-diagonal elements
is equivalent to maximizing the sum of squares of diagonal elements. To measure
the diagonality of a matrix, JADE uses the following measure

C(V,N ) =

N∑
r=1

∥∥diag(VHNrV)
∥∥2 , (3.28)

where Nr = F(Mr); ∥·∥ represents the L2-norm; diag(·) is the vector constructed
from the diagonal elements of the matrix argument; and N = Nr|1 ≤ r ≤ N .

The term ’joint diagonalization’ refers to the circumstance where a set of matrices
Nr is diagonalized by a rotation matrix V. However, exact joint diagonalization by
the Jacobi technique [107] is often only possible when dealing with two matrices.
If there is common structure among more than two matrices, then exact joint dia-
gonalization may be challenging to achieve due to the increased complexity of the
interdependencies between the matrices, making it unlikely that a single rotation
matrix can satisfy the diagonalization conditions for all matrices simultaneously. In
such cases, only approximate joint diagonalization is feasible. To achieve joint ap-
proximate diagonalization of a set of arbitrary N ×N matrices Nr|1 ≤ r ≤ N and
to obtain the rotation matrix V, the Jacobi technique needs to be extended to the
case of several matrices, as presented in Appendix A.

3.2.3 Postprocessing

After completing the preprocessing and independent component analysis (ICA)
steps, the separation matrix B can be obtained as the product of the whitening
matrix W and the rotation matrix V

B = VW. (3.29)

However, two fundamental issues encountered in blind source separation (BSS) are
scaling and permutation uncertainty, which still persist even after the completion
of the preprocessing and ICA steps. As a result, the solution of ICA in general
not unique. The issue of scaling uncertainty happens because the amplitude of the
sources cannot be uniquely determined from their observed output. Thus, there are
multiple solutions for the source signals and the mixing matrix that can produce the
same mixture. The issue of permutation uncertainty arises because the order of the
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sources in the mixture cannot be determined from the observations. In the context of
SAR, this implies that the estimated useful signal cannot be identified as originating
from a specific subswath. Therefore, there are multiple permutations of the same set
of sources that can yield the same mixture. Post-processing is necessary to address
these uncertainties and obtain the final solution. During the post-processing step,
(3.15) can be rewritten as

ŝ = PBx, (3.30)

where P is the permutation matrix, defined as

pik = δk,l(i), (3.31)

where p is an element of the matrix; l(i) the permutation order for the i-th row and
1 ≤ i ≤ N ; and δkl the Kronecker delta. The value l(i) must vary from row to row
and not repeat. For example, with l(i) = 2, 3, 1, the matrix is given by:

P3×3 =

0 1 0

0 0 1

1 0 0

 . (3.32)

When a permutation matrix is multiplied by another matrix, it results in the row
permutation of the matrix to its right according to l(i) or the column permutation
of the matrix to its left. An example of this operation can be observed in

P3×3 · B3×3 =

0 1 0

0 0 1

1 0 0

 ·

b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,

=

b21 b22 b23

b31 b32 b33

b11 b12 b13

 .

(3.33)

There are two key pieces of information within the mixing matrix formulation in
the case of SAR, which are important for solving the scaling and permutation un-
certainties: (i) the mixing matrix A is a unit matrix where the diagonal elements
are 1,i.e., aii = 1, as shown in (3.14) and (ii) the off-diagonal values are less than
1, i.e., |aij | < 1, for i ̸= j. Based on the information (ii), the permutation order is
obtained as follows:

l(i) = argmax
j

|bi,j | , (3.34)
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where bi,j is the element of matrix B; and i and j denote row and column of the
matrix element, respectively.

Furthermore, once the permutation matrix is obtained, and considering that the
diagonal elements of the desired matrix are 1 (according to the cocktail party model
in SAR as derived in (3.14) ), the scaling uncertainty can be solved by normalizing
the matrix such that diagonal elements are 1, by:

bi,j =
bi,j
bi,i

, (3.35)

where bi,j is the element of the permuted matrix (P · B)

It is worth recalling that higher-order ICA methods rely on the non-Gaussianity of
the sources to achieve good performance. Moreover, there are other factors in SAR
that may have an adverse effect on the performance, as will be demonstrated in the
simulation in Chapter 5.

3.3 BSS Performance in the SAR Context

This section explores the factors influencing the performance of BSS in SAR signal
processing. Initially designed to solve the cocktail party problem, the implementation
of BSS has been extended to image processing, biomedical signal processing, commu-
nication systems, seismic signals, and various other domains [108], [109], [110], [111].
It is important to note that different fields possess distinct characteristics. There-
fore, investigating potential aspects that might degrade the performance of BSS in
the case of SAR is crucial.

3.3.1 Simulation Procedure

To properly investigate the factors that influence the performance of BSS in the SAR
context, a numerical analysis of BSS is conducted on a realistic complex-valued SAR
signal. Figure 3.7 shows how the SAR raw data, s, and range-compressed data, s′,
are generated, by ignoring the range cell migration effect. The simulation commences
by using a SAR image, in this case a TerraSAR-X image [112], as the input. The
initial step involves generating range-compressed data by performing reverse SAR
processing. This requires transforming the input SAR image into the range-time and
azimuth frequency domain, which is then multiplied with the conjugate of the phase
function of the azimuth chirp in the frequency, H∗

az(ft). Furthermore, to obtain the
raw data, the range-compressed data in the frequency domain are multiplied with
the conjugate of the phase function of the range chirp in the frequency domain,
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Figure 3.7: Flowchart illustrating the simplified process of generating range-compressed
data s′ and raw data s, using SAR image s′′ from TerraSAR-X as the input.
The diagram illustrates seven sub-swathes, with a range ambiguity distance of
c PRI/2.

H∗
rc(ft, fτ ). It is crucial to note that the TerraSAR-X parameters [112] are employed

in generating both the azimuth and range chirps.

The BSS will be applied to SAR signals by considering SAR data from a single
range bin and the entire azimuth line of the SAR signal. The focus of this section
is on the characteristics of the SAR signal, and a simple, straightforward procedure
will be used to obtain a range ambiguous SAR signal. More realistic multichannel
SAR data, incorporating acquisitional aspects such as antenna pattern and range
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migration effect, will be simulated in Chapter 5. Accordingly, a range ambiguous
SAR raw data signal, x, is obtained by

x = As, (3.36)

where A denotes the mixing matrix, and s the useful signal. To provide a basis
for comparison with the range-ambiguous raw data, range-compressed data are also
produced using a similar procedure;

x′ = As′, (3.37)

where the symbol ′ is used to denote the range-compressed data. Furthermore, the
range-ambiguous image data are generated by the following simplified procedure:

x′′ = As′′, (3.38)

where the symbol ′′ is used to denote the image data.

The values of the mixing matrix used in the simulation in this section are considered
in a way that the RASR is higher in the far range compared to that in the near
range. This is a typical characteristic of the antenna pattern in the SAR system, as
the angular separation between the useful signal and the corresponding ambiguities
decreases, resulting in a higher ambiguity level in the far range.

In addition to the type of data (range compressed and raw data), various factors
such as the number of sources, N , out-of-swath ambiguity signals, sWA, signal-to-
noise ratio, SNR, and the values of the mixing matrix, A, are also investigated. The
numerical analysis of each investigated factor will be presented in the remaining
sections of this chapter. The BSS’s performance is assessed based on the SAR signal
quality using the range ambiguity-to-signal ratio (RASR), which is defined as [54]:

RASR(k) =

∑Na−1
j=0 |x(k, j)− s(k, j)|2∑Na−1

j=0 |s(k, j)|2
, (3.39)

where k denotes the range bin; j the azimuth sample index; Na the number of azi-
muth samples; x(k, j) the complex value of the range-ambiguous signal; and s(k, j)

the complex value of the useful signal. When evaluating the RASR after BSS, the
range-ambiguous signal x is replaced by the ambiguity-suppressed image ŝ. In some
cases, the performance is assessed using the average RASR, given by

RASR =
1

Nr

Nr−1∑
k=0

RASR(k), (3.40)

where Nr is the number of range samples.
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In order to provide a more quantitative assessment of the Gaussianity of the SAR
signal, the complex signal kurtosis (CSK) is used as a metric. The CSK measu-
res the deviation of a signal amplitude’s probability distribution from a Gaussian
distribution. For a complex signal s, the moment is defined as follows:

µl,m = E{(s− E{s})l(s− E{s})∗m}, (3.41)

where ∗ is the complex conjugate. Indices l,m indicate the order of the moment.
The standardized moments are defined by

µ′l,m =
µl,m

σl+m
, (3.42)

where the variance σ2 = µ1,1. The complex signal kurtosis is defined as [113]:

CSK = µ′2,2 − 2−
∣∣µ′2,0∣∣2 . (3.43)

According to [114], a Gaussian distribution means a CSK value close to 0. In contrast,
a higher absolute value of CSK indicates that the data are more non-Gaussian. There
is no strict rule defining the threshold for data to be considered Gaussian or non-
Gaussian. Later in Chapter 6, it is discussed that a value of |CSK| greater than 2.3
represents the threshold for non-Gaussianity.

3.3.2 Type of Data

The first analyzed factor concerns the types of SAR signal data. Accordingly, various
types of SAR data exist, such as raw data, range compressed data, and image data.
As stated earlier, the preliminary analysis in this chapter only takes into account one
azimuth line of the SAR signal for each source, with adjacent sources separated by a
distance of c · PRI/2. In this particular case, three sources (N = 3) are considered,
as illustrated in Figure 3.8, and the arbitrary mixing matrix A3 is chosen:

A3 =

 1 0.12 + 0.12j 0.18 + 0.15j

0.39 + 0.27j 1 0.27 + 0.12j

0.3 + 0.15j 0.39 + 0.27j 1

 . (3.44)

The BSS method is then utilized on all three range-ambiguous signals x, x′, and
x′′. The results, as shown in Figure 3.9, indicate that the BSS approach is signifi-
cantly more effective in focused data when compared to raw and range-compressed
data. This is due to the fact that the image data possess significantly higher non-
Gaussianity properties, which is a result of the compression process especially along
azimuth, as demonstrated in Table 3.1. As compared to the focused data, the raw
data in the time domain are formed by a linear combination of the scene’s backs-
cattering in the antenna field of view. Since the radar’s instantaneous field of view
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Figure 3.8: An unambiguous SAR signal, where (a) shows the raw signals, s, (b) shows the
range-compressed signals , s′, and (c) shows the fully-focused signals, s′′.

Figure 3.9: RASR performance of BSS in (a) raw signals, (b) range-compressed signals,
and (c) fully focused signals. In (b), the RASR values in range bin 1, before
and after the BSS method, is superimposed.

is extensive in both range and azimuth, the superposition comprises significant con-
tributions, ultimately leading to a raw signal with higher levels of Gaussianity than
the focused data [115].

Based on the aforementioned Gaussianity factor, it can be concluded that the imple-
mentation of BSS on image data is more effective than on raw and range-compressed
data. However, it is crucial to note that Gaussianity is the only factor considered in
this preliminary and simplified analysis. When the actual SAR acquisition geome-
try is taken into account, which includes the azimuth compression process, another
challenge arises when implementing BSS on image data. This will be discussed fur-
ther in Chapter 4. Despite this, the remaining portion of this section will consider
range-compressed data as the input.
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Table 3.1: Complex Signal Kurtosis for SAR data in Figure 3.8.

Range Bin
Type of Data

1 2 3

Raw data (s) 1.89 1.68 1.66

Range-compressed data (s’) 2.44 1.75 1.56

Image data (s”) 24.3 16.2 150.1

3.3.3 Number of Sources

The next analysis pertains to the impact of the number of sources, N , on the BSS
performance. The number of sources is linked to the number of sub-swaths in a
practical multichannel SAR setting. In this case, N = 3, 5, 7 are examined. The
corresponding signals for different values of N are illustrated in Figure 3.10.

Figure 3.10: Seven ambiguity-free range-compressed signals denoted as s′1 through s′7.
Three distinct scenarios are examined. In the first scenario, when the num-
ber of sources is N = 3, the signals utilized are s′3 through s′5. In the second
scenario, with N = 5, the signals employed are s′2 through s′6. In the third
scenario, where N = 7, all seven signals are utilized, namely s′1 through s′7.

To ensure a fair assessment of all cases, the mixing matrix’s values must be calculated
in a manner that result in comparable RASR values across all cases. Therefore,
despite the different number of sources, all should correspond to similar average
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RASR values. When N = 3, the mixing matrix, A3, as presented in (3.44) is utilized.
For N = 5, the mixing matrix A5 is designed as:

A5 =


1 0.18 + 0.09j 0.12 + 0.09j 0.06 + 0.03j 0.03 + 0.03j

0.18 + 0.18j 1 0.15 + 0.12j 0.12 + 0.09j 0.09 + 0.09j

0.21 + 0.18j 0.24 + 0.18j 1 0.18 + 0.09j 0.12 + 0.09j]

0.15 + 0.12j 0.21 + 0.09j 0.24 + 0.18j 1 0.09 + 0.24j

0.18 + 0.12j 0.24 + 0.21j 0.24 + 0.24j 0.34 + 0.34j 1

 , (3.45)

and for N = 7, the mixing matrix A7 is designed as:

A7 =



1 0.2 + 0.1j 0.13 + 0.11j 0.08 + 0.05j 0.03 + 0.04j 0.02 + 0.02j 0.015 + 0.01j

0.2 + 0.2j 1 0.1 + 0.1j 0.13 + 0.11j 0.18 + 0.15j 0.12 + 0.11j 0.10 + 0.08j

0.23 + 0.21j 0.3 + 0.2j 1 0.2 + 0.1j 0.15 + 0.09j 0.11 + 0.04j 0.09 + 0.02j

0.17 + 0.15j 0.23 + 0.11j 0.3 + 0.2j 1 0.1 + 0.3j 0.1 + 0.24j 0.07 + 0.21j

0.22 + 0.15j 0.27 + 0.25j 0.3 + 0.3j 0.4 + 0.4j 1 0.3 + 0.3j 0.23 + 0.25j

0.15 + 0.20j 0.22 + 0.22j 0.25 + 0.27j 0.31 + 0.28j 0.4 + 0.4j 1 0.37 + 0.36j

0.14 + 0.10j 0.24 + 0.2j 0.2 + 0.3j 0.25 + 0.27j 0.3 + 0.31j 0.37 + 0.38j 1


.

(3.46)

Figure 3.11: RASR performance of BSS in (a) N = 3 (b) N = 5 (c) N = 7. In (a), the
RASR value in range bin 3, before and after BSS, are superimposed.

Figure 3.11 displays the RASR performance of the BSS method for different numbers
of sources. This figure reveals the inadequacies of conventional BSS methods when
applied to practical situations. Specifically, the results indicate that BSS methods
perform better in cases with fewer source signals than with a higher numbers of
sources, as it becomes increasingly difficult to separate the sources as the number
of sources increases. When there are fewer sources, the mixing matrix has fewer
dimensions, and consequently, the number of independent components that need to
be extracted is also smaller. In contrast, when the number of sources is high, the
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mixing matrix becomes more complex, and there are more independent components
that need to be extracted, making the separation task more challenging. Therefore, in
cases with fewer sources, the BSS methods can achieve a higher separation accuracy,
while in cases with more sources, a larger number of input samples, i.e., a longer
SAR signal observations, is required to improve the estimation of the higher-order
statistics. For the remainder of this chapter, the case of N = 5 source signals is
considered.

3.3.4 Out-of-Swath Ambiguity Signal

This section analyzes the presence of the out-of-swath ambiguity signals. Remember
that according to the discussion in Section 3.1.1, in its simplest form, the cocktail
party problem can be expressed as follows:

x′ = As′, (3.47)

where x′ is a vector with the range-compressed mixed signals; A is the mixing
matrix; and s′ is the vector with the range-compressed source signals.

Figure 3.12: Simulated ambiguity-free range compressed signals for the case of N = 5,
where s1 − s5 (solid lines) are the inside-swath signals and s0, s6 (dotted
lines) are the out-of-swath ambiguity signals.

In the case of a multichannel SAR system, as discussed in Section 3.1.2, the cock-
tail party equation involves out-of-swath range-ambiguity signals, denoted by s′WA,
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which arise from outside the intended swath. To analyze the impact of s′WA on the
performance, the noise, n, is excluded in this section. Therefore, the cocktail party
equation can be expressed as

x′ = As′ + s′WA. (3.48)

Figure 3.12 shows five range-compressed useful signal sources, denoted as s′1 − s′5,
are simulated, and they are mixed by the mixing matrix A5 as specified in (3.45).
Additionally, s′WA is simulated by weighting the signal originating from outside the
intended swath, in this case s′0 and s′6, and is subsequently added to the equation
as described in (3.48). Specifically, the simulated value of s′WA is

s′1,WA(τ1)

s′2,WA(τ1)

s′3,WA(τ1)

s′4,WA(τ1)

s′5,WA(τ1)

 =


(0.09 + 0.06j)s′0(τ1) + (0.03 + 0.03j)s′6(τ1)

(0.06 + 0.12j)s′0(τ1) + (0.09 + 0.09j)s′6(τ1)

(0.15 + 0.06j)s′0(τ1) + (0.09 + 0.03j)s′6(τ1)

(0.15 + 0.12j)s′0(τ1) + (0.24 + 0.15j)s′6(τ1)

(0.15 + 0.12j)s′0(τ1) + (0.42 + 0.42j)s′6(τ1)

 . (3.49)

Figure 3.13: RASR performance of range compressed data with N = 5, in the absence (a)
and presence (b) of out-of-swath range-ambiguity signals, denoted as s′WA.

Figure 3.13 shows the impact of out-of-swath ambiguity signals on the performance
of the BSS method. This figure highlights the limitations of conventional BSS im-
plementations in practical scenarios. Specifically, the presence of s′WA considerably
degrades the RASR performance compared to the absence of s′WA. This is due to
the fact that the out-of-swath ambiguity signals, in the context of SAR, can be con-
sidered as non-Gaussian noise. Accordingly, non-Gaussian noise can cause the BSS
algorithm to mistake the noise for a source signal or misidentify the source signals
themselves. Moreover, the statistical structure of non-Gaussian noise can differ sub-
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stantially from Gaussian noise, leading to unique patterns in the mixed signals that
are challenging for the separation algorithm to detect and isolate.

3.3.5 Semi-White Gaussian Noise

The original model of the cocktail party problem, as presented in Section 3.1.1, where
the BSS method is designed to solve such a problem, excludes the contribution of
noise. However, in the case of SAR, noise is introduced by each received channel
onto the already combined useful signals, s, as shown in (3.14). The discussion
in [97] indicates that the presence of noise, particularly Gaussian noise, influences
the performance of BSS, as the mixing matrix does not provide information about
the noise. Additionally, Gaussian noise also affects the Gaussianity of the signals.

The choice of Gaussian noise as the noise model in this analysis is based on its wi-
despread acceptance within the radar field [116]. Specifically, semi-white Gaussian
noise is selected. Semi-white Gaussian noise represents a random signal or interfe-
rence that conforms to a Gaussian distribution but possesses a variance that varies
across frequencies, distinguishing it from pure white Gaussian noise [117]. The selec-
tion of semi-white Gaussian noise is attributed to the application of the BSS method
on the SAR downlinked received signal, which undergoes bandpass filtering, resul-
ting in noise that is bandlimited and present within the received signal.

The impact of noise, n, is assessed by simulating various SNR levels, where the
relationship between noise and SNR is given by:

σn =
σx′√
10(

SNR
10 )

, (3.50)

where σn and σx′ denote the standard deviations of the noise, n, and the input
signal, x′, respectively.

The simulation consists of N = 5 with s′1 to s′5 as illustrated in Figure 3.13, the
mixing matrix A5 with values as specified in (3.45), and s′WA is excluded. The SNR
levels are varied between 5-15 dB. Figure 3.14 illustrates the impact of different
levels of SNR on the performance of the BSS method. The results demonstrate that
lower SNR, i.e., higher noise levels, have performance that is considerably similar to
that of higher SNR. As discussed in [118], [97], [98], [99], this is due to the fact that
cumulant-based BSS techniques like JADE are not influenced by additive Gaussian
noise, as the cumulants are invariant to it. This is, in fact, an advantage of using
HO BSS compared to SO BSS, where in SO BSS, the presence of noise considerably
degrades the performance.

The poor performance of BSS in Figure 3.14, as indicated in Section 3.3.2, is due to
the limited number of samples and could be improved by providing a larger number
of input samples, which will be discussed in Chapter 4.
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Figure 3.14: RASR performance for different SNR value.

3.3.6 Mixing Matrix Value

This section investigates the impact of the mixing matrix values on the BSS perfor-
mance. The absolute value of the mixing matrix plays a crucial role in the BSS as it
determines the relationship between the observed mixed signals and the underlying
source signals. In the context of range ambiguities within multiple elevation beam
SAR systems, the mixing matrix has unit diagonal elements as modeled in (3.14).
Therefore, the value of the mixing matrix is primarily determined by its off-diagonal
elements.

In the previous sections, the considered mixing matrix is associated with an avera-
ge original RASR value of approximately -7.5 dB (see Figure 3.14). However, this
value may not be representative for SAR, especially when the DBF and SCORE
technique is already employed and thus results in lower, i.e., better, RASR values.
To investigate the effect of the mixing matrix’s values, a simulation is conducted
with N = 5 using the simulated signals in Figure 3.12. However, to focus solely on
the effect of the mixing matrix’s values, the simulation excluded both the noise n
and out-of-swath ambiguity signals sWA and only includes s′1 − s′5. Furthermore, in
order to provide a performance comparison, lower off-diagonal values are introduced
in the mixing matrix

A5,low =


1 0.06 + 0.03j 0.04 + 0.03j 0.02 + 0.01j 0.01 + 0.01j

0.06 + 0.06j 1 0.05 + 0.04j 0.04 + 0.03j 0.03 + 0.03j

0.07 + 0.06j 0.08 + 0.06j 1 0.06 + 0.03j 0.04 + 0.03j

0.05 + 0.04j 0.07 + 0.03j 0.08 + 0.06j 1 0.03 + 0.08j

0.06 + 0.04j 0.08 + 0.07j 0.08 + 0.08j 0.11 + 0.11j 1

 . (3.51)
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Figure 3.15: RASR for the case of range-compressed data with N = 5 for (a) high-value
mixing matrix A5 and (b) low value mixing matrix A5,low.

Figure 3.15 presents the comparison of the BSS method using two different SAR
signals: one obtained from a mixing matrix with high off-diagonal values, A5, and
another from a mixing matrix with low off-diagonal values, A5,low. This figure indi-
cates that conventional BSS implementation does not deliver satisfactory results in
real-world applications. Specifically, the result shows that using a lower off-diagonal
values mixing matrix leads to more challenging outcomes. Specifically, the provided
A5,low produces a RASR performance that is worse even after applying the BSS
method compared to the original mixed signals. This is due to the fact that in the
case of a low off-diagonal values mixing matrix, the Gaussianity of the mixed signals
are highly similar to the source signals themselves. Therefore, the higher-order BSS
algorithm’s ability to exploit non-Gaussianity differences between the mixed and
source signals becomes less effective. In order to improve the sensitivity, a larger
number of input samples should be provided, which will be discussed in Chapter
4.

3.4 Conclusions

The application of the cocktail party phenomenon in multichannel SAR systems,
which employ multiple elevation beams, offers the potential to utilize methods ba-
sed on BSS to suppress range ambiguities. The remarkable aspect of this method
is that it does not require any prior knowledge of the antenna pattern. Due to the
independence of SAR signals and the robustness against noise, a higher-order BSS
method is proposed. Unlike the traditional cocktail party problem, that encounters
scaling and permutation uncertainties resulting in non-unique solutions, a unique
solution can be achieved when dealing with the cocktail party problem in multichan-
nel SAR. This provides a comparative advantage for applying BSS in multichannel
SAR, as compared to other fields such as audio signal processing, image processing,
biomedical signal processing, communication systems, and many others.
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3.4 Conclusions

The numerical investigation of BSS in SAR reveals its potential in suppressing ran-
ge ambiguities. However, the significantly degraded performance caused by various
factors typically present in SAR must be carefully considered. These factors include
the defocused data (raw and range-compressed data), number of sources, presence
of out-of-swath ambiguity signals, and magnitude of the off-diagonal elements of
the mixing matrix. When these factors are combined, implementing BSS alone does
not longer effectively suppresses range ambiguities. In opposite, the conventional
implementation of the BSS approach leads to an increase of the range ambiguities.
Therefore, additional approaches must be proposed to provide a more robust tech-
nique, as discussed in the next sections. Furthermore, other factors such as range
cell migration and reciprocity issues in the focused image, will also be considered in
the following chapter.
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4 Range Ambiguity Suppression
Method

The BSS method has been verified in principle as a promising technique to sup-
press range ambiguities in multichannel SAR systems, as explained in Chapter 3.
This is mainly due to the cocktail party phenomenon present in multichannel SAR
systems where multiple elevation Rx beams are utilized. However, as previously
analyzed, achieving good RASR performance is extremely challenging. This chapter
proposes a range ambiguity suppression method that utilizes the blind source se-
paration technique, here denoted as Range Ambiguity Suppression based on Blind
Source Separation (RABSS). Section 4.1 explains the suggested two-stage strategy
for effectively suppressing range ambiguities within multichannel SAR systems. The
following section 4.2 elaborates, in detail, on the RABSS method which is imple-
mented on the ground. The chapter concludes with final remarks in Section 4.3. Part
of the material in this chapter has been published in [49].

4.1 Two-Stage Strategy

There are some suggested techniques to suppress range ambiguities in SAR, as dis-
cussed in Section 1.3 including their limitations. Nevertheless, the idea of employing
a hybrid technique to suppress range ambiguities in spaceborne SAR systems with
multiple elevation beams was first proposed in [46]. In this method, initially, scan-on-
receive (SCORE) using the DBF technique is implemented on-board. Subsequently,
range ambiguities are suppressed through the joint processing of signals collected by
multiple elevation beams. This two-stage strategy is chosen because the on-board
implementation of the DBF technique typically involves a trade-off between SNR
and range ambiguities suppression, as discussed in Section 2.2.1. For instance, the
mainlobe-constrained minimum variance distortionless response (MVDR) [39], [40],
offers robust SNR even in the presence of errors that cause pattern mismatch, but
this comes at the expense of range ambiguity performance. In contrast, sidelobe-
constrained MVDR and linearly constrained minimum variance (LCMV) [41], [42],
are designed to provide good range ambiguity suppression but at the cost of degra-
ding the SNR. It is possible to combine MVDR and LCMV beamforming techni-
ques, but this increases the complexity of the on-board hardware. Additionally, the
presence of errors, especially non-deterministic errors as discussed in Section 2.2.2,
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remains an extremely challenging task in the context of range ambiguity suppres-
sion. Accordingly, DBF can be performed a posteriori on the ground as proposed
in [119], [120], by downlinking the signals from all antenna elements. However, this
will considerably increase the downlink capacity requirement.

Figure 4.1: The simplified version of the two-stage strategy proposed for suppressing range
ambiguity.

The two-stage strategy proposed in this thesis, illustrated in Figure 4.1, is expected
to offer three main advantages. First, it reduces the on-board complexity required
for effective range ambiguity suppression. Achieving perfect null steering on board
typically requires complex hardware and also affects the system design, with the
antenna height needing to be sufficiently high to achieve good null-steering. Se-
cond, a more effective and robust range ambiguity suppression is expected with this
method, as it relies on downlinked data that accounts for all errors contributing
to performance degradation, including non-deterministic errors that are difficult to
overcome a priori. While deterministic errors may be anticipated and corrected with
adjustments to the DBF setting on board, non-deterministic errors present a greater
challenge. Third, the on-ground processing does not require a specific operational
mode to be effective and can work under normal operational mode. This is an im-
portant advantage as many techniques require the SAR system to go into a specific
calibration mode to measure the antenna pattern.

These expected advantages highlight the potential benefits of the proposed method,
in which on-ground range ambiguity suppression technique will be further explained
in subsequent sections and validated in Chapter 5.

60



4.2 Range Ambiguity Suppression On Ground

4.2 Range Ambiguity Suppression On Ground

4.2.1 SAR Range Compressed Data

In the context of SAR, the various types of ground objects exhibit different level of
Gaussianity [54]. Since the range ambiguity suppression method uses higher-order
BSS as its main algorithm, these differences in Gaussianity are expected to affect
the effectiveness of the method. In addition to Gaussianity, reciprocity also plays an
important role to the success of applying the BSS technique as discussed in Section
3.1. Therefore, the proper selection of the type of data in a multichannel SAR system
is the key to the success of applying the BSS technique. The different types of SAR
data in the context of the Gaussianity and reciprocity properties will be discussed
in this section.

Gaussianity is often not an issue if BSS is applied to a fully focused SAR image.
In fact, focused SAR images can be divided into homogeneous, heterogeneous, and
extremely heterogeneous regions, as described in [121], [122]. Heterogeneity directly
implies non-Gaussianity, meaning that many regions in the fully focused SAR image
have non-Gaussian statistics. However, the useful and the range-ambiguous signal
are no longer reciprocal after the azimuth compression step due to the different azi-
muth frequency modulation (FM) rates between the useful and the range-ambiguous
signal. The azimuth FM rate can be expressed as a function of slant range, as fol-
lows [9]:

Ka(R) =
2 · V 2

r

λ ·R
, (4.1)

where Ka denotes azimuth FM rate; λ is the wavelength; R is the minimum slant
range as derived in (3.3); and Vr is the effective radar velocity, given by [9]

Vr ≈
√

Vs · Vg, (4.2)

where Vs and Vg are the platform and ground velocities, respectively.

Recalling the cocktail party problem illustrated by point target Y ∈ {O,P,Q, U} as
discussed in Section 3.1, the range-ambiguous and useful signal, as in (3.8) and (3.9)
respectively, can, after azimuth compression, be written as follows for the target
Q:

s′′1,SA(τ, ft) = σQ · g′′1(τ, ft, Q) · sinc
[
Bτ

(
τ −

2 · (RQ +∆RCM(ft))

c

)]
· exp

(
−j · 4 · π

λ
·RQ

)
· exp

(
−j · π · λ ·Dr · f2t

2 · V 2
r

)
,

(4.3)
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s′′2(τ, ft) = σQ · g′′2(τ, ft, Q) · sinc
[
Bτ

(
τ −

2 ·RQ

c

)]
· exp

(
−j · 4 · π

λ
·RQ

)
,

(4.4)

where Dr is the range distance of the ambiguity, here computed for k = 1; sinc[Bτ (·)]
the range impulse response after range focusing; and the symbol ′′ is used to deno-
te the signal after azimuth compression. According to (4.3) and (4.4), the strong
ambiguity signal, s′′1,SA, is smeared along the azimuth due to the additional phase
component and thus no longer reciprocal to the useful signal, s′′2. Additionally, the
smearing also happens along the range due to the incorrect RCM correction, expres-
sed by the residual range cell migration denoted to as ∆RCM in the range envelope,
as shown later in (4.9). Due to this mismatch condition, the implementation in the
focused image is no longer feasible as it violates the reciprocity between different
signals at the ambiguity distance described in equation (3.14).

The reciprocity between signals, separated by the ambiguity distance, is still preser-
ved in the range compressed domain:

s′1,SA(τ, ft) = σQ · g′1(τ, ft, Q(ft)) · sinc
[
Bτ

(
τ −

2 ·RQ(ft)

c

)]
· exp

(
−j ·

4 · π ·RQ

λ

)
· exp

(
j · π · f2t

Ka(RQ)

)
,

(4.5)

s′2(τ, ft) = σQ · g′2(τ, ft, Q(ft)) · sinc
[
Bτ

(
τ −

2 ·RQ(ft)

c

)]
· exp

(
−j ·

4 · π ·RQ

λ

)
· exp

(
j · π · f2t

Ka(RQ)

)
,

(4.6)

where the apostrophe ′ is used to denote the range compressed domain, and Q(ft)

represents Doppler-dependent target. In fact, (4.5) and (4.6) differ only by a complex
constant:

a′12(τ, ft) =
s′1,SA
s′2

=
g′1(τ, ft, Q(ft))

g′2(τ, ft, Q(ft))
. (4.7)

Regarding statistics, the compression process makes range-compressed data more
non-Gaussian than raw data. The range-compressed data have a higher deviation
from Gaussianity compared to the raw data, due to the range compression, which
amplifies the contrast differences among ground objects along the range direction.
Therefore, applying BSS in the range-compressed domain is preferable to using raw
data (due to the Gaussianity issue), as numerically analyzed in Section 3.3.2, or fully
focused data (due to the mismatch with the reciprocity condition in the cocktail
party equation).
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However, there is a problem with range-compressed data that have already undergo-
ne range cell migration correction (RCMC), which is non-reciprocal between signals
at the range ambiguity distance in the non-zero Doppler region. The range envelope
of the range ambiguities is still a function of Doppler frequency due to incorrect
range cell migration correction, while for the main signals it is already independent
of Doppler frequency. This difference arises due to the different range migration pro-
file between the desirable signal and the range ambiguity, which causes a mismatch
during the chirp scaling process. This leads to a mismatch in the cocktail party
equation, as illustrated in Figure 4.2. The uncorrected range cell migration of the
range-ambiguous signal is called residual RCM.

Furthermore, the amount of total RCM to correct is derived in [9] and given by:

∆R(ft, R) =
λ2 · f2t ·R
8 · V 2

r
, (4.8)

where Vr is the effective radar velocity; R the minimum slant range to the imaged
target. Since range ambiguities and useful signal are separated by distance Dr(k)

as written in (3.3), the residual RCM due to mismatch in the slant range is given
by:

∆RCM(ft) =
λ2 · f2t ·Dr(k)

8 · Vr
. (4.9)

The case of the maximum RCM value happens when ft,max = Bt/2, where Bt is the
azimuth or Doppler bandwidth given by

Bt = Vr/δaz, (4.10)

where δaz denotes the azimuth resolution. Therefore, the total amount of RCM to
correct is given the maximum amount of residual RCM

∆RCMmax =
λ2 ·Dr(k)

32 · δ2az
. (4.11)

As seen from (4.11), the primary parameters that determine the amount of the
uncorrected residual RCM are the wavelength and the azimuth resolution (which is
typically related to the physical size of the antenna). These two parameters are often
related to each other, meaning that the longer wavelengths require larger antennas.

Table 4.1 presents a comparison between uncorrected RCM in X-band and L-band
SAR systems. In X-band SAR, a computed ∆RCMmax = 0.6 δr is minimally affected
by residual RCM. However, the issue is more pronounced in L-band systems with
∆RCMmax = 4.3 δr. It is noted that the amount of residual RCM is measured
relative to the range resolution cell, δr.
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Figure 4.2: Violation of signal reciprocity after RCM correction. The useful and range
ambiguous signals are denoted by solid and dotted curves, respectively. Left
and right signals separated by the range ambiguity time PRI are indicated by
the vertical lines. (a) six useful signals s1-s6 after RCM correction; (b) range
ambiguity in zero Doppler (area inside the black box), the received signal is
composed by s2 + s6; (c) range ambiguity in non-zero Doppler (area inside the
black box), on the left the received signal is s5 + s2, while on the right, the
received signal is s6 + s3.

To maintain reciprocity between signals, the range cell migration effect must be
allowed to exist. Figure 4.3 shows multiple signals to illustrate reciprocity, where
adjacent signals in the same beam are separated by a range resolution cell. The
illustration in Figure 4.3 also clarifies the definition of a Doppler-dependant target,
Y (ft), Y ∈ {O,P,Q, U}, in Section 3.1.2. Here, for the same range bin, the reciprocal
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Figure 4.3: Reciprocity before RCM correction. Left and right signals separated by range
ambiguity time PRI are indicated by the vertical lines. The useful and range
ambiguous signals are denoted by solid and dotted curves, respectively. (a)
six useful signals s1-s6 before RCM correction; (b) range ambiguity in zero
Doppler (area inside the black box), received signal composed by s2 + s6; (c)
range ambiguity in non-zero Doppler (area inside the black box), received signal
is composed by s4 + s1.

signals are different for different Doppler locations. The different pairs of reciprocity
along the Doppler direction lead to different mixing ratios, such as a26 between s2
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Table 4.1: Amount of uncorrected RCM in the referenced X- and L-band spaceborne SAR
systems

Parameter X-band L-band

Wavelength λ 3 cm 23 cm

Antenna length L 4.8 m 15 m

PRF 3300 Hz 2700 Hz

Ambiguity order k 4 4

Azimuth resolution δa 2.4 m 7.5 m

Range resolution δr 1.5 m 1.5 m

Max. residual RCM ∆RCMmax 0.6 δr 4.3 δr

and s6 at zero Doppler and a14 between s1 and s4 at non-zero Doppler 1. Due to
the changing mixing ratio values along the Doppler frequency, which result from
different pairs of reciprocity, an optimization approach called azimuth sub-band
decomposition is necessary and will be discussed in the following section.

4.2.2 Stacking Approach

The implementation of BSS alone, without additional optimization strategies, is
not expected to lead to satisfactory RASR performance. This constraint primarily
arises from accurate estimation of fourth-order cumulants when dealing with the
limited sample data [123]. It is worth highlighting that the effectiveness of BSS
strongly depends on accurate estimation of the fourth-order cumulants. Therefore,
it becomes essential to employ suitable approaches, such as the stacking approach
in this case.

As discussed in Section 3.2, the source signal needs to be non-Gaussian, where its
Gaussianity is measured by fourth-order cumulants, in order for HO BSS to perform
well. Therefore, the accurate estimation of source signals also means the accurate
estimation of fourth-order cumulants. In order accurately estimate the fourth-order
cumulants, a greater number of samples is necessary, especially when the data tend
to have a Gaussian distribution [123]. Furthermore, it is shown later in Chapter
5 that the non-Gaussian characteristic of the range-compressed data is not very
pronounced (as compared to the image data). Consequently, accumulating as many

1 The main purpose of Figure 4.2 and Figure 4.3 is to visually assess the signal’s reciprocity
principle, which is of significant importance for the BSS technique. To ensure a fair
assessment, a comparison is conducted using the same range-bin reference for both Figure
4.2 and Figure 4.3, despite the fact that the signals in Figure 4.2(c) and Figure 4.3(c)
are different due to the presence of the RCM effect.
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samples as feasible becomes preferable when anticipating data that lack strong non-
Gaussian traits.

Figure 4.4: An example of the stacking approach for the number of stacked azimuth lines
Nsta = 3.

In the case of a short acquisition SAR data, the stacking approach, which aggrega-
tes correlated time-series data, holds significant importance as it provides a larger
number of samples. Stated differently, the Stacking approach serves as a suitable
approach for acquiring supplementary samples from the constrained azimuthal ex-
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tension. The operation involves concatenating along azimuth multiple segments of
correlated time-series of the data to create a longer time-series data. The stacking
is performed as follows:

DNa×Nr
→ DNstaNa×Nr/Nsta

, (4.12)

where DNa×Nr
represents the input data.The approach involves stacking Nsta azi-

muth lines, such that Nr/Nsta is an integer number, and moving the entire azimuth
line rather than only one range sample. Note that when Nsta = 1, an azimuth line
corresponds to a range sample. For a better illustration, an example of the stacking
procedure is presented in Figure 4.4.

It is worth noting that the estimated mixing matrix Â should have Nr different
values, since the mixing matrix A is dependent on the range. However, reducing
the input range samples to Nr/Nsta means that the estimated mixing matrix Â
only has Nr/Nsta different values, resulting in an underestimation of the solution.
This implies that the number of unique values in Â along the range is less than the
dimension of the actual matrix A. Thus, as the number of stacked azimuth lines
Nsta increases, the problem of underestimation of the solution becomes more severe,
and this can potentially degrade the performance.

The optimal number of stacked azimuth lines, Nsta, must be determined through
empirical evaluation as it involves a trade-off between the contradictory requirements
previously discussed. On one hand, increasing Nsta can enhance the robustness of
the BSS method, while on the other hand, a lower Nsta is preferred to avoid an
underestimated solution. The details of this empirical analysis will be presented in
Chapter 5, which covers simulation and analysis.

4.2.3 Azimuth Sub-band Decomposition Approach

The estimation of the mixing matrix A is complicated by the fact that its value is
non-stationary along the Doppler direction, i.e., Doppler dependent, as expressed in
(3.14). Additionally, the presence of range cell migration leads to different reciprocity
configurations along the Doppler direction, as discussed in the previous sections.
Therefore, it is necessary to find a suitable solution that takes these factors into
account. The main idea behind the azimuth sub-band decomposition approach is
to decompose the signals into several Doppler sub-bands and apply the BSS to
each sub-band signal. This approach allows for a Doppler-dependent solution to
the problem of estimating the mixing matrix. Additionally, by breaking down the
data into smaller sub-bands, it becomes possible to isolate the varying range cell
migrations and reciprocity issues and apply BSS to each sub-band, which improves
the overall accuracy of the solution.
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Figure 4.5: Flowchart of the azimuth sub-band decomposition approach.

In the higher-order BSS, the non-Gaussianity of the source signals is exploited to
separate the mixed signals. In general, the non-Gaussianity of a signal is higher in
the time domain than in the frequency domain. This is because the time domain
representation of a signal captures the temporal dynamics of the signal, which can
result in non-Gaussian distributions due to the presence of transients, edges, and
other non-stationary features. In contrast, the frequency domain representation of
a signal provides a more stationary representation of the signal by separating the
signal into frequency components. This can result in a smoother distribution that
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is closer to Gaussian. Therefore, after decomposing the data into several Doppler
sub-bands, the data need to be transformed back into the time domain before the
BSS method is applied. After the BSS method is applied, the sub-bands will be
combined again to obtain the full Doppler band. The overall step for this approach
can be seen in Figure 4.5.

Performing azimuth sub-band decomposition can negatively impact the performance
of BSS because the sub-band data has a reduced bandwidth compared to the original
data, leading to an increase in Gaussianity. The impact of the reduced bandwidth
on the Gaussianity level is numerically presented in Section 5.2. Therefore, there is
a trade-off between the benefit of having a Doppler-dependent solution that takes
into account the Doppler-dependency of mixing matrix and range cell migrations,
and the degradation in performance caused by reduced bandwidth. Therefore, the
number of considered Doppler sub-bands, Nsub, must be optimized through empirical
analysis, taking into account the contradicting requirements previously discussed:
on one hand, Nsub shall be high to account for the Doppler-dependent variations
and RCM as mentioned earlier; on the other hand, Nsub must be low to maintain
the high bandwidth. The empirical analysis to determine the optimal Nsub will be
presented in the simulation and analysis chapter (Chapter 5).

Finally, it is worth mentioning that while azimuth sub-band decomposition has a
trade-off impact, range sub-band decomposition has only a negative impact, i.e., an
increase in Gaussianity due to the reduced bandwidth. Therefore, the range sub-
band decomposition approach is not proposed in this thesis.

4.3 Remarks

The approaches discussed in the previous section have led to the proposal of a full
processing step of the RABSS method, which is depicted in Figure 4.6. To begin with,
it is recommended that the BSS algorithm be applied to the range compressed data
rather than the raw data or fully focused data. This is because the range compressed
data have a stronger non-Gaussian distribution than the raw data, making them
better suited for BSS. Furthermore, fully focused data are not considered suitable
for BSS due to the reciprocity issue, where the range ambiguity is smeared in the
focused data.

It is crucial to apply the proposed method before the RCM correction due to its
effect on the Doppler shift and range ambiguity of the data. As a result, the BSS
algorithm should be applied to the data before RCM correction is performed. It
is worth noting that the SAR processing used in this paper is the extended chirp
scaling (ECS) algorithm [57], where RCM correction is typically performed in the
raw data. Therefore, since the BSS algorithm is applied in the range-compressed data
without RCM correction to maintain the reciprocity properties, the chirp scaling and
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Figure 4.6: Flowchart of the Range Ambiguity Suppression based on Blind Source Separa-
tion (RABSS) method.

bulk RCM correction steps, as suggested by the ECS algorithm described in Section
2.1.2, are excluded when generating range-compressed data used as the input of
BSS. However, in a system where there is no residual RCM or it is negligible, i.e.,
there is no reciprocity issue after RCM correction, the chirp scaling and bulk RCM
correction can be applied before the BSS algorithm is applied.

The sub-band decomposition is performed to overcome the Doppler-dependent range
ambiguity. This helps to separate sources with different Doppler shifts. Following the
sub-band decomposition, the data are transformed into the time domain since this
is the selected domain. Furthermore, to improve performance, the data undergo a
stacking approach step where a number of azimuth lines are stacked together. Finally,
recombination of azimuth sub-bands is performed to recover the full bandwidth of
the data. This results in a comprehensive processing method that can be used for
effective source separation in SAR images.
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The RABSS method illustrated in Figure 4.6 does not specify the optimal num-
ber of azimuth lines that need to be stacked, denoted by Nsta, or the number of
Doppler sub-bands that need to be formed, denoted by Nsub. This is because these
parameters depend on the specific SAR system and require empirical analysis to
be determined. It is important to note that different SAR systems correspond to
different mixing matrix characteristic. For instance, the optimal values for a planar
antenna SAR system, resulting in a range-dependent mixing matrix, will likely dif-
fer from those for an array-fed reflector antenna SAR system, leading to a range-
and Doppler-dependent mixing matrix. Therefore, in addition to presenting simula-
tions of the proposed method for a multichannel SAR system, the next sections will
also demonstrate the empirical analysis for different SAR systems, specifically for
planar and array-fed reflector antennas. This will allow for a more comprehensive
understanding of how to optimize the RABSS method for a range of different SAR
systems.
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The goal of this chapter is to provide simulation examples which illustrate the ap-
plication of the Range Ambiguity Suppression based on Blind Source Separation
(RABSS) method for different antenna systems. As of now, operational spaceborne
SAR systems do not utilize multiple elevation Rx beams. The NASA/ISRO NISAR
mission, with a planned launch date in 2025, will be the first spaceborne SAR system
to use multiple elevation Rx beams. Accordingly, it is essential to develop a realistic
simulation of a multichannel SAR system that incorporates multiple Rx beams to
generate a HRWS SAR image. It is important to note that the proposed method is
designed to operate on heterogeneous scenes rather than point targets. The reason
for implementing the RABSS method on heterogeneous scenes is rooted in its na-
ture of exploiting the statistics of the input signals. The system simulator will be
presented in detail in Section 5.1, describing the simulation steps used to generate
HRWS data, in this case as a result of multiple elevation Rx beams.

Considering the existence of various SAR systems, each corresponding to a distinct
antenna pattern model used for data acquisition, the RABSS method will be applied.
Section 5.2 will implement the RABSS method in a simulated multichannel SAR
system with a mixing matrix whose values are separable in both range-time and
Doppler frequency. In real SAR systems, this is an oversimplified assumption even
when a fixed beam, i.e., no scan-on-receive (SCORE), is implemented, because the
model in the fixed beam SAR system still results in a mixing matrix with range
dependency. However, the analysis of this simple mixing matrix model is necessary
to establish a fundamental empirical understanding of the proposed method.

In the following sections, the RABSS method will be applied to multichannel SAR
systems with SCORE. Section 5.3 will present the implementation in a multichan-
nel SAR system that uses a planar antenna. Such a system typically has a range-
dependent mixing matrix due to the SCORE implementation. This will be follo-
wed by the implementation in an array-fed reflector multichannel SAR system with
SCORE in Section 5.4. Due to the fact that the antenna patterns in an array-fed
reflector are non-separable in azimuth and elevation, the mixing matrix’s values are
not only range-dependent but also Doppler-dependent. Lastly, Section 5.5 will draw
conclusions and provide final remarks on the chapter’s findings. Part of the material
in this chapter has been published in [48], [49].
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5.1 Simulation Procedure

The aim of the simulator is to simulate range-ambiguous multichannel SAR data
resulting from multiple Rx beams acquisition using the digital beamforming (DBF)
technique. As the thesis primarily focuses on a data-based method, it is crucial to
ensure accurate representation of the received data. Range ambiguities primarily
arise due to the sidelobes of the antenna pattern, which contains 2-D information
represented not only along range but also along the Doppler frequency. The main
challenge lies in combining the 2-D pattern and SAR data to produce 2-D range-
ambiguous SAR data, which will be presented in this section.

The simulator utilized in this thesis takes a SAR image as input. Specifically, the
simulator takes an X-band image from the TerraSAR-X mission [112] as the backs-
catter, and the output are L-band range-ambiguous raw data. Consequently, all
the chirp signals (range and azimuth) involved in this simulator follow the L-band
properties.

As TerraSAR-X operates as a single-beam SAR, simulating HRWS SAR system
which utilizes multiple elevation beams, while introducing range ambiguity, proves
to be a challenging task. Therefore, the primary focus of this simulator is to deve-
lop a reliable process that can effectively generate HRWS data while maintaining
geometric accuracy, despite using a single-beam SAR image as input.

The second challenge arises from the range cell migration (RCM) as the radar moves
in relation to the target [9]. Specifically, the elevation angle undergoes slight changes
during the synthetic aperture time (or as a function of Doppler frequency), resulting
in a target observation pattern that has two varying parameters (range and azimuth).
Incorporating the range cell migration effect into the range ambiguity concept proves
to be a tricky task, particularly when considering that the DBF pattern must also
be incorporated.

The algorithm utilized for reverse processing the SAR data in this thesis is the
extended chirp scaling (ECS) algorithm [57], as presented in Section 2.1.2. The ECS
algorithm is selected due to its more accurate RCM correction (RCMC) compared
to other algorithms. The simulation, as shown in Figure 5.1, commences by using a
SAR image as the input. The initial step involves generating range-compressed data
by performing reverse SAR processing. This requires transforming the input SAR
image into the range-time and azimuth frequency domains, which is then multiplied
with the conjugate of the phase function of azimuth chirp in frequency, as defined
in (2.16), H∗

az(ft).

It is worth to remark that in the real acquisition process, the DBF weights are
applied to the raw data of the received channels. However, for the sake of verifying
the accuracy of the estimated mixing matrix, which is derived from the DBF pattern,
the DBF pattern is generated independently of the raw data in this simulation. The
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Figure 5.1: Flowchart illustrating the process of generating range-ambiguous raw data for
a single swath (right), including the target’s response representation (left). On
the left, the useful target and the range-ambiguous target are represented by
solid and dashed curves, respectively.
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process of incorporating the DBF pattern into the simulated data is considered an
approximation in this simulation, as it does not account for the curved-Earth effect
and instead assumes a flat-Earth geometry. Furthermore, the incorporation of the
DBF pattern into the range-compressed data is due to the fact that the RABSS
method, which also aims to estimate the mixing matrix, is applied to the range-
compressed data. Consequently, pulse extension effect is neglected here.

In general, pulse extension deserves further investigation regarding its impact on
range ambiguity. However, in cases where beamforming in elevation is designed to
provide nulls in the direction of range-ambiguous signals (i.e., null steering), pulse
extension results in higher level of the intensity of the received ambiguities, thus
worsening range ambiguity suppression, as discussed in [41]. Furthermore, the joint
effect of pulse extension and topographic errors, in the case of null steering, may
degrade range ambiguity suppression performance, as indicated in [124]. Despite
this, high range ambiguity is favorable for the RABSS method, as BSS works better
in cases of high range ambiguity, as discussed in Section 3.3.6. Thus, for RABSS
method, consideration of pulse extension loss in the case of null steering would
actually be expected to result in greater range ambiguity suppression.

Regarding the simulation for the multiple-elevation DBF beam, since there will
be three different scenarios - planar antenna with fixed beams, planar antenna with
SCORE, array-fed reflector antenna with SCORE - and each scenario has a different
procedure for generating multiple-elevation DBF beams, the simulation to generate
the DBF antenna will be explained at the beginning of each section.

After obtaining the range-compressed data and multiple-elevation DBF beams, the
next step in the simulation process incorporates the DBF antenna pattern into the
SAR data, resulting in weighted DBF SAR data, given by

s′w(τ, ft) = gDBF (τ, ft) · s′(τ, ft), (5.1)

where s′(τ, ft) denotes range-compressed data and gDBF (τ, ft) the complex-value
DBF pattern.

In the process of generating the range ambiguous signal for the simulator, it is essen-
tial to carefully consider the effect of RCM on the signal. This requires simulating
the proper footprint of the signal in the range and azimuth direction. The functi-
on s′w(τ, ft) does not yet account for the effect of RCM. Since the SAR processing
algorithm used in this simulator is the ECS, RCM processing is done on the raw
data.

To obtain the raw data, the range-compressed data in the frequency domain are
multiplied with the conjugate of the phase function of the range chirp in frequency,
as defined in (2.13), H∗

rc(ft, fτ ). After obtaining the raw data, the next step is to
introduce the effect of RCM. This can be done by multiplying the data with the
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conjugate of the phase function of bulk RCM, as defined in (2.12), H∗
rcm(ft, fτ ), and

afterwards, multiplying the data in the range-Doppler domain with the conjugate of
the phase function of the chirp scaling, as defined in (2.8), H∗

cs(ft, τ).

Finally, the range ambiguous signal in the range-Doppler domain is obtained as

x(τ, ft) =
∑
k

sk(τ, ft, θk), (5.2)

where the summation index k refers to range ambiguity signals (k ̸= 0), superimpo-
sing the useful signal (k = 0); the range time interval is 0 < τ < Tr where Tr is the
pulse length; and the azimuth frequency is ft where −PRF/2 < ft < PRF/2.

5.2 Range- and Doppler-Independent Mixing
Matrix

The analysis of a scenario with a range- and Doppler-independent mixing matrix,
despite unrealistic in a real SAR system, is essential to establish a fundamental em-
pirical understanding of the RABSS method. This includes not only blind source
separation but also the proposed optimization strategies, such as stacking azimuth
lines and azimuth sub-band decomposition. This is due to the fact that, as demons-
trated in Section 3.3, relying solely on BSS to overcome the range ambiguities issue
in SAR is ineffective due to several previously discussed factors. Therefore, the op-
timization technique needs to be investigated, irrespective of the dependency of the
mixing matrix on range-time and Doppler.

Table 5.1 presents the parameters of the reference system, which are identical to
Tandem-L [40] with some parameter differences to emphasize the effect of range am-
biguity. Furthermore, the SAR input data are generated using the simulator, which
includes a range-compressed and range-ambiguous raw data module as described in
the previous section. When discussing the geometry of the simulated HRWS data
concerning the simulation parameters in Table 5.1, it is worth pointing out that in
the ideal case, the HRWS SAR image would contain a significantly higher number
of samples compared to the SAR input image used in this simulation, which in this
case is the TerraSAR-X image. In range, the width of each subswath is determined
by c · PRI/2 – c · Tr, where c · Tr refers to the blind range caused by Tx activity.
The resulting width for each subswath is 46 km. To avoid border effects during the
generation of raw data for the corresponding image, the width of each subswath is
further extended by the pulse duration on both the left and right sides, resulting
in a total width of 67 km, including the extensions. In this simulator, due to the
limited availability of SAR image data, only a 7.1 km segment for each subswath,
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Table 5.1: Simulation parameters of generated SAR data.

Parameter Symbol Value
Orbit height horbit 628 km
Swath minimum / maximum look angle θmin/θmax 26.3 / 46.9 deg
Platform velocity Vs 7542 m/s
Elevation tilt angle w.r.t. nadir θtilt 36 deg
Center frequency f0 1.26 GHz
Pulse repetition frequency PRF 2700 Hz
Sampling frequency fs 45.6 MHz
Chirp bandwidth Bτ 38 MHz
Pulse duration Tr 30 µs
Number of simultaneous elevation beams N 5
Elevation beamforming algorithm - n.a.
Processed Doppler bandwidth Bt,proc 1348 MHz
Signal-to-noise ratio SNR 10 dB
Range resolution δr 4 m
Azimuth resolution δa 5 m
Maximum RCM value ∆Rmax 16 δr

excluding the extension, is simulated. This approach is taken to address the geome-
trical constraints in achieving the geometry of the intended multiple swaths of the
L-band SAR system. Finally, it is essential to note that each subswath is simulated
and processed individually. Therefore, there will be a range discontinuity between
sub-swaths since only a smaller segment of each subswath is simulated.

In azimuth, the simulated system exhibits an azimuth oversampling ratio (PRF/Bt)
of 2 to avoid Doppler ambiguity. It is noted that a system like Tandem-L [40] has
a higher oversampling ratio of 2.3 (for dual-pol) due to the use of a staggered PRI,
which requires higher sampling for the recovery of missing samples.

The value of the mixing matrix AHIGH in the case of a range- and Doppler-
independent mixing matrix is selected in a way that its off-diagonal elements’ values
are relatively high as compared to the diagonal elements. It is important to note
that, as outlined in Section 3.1, the mixing matrix is derived from the DBF antenna
pattern.

AHIGH(τ, ft) =


1 0.3 + 0.3j 0.23 + 0.11j 0.17 + 0.15j 0.2 + 0.1j

0.2 + 0.2j 1 0.32 + 0.21j 0.23 + 0.1j 0.18 + 0.15j

0.23 + 0.21j 0.3 + 0.2j 1 0.2 + 0.1j 0.15 + 0.09j]

0.17 + 0.15j 0.23 + 0.11j 0.3 + 0.2j 1 0.1 + 0.3j

0.2 + 0.1j 0.17 + 0.15j 0.23 + 0.11j 0.3 + 0.2j 1

 . (5.3)
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As seen in (5.3), the values of AHIGH are independent of both range time and
Doppler frequency. Figure 5.2 illustrates the two-dimensional representation of the
mixing matrix.

Figure 5.2: Mixing matrix, AHIGH , which contains a range-and Doppler-independent value
within each swath. The blue vertical lines indicate the boundary between the
simulated swath segments.

Figure 5.3 shows the SAR data at different stages of reverse processing represented as
raw data, range-compressed data with curvature (before RCMC), range-compressed
data without curvature (after RCMC), and focused data. These representations are
provided as examples to illustrate that the various types of data will be discussed,
aiming to analyze the issues of Gaussianity and reciprocity concerning the perfor-
mance of the BSS method.

It is noted that the Gaussianity level is measured by the complex signal kurtosis
(CSK), as defined in Section 3.3.1, and the obtained CSK results are reported in
Table 5.2. Furthermore, various SAR data types are simulated, with a specific index
assigned to each data type, as shown in Table 5.2. It can be seen that the RCM
correction makes the data, both raw (III) and range-compressed (V), more Gaussian
as compared to when RCM is not corrected (IV and VI). This is due to the fact that
the presence of curvatures increase the heterogeneity of the data. Furthermore, due
to the compression process, raw data (III and IV) are more Gaussian than the range-
compressed data (V and VI), while the focused SAR image is significantly more non-
Gaussian (VII). Additionally, the range-compressed data in the Doppler domain (II)
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Figure 5.3: Simulated L-band SAR data from TerraSAR-X [112] image for five range seg-
ments in range (horizontal) and azimuth (vertical). (a) raw data; (b) range
compressed data without curvature; (c) range compressed data with curvature;
(d) focused SAR image.

are considerably more Gaussian than the range-compressed data in the azimuth-time
domain (V) due to the fact that the time-domain representation of a signal captures
the temporal dynamics of the signal, which can result in non-Gaussian distributions
due to the presence of transients, edges, and other non-stationary features. The
Doppler bandwidth reduction lead to a more Gaussian data, as shown by the lower
CSK value of the range-compressed data with reduced Doppler bandwidth (VIII).

Figure 5.4 demonstrates the performance of the BSS method in a case of mixing
with AHIGH across various data types: simulated received raw data (with (IV) and
without curvature (III)), range-compressed data (with (VI) and without curvature
(V)), range-compressed data in the range-Doppler domain (II), and the focused
SAR image (VII). Specifically, it shows the RASR calculated using (3.39) for the
simulated SAR image after applying the BSS method, comparing it with the RASR
of the received simulated SAR image.

From Figure 5.4(a)-(d), it is evident that the BSS method performs better on (raw
and range-compressed) data with curvature (IV and VI) than on data without cur-
vature (III and V). Notably, the BSS method fails when applied to the focused SAR
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Table 5.2: Table of index and complex signal kurtosis (CSK) for different kinds of SAR
data.

Index Type of SAR Data Domain CSK

I Raw data with curvature
Range-time,
Doppler

0.43

II Range compressed with curvature
Range-time,
Doppler

0.83

III Raw data without curvature Time 1.0

IV Raw data with curvature Time 1.6

V Range compressed without curvature Time 1.71

VI Range compressed with curvature Time 1.96

VII Fully focused data Time 8.41

VIII
Range compressed with 30% Doppler
bandwidth, with curvature

Time 1.15

image (VII), depicted in Figure 5.4(f). This failure is attributed to the violation of
reciprocity after curvature correction and azimuth focusing, as discussed in Chapter
4.

To understand the combined impact of reciprocity and Gaussianity on BSS perfor-
mance, it is helpful to relate Figure 5.4 with Table 5.2. Figure 5.4(b) and (c) highlight
that reciprocity might have a more significant effect than Gaussianity. Although the
raw data with curvature (IV, in Figure 5.4(b)) exhibit higher Gaussianity compared
to the range-compressed data without curvature (VI, in Figure 5.4 (c)), indicated by
the lower CSK value in Table 5.2 (1.6 vs 1.71), the applied BSS method still results
in better RASR suppression. However, with curvature, the BSS method achieves
better performance on the range-compressed data (VI) rather than on the raw data
(IV), as depicted in Figure 5.4 (b) and (d). This difference can be attributed to the
lower Gaussianity of the range-compressed data compared to the raw data (CSK of
1.96 vs 1.6).

Figure 5.4 (e) illustrates a degradation in performance in the range-Doppler domain
(II) due to the high Gaussianity level (CSK = 0.83) compared to the time domain
(VI) (see Table 5.2). Overall, Figure 5.4 suggests that the best RASR suppression
is achieved from the range-compressed data with curvature (VI). From now, the
performance analysis for the remaining part of the thesis refers specifically to the
range-compressed data with curvature (VI).

It is worth noting that the results presented in Figure 5.4 were obtained from simu-
lations using AHIGH , which produced an average RASR value of -6.4 dB. However,
this may not be a realistic scenario in cases where on-board DBF processing is em-
ployed to suppress range ambiguities. In such a scenario, the RASR value is typically
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Figure 5.4: RASR performance for input SAR data simulated using AHIGH . The BSS is
applied to different SAR data domains: (a) raw data without curvature (III,
CSK=1.0); (b) raw data with curvature (IV, CSK=1.6); (c) range compressed
data without curvature (V, CSK=1.71); (d) range compressed data with cur-
vature (VI, CSK=1.96); (e) Range compressed in range-Doppler domain with
curvature (II, CSK=0.83); (f) focused SAR image (VII, CSK=8.41). The blue
vertical lines indicate the boundary between the simulated swath segments.
The red curve shows the RASR for the original simulated SAR image; the
green curve shows the RASR for the ambiguity-suppressed image (after apply-
ing the BSS method). In (f), the red curve is covered by the green curve.

significantly lower than -6.4 dB. Thus, the next simulation is conducted using lower
off-diagonal values in the mixing matrix, as given by:
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ALOW (τ, ft) =


1 0.06 + 0.03j 0.04 + 0.03j 0.02 + 0.01j 0.01 + 0.01j

0.06 + 0.06j 1 0.05 + 0.04j 0.04 + 0.03j 0.03 + 0.03j

0.07 + 0.06j 0.08 + 0.06j 1 0.06 + 0.03j 0.04 + 0.03j

0.05 + 0.04j 0.07 + 0.03j 0.08 + 0.06j 1 0.03 + 0.08j

0.06 + 0.04j 0.08 + 0.07j 0.08 + 0.08j 0.11 + 0.11j 1

 . (5.4)

Figure 5.5: RASR performance for input SAR data simulated using ALOW . The BSS me-
thod is applied to range-compressed data with RCM. The blue vertical lines
indicate the boundary between the simulated swath segments. The red curve
shows the RASR for the original simulated SAR image; the green curve the
RASR for the ambiguity-suppressed image after applying the BSS method.

The mixing matrix ALOW defined in equation (5.4) corresponds to a more realistic
average RASR value of -15.5 dB in cases where on-board DBF processing is used to
help suppressing range ambiguities. Figure 5.5 shows that a pure application of BSS
does not effectively suppress range ambiguities with a lower SAR mixing matrix. This
result confirms the numerical analysis presented in Section 3.3.6, where a much lower
mixing matrix value is found to severely degrade the performance of BSS. It also
highlights the need for optimization strategies to complement BSS in suppressing
range ambiguities.

The next numerical analysis pertains to optimization strategies, encompassing the
stacking azimuth lines approach and azimuth sub-band decomposition. Figure 5.6
displays the RASR performance resulting from the implementation of the stacking
approach using varying numbers of stacked azimuth lines: Nsta = 0, 30, 100, and 900.
Furthermore, Figure 5.7 profiles the average RASR performance for different num-
bers of stacked azimuth lines, showing a clear improvement introduced by the
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Figure 5.6: Assessment of stacking approach by RASR performance. The BSS is applied in
the range compressed data for the case of ALOW with the stacking approach
included. The number of stacked azimuth lines is: (a) Nsta = 1; (b) Nsta = 30;
(c) Nsta = 100; (d) Nsta = 900.

Figure 5.7: Average RASR performance versus number of stacked azimuth lines. The BSS
is applied to range compressed data with RCM for the case of ALOW
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stacking approach. Specifically, a significant improvement is observed when com-
paring the result with no stacking and the one obtained by stacking 30 azimuth
lines. As the number of stacked azimuth lines increases beyond 100, the improve-
ment reaches saturation.

The results depicted in Figure 5.7 validate the significance of the stacking approach
in enhancing the range ambiguity suppression performance. This approach holds si-
gnificant importance as it allows for a larger sample size, enhancing the optimization
of the BSS performance, thereby ensuring an unbiased estimation of the kurtosis.
This necessity for a considerably large number of samples becomes particularly re-
levant when dealing with data that tend to exhibit a Gaussian distribution, such as
range-compressed data.

Figure 5.8: Assessment of combined approach by RASR performance for the case of ALOW .
Nsta = 100 is selected and the number of azimuth sub-bands is varied: (a)
Nsub = 1; (b) Nsub = 5; (c) Nsub = 11; (d) Nsub = 15. The BSS is applied on
the range-compressed data.
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Figure 5.9: Average RASR performance of combined approach, for the case of ALOW , with
respect to Nsta = 100 and varying number of azimuth sub-bands. The BSS is
applied to range-compressed data with RCM.

Figure 5.10: Simulated L-band SAR images: (a) ambiguity-free image; (b) ambiguous
image; (c) ambiguity-suppressed image. The horizontal axis indicates the ran-
ge direction, the vertical axis azimuth. The spatial separation between the
simulated swath segments is not visualized here.

The impact of the azimuth sub-band decomposition approach on RASR performan-
ce is evaluated through empirical analysis, which involves setting a fixed number
of stacked azimuth lines and varying the number of azimuth sub-bands. It is no-
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ted that the effectiveness of the azimuth sub-band approach is unaffected by the
number of stacked azimuth lines. The results are depicted in Figure 5.8. These fin-
dings suggest that implementing the azimuth sub-band approach in systems with a
Doppler-independent mixing matrix leads to poorer RASR performance. This trend
is further highlighted in Figure 5.9, illustrating the average RASR performance con-
cerning different numbers of azimuth sub-bands (Nsub).

The degradation in range ambiguity suppression caused by introducing azimuth sub-
bands arises from the reduced bandwidth of each sub-band dataset, resulting in a
more Gaussian statistic, as indicated by the lower CSK value in Table 5.2. Further-
more, the intent behind employing azimuth sub-bands is to address the Doppler-
dependency of the mixing matrix, which also corresponds to the issue of range cell
migration. The lower bandwidth will degrade the performance. Therefore, the azi-
muth sub-band decomposition approach should not be employed for systems which
have a Doppler-independent mixing matrix.

A qualitative assessment of the ambiguity suppression effectiveness is showcased
in Figure 5.10. The figure compares the simulated ambiguity-free SAR image, the
ambiguous SAR image, and the ambiguity-suppressed SAR image. For simplicity,
the spatial separation between the simulated swath segments is not visualized. The
horizontal lines in Fig. 5.10 are caused by sidelobes of strong targets outside the
displayed image area and are not related to range ambiguities. To emphasize the
achieved ambiguity suppression, a closer view of the areas marked by red boxes is
provided. These areas exhibit a notable improvement attained through the propo-
sed method, particularly in backscattering surfaces like the sea. Such surfaces are
characterized by low intensity and are significantly affected by ambiguous distur-
bances.

In summary, the proposed method has shown that selecting range-compressed da-
ta with the RCM effect and stacking approach can significantly improve the per-
formance of range ambiguity suppression. In contrary, the implementation of the
azimuth sub-band decomposition degrades the RASR performance for the Doppler-
independent mixing matrix case.

5.3 Range-Dependent Mixing Matrix

In this section, the proposed method is applied to a system encountering range-
dependent mixing matrix, specifically a SAR system with a planar antenna array
employing multiple SCORE beams. This section commences by showing the SCORE
beam resulting from the DBF processing in the planar antenna system, consequently
leading to a range-dependent mixing matrix.
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A planar antenna array system consists of a set of Nelem identical antenna elements
arranged in a planar grid. The steering of the array is determined by the combination
of the element factor and the array factor. Here, the element factor is considered 1
for simplicity. Therefore, the steering of the array is influenced by the array factor,
which is a function of the geometric configuration of the antenna array and the
direction of the radiation, here denoted by gDBF (θs). Accordingly,

The expression of the steered antenna pattern can be written as [125], [126]:

gDBF (θs) =

Nelem−1∑
n=0

wn · exp
{
j · 2 · π · n · d

λ
· sin(θs)

}
, (5.5)

where θs is the look angle; wn the complex weighting coefficients for the nth element;
and d the spacing between elements.

Furthermore, the considered DBF technique used in the simulation is time-variant
weighting [69], where the complex weight vector w = [w1 w2 .... wNelem

] are deter-
mined with the aim to make sure that the receiving beam center exactly points to
the direction of central position, given by [69]

wn = exp

{
−j · 2 · π · n · d

λ
· sin(θ0)

}
, (5.6)

where θ0 is the scalar steering angle or direction of interest.

Table 5.3: Simulation parameters of the planar antenna array

Parameter Symbol Value
Antenna height La 5 m
No. channel in elevation Nchel 34
No. of antenna elements/channel Nelem 1
Element spacing d 14.3 cm
Elevation beamforming algorithm - Time-variant weighting
Number of active elements for
elevation beamforming Nact 34

Table 5.3 displays the parameters of the antenna system used in this section, in
addition to general data parameters in Table 5.1. The mapping of five swaths covers
an approximate total swath width of approximately 300 km on the ground.

Figure 5.11(a) and (b) show the simulated SCORE beams. It is important to note
that in SCORE, the RX antenna pattern changes as the beams follow the received
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Figure 5.11: SCORE beam as a result of DBF processing: (a) exemplary two-dimensional
pattern (b) and its cut at zero Doppler (c) equivalent pattern (d) cut of
equivalent pattern zero Doppler. The blue vertical lines indicate the boundary
between the simulated swath segments. In (b) and (d), the circles indicate
useful signals, and the crosses indicate range-ambiguous signals.

echoes along the swath. To offer an improved way of visualizing the SCORE beams,
Figure 5.11(c) and (d) have been added. These figures demonstrate the equivalent
pattern, which is defined as the collection of the antenna pattern gains at the lo-
cations of the mainlobe and sidelobes the SCORE pattern sweeps the entire swath,
expressed by

g”(θs) =
∑
j

∑
k

gDBF,j(θs) · δ(θs − θjk), (5.7)

where θjk is the look angle at the location of j, k; j denotes index of the SCORE
pattern, sweeping from the intended swath minimum look angle θmin to the maxi-
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mum look angle θmax; k the integer number indicating the order of the ambiguity
where k = 0 is the useful signal; and δ the Kronecker delta.

It is worth mentioning that the empty regions in the far range of the first beam and
the near range of the fifth beam of the equivalent pattern, i.e., Figure 5.11 (c) and
(d), are due to the fact that in this simulation, the maximum order of ambiguity is
4. Ambiguities beyond the 4th order are not simulated since they are less significant,
especially in the case of five elevation beams SAR systems.

Figure 5.12: Mixing matrix, APLA, extracted from SCORE DBF antenna patterns. The
blue vertical lines indicate the boundary between the simulated swath seg-
ments.

The mixing matrix for planar antenna case, APLA as illustrated in Figure 5.12,
is derived from the antenna pattern, as outlined in Section 3.1. It is evident from
the figure that the values of the mixing matrix vary over range time but remain
constant across Doppler frequency. As a result, the dependency condition of the
mixing matrix occurs solely along the range direction, leading to a range-dependent
mixing matrix.

The initial analysis focuses on the influence of the stacking approach. Figure
5.13 illustrates the impact of varying numbers of stacked azimuth lines (Nsta =

1, 30, 100, 900) on the performance of the BSS method. Although the stacking ap-
proach evidently improves the performance, further investigation of the RASR per-
formance dependence on the number of stacked azimuth lines is demonstrated in
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Figure 5.14. The figure indicates that beyond Nsta = 200, the performance beg-
ins to degrade due to range dependent variations surpassing the improvement. This
trend differs from the case of the range-independent mixing matrix, where the RASR
performance improves as the number of Nsta increases due to the lack of range de-
pendent variations in the case of the range-independent mixing matrix. The figure
also demonstrates that the RASR value increases along the range direction, which
is commonly observed in real SAR environments.

Figure 5.13: RASR performance for the case of APLA. The BSS is applied on the range-
compressed data with RCM. The stacking optimization approach is included.
The number of stacked azimuth lines is: (a) Nsta = 1; (b) Nsta = 30; (c)
Nsta = 100; (d) Nsta = 900.

The trend highlights the necessity of empirical analysis when dealing with the de-
pendencies of the mixing matrix along the range, to determine the optimal Nsta that
yields the best RASR performance. Based on the discussion of the stacking approach
in Section 4.2.2 and the outcome presented in Figure 5.14, two conclusions can be
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Figure 5.14: Average RASR performance, for the case of APLA, versus number of stacked
azimuth lines. The BSS is applied to range-compressed data with RCM.

inferred: (i) until Nsta = 90, the stacking approach improves the performance si-
gnificantly more than the degradation caused by the underestimation of the mixing
matrix; (ii) above Nsta = 200, the degradation due to the underestimation of the
mixing matrix exceeds the performance improvement due to the stacking approach.
The latter observation is consistent with the results observed in the case of a range-
independent mixing matrix, where the improvement achieved through the stacking
approach saturates for Nsta > 200.

The impact of the azimuth sub-band decomposition approach on the performance
is assessed by applying the method to varying numbers of sub-bands while fixing
the number of stacked azimuth lines. Figure 5.15 demonstrates how different num-
bers of azimuth sub-bands (Nsub = 1, 5, 11, and 15) affect the performance of the
BSS method. The RASR performance is found to be relatively consistent across the
different sub-bands, with the exception of Nsub = 15, which exhibits lower perfor-
mance. The lower performance for the far-range swath is due to the contribution
of out-of-swath ambiguities, which considerably affect the far-range swath, as seen
in the high sidelobe level of the out-of-swath far-range antenna pattern in Figure
5.11.

Figure 5.16 investigates the relation between the number of azimuth sub-bands
and RASR performance. Since the mixing matrix in the planar system is Doppler-
independent, the effect of the azimuth sub-band decomposition is similar to the case
of a mixing matrix in Section 5.2. Furthermore, the analysis presented in Figure 5.16
encompasses two primary issues. First, the discussion involves the impact of RCM
on performance, which was initially mentioned in the azimuth sub-band approach
discussion in Section 4.2.3, namely, that RCM degrades performance and could be
overcome through an azimuth sub-band decomposition approach. Second, when the
sub-band decomposition technique is performed, the data of each sub-band have
a lower bandwidth, resulting in a more Gaussian distribution as indicated by the
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Figure 5.15: RASR performance for the case of APLA. The BSS is applied to the range
compressed data. The stacking approach (Nsta = 100) and the azimuth sub-
band decomposition are included. The number of sub-bands is: (a) Nsub = 1;
(b) Nsub = 5; (c) Nsub = 11; (d) Nsub = 15.

Figure 5.16: Average RASR performance, for the case of APLA, versus number of azimuth
sub-bands. The BSS is applied to range-compressed data with RCM.
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Figure 5.17: Simulated planar L-band SAR images: (a) ambiguity-free image; (b) ambi-
guous image; (c) ambiguity-suppressed image. The horizontal axis indicates
the range direction, the vertical axis azimuth. The spatial separation between
the simulated swath segments is here not visualized.

lower CSK value in Table 5.2. Accordingly, when the value of the mixing matrix
is dependent along the Doppler direction, the overall RASR performance will be
degraded.
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Based on the aspects mentioned earlier, two conclusions can be drawn. Firstly, for
Nsub values up to 13, the degradation caused by the sub-band technique due to the
reduction of the non-Gaussianity level is well compensated by the improvement due
to mitigating RCM effect. Secondly, for Nsub values greater than 13, the degrada-
tion due to the sub-band technique becomes greater than the improvement due to
mitigating the RCM effect. Therefore, in the present case, the number of azimuth
sub-bands can be chosen within 0 ≤ Nsub ≤ 10.

Based on the empirical analysis of the planar antenna, it is concluded that the
optimal values for Nsta and Nsub are in the ranges of 90−200 and 0−10, respectively.
It should be noted that the reference system in this chapter operates in L-band. For
X-band systems, the level of RCM is significantly lower than for L-band systems,
which makes the use of the azimuth sub-band decomposition approach less effective,
as the contribution of RCM in performance degradation is also less significant.

Figure 5.17 presents a qualitative assessment of the effectiveness of the ambiguity
suppression. The figure displays a comparison between the simulated ambiguity-free
SAR image, the ambiguous SAR image, and the ambiguity-suppressed SAR image.
For simplicity, the spatial separation between the simulated swath segments is not
visualized. To highlight the achieved ambiguity suppression, a closer view of the
areas marked by red boxes is included. These areas reveal a substantial improve-
ment resulting from the proposed method, especially for backscattering surfaces such
as the sea. These surfaces are characterized by low intensity and are significantly
impacted by ambiguous disturbances.

5.4 Range- and Doppler-Dependent Mixing
Matrix

In this section, the proposed method is applied to a system encountering a range-
and Doppler-dependent mixing matrix, specifically a SAR system with an array-fed
reflector antenna with SCORE beams. Similar to the planar system, this section
commences by demonstrating simulated multiple SCORE beams for the array-fed
reflector system.

The array-fed reflector antenna system is composed of a reflector dish and an array
of feed elements. The positioning of the feed elements in the array is determined
by the desired radiation pattern of the antenna, which is typically arranged in a
regular grid pattern on a planar surface. The relative phase and amplitude of each
feed element is determined by its position within the grid, with the spacing between
elements typically being a fraction of the operating frequency wavelength. The size
of the grid is chosen based on the desired aperture size and resolution.
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The design process usually involves modeling the antenna system using electroma-
gnetic simulation software, and then adjusting the position and phase of each feed
element until the desired radiation pattern is achieved. In this thesis, the radiation
pattern of each feed element are identical from the work of Tandem-L mission [65]. As
a result, the simulator employed for this type of antenna has been simplified, using
only the MVDR beamforming algorithm to direct the beam in a specific direction,
as determined by:

gDBF (θs) =
∑

n∈Nact

wn · gn(θs), (5.8)

where θs is the look angle; Nact the number of activated array channels; wn the
weight applied to the n-th channel; and gn(θs) describes the radiation pattern of the
individual channel.

Table 5.4: Simulation parameters of the array-fed reflector antenna

Parameter Symbol Value
Diameter d 15 m
No. channel in elevation Nchel 35
Focal length lfc 13.5 m
Feed element spacing d 15.7 cm
Number of simultaneous elevation beams N 5
Elevation beamforming algorithm - MVDR
Number of active elements for
elevation beamforming Nact 5

To obtain the weight vector w, it is recalled that the MVDR weight vector is given
by:

w =
R−1

covg(θ0)
gH(θ0)R−1

covg(θ0)
, (5.9)

where g = {g(n)|n ∈ Nact} is the steering vectors; Rcov the covariance matrix of
the received signals at the array; and θ0 is the steering of the pattern. While the
weight vector formulation relies on the received signal, it is important to note that in
the simulation, the pattern generation step is independent of the signal. Therefore,
in this simulation it is assumed that Rcov = I. Accordingly, the weight vector is
simplified to

w =
Ig(θ0)

gH(θ0)Ig(θ0)
,

=
g(θ0)

gH(θ0)g(θ0)
.

(5.10)
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In this case, it can be seen that the MVDR weight vector is proportional to the
matched filter weight vector but scaled to achieve unity gain in the direction of
interest, θ0. Therefore, the simplification where Rcov = I still maintains the unity
gain requirement of the MVDR beamformer.

Figure 5.18: SCORE beam as a result of DBF processing from an array-fed reflector: (a) ex-
emplary two-dimensional pattern and its (b) cut in zero Doppler (c) equivalent
pattern (d) cut of equivalent pattern in zero Doppler. The blue vertical lines
indicate the boundary between the simulated swath segments. In (b) and (d),
the circles indicate useful signals, and the crosses indicate range-ambiguous
signals.
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Table 5.4 outlines the parameters of the reference system utilized in this section,
which has been designed partially similar to Tandem-L [40]. The system comprises
a Transmit-Receive Module (TRM) with a peak power of 143W and employs a
reflector antenna with a 15-meter diameter. This design ensures that the system
achieves a Noise Equivalent Sigma Zero (NESZ) below -25 dB, signifying a high
sensitivity to detect radar echoes. Consequently, the system is configured to map
five swaths, covering a total ground swath extent in the order of 300 km with an
azimuth resolution of 6 m. The main difference compared to Tandem-L regards the
orbit height, which is lower due to the intention of introducing a slightly higher
range-ambiguity value.

In contrast to the planar system where all Rx channels must be activated to form
the SCORE beam, the array-fed reflector antenna requires only few active channels
to create a narrow SCORE beam for each range. This characteristic showcases the
advantages of using an array-fed reflector antenna system, which demands fewer
activated channels compared to a planar antenna to obtain SCORE beams. However,
in the Tx beams, all channels must be activated to produce a wide beam. This
behavior stands in contrast to the planar system, which necessitates all channels to
be active in the Rx beams, illustrating the opposite behaviors of the two antenna
types concerning channel activation for beam generation.

Figure 5.18 presents the multiple SCORE two-way patterns and their corresponding
equivalent patterns. The resulting mixing matrix ATDL derived from these patterns
is depicted in Figure 5.19. It can be observed that the values of the matrix vary
along both the range and Doppler dimensions, indicating the existence of a range-
and Doppler-dependent mixing matrix. This dependency leads to a more complicated
mixing matrix structure, as compared to the case of planar antenna array systems.
Furthermore, it is worth noting that the off-diagonal elements in ATDL have two
significant characteristics: (i) their values exhibit a strong variation, particularly
along the range direction; and (ii) they can reach extremely low values of -35 dB.
These characteristics make the successful application of the method challenging. As
compared to a planar antenna, the RASR value in a reflector antenna is lower, and
this also becomes another advantage of using a reflector antenna.

Since a system with a range- and Doppler-dependent mixing matrix leads to a more
challenging mixing matrix structure compared to other previously discussed sys-
tems, a more detailed and comprehensive analysis will be conducted. The initial
analysis will focus on distributed targets, emphasizing the RASR as a key metric.
Subsequently, the second analysis will assess the method’s impact on the impulse
response quality.
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Figure 5.19: Mixing matrix, ATDL, extracted from Tandem-L DBF antenna patterns. The
blue vertical lines indicate the boundary between the simulated swath seg-
ments.

5.4.1 Performance Analysis

The SAR input data used in this analysis refer to the range-compressed data where
the RCM is not corrected, as depicted in Figure 5.3(c). The first analysis focuses on
evaluating the performance of the BSS method solely using the stacking approach,
without implementing the azimuth sub-band decomposition approach. Figure 5.20
displays the RASR performance for various numbers of stacked azimuth lines, spe-
cifically Nsta = 1, 30, 100, and 900. In general, employing the stacking technique
leads to a substantial improvement in RASR performance, as observed in the case
discussed in Sections 5.2 and 5.3, respectively.

To determine the optimized value of Nsta, it is essential to conduct another empiri-
cal analysis because the currently considered system, the array-fed reflector anten-
na, may possess a different optimized value of Nsta compared to a planar antenna
system due to the fact that the optimized value depends on the antenna pattern.
Figure 5.21 summarizes the impact of the varying number of Nsta on the average
RASR performance. Examining the results presented in Figure 5.21, three conclusi-
ons can be drawn: (i) Until Nsta = 100, the stacking approach significantly enhances
RASR performance, despite the underestimation of the mixing matrix; (ii) Beyond
Nsta = 100, the degradation resulting from the underestimation of the mixing ma-
trix outweighs the improvement gained from the stacking approach; (iii) Starting
from Nsta = 450, the degradation due to the underestimation of the mixing matrix
becomes comparable to the improvement obtained from the stacking approach. This
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third observation suggests that ATDL exhibits lower variation along range compared
to the mixing matrix of a planar antenna, APLA.

Figure 5.20: Assessment of the stacking approach by RASR performance for the case of
ATDL. The BSS is applied in the range compressed data. The number of
stacked azimuth lines is: (a) Nsta = 1; (b) Nsta = 30; (c) Nsta = 100; (d)
Nsta = 900.

This finding confirms the significance of the performance degradation caused by the
limited number of samples, as discussed in Section 4.2.2, and further validates the
numerical justification for using the stacking approach as a way to provide a larger
number of samples and to reduce the number of outliers, as presented in Section
5.2. This issue outweighs the degradation caused by the Doppler-dependent mixing
matrix.

The next analysis examines the combined empirical effect of stacking and azimuth
sub-band strategies on achieving optimal RASR performance. The analysis involves
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Figure 5.21: Average RASR performance, for the case of ATDL, versus number of stacked
azimuth lines. The BSS is applied to range compressed data with RCM.

Figure 5.22: Assessment of combined approach by RASR performance for the case of
ATDL. Nsta = 100 is selected and the number of azimuth sub-bands is varied:
(a) Nsub = 1; (b) Nsub = 3; (c) Nsub = 7; (d) Nsub = 15. The BSS is applied
to the range-compressed data.
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Figure 5.23: Average RASR performance of combined approach, for the case of ATDL, with
respect to Nsta = 100 and varying number of azimuth sub-bands. The BSS is
applied to range-compressed data with RCM.

evaluating Nsta = 100, the optimal number of stacked azimuth lines, while vary-
ing the number of sub-bands (Nsub = 1, 5, 11, and 15). The results are presented
in Figure 5.22. Although the azimuth sub-band approach shows less improvement
compared to the stacking approach, it is still evident that when both strategies are
combined, a notable improvement of approximately 8 dB is observed for Nsub = 7,
particularly in the subswaths centred at slant ranges of 790 km and 840 km.

Figure 5.22 also highlights that range ambiguity suppression performs less well in
the far range subswath compared to the other subswaths. This is attributed to the
contribution of the out-of-swath ambiguity signals that are still significant enough in
the far range subswath. This reflects the imperfect attenuation of range ambiguities
in the far range by the Tx pattern. The issue could be solved by either having a
better shape of the Tx pattern or adding an additional auxiliary Rx beam to collect
appropriate data from the far range region.

The discussion regarding the impact of the number of azimuth sub-bands on RASR
performance, along with the utilization of the stacking approach, as summarized in
Figure 5.23, can be categorized into four aspects: the variation of ATDL along the
Doppler direction, range cell migration, the gain of the antenna pattern in non-zero
Doppler regions, and the statistics of the sub-band data. Based on the analysis of
these aspects, two conclusions can be drawn: (i) until Nsub = 7, the improvement
due to the variation of ATDL and the range cell migration effect, as discussed in
Section 4.2, outweighs the degradation due to the reduction of non-Gaussian values
within each sub-band; (ii) from Nsub = 7, the degradation due to the previously
mentioned reasons is greater than the improvement. Moreover, it can be observed
that the azimuth sub-bands offer a lower improvement in performance compared
to the stacking approach, as the antenna pattern values, weighting the ambiguous
signals, already aid in suppressing the range ambiguities components in the non-zero
Doppler region.
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In summary, the optimal RASR performance is obtained when using Nsub = 7

and Nsta = 100, resulting in a range ambiguity suppression average of 6 dB. It is
important to note that the ideal number of stacked azimuth lines heavily depends
on the length of data take. When the longer data are considered, the number of
stacked azimuth lines can be reduced. Additionally, the number of stacked azimuth
lines and azimuth sub-bands also depends on the assumed antenna patterns and
how the main-to-sidelobe ratio varies with range and azimuth. Therefore, the values
obtained in this study should be applicable to similar antenna designs.

5.4.2 Further Analysis

Since the SAR system with an array-fed reflector antenna leads to the most challen-
ging mixing matrix structure, it is worth discussing this method in more detail.

The initial discussion concerns the sequence of implementing two optimization stra-
tegies: stacking and azimuth sub-band decomposition. In the proposed method
as suggested in Figure 4.6, the azimuth sub-band approach is applied before the
stacking approach. Figure 5.24 illustrates that when these strategies’ order is re-
versed, implementing stacking first followed by the azimuth sub-band approach, a
similar result is obtained.

Figure 5.24: Comparison of RASR performance when the order of implementing two stra-
tegies is reversed: (a) azimuth sub-band approach implemented first, followed
by the stacking approach, as seen in Figure 5.22(c); and (b) stacking approach
implemented first, followed by the azimuth sub-band approach.
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The second discussion concerns the resilience of the proposed method against the
range cell migration (RCM) effect. To assess this, a parameter modification is perfor-
med by doubling the wavelength value. Referring to equations (4.9)-(4.11), doubling
the wavelength leads to a fourfold increase in the amount of RCM that needs cor-
rection. The simulated value of range cell migration is depicted in Figure 5.25.

Figure 5.25: RCM simulation depicting the scenario involving range-compressed data of
the useful target combined with range-ambiguous target for: (a) Reference
L-band SAR. (b) A modified λ = 48 cm, i.e., twice the reference value, as in
P-band SAR. The plot is represented in the range-Doppler domain.

The proposed method is applied to the SAR input using suggested optimal strate-
gies, which involve implementing uncorrected RCM in range-compressed data and
employing stacking strategies with 100 azimuth lines (Nsta = 100), along with azi-
muth sub-band decomposition strategies utilizing 7 azimuth sub-bands (Nsub = 7).
Figure 5.26 displays the results of the proposed method in a scenario with a fourfold
increase in range cell migration. It demonstrates the effectiveness of the proposed
method in handling such a case. A comparison of these results with those obtained
by applying the proposed method to the reference systems, as depicted in Figure
5.22 (c), indicates a similar level of performance. This validates the robustness of the
proposed method against RCM. In the case of a higher amount of RCM, a higher
Nsub is expected to improve performance with increased uncorrected RCM, outweig-
hing the degradation from azimuth-dependent mixing matrix effects, although the
improvement is anticipated to be modest.
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Figure 5.26: RASR performance for the system with 4 times reference system’s RCM.

To further clarify the advantages of the proposed method, the third discussion pres-
ents a performance comparison between this method and others. Figure 5.27 il-
lustrates two relevant benchmarks for range ambiguity suppression: the MVDR as
proposed in [72], which requires knowledge of the antenna pattern, and the BSS ap-
proach based on second-order blind identification (SOBI) as proposed in [53], which
does not require knowledge of the antenna pattern. To simulate more realistic input
data accounting for inaccuracies in the knowledge of the antenna pattern, digital
channel errors are introduced. These errors include phase error standard deviation
levels of σζ = 40◦ and magnitude standard deviation levels of σξ = 0.2, as described
in [72] and illustrated in Figure 5.28. Furthermore, various levels of noise are added
to the simulated SAR data, leading to mean image data SNR of 15 dB and 10 dB.
It is important to note that both simulated SNR values are realistic for advanced
HRWS L-band systems with a NESZ of -25 dB. Additionally, it is noted that SAR
data can have varying SNR values depending on incident angle and polarization
type [127], [128].

The results obtained are reported in Figure 5.27 (a) and (b), respectively for SNR
= 15 and 10 dB. These results demonstrate that the proposed method outperforms
the others in both simulated scenarios. Particularly, an improvement of up to 10 dB
in the near range can be achieved. Additionally, as expected from [97], [98], [99],
the proposed method based on HO BSS exhibits higher robustness against noise
compared to the SOBI (method based on SO BSS) in [53]. Even in noisier conditions
(SNR = 10 dB), the proposed method continues to perform well, while the method in
[53] shows a degradation of about 3 dB. The implementation of the SOBI algorithm
in this case adopts the code described in [129], with the modification in a time-
lagged covariance matrix to comply with the complex-valued signal, following the
description in [94].

It is worth to note that the results shown in Figure 5.27 for MVDR are somewhat
optimistic. The simulation simplifies the scenario by solely considering digital chan-
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Figure 5.27: The RASR performance of different range ambiguity suppression methods,
including MVDR (blue), SOBI (orange), and the proposed method (green).

Figure 5.28: Example of two-way reflector antenna gain after MVDR beamforming in cases
with and without digital channel errors, shown in blue and orange, respective-
ly.

nel errors, which has a minimum effect in the reflector antenna pattern as modeled
by [72] and shown in Figure 5.28. In reality, other errors stemming from pattern
uncertainty, mispointing, and deformation of the reflector antenna must also be ta-
ken into account. These factors can significantly degrade the performance of the
MVDR method. Conversely, the proposed method exhibits robustness even when
considering these errors, resulting in a potentially wider performance gap between
the proposed method and other deterministic methods.
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Figure 5.29: Simulated L-band SAR images: (a) ambiguity-free image; (b) ambiguous
image; (c) ambiguity-suppressed image. The horizontal axis indicates the ran-
ge direction, the vertical axis azimuth. Here, the spatial separation between
the simulated swath segments is not visualized.

Finally, a qualitative assessment of the effectiveness of ambiguity suppression is
presented in Figure 5.29. The figure compares three images: the simulated ambiguity-
free SAR image, the ambiguous SAR image, and the ambiguity-suppressed SAR
image. To maintain simplicity, the spatial separation between the simulated swath
segments is not visualized. Accordingly, it is important to note that the brightness
gap is visible, for instance, in the middle-right of the image, due to the fact that
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each subswath is simulated and processed individually. In fact, there is no continuity
between subswaths due to the limited number of simulated samples.

To emphasize the achieved ambiguity suppression, a closer view of the areas marked
by red boxes is provided in Figure 5.29. These areas demonstrate a significant im-
provement attributed to the proposed method, especially in backscattering surfaces
such as the sea, characterized by low intensity and strongly affected by ambiguous
disturbances.

5.5 Conclusions

This chapter commenced by describing the generation of range ambiguous SAR da-
ta obtained from a SAR system employing multiple elevation Rx beams to acquire
an HRWS image (Section 5.1). The RABSS method was empirically analysed using
SAR data affected by ambiguities stemming from a range- and Doppler-independent
mixing matrix (Section 5.2). The analysis demonstrated that when dealing with the
issue of range ambiguities which cannot be well suppressed when using BSS only,
the stacking approach significantly improves performance. Conversely, the azimuth
sub-band approach, on the other hand, slightly degrades performance. Subsequent-
ly, more realistic SAR data were presented, concentrating on multichannel SAR
data obtained by a planar antenna system with SCORE (Section 5.3), leading to
a range-dependent mixing matrix case. It is concluded that the azimuth sub-band
decomposition approach provides no improvement due to the balanced trade-off bet-
ween performance enhancement resulting from RCM and degradation due to lower
bandwidth in sub-band data. Furthermore, the stacking approach yields significant
improvement, highlighting the necessity of empirical analysis to determine the opti-
mized number of stacked azimuth lines.

Furthermore, the RABSS method was applied to another SAR system, employing
an array-fed reflector antenna, and the results were investigated in Section 5.4. This
investigation demonstrated the effectiveness of the proposed method in handling
dependencies of mixing matrix values along both the range and Doppler dimensions.
The obtained results show that the method can achieve a maximum range ambiguity
suppression of 16 dB, with an average suppression of 6 dB, even under challenging
conditions, including five receive beams and a relatively high SNR of 10 dB.

In the more detailed discussion in Section 5.4.2, the RABSS method was compa-
red with other methods, demonstrating that the proposed method outperforms the
others. The promising results showcase the RABSS method’s effectiveness in sup-
pressing range ambiguities in SAR systems with multiple receive beams. These re-
sults indicate the potential for even greater improvement, especially for low-intensity
backscattering surfaces commonly encountered over the sea, which typically exhi-
bit high range ambiguity disturbances. However, the RABSS method performs less
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effectively in the far range. This is attributed to the contribution of out-of-swath
ambiguity signals that are still significant in the far range subswath. It reflects the
imperfect attenuation of out-of-swath range ambiguities in the far range by the Tx
pattern.

It is crucial to note that the SAR image considered in the assessment displays a rela-
tively heterogeneous distribution, indicating a non-Gaussian statistical distribution.
This selectivity somewhat limits its applicability, as many real-world scenes, such as
forests and seas, often exhibit homogeneity. To address this limitation, an enhanced
method is proposed in Chapter 6. This method aims to tackle range ambiguities
in scenarios where the scene is relatively homogeneous, complementing the current
approach.
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The range ambiguity suppression based on the higher-order blind source separation
(RABSS) method has proven to be successful in various types of multichannel SAR
systems. However, the SAR data considered in the previous chapters are heteroge-
neous and thus exhibit non-Gaussian statistics, which may not always be represen-
tative for all SAR scenarios. In the actual mission scenario, there are different types
of imaged surfaces, ranging from heterogeneous to homogeneous surfaces, where the
implementation of RABSS for homogeneous surfaces is expected to lead in poor
performance due to Gaussian statistics. This chapter assesses the accuracy of the
RABSS method in estimating the mixing matrix, a crucial element in suppressing
range ambiguities. Accordingly, a comprehensive solution is provided on how the mi-
xing matrix estimation is obtained to deal with different types of imaged surfaces,
as expected in the actual mission scenario.

The chapter commences with the implementation of the RABSS method for various
types of SAR data (Section 6.1), aiming to demonstrate that challenges related to the
RABSS method within homogeneous SAR data do exist. Subsequently, a proposed
calibrated mixing matrix estimation method is introduced in Section 6.2 to resolve
the issues encountered with the RABSS method in homogeneous SAR images. In
fact, Section 6.2.1 presents a comprehensive solution, named the calibrated range
ambiguity suppression method and abbreviated as C-RABSS, to effectively tackle
the range ambiguities problem across diverse data scenes, encompassing both hete-
rogeneous and homogeneous images. Section 6.2.2 further includes simulation and
numerical analysis of the proposed method, implemented on various multichannel
SAR datasets. Finally, Section 6.3 concludes the chapter with closing remarks. Part
of the material in this chapter has been published in [50], [51].

6.1 Challenges within Homogeneous SAR
Images

It is discussed in [121], [122] that SAR images can be divided into homogeneous regi-
ons, heterogeneous regions, and extremely heterogeneous regions. Forested areas are
an example of homogeneous regions, which are densely covered with trees of similar
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Figure 6.1: The dataset consists of nine SAR images. The horizontal axis represents the
range direction, while the vertical axis represents the azimuth direction. The
simulated data are derived from complex SAR image TerraSAR-X mission [112].

height and type, creating a relatively uniform landscape. In contrast, heterogeneous
regions such as urban areas include buildings of various heights, roads, open spaces,
and different types of structures. These different degrees of heterogeneity are related
to the non-Gaussianity of the data.
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Here, nine TerraSAR-X mission datasets are presented. Accordingly, the datasets
are processed by the simulator utilizing an array-fed reflector antenna as demons-
trated in Section 5.3 and consequently following the L-band system parameters in
Table 5.4. Specifically, the simulator implements a multi-beam operational mode: a
broad Tx beam illuminates a swath on the ground of approximately 300 km; a pulse
repetition frequency (PRF) of 2700 Hz is chosen to achieve an azimuth resolution
of 6 m; five narrow SCORE Rx beams are simulated simultaneously to collect the
echoes from five mutually range-ambiguous subswaths. Accordingly, during the ima-
ging processing, the system receives four strong ambiguous echoes. Moreover, two
out-of-swath ambiguities are considered, originating from the near and far range,
respectively. Furthermore, the selection of a system with an array-fed reflector an-
tenna using SCORE is motivated by the challenges it poses in terms of the mixing
matrix structure. Accordingly, the value of the mixing matrix is dependent on both
range-time and Doppler-frequency. The off-diagonal elements of the mixing matrix
in this case are relatively low in absolute value, which is known to be more difficult
to estimate, as discussed in Section 3.4.5.

The simulated SAR data are depicted in Figure 6.1. Qualitatively, variations in
homogeneity levels across the simulated data are observable: scenes (3) and (5)
exhibit extreme heterogeneity, while scenes (1) and (6) are highly homogeneous;
the remaining scenes fall in between these extremes. It is important to note that,
although the SAR data presented in Figure 6.1 represent focused images, the input
for the RABSS method are range-compressed data as proposed in Chapter 4.

The initial analysis focuses on assessing the accuracy of the RABSS method in
estimating the mixing matrix, a crucial element in suppressing range ambiguities.
Furthermore, the assumed mission scenario for the RABSS method is performing
an adaptive estimation of mixing matrix, i.e., for the each received dataset, the
mixing matrix is estimated, and subsequently, range ambiguities are suppressed.
Here, each dataset has a length of approximately 50 km. This means that in this
scenario, RABSS is applied over a short acquisition interval. Among the nine datasets
displayed in Figure 6.1, the first example of mixing matrix estimation occurs for
scene (6). Figure 6.2 illustrates a comparison between the amplitude and the phase
of the estimated matrix obtained through the RABSS method and the actual mixing
matrix obtained through simulation. The results indicate that the estimated matrix
does not align well with the actual one, both for amplitude and phase due to the
homogeneity of the dataset.

The second example of mixing matrix estimation is given for scene (5). Accordingly,
Figure 6.3 shows the comparison between the estimated matrix obtained through the
RABSS method and the actual mixing matrix for scene (5). The estimated mixing
matrix exhibits a close agreement with the actual matrix. The RABSS method
demonstrates a reliable estimation, not only in terms of amplitude, but also in phase.
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Figure 6.2: Amplitude (a) and phase (b) of the actual and estimated mixing matrix, ob-
tained by the RABSS method implemented on scene (6) of Figure 6.1. The top
plot shows the 2-D estimated mixing matrix. The bottom plot compares the
estimated and actual zero-Doppler mixing matrices, indicated by the green and
brown curves, respectively.

The accurate estimation of phase, besides crucial for range ambiguity suppression,
also crucial for interferometry investigations.

To further numerically justify the accuracy of mixing matrix estimation, the simila-
rity between the estimated pattern and the actual pattern is evaluated across both
the range-time and Doppler-frequency domains. This similarity is quantified using
the mixing matrix correlation coefficient, calculated as follows:

râ,a =

∣∣∣∣∣
N×Na×Nr∑

i=1

(
âi − ¯̂a

)(
ai − ā

)∣∣∣∣∣√√√√N×Na×Nr∑
i=1

(
âi − ¯̂a

)2√√√√N×Na×Nr∑
i=1

(
ai − ā

)2 , (6.1)

where â and a denote the estimated and actual element of the mixing matrix A; ¯̂a
and ā represent the mean values of the estimated and actual matrices, respectively;
Nr the number of range samples for each subswath in time domain; Na the number
of azimuth samples in Doppler domain; and N number of elevation beams. Index i

refers to the index of the data samples. The value of the mixing matrix correlation
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Figure 6.3: Amplitude (a) and phase (b) of the actual and estimated mixing matrix, ob-
tained by the RABSS method implemented on scene (5) of Figure 6.1. The top
plot shows the 2-D estimated mixing matrix. The bottom plot compares the
estimated and actual zero-Doppler mixing matrices, indicated by the green and
brown curves, respectively.

coefficient, r, ranges between 0 (indicating the worst similarity) and 1 (representing
the best similarity).

The matrix correlation coefficient results of the RABSS method for the datasets
shown in Figure 6.1 are provided in Table 6.1. It is seen that for scenes (3) and (5)
the correlation coefficients are the highest, indicating the most accurate estimation
of the mixing matrix. On the other hand, scene (6) has the lowest value, indicating
a poor estimation of the mixing matrix due to the homogeneity of the scene, which
is quantified by the index proposed in the next section.

Table 6.1: Mixing matrix correlation coefficient

1 2 3 4 5 6 7 8 9

Correlation coefficient 0.38 0.73 0.89 0.83 0.92 0.14 0.85 0.4 0.79

The final analysis concerns the RASR performance of the RABSS method. Figure
6.4 presents the RASR performance of the RABSS method for the datasets shown
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Figure 6.4: RASR performance of range ambiguity suppression method without calibration
for datasets in Figure 6.1. The red and green curve show RASR for original,
after range ambiguity suppression method based on HO-BSS, respectively. The
blue vertical lines indicate the boundary between the simulated swath segments.

in Figure 6.1. The results reveal that the RABSS method works well in suppressing
range ambiguities for heterogeneous scenes, such as those in Figure 6.1(3) and (5).
On the other hand, for the homogeneous scenes, Figure 6.1(1) and (6), the RASR is
actually worse after applying the RABSS method compared to before its application.
Therefore, it is concluded that the RABSS method faces significant challenges when
dealing with relatively homogeneous scenes.

Finally, it is worth to report that, based on the results presented in this section,
a good estimation of the mixing matrix correlates with effective range ambiguity
suppression. Figure 6.5 presents a plot that numerically justifies the relationship
between the mixing matrix correlation coefficient and the RASR. The accurate esti-
mation of the mixing matrix, shown by a high correlation coefficient, for instance in
scene (6), leads to good range ambiguity suppression, as indicated by a low average
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Figure 6.5: The relationship between RASR and mixing matrix correlation coefficients

RASR value. On the other hand, the poor estimation of the mixing matrix, shown by
a low correlation coefficient, for instance in scene (5), leads to poor range ambiguity
suppression, as indicated by a high average RASR value. Despite the general trend,
Figure 6.5 reveals a peculiarity for scene (8), where a moderate estimation of the mi-
xing matrix leads to relatively good RASR performance, at least in the near range.
This is attributed to the good RASR performance at low backscattering levels in the
near range (see Figure 6.4 (8) around 792 km slant range), where even a moderate
estimation of the mixing matrix yields satisfactory results due to ambiguities arising
from strong backscattering levels. Nevertheless, the relationship between mixing ma-
trix estimation performance and RASR performance validates the mixing matrix as
an important factor, highlighting its usefulness for the proposed calibration method
detailed in the following section.

6.2 Calibrated Mixing Matrix Estimation

6.2.1 Proposed Method

The varying performance of the RABSS method for different kinds of imaged surfaces
necessitates a need for a precise quantitative assessment of the suitability of SAR
input data. To address this, a separation index, labeled as sidx, is introduced as
a quantitative measure to evaluate the homogeneity of the SAR imaged scene. In
essence, the separation index serves as a means to provide an indication regarding the
effectiveness of the RABSS method due to the fact that RABSS uses HO BSS as the
main algorithm, and the performance of HO BSS heavily relies on the heterogeneity,
i.e., non-Gaussianity, of the SAR input data.

The formulation of this index is based on Gaussianity, derived from the fourth-order
cumulants, which is formulated using complex-signal kurtosis (CSK) as derived in
(3.43). CSK measures the deviation of a signal’s probability distribution from a
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Gaussian distribution. The magnitude of the CSK is 0 for a complex Gaussian dis-
tribution, and it may have either negative or positive non-zero values for a complex
non-Gaussian distribution [113]. It is worth noting that within the independent
component analysis (ICA), there is no specific criterion that precisely defines the
threshold for CSK level at which the method should be effective.

Figure 6.6: The data matrix of the SAR received signal with N elevation Rx beams.

Referring to the data matrix as illustrated in Figure 6.6, the separation index, which
may vary from 0 to 10, is formulated as follows:

sidx =


Nr∑
i=1

f(i)

Nr
× 10

, (6.2)

where ⌊·⌋ denotes the floor operator (lower integer associated with a floating num-
ber); Nr denotes the total number of range samples for each swath; and the function
f(i) of the i-th range sample is given by:

f(i) =

{
1, if Yi ≥ N − 1 ∀ 1 ≤ i ≤ Nr

0, otherwise
, (6.3)
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and

Yi =

N∑
j=1

[
|CSK(xj(i))| > 2.3

]
. (6.4)

Here,
[
·
]

is the Iverson bracket, serving as the indicator function that returns
1 if the condition inside is true and 0 otherwise. Furthermore, xj(i) denoting an
azimuth line of the j-th Rx data matrix for each of the N imaged subswaths, CSK
the complex signal kurtosis [113], and 2.3 being the assumed threshold value for a
Gaussian distribution based on empirical evaluation (i.e., a Gaussian distribution is
assumed to occur when the measured CSK value falls within the range of -2.3 to
2.3).

It is noteworthy that (6.3) is based on the principle of ICA [101]. This principle
suggests that for the ICA method to achieve good performance, it is preferable
for only one of the useful signals, s, to be Gaussian. Although the input used in
formulating the separation index corresponds to received signals, x, rather than
useful signals, s, the similarity in Gaussianity between these signals is significant.
Hence, the aforementioned ICA principle can be applied to the case of received
signals.

As has been discussed in Section 4.2, the RABSS method involves two optimization
strategies: azimuth sub-band decomposition and stacking. The former denotes as a
technique where the SAR received signal is divided into several Doppler sub-bands
to account for the dependence of the mixing matrix on the Doppler frequency. The
SAR input data of separation index calculation, xj(i), refers to the sub-band near
zero Doppler to maintain computational efficiency.

From (6.2)-(6.4) it can be seen that sidx is an integer number ranging from 0 to
10: the closer the value to 10, the lower the Gaussianity of the received signal, i.e.,
the better the expected RABSS performance in terms of estimation of the mixing
matrix. Moreover, since the Gaussianity level reflects the homogeneity of the imaged
backscattering surface, an sidx close to 10 denotes a heterogeneous scene.

The computed separation index value, sidx, serves the purpose of quantifying the
estimation of the mixing matrix by adjusting it according to the heterogeneity ob-
served in the imaged scene. Specifically, a threshold value kmin is empirically deter-
mined, such that when sidx > kmin, a significant heterogeneity is assumed and the
basic RABSS procedure is employed to obtain the estimated separation matrix, B̂.
Conversely, when sidx ≤ kmin, a relatively homogeneity is assumed and a different
approach is adopted: instead of applying the higher-order (HO) BSS directly to the
actual Rx signals, B̂ is adopted from a previously acquired scene with a sidx > kmin.
It is worth to remark that the selected threshold value, kmin, depends on the an-
tenna pattern and the acquisition geometry and, accordingly, it remains valid for a
given system and operational mode.
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Figure 6.7: Flowchart of the C-RABSS, integrating the computation of the separation in-
dex, calibration concept, and utilizing existing features of RABSS denoted by
the black boxes, such as performance optimization and blind source separation
(BSS).

In a comprehensive and detailed proposal, the method, here denoted as calibrated-
RABSS and abbreviated as C-RABSS, comprises four main steps as shown in Fig.
6.7. First, the separation index sidx is calculated. Second, the BSS method is applied
to scenes with sidx > kmin, resulting in the estimated separation matrix B̂ and
estimated signals ŝ. It is crucial to highlight that in order to anticipate a robust
performance of the BSS method, it is necessary for the scene to exhibit sufficiently
strong heterogeneity. Lastly, for scenes with sidx ≤ kmin, the input x is processed
using B̂ref to generate the estimated signals ŝ. It is important to note that when an
sidx value exceeds kmin, the computation of the mixing matrix relies on the current
acquisition scenario, even if a previous estimation with a higher sidx is available. This
approach ensures the accurate consideration of the actual antenna pattern shape,
which might be affected by factors such as temperature or pointing variations.

In the next section, as a proof of concept, C-RABSS will be verified based on the
previously presented datasets as shown in Figure 6.1, where each dataset is formed
from a short acquisition interval. However, in practice, the C-RABSS method is
not intended to be repetitively applied over short acquisition intervals; instead, it is
applied on longer data takes and therefore serves as a periodic calibration tool. The
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stacking optimization approach as discussed in Section 4.2.2 and Chapter 5 indicates
that longer azimuth data takes will improve the performance of the method. This
means that the mixing matrix can be more precisely estimated. Additionally, longer
azimuth data takes give the possibility of increasing the heterogeneity of the data.
For instance, when longer data are taken, the acquired data covering the scene in
Figure 6.1(1) might no longer be extremely homogeneous, because there will be a
chance to meet different types of backscattering structure, which will increase the
heterogeneity of the data. Furthermore, the stability of the mixing matrix can be
assumed over a few consecutive acquisitions.

6.2.2 Numerical Analysis

To perform a numerical analysis of the C-RABSS method, a reference DBF HRWS
SAR system based on an array-fed reflector antenna, as described in Section 5.4,
is considered. Similar to the previously discussed analysis in Section 6.1, the key
parameters are provided in Table 5.4, and the corresponding datasets are shown in
Figure 6.1.

The initial analysis concerns the computation of the separation index, as defined in
(6.2) and reported in Table 6.2. It can be seen that, as expected, scenes (1) and (6)
have the lowest separation index, while scenes (3) and (5) have the highest index.

Table 6.2: Calculated separation index for different scenes in Figure 6.1.

1 2 3 4 5 6 7 8 9

Separation Index 1 3 10 4 10 1 7 2 3

To validate the reliability of the separation index as a performance indicator for
the RABSS method when applied to SAR received signals, Figure 6.8 displays the
computed separation index values plotted against the average RASR performance of
the RABSS method. The plot clearly demonstrates a definitive relationship between
the separation index, indicating the homogeneity of the received signals, and the
RASR performance: higher index values, which correspond to heterogeneous SAR
received signals, lead to lower RASR values. Based on these observations, it can
be concluded that the formulated separation index effectively serves as a metric for
evaluating the RASR performance achieved by the RABSS method in relation to
the homogeneity of the SAR received signal.

Figure 6.9 illustrates the relationship between the computed separation index and
the mixing matrix correlation coefficient. The plot reveals that when RABSS is ap-
plied to a scene with a high separation index, for instance, scene (5), the accurate
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Figure 6.8: The relationship between the formulated separation index, sidx, and the average
RASR performance of RABSS when implemented for the scenes in Figure 6.1.

Figure 6.9: The relationship between the formulated separation index, sidx, and the mixing
matrix estimation of RABSS when implemented for the scenes in Figure 6.1.

estimation of the mixing matrix is obtained, shown by a high matrix correlation co-
efficient. On the other hand, when RABSS is applied to a scene with a low separation
index, for instance, scene (6), a poor estimation of the mixing matrix is obtained,
shown by a low matrix correlation coefficient. Based on these observations, it can
be concluded that the formulated separation index effectively serves as a metric for
evaluating the performance of mixing matrix estimation by the RABSS method in
relation to the corresponding SAR received signal.

To evaluate and validate the effectiveness of the proposed method in suppressing
range ambiguities, the RASR performance of the C-RABSS method for nine different
datasets are presented in Figure 6.10. It is observed that, in comparison, the RASR
after applying the C-RABSS method (indicated by the green curve) is lower than
the RASR before applying the C-RABSS method (indicated by the red curve) for
all scenes. This comparison highlights the benefit of utilizing the C-RABSS method
compared to the RABSS method. Notably, when only applying the RABSS method,
the homogeneous scene 1 and scene 6 exhibit significantly poorer RASR results
compared to the result before the RABSS method is applied as previously shown in
Figure 6.4. The findings confirm that the proposed C-RABSS method plays a crucial
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Figure 6.10: RASR performance for scenes in Figure 6.1. The red and green curves show
the RASR for the original image and after C-RABSS method, respectively.
The blue vertical lines indicate the boundary between the simulated swath
segments.

role in enhancing the performance of range ambiguity suppression, particularly in
relatively homogeneous regions.

Finally, in order to provide a qualitative assessment of the achieved ambiguity sup-
pression, Figure 6.11 shows three simulated, focused, SAR images. They all refer to
scene (8): (a) the ambiguity-free image; (b) the initial, ambiguous, image; (c) the
ambiguity-suppressed image, obtained by using the proposed C-RABSS method. It
is noted that each image consists of five subswaths, where each subswath is simu-
lated and processed individually, and there is no overlap between the subswaths.
Additionally, since there is no relative pattern correction, a brightness discontinuity
between the subswaths is visible, for instance, in the middle right of the image. This
final step can be easily implemented by a normalization factor for each sub-swath
so that the resulting image preserves its radiometric calibration.
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Figure 6.11: Simulated SAR scene (8) according to Fig. 6.1; (a) ambiguity-free image;
(b) ambiguous image; and (c) ambiguity-suppressed image using C-RABSS
method. The horizontal axis indicates the range direction, the vertical axis
the azimuth direction. The spatial separation between the simulated swath
segments is not visualized here. Here, no relative pattern correction is applied.

A closer examination of the areas indicated by the red boxes highlights the presence
of a significant ambiguity in Fig. 6.11 (b), and demonstrates the effectiveness of the
proposed C-RABSS method for range ambiguity suppression. The displayed range
ambiguity disturbance originates from a strongly backscattering point-like target,
located outside the red box on the right as indicated by the green arrow. Clearly
recognizable for this ambiguity are the smearing in the azimuth direction due to the
mismatched azimuth compression. The reduction in range ambiguities serves as a
clear indication of the positive impact of the C-RABSS method in enhancing the
overall quality of SAR images.
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6.3 Remarks

This chapter introduced the C-RABSS method, designed to complement the RABSS
method presented in Chapter 4. Its purpose is to address the limitation of the RAB-
SS method in handling homogeneous scenes, stemming from the non-Gaussianity
requirement in the HO BSS algorithm. To justify the limitation of RABSS, the
RABSS method’s evaluation involves nine complex-valued SAR datasets, covering
both homogeneous and heterogeneous backscatter characteristics.

The C-RABSS method includes the estimation of the separation index for each ac-
quired data set, providing an indication of whether HO BSS should be applied to
such data. When the separation index is low, C-RABSS proposes adopting the sepa-
ration matrix estimated from a previous high-separation index scene. Consequently,
C-RABSS offers a solution capable of effectively managing various levels of scene
homogeneity. The obtained results show that the RASR after the C-RABSS method
is lowered by up to 18 dB, with an average lowering of 6 dB for various surface
types. The C-RABSS method’s effectiveness in suppressing range ambiguities inde-
pendently of the specific, homogeneous or heterogeneous, backscatter of the imaged
scene clearly demonstrates the superiority of C-RABSS, compared to the RABSS
method. Furthermore, in practise, C-RABSS is not intended to be applied over short
acquisition intervals; instead, it will based on the longer data takes, which are ex-
pected to lead to more precise and stable mixing matrix estimation, thereby serving
as a periodic calibration tool.
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Concluding the thesis, this chapter presents an overview of the accomplished results
and provides an outlook on potential future research directions.

7.1 Thesis Objectives and Results

This thesis introduces a novel and robust method for effectively suppressing range
ambiguities in SAR systems with multiple elevation beams without adding comple-
xity on board. Chapter 2 extensively discusses the issue of range ambiguities in both
conventional SAR systems and multichannel SAR systems with multiple elevation
receive beams. It also justifies the significance of adopting a robust method for mul-
tiple elevation receive beam SAR, primarily due to the various errors that are often
overlooked in the majority of range ambiguity suppression methods. These errors
significantly impair the performance of range ambiguity suppression and, as a result,
degrade the overall image quality.

In Chapter 3, the cocktail party phenomenon is analytically derived in the context
of the multichannel SAR system. This derivation leads to the development of a
novel concept for range ambiguity suppression, eliminating the need for any prior
knowledge of the antenna pattern. The cocktail party phenomenon is closely linked
to the mixing matrix, a crucial parameter that characterizes the relationship between
useful signals and range ambiguities within the system, and it is directly related to
the shape of the antenna pattern. Chapter 3 thoroughly discusses and derives this
mixing matrix.

To address the cocktail party problem, a widely recognized technique called blind
source separation (BSS) is employed and validated specifically for the multichannel
SAR system. This verification demonstrates the effectiveness of blind source separa-
tion in tackling the challenges posed by the cocktail party phenomenon in SAR data
processing. However, despite the suitability of the cocktail party phenomenon in
classical problems and SAR, the implementation of BSS in SAR encounters signifi-
cant challenges, and thus, relying solely on BSS is not sufficient for suppressing range
ambiguities effectively. Section 3.3 thoroughly discusses and numerically justifies the
factors that degrade the application of BSS in SAR.
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To address these challenges, Chapter 4 proposes the RABSS method that combines
several strategies in conjunction with the BSS technique. This method is imple-
mented on the ground using downlinked data, adhering to one of the objectives
of the thesis, which is to avoid adding complexity on board. The chosen data ty-
pe for implementing the BSS technique are range-compressed data with curvature
(without range cell migration compensation). The RABSS method incorporates a
stacking approach, which is introduced to greatly enhance performance by provi-
ding larger datasets. Additionally, another approach involves decomposing the data
into several azimuth sub-bands to handle systems where the mixing matrix values
depend on Doppler frequency and to address the effect of range cell migration. Both
of these strategies are considered empirically, meaning that different SAR antenna
systems may have varying optimum numbers of stacked azimuth lines and azimuth
sub-bands, and this is closely related to the characteristic of the antenna pattern.

In Chapter 5, the RABSS method is validated for various simulated SAR systems,
which corresponds to different mixing matrix structures. Since there are currently
no operational HRWS spaceborne SAR systems utilizing multiple-elevation receive
beams, the chapter starts by explaining the approach used to simulate such data. The
simulation is based on real input data, from the TerraSAR-X mission. To assess the
RABSS method’s effectiveness while disregarding the mixing matrix’s dependence
on range-time and Doppler frequency, it is tested in a system with a mixing matrix
whose values are independent in both range-time and Doppler frequency. The results
reveal that implementing the BSS technique in the range-compressed data, using a
large number of samples by stacking as many azimuth lines as possible, significantly
improves the ambiguity suppression performance. This demonstrates the method’s
strong performance in realistic SAR environments.

Next, the RABSS method is applied to two commonly used architectures in HRWS
multichannel SAR systems: planar and array-fed reflector antenna systems, leading
to a range-dependent and a range- and Doppler-dependent mixing matrix problem,
respectively. Through empirical analysis, the study highlights the distinctions bet-
ween these two architectures concerning the optimal number of stacked azimuth lines
and azimuth sub-bands. In general, even under worst-case conditions, such as five
sub-swaths, a realistic SNR value of 10 dB, and extremely low values of the mixing
matrix, the RABSS method still achieves an additional range ambiguity suppression
improvement of up to 16 dB (average improvement of approx. 6 dB).

While Chapter 5 focused solely on implementing the proposed method for one hete-
rogeneous scene, Chapter 6 demonstrates the implementation of the RABSS method
across various types of scenes, ranging from extremely homogeneous to extremely
heterogeneous. The results indicate that for relatively homogeneous scenes, an ad-
ditional calibration method for the mixing matrix is necessary. Consequently, this
chapter introduces a calibrated mixing matrix estimation procedure, leading to an
enhanced method called C-RABSS. The obtained results show that the RASR after
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the C-RABSS method is further improved by up to 18 dB (average improvement of
6 dB) for various surface types, resulting in a new comprehensive range ambigui-
ty suppression method that effectively addresses range ambiguities in any type of
imaged backscattering surface. The successful implementation and validation of the
C-RABSS method demonstrates its capability to handle a wide range of scenarios.

Based on the presented results, the thesis is deemed successful in achieving its ori-
ginal objective of proposing a robust range ambiguity suppression method without
detailed knowledge of the antenna pattern and without any additional on-board
complexity. The method demonstrates significant potential for practical implemen-
tation in multiple elevation beams SAR systems, which are expected to be a common
type of future HRWS SAR systems.

7.2 Outlook on Further Work

The range ambiguity suppression method in this thesis is designed to mitigate the
strong range ambiguities that occur within the illuminated swath in multiple eleva-
tion receive beam SAR systems. Looking ahead, it would be beneficial to address
the issue of out-of-swath range ambiguities originating from outside the swath. De-
spite being theoretically weakened due to their suppression by the Tx pattern, it has
been demonstrated that in a majority of cases, the out-of-swath ambiguities from
far range cannot be neglected. Introducing an auxiliary beam to collect data from
this far range region is a promising solution that deserves further investigation.

The method’s applicability is restricted to scenarios with multiple elevation beams
featuring a constant pulse repetition interval (PRI). It cannot be directly applied
to staggered SAR systems, where the PRI is varied to obtain a gapless SAR image.
However, in the context of BSS, varying PRI violates the cocktail party phenomenon
of the multiple elevation beams SAR, because the range ambiguity of a signal does
not superimpose with the useful signal of another signal. This limitation deserves
particular attention. To apply the method to staggered SAR, a calibration mode
may be employed to achieve a constant PRI. Once the mixing matrix is estima-
ted, interpolation is then performed to derive the mixing matrix for the staggered
PRI. Investigating solutions like this in the future holds promise for enhancing the
method’s versatility and generality.

The next aspect deserving investigation is the consideration of topography, espe-
cially concerning the calibrated range ambiguity suppression method that adopts
the mixing matrix from another scene. When taking topography into account, the
adoption of a mixing matrix from other scenes must also consider the fact that the
estimated mixing matrix should be topography-dependent. It cannot be simply ad-
opted for other scenes, especially when they possess extremely different topographic
profiles.

129



7 Conclusion

While the phase of the mixing matrix is well-estimated by the RABSS and C-RABSS
methods, the analysis regarding how these methods impact the interferometric phase
between interferometric SAR images is not included in this thesis. Such analysis
deserves attention in future work.

In the future, multistatic SAR systems like MirrorSAR [130] or distributed SAR
are highly desirable due to their cost-effectiveness in realizing high-resolution wide-
swath imaging. The final aspect that demands particular attention is the potential
application of the method in multistatic SAR configurations, where one possible
imaging geometry that deserves investigation for the method’s implementation in-
volves a system with one transmit satellite and multiple receive satellites, mapping
different sub-swaths. To effectively suppress range ambiguities, the geometry and
antenna pattern need to be known accurately. In contrast, the proposed method
offers an advantage, as it does not rely on the detailed knowledge of the antenna
pattern. Consequently, it is expected to robustly suppress range ambiguities even
when the relative distance dynamically changes between satellites. The key issue in
applying the method in a multistatic SAR configuration concerns the misregistra-
tion between the acquired data, which could compromise the reciprocity properties
and thus degrade the method’s performance. An iterative approach - i.e., perfor-
ming co-registration, applying the range ambiguity suppression method, and then
repeating this cycle - might deserve to be investigated to refine the results.
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A Joint Diagonalization

This appendix gives an explanation of joint diagonalization, which plays a crucial role
within the JADE algorithm. A joint diagonalizer within the set N = Nr|1 ≤ r ≤ N

of arbitrary square matrix is defined as a unitary matrix V that maximizes the
criterion [96]:

C(V,N ) =

N∑
r=1

∥∥diag(VHNrV)
∥∥2 . (A.1)

Here,
∥∥diag(VHNrV)

∥∥2 means the sum of squares of the diagonal. Achieving exact
joint diagonalization is generally feasible only for problems involving two matrices.
When dealing with more than two matrices, it remains achievable if there exists
a shared structure among those matrices. Otherwise, the possibility is limited to
approximate joint diagonalization.

The Jacobi technique serves as a method for approximately diagonalizing a set of ar-
bitrary N ×N matrices Nr|1 ≤ r ≤ N . The process commences with an exploration
of the 2× 2 case, where the matrix Nr takes the form:

Nr =

[
ar br

cr dr

]
, (A.2)

for r = 1, . . . , N . A complex 2× 2 rotation is characterized by the matrix

V =

[
cos θ −ejϕ sin θ

e−jϕ sin θ cos θ

]
. (A.3)

It is established that the transformed matrix is given by:[
a′r b′r

c′r d′r

]
=

[
cos θ ejϕ sin θ

−e−jϕ sin θ cos θ

][
ar br

cr dr

][
cos θ −ejϕ sin θ

e−jϕ sin θ cos θ

]
. (A.4)

The objective of optimizing (A.1) is to determine suitable values for θ and ϕ such
that

∑
s |a

′
r|2 + |d′r|2 is maximized. Note that 2(|a′r|2 + |d′r|2) = |a′r − d′r|2 + |a′r +

d′r|2 and that the trace a′r + d′r is invariant in a unitary transformation. Therefore,
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A Joint Diagonalization

the maximization of criterion (A.1) is equivalent to maximization of following cost
function:

C =
∑
r

|a′r − d′r|2. (A.5)

It is verified through analysis that:

a′r − d′r = (ar − dr) cos 2θ + (br + cr) sin 2θ cosϕ+ j(cr − br) sin 2θ sinϕ. (A.6)

Furthermore, new vectors are introduced and defined as follows [94]:

u = [a′1 − d′1, ..., a
′
N − d′N ]T ,

v = [v1, v2, v3]
T = [cos 2θ, sin 2θ cosϕ, sin 2θ sinϕ]T ,

gr = [ar − dr, br + cr, j(cr − br)]
T .

(A.7)

Equation (A.6) can be written in the form of (A.7), such that

u = Gv, (A.8)

where G = [g1, ...,gN ]T , such that C in (A.5) can be rewritten as

C = uHu,

= vTGHGv.
(A.9)

From (A.7), it is shown that vTv = 1, therefore, equation (A.9) can be written as

Cv = GHGv. (A.10)

Equation (A.10) is the eigendecomposition of matrix GHG, where the v is the ei-
genvector of GHG, associated with the eigenvalue C. It is reminded that, referring
to description of (A.5), the goal is to find v which maximizes the value of C. Fur-
thermore, the entries of rotation matrix V can be computed from the v using Jacobi
technique as described in [107].
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