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Abstract
The aim of this paper is to optimize modular systems which cover the construction
of products that can be assembled on a modular basis. Increasing the number of
different variants of individual components on the one hand decreases the cost of
oversizing the assembled product, while on the other hand the cost for maintaining the
modular system increases. For the minimization of the overall cost a mixed-integer
model is derived. However, this model cannot simply be passed to a solver for mixed-
integer optimization, since certain dependency structures of the variables occur. We
propose a solution approach for this complicating structure using binary variables
to transform the problem into a mixed-integer optimization problem, which can be
solved deterministically. In a numerical study, this formulation is investigated using
the example of a modular system for crane bridges.

Keywords Modular system · Nonconvex mixed-integer model · Crane bridge

1 Introduction

In this paper, modular system problems are considered from an optimization point
of view. Modular systems prove to be very useful in practice for products that can
be assembled modularly from different components. Each of these components can
consist of different variants or size which can be combined with each other. Modular
systems are a common concept in many fields of design and manufacturing, where
the goal is to decompose a complex system into simpler modules in order to decrease
complexity and increase cost-efficiency (Tseng and Wang 2014).
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An optimization model is derived that determines an optimal configuration of the
modular system. That is, on the one hand, the optimal configuration shows how many
types of a component should be manufactured and, on the other hand, exactly what
these components look like, for example the geometric dimensions of the variants.

The goal is that the modular system is on the one hand cheap to maintain, so that we
have, for example, few different variants per component. On the other hand, meeting
product properties with such a ‘coarse’ modular system leads to high oversizing costs,
which can be reduced by sufficient variability and flexibility in the modular system.

InSect. 2 a short introduction to cranebridges and a literature reviewonoptimization
models formodular systems are given, beforewe introduce a generalmodel for treating
the trade-off betweenmaintenance and oversizing costs of modular systems. However,
the resulting optimizationmodel cannot simply be passed to a solver for mixed-integer
optimization problems, since certain dependency structures of the variables occur by
which in the beginning it is not even clear howmanydecision variables the problemhas.
The problem could be reformulated into a two-level problem that takes the dependency
structure into account. For such problems, especially also in the mixed-integer case,
decomposition methods or methods from bilevel optimization are well-known, see
(Jünger et al. 2009) for decomposition methods and Mitsos (2010); Dominguez and
Pistikopoulos (2010); Jan and Chern (1994) for bilevel optimization. In Sect. 3 of this
work, however, a more straightforward solution approach is proposed, which uses
binary variables to transform the problem into a mixed-integer single-level problem,
forwhich standard solvers can be used. In Sect. 4 this formulation is substantiated using
the example of a modular system for crane bridges, and a numerical study indicates
that the problem formulation as a single-level problem possesses potential also for the
optimization of other modular systems. Section5 closes the article with some final
remarks.

2 An optimizationmodel for modular systems

In this paper we consider an optimization approach for modular systems. The aim
of a modular system is to have a minimal set of different parts for various tasks or
a set of different sizes of the same part which can be combined into a product that
fulfills a given requirement of properties (Ponn and Lindemann 2011). One of the
main challenges in the design of modular systems is to balance the system size and
the product performance (Tseng and Wang 2014).

For a better understanding, we look at the example of crane bridges at this point,
which will be considered in detail later on. After presenting the example, we will
discuss the existing literature.

2.1 Crane bridges

Overhead cranes are mostly used to transport objects in production halls and ware-
houses. They consist of the crane bridge, the crab with hoist and trolley, and two end
carriages at the ends of the crane bridge. The end carriages travel on the crane runway.
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Fig. 1 Crane concept

End carriages, hoists and trolleys are already offered by the respective manufacturers
as modular systems. Crane bridges are usually built in one part in the shape of a box or
I-profile girder. These are manufactured in a series of various different sizes. In order
to make the advantages of a modular system usable for crane bridges as well, a concept
was developed in Bolender et al. (2017); Oellerich et al. (2002) on how crane bridges
can also be constructed modularly. This segmented crane bridge is designed as a truss
profile made of hollow profiles and diagonal connecting plates. The components can
be mass-produced, easily transported and assembled at the crane’s place of use. The
structure of the crane bridge is shown in Fig. 1 and is described in detail in Bolender
et al. (2017), Oellerich et al. (2002).

The crane bridge modular system we consider consists of the two components
profile and sheet, each of which is designed as a series in different sizes, as well as
matching end sheets, connecting elements and an individually manufactured compen-
sating element. By combining a sheet size and a profile size as well as varying the
number of these elements, various requirements and properties of the crane bridge can
be covered while using only a small number of different part sizes. In our model in
Sect. 4 we will consider profiles that differ in the three geometry parameters height,
thickness and width, and sheets with four geometry parameters.

Each crane bridge is built for a given span and load capacity based on the site and
the use case for the crane. It has to fulfill the requirements for the safety and stability
of overhead cranes. We have oriented ourselves on the German series of standards for
crane design EN 13001 (Deutsches Institut für Normung 2014, 2015, 2019) and the
international standard for the stiffness of overhead cranes ISO 22986 (International
Organization for Standardization 2007). These mainly include the maximum stress
in the material and the deflection under load. For the model, it is assumed that every
combination of profiles and sheets can be used for a number of span and load capacity
combinations while meeting the given safety requirements.

The properties that should be fulfilled by the modular system, as mentioned above,
are therefore the load capacity and the span of a crane bridge. We are interested in a
modular system that is cost-effective in some sense. On the one hand we wish to avoid
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a large system size, measured as the number of different variants of a component, and
on the other hand we want to remain flexible in fulfilling the required properties of
span and load capacity. In detail, this means that on the one hand we want as few
profile and sheet variants as possible, but still want to cover span and load capacity as
well as possible and avoid building oversized crane bridges.

In Sect. 4 we will consider the example of crane bridges in more detail. Before
that, we will briefly discuss the existing literature and deduce a flexible model for the
optimization of general modular systems.

2.2 Existing literature

The literature on modular systems in combination with mathematical optimization is
very sparse.

In Fujita and Ishii (1997) a formal description of modular systems is presented,
possible system boundaries, a cost model for the optimization of modular systems and
a possible procedure for the mathematical modeling of modular systems is discussed.

The paper (Fujita 2002) divides modular system optimization into three classes:
Class I describes the optimization of individual components, e.g. the design of one
component, under a fixed combination of the components for each product. Class II
describes the optimization of components combinations with explicitly given variants
of the components. Class III describes the simultaneous optimization of the combina-
tion of the components and of the design of the component.

In Fujita et al. (1999) the optimization of a modular system is modeled as an
integer optimization problem (with only binary variables) and solved using simulated
annealing. They use components with existing parameters and solve an allocation
problem with a simple cost model. They classify it as a Class II problem, since the
component parameters are fixed. There is no optimization of the different parameters
(Class III). In Fujita (2002) it is onlymentioned that the optimization problem resulting
from the Class III problem is a nonlinear mixed-integer optimization problem, and that
heuristics can play an important role here.

The paper (Yigit et al. 2002) describes the optimization of modular products in
reconfigurable production lines using the example of a powertrain. The optimization
problem is described as a subset selection problem. However, it is based on modules
with predefined parameters and there is no adjustment or optimization of the module
parameters here. According to Fujita (2002), this is again a Class II problem.

The problem we consider in this paper fits best into the framework of Class III
problems. In ourmodel, wewant to keep the combination of the individual components
variable, as well as the exact design of the components. In addition, we do not want
to fix the number of variants per component of the modular system. Whether the last-
mentioned aspect is considered in the Class III problems remains unclear, as no exact
problem is specified.

In the context of so-called product family design, something similar happens at
first glance when it comes to the modular construction of products. The idea here is
to build products that consist of common and different components. The modules in
this context are the components of the modular system, the product family consists
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of the crane bridges, and one specific crane bridge is called a product (as in our
terminology). A first difference in the concept is already clear here, namely that there
products can also consist of different components. This is not the case for our modular
system concept, but it plays a subordinate role for now. The term product family design
definitely includes many examples of how and why it makes sense to build products
modularly, but the problem does not fit in our context.

The main difference is in the use of the term optimization. Optimization problems
are mentioned in some papers, but neither the objective function nor the variables
match those in our context. In the paper (Simpson et al. 2001) optimization problems
are specified and design parameter values are searched for. The different geometry
parameters in ourmodel are the design parameters in this context.However, the number
of variants of the different components is not included in the optimization.Other papers
mention variants and optimize a number of them, but they talk about product variants.
In the paper (Tucker and Kim 2008), for example, a cell phone example is given in
which product variants are characterized by different components (with Wifi or with
Bluetooth instead) and not by different component parameters. This also does not fit
in our context.

2.3 An optimizationmodel for general modular systems

In some underlying market we assume a demand of N products which can be charac-
terized by the same s properties. Therefore we have products p� ∈ R

s , � = 1, . . . , N .
A product can be built of R different components. In the example of the crane bridges
we have a demand of N crane bridges that are built out of R = 2 components, profiles
and sheets. The crane bridges are characterized by two properties, load capacity and
span, hence we have s = 2.

Each component has specific parameters and through them the components in a
modular systems will differ. In our example, these are different geometry param-
eters such as length and widths of the profiles and sheets. For each component
r ∈ {1, . . . , R}, there are kr ∈ N different variants in the modular system. In our
model the number of components R will be a fixed known number and the vector of
number of variants κ = (k1, . . . , kR) will be variable, but bounded. Hence we have
κ ∈ N

R ∩ [l, u] with a vector l ∈ N
R for the lower bounds and u ∈ N

R for the upper
bounds of kr , r = 1, . . . , R.

Besides the variables for the number of variantsκ wehave a second type of variables,
the variables for the different geometry parameters. With xr ,k ⊂ R

nr we denote the
vector for variant k ∈ {1, . . . , kr } of component r ∈ {1, . . . , R}, where nr is the
number of geometry parameters of component r . For the crane bridges we have for
instance for component 1, the profiles, n1 = 3 geometry parameters: length, thickness
and width. Each of these vectors xr ,k can additionally be box-constrained for each of
the components, which we collect for simplicity in the set Xr . For instance the length
of each profile variant should be nonnegative and bounded from above. Therefore we

have xr ,k ∈ Xr ⊂ R
nr . We summarize all xr ,k in the vector ξ ∈ X(κ) ⊆ R

∑R
r=1 kr nr ,

which is the second variable for our model. The description of the set X(κ) collects
the restrictions for each xr ,k and depends on the number of variants κ . Through this
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formulation we obtain a dependence of the length of the vector ξ on the variable κ ,
which complicates our model.

Besides the specification of the components by the entries of ξ we are interested
in the number of pieces in the modular system. We assume that, to fulfill the product
properties, we are allowed to choose pieces of only one variant for each component.
For our example, this means that we use one profile variant and one sheet variant for
each crane bridge in the required number, which will be specified later. With z�r ,k ∈ N0
we denote the number of pieces we choose from variant k of component r for product
�, k = 1, . . . , kr , r = 1, . . . , R, � = 1, . . . , N . In our model we allow for each product
� and for each component r only one variant, hence we get

|{k ∈ {1, . . . , kr }|z�r ,k > 0}| = 1.

With z� we denote the vector of all variables z�r ,k for one product p�. To satisfy

the required product properties, additional constraints on the variables z� have to be
expected which also depend on the variable ξ . So we have z� ∈ Z�(κ, ξ) with the set
Z�(κ, ξ) of all feasible configurations for product p�. By z we denote the vector of all
z�, � = 1, . . . , N .

With given κ and ξ , for each product p� we choose among all feasible configurations
z� ∈ Z�(κ, ξ) the cheapest one. Therefore we aim at minimizing a cost function
c�(κ, ξ, z�) over Z�(κ, ξ), which typicallymodels oversizing effects. In addition, there

exist maintenance costs
N∑

�=1
C�(κ, ξ, z�) which depend on the size of the modular

system. The system size can be measured, for example, by the number of different
variants, by the total weight of the system, or by the total volume of the system. In
many applications the oversizing costs and the maintenance costs develop in opposite
directions under changes in the configuration of the modular system.

Altogether we aim to minimize the total costs
N∑

�=1
C�(κ, ξ, z�) +

N∑

�=1
c�(κ, ξ, z�)

and obtain the optimization model

P : min
κ,ξ,z

N∑

�=1

C�(κ, ξ, z�) +
N∑

�=1

c�(κ, ξ, z�) s.t. z ∈ Z(κ, ξ),

ξ ∈ X(κ),

κ ∈ N
R ∩ [l, u]

with Z(κ, ξ) = Z1(κ, ξ)× . . . ZN (κ, ξ). Since ξ can be a continuous variable while κ

and z are integer variables, P is in general formulated withmixed-integer variables. As
mentioned before, the constraints yield a dependency structure between the variables.
Indeed, the length of the vector ξ is determined by the entries of the vector κ . This fact
complicates the solution process, and standard solvers for mixed-integer optimization
problems are not suitable. In the following we will suggest a reformulation of P which
allows to deal with this.
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3 Solution approach

One idea to deal with the dependency of ξ on κ is to fix a number of maximum variants
for each component and link each possible number of variants with a binary variable.
In applications the possible maximum number of variants of a component is often
known since the warehouse capacity is bounded. Since the optimization model P is
already mixed-integer, additional binary variables and corresponding constraints do
not change the problem structure, but the number of variables and restrictions just
increase. Although the class of mixed-integer problems is NP-hard, in many real-
world problems standard solvers can treat instances with several thousands of integer
variables in reasonable time.

The solver Gurobi can also be used if the objective function and the constraints are
quadratic (convex or nonconvex). For this reason we will reformulate P into a linear
or quadratic mixed-integer problem. In particular, in Sect. 4 we will reformulate the
modular system for crane bridges as a nonconvex multiquadratic problem.

Indeed, in the following we assume that for every component r ∈ {1, . . . , R} we
know a maximum number of variants, denoted by k̄r ∈ N. While with the previous
notation this yields kr ≤ k̄r , from now on we will no longer consider the vector κ

of variables kr but the known constants k̄r with associated binary variables vr ,k ∈ B,
k = 1, . . . , k̄r , r = 1, . . . , R, which indicate whether a variant is available in the
modular system or not. More precisely, we have

vr ,k =
{
1, if for component r variant k is available,

0, else,

with k = 1, . . . , k̄r , r = 1, . . . , R. We need to link the new variables vr ,k with the
variables z�r ,k since, of course, there can only be a positive number of a variant k of
component r in the modular system if the variant actually exists. In other words the
value of z�r ,k has to be zero if variant k of component r is not available, which we
denote as

vr ,k = 0 ⇒ z�r ,k = 0, � = 1, . . . , N (1)

with k = 1, . . . , k̄r , r = 1, . . . , R. This type of restriction in (1) is called indicator
constraint and can be modeled by a big-M formulation or directly in, e.g., Gurobi or
CPLEX. We add condition (1) to the set Z and thus obtain the additional dependence
of Z on v.

On the other hand, under our assumption that the maximum number of variants

is given, the length of the vector ξ is known to be k̄ =
R∑

r=1
k̄r . The sets X(κ) and

Z(κ, v, ξ) thus simplify to X and Z(v, ξ), respectively. Furthermore, we can omit the
dependency on κ everywhere else in P . Every function (in objective and constraints)
which depends on a variant k of component r must be supplemented by the binary
variable vr ,k since the variables x�

r ,k and z�r ,k may of course only enter there if they
are available. In summary we obtain the reformulated problem
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P : min
v,ξ,z

N∑

�=1

C�(v, ξ, z�) +
N∑

�=1

c�(v, ξ, z�) s.t. z ∈ Z(v, ξ),

ξ ∈ X ,

v ∈ B
k̄ .

As in P , since ξ can be a continuous variable while v and z are integer variables,
P is in general mixed-integer. In contrast to P , however, the length of ξ is fixed in P .
Due to the dependencies mentioned above, the sets X and Z(v, ξ) possess an intricate
description, but with P we obtain a standard mixed-integer optimization problem.

4 A specification of the general optimizationmodel to themodular
system for crane bridges

In Sect. 2 a modular system for crane bridges was briefly introduced. Then a general
optimization model for the cost-minimal configuration of a modular system has been
derived. However, explicit forms of cost functions and constraints have not yet been
discussed. In the present section we use a concrete example of a modular system to
derive an explicit optimization problem. We choose the modeling approach described
in Sect. 3 to formulate a problem without dependency structures. After some refor-
mulations, we obtain a mixed-integer optimization problem with quadratic objective
function and quadratic constraints. These functions do not have to be convex, when
the resulting problem is solved by Gurobi, since this solver does not require convexity
for quadratic problems. We test our modeling approach for some example problems.

4.1 Derivation of the optimizationmodel

A rough sketch of a crane bridge is shown in Fig. 1. As described above, we have
a demand of N crane bridges, the products p�, and we take into account the two
properties span width L� and load capacity M�, resulting in the product specifications
p� = (L�, M�) for � = 1, . . . , N .

We assume that the modular system contains at most k̄1 = n profile variants and
k̄2 = m sheet variants. Profiles are characterized by the three geometry parameters
height, thickness and width, i.e. x1,i = Pi = (

hiP , t iP , wi
P

) ∈ X1 ⊆ R
3, i = 1 . . . , n.

Sheets, on the other hand, are described by the four geometry parameters height,

segment length, thickness and width i.e. x2, j = S j =
(
h j
S, l

j
S, t

j
S , w

j
S

)
∈ X2 ⊆ R

4,

j = 1, . . . ,m. The description of the sets X1 and X2 also contains box constraints for
the individual geometry parameters which we will specify later. It should be noted that
the length of the profiles is not explicitly included in the model. This is characterized
by the double segment length of the corresponding sheet, see Figs. 2 or 3. With the
above notation we obtain the variable ξ = (

P1, . . . , Pn, S1, . . . , Sm
)
. The modular

concept and the geometry parameters are shown in Fig. 2 in detail.
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Fig. 2 a Modular concept of the crane’s parts; b Geometry parameters

Next we describe the functions and sets from problem P in more detail. The main
effort will be to describe the set of feasible configurations of the modular system, that
is, the description of the set Z(v, ξ).

Set of feasible configurations

Acranebridge (here explicitly crane bridge � ∈ {1, . . . , N })must fulfill twoproperties,
as described above. Profiles of one variant and sheets of one variant must be taken
from the modular system in such a way that the crane bridge results in the span L� (in
meters) and that it carries at least a load of M� (in tons). Figure2a shows how a crane
bridge can be built from profiles and sheets. For the chosen profile-sheet combination
(i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, we can calculate the total number z�1,i of profiles

and the total number of sheets z�2, j by

z�1,i = 4

⌊
L�

2l jS

⌋

− 2, z�2, j = 2

⌊
L�

2l jS

⌋

− 2.

Let M be the load capacity function for a combination of profile Pi and a sheet
S j . Since this function is generally difficult to determine, we approximate it by the
(rough) estimate

M(Pi , S j ) = c1
L�

⎛

⎝c2h
j
S + c3h

i
P + c4w

i
P + c5w

j
S − c6

(
h j
S − 2hiP
l jS

− √
3

)2
⎞

⎠

(2)

with c ∈ R
6+, which fits into a mixed-integer multiquadratic optimization model.

To motivate the shape of this estimate, note that, the larger the span of the crane
bridge, the lower is the load capacity. Moreover, the height of the profiles and sheets is
more important than their widths, so that we choose c2 and c3 greater than c4 and c5,
respectively. Parameter studies for a truss model have shown that the best distributions
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Fig. 3 Geometry parameters in detail

of forces in the truss are achieved at an angle of around 60◦ between the sheets and

the profiles. With Fig. 3 it can be seen that this holds for
h j
S−2hiP
l jS

= √
3 = tan(60◦).

Details can be found in Bolender et al. (2017). The sketch of the bridge construction
we use here corresponds to the bridges developed there. Various studies were carried
out there on the static behavior of these bridges. In the paper mentioned, in which the
segmented crane bridges are presented, an exemplary modular system is also given.

With the load capacity function we can claim the second important property for
crane bridge � ∈ {1, . . . , N }, namely the load capacity M� that has at least to be
achieved by the chosen profile-sheet combination. This yields the constraint

M(Pi , S j ) ≥ M�.

In addition, the set of permissible configurations must take into account that not
every profile-sheet combination is possible due to possible instabilities. Indeed, the
four additional restrictions

w
j
S ≥ 2wi

P + t jS , h j
S ≥ 3hiP , 2l jS ≥ h j

S, 2l jS ≤ 3h j
S

must also apply.
With the first inequality we achieve that there is a minimum distance between the

profiles, see Fig. 2b. The other three conditions achieve a boundary of the angle of
the sheet, see Figs. 2 and 3. We summarize these inequalities into a set F , which can
be described with linear functions. Therefore we require (Pi , S j ) ∈ F for a chosen
combination.

Under our assumption that only one variant may be chosen, we obtain for crane
bridge � ∈ {1, . . . , N } the set of feasible configurations

Z�(v, ξ) = {z�1,1, . . . , z�1,n, z�2,1, . . . , z�2,m ∈ N0|
|{i ∈ {1, . . . , n}| z�1,i > 0}| = 1, (3)

|{ j ∈ {1, . . . ,m}| z�2, j > 0}| = 1, (4)

123



Optimal configurations...

z�1,i , z
�
2, j > 0 ⇒ z�1,i = 4

⌊
L�

2l jS

⌋

− 2, (5)

z�2, j > 0 ⇒ z�2, j = 2

⌊
L�

2l jS

⌋

− 2

z�1,i , z
�
2, j > 0 ⇒ M(Pi , S j ) ≥ M� (6)

z�1,i , z
�
2, j > 0 ⇒ (Pi , S j ) ∈ F

v1,i = 0 ⇒ z�1,i = 0,

v2, j = 0 ⇒ z�2, j = 0,

i = 1, . . . , n, j = 1, . . . ,m}. (7)

From this definition of Z�(v, ξ) it is clear how the set of feasible configurations
explicitly depends on the variable ξ = (

P1, . . . , Pn, S1, . . . , Sm
)
. In Sect. 4.2 we

will derive reformulations for the constraints in Z�(v, ξ) as well as for the appearing
fractions, since this problem cannot be passed directly to a solver like Gurobi.

Cost functions

As described in Sect. 2, the objective function of the optimization problem is composed
of two parts. On the one hand, there is the maintenance cost of the modular system,
which increases for an increasing number of variants. On the other hand, we have
oversizing costs which decrease for increasing numbers of variants. Indeed, if profiles
and sheets can be chosen from a large number of variants, we can expect that the
desired load capacities will hardly be exceeded. If, however, there is little choice,
crane bridges will be oversized, and respective penalizing costs occur.

In our model we assume that the cost for maintaining the modular system amounts
to

CP
n∑

i=1

v1,i + CS
m∑

j=1

v2, j

with costs CP per profile variant and CS per sheet variant. The costs for oversizing
the modular system are modelled as

CO
N∑

�=1

n∑

i=1

m∑

j=1

c�
i, j

(
M(Pi , S j ) − M�

)

with cost CO per ton discrepancy in load capacity and binary variables c�
i, j , i ∈

{1, . . . , n}, j ∈ {1, . . . ,m}, � ∈ {1, . . . , N }, with
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c�
i, j =

{
1, if profile-sheet combination (i, j) is chosen for crane bridge �,

0, otherwise.
(8)

Through reformulations and renaming variables in the function M , we can find a
quadratic reformulation of the objective function.

In addition to the costs mentioned above, it is also interesting to investigate the
weight of the bridges. The goal is to build the crane bridges as light as possible. In
penalizing the overdimensioning of bridges, it is certainly already included that the
bridges are not too heavy. Nevertheless, we will explicitly consider the weight of
the bridges in the numerical studies in Sect. 4.2 and investigate whether it makes a
difference in the solution whether the total weight is part of the objective function
or not. In this cost, we then also include for the first time the number variables z�1,i
and z�2, j of the chosen variant of profiles and sheets from the modular system. We
denote by w the weight function for a crane bridge, which depends on the geometry
parameters of the profiles and sheets and the corresponding number variables. Thus,
we additionally obtain the weight costs

CW
N∑

�=1

n∑

i=1

m∑

j=1

c�
i, jw(Pi , S j , z�)

with costs CW per ton. The weight functions can be easily determined with the
geometry of the profiles and sheets, see Fig. 2 and 3. Through renaming variables we
can find again a quadratic reformulation of the total weight costs.

4.2 Reformulation of the set of feasible configurations

The set Z�(v, ξ) contains fractions and constraints that we cannot directly pass to a
solver likeGurobi, butwe need reformulations for them.We startwith the fractions.We
define new integer variables y�

j ∈ Z, j = 1, . . . ,m, � = 1, . . . , N , which correspond

to

⌊
L�

2l jS

⌋

. Therefore we have for j = 1, . . . ,m, � = 1, . . . , N ,

L�

2l jS
+ ε f loor − 1 ≤ y�

j ≤ L�

2l jS
(9)

while ε f loor is small enough (a little bit larger than the feasibily tolerance and integer
feasibily tolerance of the solver Gurobi). The constraints in (9) can be reformulated
to quadratic constraints through multiplication by 2l jS . We recall at this point that, for
passing them to Gurobi, quadratic constraints do not have to be convex.

Next we consider the indicator constraints. Gurobi can handle indicator constraints
of the type

y = f ⇒ a�x ≤ b,
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with variables y ∈ B and x ∈ R
n . This means that, if the binary variable y is equal to

f ∈ {0, 1}, the linear constraint a�x ≤ b with a ∈ R
n , b ∈ R, has to be satisfied. In

the other case (y = 1 − f ) the constraint may be violated (Gurobi constraints 2022).
Through this form of the constraints, we introduce binary variables b�

1,i ∈ B,

i = 1, . . . , n, � = 1, . . . , N and b�
2, j ∈ B, j = 1, . . . ,m, � = 1, . . . , N , which

specify if variant i of profiles and variant j of sheets is chosen for crane bridge �.
Therefore we have

b�
1,i =

{
1, if profile variant i is chosen for crane bridge �,

0, else,

b�
2, j =

{
1, if sheet variant j is chosen for crane bridge �,

0, else,

for i = 1, . . . , n, j = 1, . . . ,m and � = 1, . . . , N . The conditions (3) and (4) can be
summarized to

n∑

i=1

b�
1,i = 1,

m∑

j=1

b�
2, j = 1.

Further we use b�
1,i = 1 instead of z1,i > 0 in (5) and for the sheets b�

2, j = 1 instead

of z�2, j > 0, so that we can use the Gurobi indicator constraints. In (5), (6) and (7) we

need b�
1,i = 1 and b�

2, j = 1 at the same time. This can be easily reformulated with the

binary variable c�
i, j from (8) since we have

c�
i, j =

{
1, if b�

1,i = 1 and b�
2, j = 1,

0, else

with i = 1, . . . , n, j = 1, . . . ,m, � = 1, . . . , N . We may formulate this relation by
the linear constraints

c�
i, j ∈ B, c�

i, j ≤ b�
1,i , c�

i, j ≤ b�
2, j , c�

i, j ≥ b�
1,i + b�

2, j − 1. (10)

We summarize all the binary variables b�
1,i and b�

2, j for crane bridge � into the

vector b�, all binary variables c�
i, j into c�, all y�

i into y� and all the variables for the

number of profiles and sheets into a vector z� (as before). Hence we obtain the set of
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feasible configurations for one crane bridge � ∈ {1, . . . , N },

Z�(v, ξ) = { b� ∈ B
n+m , c� ∈ B

nm , y� ∈ Z
mN , z� ∈ N

n+m |
n∑

i=1

b�
1,i = 1,

m∑

j=1

b�
2, j = 1,

c�i, j = 1 ⇒ z�1,i = 4y�
j − 2,

b�
2, j = 1 ⇒ z�2, j = 2y�

j − 2,

c�i, j = 1 ⇒ M(Pi , S j ) ≥ M�,

c�i, j = 1 ⇒ (Pi , S j ) ∈ F,

b�
1,i = 0 ⇒ z�1,i = 0,

b�
2, j = 0 ⇒ z�2, j = 0,

reformulation (9),

coupling (10),

v1,i = 0 ⇒ b�
1,i = 0,

v2, j = 0 ⇒ b�
2, j = 0,

i = 1, . . . , n, j = 1, . . . ,m}.
(11)

We also reformulate (1) in terms of the new binary variables, which explains the last
two constraints. All constraints in (11) can be passed to Gurobi, as long as we find a
linear formulation of the function M (see Sect. 4.4).

4.3 Amixed-integer quadratic optimization problem for themodular system for
crane bridges

With the results from Sects. 4.1 and 4.2 we can specify the optimization problem P
for the example of crane bridges

Pcrane : min
b,c,v,ξ,y,z

C P
n∑

i=1

v1,i+CS
m∑

j=1

v2, j + CO
N∑

�=1

n∑

i=1

m∑

j=1

c�i, j

(
M(Pi , S j ) − M�

)

s.t. Pi ∈ X1, i = 1, . . . , n,

S j ∈ X2, j = 1, . . . ,m,

(b�, c�, y�, z�) ∈ Z�(v, ξ), � = 1, . . . , N ,

v1,i , v2, j ∈ B, i = 1, . . . , n, j = 1, . . . ,m,

with b = (b1, . . . , bL), y and z respectively, as well as ξ = (
P1, . . . , Pn, S1, . . . , Sm

)

and Z�(v, ξ) from (11). In Pcrane we do not consider the total weight costs in particular.
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The following problem considers the total weight cost of the crane bridges in the
objective function

Pcrane,w : min
b,c,v,ξ,y,z

C P
n∑

i=1

v1,i+CS
m∑

j=1

v2, j + CO
N∑

�=1

n∑

i=1

m∑

j=1

c�i, j

(
M(Pi , S j ) − M�

)

+CW
N∑

�=1

n∑

i=1

m∑

j=1

c�i, jw(Pi , S j , z�)

s.t. Pi ∈ X1, i = 1, . . . , n,

S j ∈ X2, j = 1, . . . ,m,

(b�, c�, y�, z�) ∈ Z�(v, ξ), � = 1, . . . , N ,

v1,i , v2, j ∈ B, i = 1, . . . , n, j = 1, . . . ,m,

with the same designations as above.
The problems Pcrane and Pcrane,w have clearly more variables than the problem P .

However, we need these for the necessary reformulations so that the problem can be
passed to the solver Gurobi.

Overall, we obtain mixed-integer optimization problems in Pcrane and Pcrane,w.
The load capacity function M and the weight function w can greatly complicate the
problems. In particular the load capacity function enters both in objective function
and the constraints. If we find a linear formulation of these functions, the resulting
objective functions are quadratic and the constraint c�

i, j = 1 ⇒ M(Pi , S j ) ≥ M�

can bemodeled with Gurobi. The resulting optimization problem can then be solved to
global optimality with Gurobi. In the following subsection, we examine some example
problems.

4.4 Numerical results

As mentioned in Sect. 4.3, we can solve the problems Pcrane and Pcrane,w globally
with Gurobi if we find linear representations for the load function M and the weight
functions wP and wS . Using the structure of M from (2), a linear representation can
be found by renaming variables. The same can be done for the weight functions.
By adding quadratic equality constraints, which can be handled with Gurobi, any
polynomially representable function can be linearized.

For simplicity, we fix the profile and sheet thickness, so we have t iP = t jS = 6,
i = 1, . . . , n, j = 1, . . . ,m. All lengths are measured in millimeters. For the profiles
we set hiP ∈ [40, 100], wi

P ∈ [100, 200] and for the sheets h j
S ∈ [400, 1000], l jS ∈

[150, 600], and w
j
S ∈ [300, 400].

We choose c = (
50, 1, 3, 2

5 ,
1
5 , 100

)
. With this choice of c, we obtain approxi-

mately suitable load capacities. A more accurate representation of the load capacity
function with suitable validated values for c remains an open question and is worth
further investigation in the future. The input data given in the followingwere randomly
generated and can be found in the tables below as well as the optimization results and
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Table 1 General input data and
optimization stats for Ex1 n 5

m 5

L 5

CO 10

CP 10

CS 5

runtime [s] 1.79

total costs 42.19

number of binary variables 185

number of continuous variables 85

number of integer variables (with binary) 260

number of quadratic constraints 300

number of indicator constraints 925

total weight [t] 2.06

Table 2 Optimal configuration
of the modular system for Ex1:
profiles and sheets

wP hP

i

1 100.00 68.89

4 100.00 95.90

wS hS lS

j

1 300.00 400.00 375.00

2 391.64 532.81 464.75

3 394.53 815.97 496.55

4 400.00 1,000.00 555.55

the optimal configuration of the modular systems. By formulating the problems and
reformulating them into a quadratic problem, we need to solve optimization problems
that are nonconvex in both the objective function and the constraints.

All experiments were run on an Intel i7 processor with 8 cores with 3.60 GHz and
32 GB of RAM and with version 9.5.1 of Gurobi.

Example 1

In Ex1 and Ex1W we consider a small example with 5 demanded cranes and 5
possible profile and sheet variants. In Ex1W also the weight costs are considered in
the objective function. Input data and results can be found in Tables 1, 2, 3 for Ex1,
and in Tables 4, 5, 6 for Ex1W.

For both problems the solver quickly finds a global optimumpoint. The runtimes are
relatively small. We can also see that it makes a difference whether we take the weight
into account in the optimization or not. However, it is difficult to say in general terms
which problem should be solved. Depending on the application, it must be decided
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Table 3 Mapping crane bridges
to profile and sheet variant with
requested load capacity and
actual load capacity and span for
Ex1

i j M[t] M�[t] L�[mm] weight [t]
�

0 4 4 14.00 14.00 5,000 0.27

1 1 1 10.00 10.00 3,000 0.16

2 4 2 8.39 8.00 5,000 0.29

3 1 2 3.00 3.00 13,000 0.69

4 4 3 6.00 6.00 10,000 0.65

Table 4 General input data and
optimization stats for Ex1W n 5

m 5

L 5

CO 10

CP 10

CS 5

CW 100

runtime [s] 1.96

total costs 247.78

number of binary variables 185

number of continuous variables 315

number of integer variables (with binary) 260

number of quadratic constraints 520

number of indicator constraints 925

total weight [t] 2.39

Table 5 Optimal configuration
of the modular system for
Ex1W: profiles and sheets

wP hP

i

1 153.31 66.89

3 154.65 90.00

4 100.00 55.00

wS hS lS
j

0 400.00 449.21 225.70

3 400.00 1,000.00 590.90

how much the weight costs should be taken into account or whether they should be
included in the objective function.
Example 2

In the second example, we consider a larger data set with 20 crane bridges. The
solver takes considerably more time, but terminates with a global optimal point. The
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Table 6 Mapping crane bridges
to profile and sheet variant with
requested load capacity and
actual load capacity and span for
Ex1W

i j M[t] M�[t] L�[mm] weight [t]
�

0 3 3 14.00 14.00 5,000 0.36

1 3 0 13.87 10.00 3,000 0.22

2 3 3 14.00 8.00 5,000 0.36

3 1 0 3.00 3.00 13,000 0.97

4 4 3 6.40 6.00 10,000 0.48

Table 7 General input data and
optimization stats for Ex2 n 10

m 5

L 20

CO 1

CP 20

CS 10

runtime [s] 85.96

total costs 105.12

number of binary variables 1,315

number of continuous variables 150

number of integer variables (with binary) 1,715

number of quadratic constraints 2,100

number of indicator constraints 7,300

total weight [t] 8.68

Table 8 Optimal configuration
of the modular system for Ex2:
profiles and sheets

wP hP

i

5 146.52 87.35

wS hS lS

j

1 400.00 517.25 261.73

2 400.00 1,000.00 500.00

3 300.00 400.00 422.43

problem Ex2 is the variant without weight costs, Ex2W considers the total weight of
the crane bridges. Input data and results can be found in Tables 7, 8, 9 for Ex2, and in
Tables 10, 11, 12 for Ex2W.

We observe that the optimization model finds a global solution even for a larger
data set. This indicates that the modeling approach for modular systems problems
from Sect. 3 may be considered suitable. However, the computational cost becomes
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Table 9 Mapping crane bridges
to profile and sheet variant with
requested load capacity and
actual load capacity and span for
Ex2

i j M[t] M�[t] L�[mm] weight [t]
�

0 5 2 14.00 14.00 5,000 0.29

1 5 3 10.62 10.00 3,000 0.18

2 5 1 9.00 8.00 5,000 0.37

3 5 2 5.38 3.00 13,000 0.96

4 5 2 7.00 6.00 10,000 0.71

5 5 1 11.25 5.00 4,000 0.28

6 5 3 9.10 5.00 3,500 0.25

7 5 2 7.78 6.00 9,000 0.63

8 5 2 8.75 7.00 8,000 0.54

9 5 3 15.92 8.00 2,000 0.11

10 5 3 6.37 6.00 5,000 0.32

11 5 1 15.00 7.00 3,000 0.20

12 5 1 9.00 9.00 5,000 0.37

13 5 2 5.38 4.00 13,000 0.96

14 5 2 7.00 7.00 10,000 0.71

15 5 1 11.25 6.00 4,000 0.28

16 5 1 12.86 7.00 3,500 0.24

17 5 2 7.78 7.00 9,000 0.63

18 5 2 8.75 8.00 8,000 0.54

19 5 3 15.92 10.00 2,000 0.11

Table 10 General input data and
optimization stats for Ex2W n 10

m 5

L 20

CO 1

CP 20

CS 10

CW 10

runtime [s] 140.45

total costs 165.61

number of binary variables 1,315

number of continuous variables 1,360

number of integer variables (with binary) 1,715

number of quadratic constraints 3,290

number of indicator constraints 7,300

total weight [t] 7.68
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Table 11 Optimal configuration
of the modular system for
Ex2W: profiles and sheets

wP hP

i

9 100.00 93.71

wS hS lS

j

0 300.00 409.65 416.67

2 400.00 1,000.00 500.00

4 300.00 400.00 250.28

Table 12 Mapping crane
bridges to profile and sheet
variant with requested load
capacity and actual load capacity
and span for Ex2W

i j M[t] M�[t] L�[mm] weight [t]
�

0 9 2 14.00 14.00 5,000 0.31

1 9 0 10.79 10.00 3,000 0.14

2 9 2 14.00 8.00 5,000 0.31

3 9 2 5.38 3.00 13,000 0.86

4 9 2 7.00 6.00 10,000 0.65

5 9 0 8.09 5.00 4,000 0.20

6 9 0 9.24 5.00 3,500 0.20

7 9 2 7.78 6.00 9,000 0.58

8 9 2 8.75 7.00 8,000 0.51

9 9 4 17.58 8.00 2,000 0.09

10 9 4 7.03 6.00 5,000 0.29

11 9 0 10.79 7.00 3,000 0.14

12 9 2 14.00 9.00 5,000 0.31

13 9 2 5.38 4.00 13,000 0.86

14 9 2 7.00 7.00 10,000 0.65

15 9 0 8.09 6.00 4,000 0.20

16 9 4 10.05 7.00 3,500 0.19

17 9 2 7.78 7.00 9,000 0.58

18 9 2 8.75 8.00 8,000 0.51

19 9 2 35.00 10.00 2,000 0.10

very large, possibly due to the large increase in binary variables, despite the use of an
efficient solver.

In Sect. 4.1 a load capacity function was introduced which should return the load
capacity (in tons) of a crane bridge for a given profile-sheet-combination. The function
mainly depends on the geometry parameters and angles between the profiles and
sheets. Since the function introduced there was formulated such that the optimization
model can be formulated as a multiquadratic mixed-integer problem, we made some
simplifications, and it remains unclear if the function is realistic. At this point, however,
we can say that the results from our numerical tests fit the proposed modular system
from [Bolender et al. (2017), Figure 7], despite the simplification.
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Moreover it should be mentioned that the simplified example may not yet have a
relevant dimension for practice. On the other hand, for the first time a model and a
deterministic solution method were presented for modular system problems in which
neither component combinations, numbers of variants nor component design were
fixed.

5 Final remarks

As described in Sect. 4.4, the high problem dimension, especially the many binary
variables that arise when we reformulate the original optimization problem, makes
it very time consuming to solve the problem Pcrane and Pcrane,w globally. Therefore,
there is an interest in solving the problem faster.

One possibility to treat larger applications is to solve the problem locally instead of
globally. So it must be weighed whether only local optimal points would be sufficient
in place of global ones. Another difficulty is the nonconvexity of the optimization
problem, which is largely due to the product of a binary variable with the load function
M . Another idea would be to find a convex reformulation of the problem by a more
suitable load capacity function or to work with a convex relaxation. Another idea for
future research is to try to exploit the dependency structure of the original problem P
from Sect. 2.3 by techniques from bilevel optimization and decomposition methods.
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