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Abstract

In this study, we propose a neural network based approach to analyze IR spectra and detect the presence of

functional groups. Our neural network architecture is based on the concept of learning split representations. We

demonstrate that our method achieves favorable validation performance using the NIST dataset. Furthermore, by

incorporating additional data from the open-access research data repository Chemotion, we show that our model

improves the classification performance for nitriles and amides. We could reach an improved performance of our

model referring to previous models with F1 scores for identifying 17 functional groups above 0.7.

Introduction and related work

In molecular chemistry, functional groups are substructures consisting of a few atoms with a characteristic

composition and structure. Within the molecule, functional groups are often a reactive part and define or at least

influence the chemical properties of compounds. Determining the presence or absence of functional groups is important

for chemists to to confirm the structure of a synthesized compound. The measurement of infrared (IR) spectra is one of

the most established methods to identify functional groups within organic molecules even in those cases where the most

common techniques such as NMR spectroscopy fail. IR spectra are gained as a result from the interaction of infrared

light with molecules. The absorption of infrared radiation induces molecular vibrations, i.e. periodic distortions of the

molecular structure, including stretching, contracting, bending, and torsional motions of bonds, angles, dihedral angles,

and further collective variables. By analyzing spectral parameters such as absorption energy band position, bandwidth,

and absorption coefficient, one can deduce valuable information about the molecule’s structure and functional groups

[1–3].
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The classical analysis of IR spectra[4–6] relies on metrics such as position, intensity, area, and width of peaks

to describe absorption bands and gather information about the molecular concentration and bonding environment.

Interpreting an infrared spectrum requires expert knowledge to correlate the spectrum with the substructures of the

molecules and to account for the relative environment and molecular structure. However, this knowledge-based manual

approach can be challenging to formalize and implement, specifically when aiming to apply it to complex systems with

overlapping absorption signals from different chemical species. Therefore, the classical (manual) analysis of IR data is

resource- and time-consuming, allowing only a low throughput of analytical investigations. These limitations hamper

the interpretation of complex IR spectra and the systematic and fast interpretation needed for high-throughput analysis

of samples by IR spectroscopy. Recently, computational methods have been playing an increasing role in analyzing

IR spectra, bringing together advancements in machine learning and quantum chemistry. These methods help in

accurately predicting and interpreting intricate IR spectra, making it easier to identify molecular structures. [7]

Traditional computational methods include e.g. the option to implement efficient forward spectra prediction models

and the potential to integrate with extensive databases. Key advantages of using computational methods compared to

manual analysis are the increase in speed, the increase in accuracy and reproducibility. Nevertheless, also traditional

computational techniques have their limitations which are e.g. the dependency of handcrafted descriptors based on

expert knowledge to extract relevant spectral signals.

Machine learning could solve the limitations of the more traditional methods to calculate and analyze

spectroscopic data as it offers to learn descriptors directly from the available data. The versatility and potential

of ML in advancing chemical research was demonstrated by many examples in the past, e.g. by the application of

machine learning for molecular property prediction and molecular design. [8],[9],[10],[11],[12],[13] One of the earliest

applications of artificial neural networks to spectral analysis was to find functional groups from IR spectra, where the

authors used a 2-layer feed-forward neural network [14]. The field of machine learning has come a long way since then,

with new optimization algorithms and model architectures, delivering state-of-the-art performance. Other attempts

implemented similarity search algorithms that harnessed machine learning techniques to extract feature vectors for

comparison [15]. Wang et al. [16] used support vector machines to improve the prediction accuracy on a database

exported from the OMNIC software [17]. Enders et al.[18] published a method which uses one convolutional neural

network per functional group type to find functional groups present in the IR spectra. Their work uses spectra images

as input, and therefore can potentially suffer from problems such as activation due to non-spectra pixels in the image

and loss of information due to max pooling. Fine et al. [19] combined mass spectra data and IR data at the input of

their models. Their model consists of a combination of an auto-encoder [20] and a densely connected neural network.

The auto-encoder learns embeddings as a function of mass spectra and IR spectra, which are then further processed

by following fully connected layers to produce predictions.

Currently, the datasets available for machine learning on IR spectroscopic data are limited. Following, we describe

the largest and most known databases that are available for IR spectroscopy:

• NIST [21]: NIST (National Institute of Standards and Technology, US Department of Commerce) produces

the Nation’s Standard Reference Data (SRD). NIST provides 49 free SRD databases and 41 fee-based SRD

databases (status as of year 2024). All these databases can be viewed under the catalog [21]. NIST SRD 69

is an online library [22] that provides access to a diverse range of spectroscopic data, including IR spectra, in

the form of downloadable files in jcamp-dx format which have to be purchased. It provides IR spectra for over

16,000 compounds. IR spectra data can be searched for specific compounds in the Chemistry WebBook (NIST

SRD 69) based on name, chemical formula, CAS registry number, molecular weight, chemical structure, or

selected ion energetics and spectral properties. For our study, we used NIST SRD 35 [23] which is a commercial

and predefined dataset (further referred to as ’NIST’). NIST SRD 35 data collection comprises 5,228 infrared

spectra of various compounds, accompanied by chemical structures for most of them. The spectra are provided

in JCAMP-DX format on a CD-ROM, while the chemical structures are in MOL-file format. The infrared data

originated from two sources: the ”EPA Vapor-Phase IR Library” (3,108 spectra) and NIST laboratories (2,120
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spectra). All spectra are presented as normalized absorbance, and empirical formulas and CAS Registry Numbers

are provided for all compounds. NIST spectra were acquired at 8 cm−1 resolution using an integrated capillary

GC-MS-IR instrument. The data have been standardized to 8.0 cm−1 resolution for consistency. EPA spectra

cover the range 450-3966 cm-1, while NIST spectra range from 550-3846 cm−1.

• SDBS [24]: The SDBS (Spectral Database for Organic Compounds) is an online library for organic compounds,

which offers a maximum of six different types of spectra under a directory of the compounds. The available spectra

types include mass spectra (EI-MS), Fourier transform IR spectra (FT-IR), 1H nuclear magnetic resonance

(NMR) spectra, 13C NMR spectra, Raman spectra, and electron spin resonance (ESR) spectra. All the IR

spectra were measured at the National Institute of Advanced Industrial Science and Technology (AIST), Japan,

using a Nicolet 170SX or a JASCO FT/IR-410. The spectral resolution for the Nicolet 170SX was 0.25 cm−1,

and the spectral data were stored in the database at intervals of 0.5 cm−1 at 4000-2000 cm−1, and of 0.25 cm−1

at 2000-400 cm−1. The spectral resolution and the interval were 0.5 cm−1 for the JASCO FT/IR-410. The

SDBS library provides spectra images only.

• Sigma Aldrich FT-IR library [25]: The Sigma-Aldrich Library of FT-IR Spectra is a comprehensive collection of

FT-IR spectra sourced from the laboratories of Sigma-Aldrich by Merck KGaA Darmstadt, Germany. Featuring

over 11,000 pure compounds and over 11,250 spectroscopic records. The Sigma-Aldrich Library of FT-IR Spectra

includes compound properties (molecular formula, mass, compound class) and FT-IR spectroscopic data, which

has been evaluated by Wiley and third-party experts. Featured spectra were measured in the spectral range

of 4000 to 400 cm−1 and compound classes. Sigma Aldrich’s commercial IR library is available with a yearly

subscription.

As the datasets from all three databases are not openly accessible, the referencing of machine learning results to

the same data is still a challenge for the work on IR data. The issue of missing datasets was temporarily solved in

previous studies [19, 26, 27] by using scrapper tools to get data from the above-mentioned online libraries. Nevertheless,

generating datasets through web scraping frequently introduces challenges related to data inconsistency and ethical

considerations. Additionally, if the underlying databases are commercial, disclosing the specific dataset is not possible.

Consequently, comparing ML methods is challenging due to potential variations in training and test data size, quality,

and distribution.

Approach

In this work, we develop a simple-to-implement and reproducible method to identify the presence of given

functional groups in IR spectra based on machine learning. We employ neural networks to automate the learning

of features from the data, enabling the identification of functional groups present in given molecules. Our method

overcomes the disadvantages of previous work, such as being able to predict multiple functional groups from a single

model, avoiding the use of images and mass spectra data in order to get higher scores. Our goal is to develop a

fully automated data-driven method that can be easily integrated into electronic lab notebooks for chemistry such as

Chemotion [28]. As a starting point, we use the problem definition of Fine et al.[19], with some changes referring to

the use of the SMARTS, as the functional groups used for the study are within our scope. A side goal of our work

is the establishment and publication of an open-access IR spectra database. This database will be used here to test

our method, but we also intend it to serve for benchmarking efforts in future studies by other researchers, in order to

allow the quantitative comparison of different methods on a clearly defined, well-documented, and openly accessible

dataset. This open-access reference dataset can be used in addition to the well-known NIST datasets - allowing the

generation of a seed database to be extended in the long run.

The methodic work in this study was prepared by the generation and merging of the desired datasets to be included.

While the NIST dataset could be ordered and was used as is, our open-access database for easily accessible IR data
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needed to be prepared. As a source, we used the repository Chemotion[28], which is a publicly funded research data

repository hosted at the Karlsruhe Institute of Technology (KIT) in Germany. The Chemotion repository comprises

experimental data obtained from the characterization of chemical compounds, such as 1H NMR data, 13C NMR data,

IR data, mass spectrometry data, and several other techniques. The analyzed compounds were synthesized across

various chemical laboratories, primarily aiming to validate findings in scientific publications. To obtain IR spectra

and the related molecular structures from the Chemotion repository, we exported parts of the database content. The

obtained files were further processed as described in the methods section. An alternative way to obtain data from

the Chemotion repository is to fetch the whole dataset available in Chemotion via the API and to reduce the dataset

to the required spectra types and related information. In the exported dataset from the Chemotion repository, there

were 4175 samples with assigned IR spectra. Most of the data came from the chemical labs at the Karlsruhe Institute

of Technology, with a smaller portion contributed by other research institutes. Each sample includes an IR spectrum,

molecular SMILES code, and corresponding functional group labels after data preprocessing. Following our data

preprocessing pipeline (mentioned in the section below) we end up with a dataset with 1763 samples. We call this

preprocessed version of the dataset ”Chemotion”. Chemotion [29] holds the distinct advantage of being open-source,

and readily accessible for utilization. To facilitate easy and inexpensive research in field of machine learning for IR

spectrum analysis, we published the IR dataset Chemotion[29] in an open-access repository.

Much like the NIST dataset, the Chemotion dataset also exhibits class imbalance, the overall distribution of

functional groups partially mirrors that of the NIST. Distribution plots provide insights into the class distribution

present in the dataset which helps to analyze data-driven models. Figure 1 provides a side-by-side comparison of the

functional group distributions in the NIST and Chemotion databases. Both datasets share an imbalance, and their

functional group distributions closely align. Acyl halides have the lowest representation in both the datasets with only

26 samples in NIST and Chemotion with no samples. Approximately 93% of the samples in the Chemotion dataset

have aromatic groups, compared to only 47% of the samples in NIST. The Chemotion dataset contains about 10%

more samples with an amide group. NIST dataset contains approximately 10% more samples with alcohol than the

Chemotion dataset. NIST dataset contains approximately 13% more alcohols than Chemotion dataset. These groups

have the highest (relative) difference in the distribution between the Chemotion dataset and the NIST dataset.

Figure 1: Functional group distribution in the NIST dataset. The figure shows the percentages of functional groups
present in the NIST dataset. As there are multiple functional groups per molecule, the cumulative percentage is not
100.

Figure 2 illustrates the distribution of functional groups per sample in the datasets. In Figure 2 (a), the NIST

dataset displays a peak in the number of samples with three functional groups, and a smaller number with 0 and

maximum 7 functional groups. The Chemotion distribution in Figure 2 (b) indicates a prevalence of samples with four

functional groups, with some instances reaching up to nine functional groups. Figure 2 (c) combines the cumulative

distribution of NIST and Chemotion datasets. Notably, due to Chemotion being approximately 33% of the size of the
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NIST dataset, the cumulative distribution resembles the shape of the larger NIST dataset. This analysis aims to lay

the groundwork for later sections, where we investigate the error rates associated with different numbers of functional

groups in the samples.

(a) NIST (b) Chemotion (c) NIST+Chemotion

Figure 2: Functional groups present per sample on an average in (a) NIST, (b) Chemotion, and (c) NIST + Chemotion
subset

For the experiments in this study, we used the three datasets (1) NIST, (2) NIST + Chemotion, and (3) NIST

+ Chemotion subset. A subset of the Chemotion dataset was selected by permutations of molecules containing a

particular functional group. This method of creating subsets was applied to improve the performance of the model

trained on the combined NIST and Chemotion subset. The Chemotion dataset was sliced based on samples featuring

either a singular functional group or a combination of a maximum of two functional groups. The specific Chemotion

subset examined in this study resulted from a subset with molecules containing nitriles or alkyl halides. This subset

contains 571 samples. It is important to note that this designation does not imply exclusive compositions of nitriles

and alkyl halides in the samples but rather signifies the presence of at least one of these functional groups alongside

others. In simple terms, it means that the distribution of the sliced dataset facilitates better generalization, and not

the presence of nitriles and alkyl halides in the samples. We show this in the results section. To further analyse the

similarities between the NIST and Chemotion datasets, we employ a principal component analysis (PCA) technique

to the Morgan fingerprints extracted from the NIST dataset. We then utilize this fitted PCA model to transform and

visualize the Morgan fingerprints of the Chemotion dataset. This process involves capturing the underlying structure

and patterns inherent in the NIST dataset through PCA transformation. By extracting principal components that

encapsulate the maximum variance within the NIST data, the PCA model effectively reduces the dimensionality of

the dataset while retaining crucial information. This enables a comparative analysis between the datasets within a

lower-dimensional space, offering insights into their similarities and differences. Figure 3 shows the scatter plot of

the datasets projected onto the principal components of the NIST dataset. It can be observed from the scatter plot

of the Chemotion dataset that data points are projected onto a similar space as that of NIST. The density of the

Chemotion dataset is close to one of the clusters of the NIST dataset with very few data points in another cluster.

This observation suggests that there are underlying similarities or relationships between the datasets, indicating shared

characteristics captured by the principal components. Chemotion subset’s density is concentrated around the same

space as Chemotion’s density.
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Figure 3: The figure presents a scatter plot depicting the projection of datasets onto the principal components derived
from the NIST dataset. Both the Chemotion and Chemotion subset datasets are included in this analysis, allowing
for an examination of similarities or differences between Chemotion datasets and the NIST dataset.

Methods

Data Preprocessing

A parser is used to parse .jdx files of individual molecules into arrays. Linear interpolation is then carried out to

interpolate missing values of the spectrum. The spectrum intensity is then normalized to be between 0 and 1. Since

there are different data sources involved, there are different ranges of available wavenumbers. Therefore, we chose to

standardize the spectra to a range of 600 cm−1 to 4000 cm−1. To find labels for the functional groups present in the

molecules, we use the identification method and SMARTS strings definition used by Fine et al. [19] in their work.

Instead of InChI strings, we used SMILES codes of the molecules as the input for the functional group identification

method. In addition, modifying the SMARTS string for ethers[30] proved essential for clearly distinguishing between

ether and ester functional groups. Using the current SMARTS definition for ethers [OD2]([\#6])[\#6] without

further checks or requirements, esters are also identified and incorrectly labeled as ethers. To address this issue, we

implemented a corrected version of the SMARTS string: [OD2]([#6;!$(C=O)])([#6;!$(C=O)]). Here, ;!\$(C=O)

excludes any pattern where carbon is directly bonded to oxygen in a carbonyl group (C=O), ensuring that the ether

carbon atom is not part of a carbonyl group.

Functional groups are assigned with binary indicators, 1 indicates the presence, and 0 indicates the absence of

the functional groups. Then, the information of the molecules, i.e. canonical SMILES code, IR spectrum array,

and functional group labels are stored in a dataframe. Additionally, for our in-house Chemotion dataset of 4175

samples, 441 spectra with high baselines and high background noise were excluded. This was done manually based

on visualization and comparing the spectra. According to Chemotion’s data storage protocol, each molecule in this

dataset may have multiple samples, leading to multiple spectra available per chemical structure (molecule). Usually,

scientists upload additional spectra in those cases where a better quality of the spectrum was obtained. Therefore,

our approach involves selecting the most recent measured spectra (assumed to be the spectra with the highest quality)

from these multiple samples. Following these steps, we end up with a set of 1763 samples. We did not apply any data

cleaning procedure to the commercial NIST dataset.
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Figure 4: Data preprocessing pipeline

Neural Network

The neural network optimization process started with a three-layer fully connected architecture, as described in detail

in Ref. [19]. Subsequently, a comprehensive hyperparameter optimization was conducted for both the conventional fully

connected neural network and the split network (see SI). For the former, the search included the following parameters:

Number of hidden layers, hidden layer size, learning rate, batch size, and the number of epochs. In contrast, the split

network’s hyperparameter search incorporated an additional parameter - the wavenumber at which the spectra were

partitioned.

As an IR spectrum has distinct information contained in the fingerprint region and functional group region, using a

single neural network leads to learned latent variables which are a function of both regions of IR spectra. We enforce an

inductive bias by learning two separate representations of the two regions before joining them to predict joint results.

Thus our network can be formalized as:

y = fjoint,θjoint(h1, h2) (1)

with learned features h1 = fFP,θFP(xFP) and h2 = fFG,θFG(xFG), where xFP represents the fingerprint part of the

IR spectrum, xFG represents the functional group part of the IR spectrum, and θjoint, θFP, θFG being the weights of

the three neural networks fjoint, fFP, and fFG in the overall architecture.

Our split network architecture is based on the idea of learning two separate representations of distinct parts of the

IR spectra, the noisy part and the cleaner part of the spectra. These regions are usually known as the ’fingerprint’

region and the ’functional group’ region, respectively. Therefore, the model has two separate input processing units

which both have multiple densely connected layers. The features learned by these units are then concatenated and

further processed by a single joint densely connected neural network to generate the functional group detection output

(see Figure 5). The model that is splitting spectra at 1800 cm−1 wavenumber showed the best performance. Therefore

we select this model for further experiments. Further details about hyperparameter search can be found in the

supplementary information section. Table 4 shows the optimal network architectures chosen from hyperparameter

search.
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Figure 5: Our network architecture consists of two input heads. Each input head consists of one input layer and one
hidden layer. The learned feature vectors are concatenated and passed to another fully connected layer. The output
of the last layer is a multilabel prediction, 1 if the respective functional group is present and 0 if the functional group
is not present.

Table 1: Network Architecture

Layers Dropout Batch Normalization

Fingerprint head
Layer 1 size : Input size 0.2 Yes

Layer 2 Size : 256 0.3 Yes

Functional group head
Layer 1 size : Input size 0.2 Yes

Layer 2 Size : 256 0.3 Yes

Concat layer Layer 1 size: 512 - No

Experimental Design

We utilize a supervised learning approach in a multi-label classification scenario. The labels are represented as binary

vectors, where a value of 1 indicates the presence of a corresponding label, and 0 indicates its absence. To ensure

unbiased performance evaluation, we divided the datasets into 80% training and 20% validation sets. Since the datasets

exhibit class imbalance, it is crucial to mitigate any performance bias resulting from the training split. Hence, we

employ a K-Fold cross-validation protocol with 5 folds. For training the neural network, we utilize the Adam optimizer,

which minimizes the binary cross-entropy loss while employing linear learning rate decay. The reported results are

the average validation scores obtained across the 5 folds. We trained the models over 50 epochs, depending on the

specific experiment. On average, the 5-fold cross-validation process for our split model takes approximately 1 hour on

a system with a Nvidia GeForce 1080 Ti GPU and an Intel Xeon CPU.

Results

We introduce 3 split neural models based on the datasets used for training:

• Own NIST (trained on NIST dataset)
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• Own NIST + Chemotion (trained on NIST and Chemotion dataset)

• Own NIST + Chemotion sub (trained on NIST and a subset of Chemotion dataset)

To get an evaluation of how much our work differs from the current state of the art, we compare the F1 scores of

our models with the baseline presented in Fine et al. [19]. Table 2 and Figure 6 show the F1 score comparison for

17 functional groups. Although our models demonstrate better average scores compared to the baseline model, the

overlapping error bars indicate that the difference may not be statistically significant. Further analysis with a larger

sample size or additional metrics may be necessary to confirm the robustness of these results. Our method shows

substantial improvement in average scores for amides and nitriles (groups for which the baseline method has the lowest

average scores) for all models. A high standard deviation is observed between folds for acyl halides due to the number

of samples being as low as 26 in the dataset. Fine et al.’s [19] dataset contained 7393 samples while NIST dataset

contained 5228 samples.

Figure 6: Figure shows the mean F1 scores of the validation set for each functional group. The bars are grouped by
different datasets and models.
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Table 2: F1 score comparison with the data of Figure 6.

Functional group Fine et al. [19] Own NIST Own NIST Own NIST

+Chemotion +Chemotion sub

alkane 0.9323 0.9562 0.9377 0.9515
methyl 0.931 0.9475 0.9139 0.925
alkene 0.8196 0.8579 0.7965 0.8443
alkyne 0.8481 0.9176 0.7803 0.837
alcohols 0.911 0.9656 0.9173 0.9564
amines 0.853 0.8592 0.7639 0.8225
nitriles 0.5533 0.6859 0.7387 0.7524

aromatics 0.9826 0.9759 0.9682 0.972
alkyl halides 0.8556 0.8105 0.7583 0.8594

esters 0.9138 0.9366 0.9062 0.9362
ketones 0.8572 0.8758 0.8121 0.8635
aldehydes 0.8667 0.9023 0.805 0.8697

carboxylic acids 0.9171 0.9228 0.888 0.9057
ether 0.9191 0.8565 0.8268 0.8318

acyl halides 0.7368 0.8907 0.7789 0.8339
amides 0.5578 0.8019 0.8188 0.8479
nitro 0.9334 0.9281 0.8659 0.9108

Investigating the effect of adding real-world data to the training datasets (obtaining ”Own NIST + Chemotion”

model) indicates that the performance is slightly reduced when incorporating real-world data, despite the presence of

outliers. The mean absolute difference between the ”Own NIST” model and the ”Own NIST + Chemotion” model is

0.056 F1 score units, while between ”Own NIST” and ”Own NIST + Chemotion sub” is 0.029 F1 score units. Adding

a subset of the Chemotion dataset reduces the error bar of nitriles which signifies a decrease in the variability or

uncertainty, indicating an improved level of precision and confidence in the validation set results. While examining

the relationship between the number of samples and classification performance, no discernible positive correlation was

identified. For instance, a comparison between Figure 1 and Figure 6 reveals that certain groups, such as aldehydes and

alkynes, constitute only 1% and 3% of the molecules, respectively, yet exhibit a high F1 score. This lack of correlation

aligns with findings from prior studies [19, 26]. Table 3 shows scores for retraining of Fine et al.’s method with IR

data as the only input and the ’NIST + Chemotion’ dataset as training data, evaluated with a 5-fold cross-validation

protocol. Ours and Fine’s methods both show improved classification performance for the NIST + Chemotion subset

as shown in Figure 7. Our method has an average score of 0.839 for the NIST + Chemotion dataset and 0.877 for the

NIST + Chemotion subset dataset. Compared to that, Fine’s method achieved an average score of 0.753 for the NIST

+ Chemotion dataset and 0.825 for the NIST + Chemotion subset dataset. Our method achieves F1 scores of 0.73

and 0.75 for nitriles in the NIST + Chemotion and NIST + Chemotion subset datasets, respectively. In comparison,

Fine et al.’s method shows F1 scores of 0.48 and 0.51 for the same datasets.
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Figure 7: Figure shows the mean F1 scores of the validation set for each functional group. The methods compared in
this plot are our model ’Own NIST + Chemotion’ and the retraining of Fine et al.’s ”IR spectra only” model with our
NIST + Chemotion dataset.

Table 3: Reproduction of Fine. et. al’s method (IR only) on NIST + Chemotion dataset

Functional group Fine et al. [19] Fine et al. [19] Own NIST Own NIST

NIST+Chemotion NIST+Chemotion sub +Chemotion +Chemotion sub

alkane 0.9236 0.9388 0.9377 0.9515
methyl 0.8747 0.8981 0.9139 0.925
alkene 0.728 0.7878 0.7965 0.8443
alkyne 0.6096 0.7594 0.7803 0.837
alcohols 0.91 0.9559 0.9173 0.9564
amines 0.6785 0.8066 0.7639 0.8225
nitriles 0.4885 0.5172 0.7387 0.7524

aromatics 0.9491 0.9519 0.9682 0.972
alkyl halides 0.6262 0.8061 0.7583 0.8594

esters 0.8743 0.9018 0.9062 0.9362
ketones 0.7643 0.811 0.8121 0.8635

aldehydes 0.7036 0.8371 0.805 0.8697
carboxylic acids 0.8613 0.9216 0.888 0.9057

ether 0.7452 0.7881 0.8268 0.8318
acyl halides 0.5335 0.6842 0.7789 0.8339

amides 0.7324 0.7654 0.8188 0.8479
nitro 0.8126 0.9031 0.8659 0.9108

As there are 0 to 7 functional groups present per sample in the NIST dataset, we explore the classification per-

formance of our model based on the number of functional groups present in the molecules. We extend our model

evaluation to assess its perfect match performance, defined as accurately predicting both the present and absent func-

tional groups in a molecule. Figure 8 illustrates the perfect match performance of our ’Own NIST’ model. Across each

validation set in every fold, the model achieves up to a 70% accuracy in predicting molecules with a perfect match.

Figure 8 (a) presents the total number of molecules in each fold, along with the corresponding counts of functional

groups. Figure 8 (b) highlights the mean ratio of the number of perfect matches to the total number of functional

groups grouped by the number of functional groups present in the molecule. The perfect match ratio is greater than

0.5 for molecules with at least one functional group and less than 6 functional groups. A very low number of perfect
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matches are observed for molecules with less than 1 and more than 6 functional groups. This trend correlates to the

data distribution as depicted in Figure 1. As the dataset contains a higher number of samples with 1 to 5 functional

groups, the model is better at classifying samples with similar distribution.

(a) (b)

Figure 8: Illustration of the perfect match results for the validation sets across five iterations of a five-fold cross-
validation for our ’Own NIST’ model. (a) Count of molecules grouped by the number of functional groups present in
them; (b) Mean perfect match ratio of a number of perfect match molecules to the number of total molecules grouped
by the number of functional groups present.

Figure 9 illustrates the false positive rate (FPR) and false negative rates (FNR) for the validation sets of a 5-

fold cross-validation of the ’Own NIST’ model, grouped by the number of functional groups present in the molecule.

Notably, a high FPR is observed for molecules lacking functional groups, consistent with the data distribution depicted

in Figure 9, where there are very few data points without functional groups. The FPR and FNR curves intersect at

the same value for samples containing three functional groups, aligning with the highest sample count in this category

as shown in Figure 9. Overall, the FNR remains below 0.2 while the FPR stays under 0.3 (excluding samples lacking

any functional groups), indicating the model’s effectiveness in classification when at least one functional group is

present. Additionally, Figure 9 highlights a low number of samples containing seven to eight functional groups;

however, the model still demonstrates lower FPR and FNR compared to samples lacking functional groups, despite a

similar distribution. These observations suggest the model’s robustness in handling different scenarios and its ability

to maintain low error rates across varying compositions of functional groups.

Figure 9: The figure shows the false positive rate and the false negative rate for validation sets of a 5-fold cross-
validation of the ’Own NIST’ model. The plot is grouped by the number of functional groups present in molecules
depicted by x-axis and the mean false positive and false negative rate depicted by y-axis.

Figure 10 shows the ’Own NIST’ model’s decision for predicting functional groups from the molecule COc1ccc(F)cc1

(4-Fluoroanisole) with a SHAP (SHapley Additive exPlanations) analysis. The SHAP analysis is a powerful tool in

machine learning interpretability, providing insights into individual feature contributions to model predictions [31].
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It quantifies the impact of each feature on model output, thereby being beneficial for understanding the decisions of

complex models. The molecule contains aromatics, alkyl halides, methyl, and ether groups as ground truths from the

dataset. Our model predicts all the labels accurately with a perfect match. Figure 10 shows regions that influence the

decision of the model toward predicting the presence of a given functional group (red) and regions which influence the

decision of the model towards predicting the absence of the group (blue).

Characteristic IR absorption peaks [32] for functional groups in 4-Fluoroanisole:

Methyl Group (CH3) :

• C-H Stretching: Around 2970-2860 cm−1.

• C-H Bending: Around 1470-1370 cm−1.

Aromatics :

• C-H Stretching: Around 3130-3070 cm−1.

• C=C Stretching: Around 1615-1580 cm−1 and 1510-1450 cm−1.

• C-H Bending: Typically in the region 900-670 cm−1.

Alkyl Halides (Fluorine attached to the benzene ring):

• C-F Stretching: Around 1000-1400 cm−1 (typically strong and sharp).

Ether Group (C-O-C):

• C-O Stretching: Around 1300-1000 cm−1 (strong).

As shown in Figure 10 , characteristic signals for the above groups are highlighted in red. Our model utilizes regions

of the IR spectrum that align with established chemical principles to identify present functional groups. Influences for

groups like alkane, alkene and ketones are also observed in the analysis, but these groups are accurately predicted to

be absent in the sample. We present more examples of SHAP analyses in the SI section.
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Figure 10: Figure shows SHAP analysis plots for predictions for the input spectrum of the molecule COc1ccc(F)cc1

4-Fluoroanisole for ’Own NIST’ model. Each plot provides SHAP values for every individual class. Blue regions of
the spectrum are influencing the prediction of the model toward predicting the absence of a functional group, while
red regions indicates the presence of a given functional group.

Conclusion and Discussion

In this study, we present a method to predict of the presence of functional groups in chemical compounds based on the

measured IR spectroscopic data. Our method uses IR data as the only type of measured input which makes it better

and broader usable due to the independence of other data types. Our method ’Own NIST’ uses a deep learning model

that performs better than previous work that used a combination of IR spectrum and mass spectrum inputs. At the

same time, our model significantly improves the classification accuracy of nitriles and amides groups. Our method

yields predictions that perfectly match 70% of the molecules in the validation set. Besides the provision of the model

itself, we demonstrated the integration of open access data [29] available from a research data repository. We were
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able to show that, despite the fact that the open-access data is in-homogeneous, comparable results could be obtained.

Unfortunately, there is a lack of openly available datasets for IR analysis which hinders the further development of

data driven methods. We take a step in this direction by publishing our in-house dataset Chemotion, which contains

real-world data produced in different labs, therefore establishing a start for a valuable benchmark dataset for machine

learning research. Future work for our study will be directed toward the creation of curated datasets to contain

molecular diversity which facilitates better generalizations. As our model is feasible to be integrated with research

software, we intend to make our developments directly available in ELNs, fostering a direct use by bench scientists.

Data availability

Code: Github repository Zenodo[33]. The repository contains the source code and documentation necessary for

reproducing the results and further development.

Dataset: Radar4Chem Chemotion repository IR Dataset[29]. The dataset contains jcamp files for each sample in

Chemotion repository[28].
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1 Supplementary Information

Hyperparameter search

To identify the optimal hyperparameter configuration for the neural network, we conducted a hyperparameter search,

a crucial step in fine-tuning neural networks. This process involves adjusting parameters such as learning rate, batch

size, and regularization to achieve the best model performance. Through iterative exploration of these parameters, we

aim to achieve the optimal generalization, ultimately improving the model’s predictive capabilities. In this study, we

employed grid search for hyperparameter optimization.

Selecting the most suitable model is a challenging task due to the prediction of multiple functional groups. Con-

sequently, for a given model, some groups may exhibit the highest scores, while others may have the lowest scores. In

these figures, we present all scores of the model that achieved the maximum score for at least one functional group.

Additionally, the figures display the scores of the model with the highest mean score across all functional groups.

Table 4: Hyper parameter search settings

Hyperparameters Fully Connected Network settings Split Network settings

Hidden layer size 128, 256 128, 256

Number of hidden layers 1, 2 1, 2

Dropout rate 0.2, 0.3 0.2, 0.3

Learning rate 0.001, 0.01 0.001, 0.01

Batch size 32, 64 32, 64

Epochs 50, 100 50, 100

Split wave number - 1600, 1800, 2100

Initial neural network design was carried out with a fully connected network. Results for a fully connected network

are shown in Figure 11. As there are multiple functional groups involved, different models achieve the best scores for

different functional groups. In Figures 11 and 12, we display each model with the best scores for every functional

group along with the model that has the best scores in terms of mean scores of all functional groups. Even though the

fully connected model performs well enough for most of the functional groups, it underperforms for the nitrile group.

As we aim to produce a method that has good classification performance for all functional groups, we create a split

network and perform a hyperparameter search for a split network as well. Figure 12 shows hyperparameter search

results for a split network. We select the model with the best mean scores for all functional groups. The following

hyperparameters produce the best results:

• Split spectra at: 1800 cm−1

• Hidden layer size: 256

• Batch size: 32

• Number of hidden layers: 2

• Dropout input layer: 0.2

• Dropout hidden layer: 0.3

• Concat layer size: 512

• Learning rate: 0.01

• Epochs: 50
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Figure 11: The plot showcases hyperparameter search results for a fully connected network. Models with maximum
score for each functional group and models with maximum mean score for all functional groups are displayed.

Figure 12: The plot showcases hyperparameter search results for our split network. Models with maximum score for
each functional group and models with maximum mean score for all functional groups are displayed.
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Figure 13: Figure shows SHAP analysis plots for predictions for the input spectrum of the molecule N#Cc1ccccc1 for
’Own NIST’ model. N#Cc1ccccc1 benzonitrile contains nitriles and aromatics groups. Our model predicts nitriles,
aromatics and alkane groups. The figure shows that the model identifies a peak near 2250 cm−1 as indicative of both
nitriles and alkynes. This region is characteristic of a triple bond stretch. Specifically, alkynes exhibit a C≡C stretch,
while nitriles exhibit a C≡N stretch.
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Figure 14: Figure shows SHAP analysis plots for predictions for the input spectrum of the molecule
CCOC(=O)c1ccc(N)cc1 ethyl 4-aminobenzoate for ’Own NIST’ model. Each plot provides SHAP values for ev-
ery individual class. CCOC(=O)c1ccc(N)cc1 ethyl 4-aminobenzoate contains alkane, methyl, amines, aromatics and
ester groups. All these groups are identified by our model with a perfect match. The figure shows that the character-
istic ester peak around 1750-1725 cm−1 is recognized correctly.
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Figure 15: Figure shows SHAP analysis plots for predictions for the input spectrum of the molecule
Nc1c(Cl)cc([N+](=O)[O-])cc1Cl 2,6-Dichloro-4-nitroaniline for ’Own NIST’ model. This molecule contains
amines, aromatics, alkyl halides and nitro groups. All these groups are identified by our model with a perfect match.
The characteristic NH stretch of a aromatic primary amine around 3500 and 3400 cm−1 is identified correctly by the
model.
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