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Abstract 

Aqueous solubility is one key property of a chemical compound that determines its possible use in 

different applications, from drug development to materials sciences. In this work, we present an 

aqueous solubility prediction study that leverages a curated dataset merged from four distinct 

sources. This unified dataset encompasses a diverse range of organic compounds, providing a 

robust foundation for our investigation of solubility prediction. Our approach involves employing 
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a variety of machine learning and deep learning models that combine an extensive array of 

chemical descriptors, fingerprints, and functional groups. This methodology is designed to address 

the complexities of solubility prediction, and it is tailored to achieve high accuracy and 

generalization. We tested the finalized model on a diverse dataset of 1282 unique organic 

compounds from the Husskonnen dataset. The results of our analysis demonstrate the success of 

our model, which,  given an  R2 value of 0.92 and an MAE value of 0.40, outperforms existing 

prediction methods for aqueous solubility on one of the most diverse datasets in the field.  

 

Introduction 

Aqueous solubility is a fundamental property essential for investigating and applying chemical 

compounds across various scientific disciplines, including chemistry and biology. Being able to 

dissolve a chemical substance plays a crucial role, e.g., in designing novel drugs, as the solubility 

has a high impact on the bioavailability of drugs and their distribution.1 In materials sciences, the 

solubility of chemicals has an effect on how materials are built and makes the difference in how 

active functional components are applied. While the solubility of commercially available building 

blocks is usually known at least for a few solvents, the investigation of newly designed and 

synthesized compounds needs the determination of the compounds’ solubility. The measurement 

of solubility can be done by different methods, e.g. using HPLC techniques2, or gravimetrically3. 

The drawbacks of all techniques are that (1) the compound needs to be synthesized in a substantial 

amount, (2) different equipment needs to be available, and (3) the determination of solubility in 

different solvents needs a lot of expertise and time.  The ability to predict solubility accurately 

could offer a lot of benefits to the current process of manually determining the solubility of new 

compounds. First of all, the laborious and time as well as resource-consuming measurements could 
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be replaced by suitable predictions (at least in parts), and secondly, predictions could help to design 

potentially interesting molecules - preventing the synthesis of compounds that do not obtain the 

expected properties.  

A general understanding of solubility prediction was gained with the general solubility equation,4 

which includes solute-solvent interactions through parameters such as activity coefficients, and 

enables predictions under various conditions. Hildebrand and Hansen solubility parameters5,6 

describe the properties of solvents and solutes. Hansen developed this idea by introducing three 

solubility parameters that take into account hydrogen bonding, polarity, and dispersion forces, on 

which the different properties of the compound depend. In COSMOS-RS75,68 quantum chemistry 

tools are used in the form of a conductor-like screening model for real solvents to forecast 

solubilities in complex systems. It takes into account the environment, electrostatic interactions, 

and molecular structure. Recently, significant progress has been made in the solubility prediction 

field, with a focus on the use of statistical methods supported by rigorous data analysis to uncover 

hidden patterns and correlations within solubility data. Statistical models leverage advanced 

algorithms to identify key factors influencing solubility, thereby improving predictive accuracy 

and machine learning methods9. These data-driven approaches harness the power of artificial 

intelligence to process vast datasets, learn complex relationships, and make accurate predictions. 

The majority of solubility predictions in the past have been made using overly simple models that 

only took into account a small number of molecular characteristics, such as molecular weight, log 

P (partition coefficient), atom counts, and ring counts10. These early models were insightful, but 

they frequently failed to account for the complex interactions that determine solubility.  

In the case of aqueous solubility, the use of molecular descriptors such as diverse molecular 

descriptors characterizing the chemical structure or its properties has been shown to give the most 
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accurate prediction so far.10,11,12,13,14,15 Sorkun et al.9 achieved notable predictive accuracy by using 

a dataset with 4399 unique data points, a feature set with 123 descriptors, and a consensus model 

with Random Forest, XGBoost, and an artificial neural network.   

Some major challenges consist of the existence of measurement noise and data quality issues, the 

diversity and scale of the molecular space, and the broad range of solubility values. 

 

Methods 

                                                                   

Data Curation and Preprocessing 

In order to maximize the training dataset, we collected data from four different sources, which are 

further referenced as datasets A (Boobier et al.17), B (Panapitiya18), C (Cui, Q. et 20),  and D 

(Sorkun9) which have already been used in the literature. An additional dataset E (Huuskonen19) 

was reserved as a dataset for testing the model. Merged the four datasets, resulting in a total of 

28,859 samples for training and 1,291 samples for testing. Table 1 and Figure 1 give additional 

information about the process of data collection and data curation for the data that was used as a 

training dataset to train the model and the test dataset on which the model has been evaluated. To 

ensure the consistency of the combined dataset A-D, in particular to prevent having included 

duplicates, the representation of chemical structures is unified by converting the molecular 

representations into the canonical SMILES format. This standardization step eliminates 

inconsistencies caused by disparate chemical notations or representations. In parallel, the 

information on the solubility was harmonized by converting the solubility values of all data, e.g. 

from g/L into logS. The obtained datasets with harmonized logS properties were searched for equal 

SMILES codes, indicating duplicates in the dataset. Molecules with two or more records were 

sorted into two groups: molecules appearing multiple times having the same solubility values, and 
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those where the solubility values differ. In the first case, we kept only one of the equal examples. 

In the second case, an average of the solubility values was calculated for all molecules that have a 

difference lower than 0.5 in logS. 1383 examples with more than a 0.5 difference for the given 

logS in comparison to the closest other logS value were removed from the dataset (see SI). After 

the removal and/or harmonization of the duplicates from the training and test datasets, the test 

dataset was compared to the training dataset. The molecules with matching SMILES in the test 

and training datasets were removed from the training dataset to ensure that the training and test 

datasets have no overlapping data and to keep the test dataset complete for validation purposes in 

direct comparison to other results in the literature. With this process, we finally got 17937 training 

samples and 1282 test samples (Figure 1). 

 

Table 1: Details of the 5 different datasets used to generate a unique dataset to train and test the model  

Dataset   Name  Dataset Size  Use  Duplicate  Unique Reference 

A BNN Lab  900 Training  4  898  17 

B Gihan  11862 Training 261 11724 18   

C Xian Zeng  9942 Training 347 9750 20 

D Sorkun  6154 Training 471 5907 9 

E Huuskonen 1291 Testing 18 1282 19 
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Figure 1. Schematic presentation of the preprocessing pipeline for training and test data consisting 

of (1) data collection, (2) generation of canonical SMILES and solubility harmonization, (3) 

removal of duplicates and data cleaning in the training and test data sets, (4) comparison of the test 

to the training dataset and removal of duplicates from the latter one.  

 

Generation of Descriptors  

Following the idea of using molecules and their descriptors for the training of neural networks, we 

created an initial set of four fundamental descriptors representing essential molecular 

characteristics by RDkit (exact molecular weight, water-octanol partition coefficient logP, 

aromatic proportion, and rotatable bonds), forming the foundation of our feature representation. 

To systematically investigate the impact of including additional descriptors on the model’s 

performance, we incrementally expanded the descriptor set. This stepwise augmentation allowed 

us to assess how the inclusion of a higher number of descriptors influences the accuracy and 

predictive power of our model. As we progressed, we continually introduced new descriptors into 

our feature space, each chosen to capture specific chemical attributes and properties. The step-by-

step expansion of our descriptor set provided insights into the optimal feature space for our 
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predictive modeling task, allowing us to refine and enhance our solubility predictions. Within the 

extended descriptor set, four different descriptor types used at different stages of our study can be 

described: (1) 125 classical descriptors, including topological, physicochemical, and electronic 

properties. These descriptors offer a comprehensive characterization of molecular structures and 

properties (SI, chapter 2.1). (2) Different molecular fingerprints with varying bit lengths, ranging 

from 128 to 1024 bits (radius of 2) were considered in our model. Molecular fingerprints enable 

the capture of fine-grained structural information at various levels of granularity. (3) We included 

binary representations of the presence or absence of specific functional groups as descriptors, as 

we expected them to be a potentially critical property of the molecular structures referring to their 

solubility. An overview of the prevalence and diversity of functional groups present in the training 

dataset and a summary of the influence of functional groups on the solubility of molecules is 

included in the Supplemental Information (SI, chapter 2.2). (4) Along with these descriptors, we 

added 38 molecular descriptors, including charge, double bonds, valence electrons, hybridization 

types, bond types, and chirality features. These descriptors aim to capture detailed structural and 

electronic characteristics of the molecules for improved predictive accuracy (SI, chapter 2.1). 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2024-3ld27 ORCID: https://orcid.org/0000-0001-9513-2468 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-3ld27
https://orcid.org/0000-0001-9513-2468
https://creativecommons.org/licenses/by/4.0/


8 

Model Building 

Figure 3. Schematic description of the workflow followed in this work consisting of dataset 

preparation for training and testing, calculation of descriptors, training of the model (according to 

four different basic models), and the prediction of the solubility in LogS.   

 

We used four different machine learning models in this study, each designed to capture particular 

nuances in our solubility prediction task (see SI). (1) The ensemble learning technique Random 

Forest was chosen because of its ability to handle a variety of data types and identify non-linear 

relationships. Hyperparameters like tree depth and forest size were given special consideration 

when building our random forest model. (2) XGBoost was used because of its excellent prediction 

abilities. It excels at modeling intricate data relationships. Our method for optimizing crucial 

parameters, such as the learning rate, tree depth, and number of estimators (trees in the ensemble), 

included hyperparameter tuning. (3) Artificial Neural Networks (ANNs) are renowned for their 

capacity to recognize intricate data relationships and patterns.  Multiple hidden layers with 

movable sizes and activation mechanisms make up our ANN architecture [2]. To ensure the 

network's ideal learning and generalization, hyperparameter tuning included learning rates, weight 

regularization, and dropout. (4) Message-Passing Neural Networks employed both a standard 

Message-Passing Neural Network (MPNN) and a hybrid MPNN architecture for solubility 
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prediction. The hybrid MPNN comprises seven layers, including a combination of message-

passing layers, fully connected layers, and integration mechanisms for additional physical property 

features. This architecture was designed to enhance the predictive accuracy by capturing both 

molecular graph-level information and physical property data. Comparative evaluations were 

conducted to assess the performance improvements achieved with the hybrid MPNN over the 

standard MPNN approach. The selection of message-passing functions, layer configurations, and 

other crucial parameters were addressed during the hyperparameter tuning phase. The optimal 

hyperparameters of all models can be found in the SI. 

To improve the predictive performance and interpretability of our machine learning model, we 

employed the Least Absolute Shrinkage and Selection Operator (LASSO) regularization 

technique, which applies L1 regularization to penalize and shrink less important feature 

coefficients towards zero. In order to evaluate the model, we perform five-fold cross-validation, 

which checks that our models generalize well and do not overfit the training data. One-fold was 

reserved for the validation set for each iteration, and the remaining folds served as the training set. 

For each fold, the model's performance was assessed using a specific metric: mean absolute error 

(MAE), root mean squared error (RMSE), and R2 coefficient of determination. The model's 

performance was then evaluated across the entire dataset by aggregating the performance metrics 

across all five cross-validation splits. Cross-validation was used for hyperparameter tuning and 

performance evaluation. In order to find the configuration that maximizes model performance, 

various sets of hyperparameters were tested throughout the hyperparameter tuning process.  
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Results 

In our work, we adopt the concept of using molecular descriptors as described previously by others. 

To improve the currently available models with respect to the accuracy of the model and the 

suitability for a wide range of chemical substance classes, we collected additional key aspects that 

we expected to improve the solubility prediction. The main changes included: (1) the application 

of traditional machine learning algorithms like XGBoost and Random Forest, along with neural 

networks and (hybrid) message-passing neural networks from graph neural networks. (2) We 

further extended the molecular descriptors used in a stepwise approach, (3) We included altogether 

four datasets from different established sources as a training set and compared it to the previously 

used test dataset published by Husskonen19.  

 

Comparative analysis with different sets of features    

Using XGBoost, Random Forest regression, ANNs, and MPNNs, four models using a particular 

set of descriptors were trained (Figure 3, Table 2). Our analysis focused on MAE and RMSE as 

important metrics to compare the performance of the models and descriptors (see SI). We 

evaluated the models' cross-validation results to determine how well they generalize to unseen 

data. We further investigated the subtleties of each model’s configuration, taking into account how 

the quantity and variety of descriptors affected the complexity of the model. We started our 

investigation with XGBoost, due to its ability to capture complex, non-linear relationships and 

mitigate overfitting through built-in regularization. Its robustness, efficiency, and adaptability, 

combined with extensive hyperparameter tuning, make it an ideal choice for our dataset's 

characteristics. Using XGBoost with 4 descriptors (molecular weight, logP, aromatic proportion, 

and rotatable bonds) gave an R2 score of 0.87, in combination with an RMSE of 0.72 and MAE 
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of 0.56. The extension of the descriptor set to 17 descriptors (XGB-17) increased the performance 

of the model to a level that is comparable to the best models currently available referring to the 

same test data from Huuskonen (see Table 2 and Table 3). Further increase in the number of 

descriptors yielded a systematic improvement of the performance of the XGBoost model, however, 

the improvement from 17 to 125 descriptors and the following ones were lower than the 

improvement made in the first step (increase from 4 to 17). The last improvements given by the 

introduction of the 128-bit fingerprint descriptor and the addition of 7 functional groups are very 

small (not represented in the number of digits). The increase in fingerprint size to 512 and 1024 

bits (Table 2 entries 7,8) led to a decrease in the performance on the test dataset, likely due to the 

introduction of redundant or irrelevant features. This causes overfitting. The best results were 

finally achieved with XGB in combination with 298 descriptors (Table 2). This model (further 

named XGB-298), yielding an MAE value of 0.40, an RMSE value of 0.55, and an R2 score of 

0.92, was used for further investigation and comparison with three other known models in the 

literature. Neither Random Forest (MAE = 0.49, RMSE = 0.64, R2 = 0.90) nor ANN (MAE = 

0.52, RMSE = 0.70, R2 = 0.88) could compete with the model XGBoost-298 even when the same 

set of descriptors was used. Attempts using MPNN with 6 layers included were even worse, giving 

an R2 of 0.82, MAE of 0.68, and RMSE of 0.76, a hybrid MPNN model.  
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Table 2: Comparison of test set performance on different models and combinations of descriptors 

given by the metrics MAE, RMSE, and R2.  

Entry 
Model 

Name  
MAE RMSE R2 

No. of descriptors/fingerprint version 

No descr
a
 FP

b
 FGs

c
 feat

d
 layers 

1 XGB-4 0.56 0.72 0.87 4 - - - - 

2 XGB-17  0.44 0.58 0.91 17 - - - - 

3 XGB-125 0.40 0.55 0.92 125 - - - - 

4 XGB-253 0.40 0.55 0.92 125 128 - - - 

5 XGB-260 0.40 0.55 0.92 125 128 7 - - 

6  XGB-298 0.40 0.55 0.92 125 128 7 38 - 

7 XGB-682 0.41 0.55 0.92 125 512 7 38 - 

8 XGB-1194 0.41 0.55 0.92 125 1024 7 38 - 

 

9 

RANDOM 

FOREST 

0.49 0.64 0.90 125 128 7 38 - 

10 MPNN  0.68 0.76 0.82 - - - - 6 

11 Hybrid 

MPNN 

0.46 0.63 0.90 125 - 7 38 7 

12 ANN 0.52 0.70 0.88 125 128 7 38 6 

aModel includes the given number of descriptors; bType of Fingerprint: cFGs = number of 

functional groups included; dAdditional selected descriptors included. Details of the type 

functional groups as well as the uncertainties for MAE are described in the SI. 

 

To the best of our knowledge, there are currently 11 studies dealing with the prediction of aqueous 

solubility and using the Huuskonen dataset as a reference test dataset (Table 3). We compared the 

results of our model with results from the literature using the same test dataset.19 In our first 
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comparison, we found our model to be comparatively powerful as the best model from the 

literature, which was published in 2020 by Sorkun et al. (Table 3).  We then compared the models 

and workflows in more detail and found one main difference in the preparation of the training and 

test dataset. While we harmonized the data sets used for training and testing by the transformation 

of all molecules into canonical smiles without stereochemical information, Sorkun et al. used the 

InChIKey from stereochemical SMILES in the training set and SMILES without stereochemical 

information in the test set. This difference in the preparation of the data has an important effect on 

identifying possible overlaps in training and test data. In the canonical SMILES approach without 

stereochemical information, molecules with defined stereochemistry in either of the training 

datasets yield the same canonical SMILES code as the same molecule in the test set without 

specific stereochemical annotation - and duplicates are consequently removed. In this way, e.g. a 

double bond which is given in either Z or E annotation (or a mixture of both) in one dataset is to 

be considered as the same molecule in another dataset if the double bond is not annotated 

specifically and just given as any double bond. In contrast to this, the InChIKey approach gives 

different InChIKey codes for molecules with and without assigned isomer details. Consequently, 

the approach of Sorkun et al. includes molecules that might be the same but are described with 

fewer isomer details in the test data than in the training data (and vice versa). Our review of the 

dataset used by Sorkun et al. gave 133 duplicate samples where such a correlation might be an 

issue, therefore, we reproduced the model once with and without these 133 data points in the 

training set. With the data included, we could reproduce the published results and gain exactly the 

values given in Table 3. When removing the 133 data from the training dataset, we could not 

reproduce the former results and came to an R2 value of 0.87 in combination with an MAE value 

of 0.54 and an RMSE value of 0.73. We can think of two possible explanations for the results of 
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the reproduction of the literature-known work: Either the overlap in test and training sets caused 

an improvement of the performance of the model and their removal gives a more reliable and 

unbiased estimation of the generalization performance of the model, or the decrease in training set 

size due to the removal of the 133 samples caused the model’s performance drop. The first 

conclusion is more likely, taking into account that the 133 data points are only a small portion of 

the overall training dataset. Consequently, a comparison of the models according to Table 3 should 

be done based on the data that can be obtained with the reproduced results of the model by Sorkun 

et al. without the 133 data points. Taking this into account, we were able to improve the currently 

best results gained in previous work (by Yan and Gasteiger, as well as Lusci et al.) with respect to 

the gained MAE and RMSE values and can compete with the currently highest R2 value of 0.92 

gained.  

 

Table 3: Comparison of our model XGB-298 with previous work in the literature 

Entry 

 

Method test 

data 

Size 

MAE RMSE R2 Year Reference 

1 ANN 1294    - 0.71 0.88 2000 Huuskonen21 

2 ANN 1291    - 0.62 0.91 2001 Tetko et al22  

3 ANN 1294 0.68 0.59 0.92 2003 Yan and Gasteiger23 

4 MLR 1290 0.68 0.87 0.71 2004 Delaney13 

5 MLR 1294 0.52 0.63 0.90 2004 Hou et al.24 

6 SVM 1290 0.43 0.60 - 2007 Schroeter et al. 25 

7 MLR 1290 0.72 0.94 0.73 2012 Ali et al.26 

8 UG-RNN 1026 0.46 0.60 0.91 2013 Lusci et al.10 

9 MLR 1290 0.93 1.15 0.68 2017 Daina et al. 27      

10 ANN 1297 - 0.65 0.90 2018 Bjerrum and Sattarov27,28 

11a 
Consensus 1290 

(0.39) (0.53) (0.93) 
2020 

Sorkun et al.9 
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11b* 0.54* 0.73* 0.87* 
2024* 

rework from Sorkun et al*  

13 XGB-298 1282 0.40 0.55 0.92 2024 this work 

*Results obtained with the model and test data of Sorkun et al. after the exclusion of data referring 

to the same SMILES code in training and test datasets (see SI, chapter 4). ANN, artificial neural 

network, MLR, multiple linear regression, SVM support vector machine UG RNN, Undirected 

graph recursive neural networks, RF, random forest; XGB Extreme Gradient Boosting; 

Consensus, an ensemble of ANN, RF, and XGB. Best results are given in bold; best results in past 

developments are underlined. 

 

Comparative analysis with experimental values and prediction  

Besides the standard analysis of predictive models and the comparison with models that refer to 

the same test dataset of Husskonen as described above, we performed a comparative evaluation of 

our model against well-established solubility prediction tools. To this aim, we selected five 

standard compounds that are easily available, for which literature solubility values are available, 

and for which solubility data can be determined in our labs. The combination of solubility values 

from the literature and our labs (experimental part given in SI, Section 5) as reference values 

allowed us to gain additional confidence in the correctness of the literature values and allowed us 

to identify potentially problematic compounds, for that the measurement details such as the pH 

might be crucial for the results but perhaps not included to the literature data. We selected the 

models of VCC labs,29,30 Sorkun,29,30 and Chembcpp31 for the comparative analysis as they are 

well-known (e.g. the VCC labs model is included in DrugBank) and available in the form of an 

online service. The comparison was achieved by statistical analysis and by determining those 

models (Table 4, green) that are closest to either the literature value or the experimentally found 

values. Across the five compounds, our model achieved an average mean absolute error (MAE) of 

0.88, compared to 2.04 for VCCLAB, 1.56 for Sorkun, and 1.30 for Chembcpp. Although this 
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statistical analysis only considers a small number of compounds, the values confirm the superior 

performance of XGBoost-298 in comparison to the other models at least with respect to the given 

compound scope. In addition, in the identification of the models that fit best to literature or 

experimental results, XGBoost-298 gave better results (4 values fit best) than Chembcpp (2 values 

fit best), VCC (1 value fits best), and the Sorkun model (0 values fit best).  

 

Table 4: Comparison of solubility values gained from previous models, the literature, and 

experiments 

 

Structure VCC32 

[g/L]a 

Sorkun9 

[g/L]a 

Chembcpp 

[g/L]a 

 

XGB-298 

[g/L]b 

Exp. Lit 

[g/L]c 

Exp. lab 

[g/L]d 

1 3.64 5.39 3.18 2.26 2.9933 2.42 

2 2.07 1.68 2.12 2.97 2.5834 3.10 

3 3.55 2.88 1.63 2.32 2.5035 2.12 

4 4.90 12.61 7.21 11.85 11.9036 7.20 

5 5.01 2.57 2.41 2.64 6.0037 12.0 

                 
a predicted solubility in g/L from a reference model (value calculated from the given information 

in logS); bresults gained from our model; cexperimental values extracted from different literature 

sources; dexperimental values determined in our labs (see supplemental information for details on 

the used method). Highlighted in bold: Values for that the given model performs best in 

comparison to the other predictive models either referring to the experimental data from the 

literature or the experimental data determined in our labs.  

 

Conclusion 
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With XGBoost-298, we introduce a model for the prediction of solubility values for chemical 

compounds in water. The model was built using different sets of descriptors allowing us to 

determine the most efficient combination of available descriptors in a step-by-step approach and 

yielded 298 descriptors as the most successful approach.  The model based on XGBoost was shown 

to be superior to other models such as Random Forest, ANN, and MPNN even if they were used 

with the same descriptors. The results were obtained with a curated dataset collected from four 

different sources for training purposes; an additional dataset was reserved as a test dataset for 

comparison with literature-known models. A further comparison with these other literature models 

showed that XGBoost-298 can compete with the most successful results in the literature and gives 

even better results with respect to the MAE and MRSE. We further compared our results to data 

that can be retrieved from online resources of other projects dealing with aqueous solubility. We 

could see that for four of the selected five examples, our model gave the closest prediction referring 

to either the literature data or data that was experimentally determined in our labs. The model is 

available as an online resource and can be used as a service. 
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