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Abstract: The ability of Parageobacillus thermoglucosidasius to produce H2 from CO via the water–gas
shift (WGS) reaction makes it a compelling microorganism for biofuels research. Optimizing this
process requires evaluating parameters such as pressure. This study aimed to understand how
H2 production is affected by increasing CO, N2, and H2 partial pressures to 1.0, 2.0, and 3.0 bar.
Increasing CO partial pressure can improve the solubility of the gas in the liquid phase. However,
raising CO partial pressure to 3.0 bar had an inhibitory effect, delaying and reducing H2 production.
By contrast, increasing N2 and H2 partial pressures to 3.0 bar had positive effects, reaching a H2

production of 9.2 mmol and 130 mmol, respectively. Analysis of the electron balance at the end of
the fermentation process showed that the selectivity toward H2 production reached 95%, with the
remainder of electrons deriving from CO and glucose directed at organic acid production, mainly
acetate, followed by formate.

Keywords: Parageobacillus thermoglucosidasius; hydrogen; water–gas shift reaction; CO-dehydrogenase;
partial pressure

1. Introduction

Hydrogen (H2) is a versatile energy carrier with the highest energy content per unit
weight (142 kJ/g). Furthermore, it can be transported and is safer to handle than natural
gas, and its zero-carbon nature makes it a promising energy alternative to dwindling fossil
fuels [1–5]. Current industrial H2 production practices are hampered by high costs and are
often non-carbon neutral, and hence there has been increasing research on the development
of biological means for H2 production, with focus on improving the yield and the emergent
renewable technologies [6,7]. Biological H2 production strategies of interest include direct
and indirect bio-photolysis, microbial electrolysis cells, photo and dark fermentations,
and combined systems such as photo-electrochemical electrolysis [3,4,8,9]. Recently, the
biological water–gas shift (WGS) reaction has been added to this group of processes [3,5,8].

This area of biohydrogen production research centers on the use of hydrogenogenic
carboxydotrophic mesophilic or thermophilic microorganisms capable of performing the
WGS reaction, where carbon monoxide (CO) reacts with water under anaerobic conditions
to produce hydrogen and CO2 [10,11]. A waste gas, forming part of synthesis gas from
various industrial process, CO expands the substrate range for carbon-neutral biological H2
production [5,8]. In particular, the Gram-positive thermophile Parageobacillus thermoglucosi-
dasius presents a robust microorganism for WGS-driven hydrogen production [12], and it is
a versatile microorganism with industrial significance able to degrade starch, hemicellulose,
cellulose, and lignocellulose [13]. Unlike other hydrogenogenic carboxydotrophs, which
are strict anaerobes, this bacterium is a facultative anaerobe, and has even been observed
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to undertake the WGS reaction under low oxygen levels [14,15]. Various parametric op-
timizations have been investigated to improve the hydrogen yield from CO oxidation
by P. thermoglucosidasius, including factors such as temperature, media composition, pH,
inoculum size, and age of the inoculum [15]. One parameter that has received limited
attention is the effect of pressure on P. thermoglucosidasius hydrogenogenesis and how it
affects H2 production, as well as the microorganism metabolism.

When considering gas fermentations, Henry’s law applies, where a proportional
relationship exists between the concentration of the gases in the liquid phase (where the
microorganism resides) and the total headspace pressure [16]. This suggests that more CO
would be available for the microorganism to use as substrate and concomitantly increase
the H2 yield. However, this represents a challenge, as the toxicity of CO to microbial cells
also tends to increase [17]. P. thermoglucosidasius has been shown to cope with toxicity, as
CO is present during initial aerobic growth [18]. Alternatively, a lower hydrogen partial
pressure in the headspace facilitates the mass transfer of hydrogen from the liquid to the
gas phase [16].

Understanding the effects of different partial pressures of gases on the WGS process
could therefore be used to increase H2 yield and thereby optimize the biohydrogen process.
In this study, the effect of increasing CO, H2, and N2 partial pressures (pCO, pH2, and pN2)
on WGS-driven H2 production by P. thermoglucosidasius was evaluated.

2. Materials and Methods
2.1. Microorganism and Media

P. thermoglucosidasius DSM 6285 was obtained from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) and was conserved
in glycerol (80%) stocks at −80 ◦C. The cultivation of P. thermoglucosidasius DSM 6285 was
performed in modified Luria Bertani (mLB) medium containing, yeast extract (5 g/L), NaCl
(5 g/L), tryptone (10 g/L), 1.25 mL/L of NaOH (10 g/L), and 1 mL/L of each of the stock
solutions of nitrilotriacetic acid (1.05 M), MgSO4·7H2O (0.59 M), CaCl2·2H2O (0.91 M), and
FeSO4·7H2O (0.04 M), previously filter-sterilized. P. thermoglucosidasius was cultured at
60 ◦C as described below in the inoculum preparation. For the subsequent fermentations,
a modified ammonium sulfate medium (mASM) was used, with the following content:
citric acid (8.7 mM), MgSO4 (20.2 mM), K2SO4 (10 mM), NaH2PO4 (22.6 mM), CaCl2
(0.8 mM), (NH4)2SO4 (25 mM), and 1 mL each of the filter-sterilized trace elements: H2SO4
(6 mM), CuSO4 (0.1 mM), CoSO4 (0.2 mM), ZnSO4 (0.5 mM), FeSO4 (2.29 mM), NiSO4
(0.3 mM), MnSO4 (0.9 mM), and H3BO3 (0.1 mM). The pH was adjusted to 6.8 with 4 M
NaOH. The ASM medium was supplemented per liter with 0.02 mM biotin (Carl Roth,
Karlsruhe, Germany), 20 mL 50×-MEM amino acids solution, 10 mL 100×-MEM non-
essential amino acids solution, and 10 mL 100×-MEM vitamin solution (Thermo Scientific,
Schwerte, Germany); all supplementary solutions were previously filter-sterilized; and
added after the main components of the media were autoclaved. Finally, glucose was
added (1 g/L final concentration).

2.1.1. Inoculum Preparation and Bottle Fermentation

Precultures were prepared by adding 300 µL of glycerol stock to 200 mL of mLB
medium in 500 mL shake flasks, which were then incubated at 60 ◦C and 120 rpm under
aerobic conditions in an Infors Thermotron (Infors AG, Bottmingen, Switzerland). After
14 h, a calculated volume of 30 mL of the inoculum was added to 1.5 L stainless steel bottles
(DURAN® GL 45) containing 600 mL mASM. Initially, the bottles were prepared with an
atmosphere of 50% CO and 50% air at standard pressure (1 bar); afterwards, the pressure in
the bottles was increased by adding up either CO, H2, or N2 up to a given partial pressure
for each gas (Table 1). The bottles were then incubated at 60 ◦C and 120 rpm in the Infors
Thermotron (Infors AG, Bottmingen, Switzerland). The fermentations were evaluated over
a duration of 168 h.
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Table 1. Gas composition for the different experiments.

Experiment
Initial Partial Pressure (bar) Total Pressure (bar)

CO N2 H2 O2 CO2

No overpressure 0.523 0.482 0 0.133 0.001 1.139

CO (1 bar) 0.976 0.803 0 0.226 0.001 2.006

CO (2 bar) 1.524 0.870 0 0.238 0.002 2.634

CO (3 bar) 2.102 1.201 0 0.329 0.002 3.634

N2 (1 bar) 0.508 1.390 0 0.129 0.001 2.028

N2 (2 bar) 0.496 2.429 0 0.123 0.001 3.049

N2 (3 bar) 0.436 3.073 0 0.138 0.002 3.650

H2 (1 bar) 0.541 0.487 0.999 0.136 0.001 2.164

H2 (2 bar) 0.573 0.362 1.908 0.139 0.001 2.983

H2 (3 bar) 0.675 0.213 2.777 0.111 0.002 3.778

2.1.2. Analytical Methods

The gas composition was evaluated at different time points in each fermentation
by drawing 3 mL samples of gas from the headspace and injecting each sample into a
3000 Micro GC gas analyzer (Inficon, Bad Ragaz, Switzerland) connected to 10 m Molsieve
and 10 m PoraPLOT Q columns. Gas compositions were calculated according to the ideal
gas law as previously described [15].

To evaluate the growth of P. thermoglucosidasius and metabolites production during
the fermentation, 1 mL liquid samples were collected through the bottle stoppers. The
absorbance (OD600) of each sample was measured using the Ultrospec 1100 pro spectropho-
tometer (Amersham Biosciences, Uppsala, Sweden). The remaining liquid samples were
centrifuged at 13,000 rpm for 10 min and the supernatants were transferred into 1.5 mL
HPLC vials to evaluate the presence of glucose, acetate, ethanol, formate, lactate, succinate,
propionate, butyrate, and valerate. HPLC was performed to quantify the metabolites
present in each sample with an Agilent 1100 series HPLC system (Agilent Technologies,
Waldbronn, Germany) equipped with a wavelength detector and refractive index detector
with a 50 × 7.8 mm long pre-column (model Rezex ROA-Organic Acid H+ 8% guard
column) and a 300 × 7.8 mm, 8 µm long separation column (model Rezex ROA-Organic
Acid H+ 8% column). A sample volume of 10 µL was injected with a 0.6 mL min−1 flow
rate for 40 min per sample. A 5 mM H2SO4 solution was used as the mobile phase, and a
column temperature of 55 ◦C was selected. Data acquisition and analysis were performed
with the software Chemstation (C.01.07 27, Agilent Technologies, Santa Clara, CA, USA).
The electron selectivity for the different partial pressures experiments was calculated as
explained in the Supplementary Material.

3. Results
3.1. Effect of Increased CO Partial Pressure on H2 Production

The pCO was increased in the fermentations to evaluate its enhancing or inhibitory
effect on hydrogenogenesis. H2 production commenced after 24 h in the fermentation with
no overpressure (pCO: 0.523 bar) and reached a maximum of 16.2 mmol, H2 corresponding
to a pCO of 0.574 bar, after 72 h (Figure 1A). Increase of pCO invariably resulted in a delay
in the start of H2 production. Increasing pCO to 1 bar resulted in the commencement of
hydrogenogenesis after 48 h. However, due to higher availability of CO in the headspace,
the production of H2 increased to 63 mmol, corresponding to a pH2 of 1.39, by 96 h
post-inoculation (Figure 1A).
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A further increase of pCO to 2 bar delayed the start of H2 production to 52 h post-
inoculation, with H2 reaching a concentration of 26.6 mmol after 168 h, with a pH2 of
1.42 bar. At the highest pCO (3 bar), no evident CO consumption or hydrogen production
was observed (Figure 1A). The hydrogen production rate reached a maximum of 0.21 mmol
d−1 at 96 h with 1 bar pCO, while at the same time, it reached 0.03 mmol d−1 with 2 bar
pCO (Supplementary Figure S1). The volumetric H2 production rate was 7.44 and 1.08 L
H2 L−1 d−1 for 1 bar and 2 bar pCO, respectively. On the other hand, oxygen was depleted
in all experiments within the first 24 h of fermentation, except for the 3 bar pCO, and it
remained constant from 24 to 120 h (Supplementary Figure S2).

Changes in the metabolite profiles were also observed with increased pCO. With a
pCO of 1 bar, acetate production was the highest, while for 2 and 3 bar pCO, formate and
lactate, respectively, were prominently produced (Figure 1B). More specifically, with 1 bar
pCO, acetate production commenced after 24 h, and increased to a maximum of 14.17 mM
after 120 h. Formate production stayed below 0.66 mM, while lactate peaked (0.71 mM)
after 24 h and subsequently decreased to 0.02 mM (Figure 1B). With 2 bar pCO, 22.4 mM
of formate was observed after 72 h and subsequently remained constant, while lactate
(0.25 mM) and acetate (0.73 mM) production reached their maximum after 120 h and 72 h,
respectively (Figure 1B).

Under 3 bar pCO, formate (8.6 mM) and acetate (2.5 mM) reached their relatively low
maxima after 72 h and 24 h, respectively, while fermentation with this partial pressure
resulted in the highest amount of lactate being produced, reaching 3.2 mM after 24 h and
remaining stable throughout the remainder of the fermentation (Figure 1B). For all the
fermentations, the glucose in the media was depleted by 24 h post-inoculation, except for the
highest pCO (3 bar), where glucose content decreased to 4 mM and remained constant until
the end of the fermentation. This correlates with the lack of consumption of CO under this
partial pressure, underlying the inhibition in the fermentation (Supplementary Figure S3).
Additionally, it further correlates with the slight O2 concentration observed with 3 bar pCO,
as both oxygen and glucose consumption should normally occur in parallel.

3.2. Effect of Increased N2 Partial Pressure on H2 Production

To understand the effects of overall gas pressure on hydrogenogenesis, pN2 was
increased by adding up to 3 bar of pressure. Under no overpressure, H2 production was
observed after 24 h, with 1.0 mmol (pH2: 0.03 bar), increasing up to 16.4 mmol by 96 h (pH2:
0.5 bar). With 1 bar pN2, H2 production was first observed after 24 h, with 7.9 mmol (pH2:
0.2 bar) and 22.1 mmol (pH2: 0.5 bar) of H2 produced after 29 h and 72 h of fermentation,
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respectively (Figure 2A). Increasing the pressure in the system to 2 bar pN2 produced
6.8 mmol (pH2: 0.2 bar) and 17.6 mmol (pH2: 0.5 bar) of H2 at the same time points. At
the highest pN2 (3 bar), H2 production commenced earlier, 5.7 mmol of H2 (pH2: 0.3 bar)
already observed after 24 h of fermentation, reaching a peak of 9.2 mmol H2 (pH2: 0.6 bar)
after 48 h and afterward remaining stable. The maximum hydrogen production rate was
observed at 48 h with 0.13, 0.11, and 0.07 mmol d−1, corresponding to 1, 2, and 3 bar pN2
(Supplementary Figure S1). Similarly, the volumetric H2 production rate was 1.58, 0.94,
and 0.40 L H2 L−1 d−1 for the increasing pN2 of 1, 2, and 3 bar. Increased pN2 also affected
the growth of the microorganism; the specific growth rate was reduced from 0.145 to, 0.116,
0.090, and 0.075 h−1, with 1, 2, and 3 bar pN2, respectively.
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blue, respectively.

Lactate and formate production increased in line with the increase in pN2. Whereas
formate accumulated to 0.79 mM at the end of fermentation with 1 bar pN2, it reached
0.96 mM and 1.19 mM with 2 and 3 bar pN2, respectively (Figure 2B). Maximum lactate
production was observed after 24 h for all evaluated pN2 levels, with 2.05 mM, 2.88 mM,
and 3.14 mM produced with 1, 2, and 3 bar of pressure, respectively. Afterwards, lactate
production decreased by 1 mM in all the pN2 levels and remained stable. By contrast,
acetate production was highest (6.15 mM after 120 h) with 1 bar pN2 and the lowest
(4.14 mM after 120 h) with 3 bar pN2.

3.3. Effect of H2 Partial Pressure on H2 Production

Increasing pH2 up to 3 bar allowed us to evaluate product inhibition. With 1 bar
pH2, an increase in H2 from an initial amount of 37.8 mmol to 46.2 mmol (an increase
of 8 mmol) was observed after 24 h, while increases of 11.9 mmol and 15.1 mmol of H2
were observed with 2 bar (initial 69.1 mmol H2) and 3 bar (initial 97.9 mmol H2) pH2,
respectively (Figure 3A). The highest amount of H2, 130 mmol, was seen after 120 h with
3 bar pH2. Production of hydrogen commenced after 4 h of fermentation, with 0.39, 0.70,
and 0.97 mmol d−1 for 1, 2, and 3 bar pH2, respectively (Supplementary Figure S1). A
similar trend was observed with the volumetric H2 production rate, with 1.03, 4.05, and
7.64 and L H2 L−1 d−1 for the increasing pH2 of 1, 2, and 3 bar. The specific growth rate
was negatively affected by increased pH2, reducing from 0.145 h−1 with no overpressure to
0.062 h−1 when increasing the pH2 to 3 bar.
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With 1 bar pH2, acetate accumulated to 6.24 mM after 48 h, remained stable until 96 h,
and subsequently decreased to 4.33 mM by 120 h of fermentation. A similar trend was
observed with 2 bar pH2, where acetate accumulated to 6.85 mM by 48 h and remained
relatively stable until 120 h, with a production of 6.70 mM at this time point. A further
increase of pressure to 3 bar pH2 led to a decrease in acetate, with the highest acetate
amount (3.92 mM) after 72 h.

Figure 3B shows formate production with 1 bar pH2 increased to 0.89 mM after 24 h
and stabilized at a highest concentration of 1.09 mM after 72 h. By contrast, with 2 bar pH2,
there was consumption of the initial amount (1.0 mM) of formate, decreasing to 0.54 mM
after 24 h. However, it subsequently recovered to a concentration of 1.01 mM after 120 h.
Formate trends with 3 bar pH2 were similar to what was observed with 1 bar, as formate
increased to 0.69 mM after 24 h, with the highest accumulation (0.92 mM) after 120 h of
fermentation. Production of lactate only increased to 6.8 mM after 4 h of the fermentation
with 1 bar pH2 but then decreased to 1.62 mM after 120 h of fermentation. Lower and later
peaks of lactate production were observed with 2 and 3 bar pH2.

3.4. Selectivity of the WGS Process with Different CO, N2, and H2 Partial Pressures

The electron balances of the fermentation reactions with different pCO, pN2, and
pH2 were evaluated. In the experiment with no overpressure, more than 98% of electrons
from CO were directed into H2. Similarly, for the experiments with increased pN2 and
pH2, the fermentation process was highly selective towards H2 production, where more
than 95% of electrons derived from CO were converted into H2, regardless of the level of
partial pressure of the selected gas (Figure 4A,B). This is followed by acetate as the main
metabolite, with less than 5% of electrons from CO and glucose being routed into organic
acids. The same trend was observed with 1 and 2 bar pCO. However, when applying 3 bar
pCO (Figure 4C), as H2 production was inhibited, the electrons were primarily derived
from glucose and acetate and routed into organic acids.
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4. Discussion
4.1. Effect of Increasing Partial Pressure of Gases on H2 Production

The presence of H2 could lead to product inhibition, as described for the thermophilic
bacterium Caldicellulosiruptor saccharolyticus, where H2 production ceased after reaching a
pH2 of 0.56 bar [19]. Similarly, an increase in pH2 had a detrimental effect on H2 yield and
decreased sugar utilization efficiency by Clostridium butyricum TM-9A, where the total H2
production decreased 2.6-fold when the pH2 increased from 0.1 to 0.2 bar [17].

The increase of pH2 up to 3 bar in our study had no inhibitory effect on H2 production,
and following the WGS reaction, all the CO present in the system was converted into H2
with a selectivity higher than 95%. This agrees with a study where pH2 up to 1.25 bar had
no effect on P. thermoglucosidasius H2 production [20]. In contrast, the increase of pH2 in a
study evaluating different gas release strategies (uncontrolled, intermittent, and constant)
demonstrated that increasing pH2 was inhibitory to dark fermentative H2 production by a
mixed anaerobic microbial consortium and that the highest H2 production was obtained
with the constant gas release, denoting the lowest pH2 [21].

An increase in pH2 primarily resulted in a reduction of acetate and formate, while
lactate production was higher at 3 bar pH2. Changes in the metabolite profile in response
to high pH2 have also been observed in T. thermosaccharolyticum W16 [22]. In anaerobic
bacteria, the end product formation can be greatly affected by the pH2, with a metabolic shift
towards reduced metabolites such as ethanol and lactate [23]. This was also documented
in a study with Clostridium ljungdahlii, where the increase of pH2 to 1.52 bar shifted the
product ratio to ethanol; however, an increase of pH2 up to 3 bars caused a decrease in the
gas consumption rates [24]. In Chlamydomonas reinhardtii, a high pH2 caused inhibition of
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H2 production, in addition to changes in metabolism towards reduced products; therefore,
a low pH2 improved H2 yields exponentially in the latter case [25].

The effect of total pressure on P. thermoglucosidasius hydrogenogenesis was evaluated
by increasing the pN2 up to 3 bar. A similar experiment with selected Clostridium spp. in
an anaerobic biodisc reactor with a pressure increase of 0.18 above atmosphere pressure
(0.89 bar) decreased H2 yield by 19.5% [26]. In another experiment with Clostridium aceto-
butylicum, hydrogen yield declined by 40% in comparison with a strategy releasing constant
gas [27]. In our case, while no difference in CO consumption was observed in our study
at pN2 up to 3 bar, slight decreases in H2 production were noted rather than the expected
increase in yield. However, given the negligible effects, total pressures above 3 bar should
be evaluated for effect on H2 yield.

Increasing pCO positively affected cell growth and product (ethanol and acetate)
formation in Clostridium carboxidivorans P7T [28]. In our study, increasing pCO up to 3 bar
resulted in inhibition of hydrogenogenesis. Furthermore, the increase of pCO caused a
decrease in the specific growth rate of P. thermoglucosidasius by 59.4% at a pressure up to
1.0 bar and by 66.2% when the pCO reached 3.0 bar compared to when no overpressure was
applied. Similarly, an increase of pCO from 0 to 0.5 atm was limiting on the specific growth
rate of Citrobacter sp. Y19, reducing from 0.72 to 0.29 h−1 [29]. In P. thermoglucosidasius, the
production of acetate and lactate increased at a pCO of 2 bar. This may serve as a means for
this bacterium to cope with CO toxicity, as there is a shift in the flow of reducing equivalents
away from terminal oxidases with increased CO concentration [18]. Furthermore, the
conversion of pyruvate to lactate is a well-established mechanism used to restore the
balance of NAD+/NADH during bacterial growth on glucose [30]. A relationship between
acetate and pCO was documented in C. carboxidivorans P7T, where lower amounts of acetate
were produced at higher pCO [28]. An opposite effect was shown in this work, where the
increase of pCO caused an overall decrease of acetate from 14.17 mM to 2.5 mM, with 1.0
and 3.0 bar pCO, respectively. It has been observed that CO conversion rate is limited by
the gas–liquid mass transfer when evaluating high biomass concentrations; additionally,
the dissolved CO concentration affects the specific CO uptake [31].

4.2. Future Perspectives

Increasing the pH2 up to 3 bar did not have an inhibitory effect on P. thermoglucosidasius
hydrogenogenesis. Future studies where pH2 is increased to pressures higher than this
could help to understand the limits of product inhibition on the WGS reaction and changes
in P. thermoglucosidasius metabolism. A study performed with Clostridium acetobutylicum
showed that when increasing pH2 up to 14.59 bar, the yield of butanol and ethanol increased
by 18 and 13% [32]. In the latter study, the high H2 concentration caused the hydrogenase
system to be inhibited, while the oxidoreductase system received a higher flow of electrons
to produce ethanol [32]. The increase of pH2 up to 25 bar with a mixed culture was
evaluated in a series of batch fermentations; when evaluating the partial pressures of 20
and 25 bar, these were inhibited due to the increase in the dissolved gas tension, which could
be detrimental for the microorganisms [33]. However, to evaluate higher pressures in the
presented study would require a different system, such as a high-pressure resistant reactor.

Influence of CO2 partial pressure in the present study was not evaluated; however, it
has been reported that CO2 sparging, which increases CO2 partial pressure, is beneficial
for H2 production when working under gas mixtures. In a study performed with Ther-
moanaerobacterium thermosaccharolyticum W16, it was observed that under high CO2 partial
pressure, the microorganism could produce H2, while increasing H2 partial pressure had a
negative effect [22]. Future studies should therefore also consider the effect of increased
pCO2 on P. thermoglucosidasius hydrogenogenesis.

5. Conclusions

With the exception of 3 bar pCO, P. thermoglucosidasius DSM 6285 was capable of
producing H2 under conditions of increased pCO, pN2, and pH2. Increasing pCO up to
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2 bar, in particular, had a positive effect on hydrogen production, likely due to increased
WGS substrate availability. Finetuning of the pCO should be investigated further as a
potential strategy for improved hydrogen yield. However, caution should be exercised as
inhibition of hydrogenogensis was observed at pCO of 3 bar, suggesting a toxic CO limit
for P. thermoglucosidasius. The application of higher pH2 should also be investigated further
as it could be crucial to understanding the limit of inhibition of the WGS reaction, and the
kinetics of distribution of the organic acids produced under such inhibition.

Regardless of the partial pressure applied, hydrogenogenesis via the WGS is a highly
efficient process, with 95% electron recovery from CO and glucose in hydrogen gas, while
other metabolites such as acetate, formate, and lactate represent minor electron sinks,
suggesting that hydrogenogensis by P. thermoglucosidasius via the WGS reaction represents
an attractive option for future biohydrogenogenesis approaches.

The potential for scaling up this process in bioreactors utilizing P. thermoglucosidasius
remains to be fully assessed. While challenges exist, scaling this system up presents an
open possibility for improving the biological hydrogen production platform. It is also
important to evaluate the influence of different gas mixtures and a range of gas partial
pressures to better understand the limitations observed in this study. Such evaluations
could provide essential insights into optimizing biohydrogen production. This study serves
as a foundation for further research aimed at refining gas phase conditions to enhance
hydrogen yields in biological systems.
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