KIT | KIT-Bibliothek | Impressum | Datenschutz

PAL - Parallel active learning for machine-learned potentials

Zhou, Chen; Neubert, Marlen; Koide, Yuri; Zhang, Yumeng; Vuong, Van-Quan; Schlöder, Tobias ORCID iD icon 1; Dehnen, Stefanie; Friederich, Pascal ORCID iD icon 2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Constructing datasets representative of the target domain is essential for training effective machine learning models. Active learning (AL) is a promising method that iteratively extends training data to enhance model performance while minimizing data acquisition costs. However, current AL workflows often require human intervention and lack parallelism, leading to inefficiencies and underutilization of modern computational resources. In this work, we introduce PAL, an automated, modular, and parallel active learning library that integrates AL tasks and manages their execution and communication on shared- and distributed-memory systems using the Message Passing Interface (MPI). PAL provides users with the flexibility to design and customize all components of their active learning scenarios, including machine learning models with uncertainty estimation, oracles for ground truth labeling, and strategies for exploring the target space. We demonstrate that PAL significantly reduces computational overhead and improves scalability, achieving substantial speed-ups through asynchronous parallelization on CPU and GPU hardware. Applications of PAL to several real-world scenarios - including ground-state reactions in biomolecular systems, excited-state dynamics of molecules, simulations of inorganic clusters, and thermo-fluid dynamics - illustrate its effectiveness in accelerating the development of machine learning models. ... mehr


Volltext §
DOI: 10.5445/IR/1000177857
Veröffentlicht am 09.01.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000177857
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag arxiv
Umfang 25 S.
Vorab online veröffentlicht am 30.11.2024
Schlagwörter Machine Learning (cs.LG), Materials Science (cond-mat.mtrl-sci), Distributed, Parallel, and Cluster Computing (cs.DC), Chemical Physics (physics.chem-ph), Computational Physics (physics.comp-ph)
Nachgewiesen in Dimensions
arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page