
Functional Abstract Interpretation

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Graf

aus Osnabrück

Tag der mündlichen Prüfung: 12.12.2024

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Jun.-Prof. Dr. Jonathan I. Brachthäuser

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

1 Introduction 1

1.1 Structure . 3

2 Background 5

2.1 Haskell . 5
2.1.1 Lazy Evaluation and Purity 5
2.1.2 Higher-Kinded Types and Quantified Constraints . . . 7
2.1.3 Generalised Algebraic Datatypes 7

2.2 Order Theory . 8
2.3 Abstract Interpretation . 9

3 Lower Your Guards: A Compositional Pattern-Match Coverage

Checker 11

3.1 Problem Statement . 13
3.1.1 Guards . 14
3.1.2 Programmable Patterns 15
3.1.3 Strictness . 17
3.1.4 Type-Equality Constraints 20

3.2 Lower Your Guards: A New Coverage Checker 21
3.2.1 Desugaring to Guard Trees 23
3.2.2 Checking Guard Trees 26
3.2.3 Reporting Errors . 28
3.2.4 Generating Inhabitants of a Refinement Type 29
3.2.5 Expanding a Normalised Refinement Type to a Pattern 32
3.2.6 Normalising a Refinement Type 32
3.2.7 Testing for Inhabitation 35

Contents

3.3 Extensions . 36
3.3.1 Long-Distance Information 37
3.3.2 Empty Case . 37
3.3.3 View Patterns . 38
3.3.4 Pattern Synonyms . 39
3.3.5 COMPLETE Pragmas . 40
3.3.6 Literals . 40
3.3.7 Newtypes . 41
3.3.8 Strictness, Divergence and Other Side-Effects 44
3.3.9 Or-patterns . 46

3.4 Implementation . 50
3.4.1 Phase Ordering . 50
3.4.2 InterleavingU and A 50
3.4.3 Throttling for Graceful Degradation 51
3.4.4 Maintaining Residual COMPLETE Sets 52
3.4.5 Reporting Uncovered Patterns 53
3.4.6 Structured Guard Tree Types 54

3.5 Evaluation . 55
3.5.1 Performance Tests . 56
3.5.2 GHC Issues . 57

3.6 Soundness . 57
3.6.1 Semantics . 58
3.6.2 Formal Soundness Statement 60

3.7 Related Work . 61
3.7.1 Comparison with GADTs Meet Their Match 61
3.7.2 Comparison with Similar Coverage Checkers 62
3.7.3 Other Representations of Constraints 64
3.7.4 Positive and Negative Information 65
3.7.5 Strict Fields in Inhabitation Testing 66

4 Abstracting Denotational Interpreters 69

4.1 Problem Statement . 72
4.1.1 Object Language . 72
4.1.2 Absence Analysis . 72
4.1.3 Compositionality, Summaries and Modularity 75
4.1.4 Summaries vs. Abstracting Abstract Machines 76
4.1.5 Problem: Proving Soundness of Summary-Based Analyses 76

4.2 Reference Semantics: Lazy Krivine Machine 79

ii

Contents

4.3 A Denotational Interpreter . 82
4.3.1 Semantic Domain . 83
4.3.2 The Interpreter . 85
4.3.3 More Evaluation Strategies 88

4.4 Totality and Semantic Adequacy 96
4.4.1 Adequacy of SneedJ K 96
4.4.2 Totality of SnameJ K and SneedJ K 97
4.4.3 Limitations of Induction and Coinduction 97
4.4.4 Guarded Type Theory 99
4.4.5 Total Encoding in Guarded Cubical Agda 101
4.4.6 Proof of Adequacy For SneedJ K 102

4.5 Static Analysis . 111
4.5.1 Usage Analysis . 112
4.5.2 Type Analysis: Algorithm J 117
4.5.3 Control-flow Analysis 120
4.5.4 Stateful Analysis and Annotations 124
4.5.5 Case Study: GHC’s Demand Analyser 129

4.6 Generic Abstract By-Name and By-Need Interpretation 137
4.6.1 A Reusable Abstract By-Need Interpretation Theorem 137
4.6.2 A Modular Proof for Beta-App: A Simpler Substitution

Lemma . 141
4.6.3 A Simpler Proof That Usage Analysis Infers Absence . 142
4.6.4 Comparison to Ad-hoc Preservation Proof 144
4.6.5 Interlude . 145
4.6.6 Abstracting Guarded Fixpoints 145
4.6.7 Safety Properties and Safety Extension of a Galois Con-

nection . 146
4.6.8 Abstract By-name Interpretation, in Detail 148
4.6.9 Abstract By-need Soundness, in Detail 154
4.6.10 Parametricity and Relationship to Kripke Logical Rela-

tions . 167
4.7 Related Work . 169

5 Conclusion and Future Work 173

5.1 Future Work . 174

Bibliography 175

iii

Contents

A Proofs for Chapter 4 185

A.1 Proofs for Section 4.1 . 185
A.2 Proofs for Section 4.4 . 196
A.3 Proofs for Section 4.6 . 198

A.3.1 Usage Analysis Proofs 198

B Agda Code for Section 4.4.5 213

C Denotational Interpreter for GHC Core in Section 4.5.5 231

D Extracted Haskell code for Chapter 4 239

Index of Definitions 261

iv

Abstract

Functional programming languages encourage expressing large parts of a
program as declarative data flow pipelines, free of side-effects such as shared

mutable state. Such pipelines traverse recursive data by pattern matching, and
share the repetitive code of these traversals by defining higher-order functions.
Writing programs in functional style eliminates large classes of programmer
errors, hence higher-order functions and pattern matching have been adopted
by most general purpose programming languages today.

However, pattern matching introduces new modes of failure as well: It is easy
to forget a case, and input data that is not covered leads to a crash at runtime.
Thus, a compiler should integrate a static program analysis to warn about such
uncovered pattern-matches before the program is run.

A compiler should also generate fast code for programs involving higher-order
functions. More than 30 years of practical research have evolved the Glasgow
Haskell Compiler (GHC) into an industrial strength tool. This evolution brought
forth a number of useful and efficient compiler optimisations that are informed
by static higher-order analyses. However, the more proficient a higher-order
analysis becomes, the harder it gets to explain its implementation to maintainers,
let alone convince interested bystanders of its correctness.

In this thesis, I present two results of mywork to improve GHC: the first is a static
analysis for pattern-match coverage checking that is both more efficient and more
precise than the state of the art; the second is a design pattern for deriving static

higher-order analyses and dynamic semantics alike from a generic denotational
interpreter, in order to share intuition and correctness proofs. This design pattern
generalises Cousot’s seminal work on trace-based abstract interpretation to
higher-order analyses such as GHC’s Demand Analysis.

My novel approach to pattern-match coverage checking is to boil down complex
pattern-matches into so-called guard trees. Advanced functional languages such
as Haskell havemany forms of patterns, some of which are influenced by previous
pattern-matches through type equality constraints and lazy evaluation. Yet, guard
trees comprise of only three different constructs, which vastly simplifies the
coverage checking process compared to checking full Haskell.

Abstract

The resulting algorithm is modular, allowing for new forms of source-language
patterns to be handled with little changes to the overall structure of the algorithm,
as evidenced by extending GHC with support for Or-patterns years after my
work was released. It is reassuring that my new coverage checker is not only
easier to maintain, it also performs better than GHC’s previous coverage checker,
both in terms of accuracy and runtime performance.

My second innovation is a framework in which one can explain higher-order
analyses — such as those found in GHC— by formal analogy to a familiar standard
semantics, via abstract interpretation. GHC’s analyses approximate the effect
of function calls by means of function summaries. A particularly challenging
aspect of this work is to find a standard semantics that is structurally compatible
with such summary-based analyses, so that it becomes feasible to draw a formal
analogy between analysis and semantics in the first place.

Fortunately, my novel denotational interpreters are up to the challenge. Denota-
tional interpreters are denotational semantics that produce coinductive traces
of a corresponding small-step operational semantics. By parameterising a de-
notational interpreter over the semantic domain and then varying it, I recover
dynamic semantics with different evaluation strategies as well as static analyses
such as type analysis, all from the same generic interpreter.

One instance of my interpreter is a denotational semantics for lazy evaluation,
the first one that is provably adequate in a strong, compositional sense. It is
mathematically challenging to define such a semantics because it combines a
mutable heap with higher-order functions that modify said heap. I build my
semantic domain on recent advances in guarded dependent type theory; the
approach should readily transfer to general purpose programming languages,
including those with arbitrary side-effects.
The generated program traces lend themselves well to describe operational

properties such as how often a variable is evaluated, and hence enable static
analyses abstracting these operational properties.

In order to show that this framework is useful, I will explain and prove correct
usage analysis, a simple form of GHC’s Demand Analyser. Since static analysis
and dynamic semantics share the same generic interpreter definition, the correct-
ness proof decomposes into showing small abstraction laws about the abstract
domain, thus obviating complicated ad-hoc preservation-style proof frameworks.
Thus, my work combines intraprocedural abstract interpretation of traces

with higher-order function calls, enabling functional abstract interpretation.

vi

Zusammenfassung

Funktionale Programmiersprachen begünstigen die Formulierung von Pro-
grammen als deklarative Datenfluss-Pipelines, die frei von Seiteneffekten

wie Schreibzugriffen auf globalen Zustand sind. Solche Programme operieren
auf rekursiv definierten Daten via Pattern-Matching und führen redundante
Logik mithilfe von Funktionen höherer Ordnung zusammen. Da Programme im
funktionalen Stil viele Programmierfehler verhindern, haben sich die meisten
Allzweck-Programmiersprachen heutzutage beide Sprachfeatures einverleibt.

Pattern-Matching birgt jedoch eigenes Fehlerpotential: Es ist einfach, einen
Fall unbehandelt zu lassen, der bei einer ungünstigen Eingabe zur Laufzeit zu
einem Absturz führt. Daher sollte ein Compiler solche unbehandelten Fälle
mithilfe einer statischen Programmanalyse erkennen.
Zudem sollte ein Compiler schnellen Code für Programme mit Funktionen

höherer Ordnung generieren. Mehr als 30 Jahre praktischer Forschung haben den
Glasgow Haskell Compiler (GHC) zu industrieller Reife geführt. Diese Evolution
hat einige nützliche Compiler-Optimierungen zutage gebracht, denen statische
Programmanalysen höherer Ordnung zugrunde liegen. Je raffinierter solche
Analysen werden, desto schwieriger wird es, sie den pflegenden Entwicklern zu
erklären, geschweige denn Forscher von ihrer Korrektheit zu überzeugen.
Diese Arbeit präsentiert zwei Ergebnisse meiner Arbeit am GHC: Das erste ist ei-
ne statische Analyse für Pattern-Match Coverage Checking, die sowohl effizienter
als auch präziser als der Stand der Forschung ist; das zweite ist ein Entwurfs-
muster zur Ableitung statischer Analysen höherer Ordnung und dynamischer
Semantiken vom gleichen denotationalen Interpreter, um so Erklärungen and Kor-
rektheitsbeweise zu teilen. So generalisiere ich Cousots Arbeit zu Trace-basierter
abstrakter Interpretation auf Analysen höherer Ordnung wie im GHC.

Mein Ansatz zum Pattern-Match Coverage Checking reduziert komplexe Pattern-
Matches auf sogenannte Guard Trees. Fortgeschrittene funktionale Sprachen wie
Haskell haben viele verschiedene Formen von Patterns, und manche davon
beeinflussen durch Typgleichheiten und faule Auswertung nachfolgende Pattern-
Matches. Trotz dieser reichhaltigen Semantik kommen Guard Trees mit nur drei
Konstrukten aus, was den Prüfungsprozess stark vereinfacht.

Zusammenfassung

Der resultierende Algorithmus ist modular, so dass die Implementierung kaum
angepasst werden muss wenn der Quellsprache neue Formen von Patterns wie
z.B. Or-Patterns hinzugefügt werden, wie Jahre nach der Veröffentlichung meiner
Arbeit am GHC geschehen. Der Checker ist nicht nur einfacher zu pflegen, er ist
auch effizienter und präziser als das Vorgängerverfahren im GHC.

Meine zweite Neuerung ist ein Framework, das es ermöglicht, die Analysen hö-
herer Ordnung im GHC formal in Relation zu einer bekannten Standardsemantik
zu setzen, via abstrakter Interpretation. Die Analysen im GHC approximieren
den Effekt von Funktionsaufrufen durch Funktions-Summaries. Daher besteht
eine Herausforderung meiner Arbeit darin, eine Standardsemantik zu finden,
die strukturell ähnlich zu solchen Summary-basierten Analysen ist, um einen
Vergleich zwischen Analyse und Semantik überhaupt erst zu ermöglichen.

Erfreulicherweise sind meine neuen denotationalen Interpreter dieser Heraus-
forderung gewachsen. Denotationale Interpreter sind denotationale Semanti-
ken, die koinduktive Traces einer korrespondierenden small-step operationalen
Semantik generieren. Indem ich die semantische Domäne des denotationalen
Interpreters variiere, erhalte ich dynamische Semantiken verschiedener Auswer-
tungsreihenfolgen als auch statische Analysen wie Typanalyse als Instanzen des
gleichen generischen Interpreters.
Eine dieser Instanzen ist eine denotationale Semantik für faule Auswertung,

die erste die beweisbar adäquat zur small-step Semantik ist. Es ist mathematisch
anspruchsvoll eine solche Semantik zu definieren, denn sie kombiniert globalen
Zustand mit Funktionen höherer Ordnung die diesen Zustand ändern können.
Meine semantische Dömane bedient sich daher jüngsten Fortschritten in Guarded
Dependent Type Theory, die auf Allzweck-Programmiersprachen mit beliebigen
Seiteneffekten übertragbar sein sollten.

Die generierten Programm-Traces eignen sich gut zur Formulierung operatio-

naler Eigenschaften, die z.B. die Anzahl an Variablenauswertungen beschreiben,
und ermöglichen statische Analysen die diese Eigenschaften approximieren.
Um die Nützlichkeit meines Frameworks zu demonstrieren, werde ich Usage

Analyse, eine Vereinfachung der Demand Analyse im GHC, erklären und korrekt
beweisen. Da statische Analyse und dynamische Semantik vom gleichen gene-
rischen Interpreter abgeleitet sind, zerfällt der Korrektheitsbeweis in mehrere
kleine Abstraktionsregeln über die abstrakte Domäne, die einen komplizierteren
monolithischen Beweis ersetzen.

Meine Arbeit vereint intraprozedurale abstrakte Interpretation von Traces mit
Funktionen höherer Ordnung: Funktionale Abstrakte Interpration.

viii

Acknowledgements

Over the past six years, I had the privilege of meeting many new people who
shaped me as a person and as a researcher. First and foremost, I would like to
thank my advisor, Prof. Gregor Snelting, for enabling my growth over these six
years in the first place, as well as for the great freedom I enjoyed while pursuing
my own research agenda. May we again find the time to play organ and trumpet
together.

I would also like to thank Jun.-Prof. Jonathan Brachthäuser for a great research
visit in Tübingen worth repeating and the second review of this thesis. May we
again find the time to play piano and trumpet together.
Of all my collaborators, I cannot stress enough the impact that my mentor

Simon Peyton Jones has had on me as a researcher, technical writer, software
engineer and technical leader, instilling in me the urge to find simple solutions.
Time spent conversing with and learning from an ACM Fellow (to name just
one of Simon’s qualifiers) is always a privilege, and Simon gifted me his time
aplenty, both in weekly calls and in a three-month long internship at Microsoft
Research back in 2019. Without his work on GHC and Haskell, I would never
have found my way to Karlsruhe in the first place, let alone attempted a PhD in
programming languages. No amount of praise could meet the amount of deep
gratitude I feel for Simon taking me under his wing. May we continue to find
the time to improve GHC together, as friends.
Even with GHC existing back in 2014, I would never have found my way to

Karlsruhe were it not for Joachim Breitner, whose work on Haskell and GHC
I admired. Since then, I was fortunate enough to first experience Joachim as a
teacher, then to win him as mentor for my master’s thesis in 2016, introducing
me to Simon at ICFP 2017, and finally to find in him a friend ever since.

I will fondly remember the productive days and fun nights spent with the mem-
bers of the programming paradigms group: Johannes Bechberger, Simon Bischof,
Sebastian Buchwald, Andreas Fried, Martin Hecker, Denis Lohner, Manuel Mohr,
Martin Mohr, Jakob von Raumer, Brigitte Sehan-Hill, Sebastian Ullrich, Max
Wagner, and Andreas Zwinkau. The reaction to my overwhelmingly half-baked
thoughts was always an understanding one, and led to particularly productive

Acknowledgements

discussions with Andreas, Jakob and Sebastian Ullrich. As a LaTeX practitioner
more than an enthusiast, I am grateful for the template that MartinMohr, Joachim
Breitner and ultimately Andreas Lochbihler lended me for this thesis.
My gratitude goes to Joachim Breitner, Henning Dieterichs, Lennart Graf,

Martin Hecker, András Kovács and Sebastian Ullrich for proof-reading parts of
the papers that constitute this thesis, and for Henning Dieterichs especially for
his formalisation of the coverage checking algorithm in Chapter 3.

Five years ago I met my partner Helene, who has since shaped me as a person
unlike any other. I am not sure if I could have continued my PhD through the
more devastating phases without her loving support. May she let me return that
support for many years to come. Finally, my whole life has been one of great
privilege, thanks to my ever-loving family. I owe Birgit, Jürgen, Lennart and
Henrike my deepest and most earnest gratitude for teaching me to become a
decent, reliable person, equipped with the perseverance to conclude this PhD.

x

1
Introduction

Functional programming is a declarative programming paradigm that by now
has permeated most general-purpose programming languages. Formulating a
program component in functional style eschews imperative control flow and
side-effects (such as global mutable state) in favour of declarative data flow
pipelines built out of higher-order functions.

Functional solutions correlate with fewer bugs [Ray et al. 2017] and are often
more concise than imperative ones [Nanz and Furia 2015], thanks to superior
mechanisms for modular abstraction and composition. Fewer lines of code and
good abstractions lead to easier understanding and maintenance.
Yet, fewer bugs does not mean no bugs. Code review is an effective way

to prevent bugs from entering production systems, but thorough code review
by a human is expensive. Thus, it is common engineering practice to employ
automated linting tools — fueled by static program analyses — as a first line of
defense. Static program analyses are not only useful to catch bugs, they also
help to compile high-level data flow pipelines into efficient machine code by
informing a compiler’s optimisation passes for when said optimisations are safely
applicable.

Static analysis of functional programs promises great leverage: The absence of
side effects in functional languages such as Haskell [Marlow et al. 2010] means
that inferred analysis results need to be invalidated far less often, guaranteeing
precise results even across function calls. However, static analyses of functional
programs are also extra challenging to conceive and formalise because reasoning
about higher-order functions is far more difficult than first-order reasoning in
imperative, intraprocedural program analyses.

This explains why industrial-strength functional language compilers, such as
the Glasgow Haskell Compiler (GHC), implement several practically important
static analyses, few of which have been scientifically published about to date.

1 Introduction

Seven years ago, I was enticed by the prospect of improving and publishing
about the static analyses implemented in GHC. Since then, I have made various
contributions to GHC, and in this thesis I describe two results of that work.

In Chapter 3 I present an analysis for pattern-match coverage checking that is
part of GHC’s linting framework. The analysis detects when the programmer
forgets to handle a case in a pattern-match, upon which GHC emits a warning.
My analysis has been part of GHC since 2020 and improves upon its predecessor
in soundness, precision, efficiency and maintainability.
The coverage checker is a nice engineering feat, exactly what I had planned

for my PhD. According to this plan, this thesis would have presented two more
analyses of GHC that I have worked on intensively. One of these would have been
GHC’sDemand Analysis, building on the results of mymaster’s thesis [Graf 2017].
Alas, fate would have it otherwise. Any formal description of Demand Analysis
I attempted led to pages and pages worth of complicated figures. While the
improved analysis I conceived made intuitive sense to me, conveying the idea to
my co-maintainer and mentor Simon Peyton Jones proved utterly impossible. If I
could not explain my improvements to one of the few experts that are intimately
familiar with Demand Analysis, how could I ever make my work accessible to
the broader research community?

Chapter 4 is to be understood in light of this frustrating realisation. I demon-
strate that Demand Analysis as well as other higher-order analyses within GHC
fit into a compositional analysis framework called a denotational interpreter. By
providing a generic implementation of a denotational interpreter that paramet-
erises over the semantic domain, I recover both dynamic semantics as well as
static analyses as instances. Thus, in order to describe a static analysis such
as Demand Analysis, it suffices to describe its semantic domain, rather than a
complete analysis framework, meaning that my work vastly simplifies a formal
description of such analyses.
Denotational interpreters are amenable to formal reasoning. For example,

one instance is the first denotational semantics for call-by-need that is proven
adequate wrt. a standard small-step operational semantics. Furthermore, I formu-
late and prove conditions for when a static analysis conservatively approximates
a trace property of the dynamic semantics, applying the well-known theory
of abstract interpretation [Cousot and Cousot 1977] to higher-order functional
language semantics, hence the title of this thesis.

Undoubtedly, denotational interpreters would have been a sublime framework
to base my PhD upon. I hope it will prove useful to some colleagues in the
research community.

2

1.1 Structure

1.1 Structure

I structured the thesis as follows. Chapter 2 briefly introduces the more unusual
language features of Haskell that will become relevant in the chapters that
follow. Furthermore, I will recall some fundamentals about order theory and
abstract interpretation. Chapter 3 presents the coverage checking algorithm that
I devised for GHC and Chapter 4 contains my work on denotational interpreters.
These two chapters constitute the main content of this thesis. Both chapters
can be read independently and start with dedicated introductions, ending in
a list of contributions and a paragraph of acknowledgements that credit the
work done by my collaborators. Chapter 4 refers to a number of Appendices:
Appendix A contains any pen-and-paper proofs that were omitted in the main
body. Whenever a proof for a proposition is omitted from the main body, I
inserted a forward reference in the margin such as for this line that lists the □ 3
page where a restatement of the proposition and its proof can be found in the
Appendix. The restatement of the proposition in turn links back to the main
body, via a margin reference as in this line. Appendix B contains Agda code ⟲ 3
proving that the denotational by-need interpreter is total. As a case study, I
wrote a denotational interpreter for GHC Core, the intermediate representation
of GHC, which can be found in Appendix C. The main body omits some Haskell
definitions for brevity; their full definition can be found in Appendix D. Chapter 5
finishes with concluding remarks and ideas for future work.

3

2
Background

2.1 Haskell

Understanding Haskell is instrumental for coverage checking in Chapter 3 (where
it appears as object language) as well as for defining denotational interpreters
in Chapter 4 (where it appears as concise meta language). For this reason, I
will briefly recall the more unusual language features of GHC Haskell that will
become relevant in later chapters and that set Haskell apart from, say, Standard
ML or Rust.

2.1.1 Lazy Evaluation and Purity

Haskell was born out of a coordinated effort to standardise a language that uses
lazy evaluation, that is, in which every expression is only evaluated when its
result is needed. Consider for example the function

ifThenElse :: Bool→ a→ a→ a

ifThenElse True t = t

ifThenElse False e = e

In a regular, strict language, the expression ifThenElse (d==0) n (div n d) would
throw a division-by-zero error whenever d is zero, because the call-by-value
evaluation strategy demands that (div n d) is evaluated eagerly, before the
function ifThenElse is entered.
Not so in a lazy language such as Haskell: there we get the same res-

ult as if the expression was written using the builtin conditional syntax,
if d==0 then n else div n d, because the division is only needed in the else
branch where d is non-zero.

On stock hardware, lazy evaluation is commonly implemented by turning the
deferred computation, for example (div n d), into a nullary function called a

2 Background

thunk. This nullary function is then called (the thunk is forced) where the result
is needed, for example in the second clause of ifThenElse.
Thunking inevitably leads to the allocation of a closure record to store the

values of the free variables n and d (which themselves might be thunks) of the
implied nullary function. Often, it is far more expensive to allocate this closure
than to simply compute the result of the expression in the first place, which is
why an eager by-value evaluation strategy is preferable in case the expression
is going to be needed anyway (used strictly). For that reason, GHC’s Demand
Analysis computes strictness information and rewrites programs to evaluate an
expression by-value whenever it is used strictly.

There are in fact two evaluation strategies modelling lazy evaluation. So far, I
have described the call-by-name evaluation strategy; however GHC implements
the call-by-need evaluation strategy, which is an essential optimisation of by-
name evaluation and discussed next.

Consider the expression sum (map (+x) [1 . . 99]). Under the by-name thunk
forcing strategy described above, the thunk bound to x will be forced 99 times,
each time calling a potentially expensive nullary function, the result of which is
the same for each call. Compared to call-by-value, where the computation that
defines the value of x is evaluated exactly once, this repetition is exceedingly
wasteful.

Call-by-need avoids such repeated work by utilising a mutable heap to im-
plement a memoising thunk forcing strategy: After x has been forced and its
result computed, call-by-need will memoise this result by overwriting the heap
object that represents the nullary function and its closure with a different nullary
function that returns the result right away.
For this optimisation to be safe, it is crucial that x is pure, that is: Evaluating

x has no side-effects or hidden inputs, so that its re-evaluation can be discarded.
Indeed, Haskell’s type and runtime system is designed in a way that isolates
side-effects to computations in the monadic type constructor IO. There is no
(safe) way to run an IO computation other than by binding it to main, and
a side-effecting computation wrapped in IO is implemented in a way that its
result is never subject to memoisation. Since all non-IO computations are pure,
memoisation is safe.
Purity is the essential language feature of Haskell, because it enables effi-

cient lazy evaluation through memoisation and remorseless refactorings. While
recent years indicate that lazy evaluation has not attracted much uptake in lan-
guage design, purity had lasting impact on the world of functional programming
languages.

6

2.1 Haskell

2.1.2 Higher-Kinded Types andQuantified Constraints

It is very easy and convenient to define parametrically polymorphic functions
(that is, “generic functions” in Java terms) in Haskell. Function ifThenElse above
is one such example which is polymorphic in the result type.

However, Haskell does not only allow to parameterise over types of kind Type,
it also allows parameterisation over type constructors, such as Maybe or lists [],
of kind Type→ Type.

It is sometimes useful to say that some data type which has a type constructor
parameter preserves the instance of this parameter, for example to define a type
class for monad transformers:

class (∀m. Monad m⇒ Monad (t m)) ⇒ MonadTrans t where
lift :: m a→ t m a

The super class constraint (∀m. Monad m ⇒ Monad (t m)) of MonadTrans
says: “A monad transformer t is a type constructor such that t m is a monad
for any monad m.” Note that a constraint of the form (∀m. ...⇒ ...) is called a
quantified constraint [Bottu et al. 2017], a non-standard extension of Haskell.
Section 4.3 uses quantified constraints to similar effect.

2.1.3 Generalised Algebraic Datatypes

Generalised Algebraic Datatypes (GADTs) [Xi, Chen, et al. 2003] allow capturing
of type information at data constructor invokation site with the goal of unleashing
it at a pattern-match of that constructor. For example, consider the declaration

data IntOrBool a where
IsInt :: Int → IntOrBool Int
IsBool :: Bool→ IntOrBool Bool

negate :: IsIntOrBool a→ a

negate (IsInt n) = −n

negate (IsBool b) = not b

Note that negate is defined for all types a, such as Char. Neither integer
negation (−) nor boolean negation not are defined at Char, yet the definition of
negate is well-typed. This is because the match on constructor IsInt unleashes
a type equality constraint a ∼ Int on the type parameter a, which effectively
rewrites a to Int (similar for IsBool). This type equality constraint is provided at
construction sites of IsInt. That is, the declaration

7

2 Background

nono :: Int→ IsInt a

nono n = IsInt n

is ill-typed, because a must be Int but could not be proven so. In this way, the
type equality constraint a ∼ Int can be thought of as an additional, invisible
constructor field of IsInt that is packed and unpacked automatically.
GADTs and type equality constraints are instrumental to pattern-match cov-

erage checking and thus to Chapter 3.

2.2 Order Theory

Let me briefly recall the essentials of order theory to appreciate the soundness
results in Section 4.6.

The definitions of the algebraic structures preorder, partial order and (complete)

lattice are standard and can be looked up in canonical works such as Nielson
et al. [1999, Appendix A] or Cousot [2021, Chapter 10].
However, for the purposes of introducing notation, let me recall a few defin-

itions. The notation 𝑙 ≜ 𝑟 defines 𝑙 via 𝑟 . For example, ℘(𝑆) ≜ { 𝑈 | 𝑈 ⊆ 𝑆 }
defines ℘(𝑆) as the powerset of 𝑆 . A pair (𝐿,⩽) is a preorder if and only if 𝐿 is
a set equipped with a binary relation ⩽ ∈ ℘(𝐿 × 𝐿) on 𝐿 that is reflexive and
transitive. When the context is unambiguous, I will often omit the binary relation
and simply say that 𝐿 is a preorder, and similarly for partial orders and lattices.

A function 𝑓 : (𝐴,⩽) → (𝐵, ⊑) between preorders is monotone if it preserves
the ordering, that is, ∀𝑎1, 𝑎2. 𝑎1 ⩽ 𝑎2 =⇒ 𝑓 (𝑎1) ⊑ 𝑓 (𝑎2).

A pair of monotone functions 𝛼 : (𝐶,⩽) → (𝐴, ⊑), 𝛾 : (𝐴, ⊑) → (𝐶,⩽) forms
a Galois connection, abbreviated 𝛼 : (𝐶,⩽) ⇄ (𝐴, ⊑) : 𝛾 or even just 𝛼 ⇄ 𝛾 , if
and only if, for all 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 , 𝛼 (𝑐) ⊑ 𝑎 ⇐⇒ 𝑐 ⩽ 𝛾 (𝑎). That is, I assume
the monotone notion of Galois connection.

A particularly convenient way for Section 4.6 to define a Galois connection is
by giving a representation function. When a function 𝛽 : 𝐶 → 𝐴 maps into a
complete lattice (𝐴, ⊑,⊔), we can define

𝛼 (𝐶) ≜ ⊔{ 𝛽 (𝑐) | 𝑐 ∈ 𝐶 }
𝛾 (𝑎) ≜ { 𝑐 | 𝛽 (𝑐) ⊑ 𝑎 }

Then 𝛼 : (℘(𝐶), ⊆) ⇄ (𝐴, ⊑) : 𝛾 form a Galois connection, and 𝛽 is called the
representation function of the Galois connection [Nielson et al. 1999, Section 4.3].
(Cousot [2021, Exercise 11.8] calls this construction “partitioning abstraction”
instead.)

8

2.3 Abstract Interpretation

2.3 Abstract Interpretation

The powerset over a set 𝑆 can be regarded as the set of properties of elements in
𝑆 . Under this view, an element 𝑠 ∈ 𝑆 has a property 𝑃 ∈ ℘(𝑆) if and only if 𝑠 ∈ 𝑃 .
The stronger the property, the smaller the set, so ⊆ models implication.

Abstract interpretation applies this view to semantic properties, that is, proper-
ties of the semantics of programs. Given a program semantics SJeK that assigns
expression e meaning in some semantic domain 𝐷 , we can define the collecting
semantics as the function SCJeK ≜ {SJeK} that maps e to the strongest semantic

property {SJeK} ∈ ℘(𝐷) it satisfies.
If the program e has some semantic property 𝑃 of interest, say “𝑛 is always

even”, then SCJeK ⊆ 𝑃 must be provable. However, such an implication is in
general undecidable by Rice’s theorem, hence a static program analysisAJeK for
property 𝑃 must approximate the decision problem in a suitable sense. Further-
more, the elements of𝐷 are potentially infinite and thus difficult to compute with,
so AJeK operates in some symbolic domain 𝐴. This domain is equipped with a
complete lattice structure (𝐴, ⊑,⊔) and relates to the complete lattice of semantic
properties (℘(𝐷), ⊆,∪) via a monotone concretisation function 𝛾 : 𝐴→ ℘(𝐷).

The analysis AJ K is conservative, or sound, wrt. 𝑃 if

∀e. 𝛾 (AJeK) ⊆ 𝑃 =⇒ SCJeK ⊆ 𝑃 . (2.1)

In other words: If AJ K can prove that e has property 𝑃 , then e really has that
property according to SCJ K. Conversely, AJ K may be incomplete wrt. 𝑃 : If
AJ K is unable to prove that e has property 𝑃 , e may still have property 𝑃 .
When AJ K is simultaneously sound for any property in the image of 𝛾 we

say that AJ K is sound wrt. 𝛾 and the soundness criterion (2.1) simplifies to

∀e. SCJeK ⊆ 𝛾 (AJeK). (2.2)

In this way, the choice of 𝛾 determines the semantic properties 𝑃 that can be
soundly inferred by AJ K.

The essence of abstract interpretation is the study of conservative approxima-
tion by recognising soundness relationships such as (2.2). Often, for any property
𝑃 there exists a “best abstract property” (i.e. least) 𝑃 such that 𝑃 ⊆ 𝛾 (𝑃), in which
case there exists an abstraction function 𝛼 such that 𝛼 : (℘(𝐷), ⊆) ⇄ (𝐴, ⊑) : 𝛾
forms a Galois connection. In this case, soundness of AJ K can be equivalently
expressed as

∀e. 𝛼 (SCJeK) ⊑ AJeK,
and that is the form of the statement I will prove in Section 4.6.

9

3
Lower Your Guards:

A Compositional Pattern-Match

Coverage Checker

Program definition by pattern matching is a tremendously useful feature in
Haskell and many other programming languages, but it must be used with care.
Consider this example of a function defined by pattern matching:

f :: Int→ Bool
f 0 = True
f 0 = False

The function f has two serious flaws. One obvious problem is that there are
two clauses that match on 0, and due to the top-to-bottom semantics of pattern
matching, this makes the f 0 = False clause completely unreachable. Even
worse is that f never matches on any patterns besides 0, rendering its definition
incomplete. Attempting to invoke f 1, for instance, will crash.
To avoid these mishaps, compilers for languages with pattern matching of-

ten emit warnings (or errors) if a function is missing clauses (i.e. if it is non-
exhaustive), if one of its right-hand sides will never be entered (i.e. if it is inac-
cessible), or if one of its equations can be deleted altogether (i.e. if it is redundant).
Let us refer to the combination of checking for exhaustivity, redundancy, and
accessibility as pattern-match coverage checking. Coverage checking is the first
line of defense in catching programmer mistakes when defining code that uses
pattern matching.

Coverage checking for a set of equations matching on algebraic data types is
a well studied (although still surprisingly tricky) problem—see Section 3.7 for
this related work. But the coverage-checking problem becomes much harder
when one includes the raft of innovations that have become part of a modern

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

programming language like Haskell, including: view patterns, pattern guards,
pattern synonyms, overloaded literals, bang patterns, lazy patterns, as-patterns,
strict data constructors, empty case expressions, and long-distance effects (Sec-
tion 3.3). Particularly tricky are: Generalised Algebraic Datatypes (GADTs) where
the type of a match can determine what values can possibly appear [Xi, Chen,
et al. 2003]; and local type-equality constraints brought into scope by pattern
matching [Vytiniotis et al. 2011].

The state of the art1 for coverage checking in a richer language of this sort was
GADTs Meet Their Match [Karachalias et al. 2015], orGMTM for short. It presents
an algorithm that handles the intricacies of checking GADTs, lazy patterns, and
pattern guards. However, GMTM is monolithic and does not account for a
number of important language features; it gives incorrect results in certain cases;
its formulation in terms of structural pattern matching makes it hard to avoid
some serious performance problems; and its implementation in the Glasgow
Haskell Compiler (GHC), while a big step forward over its predecessors, has
proved complex and hard to maintain.

Contributions. In this chapter, I propose a new, compositional coverage-
checking algorithm, called Lower Your Guards (LYG), that is simpler, more
modular, and more powerful than GMTM (see Section 3.7.1). Moreover, it avoids
GMTM’s performance pitfalls.

• I characterise some nuances of coverage checking that not even GMTM
handles (Section 3.1). I also identify issues in GHC’s implementation of
GMTM.

• I describe a new, compositional coverage checking algorithm, LYG, in
Section 3.2. The key insight is to abandon the notion of structural pattern
matching altogether, and instead desugar all the complexities of pattern
matching into a very simple language of guard trees, with just three con-
structs (Section 3.2.1). Coverage checking on these guard trees becomes
remarkably simple, returning an annotated tree (Section 3.2.2) decorated
with refinement types. Finally, provided there is a suitable way to find
inhabitants of a refinement type, one can report accurate coverage errors
(Section 3.2.3).

1 Before this work appeared at ICFP 2020, that is!

12

3.1 Problem Statement

• I demonstrate the compositionality of LYG by augmenting it with several
language extensions (Section 3.3). Although these extensions can change
the source language in significant ways, the effort needed to incorporate
them into the algorithm is comparatively small.

• I discuss how to optimize the performance of LYG (Section 3.4) and imple-
ment a proof of concept in GHC (Section 3.5).

• The evaluation against a large number of Haskell packages (Section 3.5)
provides evidence that LYG is sound. In order to discuss soundness formally
in Section 3.6, I turn the informal semantics of guard trees and refinement
types in Section 3.2 into a formal semantics. I also list mechanisms that
render LYG incomplete in order to guarantee good performance.

• The wealth of related work is discussed in Section 3.7.

Acknowledgements. The work in this chapter is an extended version of Graf,
Peyton Jones, et al. [2020]. It is the result of a research internship with Simon
Peyton Jones at Microsoft Research Cambridge in 2019, in which I completely
overhauled GHC’s neglected pattern-match coverage checker, following ideas
that Simon and I developed and which I implemented. Our third author, Ryan
Scott, had previously improved parts of the coverage checker and was of great
help in improving the technical writing, as well as contributing the evaluation
(Section 3.5), Related Work (Section 3.7) and introductory examples.

Since this work appeared at ICFP 2020, its implementation in GHC evolved
as well. I describe how LYG accommodates a new, unanticipated language
extension for Or-patterns (Section 3.3.9) and report a useful structural pattern
to model guard trees from the trenches (Section 3.4.6). Furthermore, Section 3.6
summarises a formalisation of significant parts of LYG that have been formalised
by Dieterichs [2021], a thesis supervised by Sebastian Ullrich and me.

3.1 Problem Statement

What makes coverage checking so difficult in a language like Haskell? At first
glance, implementing a coverage checking algorithm might appear simple: just
check that every function matches on every possible combination of data con-
structors exactly once. A function must match on every possible combination of

13

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

constructors in order to be exhaustive, and it must match on them exactly once
to avoid redundant matches.
This algorithm, while concise, leaves out many nuances. What constitutes a

“match”? Haskell has multiple matching constructs, including function defini-
tions, case expressions, and guards. How does one count the number of possible
combinations of data constructors? This is not a simple exercise since term and
type constraints can make some combinations of constructors unreachable if
matched on, and some combinations of data constructors can overlap others.
Moreover, what constitutes a “data constructor”? In addition to traditional data
constructors, GHC features pattern synonyms [Pickering et al. 2016], which
provide an abstract way to embed arbitrary computation into patterns. Matching
on a pattern synonym is syntactically identical to matching on a data constructor,
which makes coverage checking in the presence of pattern synonyms challenging.

Prior work on coverage checking (discussed in Section 3.7) accounts for some
of these nuances, but not all of them. In this section I identify some key language
features that make coverage checking difficult. While these features may seem
disparate at first, I will later show in Section 3.2 that these ideas can all fit into a
unified framework.

3.1.1 Guards

Guards are a flexible form of control flow in Haskell. Here is a function that
demonstrates various capabilities of guards:

guardDemo :: Char→ Char→ Int
guardDemo c1 c2 | c1==’a’ = 0

| ’b’← c1 = 1
| let c

′
1 = c1, ’c’← c

′
1, c2==’d’ = 2

| otherwise = 3

This function has four guarded right-hand sides or GRHSs for short. The first
GRHS has a boolean guard, (c1==’a’), that succeeds if the expression in the
guard returns True. The second GRHS has a pattern guard, (’b’ ← c1), that
succeeds if the pattern in the guard successfully matches. The next line illustrates
that each GRHS may have multiple guards, and that guards include let bindings,
such as let c

′
1 = c2. The fourth GRHS uses otherwise, which is simply defined as

True.
Guards can be thought of as a generalisation of patterns, and a useful coverage

checker should include them. Checking guards is significantly more complicated

14

3.1 Problem Statement

than checking ordinary structural pattern-matches, however, since guards can
contain arbitrary expressions. Consider this implementation of the signum

function:

signum :: Int→ Int
signum x | x > 0 = 1

| x==0 = 0
| x < 0 = −1

Intuitively, signum is exhaustive since the combination of (>), (==), and (<)
covers all possible Ints. This is hard for a machine to check, because doing so
requires knowledge about the properties of Int inequalities. Clearly, coverage
checking for guards is undecidable in general. However, while we cannot accur-
ately check all uses of guards, we can at least give decent warnings for some
common cases. For instance, take the following functions:

not :: Bool→ Bool
not b | False← b = True

| True← b = False

not2 :: Bool→ Bool
not2 False = True
not2 True = False

not3 :: Bool→ Bool
not3 x | False← x = True
not3 True = False

Clearly all are equivalent. A coverage checking algorithm should find that all
three are exhaustive, and indeed, LYG does so.

3.1.2 Programmable Patterns

Expressions in guards are not the only source of undecidability that the coverage
checker must cope with. GHC extends the pattern language in other ways that
are also impossible to check in the general case. We consider two such extensions
here: view patterns and pattern synonyms.

View Patterns

View patterns allow arbitrary computation to be performed while pattern match-
ing. When a value v is matched against a view pattern (f → p), the match is
successful when f v successfully matches against the pattern p. For example, one
can use view patterns to succinctly define a function that computes the length
of Haskell’s opaque Text data type:

Text.null :: Text→ Bool
Text.uncons :: Text→ Maybe (Char, Text)

15

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

length :: Text→ Int
length (Text.null → True) = 0
length (Text.uncons→ Just (, xs)) = 1 + length xs

Function Text.null returns True when the given Text is empty. When it is non-
empty, it must have a first character x :: Char and the remainder xs :: Text, in
which case Text.uncons returns Just (x, xs).

Again, it would be unreasonable to expect a coverage checking algorithm
to prove that the definition of length is exhaustive, but one might hope for a
coverage checking algorithm that handles some common usage patterns. For
example, LYG indeed is able to prove that the safeLast function is exhaustive:

safeLast :: [a] → Maybe a

safeLast (reverse→ []) = Nothing
safeLast (reverse→ (x :)) = Just x

Pattern Synonyms

Pattern synonyms [Pickering et al. 2016] allow abstraction over patterns them-
selves. Pattern synonyms and view patterns can be useful in tandem, as the
pattern synonym can present an abstract interface to a view pattern that does
complicated things under the hood. For example, one can define length with
pattern synonyms like so:

pattern Nil :: Text
pattern Nil← (Text.null → True)
pattern Cons :: Char→ Text→ Text
pattern Cons x xs← (Text.uncons→ Just (x, xs))
length :: Text→ Int
length Nil = 0
length (Cons xs) = 1 + length xs

The pattern synonym Nil matches precisely when the view pattern Text.null →
True would match, and similarly for Cons.

How should a coverage checker handle pattern synonyms? One idea is
to simply “look through” the definitions of each pattern synonym and verify
whether the underlying patterns are exhaustive. This would be undesirable,
however, because (1) we would like to avoid leaking the implementation details

16

3.1 Problem Statement

of abstract pattern synonyms, and (2) even if we did look at the underlying imple-
mentation, it would be challenging to automatically check that the combination
of Text.null and Text.uncons is exhaustive.
Nevertheless, Text.null and Text.uncons together are in fact exhaustive, and

GHC allows programmers to communicate this fact to the coverage checker
using a COMPLETE pragma [GHC team 2020]. A COMPLETE set is a combination of
data constructors and pattern synonyms that should be regarded as exhaustive
when a function matches on all of them. For example, declaring {-# COMPLETE
Nil, Cons #-} is sufficient to make the definition of length above compile
without any exhaustivity warnings. Since GHC does not (and cannot, in general)
check that all of the members of a COMPLETE set actually comprise a complete
set of patterns, the burden is on the programmer to ensure that this invariant is
upheld.

3.1.3 Strictness

The evaluation order of pattern matching can impact whether a pattern is reach-
able or not. Consider:

f :: Bool→ Bool→ Int
f False = 1
f True False = 2
f = 3

Is the second clause redundant? In a strict language such as OCaml or Lean the
answer is “Yes”, but in lazy Haskell the answer is “No”. To see that, consider
the call f (error "boom") True, an expression that in a strict language would
immediately evaluate the error in the argument (error "boom") by-value before
making the call.
In Haskell, however, the first argument is not evaluated until it is needed.

Concretely, after falling through the first clause that does not match in the
second argument, the second clause will evaluate the first argument in order
to match against True. Doing so forces the error, to much the same effect
as in a strict language, and we see that f (error "boom") True evaluates to
error "boom". However, if we remove the second clause, f (error "boom") True
would evaluate to 3, because the first argument is never needed during pattern
matching. Since removing the clause changes the semantics of the function, it
cannot be redundant, but its right-hand side is inaccessible still (Section 3.1.3).

17

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

We could have used a different error such as undefined or a non-terminating
expression such as loop = loop in the example above. The Haskell Language
Report [Marlow et al. 2010] does not distinguish between these different kinds of
divergence, referring to them as ⊥, and I do the same here. There are a number
of language features which interact with ⊥ in the context of pattern matching.

Redundancy versus Inaccessibility

The example function f above demonstrates that when reporting unreachable
equations, we must distinguish between redundant and inaccessible cases. A
redundant equation can be removed from a function without changing its se-
mantics, whereas an inaccessible equation cannot, even though its right-hand
side is unreachable. The examples below illustrate the challenges for LYG in
more detail:

u :: () → Int
u () | False = 1
| True = 2

u = 3

u
′ :: () → Int

u
′ () | False = 1
| False = 2

u
′ = 3

Within u, the equations that return 1 and 3 could be deleted without changing
the semantics of u, so they are classified as redundant. Within u

′, the right-hand
sides of the equations that return 1 and 2 are inaccessible, but they cannot both
be redundant because their clause evaluates the parameter; u

′ ⊥ = ⊥. As a
result, LYG picks the first equation in u

′ as inaccessible to keep alive the pattern-
match on the parameter, and the second equation as redundant. Inaccessibility
suggests to the programmer that u

′ might benefit from a refactor to render the
first equation redundant as well (e.g. u

′ () = 3).
Observe that u and u

′ have completely different warnings, but the only dif-
ference between the two functions is whether the second equation uses True or
False in its guard. Moreover, this second equation affects the warnings for other
equations. This demonstrates that determining whether code is redundant or
inaccessible is a non-local problem. Inaccessibility may seem like a corner case,
but GHC’s users have reported many bugs of this sort (Section 3.5.2).

18

3.1 Problem Statement

Strict Fields

Just like Haskell function parameters, fields of data constructors may hide arbit-
rary computations as well. However, Haskell programmers can opt into extra
strict evaluation by giving a data type strict fields, such as in this example:

data Void -- No data constructors; only inhabitant is bottom

data SMaybe a = SJust !a | SNothing
v :: SMaybe Void→ Int
v SNothing = 0
v (SJust) = 1 -- Redundant!

The “!” in the definition of SJust makes the constructor strict, so (SJust ⊥) ≡ ⊥
semantically, in contrast to the regular lazy Just constructor.
Curiously, the strict field semantics of SJust makes the second equation of 𝑣

redundant! Since ⊥ is the only inhabitant of type Void, the only inhabitants of
SMaybe Void are SNothing and ⊥. The former will match on the first equation;
the latter will make the first equation diverge. In neither case will execution flow
to the second equation, so it is redundant and can be deleted.

Bang Patterns

Strict data-constructor fields are one mechanism for adding extra strictness in
ordinary Haskell, but GHC adds another in the form of bang patterns. When a
value v is matched against a bang pattern !pat, first v is evaluated to weak-head
normal form (WHNF), a step that might diverge, and then v is matched against
pat. Here is a variant of 𝑣 , this time using the standard, lazy Maybe data type:

v
′ :: Maybe Void→ Int

v
′ Nothing = 0

v
′ (Just !_) = 1 -- Not redundant, but GRHS is inaccessible

The inhabitants of the type Maybe Void are ⊥, Nothing, and (Just ⊥). The
input ⊥ makes the first equation diverge; Nothing matches on the first equation;
and (Just ⊥) makes the second equation diverge because of the bang pattern.
Therefore, none of the three inhabitants will result in the right-hand side of the
second equation being reached. Note that the second equation is inaccessible,
but not redundant.

19

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

3.1.4 Type-Equality Constraints

Besides strictness, another way for pattern-matches to be rendered unreachable is
by way of type equality constraints. A popular method for introducing equalities
between types is matching on GADTs [Xi, Chen, et al. 2003]. The following
examples demonstrate the interaction between GADTs and coverage checking:

data T a b where
T1 :: T Int Bool
T2 :: T Char Bool

g1 :: T Int b→ b→ Int
g1 T1 False = 0
g1 T1 True = 1

g2 :: T a b→ T a b→ Int
g2 T1 T1 = 0
g2 T2 T2 = 1

When g1 matches against T1, the b in the type T Int b is known to be a Bool,
which is whymatching the second argument against False or Truewill typecheck.
Phrased differently, matching against T1 brings into scope an equality constraint

between the types b and Bool. GHC has a powerful type inference engine that is
equipped to reason about type equalities of this sort [Vytiniotis et al. 2011].
Just as important as the code used in the g1 function is the code that is not

used in g1. One might wonder if g1 not matching its first argument against T2
is an oversight. In fact, the exact opposite is true: matching on T2 would be
rejected by the typechecker. This is because T2 is of type T Char Bool, but the
first argument to g1 must be of type T Int b. Matching against T2 would be
tantamount to saying that Int and Char are the same type, which is not the case.
As a result, g1 is exhaustive even though it does not match on all of T’s data
constructors.

The presence of type equalities is not always as clear-cut as it is in g1. Consider
the more complex g2 function, which matches on two arguments of the type
T a b. While matching the arguments against T1 T1 or T2 T2 is possible, it is not
possible to match against T1 T2 or T2 T1. To see why, suppose the first argument
is matched against T1, giving rise to an equality between a and Int. If the second
argument were then matched against T2, we would have that a equals Char. By
the transitivity of type equality, we would have that Int equals Char. This cannot
be true, so matching against T1 T2 is impossible (and similarly for T2 T1).
Concluding that g2 is exhaustive requires some non-trivial reasoning about

equality constraints. In GHC, the same engine that typechecks GADT pattern-
matches is also used to rule out cases made unreachable by type equalities,
and LYG adopts a similar approach. Besides GHC’s previous coverage checker
[Karachalias et al. 2015], there are a variety of other coverage checking algorithms
that account for GADTs, including those for OCaml [Garrigue and Normand
2011], Dependent ML [Xi 1998a,b, 2003], and Stardust [Dunfield 2007].

20

3.2 Lower Your Guards: A New Coverage Checker

Haskell guard
R

D
A

U G uncovered patterns

redundant and
inaccessible clauses

Θuncov
trees

annotated
trees

Fig. 3.1: Bird’s eye view of pattern-match checking

Meta variables Pattern syntax

𝑥,𝑦, 𝑧, 𝑓 , 𝑔, ℎ Term variables
𝑎, 𝑏, 𝑐 Type variables

𝐾 Data constructors
𝑃 Pattern synonyms
𝑇 Type constructors
𝑙 Literal

expr Expressions

defn F 𝑐𝑙𝑎𝑢𝑠𝑒

clause F 𝑓 pat match

pat F 𝑥 | | 𝐾 pat | 𝑥@pat

| ! pat | expr → pat

match F = expr | grhs

grhs F | 𝑔𝑢𝑎𝑟𝑑 = expr

guard F pat ← expr | expr

| let 𝑥 = expr

Fig. 3.2: Source syntax: A desugared Haskell

3.2 Lower Your Guards: A New Coverage Checker

In this section, I describe the new coverage checking algorithm, LYG. Figure 3.1
depicts a high-level overview, which divides into three steps:

• First, we desugar the complex source Haskell syntax (cf. Figure 3.2) into a
guard tree 𝑡 ∈ Gdt (Section 3.2.1). The language of guard trees is tiny but
expressive, and allows the subsequent passes to be entirely independent of
the source syntax. LYG can readily be adapted to other languages simply
by changing the desugaring algorithm.

• Next, the resulting guard tree is then processed by two different functions
(Section 3.2.2). The function A(𝑡) produces an annotated tree 𝑢 ∈ Ant,
which has the same general branching structure as 𝑡 but describes which
clauses are accessible, inaccessible, or redundant. The functionU(𝑡), on
the other hand, returns a refinement type Θ [Rushby et al. 1998; Xi and
Pfenning 1998] that describes the set of uncovered values, which are not
matched by any of the clauses.

21

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Guard syntax

𝑘, 𝑛,𝑚 ∈ N
𝐾 ∈ Con

𝑥,𝑦, 𝑎, 𝑏 ∈ Var
𝜏, 𝜎 ∈ Type F 𝑎 | ...
𝑒 ∈ Expr F 𝑥 | 𝐾 𝜏 𝛾 𝑒 | ...

𝛾 ∈ TyCt F 𝜏1 ∼ 𝜏2 | ...
𝑝 ∈ Pat F _ | 𝐾 𝑝 | ...
𝑔 ∈ Grd F let 𝑥 : 𝜏 = 𝑒

| 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥

| !𝑥

Clause tree syntax

𝑡 ∈ Gdt F 𝑘 |
𝑡1
𝑡2
| 𝑔 𝑡

𝑢 ∈ Ant F Θ𝑘 |
𝑢1
𝑢2
| Θ � 𝑢

Refinement type syntax

Γ F ∅ | Γ, 𝑥 : 𝜏 | Γ, 𝑎 Context
𝜑 F � | × | 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥 | 𝑥 0 𝐾 Literals
| 𝑥 ≈ ⊥ | 𝑥 0 ⊥ | let 𝑥 = 𝑒

Φ F 𝜑 | Φ ∧ Φ | Φ ∨ Φ Formula
Θ F ⟨ Γ | Φ ⟩ Refinement type

Fig. 3.3: IR syntax

• Finally, an error-reporting pass generates comprehensible error messages
(Section 3.2.3). Again there are two things to do. The function R processes
the annotated tree produced byA to explicitly identify the accessible, inac-
cessible, or redundant clauses. The function G(Θ) produces representative
inhabitants of the refinement type Θ (produced byU) that describes the
uncovered values.

LYG’s main contribution when compared to other coverage checkers, such as
GHC’s implementation of GMTM, is its incorporation of many small improve-
ments and insights, rather than a single defining breakthrough. In particular,
LYG’s advantages are:

22

3.2 Lower Your Guards: A New Coverage Checker

• Achieving modularity by clearly separating the source syntax (Figure 3.2)
from the intermediate language (Figure 3.3).

• Correctly accounting for strictness in identifying redundant and inaccess-
ible code (Section 3.7.5).

• Using detailed term-level reasoning (Figures 3.7, 3.8 and 3.10), which
GMTM does not.

• Using negative information to sidestep serious performance issues in
GMTM without changing the worst-case complexity (Section 3.7.4). This
also enables graceful degradation (Section 3.4.3) and the ability to handle
COMPLETE sets properly (Section 3.4.4).

• Fixing various bugs present in GMTM, both in the paper [Karachalias et al.
2015] and in GHC’s implementation thereof (Section 3.5.2).

3.2.1 Desugaring to Guard Trees

The first step is to desugar the source language into the language of guard
trees. The syntax of the source language is given in Figure 3.2. Definitions
defn consist of a list of clauses, each of which has a list of patterns, and a list of
guarded right-hand sides (GRHSs). Patterns include variables and constructor
patterns, of course, but also a representative selection of extensions: wildcards, as-
patterns, bang patterns, and view patterns. We explore several other extensions
in Section 3.3.

The language of guard trees Gdt is much smaller; its graphical syntax is given
in Figure 3.3. All of the syntactic redundancy of the source language is translated
into a minimal form very similar to pattern guards. We start with an example:

f (Just (! xs,)) ys = True
f Nothing (g → True) = False

This desugars to the following guard tree (where the 𝑥𝑖 represent f ’s arguments):
!𝑥1, Just 𝑡1 ← 𝑥1, !𝑡1, (𝑡2, 𝑡3) ← 𝑡1, !𝑡2, let xs = 𝑡2, let ys =𝑥2 1
!𝑥1,Nothing← 𝑥1, let 𝑡4 = g 𝑥2, !𝑡4, True← 𝑡4 2

The first line says “evaluate 𝑥1; then match 𝑥1 against Just t1; then evaluate
𝑡1; then match 𝑡1 against (𝑡2, 𝑡3)” and so on. If any of those matches fail, we
fall through into the second line. Note that I write 𝑔1, ..., 𝑔𝑛 𝑡 instead of

𝑔1 ... 𝑔𝑛 𝑡 for notational convenience.

23

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

D(defn) = 𝑡, D(𝑥, 𝑐𝑙𝑎𝑢𝑠𝑒) = 𝑡, D(grhs) = 𝑡
𝑘rhs is the index of the right hand side rhs

D(clause
𝑛) = D(𝑥, clause1)...

D(𝑥, clause𝑛)

𝑥𝑚 fresh;𝑚 arity
of clause

D(𝑥, 𝑓 pat = rhs) = D(𝑥, pat) 𝑘rhs

D(𝑥, 𝑓 pat grhs
𝑛) = D(𝑥, pat) D(𝑔𝑟ℎ𝑠1)...

D(𝑔𝑟ℎ𝑠𝑛)

D(| 𝑔𝑢𝑎𝑟𝑑 = rhs) = D(𝑔𝑢𝑎𝑟𝑑) 𝑘rhs

D(𝑔𝑢𝑎𝑟𝑑) = 𝑔, D(𝑥, pat) = 𝑔

D(pat ← expr) = let 𝑥 = expr,D(𝑥, pat) 𝑥 fresh
D(expr) = let 𝑦 = expr,D(𝑦, True) 𝑦 fresh
D(let 𝑥 = expr) = let 𝑥 = expr

D(𝑥,𝑦) = let 𝑦 =𝑥
D(𝑥,) = 𝜖

D(𝑥, 𝐾 pat) = !𝑥, 𝐾 𝑦 ← 𝑥,D(𝑦, pat) 𝑦 fresh (†)
D(𝑥,𝑦@pat) = let 𝑦 =𝑥,D(𝑦, pat)
D(𝑥, !pat) = !𝑥,D(𝑥, pat)
D(𝑥, expr → pat) = let 𝑦 = expr 𝑥,D(𝑦, pat) 𝑦 fresh

Fig. 3.4: Desugaring from source language to Gdt

24

3.2 Lower Your Guards: A New Coverage Checker

Informally, matching a guard tree may succeed (binding the variables bound
in the tree), fail, or diverge. Referring to the syntax of guard trees in Figure 3.3,
matching is defined as follows:

• Matching a guard tree 𝑘 succeeds, and selects the 𝑘’th right hand side
of the pattern-match group.

• Matching a guard tree 𝑡1
𝑡2

means matching against 𝑡1; if that succeeds,
the overall match succeeds; if not, match against 𝑡2.

• Matching a guard tree !𝑥 𝑡 evaluates 𝑥 ; if that diverges the match
diverges; if not match 𝑡 .

• Matching a guard tree 𝐾 𝑎 𝛾 𝑦 ← 𝑥 𝑡 matches 𝑥 against con-
structor 𝐾 . If the match succeeds, bind 𝑎 to the type components, 𝛾 to the
constraint components and 𝑦 to the term components, then match 𝑡 . If the
constructor match fails, then the entire match fails.

• Matching a guard tree let 𝑥 = 𝑒 𝑡 binds 𝑥 (lazily) to 𝑒 , and matches
𝑡 .

See Section 3.6.1 for a formal account of this semantics. The desugaring algorithm,
D, is given in Figure 3.4. It is a straightforward recursive descent over the source
syntax, with a little bit of bureaucracy to account for renaming. It also generates
an abundance of fresh temporary variables; in practice, the implementation of
D can be smarter than this by looking at the pattern (which might be a variable
match or as-pattern) when choosing a name for a temporary variable. In that
case, it is important that every binder in the source language has a unique name.

Notice that both “structural” pattern matching in the source language (e.g. the
match on Nothing in the second equation), and view patterns (e.g. g → True)
can be straightforwardly translated into a single form of matching in guard
trees. The same holds for pattern guards. For example, consider this (stylistically
contrived) definition of liftEq, which is inexhaustive:

liftEq Nothing Nothing = True
liftEq mx (Just y) | Just x ← mx, x==y = True

| otherwise = False

It desugars thus:

25

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

!mx, Nothing← mx, !my, Nothing← my 1
!my, Just y ← my !mx, Just x ← mx, let t = x==y, !t, True← t 2

!otherwise, True← otherwise 3
Notice that the pattern guard (Just x ← mx) and the boolean guard (x==y)
have both turned into the same constructor-matching construct in the guard
tree.
In equation (†) of Figure 3.4 we generate an explicit bang guard !𝑥 to reflect

the fact that pattern matching against a data constructor requires evaluation.
However, Haskell’s newtype declarations introduce data constructors that are
not strict, so their desugaring is just like (†) but with no !𝑥 (Section 3.3.7). From
this point onwards, then, strictness is expressed only through bang guards !𝑥 ,
while constructor guards 𝐾 𝑎 𝑏 ← 𝑦 are not considered strict.

In a way there is nothing very deep here, but it took Simon and me a surpris-
ingly long time to come up with the language of guard trees.

3.2.2 Checking Guard Trees

The next step in Figure 3.1 is to transform the guard tree into an annotated tree,
Ant, and an uncovered set, Θ. Taking the latter first, the uncovered set describes
all the input values of the match that are not covered by the match. I use the
language of refinement types to describe this set (see Figure 3.3). A refinement
type Θ = ⟨𝑥1:𝜏1, . . . , 𝑥𝑛 :𝜏𝑛 | Φ ⟩ denotes the vector of values 𝑥1 . . . 𝑥𝑛 that satisfy
the predicate Φ. For example (the type omitted in the last line isMaybe Bool):

⟨𝑥 :Bool | � ⟩ denotes {⊥, True, False}
⟨𝑥 :Bool | 𝑥 0 ⊥ ⟩ denotes {True, False}

⟨𝑥 :Bool | 𝑥 0 ⊥ ∧ True← 𝑥 ⟩ denotes {True}
⟨𝑦:... | 𝑦 0 ⊥ ∧ Just x ← 𝑦 ∧ 𝑥 0 ⊥ ⟩ denotes {Just True, Just False}

The syntax of formulas Φ is given in Figure 3.3. It consists of a collection
of literals 𝜑 , combined with conjunction and disjunction. Unconventionally,
however, a literal may bind one or more variables, and those bindings are in
scope in conjunctions to the right. This can be formalised by giving a type system
for Φ, and I do so in Section 3.6.1, where I define satisfiability of Φ in formal
detail. The literal � means “true”, as illustrated above; while × means “false”, so
that ⟨ Γ | × ⟩ denotes the empty set ∅.

The uncovered set functionU(Θ, 𝑡), defined in Figure 3.5, computes a refine-
ment type describing the values in Θ that are not covered by the guard tree 𝑡 . It

26

3.2 Lower Your Guards: A New Coverage Checker

Operations on Θ

⟨ Γ | Φ ⟩ ¤∧ 𝜑 = ⟨ Γ | Φ ∧ 𝜑 ⟩
⟨ Γ | Φ1 ⟩ ∪ ⟨ Γ | Φ2 ⟩ = ⟨ Γ | Φ1 ∨ Φ2 ⟩

Checking guard trees

U(Θ, 𝑡) = Θ

U(⟨ Γ | Φ ⟩, 𝑛) = ⟨ Γ | × ⟩
U(Θ, 𝑡1

𝑡2
) = U(U(Θ, 𝑡1), 𝑡2)

U(Θ, !𝑥 𝑡) = U(Θ ¤∧ (𝑥 0 ⊥), 𝑡)
U(Θ, let 𝑥 = 𝑒 𝑡) = U(Θ ¤∧ (let 𝑥 = 𝑒), 𝑡)
U(Θ, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥 𝑡) = (Θ ¤∧ (𝑥 0 𝐾))

∪ U(Θ ¤∧ (𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥), 𝑡)

A(Θ, 𝑡) = 𝑢

A(Θ, 𝑛) = Θ𝑛

A(Θ, 𝑡1
𝑡2
) =

A(Θ, 𝑡1)
A(U(Θ, 𝑡1), 𝑡2)

A(Θ, !𝑥 𝑡) = Θ ¤∧ (𝑥 ≈ ⊥) � A(Θ ¤∧ (𝑥 0 ⊥), 𝑡)
A(Θ, let 𝑥 = 𝑒 𝑡) = A(Θ ¤∧ (let 𝑥 = 𝑒), 𝑡)
A(Θ, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥 𝑡) = A(Θ ¤∧ (𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥), 𝑡)

Fig. 3.5: Coverage checking

is defined by a simple recursive descent over the guard tree, using the operation
Θ ¤∧ 𝜑 (also defined in Figure 3.5) to extend Θ with an extra literal 𝜑 .
WhileU finds a refinement type describing values that are not matched by

a guard tree (its set of Uncovered values), the function A finds refinements
describing values that are matched by a guard tree, or that cause matching to
diverge. It does so by producing an annotated tree (hence Annotate), whose
syntax is given in Figure 3.3. An annotated tree has the same general structure as
the guard tree fromwhence it came: in particular the top-to-bottom compositions

are in the same places. But in an annotated tree, each Θ𝑘 leaf is
annotated with a refinement type Θ describing the input values that will lead to
that right-hand side; and each Θ � node is annotated with a refinement

27

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Collect accessible (𝑘), inaccessible (𝑛) and Redundant (𝑚) GRHSs

R(𝑢) = (𝑘, 𝑛,𝑚)

R(Θ𝑛) =

{
(𝜖, 𝜖, 𝑛), if G(Θ) = ∅
(𝑛, 𝜖, 𝜖), otherwise

R(𝑡
𝑢
) = (𝑘 𝑘′, 𝑛 𝑛′,𝑚𝑚′) where (𝑘, 𝑛,𝑚) =R(𝑡)

(𝑘′, 𝑛′,𝑚′) =R(𝑢)

R(Θ � 𝑡) =

{
(𝜖,𝑚,𝑚′), if G(Θ) ≠ ∅ and R(𝑡) = (𝜖, 𝜖,𝑚𝑚′)
R(𝑡), otherwise

Fig. 3.6: Collecting accessible, inaccessible and redundant GRHSs

type that describes the input values on which matching will diverge. Once again,
A can be defined by a simple recursive descent over the guard tree (Figure 3.5),
but note that the second equation usesU as an auxiliary function2.

3.2.3 Reporting Errors

The final step in Figure 3.1 is to report errors. First, let us focus on reporting
missing equations. Consider the following definition

data T = A | B | C
f (Just A) = True

If 𝑡 is the guard tree obtained from 𝑓 , the expressionU(⟨𝑥 : Maybe T | � ⟩, 𝑡)
will produce this refinement type describing values that are not matched:

Θ𝑓 = ⟨𝑥 :Maybe T | 𝑥 0 ⊥ ∧ (𝑥 0 Just ∨ (Just y ← 𝑥

∧ y 0 ⊥ ∧ (y 0 A ∨ (A← y ∧ ×)))) ⟩

This is not very helpful to report to the user. It would be far preferable to produce
one or more concrete inhabitants of Θ𝑓 to report, something like this:

2 The implementation avoids this duplicated work – see Section 3.4.2 – but the formulation in
Figure 3.5 emphasises clarity over efficiency.

28

3.2 Lower Your Guards: A New Coverage Checker

Missing equations for function 'f':
f Nothing = ...
f (Just B) = ...
f (Just C) = ...

Generating these inhabitants is the main technical challenge in this work. It is
done by G(Θ) in Figure 3.7, which I discuss next in Section 3.2.4. But first notice
that, by calling the very same function G, we can readily define the function R,
which reports a triple of (accessible, inaccessible, Redundant) GRHSs, as needed
in the overall pipeline (Figure 3.1). R is defined in Figure 3.6:

• Having reached a leaf Θ𝑘 , if the refinement type Θ is uninhabited
(G(Θ) = ∅), then no input values can cause execution to reach the right-
hand side 𝑘 , and it is redundant.

• Having reached a node Θ � 𝑡 , if Θ is inhabited there is a possibility
of divergence. Now suppose that all the GRHSs in 𝑡 are redundant. Then
we should pick the first of them and mark it as inaccessible.

• The case for 𝑡
𝑢

follows by congruence: just combine the classifications
of 𝑡 and 𝑢.

To illustrate the second case, consider u
′ from page 18 and its annotated tree:

u
′ () | False = 1
| False = 2

u
′ = 3

;
Θ1 � Θ2 1

Θ3 2
Θ4 3

Refinement types Θ2 and Θ3 are uninhabited (because of the False guards), but
Θ1 is inhabited by ⊥. Hence we cannot delete both GRHSs as redundant, because
that would make the call u

′ ⊥ return 3 rather than diverging. Rather, we want
to report the first GRHS as inaccessible, leaving the second as redundant.

3.2.4 Generating Inhabitants of a Refinement Type

Thus far, all functions have been very simple, syntax-directed transformations,
but they all ultimately depend on the single function G, which does the real
work. That is our new focus. As Figure 3.7 shows, G(Θ) takes a refinement
type Θ = ⟨ Γ | Φ ⟩ and returns a (possibly-empty) set of patterns 𝑝 (syntax in
Figure 3.3) that give the shape of values that inhabit Θ. This is done in two steps:

29

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Normalised refinement type syntax

∇ F × | ⟨Γ ∥Δ⟩ Normalised refinement type
Δ F ∅ | Δ, 𝛿 Set of constraints
𝛿 F 𝛾 | 𝑥 ≈ 𝐾 𝑎 𝑦 | 𝑥 0 𝐾 Constraints
| 𝑥 ≈ ⊥ | 𝑥 0 ⊥ | 𝑥 ≈ 𝑦

Generate inhabitants of Θ G(Θ) = ℘(𝑝)

G(⟨ Γ | Φ ⟩) = {E(∇, dom(Γ)) | ∇ ∈ N (⟨Γ ∥∅⟩,Φ)}

Normalise Φ into ∇s N(∇,Φ) = ℘(∇)

N (∇, 𝜑) =

{
{⟨Γ′ ∥Δ′⟩} where ⟨Γ′ ∥Δ′⟩ = ∇ ⊕𝜑 𝜑

∅ otherwise
N(∇,Φ1 ∧ Φ2) =

⋃ {N (∇′,Φ2) | ∇′ ∈ N (∇,Φ1)}
N (∇,Φ1 ∨ Φ2) = N(∇,Φ1) ∪ N (∇,Φ2)

Expand variables to Pat with ∇ E(∇, 𝑥) = 𝑝, E(∇, 𝑥) = 𝑝

E(∇, 𝑥) = E(∇, 𝑥)

E(⟨Γ ∥Δ⟩, 𝑥) =

{
𝐾 E(⟨Γ ∥Δ⟩, 𝑦) if Δ(𝑥) ≈ 𝐾 𝑎 𝑦 ∈ Δ
_ otherwise

Finding the representative of a variable in Δ Δ(𝑥) = 𝑦

Δ(𝑥) =

{
Δ(𝑦) 𝑥 ≈ 𝑦 ∈ Δ
𝑥 otherwise

Fig. 3.7: Generating inhabitants of Θ via ∇

30

3.2 Lower Your Guards: A New Coverage Checker

• Flatten Θ into a disjunctive union of normalised refinement types ∇, by
the call N(⟨Γ ∥∅⟩,Φ); see Section 3.2.6.

• For each such ∇, expand Γ into a list of patterns, by the call E(∇, dom(Γ));
see Section 3.2.5.

A normalised refinement type ∇ is either empty (×) or of the form ⟨Γ ∥Δ⟩. It is
similar to a refinement type Θ = ⟨ Γ | Φ ⟩, but it takes a much more restricted
form (Figure 3.7): Δ is simply a conjunction of literals 𝛿 ; there are no disjunctions
as in 𝜑 . Instead, disjunction reflects in the fact thatN returns a set of normalised
refinement types.
Beyond these syntactic differences, I enforce the following invariants on a
∇ = ⟨Γ ∥Δ⟩:

I1 Mutual compatibility: No two constraints in Δ should conflict with each
other, where 𝑥 ≈ ⊥ conflicts with 𝑥 0 ⊥, and 𝑥 ≈ 𝐾 conflicts with
𝑥 0 𝐾 , for all 𝑥 .

I2 Inhabitation: If 𝑥 :𝜏 ∈ Γ and 𝜏 reduces to a data type under type constraints
in Δ, there must be at least one constructor 𝐾 (or ⊥) which 𝑥 can be
instantiated to without contradicting I1; see Section 3.2.7.

I3 Triangular form: A 𝑥 ≈ 𝑦 constraint implies absence of any other constraint
mentioning x in its left-hand side.

I4 Single solution: There is at most one positive constructor constraint 𝑥 ≈
𝐾 𝑎 𝑦 for a given x.

Invariants I1 and I2 prevent Δ from being self-contradictory, so that the resulting
∇ (which denotes a set of values) is always inhabited. I use × to represent the
canonical uninhabited refinement type. Invariants I3 and I4 require Δ to be in
solved form, from which it is easy to “read off” a value that inhabits it — this
reading-off step is performed by E (Section 3.2.5).
The setup here is directly analogous to the setup of standard unification

algorithms. In unification, we start with a set of equalities between types (ana-
logous to Θ) and, by unification, normalise it to a substitution (analogous to ∇).
That substitution can itself be regarded as a set of equalities, but in a restricted
form. And indeed the normalisation algorithm (described in Section 3.2.6) is a
form of generalised unification.

Notice that I allow Δ to contain variable/variable equalities 𝑥 ≈ 𝑦, providing a
function Δ(𝑥) (defined in Figure 3.7) that follows these indirections to find the

31

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Add a formula literal to ∇ ∇ ⊕𝜑 𝜑 = ∇

∇ ⊕𝜑 × = × (1)
∇ ⊕𝜑 � = ∇ (2)

⟨Γ ∥Δ⟩ ⊕𝜑 𝐾 𝑎 𝛾 𝑦:𝜏 ← 𝑥 = ⟨Γ, 𝑎,𝑦:𝜏 ∥Δ⟩ ⊕𝛿 𝛾 ⊕𝛿 𝑦′ 0 ⊥ (3)
⊕𝛿 𝑥 ≈ 𝐾 𝑎 𝑦

where {𝑦′} ⊆ {𝑦} bind strict fields
⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 :𝜏 =𝐾 𝜎 𝛾 𝑒 = ⟨Γ, 𝑥 :𝜏, 𝑎 ∥Δ⟩ ⊕𝛿 𝑎 ∼ 𝜎 ⊕𝛿 𝑥 0 ⊥ (4)

⊕𝛿 𝑥 ≈ 𝐾 𝑎 𝑦 ⊕𝜑 let 𝑦:𝜏 ′ = 𝑒
where 𝑎𝑦 fresh, 𝑒:𝜏 ′

⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 :𝜏 =𝑦 = ⟨Γ, 𝑥 :𝜏 ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝑦 (5)
⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 :𝜏 = 𝑒 = ⟨Γ, 𝑥 :𝜏 ∥Δ⟩ (6)
⟨Γ ∥Δ⟩ ⊕𝜑 𝜑 = ⟨Γ ∥Δ⟩ ⊕𝛿 𝜑 (7)

Fig. 3.8: Adding a formula literal to the normalised refinement type ∇

“representative” of 𝑥 in Δ. A perfectly viable alternative would be to omit such
indirections from Δ and instead aggressively substitute them away.

3.2.5 Expanding a Normalised Refinement Type to a Pattern

Expanding a match variable 𝑥 under ∇ to a pattern, by calling E in Figure 3.7, is
straightforward and overloaded to operate similarly on multiple match variables.
When there is a solution like Δ(𝑥) ≈ Just y in Δ for the match variable 𝑥 of
interest, recursively expand y and wrap it in a Just. Invariant I4 guarantees
that there is at most one such solution and E is well-defined. When there is
no solution for 𝑥 , return _. See Section 3.4.5 for how I improve on that in the
implementation by taking negative information into account.

3.2.6 Normalising a Refinement Type

Normalisation, carried out by N in Figure 3.7, is largely a matter of repeatedly
adding a literal 𝜑 to a normalised type, thus ∇ ⊕𝜑 𝜑 . This function is where
all the work is done, in Figures 3.8 and 3.9. It does so by expressing a literal
𝜑 in terms of simpler constraints 𝛿 , and calling out to ⊕𝛿 to add the simpler
constraints to ∇ (Figure 3.9). N , ⊕𝜑 and ⊕𝛿 all work on the principle that if

32

3.2 Lower Your Guards: A New Coverage Checker

Add a constraint to ∇ ∇ ⊕𝛿 𝛿 = ∇

× ⊕𝛿 𝛿 = × (8)

⟨Γ ∥Δ⟩ ⊕𝛿 𝛾 =

⟨Γ ∥ (Δ, 𝛾)⟩ if type checker deems 𝛾 compatible with

Δ and ∀𝑥 ∈ dom(Γ) : ⟨Γ ∥ (Δ, 𝛾)⟩ ⊢ 𝑥 inh
× otherwise

(9)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝐾 𝑎 𝑦 =

⟨Γ ∥Δ⟩ ⊕𝛿 𝑎 ∼ 𝑏 ⊕𝛿 𝑦 ≈ 𝑧 if Δ(𝑥) ≈ 𝐾 𝑏 𝑧 ∈ Δ
× if Δ(𝑥) ≈ 𝐾 ′ 𝑏 𝑧 ∈ Δ

and 𝐾 ≠ 𝐾 ′

× if Δ(𝑥) 0 𝐾 ∈ Δ
⟨Γ ∥ (Δ,Δ(𝑥) ≈ 𝐾 𝑎 𝑦)⟩ otherwise

(10)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 0 𝐾 =

× if Δ(𝑥) ≈ 𝐾 𝑎 𝑦 ∈ Δ
⟨Γ ∥ (Δ,Δ(𝑥) 0 𝐾)⟩ if ⟨Γ ∥ (Δ,Δ(𝑥) 0 𝐾)⟩ ⊢ 𝑥 inh
× otherwise

(11)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ ⊥ =

{
× if Δ(𝑥) 0 ⊥ ∈ Δ
⟨Γ ∥ (Δ,Δ(𝑥) ≈ ⊥)⟩ otherwise

(12)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 0 ⊥ =

× if Δ(𝑥) ≈ ⊥ ∈ Δ
⟨Γ ∥ (Δ,Δ(𝑥) 0 ⊥)⟩ if ⟨Γ ∥ (Δ,Δ(𝑥) 0 ⊥)⟩ ⊢ 𝑥 inh
× otherwise

(13)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝑦 =

{
⟨Γ ∥Δ⟩ if 𝑥 ′ = 𝑦′

⟨Γ ∥ ((Δ\𝑥 ′), 𝑥 ′≈𝑦′)⟩ ⊕𝛿 (Δ |𝑥 ′ [𝑦′/𝑥 ′]) otherwise
(14)

where 𝑥 ′ = Δ(𝑥) and 𝑦′ = Δ(𝑦)

Δ \ 𝑥 = Δ Δ |𝑥= Δ

∅\𝑥 = ∅
(Δ, 𝑥 ≈ 𝐾 𝑎 𝑦) \𝑥 = Δ \ 𝑥
(Δ, 𝑥 0 𝐾) \𝑥 = Δ \ 𝑥
(Δ, 𝑥 ≈ ⊥) \𝑥 = Δ \ 𝑥
(Δ, 𝑥 0 ⊥) \𝑥 = Δ \ 𝑥
(Δ, 𝛿) \𝑥 = (Δ \ 𝑥), 𝛿

∅ |𝑥 = ∅
(Δ, 𝑥 ≈ 𝐾 𝑎 𝑦) |𝑥 = Δ |𝑥 , 𝑥 ≈ 𝐾 𝑎 𝑦

(Δ, 𝑥 0 𝐾) |𝑥 = Δ |𝑥 , 𝑥 0 𝐾
(Δ, 𝑥 ≈ ⊥) |𝑥 = Δ |𝑥 , 𝑥 ≈ ⊥
(Δ, 𝑥 0 ⊥) |𝑥 = Δ |𝑥 , 𝑥 0 ⊥
(Δ, 𝛿) |𝑥 = Δ |𝑥

Fig. 3.9: Adding a constraint to the normalised refinement type ∇

33

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

the incoming ∇ satisfies the Invariants I1 to I4 from Section 3.2.4, then either the
resulting ∇ is × or it satisfies I1 to I4.
In Equation (3), a pattern guard extends the context and adds suitable type

constraints and a positive constructor constraint arising from the binding. Equa-
tion (4) of ⊕𝜑 performs some limited, but important reasoning about let bindings:
it flattens possibly nested constructor applications, such as let x = Just True,
and asserts that such constructor applications cannot be ⊥. Note that Equation
(6) simply discards let bindings that cannot be expressed in ∇; we will see an
extension in Section 3.3.3 that avoids this information loss.

That brings us to the prime unification procedure, ⊕𝛿 . When adding 𝑥 ≈ Just y,
Equation (10), the unification procedure will first look for a solution for 𝑥 with
that same constructor. Let’s say there is Δ(𝑥) ≈ Just u ∈ Δ. Then ⊕𝛿 operates
on the transitively implied equality Just y ≈ Just u by equating type and term
variables with new constraints, i.e. y ≈ u. The original constraint, although not
conflicting, is not added to the normalised refinement type because of I3.

If there is a solution involving a different constructor like Δ(𝑥) ≈ Nothing or
if there was a negative constructor constraint Δ(𝑥) 0 Just, the new constraint is
incompatible with the existing solution. Otherwise, the constraint is compatible
and is added to Δ.
Adding a negative constructor constraint 𝑥 0 Just is quite similar (Equation

(11)), except that we have to make sure that 𝑥 still satisfies I2, which is checked
by the ∇ ⊢ Δ(𝑥) inh judgment (cf. Section 3.2.7) in Figure 3.10. Handling positive
and negative constraints involving ⊥ is analogous.

Adding a type constraint 𝛾 (Equation (9)) entails calling out to the type checker
to assert that the constraint is consistent with existing type constraints. After-
wards, we have to ensure I2 is upheld for all variables in the domain of Γ, because
the new type constraint could have rendered a type empty. To demonstrate why
this is necessary, imagine we have ⟨𝑥 : 𝑎 ∥ 𝑥 0 ⊥⟩ and try to add 𝑎 ∼ Void.
Although the type constraint is consistent, 𝑥 in ⟨𝑥 : 𝑎 ∥ 𝑥 0 ⊥, 𝑎 ∼ Void⟩ is no
longer inhabited. There is room for being smart about which variables we have
to re-check: For example, we can exclude variables whose type is a non-GADT
data type.

Equation (14) of ⊕𝛿 equates two variables (𝑥 ≈ 𝑦) by merging their equivalence
classes. Consider the case where 𝑥 and 𝑦 are not in the same equivalence class.
Then Δ(𝑦) is arbitrarily chosen to be the new representative of the merged
equivalence class. To uphold I3, all constraints mentioning Δ(𝑥) have to be
removed and renamed in terms of Δ(𝑦) and then re-added to Δ, one of which in
turn might uncover a contradiction.

34

3.2 Lower Your Guards: A New Coverage Checker

Test if 𝑥 is inhabited considering ∇ ∇ ⊢ 𝑥 inh

(⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ ⊥) ≠ ×
⟨Γ ∥Δ⟩ ⊢ 𝑥 inh

⊢Bot
𝑥 : 𝜏 ∈ Γ Cons(⟨Γ ∥Δ⟩, 𝜏) = ⊥

⟨Γ ∥Δ⟩ ⊢ 𝑥 inh
⊢NoCpl

𝑥 : 𝜏 ∈ Γ 𝐾 ∈ Cons(⟨Γ ∥Δ⟩, 𝜏)
Inst(⟨Γ ∥Δ⟩, 𝑥, 𝐾) ≠ ×
⟨Γ ∥Δ⟩ ⊢ 𝑥 inh

⊢Inst

Find data constructors of 𝜏 Cons(⟨Γ ∥Δ⟩, 𝜏) = 𝐾

Cons(⟨Γ ∥Δ⟩, 𝜏) =

𝐾 𝜏 = 𝑇 𝜎 and 𝑇 data type with constructors 𝐾 (after

normalisation according to the type constraints in Δ)
⊥ otherwise

Instantiate 𝑥 to data constructor 𝐾 Inst(∇, 𝑥, 𝐾) = ∇

Inst(⟨Γ ∥Δ⟩, 𝑥, 𝐾) = ⟨Γ, 𝑎,𝑦 : 𝜎 ∥Δ⟩ ⊕𝛿 𝜏𝑥 ∼ 𝜏 ⊕𝛿 𝛾 ⊕𝛿 𝑥 ≈ 𝐾 𝑎 𝑦 ⊕𝛿 𝑦′ 0 ⊥
where 𝐾 : ∀𝑎. 𝛾 ⇒ 𝜎 → 𝜏 , 𝑎𝑦 fresh, 𝑥 : 𝜏𝑥 ∈ Γ,

{𝑦′} ⊆ {𝑦} bind strict fields

Fig. 3.10: Testing for inhabitation

3.2.7 Testing for Inhabitation

The process for adding a constraint to a normalised type above (which turned
out to be a unification procedure in disguise) makes use of an inhabitation test

∇ ⊢ 𝑥 inh, depicted in Figure 3.10. This tests whether there are any values of
𝑥 that satisfy ∇. If not, ∇ does not uphold I2. For example, the conjunction
𝑥 0 Just, 𝑥 0 Nothing, 𝑥 0 ⊥ does not satisfy I2, because no value of 𝑥 satisfies
all those constraints.

The ⊢Bot judgment of ∇ ⊢ 𝑥 inh tries to instantiate 𝑥 to ⊥ to conclude that 𝑥
is inhabited. ⊢Inst instantiates 𝑥 to one of its data constructors. That will only
work if its type ultimately reduces to a data type under the type constraints in ∇.

35

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Rule ⊢NoCpl will accept unconditionally when its type is not a data type, i.e. for
𝑥 : Int→ Int.

Note that the outlined approach is complete in the sense that ∇ ⊢ 𝑥 inh is
derivable if and only if x is actually inhabited in ∇, because that means we do
not have any ∇s floating around in the checking process that actually are not
inhabited and trigger false positive warnings. But that also means that the ⊢ inh
relation is undecidable! Consider the following example:

data T = MkT !T
f :: SMaybe T→ ()
f SNothing = ()

This is exhaustive, because T is an uninhabited type. Upon adding the constraint
𝑥 0 SNothing on the match variable x via ⊕𝛿 , we perform an inhabitation test,
which tries to instantiate the SJust constructor via ⊢Inst. That implies adding
(via ⊕𝛿) the constraints 𝑥 ≈ SJust y, y 0 ⊥, the latter of which leads to an
inhabitation test on y. That leads to instantiation of the MkT constructor, which
leads to constraints y ≈ MkT z, 𝑧 0 ⊥, and so on for z etc.. An infinite chain of
fruitless instantiation attempts!

This situation is a lot like deciding equality of equirecursive types [Pierce 2002,
Chapter 21], in that we could break out of the infinite, coinductive proof chain
by assuming that T is uninhabited for any recursive occurrences of T beyond the
first.

Unfortunately, GADTs might still recurse endlessly through the type index. So
in practice, the implementation adopts a fuel-based approach that conservatively
assumes that a variable is inhabited after 𝑛 such instantiations (we have 𝑛 = 100
for list-like constructors and 𝑛 = 1 otherwise) and we consider supplementing
that with a simple termination analysis to detect simple uninhabited data types
like T in the future.

3.3 Extensions

LYG is well equipped to handle the fragment of Haskell it was designed to handle.
But GHC extends Haskell in non-trivial ways. This section exemplifies easy
accommodation of new language features and measures to increase precision
of the checking process, demonstrating the modularity and extensibility of the
approach.

36

3.3 Extensions

3.3.1 Long-Distance Information

Coverage checking should also work for case expressions and nested function
definitions, like

f True = 1
f x = ... (case x of {False→ 2; True→ 3}) ...

GMTM and unextended LYG will not produce any warnings for this definition.
But the reader can easily make the “long distance connection” that the last GRHS
of the case expression is redundant! That follows by context-sensitive reasoning,
knowing that x was already matched against True.
In terms of LYG, the input values of the second GRHS of f , described by

Θ2 = ⟨𝑥 : Bool | 𝑥 0 ⊥, 𝑥 0 True ⟩, encode the information we are after: we
just have to start checking the case expression starting from Θ2 as the initial set
of reaching values instead of ⟨𝑥 : Bool | � ⟩. We already need Θ2 to determine
whether the second GRHS of f is accessible, so long-distance information comes
almost for free.

3.3.2 Empty Case

As can be seen in Figure 3.2, Haskell function definitions need to have at least
one clause. That leads to an awkward situation when pattern matching on empty
data types, like Void:

absurd1 = undefined

absurd2 !_ = undefined

absurd1, absurd2, absurd3 :: Void→ a

absurd3 x = case x of { }

absurd1 returns undefined when called with ⊥, thus masking the original ⊥
with the error thrown by undefined. absurd2 would diverge alright, but LYG
will report its GRHS as inaccessible! Hence GHC provides an extension, called
EmptyCase, that allows the definition of absurd3 above. Such a case expression
without any alternatives evaluates its argument to WHNF and crashes when
evaluation returns.
It is quite easy to see that Gdt lacks expressive power to desugar EmptyCase

into, since all leaves in a guard tree need to have correspondingGRHSs. Therefore,
we need to introduce empty alternatives •Gdt to Gdt and •Ant to Ant. This is
how they affect the checking process:

U(Θ, •Gdt) = Θ A(Θ, •Gdt) = •Ant

37

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Since EmptyCase, unlike regular case, evaluates its scrutinee to WHNF before
matching any of the patterns, the set of reaching values is refined with a 𝑥 0 ⊥
constraint before traversing the guard tree, thus checking starts starts with
U(⟨ Γ | 𝑥 0 ⊥ ⟩, •Gdt).

3.3.3 View Patterns

The source syntax had support for view patterns to start with (cf. Figure 3.2).
And even the desugaring I gave as part of the definition of D in Figure 3.4 is
accurate. But this desugaring alone is insufficient for the checker to conclude
that safeLast from Section 3.1.2 is an exhaustive definition! To see why, let us
look at its guard tree:

let y1 = reverse x1, !y1,Nothing← y1 1
let y2 = reverse x1, !y2, Just t1 ← y2, !t1, (t2, t3) ← t1 2

As far as LYG is concerned, the matches on both y1 and y2 are non-exhaustive.
But that’s actually too conservative: Both bind the same value! By making
the connection between y1 and y2, the checker could infer that the match was
exhaustive.

This can be fixed bymaintaining equivalence classes of semantically equivalent
expressions in Δ, similar to what we do for variables. We simply extend the
syntax of 𝛿 and change the last let case of ⊕𝜑 . Then we can handle the new
constraint in ⊕𝛿 , as follows:

𝛿 = ... | 𝑒 ≈ 𝑥 ⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 : 𝜏 = 𝑒 = ⟨Γ, 𝑥 : 𝜏 ∥Δ⟩ ⊕𝛿 𝑒 ≈ 𝑥

⟨Γ ∥Δ⟩ ⊕𝛿 𝑒 ≈ 𝑥 =

{
⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ y, if 𝑒′ ≈ y ∈ Δ and 𝑒 ≡Δ 𝑒′

⟨Γ ∥Δ, 𝑒 ≈ Δ(𝑥)⟩, otherwise

Where ≡Δ is (an approximation to) semantic equivalence modulo substitution
underΔ. A clever data structure is needed to answer queries of the form 𝑒 ≈ ∈ Δ,
efficiently. In the implementation, I use a trie to index expressions rapidly [Peyton
Jones and Graf 2023] and sacrifice reasoning modulo Δ in doing so. Plugging in
an SMT solver to decide ≡Δ would be more precise, but certainly less efficient.

38

3.3 Extensions

3.3.4 Pattern Synonyms

To accommodate checking of pattern synonyms 𝑃 , we first have to extend the
source syntax and IR syntax by adding the syntactic concept of a ConLike:

𝑐𝑙 F 𝐾 | 𝑃
pat F 𝑥 | | 𝑐𝑙 pat | x@pat | ...

𝑃 ∈ PS
𝐶 ∈ CL F 𝐾 | 𝑃
𝑝 ∈ Pat F | 𝐶 𝑝 | ...

Assuming every definition encountered so far is changed to handle ConLikes 𝐶
instead of data constructors 𝐾 , everything should work fine. So why introduce
the new syntactic variant in the first place? Consider

pattern P = ()
pattern Q = ()
n = case P of Q → 1;P→ 2

If P and Q were data constructors, the first alternative of the case would be
redundant, because P cannot match Q . But pattern synonyms are quite different:
a value produced by P might match a pattern Q , as indeed is the case in this
example.
My solution is a conservative one: I weaken the test that sends ∇ to × of

Equation (10) in the definition of ⊕𝛿 dealing with positive ConLike constraints
𝑥 ≈ 𝐶 𝑎 𝑦:

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝐶 𝑎 𝑦 =

⟨Γ ∥Δ⟩ ⊕𝛿 𝑎 ∼ 𝑏 ⊕𝛿 𝑦 ≈ 𝑧 if Δ(𝑥) ≈ 𝐶 𝑏 𝑧 ∈ Δ
× if Δ(𝑥) ≈ 𝐶′ 𝑏 𝑧 ∈ Δ

and 𝐶 ∩𝐶′ = ∅
× if Δ(𝑥) 0 𝐶 ∈ Δ
⟨Γ ∥ (Δ,Δ(𝑥) ≈ 𝐶 𝑎 𝑦)⟩ otherwise

where the suggestive notation 𝐶 ∩𝐶′ = ∅ is only true iff 𝐶 and 𝐶′ are distinct
data constructors.
Note that the slight relaxation means that the constructed ∇ might violate

𝐼4, specifically when 𝐶 ∩𝐶′ ≠ ∅. In practice that condition only matters for the
well-definedness of E, which in case of multiple solutions (i.e. 𝑥 ≈ P, 𝑥 ≈ Q) has
to commit to one of them for the purposes of reporting warnings. Fixing that
requires a bit of boring engineering.
Another subtle point appears in rule (†) in Figure 3.4: should I or should I

not add a bang guard for pattern synonyms? There is no way to know without

39

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

breaking the abstraction offered by the synonym. In effect, its strictness or
otherwise is part of its client-visible semantics. In the implementation, I have
compromised by assuming that all pattern synonyms are strict for the purposes
of coverage checking [GHC issue 2019m].

3.3.5 COMPLETE Pragmas

In a sense, every algebraic data type defines its own builtin COMPLETE set, con-
sisting of all its data constructors, so the coverage checker already manages a
single COMPLETE set.

Judgment form ⊢Inst from Figure 3.10 currently makes sure that this COMPLETE
set is in fact inhabited. Furthermore, ⊢NoCpl handles the case when no COMPLETE
set for the given type (think x :: Int→ Int) can be found. The prudent way to
generalise this is by looking up all COMPLETE sets attached to a type and check
that none of them is completely covered:

(⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ ⊥) ≠ ×
⟨Γ ∥Δ⟩ ⊢ 𝑥 inh

⊢Bot

Cons(⟨Γ ∥Δ⟩, 𝜏) = 𝐶1, ...,𝐶𝑛

𝑥 : 𝜏 ∈ Γ Inst(⟨Γ ∥Δ⟩, 𝑥,𝐶 𝑗) ≠ ×
⟨Γ ∥Δ⟩ ⊢ 𝑥 inh

⊢Inst

Cons(⟨Γ ∥Δ⟩, 𝜏) =

𝐶1, ...,𝐶𝑛 𝜏 = 𝑇 𝜎 ; 𝑇 type constructor with COMPLETE

sets𝐶1, ...,𝐶𝑛 (after normalisation according
to the type constraints in Δ)

𝜖 otherwise

Cons was changed to return a list of all available COMPLETE sets, and ⊢Inst
tries to find an inhabiting ConLike 𝐶 𝑗 in each one of them in turn. Note that
⊢NoCpl is gone, because it coincides with ⊢Inst for the case where the list
returned by Cons was empty. The judgment has become simpler and and more
general at the same time! A worry is that checking against multiple COMPLETE
sets so frequently is computationally intractable. We will worry about that in
Section 3.4.4.

3.3.6 Literals

The source syntax in Figure 3.11 deliberately left out literal patterns 𝑙 . Literals
are very similar to nullary data constructors, with one caveat: they do not come
with a builtin COMPLETE set. Before Section 3.3.5, that would have meant quite a

40

3.3 Extensions

bit of hand waving and complication to the ⊢ inh judgment. Now, literals can be
handled like disjoint pattern synonyms (i.e. 𝑙1 ∩ 𝑙2 = ∅ for any two literals 𝑙1, 𝑙2)
without a COMPLETE set!

Overloaded literals can be supported as well, but we will find ourselves in a
similar situation as with pattern synonyms:

instance Num () where
fromInteger = ()

n = case (0 :: ()) of 1→ 1; 0→ 2 -- returns 1

Considering overloaded literals to be disjoint would mean marking the first al-
ternative as redundant, which is unsound. Hence overloaded literals are regarded
as possibly overlapping, so they behave exactly like nullary pattern synonyms
without a COMPLETE set.

3.3.7 Newtypes

In Haskell, a newtype declares a new type that is completely isomorphic to, but
definitionally distinct from, an existing type. For example:

newtype NT a = MkNT [a]
dup :: NT a→ NT a

dup (MkNT xs) = MkNT (xs ++ xs)

Here the type NT a is isomorphic to [a]. We convert to and fro using the “data
constructor” MkNT, either as in a term or in a pattern.

To a first approximation, programmers interact with a newtype as if it was a
data type with a single constructor with a single field. But the pattern matching
semantics of newtypes are different! Here are three key examples that distin-
guish newtypes from data types. Functions g1, g2 match on a newtype N, while

41

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

𝑐𝑙 F 𝐾 | 𝑁 𝑁 ∈ NT
𝐶 ∈ 𝐾 | 𝑁

D(𝑥, 𝑁 pat1 ... pat𝑛) = 𝑁 𝑦1 ... 𝑦𝑛 ← 𝑥,D(𝑦1, pat1), ...,D(𝑦𝑛, pat𝑛)

ΔNT (𝑥) =

{
ΔNT (𝑦) 𝑥 ≈ 𝑦 ∈ Δ or 𝑥 ≈ 𝑁 𝑎 𝑦 ∈ Δ
𝑥 otherwise

⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 :𝜏 =𝐾 𝜎 𝛾 𝑒 = . . . as before . . . (4𝑎)
⟨Γ ∥Δ⟩ ⊕𝜑 let 𝑥 :𝜏 =𝑁 𝜎 𝑒 = ⟨Γ, 𝑥 :𝜏, 𝑎 ∥Δ⟩ ⊕𝛿 𝑎 ∼ 𝜎 ⊕𝛿 𝑥 ≈ 𝑁 𝑎 𝑦 (4𝑏)

⊕𝜑 let 𝑦:𝜏 ′ = 𝑒 where 𝑎𝑦 fresh

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝐾 𝑎 𝑦 = . . . as before . . . (10𝑎)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ 𝑁 𝑎 𝑦 =

⟨Γ ∥Δ⟩ ⊕𝛿 𝑎 ∼ 𝑏 ⊕𝛿 𝑦 ≈ 𝑧 if 𝑥 ′ ≈ 𝑁 𝑏 𝑧 ∈ Δ
⟨Γ ∥Δ⟩ if 𝑥 ′ = ΔNT (𝑦′)
⟨Γ ∥ ((Δ\𝑥 ′), 𝑥 ′≈𝑁 𝑎 𝑦′)⟩
⊕𝛿 (Δ |𝑥 ′ [𝑦′/𝑥 ′]) otherwise

(10𝑏)

where 𝑥 ′ = Δ(𝑥) and 𝑦′ = Δ(𝑦)
⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 0 𝐾 = . . . as before . . . (11𝑎)
⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 0 𝑁 = × (11𝑏)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 ≈ ⊥ =

{
× if ΔNT (𝑥) 0 ⊥ ∈ Δ
⟨Γ ∥ (Δ, ΔNT (𝑥) ≈ ⊥)⟩ otherwise

(12)

⟨Γ ∥Δ⟩ ⊕𝛿 𝑥 0 ⊥ =

× if ΔNT (𝑥) ≈ ⊥ ∈ Δ
∇′ if ∇′ ⊢ 𝑥 inh
× otherwise

(13)

where ∇′ = ⟨Γ ∥ (Δ, ΔNT (𝑥) 0 ⊥)⟩

Fig. 3.11: Extending coverage checking to handle newtypes

42

3.3 Extensions

functions h1, h2 match on a data type D:

newtype N a = MkN a

g1 :: N Void→ Bool→ Int
g1 True = 1
g1 (MkN) True = 2 -- Redundant

g1 !_ True = 3 -- Inaccessible

g2 :: N () → Bool→ Int
g2 !(MkN) True = 1
g2 (MkN !_) True = 2 -- Redundant

g2 = 3
data D a = MkD a

h1 :: D Void→ Bool→ Int
h1 True = 1
h1 (MkD) True = 2 -- Inaccessible

h1 !_ True = 3 -- Redundant

h2 :: D () → Bool→ Int
h2 !(MkD) True = 1
h2 (MkD !_) True = 2 -- Inaccessible

h2 = 3

If the first equation of h1 fails to match (because the second argument is False),
the second equation may diverge when matching against (MkD) or may fail
(because of the False), so the equation is inaccessible. The third equation is
redundant. But for a newtype, the second equation of g1 will not evaluate the
argument when matching against (MkN) and hence is redundant. The third
equation will evaluate the first argument, which is surely bottom, so matching
will diverge and the equation is inaccessible. A perhaps surprising consequence
is that the definition of g1 is exhaustive, because after N Void was deprived of its
sole inhabitant ⊥ = MkN ⊥ by the third GRHS, there is nothing left to match on
(similarly for h1). Analogous subtle reasoning justifies the difference in warnings
for g2 and h2.

Figure 3.11 outlines a solution that handles all these cases correctly:

• A newtype pattern-match 𝑁 pat1 ... pat𝑛 is lazy: it does not force evalu-
ation. So, compared to data constructor matches, the desugaring function
D omits the !𝑥 . Additionally, Equation (4) of ⊕𝜑 , responsible for reasoning
about let bindings, has a special case for newtypes that omits the 𝑥 0 ⊥
constraint.

• Similar in spirit to Δ(𝑥), which chases variable equality constraints 𝑥 ≈ 𝑦,
we now also occasionally need to look through positive newtype con-
structor constraints 𝑥 ≈ 𝑁 𝑎 𝑦 with ΔNT (𝑥).

• The most important usage of ΔNT (𝑥) is in the changed Equations (12) and
(13) of ⊕𝛿 , where we now check ⊥ constraints modulo ΔNT (𝑥).

• Equation (10) (previously handling 𝑥 ≈ 𝐾 𝑎 𝑦) and Equation (11) (previ-
ously handling 𝑥 0 𝐾) have been split to account for newtype constructors.

43

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

• The first case of the new Equation (10𝑏) handles any existing positive
newtype constructor constraints in Δ, as with Equation (10). Take note that
negative newtype constructor constraints may never occur in Δ because
of Equation (11𝑏), as explained in the next paragraph. The remaining two
cases are reminiscent of Equation (14) (𝑥 ≈ 𝑦). Provided there are neither
positive nor negative newtype constructor constraints involving 𝑥 , any
remaining ⊥ constraints are moved from Δ(𝑥) to the new representative
Δ′NT (𝑥), which will be Δ′NT (𝑦) in the returned Δ′.

• The new Equation (11𝑏) handles negative newtype constructor constraints
by immediately rejecting. The reason it does not consider ⊥ as an inhab-
itant is that for ⊥ to be an inhabitant, it must be an inhabitant of the
newtype’s field. For that, we must have 𝑥 ≈ 𝐾 𝑦 for some 𝑦, which
contradicts with the very constraint we want to add!

To see how these changes facilitate correct warnings for newtype matches, first
consider the changed invariant I3 which ensures ΔNT (𝑥) is a well-defined function
like Δ(𝑥):

I3 Triangular form: Constraints of the form 𝑥 ≈ 𝑦 and 𝑥 ≈ 𝑁 𝑎 𝑦 imply
absence of any other constraint mentioning x in its left-hand side.

We want Δ to uphold the semantic equation ⊥ ≡ 𝑁⊥. In particular, whenever
we have 𝑥 ≈ 𝑁 𝑎 𝑦, we want 𝑥 ≈ ⊥ iff 𝑦 ≈ ⊥ (similarly for 𝑥 0 ⊥). Equations
(10b), (12) and (13) facilitate just that, modulo ΔNT (𝑥). Finally, a new invariant I5
relates positive newtype constructor equalities to ⊥ constraints:

I5 Newtype erasure: Whenever 𝑥 ≈ 𝑁 𝑎 𝑦 ∈ Δ, we have 𝑥 ≈ ⊥ ∈ Δ if and
only if 𝑦 ≈ ⊥ ∈ Δ, and 𝑥 0 ⊥ ∈ Δ if and only if 𝑦 0 ⊥ ∈ Δ.

An alternative design might take inspiration in the coercion semantics of GHC
Core, a typed intermediate language of GHC based on System F, and compose
coercions attached to ≈. However, that would entail deep changes to syntax as
well as to the definition of E to recover the newtype constructor patterns visible
in source syntax.

3.3.8 Strictness, Divergence and Other Side-Effects

Instead of extending the source language, let us discuss ripping out a language
feature for a change! So far, we have focused on Haskell as the source language,

44

3.3 Extensions

which is lazy by default. Although the difference in evaluation strategy of the
source language becomes irrelevant after desugaring, it raises the question of
how much my approach could be simplified if we targeted a source language
that was strict by default, such as OCaml, Lean, Idris, Rust, Python or C#.

On first thought, it is tempting to simply drop all parts related to laziness from
the formalism, such as !𝑥 from Grd and � from Ant. Actually, Ant and R
could vanish altogether and A could just collect the redundant GRHS directly!
Since there would not be any bang guards, there is no reason to have 𝑥 ≈ ⊥ and
𝑥 0 ⊥ constraints either. Most importantly, the ⊢Bot judgment form has to go,
because ⊥ does not inhabit any types anymore.
And compiler writers for total languages such as Lean, Idris or Agda would

live happily after: Talking about 𝑥 0 ⊥ constraints made no sense there to begin
with. Not so with OCaml or Rust, which are strict, non-total languages and allow
arbitrary side-effects in expressions. Here’s an example in OCaml:

let rec f p x =

match x with

| [] → []
| head :: _ when p head && x = [] → [head]
| :: tail → f p tail; ;

Is the second clause redundant? It depends on whether p performs a side-effect,
such as throwing an exception, diverging, or even releasing a mutex. We may not
say without knowing the definition of p, so the second clause has an inaccessible
RHS but is not redundant. It’s a similar situation as in a lazy language, although
the fact that side-effects only matter in the guard of a match clause (where we
can put arbitrary expressions) makes the issue much less prominent.
We could come up with a desugaring function for OCaml that desugars the

pattern match above to the following guard tree:
[] ← 𝑥 1
head :: tail ← 𝑥, let 𝑡 = p head, !𝑡, true← 𝑡, [] ← 𝑥 2
head :: tail ← 𝑥 3

Compared to Haskell, note the lack of a bang guard on the match variable
x. Instead, there’s now a bang guard on t, the new temporary that stands for
p head. The bang guard will keep alive the second clause of the guard tree
and LYG would not classify the second clause as redundant, although it will be
flagged as inaccessible. Since the RHS of a let guard, such as p head, might have

45

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

arbitrary side-effects, equational reasoning is lost and we may no longer identify
p head ≈ t as in Section 3.3.3.
Zooming out a bit more, desugaring of Haskell pattern-matches using bang

guards !x can be understood as forcing one specific effect, namely divergence.
In this work, I have given this side-effect special treatment in the formalism in
order to get accurate coverage warnings in a lazy language.

3.3.9 Or-patterns

Since this work appeared at ICFP in 2020, GHC 9.12 accumulated a new extension
to the pattern language: OrPatterns3. Or-patterns are an established language
feature in many other languages such as OCaml and Python, and can be used as
follows:

data LogLevel = Debug | Info | Error
notifyAdmin :: LogLevel→ Bool
notifyAdmin Error = True
notifyAdmin (Debug; Info) = False

Here, the second clause matches when either Debug or Info matches the para-
meter. When the programmer later adds a new data constructor Warning to
LogLevel, LYG should report the match in notifyAdmin as inexhaustive. This
coverage warning prompts the programmer to make a conscious decision about
which value should be returned for notifyAdmin Warning. That is far better than
the alternative of using a wildcard match for the last clause: doing so would
silently define notifyAdmin Warning = False.
Or-patterns were an interesting real-world benchmark to see how well LYG

scales to new language features. Previously in Figure 3.4, if one part of a pattern
failed to match, the whole pattern would fail. As a result, the desugaring function
D could map a pattern into a (conjunctive) list of guards (Grd), which was then
exploded into a nesting of 𝑔 𝑡 forms, suitable for a single recursive
definition ofU and A. However, with Or-patterns, we need a way to encode
(disjunctive) first-match semantics in the result of D(𝑥, pat). Such first-match
semantics is currently exclusive to the 𝑡1

𝑡2 guard tree form. So one way to
desugar Or-patterns would be to desugar patterns into full guard trees instead of

3 https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0522-or-patterns.rst

46

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0522-or-patterns.rst

3.3 Extensions

lists of guards. That would be akin to exploding each Or-pattern into two clauses.
We would get the equality

D(𝑓 (pat𝑎 ; pat𝑏) pat𝑐 = rhs) =
D(𝑥1, pat𝑎), D(𝑥2, pat𝑐) 𝑘rhs

D(𝑥1, pat𝑏), D(𝑥2, pat𝑐) 𝑘rhs

thus duplicating the desugaring of pat𝑐 . It is easy to see how a sequence of
Or-patterns may lead to an exponential number of duplications of pat𝑐 , leading
to unacceptable checking performance. Hence I propose a different solution:
Guard DAGs (directed-acyclic graphs).
Figure 3.12 defines the stucture of guard DAGs (GrdDag) inductively. Now

consider the function

f :: Ordering→ Ordering→ Int
f (LT; EQ) (EQ;GT) = 1
f = 2

The desugaring to guard trees according to Figure 3.12 is

(((!𝑥1, LT← 𝑥1) or (!𝑥1, EQ ← 𝑥1)), ((!𝑥2, EQ ← 𝑥2) or (!𝑥2,GT← 𝑥2))) 1
2

Matching is defined as follows:

• Matching 𝑔 means matching a single guard 𝑔 ∈ Grd, which was done by
𝑔 𝑡 previously. However, the new 𝑑 𝑡 form stores a guard

DAG 𝑑 instead of a single guard 𝑔.

• Matching a parallel composition (𝑑1 or 𝑑2) means matching against 𝑑1; if
that succeeds, the overall match succeeds; if not, match against 𝑑2.

• Matching a sequential composition (𝑑1, 𝑑2) means matching against 𝑑1;
if that succeeds, match against 𝑑2. If either match fails, the whole match
fails.

Matching parallel composition (𝑑1 or 𝑑2) is much like matching 𝑡1
𝑡2, and

matching sequential composition (𝑑1, 𝑑2) is much like matching 𝑑 𝑡 .
A clearer, non-flat visualisation of the guard DAG of the first clause could be

!𝑥1 LT← 𝑥1

!𝑥1 EQ ← 𝑥1

!𝑥2 EQ ← 𝑥2

!𝑥2 GT← 𝑥2
1

47

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

pat F ... | pat1; pat2

𝑡 ∈ Gdt F ... | 𝑑 𝑡

𝑑 ∈ GrdDag F 𝑔 | (𝑑1 or 𝑑2) | (𝑑1, 𝑑2)

D(𝑥, pat) = 𝑑

D(𝑥, (pat1; pat2)) = (D(𝑥, pat1) orD(𝑥, pat2))

C(Θ, 𝑑) = Θ

C(Θ, (𝑑1 or 𝑑2)) = C(Θ, 𝑑1) ∪ C(U(Θ, 𝑑1), 𝑑2)
C(Θ, (𝑑1, 𝑑2)) = C(C(Θ, 𝑑1), 𝑑2)
C(Θ, !𝑥) = Θ ¤∧ (𝑥 0 ⊥)
C(Θ, let 𝑥 = 𝑒) = Θ ¤∧ (let 𝑥 = 𝑒)
C(Θ, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥) = Θ ¤∧ (𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥)

U(Θ, 𝑡) = Θ, U(Θ, 𝑑) = Θ

U(⟨ Γ | Φ ⟩, 𝑛) = ⟨ Γ | × ⟩
U(Θ, 𝑡1

𝑡2
) = U(U(Θ, 𝑡1), 𝑡2)

U(Θ, 𝑑 𝑡) = U(Θ, 𝑑) ∪ U(C(Θ, 𝑑), 𝑡)

U(Θ, (𝑑1 or 𝑑2)) = U(U(Θ, 𝑑1), 𝑑2)
U(Θ, (𝑑1, 𝑑2)) = U(Θ, 𝑑1) ∪ U(C(Θ, 𝑑1), 𝑑2)
U(⟨ Γ | Φ ⟩, !𝑥) = ⟨ Γ | × ⟩
U(⟨ Γ | Φ ⟩, let 𝑥 = 𝑒) = ⟨ Γ | × ⟩
U(Θ, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥) = Θ ¤∧ (𝑥 0 𝐾)

A(Θ, 𝑡) = 𝑢, A(Θ, 𝑑) = Θ

A(Θ, 𝑛) = Θ𝑛

A(Θ, 𝑡1
𝑡2
) =

A(Θ, 𝑡1)
A(U(Θ, 𝑡1), 𝑡2)

A(Θ, 𝑑 𝑡) = A(Θ, 𝑑) � A(C(Θ, 𝑑), 𝑡)

A(Θ, (𝑑1 or 𝑑2)) = A(Θ, 𝑑1) ∪ A(U(Θ, 𝑑1), 𝑑2)
A(Θ, (𝑑1, 𝑑2)) = A(Θ, 𝑑1) ∪ A(C(Θ, 𝑑1), 𝑑2)
A(Θ, !𝑥) = Θ ¤∧ (𝑥 ≈ ⊥)
A(⟨ Γ | Φ ⟩, let 𝑥 = 𝑒) = ⟨ Γ | × ⟩
A(⟨ Γ | Φ ⟩, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥) = ⟨ Γ | × ⟩

Fig. 3.12: Extending coverage checking to handle Or-patterns48

3.3 Extensions

This visualisation acknowledges that GrdDag really models labelled series-

parallel graphs [Eppstein 1992], a very specific kind of DAG with a straightfor-
ward encoding as an algebraic data type: every guard 𝑔 induces a series-parallel
graph with a single edge from source to sink; conjunction (𝑑1, 𝑑2) corresponds to
series composition of graphs for 𝑑1 and 𝑑2; and disjunction (𝑑1 or𝑑2) corresponds
to parallel composition of graphs for 𝑑1 and 𝑑2.
Although the redefinition of coverage checking functions in Figure 3.12 is

much more expansive in size than the original definition in Figure 3.5, we will
see that the encoded logic is derivative.
There is a new function C that computes the covered set of a guard dag 𝑑 .

This function was previously inlined into the recursive call sites ofU and A; it
computes the set of Θ reaching 𝑡 in 𝑔 𝑡 . It is no longer possible to inline
it because the 𝑑 𝑡 form now carries a guard DAG 𝑑 with nested structure;
hence a separate recursive function is needed.
As expected, computing the uncovered set of parallel composition (𝑑1 or 𝑑2)

is much the same as for the 𝑡1
𝑡2 form, and similarly for sequential composition

(𝑑1, 𝑑2) and the 𝑑 𝑡 form. Similarly, the uncovered set for the 𝑛

form is the same as that of the irrefutable guards !𝑥 and let 𝑥 = 𝑒 . The implement-
ation in GHC (Section 3.4) extracts this shared code into reusable polymorphic
combinators.
The changes to A are similar in nature. The use of ∪ in A(Θ, (𝑔1, 𝑔2)) may

be unexpected, since usually sequential composition leads to conjunction ¤∧, not
disjunction ∪. Nevertheless, ∪ is the correct choice, because it follows directly
from the previous definition of A(Θ, 𝑔1, 𝑔2 𝑡) and how the resulting

Θ1 � Θ2 � 𝑢 annotations are used inR (Figure 3.6): 𝑢 can be redundant
only if there is no inhabitant in Θ1 ∪ Θ2; otherwise it is inaccessible.
It is reassuring to know that extending coverage checking in Figure 3.5 with

Or-patterns is derivative and compatible with all the other proposed extensions,
although it takes a slight refactoring. On the other hand, years of maintaining
LYG have shown that most of the complexity rests in the inhabitation test
(Figure 3.10). I did not need to touch that to implement Or-patterns, and neither
did I need to adjust Figure 3.6 or later: this is compelling evidence that the core
of my approach is quite extensible and robust.

49

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

3.4 Implementation

My implementation of LYG has been part of GHC since the 8.10 release in 2020,
including all extensions in Section 3.3, except for strict-by-default source syntax
and Or-patterns. The implementation accumulates quite a few tricks that go
beyond the pure formalism. This section is dedicated to describing these.

3.4.1 Phase Ordering

GHC runs the coverage checker between type checking and desugaring to GHC
Core, a typed intermediate representation lacking the connection to source
syntax. It would be unreasonable to do it later because warning messages need
to reference source syntax, not GHC Core, in order to be comprehensible. At the
same time, coverage checks involving GADTs need a type checked program, so
coverage checking cannot happen before type-checking.

3.4.2 InterleavingU and A
The set of reaching values is an argument to bothU and A. Given a particular
set of input values and a guard tree, one can see by a simple inductive argument
that both U and A are always called at the same arguments! Hence for an
implementation it makes sense to compute both results together, if only for not
having to recompute the results ofU again in A.
But there’s more: Looking at the last clause of U in Figure 3.5, we can see

that Θ is syntactically duplicated every time we check a pattern guard. In the
worst case, that can amount to exponential growth of the refinement predicate
and for the time to prove it empty!

What we really want is to summarise a Θ into a more compact canonical form
before doing these kinds of splits. But that’s exactly what ∇ is! Therefore, in
the implementation I do not pass around and annotate refinement types, but the
result of calling N on them directly.
We can see the resulting definition in Figure 3.13. The readability is clouded

by unwrapping of pairs. UA requires that each ∇ individually is non-empty, i.e.
not ×. This invariant is maintained by adding 𝜑 constraints through ¤⊕𝜑 , which
filters out any ∇ that would become empty.

50

3.4 Implementation

∇ ¤⊕𝜑 𝜑 = ∇

𝜖 ¤⊕𝜑 𝜑 = 𝜖

(∇1 ...∇𝑛) ¤⊕𝜑 𝜑 =

{
(⟨Γ ∥Δ⟩) (∇2 ...∇𝑛 ¤⊕𝜑 𝜑) if ⟨Γ ∥Δ⟩ = ∇ ⊕𝜑 𝜑

(∇2 ...∇𝑛) ¤⊕𝜑 𝜑 otherwise

UA(∇, 𝑡) = (∇, 𝑢)

UA(∇, 𝑛) = (𝜖, ∇𝑛)

UA(∇, 𝑡1
𝑡2
) = (∇2,

𝑢1
𝑢2
)

where (∇1, 𝑢1) =UA(∇, 𝑡1)
(∇2, 𝑢2) =UA(∇1, 𝑡2)

UA(∇, !𝑥 𝑡) = ∇ ¤⊕𝜑 (𝑥 ≈ ⊥) � 𝑢

where (∇′, 𝑢) = UA(∇ ¤⊕𝜑 (𝑥 0 ⊥), 𝑡)
UA(∇, let 𝑥 = 𝑒 𝑡) = UA(∇ ¤⊕𝜑 (let 𝑥 = 𝑒), 𝑡)
UA(∇, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥 𝑡) = ((∇ ¤⊕𝜑 (𝑥 0 𝐾)) ∇𝑢 , 𝑢)

where ∇𝑐 = ∇ ¤⊕𝜑 (𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥)
(∇𝑢 , 𝑢) = UA(∇𝑐 , 𝑡)

Fig. 3.13: Fast coverage checking

3.4.3 Throttling for Graceful Degradation

Even with the tweaks from Section 3.4.2, checking certain pattern matches
remains NP-hard [Sekar et al. 1995]. Naturally, there will be cases where we
have to conservatively approximate in order not to slow down compilation too
much. Consider the following example and its corresponding guard tree:

g | True← f1 1, True← f2 1 = ()
| True← f1 2, True← f2 2 = ()
| ...
| True← f1 𝑁, True← f2 𝑁 = ()

let 𝑎1 = f1 1, !𝑎1, True← 𝑎1, let 𝑏1 = f2 1, !𝑏1, True← 𝑏1 1
let 𝑎2 = f1 2, !𝑎2, True← 𝑎2, let 𝑏2 = f1 2, !𝑏2, True← 𝑏2 2
... ...
let 𝑎𝑁 = f1 𝑁, !𝑎𝑁 , True← 𝑎𝑁 , let 𝑏𝑁 = f2 𝑁, !𝑏𝑁 , True← 𝑏𝑁 N

51

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Each of the 𝑁 GRHS can fall through in two distinct ways: By failure of either
pattern guard involving f1 or f2. Initially, we start out with a single input ∇. After
the first equation it will split into two sub-∇s, after the second into four, and so
on. This exponential pattern repeats 𝑁 times, and leads to horrible performance!
Instead of refining ∇ with the pattern guard, leading to a split, we could just

continue with the original ∇, thus forgetting about the 𝑎1 0 True or 𝑏1 0 True
constraints. In terms of the modeled refinement type, ∇ is still a superset of both
refinements, and thus a sound overapproximation.
In the implementation, I call this throttling: limiting the number of reaching
∇s to a constant. Whenever a split would exceed this limit, we continue with the
original reaching ∇s, a conservative estimate, instead. Intuitively, throttling cor-
responds to forgetting what we matched on in that particular subtree. Throttling
is refreshingly easy to implement! Only the last clause ofUA, where splitting is
performed, needs to change:

UA(∇, 𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥 𝑡) = (
⌊
(∇ ¤⊕𝜑 (𝑥 0 𝐾)) ∇𝑢

⌋
∇
, 𝑢)

where ∇𝑐 = ∇ ¤⊕𝜑 (𝐾 𝑎 𝛾 𝑦 : 𝜏 ← 𝑥)
(∇𝑢 , 𝑢) = UA(∇𝑐 , 𝑡)

where the new throttling operator ⌊ ⌋ is defined simply as⌊
∇
⌋
∇′

=

{
∇ if |{∇}| ⩽ 𝑈
∇′ otherwise

with 𝑈 being an arbitrary constant. GHC uses 30 as the limit in the imple-
mentation (dynamically configurable via a command-line flag) without noticing
any false positives in terms of exhaustiveness warnings outside of the test suite.
It is worth noting that Or-patterns (Section 3.3.9) introduce a function C to

compute the covered set of a guard DAG 𝑑 , and its case for (𝑑1 or 𝑑2) splits the
incoming Θ, much the same as the pattern guard case splits the uncovered set;
hence I throttle there as well to ensure graceful degradation.

3.4.4 Maintaining Residual COMPLETE Sets

The implementation tries hard to make the inhabitation test as efficient as pos-
sible. For example, Δs are represented by a mapping from variables to their

52

3.4 Implementation

positive and negative constraints for easier indexing. But there are also asymp-
totic improvements. Consider the following function:

data T = A1 | ... | A1000
pattern P = ...

{−# COMPLETE A1, P #−}

f A1 = 1
f A2 = 2
...

f A1000 = 1000

f is exhaustively defined. To see that we need to perform an inhabitation test
for the match variable x after the last clause. The test will conclude that the
builtin COMPLETE set was completely overlapped. But in order to conclude that,
the algorithm tries to instantiate x (via ⊢Inst) to each of its 1000 constructors
and try to add a positive constructor constraint! What a waste of time, given that
we could just look at the negative constraints on x before trying to instantiate x.
But asymptotically it should not matter much, since we are doing this only once
at the end.

Except that is not true, because we also perform redundancy checking! At any
point in f ’s definition there might be a match on P, after which all remaining
clauses would be redundant by the user-supplied COMPLETE set. Therefore, we
have to perform the expensive inhabitation test after every clause, involving O(𝑛)
instantiations each.

Clearly, we can be smarter about that! Indeed, I cache residual COMPLETE sets

in the implementation: Starting from the full COMPLETE sets, I delete ConLikes
from them whenever I add a new negative constructor constraint, maintaining
the invariant that each of the sets is inhabited by at least one constructor. Note
how this trick never needs to check the same constructor twice (except after
adding new type constraints), thus we have an amortised O(𝑛) instantiations
for the whole checking process.

3.4.5 Reporting Uncovered Patterns

The expansion function E in Figure 3.7 exists purely for presenting uncovered
patterns to the user. It does not account for negative information, however,
which can lead to surprising warnings. Consider a definition like b True = ().
The computed uncovered set of b is the normalised refinement type ∇𝑏 = ⟨𝑥 :
Bool ∥𝑥 0 ⊥, 𝑥 0 True⟩, which crucially contains no positive information on x!
As a result, E(∇𝑏) = _ and only the very unhelpful wildcard pattern will be
reported as uncovered.

53

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

My implementation does better and shows that this is just a presentational
matter. It splits ∇𝑏 on all possible constructors of Bool, immediately rejecting
the refinement ∇𝑏 ⊕𝛿 𝑥 ≈ True due to 𝑥 0 True ∈ ∇𝑏 . What remains is the
refinement ∇𝑏 ⊕𝛿 𝑥 ≈ False = ⟨𝑥 : Bool ∥ 𝑥 0 ⊥, 𝑥 0 True, 𝑥 ≈ False⟩, which
has the desired positive information for which E will happily report False as the
uncovered pattern.
Additionally, my implementation formats negative information on opaque

data types such as Int and Char, since idiomatic use would match on literals
rather than on GHC-specific data constructors. For example, coverage checking
f 0 = () will report something like this:

Missing equations for function 'f':
f x = ... where 'x' is not one of {0}

3.4.6 Structured Guard Tree Types

Since we submitted our work to ICFP in 2020, I continued to improve and refactor
the implementation of LYG in GHC. Many of the changes were incremental
improvements and bug fixes that are not easy to present without a lot of context,
but one particularly important innovation4 was the introduction of syntax-
specific instances of guard trees, such as

type SrcInfo = String -- appromixately; identifies the 𝑘 in rhs𝑘

data PmMatch p = PmMatch {pm_pats :: p, pm_grhss :: [PmGRHS p] }
data PmGRHS p = PmGRHS {pg_grds :: p, pg_rhs :: SrcInfo}

These types are in structural correspondence to the match and grhs constructs in
Figure 3.2 from whence they desugar. Prior to coverage checking, type parameter
p is instantiated to lists of guards Grd (resp. GrdDag after Or-patterns were
introduced, Section 3.3.9), and coverage checking elaborates this list into so-
called RedSets, carrying Θs encoding covered and diverging input values.

Of course, the meaning of PmMatch and PmGRHS is in terms of the desugar-
ing into unrestricted guard treesGdt, as before. However, with the new encoding
it became much easier to extract covered sets for long-distance information (Sec-
tion 3.3.1), because the pm_grhss field has the same number of elements as there
are grhs in a match, so a simple Data.List.zip suffices to bring covered sets and
grhs together.

4 https://gitlab.haskell.org/ghc/ghc/-/commit/1207576

54

https://gitlab.haskell.org/ghc/ghc/-/commit/1207576

3.5 Evaluation

3.5 Evaluation

To put the new coverage checker to the test, Ryan Scott performed a survey of
real-world Haskell code using the head.hackage repository5. head.hackage
contains a sizable collection of libraries and minimal patches necessary to make
them build with a development version of GHC. Ryan identified those libraries
which compiled without coverage warnings using GHC 8.8.3 (which uses GMTM
as its checking algorithm) but emitted warnings when compiled using the LYG
version of GHC.

Of the 361 libraries in head.hackage, seven of them revealed coverage issues
that only LYG warned about. Two of the libraries, pandoc and pandoc-types,
have cases that were flagged as redundant due to LYG’s improved treatment of
guards and term equalities.
One library, geniplate-mirror, has a case that was redundant by way of long-
distance information. Another library, generic-data, has a case that is redund-
ant due to bang patterns.

The last three libraries—Cabal, HsYAML, and network—were the most interest-
ing. HsYAML in particular defines this function:

go
′

xs | False = error (show xs)
go
′

xs = err xs

The first clause is clearly unreachable, and LYG now flags it as such. However,
the authors of HsYAML likely left in this clause because it is useful for debug-
ging purposes. One can comment out the second clause and remove the False
guard to quickly try out a code path that prints a more detailed error message.
Moreover, leaving the first clause in the code ensures that it is typechecked and
less susceptible to bitrotting over time.
In order to support this use case in HsYAML, we added a primitive definition

considerAccessible = False in GHC 9.2, to be used instead of False above and
signalling to GHC that the first clause should not get marked as redundant. The
unreachable code in Cabal and network is of a similar caliber and could benefit
from considerAccessible as well.

55

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Time (milliseconds) Allocation (megabytes)
Testcase 8.8.3 HEAD Change 8.8.3 HEAD Change
T11276 1.16 1.69 45.7% 1.86 2.39 28.6%
T11303 28.1 18.0 -36.0% 60.2 39.9 -33.8%
T11303b 1.15 0.39 -65.8% 1.65 0.47 -71.8%
T11374 4.62 3.00 -35.0% 6.16 3.20 -48.1%
T11822 1,060 16.0 -98.5% 2,010 27.9 -98.6%
T11195 2,680 22.3 -99.2% 3,080 39.5 -98.7%
T17096 7,470 16.6 -99.8% 17,300 35.4 -99.8%
PmSeriesS 44.5 2.58 -94.2% 52.9 6.19 -88.3%
PmSeriesT 48.3 6.86 -85.8% 61.4 17.6 -71.4%
PmSeriesV 131 4.54 -96.5% 139 9.53 -93.2%

Table 3.1: The relative compile-time performance of GHC 8.8.3 (which implements
GMTM) and HEAD (which implements LYG) on test cases designed to stress-
test coverage checking.

3.5.1 Performance Tests

To compare the efficiency of GMTM and LYG quantitatively, Ryan Scott collected
a series of test cases from GHC’s test suite that are designed to test the compile-
time performance of coverage checking6. Table 3.1 lists each of these 11 test
cases. Test cases with a T prefix are taken from user-submitted bug reports about
the poor performance of GMTM. Test cases with a PmSeries prefix are adapted
from Maranget [2007], which presents several test cases that caused GHC to
exhibit exponential running times during coverage checking.

Ryan compiled each test case with GHC 8.8.3, which uses GMTM as its check-
ing algorithm, and GHC HEAD (a pre-release of GHC 8.10), which uses LYG.
He measured (1) the time spent in the desugarer, the phase of compilation in
which coverage checking occurs, and (2) how many megabytes were allocated
during desugaring. Table 3.1 shows these figures as well as the percent change
going from 8.8.3 to HEAD. Most cases exhibit a noticeable improvement under
LYG, with the exception of T11276. Investigating T11276 suggested that the
performance of GHC’s equality constraint solver had become more expensive at

5 https://gitlab.haskell.org/ghc/head.hackage/commit/30a310f
6 These measurements were validated as part of the artifact evaluation process during the ICFP
2020 publication.

56

https://gitlab.haskell.org/ghc/head.hackage/commit/30a310f

3.6 Soundness

the time [GHC issue 2020c], and these extra costs outweighed the performance
benefits of using LYG. This performance bug was fixed in GHC 9.07.

Note that for typical code (rather than for regression tests), time spent doing
coverage checking is dwarfed by the time the rest of the desugarer takes. A
very desirable property for a static analysis that is irrelevant to the compilation
process!

3.5.2 GHC Issues

Implementing LYG in GHC has fixed over 30 bug reports related to coverage
checking. These include:

• Better compile-time performance [GHC issue 2019b,c, 2015a, 2016e]

• More accurate warnings for empty case expressions [GHC issue 2019a,
2018f,h, 2015b, 2017f]

• More accurate warnings due to LYG’s desugaring [GHC issue 2018a, 2017d,
2016c,d, 2020d]

• More accurate warnings due to improved term-level reasoning [GHC issue
2017a, 2018c,d,e, 2019d, 2016a, 2018i, 2019e,k]

• More accurate warnings due to tracking long-distance information [GHC
issue 2020a,b, 2019j]

• Improved treatment of COMPLETE sets [GHC issue 2018b, 2017b,c, 2016b,
2019f,g, 2017e, 2019h, 2017g]

• Better treatment of strictness, bang patterns, and newtypes [GHC issue
2018g,j, 2019i,l]

3.6 Soundness

The evaluation in Section 3.5 yields compelling evidence that LYG is sound. That
is, in terms of the formalism, LYG overapproximates—but never underapprox-
imates— the set of reaching values passed to U and A. As a result, LYG will

7 https://gitlab.haskell.org/ghc/ghc/-/commit/fd7ea0f

57

https://gitlab.haskell.org/ghc/ghc/-/commit/fd7ea0f

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

never fail to report uncovered clauses (no false negatives), but it may report false
positives. Similarly, LYG will never report accessible clauses as redundant (no
false positives), but it may fail to report clauses which are redundant when the
code involved is too close to “undecidable territory”.
Remarkably, the symbolic checking process involvingU, A und R does not

overapproximate at all. To my knowledge, LYG overapproximates only in these
three mechanisms:

• LYG can run out of fuel for inhabitation testing (Section 3.2.7).

• Throttling (Section 3.4.3) is useful when implementing LYG efficiently.

• LYG forgoes non-trivial semantic analysis of expressions. LYG can recog-
nize identical patterns or subexpressions, but it stops short of anything
more sophisticated, such as interprocedural analysis or SMT-style reason-
ing (Section 3.7.2).

But what does it actuallymean for a value to match a particular part of a guard
tree, such as a right-hand side 𝑘 , mathematically? In what precise sense
does LYG, or does not, overapproximate this supposed semantics?
Since this work appeared at ICFP 2020, Dieterichs [2021] worked out both a

formal semantics as well as a mechanised correctness proof in Lean 3 for the
coverage checking pass from guard trees into uncovered set and annotated trees.8
He shows thatU, A and R preserve key semantic properties of the guard trees
under analysis, provided that function G(Θ) for generating inhabitants indeed
overapproximates Θ. I will briefly summarise the correctness results here. For
that, I need to define a plausible formal semantics for guard trees and refinement
predicates.

3.6.1 Semantics

I have described the semantics of guard trees and guards informally in Sec-
tion 3.2.1. Figure 3.14 formalises this intuition, describing the semantics of guard
trees by a function GdtJ𝑡K𝜌 that, given a guard tree 𝑡 and an environment 𝜌
describing a vector of values to match against, returns

• success(𝑘) when 𝜌 is a vector of values that will reach RHS 𝑘 when
matched against 𝑡 .

8 Types and type constraints are ignored; their interaction is largely a black box to LYG anyway.

58

3.6 Soundness

Semantics of guard trees

𝑑 ∈ D = ⊥ | 𝐾 𝑑 | ...
𝜌 ∈ Env F [𝑥 ↦→ 𝑑]
𝑟 ∈ Res[□] F success(□) | fail | diverge

ExprJ𝑒K𝜌 ∈ D, GrdJ𝑔K𝜌 ∈ Res[𝜌], GdtJ𝑡K𝜌 ∈ Res[𝑘]

ExprJ𝐾 𝑒K𝜌 = 𝐾 ExprJ𝑒K𝜌
ExprJ𝑒K𝜌 = ...

GrdJlet 𝑥 = 𝑒K𝜌 = success(𝜌 [𝑥 ↦→ ExprJ𝑒K𝜌])

GrdJ𝐾 𝑦 ← 𝑥K𝜌 =

{
success(𝜌 [𝑦 ↦→ 𝑑]) if 𝜌 (𝑥) = 𝐾 𝑑
fail otherwise

GrdJ!𝑥K𝜌 =

{
diverge if 𝜌 (𝑥) = ⊥
success(𝜌) otherwise

GdtJ 𝑘 K𝜌 = success(𝑘)

GdtJ
𝑡1
𝑡2

K𝜌 =

{
GdtJ𝑡2K𝜌 if GdtJ𝑡1K𝜌 = fail
GdtJ𝑡1K𝜌 otherwise

GdtJ 𝑔 𝑡 K𝜌 =

{
GdtJ𝑡K𝜌′ if GrdJ𝑔K𝜌 = success(𝜌′)
GrdJ𝑔K𝜌 otherwise

Semantics of refinement types

𝜌 ⊨ (𝜑, 𝜌), 𝜌 ⊨ Θ

𝜌 ⊨ (�, 𝜌)
𝜌 (𝑥) = 𝐾 𝑑

𝜌 ⊨ (𝐾 𝑦 ← 𝑥, 𝜌 [𝑦 ↦→ 𝑑])
𝜌 (𝑥) ≠ 𝐾 𝑑
𝜌 ⊨ (𝑥 0 𝐾, 𝜌)

𝜌 (𝑥) = ⊥
𝜌 ⊨ (𝑥 ≈ ⊥, 𝜌)

𝜌 (𝑥) ≠ ⊥
𝜌 ⊨ (𝑥 0 ⊥, 𝜌) 𝜌 ⊨ (let 𝑥 = 𝑒, 𝜌 [𝑥 ↦→ ExprJ𝑒K𝜌])

Γ1 ⊢ 𝜌1 Γ2 ⊢ 𝜌2 𝜌1 ⊨ (𝜑, 𝜌2) 𝜌2 ⊨ ⟨ Γ2 | Φ ⟩
𝜌1 ⊨ ⟨ Γ1 | 𝜑 ∧ Φ ⟩

𝜌 ⊨ ⟨ Γ | Φ1 ⟩
𝜌 ⊨ ⟨ Γ | Φ1 ∨ Φ2 ⟩

𝜌 ⊨ ⟨ Γ | Φ2 ⟩
𝜌 ⊨ ⟨ Γ | Φ1 ∨ Φ2 ⟩

Fig. 3.14: Semantics of guard trees
59

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

• fail when 𝜌 is a vector of values that is not covered by 𝑡 .

• diverge when 𝜌 is a vector of values that will lead to divergence when
matched against 𝑡 .

Likewise, the valuationGrdJ𝑔K𝜌 returns success(𝜌′) when the vector of values
𝜌 matches guard 𝑔, extending 𝜌 with new bindings into 𝜌′. The semantics of
expressions ExprJ𝑒K𝜌 maps into the semantic domain D, just as the environment
𝜌 . Since this work leaves open a lot of details about the expression fragment of
the source language, the semantics leaves open D and most of ExprJ𝑒K𝜌 as well,
with the exception of postulating a semantics for the data constructor application
case.

Refinement types have been introduced by informal examples in Section 3.2.2,
denoting refinement typesΘ by sets of vectors of values 𝜌 that satisfy the encoded
refinement predicate. Figure 3.14 finally defines the satisfiability relation by an
inductive predicate 𝜌 ⊨ Θ. Thus, whenever a vector of values 𝜌 is part of the set
denoted by a refinement type Θ, the inductive predicate must be provable.
The definition of 𝜌 ⊨ Θ assumes that conjunction ∧ is associated to the

right, 𝜑 ∧ Φ, highlighting the unusual scoping semantics briefly mentioned in
Section 3.2.2. Any binding constructs in the 𝜑 to the left of ∧, such as let 𝑥 = 𝑒 or
𝐾 𝑦 ← 𝑥 , introduce names that are subsequently in scope in the Φ to the right
of ∧. In hindsight, I could have picked a different operator symbol to avoid this
confusion, for example (𝜑 in Φ), such as in Dieterichs [2021]. Doing so would
however complicate the (Θ ¤∧ 𝜑) operator a bit. In the absence of types, the
postulated judgment Γ ⊢ 𝜌 merely becomes a scoping check, namely that Γ has
the same domain as 𝜌 .

3.6.2 Formal Soundness Statement

Having stated plausible semantics for the inputs and outputs ofU, I can formulate
what it means forU to be correct, following Dieterichs [2021, Section 4.1] who
mechanised the proof in Lean 3.

Theorem 3.1. LetU(⟨ Γ | � ⟩, 𝑡) = Θ. Then GdtJ𝑡K𝜌 = fail if and only if 𝜌 ⊨ Θ.

In other words: when Θ is the set of uncovered values of guard tree 𝑡 as
computed byU, then any vector of values 𝜌 that falls through all clauses of 𝑡 (i.e.
GdtJ𝑡K𝜌 = fail) is in Θ (i.e. 𝜌 ⊨ Θ). In this precise sense,U is sound. Conversely,
whenU returns a non-empty refinement type Θ, there exists a vector of values

60

3.7 Related Work

𝜌 in Θ, and by Theorem 3.1 we have that 𝜌 must also fall through all clauses of 𝑡 .
In this precise sense,U is complete.
Of course, the judgment 𝜌 ⊨ Θ frequently compares domain values 𝑑 that

ultimately come from evaluating expressions ExprJ𝑒K𝜌 , rendering the predicate
undecidable for many source languages. In the language of abstract interpretation
(cf. Section 2.3), each Θ defines a semantic program property 𝑃Θ ≜ { 𝜌 | 𝜌 ⊨ Θ }.
It is important for an implementation of G to be sound wrt. any such 𝑃Θ, which
means that it will overapproximate; roughly 𝑃Θ ⊆ G(Θ). Dieterichs captures this
in his can_prove_empty definition to parameterise over sound implementations
of G. In Section 4.2, he proves the following soundness theorem about A and R.

Theorem 3.2. Let R(A(⟨ Γ | � ⟩, 𝑡)) = (𝑎, 𝑖, 𝑟) and G sound in the above sense.

• If GdtJ𝑡K𝜌 = success(𝑘), then 𝑘 ∈ 𝑎, i.e. clause 𝑘 is accessible according to

A and R.

• If 𝑘 ∈ 𝑟 is redundant, then removing clause 𝑘 from guard tree 𝑡 does not

change the semantics of 𝑡 , i.e. ∀𝜌. GdtJ𝑡K𝜌 = GdtJremove(𝑘, 𝑡)K𝜌 (where

remove(𝑘, 𝑡) is the implied removal operation).

Perhaps unsurprisingly, proving correct the transformation in the second
part of Theorem 3.2 proved far more subtle than the proof for Theorem 3.1.
Fortunately, the mechanisation provides confidence in the proof’s correctness.

3.7 Related Work

3.7.1 Comparison with GADTs Meet Their Match

Karachalias et al. [2015] present GADTsMeet Their Match (GMTM), an algorithm
which handles many of the subtleties of GADTs, guards, and laziness mentioned
in Section 3.1. Despite this, the GMTM algorithm still gives incorrect warnings
in many cases.

GMTM Does Not Consider Laziness in its Full Glory

The formalism in Karachalias et al. [2015] incorporates strictness constraints, but
these constraints can only arise frommatching against data constructors. GMTM
does not consider strict matches that arise from strict fields of data constructors
or bang patterns. A consequence of this is that GMTM would incorrectly warn

61

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

that v (page 19) is missing a case for SJust, even though such a case is unreachable.
LYG, on the other hand, more thoroughly tracks strictness when desugaring
Haskell programs.

GMTM’s Treatment of Guards Is Shallow

GMTM can only reason about guards through an abstract term oracle. Although
the algorithm is parametric over the choice of oracle, in practice the implement-
ation of GMTM in GHC uses an extremely simple oracle that can only reason
about guards in a limited fashion. More sophisticated uses of guards, such as in
this variation of the safeLast function from Section 3.1.2, will cause GMTM to
emit erroneous warnings:

safeLast2 xs

| (x :) ← reverse xs = Just x

| [] ← reverse xs = Nothing

While GMTM’s term oracle is customisable, it is not as simple to customize as
one might hope. The formalism in Karachalias et al. [2015] represents all guards
as p← e, where p is a pattern and e is an expression. This is a straightforward,
syntactic representation, but it also makes it more difficult to analyse when e

is a complicated expression. This is one of the reasons why it is difficult for
GMTM to accurately give warnings for the safeLast function, since it would
require recognizing that both clauses scrutinise the same expression in their
view patterns.

LYG makes analysing term equalities simpler by first desugaring guards from
the surface syntax to guard trees. The ⊕𝜑 function, which is roughly a counter-
part to GMTM’s term oracle, can then reason about terms arising from patterns.
While ⊕𝜑 is already more powerful than a trivial term oracle, its real strength
lies in the fact that it can easily be extended, as LYG’s treatment of view patterns
(Section 3.3.3) demonstrates. While GMTM’s term oracle could be improved to
accomplish the same thing, it is unlikely to be as straightforward of a process as
extending ⊕𝜑 .

3.7.2 Comparison with Similar Coverage Checkers

Structural and Semantic Pattern Matching Analysis in Haskell

Kalvoda and Kerckhove [2019] implement a variation of GMTM that leverages
an SMT solver to give more accurate coverage warnings for programs that use

62

3.7 Related Work

guards. For instance, their implementation can conclude that the signum function
from Section 3.1.1 is exhaustive. This is something that LYG cannot do out of
the box, although it would be possible to extend ⊕𝜑 with SMT-like reasoning
about booleans and linear integer arithmetic.

Warnings for Pattern Matching

Maranget [2007] presents a coverage checking algorithm for OCaml that can
identify clauses that are not useful, i.e. useless. While OCaml is a strict language,
the algorithm can be adapted to handle languages with non-strict semantics such
as Haskell. In a lazy setting, uselessness corresponds to unreachable clauses.
Maranget does not distinguish inaccessible clauses from redundant ones; thus
clauses flagged as useless (such as the first two clauses of u

′ in Section 3.1.3)
generally cannot be deleted without changing (lazy) program semantics.

Case Trees in Dependently Typed Languages

Case trees [Augustsson 1985] are a standard way of compiling pattern-matches
to efficient code. Much like LYG’s guard trees, case trees present a simplified
representation of pattern matching. Several compilers for dependently typed
languages also use case trees as coverage checking algorithms, as a well-typed
case tree can guarantee that it covers all possible cases. Case trees play an
integral role in coverage checking in Agda [Cockx and Abel 2018; Norell 2007]
and the Equations plugin for Rocq9 [Sozeau 2010; Sozeau and Mangin 2019].
Oury [2007] checks for coverage in a dependently typed setting using sets of
inhabitants of data types, which have similarities to case trees.

One could take inspiration from case trees should one wish to extend LYG to
support dependent types. My implementation of LYG in GHC can already handle
quasi-dependently typed code, such as the singletons library [Eisenberg and
Stolarek 2014; Eisenberg and Weirich 2012], so I expect that it can be adapted
to full dependent types. One key change that would be required is extending
equation (9) in Figure 3.9 to reason about term constraints in addition to type
constraints. GHC’s constraint solver already has limited support for term-level
reasoning as part of its DataKinds language extension [Yorgey et al. 2012], so
the groundwork is present.

9 Formerly Coq.

63

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

Refinement Type–Based Totality Checking in Liquid Haskell

In addition to LYG, Liquid Haskell uses refinement types to perform a limited
form of exhaustivity checking [Vazou, Seidel, et al. 2014; Vazou, Tondwalkar,
et al. 2017]. While exhaustiveness checks are optional in ordinary Haskell, they
are mandatory for Liquid Haskell, as proofs written in Liquid Haskell require
user-defined functions to be total (and therefore exhaustive) in order to be sound.
For example, consider this non-exhaustive function:

fibPartial :: Integer→ Integer
fibPartial 0 = 0
fibPartial 1 = 1

When compiled, GHC fills out this definition by adding an extra fibPartial =

error "undefined" clause. Liquid Haskell leverages this by giving error the
refinement type:

error :: {v : String | false } → a

As a result, attempting to use fibPartial in a proof will fail to verify unless the
user can prove that fibPartial is only ever invoked with the arguments 0 or 1.

3.7.3 Other Representations of Constraints

Leveraging Existing Constraint Solvers

LYG represents Φ constraints using logical predicates that are tailor-made for
LYG’s purposes. One could instead imagine encoding Φ constraints in a more
standard logic and then using an “off-the-shelf” constraint solver to check them.
This would render Figures 3.8 and 3.9 and the arguably rather intricate Sec-
tions 3.2.6 and 3.2.7 unnecessary, and it allows the checker to benefit from
improvements to the solver without any further maintenance burden.
Encoding Φ constraints into another logic would have its downsides, how-

ever. The ⊕𝜑 function is able to reason about LYG-oriented predicates rather
efficiently, but other constraint solvers (e.g. STM solvers) might incur significant
constant factors. Moreover, elaborating from one logic to another could inhibit
programmers from forming a mental model of how coverage checking works.

64

3.7 Related Work

Refinement Types versus Predicates

Refinement types Θ and predicates Φ are very similar. The main difference
between the two is that refinement types carry a typing context Γ that is used for
inhabitation testing. Predicates are quite fully featured on their own, however,
as they can bind variables that scope over conjunctions. The scoping semantics
of predicates allowsU andA to be purely syntactic transformations, and in fact,
they could be modified to take Φ as an argument rather than Θ.
MakingU and A operate over Θ or Φ is ultimately a design choice. I have

opted to operate over Θ mainly because I find it more intuitive to think about
coverage checking as refining a vector of values as it falls from one match to
the next. In my opinion, that intuition is more easily expressed with refinement
types than predicates alone.

3.7.4 Positive and Negative Information

LYG’s use of positive and negative constructor constraints is inspired by Sestoft
[1996], which uses positive and negative information to implement a pattern-
match compiler for ML. Sestoft utilises positive and negative information to
generate decision trees that avoid scrutinizing the same terms repeatedly. This
insight is equally applicable to coverage checking and is one of the primary
reasons for LYG’s efficiency.

Besides efficiency, the accuracy of redundancy warnings involving COMPLETE
sets hinge on negative constraints. To see why this is not possible in other
checkers that only track positive information, such as those of Karachalias et al.
[2015] (Section 3.7.1) and Maranget [2007] (Section 3.7.2), consider the following
example:

pattern True′ = True
{−# COMPLETE True’, False #−}
f False = 1
f True′ = 2
f True = 3

GMTM would have to commit to a particular COMPLETE set when encoun-
tering the match on False, without any semantic considerations. Choosing
{True′, False} here will mark the third GRHS as redundant, while choosing
{True, False} will not. GHC’s implementation used to try each COMPLETE set in
turn and would disambiguate using a complicated metric based on the number

65

3 Lower Your Guards: A Compositional Pattern-Match Coverage Checker

and kinds of warnings the choice of each set would generate [GHC team 2020],
which was broken still [GHC issue 2017g].

Negative constraints make LYG efficient in other places too, such as in this
example:

data T = A1 | ... | A1000
h A1 = 1
h A1 = 2

In h,GMTMwould split the value vector (which is like LYG’s Δs without negative
constructor constraints) into 1000 alternatives over the first match variable, and
then each of the 999 value vectors reaching the second GRHS into another 1000
alternatives over the second match variable. Negative constraints allow LYG to
compress the 999 value vectors falling through into a single one indicating that
the match variable can no longer be A1.

3.7.5 Strict Fields in Inhabitation Testing

The Inst function in Figure 3.10 takes strict fields into account during inhabit-
ation testing, which is essential to conclude that the v function from page 19
is exhaustive. This trick was pioneered by Oury [2007], who uses it to check
for unreachable cases in the presence of dependent types. Coverage checkers
for strict and total programming languages usually implement inhabitation test-
ing, but sometimes with less-than-perfect results. As two data points, Ryan
decided to see how OCaml and Idris, two call-by-value languages that check for
pattern-match coverage10, would fare when checking functions like v:

(∗OCaml∗)
type void = |; ;
let v (None : void option) : int = 0; ;
let v

′ (o : void option) : int =

match o with

| None → 0
| Some → 1; ;

-- Idris

v : Maybe Void→ Int
v Nothing = 0
v
′ : Maybe Void→ Int

v
′ Nothing = 0

v
′ (Just) = 1

10 Idris has separate compile-time and runtime semantics, the latter of which is call-by-value.

66

3.7 Related Work

Both OCaml 4.10.0 and Idris 1.3.2 correctly mark their respective versions of v as
exhaustive. OCaml also correctly warns that the Some case in v

′ is unreachable,
while Idris emits no warnings for v

′ at all.
Section 3.2.7 also contains an example of a function f that LYG will fail to

recognize as exhaustive due to LYG’s conservative, fuel-based approach to in-
habitation testing. Porting f to OCaml and Idris reveals that both languages will
also conservatively claim that f is non-exhaustive:

(∗OCaml∗)
type t = MkT of t; ;
let f (None : t option) : int = 0; ;

-- Idris

data T : Type where
MkT : T→ T

f : Maybe T→ Int
f Nothing = 0

Indeed, the warning that OCaml produces will cite

Some (MkT (MkT (MkT (MkT (MkT)))))

as a case that is not matched, which suggests that OCaml may also be using a
fuel-based approach. I believe these examples show that inhabitation testing is
something that programming language implementors have discovered independ-
ently, but with varying degrees of success in putting into practice. I hope that
LYG can bring this knowledge into wider use.

67

4
Abstracting Denotational

Interpreters

A static program analysis infers facts about a program, such as “this program is
well-typed”, “this higher-order function is always called with argument λ̄𝑥 .𝑥 + 1”
or “this program never evaluates 𝑥”. In a functional-language setting, such
static analyses are often defined compositionally on the input term: the result of
analysing a term is obtained by analysing its subterms separately and combining
the results. For example, consider the claim “(even 42) has type Bool”. Type
analysis separately computes even : Int→ Bool and 42 : Int, and then combines
these results to produce the result type even 42 : Bool, without looking at the
definition of even again.
If the analysis is used in a compiler to inform optimisations, it is important

to prove it sound, because lacking soundness can lead to miscompilation of
safety-critical applications [Sun et al. 2016]. In order to prove the analysis sound,
it is helpful to pick a language semantics that is also compositional, such as a
denotational semantics [Scott and Strachey 1971]; then the semantics and the
analysis “line up” and the soundness proof is relatively straightforward. Indeed,
one can often break up the proof into manageable subgoals by regarding the
analysis as an abstract interpretation of the compositional semantics [Cousot
2021].

Alas, traditional denotational semantics does not model operational details –
and yet those details might be the whole point of the analysis. For example, we
might want to ask “How often does e evaluate its free variable 𝑥?”, but a standard
denotational semantics simply does not express the concept of “evaluating a
variable”. So we are typically driven to use an operational semantics [Plotkin
2004], which directly models operational details like the stack and heap, and
sees program execution as a sequence of machine states. Now we have two
unappealing alternatives:

4 Abstracting Denotational Interpreters

• Develop a difficult, ad-hoc soundness proof, one that links a non-composi-
tional operational semantics with a compositional analysis.

• Reimagine and reimplement the analysis as an abstraction of the reachable
states of an operational semantics. This is the essence of the Abstracting
Abstract Machines (AAM) [Van Horn and Might 2010] recipe. A very
fruitful framework, but one that follows the call strings approach [Sharir,
Pnueli, et al. 1978], reanalysing function bodies at call sites. Hence the
new analysis becomes non-modular, leading to scalability problems for a
compiler.

Contributions. In this chapter, I resolve the tension by exploring denota-
tional interpreters: total, mathematical objects that live at the intersection of
structurally-defined definitional interpreters [Reynolds 1972] and denotational
semantics. My denotational interpreters generate small-step traces embellished
with arbitrary operational detail and enjoy a straightforward encoding in typical
higher-order programming languages. Static analyses arise as instantiations of
the same generic interpreter, enabling succinct, shared and modular soundness
proofs just like for AAM or big-step definitional interpreters [Darais, Labich,
et al. 2017; Keidel, Poulsen, et al. 2018]. However, the shared, compositional
structure enables a wide range of summary mechanisms in static analyses that I
think are beyond the reach of non-compositional reachable-states abstractions
like AAM.

• I use a concrete example (absence analysis) to argue for the usefulness
of compositional, summary-based analysis in Section 4.1 and I demon-
strate the difficulty of conducting an ad-hoc soundness proof wrt. a non-
compositional small-step operational semantics.

• Section 4.3 walks through the definition of my generic denotational inter-
preter and its type class algebra in Haskell. I demonstrate the ease with
which different instances of my interpreter endow the object language
with call-by-name, call-by-need and call-by-value evaluation strategies,
each producing (abstractions of) small-step machine traces.

• A concrete instantiation of a denotational interpreter is total if it coinduct-
ively yields a (possibly-infinite) trace for every input program, including

70

ones that diverge. Section 4.4.2 proves that the by-name and by-need in-
stantiations are total by embedding the generic interpreter and its instances
in Guarded Cubical Agda.

• Section 4.4.1 proves that the by-need instantiation of my denotational in-
terpreter adequately generates an abstraction of a trace in the lazy Krivine
machine [Sestoft 1997], preserving its length as well as arbitrary opera-
tional information about each transition taken.

• By instantiating the generic interpreter with a finite, abstract semantic
domain in Section 4.5, I recover summary-based usage analysis, a gener-
alisation of absence analysis in Section 4.1. Further examples comprise
Milner’s Type Analysis and 0CFA control-flow analysis, demonstrating
the wide range of applicability of my framework. To put my framework to
the test in the real world, I refactored the Demand Analysis of the Glasgow
Haskell Compiler into an abstract denotational interpreter.

• In Section 4.6, I apply abstract interpretation to characterise a set of ab-
straction laws that the type class instances of an abstract domain must
satisfy in order to soundly approximate by-name and by-need interpreta-
tion. None of the proof obligations mention the generic interpreter, and,
more remarkably, none of the laws mention the concrete semantics or
the Galois connection either! This enables a soundness proof for usage
analysis wrt. the by-name and by-need semantics in half a page, building
on reusable semantics-specific theorems.

• I compare to the enormous body of related approaches in Section 4.7.

Acknowledgements. The work in this chapter is an extended version of Graf,
Jones, et al. [2024]. For years, I have been working with Simon Peyton Jones
on GHC’s optimisation passes, its Demand Analysis in particular. This chapter
establishes a framework as a first step towards describing the results of our work.
Naturally, Simon was involved in iteratively improving the narrative of this
chapter, however the technical contributions are exclusively my own. Our third
author, Sven Keidel, helpfully offered to read our work with a fresh pair of eyes,
pointing out many ways in which to improve the scientific writing and helped
prioritising interesting contributions. We had fruitful discussions about how to
modularise the soundness proofs via parametricity.

71

4 Abstracting Denotational Interpreters

4.1 Problem Statement

What is so difficult about proving a compositional analysis sound wrt. a non-
compositional small-step operational semantics? I will demonstrate the chal-
lenges in this section, by way of a simplified absence analysis [Peyton Jones and
Partain 1994], a higher-order form of neededness analysis to inform removal of
dead code in a compiler.

4.1.1 Object Language

To set the stage, I start by defining the object language of this chapter, an untyped

lambda calculus with recursive let bindings and algebraic data types:

Variables x, y ∈ Var Constructors 𝐾 ∈ Con with arity 𝛼𝐾 ∈ N
Values v ∈ Val ::= λ̄x.e | 𝐾 x𝛼𝐾

Expressions e ∈ Exp ::= x | v | e x | let x = e1 in e2 | case e of 𝐾 x𝛼𝐾 → e

This language is very similar to that of Launchbury [1993] and Sestoft [1997]. It is
factored into A-normal form, that is, the arguments of applications are restricted
to be variables, so the difference between lazy and eager semantics is manifest in
the semantics of let. Note that λ̄𝑥 .𝑥 (with an overline) denotes syntax, whereas
𝜆𝑥 . 𝑥 + 1 denotes an anonymous mathematical function. In this section, only
the highlighted parts are relevant and let is considered non-recursive, but the
interpreter definition in Section 4.3 supports data types and recursive let as
well. Throughout this chapter it is assumed that all bound program variables are
distinct.

4.1.2 Absence Analysis

In order to define and explore absence analysis in this subsection, I must clarify
what absence means, semantically. A variable x is absent in an expression ewhen
e never evaluates x, regardless of the context in which e appears. Otherwise, the
variable x is used in e.

Figure 4.1 defines an absence analysis AJeK𝜌 for lazy program semantics
that conservatively approximates semantic absence. For illustrative purposes,
my analysis definition only works for the special case of non-recursive let, but

72

4.1 Problem Statement

𝑎 ∈ Absence ::= A | U
𝜑 ∈ Uses = Var→ Absence
𝜋 ∈ Args ::= 𝑎 : 𝜋 | Rep 𝑎
𝜃 ∈ AbsTy ::= ⟨𝜑, 𝜋⟩

Rep 𝑎 ≡ 𝑎 : Rep 𝑎

AJ K : Exp→ (Var ⇀ AbsTy) → AbsTy

AJxK𝜌 = 𝜌 (x)
AJλ̄x.eK𝜌 = funx (𝜆𝜃 . AJeK𝜌 [x↦→𝜃])
AJe xK𝜌 = app(AJeK𝜌) (𝜌 (x))

AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x ↦→x&AJe1K𝜌]

funx (𝑓) = ⟨𝜑 [x ↦→ A], 𝜑 (x) : 𝜋⟩
where ⟨𝜑, 𝜋⟩ = 𝑓 (⟨[x ↦→ U],Rep U⟩)

app(⟨𝜑𝑓 , 𝑎 : 𝜋⟩)(⟨𝜑𝑎, ⟩) = ⟨𝜑𝑓 ⊔ (𝑎 ∗ 𝜑𝑎), 𝜋⟩
A ∗ 𝜑 = []
U ∗ 𝜑 = 𝜑

x & ⟨𝜑, 𝜋⟩ = ⟨𝜑 [x ↦→ U], 𝜋⟩

Fig. 4.1: Absence analysis

later sections will assume recursive let semantics.1 It takes an environment
𝜌 ∈ Var ⇀ AbsTy containing absence information about the free variables of
e and returns an absence type ⟨𝜑, 𝜋⟩ ∈ AbsTy; an abstract representation of e.
The first component 𝜑 ∈ Uses of the absence type captures how e uses its free
variables by associating an Absence flag with each variable. When 𝜑 (x) = A,
then x is absent in e; otherwise, 𝜑 (x) = U and x might be used in e. The second
component 𝜋 ∈ Args of the absence type describes how e uses actual arguments
supplied at application sites. For example, function 𝑓 ≜ λ̄𝑥 .𝑦 has absence type
⟨[𝑦 ↦→ U],A : Rep U⟩. Mapping [𝑦 ↦→ U] indicates that 𝑓 may use its free
variable 𝑦. The literal notation [𝑦 ↦→ U] maps any variable other than 𝑦 to A.
Furthermore, A : Rep U indicates that 𝑓 ’s first argument is absent and all further

1 Given an order that I will define in due course, the generalised definition for recursive as well as
non-recursive let is AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x ↦→lfp(𝜆𝜃 . x&AJe1K𝜌 [x↦→𝜃])] .

73

4 Abstracting Denotational Interpreters

arguments are potentially used. The element Rep U denotes an infinite repetition
of U, as expressed by the non-syntactic equality Rep U ≡ U : Rep U.

Let us trace the analysis on the example expression e ≜ let𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in𝑘 𝑥1 𝑥2,
where the initial environment for e, 𝜌e (x) ≜ ⟨[x ↦→ U],Rep U⟩, declares the free
variables of e with a pessimistic argument description Rep U.

AJlet 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in 𝑘 𝑥1 𝑥2K𝜌e (4.1)
H Unfold AJlet x = e1 in e2K. NB: Lazy Let! I

= AJ𝑘 𝑥1 𝑥2K𝜌e [𝑘 ↦→𝑘&AJλ̄𝑦.λ̄𝑧.𝑦K𝜌e] (4.2)

H Unfold AJ K, 𝜌1 ≜ 𝜌e [𝑘 ↦→ 𝑘&AJλ̄𝑦.λ̄𝑧.𝑦K𝜌e] I
= app(app(𝜌1 (𝑘)) (𝜌1 (𝑥1))) (𝜌1 (𝑥2)) (4.3)

H Unfold 𝜌1 (𝑘) I
= app(app(𝑘 &AJλ̄𝑦.λ̄𝑧.𝑦K𝜌1) (𝜌1 (𝑥1))) (𝜌1 (𝑥2)) (4.4)

H Unfold AJλ̄x.eK twice, AJxK I
= app(app(𝑘 & fun𝑦 (𝜆𝜃𝑦 . fun𝑧 (𝜆𝜃𝑧 . 𝜃𝑦))) (...)) (...) (4.5)

H Unfold fun twice, simplify I

= app(app(⟨[𝑘 ↦→ U], U : A : Rep U⟩)(𝜌1 (𝑥1))) (...) (4.6)
H Unfold app, 𝜌1 (𝑥1) = 𝜌e (𝑥1), simplify I

= app(⟨[𝑘 ↦→ U, 𝑥1 ↦→ U], A : Rep U⟩)(𝜌1 (𝑥2)) (4.7)
H Unfold app, simplify I

= ⟨[𝑘 ↦→ U, 𝑥1 ↦→ U],Rep U⟩ (4.8)

Let us look at the steps in a bit more detail. Step (4.1) extends the environment
with an absence type for the let right-hand side of 𝑘 . The steps up until (4.5)
successively expose applications of the app and fun helper functions applied to
environment entries for the involved variables. Step (4.5) then computes the
absence type fun𝑦 (𝜆𝜃𝑦 . fun𝑧 (𝜆𝜃𝑧 . 𝜃𝑦)) = ⟨[],U:A :Rep U⟩. TheUses component
is empty because λ̄𝑦.λ̄𝑧.𝑦 has no free variables, and 𝑘 & ... will add [𝑘 ↦→ U] as
the single use. The app steps (4.6) and (4.7) simply zip up the uses of arguments
𝜌1 (𝑥1) and 𝜌1 (𝑥2) with the Absence flags in U : A : Rep U as highlighted, adding
the Uses from 𝜌1 (𝑥1) = ⟨[𝑥1 ↦→ U],Rep U⟩ but not from 𝜌1 (𝑥2), because the
first actual argument (𝑥1) is used whereas the second (𝑥2) is absent. The join
on Uses in the definition of app is defined pointwise from the order A < U, i.e.
(𝜑1 ⊔ 𝜑2) (x) ≜ 𝜑1 (x) ⊔ 𝜑2 (x).

74

4.1 Problem Statement

The analysis result [𝑘 ↦→ U, 𝑥1 ↦→ U] infers 𝑘 and 𝑥1 as potentially used and 𝑥2
as absent, despite 𝑥2 occurring in argument position, thanks to the bookkeeping
of Args.

4.1.3 Compositionality, Summaries and Modularity

The absence type ⟨[],U :A :Rep U⟩ above is a finite summary of the lambda term
λ̄𝑦.λ̄𝑧.𝑦. Let me define what I mean by “summary” in order for us to understand
what is so appealing about a summary-based analysis such as AJ K.

Just as a denotational semantics, the interpreter AJ K denotes a term in a
semantic domain (AbsTy). This interpretation is compositional: the denotation of
a term is a recombination of the denotations of its subterms.

In order for a denotational semantics to faithfully and compositionally denote
lambda terms, its semantic domain must contain infinite elements. However,
every element of the semantic domain AbsTy of absence analysis is finitely
representable (data, even!), so the denotation of lambda terms must be approxim-
ate in some sense. We call such a finitely representable and thus approximate
denotation a summary.
The approximate nature of summaries is best appreciated when analysing

beta redexes such as AJ(λ̄x.e) yK, which invokes the summary mechanism. In
the definition of AJ K, I took care to explicate this mechanism via the adjoint
functions fun and app. For the summary mechanism to be sound, we must have
AJe[y/x]K ⊑ AJ(λ̄x.e) yK (where e[y/x] substitutes y for x in e).

To support efficient separate compilation, a compiler analysis must bemodular,
and summaries are indispensable in achieving that. Let us say that the example
function 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 is defined in module A and there is a use site (𝑘 𝑥1 𝑥2)
in module B. Then a modular analysis must not reanalyse A.𝑘 at its use site in
B. The analysis AJ K facilitates that easily, because it can serialise the AbsTy
summary for 𝑘 into module A’s signature file.
The same way summaries enable efficient inter-module compilation, they

enable efficient intra-module compilation: Compositionality implies that
AJlet 𝑓 = λ̄𝑥 .ebig in 𝑓 𝑓 𝑓 K is a function of AJλ̄𝑥 .ebigK, and finite summaries
prevent having to reanalyse ebig repeatedly for each call of 𝑓 .
This is why summary-based analyses are great: they scale.

75

4 Abstracting Denotational Interpreters

4.1.4 Summaries vs. Abstracting Abstract Machines

Now, instead of coming up with a summary mechanism, we could simply have
“inlined” 𝑘 during analysis of the example above to see that 𝑥2 is absent in a
simple first-order sense. The call strings approach to interprocedural program
analysis [Sharir, Pnueli, et al. 1978] turns this idea into a static analysis, and the
AAM recipe could be used to derive an absence analysis based on call strings
that is sound by construction. Alas, following this path gives up on modular-
ity, because a call-strings-based analysis would need to invoke the function
(𝜆𝜃𝑦 . 𝜆𝜃𝑧 . 𝜃𝑦) : AbsTy → AbsTy → AbsTy that describes 𝑘’s inline expansion
at every use site, leading to scalability problems in a compiler.

4.1.5 Problem: Proving Soundness of Summary-Based

Analyses

In this subsection, I demonstrate the difficulty of proving soundness for summary-
based analyses. For absence analysis, I have proved (in the Appendix) the fol-
lowing correctness statement:

Theorem 4.1 (AJ K infers absence). If AJeK𝜌e = ⟨𝜑, 𝜋⟩ and 𝜑 (x) = A, then x is□ 195
absent in e.

As the first step, we must define precisely what absence (used in the theorem
statement)means. One plausible definition is in terms of the standard operational
semantics in Section 4.2:

Definition 4.2 (Absence). A variable x is used in an expression e if and only if

there exists a trace (let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... that looks up the

heap entry of x, i.e. it evaluates x. Otherwise, x is absent in e.

Absence of x means that x is not looked up regardless of the context in which e
is used, to justify rewrites via contextual improvement [Moran and Sands 1999].
Furthermore, we must prove that the summary mechanism approximates beta
reduction, captured syntactically in the following substitution lemma [Pierce
2002]:

Lemma 4.3 (Substitution). AJeK𝜌 [x↦→𝜌 (y)] ⊑ AJ(λ̄x.e) yK𝜌 .□ 187

Definition 4.2 and the substitution Lemma 4.3 will make a reappearance in
Section 4.6. They are necessary components of a soundness proof. Building on

76

4.1 Problem Statement

these definitions, we may finally attempt the proof for Theorem 4.1. I suggest
for the reader to have a cursory look at the Appendix, either by clicking on the
link next to the Theorem statement or going to page 195. The proof is exemplary
of far more ambitious proofs such as in Sergey, Vytiniotis, et al. [2017] and
Breitner [2016, Section 4]. Though seemingly disparate, these proofs all follow
an established preservation-style proof technique at heart. The proof of Sergey,
Vytiniotis, et al. [2017] for a generalisation of AJ K is roughly structured as
follows:

1. Instrument a standard call-by-need semantics (a variant of our reference
semantics in Section 4.2) such that heap lookups decrement a per-address
counter; when heap lookup is attempted and the counter is 0, the machine
is stuck. For absence, the instrumentation is simpler: the Look transition
in Figure 4.2 carries the let-bound variable that is looked up.

2. Give a declarative type system that characterises the results of the analysis
(i.e. AJ K) in a lenient (upwards closed) way. In case of Theorem 4.1,
I define an analysis function on machine configurations for the proof
(Figure A.1).

3. Prove that evaluation of well-typed terms in the instrumented semantics
is bisimilar to evaluation of the term in the standard semantics, i.e. does
not get stuck when the standard semantics would not. A classic logical
relation [Nielson et al. 1999]. In my case, I prove that evaluation preserves
the analysis result.

Alas, the effort in comprehending such a proof in detail, let alone formulating it,
is enormous.

• The instrumentation (1) can be semantically non-trivial; for example the
semantics in Sergey, Vytiniotis, et al. [2017] becomes non-deterministic.
Does this instrumentation still express the desired semantic property?

• Step (2) all but duplicates a complicated analysis definition (i.e. AJ K) into
a type system (in Figure 7 of Sergey, Vytiniotis, et al. [2017]) with subtle
adjustments expressing invariants for the preservation proof.

• Furthermore, step (2) extends this type system to small-step machine
configurations (in Figure 13), i.e. stacks and heaps, the scoping of which

77

4 Abstracting Denotational Interpreters

is mutually recursive.2 Another page worth of Figures; the amount of
duplicated proof artifacts is staggering. In my case, the analysis function
on machine configurations is about as long as on expressions.

• This is all setup before step (3) proves interesting properties about the
semantic domain of the analysis. Among the more interesting properties
in the proof of Sergey, Vytiniotis, et al. [2017] is the substitution lemma

A.8 to be applied during beta reduction; exactly as in my proof.

• While proving that a single step 𝜎1 ↩−→ 𝜎2 preserves analysis information
in step (3), I actually got stuck in the Upd case, and would need to redo
the proof using step-indexing [Appel and McAllester 2001]. This case
mutates the heap and thus is notoriously difficult; I give a proper account
in Theorem 4.18.
Although the proof in Sergey, Vytiniotis, et al. [2017] is perceived as
detailed and rigorous, it is quite terse in the corresponding EUpd case of
the single-step safety proof in lemma A.6.

There are two main problems to address, and I believe the first causes the second.

1. Although analysis and semantics are individually simple, it is conceptually
difficult to connect them, causing an explosion of formal artefacts. This is
because one is compositional while the other is not.

2. Compared to analysis and semantics, the soundness proof is rather com-
plicated because it is entangled: The parts of the proof that concern the
domain of the analysis are drowned in coping with semantic subtleties
that ultimately could be shared with similar analyses.

Abstract interpretation [Cousot and Cousot 1977] provides a framework to
tackle problem (2), but its systematic applications seem to require a structurally
matching semantics. For example, the book of Cousot [2021] starts from a
compositional, trace-generating semantics for an imperative first-order language
to derive compositional analyses.

In this chapter, I present the denotational interpreter design pattern to solve
both problems above. Inspired by Cousot, I define a compositional semantics

2 I believe that this extension can always be derived systematically from a context lemma [Moran
and Sands 1999, Lemma 3.2] and imitating what the type system does on the closed expression
derivable from a configuration via the context lemma.

78

4.2 Reference Semantics: Lazy Krivine Machine

that exhibits operational detail for higher-order languages; one with which
it is possible to express operational properties such as usage cardinality, i.e. “e
evaluates x at most 𝑢 times”, as required in Sergey, Vytiniotis, et al. [2017].3

The example of usage analysis in Section 4.5 (generalisingAJ K) demonstrates
that we can define summary-based analyses as denotational interpreters.
Since both semantics and analysis are derived from the same generic in-

terpreter , solving problem (1), I can prove usage analysis to be an abstract

interpretation of call-by-need semantics. Doing so disentangles the preservation
proof such that the proof for usage analysis in Corollary 4.21 takes no more
than a semantic substitution lemma and a bit of plumbing, solving problem
(2). Intriguingly, Corollary 4.21 can be proved without referring to the shared
interpreter definition or the Galois connection at all, by appealing to paramet-
ricity [Reynolds 1983] to prove Lemma 4.19. This suggests that my approach
scales to large interpreters such as for WebAssembly [Brandl et al. 2023].

4.2 Reference Semantics: Lazy Krivine Machine

Before I introduce my novel denotational interpreters, let us recall the semantic
ground truth of this work and others [Breitner 2016; Sergey, Vytiniotis, et al.
2017]: The Mark II machine of Sestoft [1997] given in Figure 4.2, a small-step
operational semantics. It is a Lazy Krivine (LK) machine implementing call-by-
need. (A close sibling for call-by-value would be a CESK machine [Felleisen
and Friedman 1987].) A reasonable call-by-name semantics can be recovered by
removing the Upd rule and the pushing of update frames in Look.
The configurations 𝜎 in this transition system resemble abstract machine

states, consisting of a control expression e, an environment 𝜌 mapping lexically-
scoped variables to their current heap address, a heap 𝜇 listing a closure for each
address, and a stack of continuation frames𝜅 . There is one harmless non-standard
extension: For Look transitions, I take note of the let-bound variable y which
allocated the heap binding that the machine is about to look up. The association
from address to let-bound variable is maintained in the first component of a heap
entry triple and requires slight adjustments of the Let1, Look and Upd rules.

3 Useful applications of the “at most once” cardinality are given in Sergey, Vytiniotis, et al. [2017]
and Turner et al. [1995], motivating inlining into function bodies that are called at most once, for
example.

79

4 Abstracting Denotational Interpreters

Addresses a ∈ Addr ≃ N
States 𝜎 ∈ S = Exp × E × H × K

Environments 𝜌 ∈ E = Var ⇀ Addr
Heaps 𝜇 ∈ H = Addr ⇀ Var × E × Exp

Continuations 𝜅 ∈ K ::= stop | ap(a) · 𝜅 | upd(a) · 𝜅
| sel(𝜌, 𝐾 x𝛼𝐾 → e) · 𝜅

𝜎1 ↩−→ 𝜎2

Let1
a ̸∈ dom(𝜇) 𝜌′ = 𝜌 [x ↦→ a]

(let x = e1 in e2, 𝜌, 𝜇, 𝜅) ↩−→ (e2, 𝜌
′, 𝜇 [a ↦→ (x, 𝜌′, e1)], 𝜅)

App1
a = 𝜌 (x)

(e x, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌, 𝜇, ap(a) · 𝜅)

App2 (λ̄x.e, 𝜌, 𝜇, ap(a) · 𝜅) ↩−→ (e, 𝜌 [x ↦→ a], 𝜇, 𝜅)

Look(y)
a = 𝜌 (x) (y, 𝜌′, e) = 𝜇 (a)
(x, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌′, 𝜇,upd(a) · 𝜅)

Upd
𝜇 (a) = (x, ,)

(v, 𝜌, 𝜇,upd(a) · 𝜅) ↩−→ (v, 𝜌, 𝜇 [a ↦→ (x, 𝜌, v)], 𝜅)

Case1
(case e𝑠 of 𝐾 x→ e𝑟 , 𝜌, 𝜇, 𝜅) ↩−→ (e𝑠 , 𝜌, 𝜇, sel(𝜌, 𝐾 x→ e𝑟) · 𝜅)

Case2
𝐾𝑖 = 𝐾

′, a = 𝜌 (y)
(𝐾 ′ 𝑦, 𝜌, 𝜇, sel(𝜌′, 𝐾 x→ e) · 𝜅) ↩−→ (e𝑖 , 𝜌′ [x𝑖 ↦→ a], 𝜇, 𝜅)

Fig. 4.2: Lazy Krivine transition semantics ↩−→

80

4.2 Reference Semantics: Lazy Krivine Machine

The notation 𝑓 ∈ 𝐴 ⇀ 𝐵 used in the definition of 𝜌 and 𝜇 denotes a finite map
from 𝐴 to 𝐵, a partial function where the domain dom(𝑓) is finite. The literal
notation [𝑎1 ↦→ 𝑏1, ..., 𝑎𝑛 ↦→ 𝑏𝑛] denotes a finite map with domain {𝑎1, ..., 𝑎𝑛}
that maps 𝑎𝑖 to 𝑏𝑖 . Function update 𝑓 [𝑎 ↦→ 𝑏] maps 𝑎 to 𝑏 and is otherwise equal
to 𝑓 .
The initial machine state for a closed expression e is given by the injection

function init (e) = (e, [], [], stop) and the final machine states are of the form
(v, , , stop). I bake into 𝜎 ∈ S the simplifying invariant of well-addressedness:
Any address a occurring in 𝜌 , 𝜅 or the range of 𝜇 must be an element of dom(𝜇).
It is easy to see that the transition system maintains this invariant and that it is
still possible to observe scoping errors which are thus confined to lookup in 𝜌 .

We conclude with two example traces. The first one evaluates let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖:

(let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖, [], [], stop) where
Let1
↩−−−→ (𝑖 𝑖, 𝜌1, 𝜇, stop) 𝜌1 = [𝑖 ↦→ a1]
App1
↩−−−→ (𝑖, 𝜌1, 𝜇, 𝜅) 𝜇 = [a1 ↦→ (𝑖, 𝜌1, λ̄𝑥 .𝑥)]
Look(𝑖)
↩−−−−−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇,upd(a1) · 𝜅) 𝜅 = ap(a1) · stop

Upd
↩−−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇, 𝜅)
App2
↩−−−→ (𝑥, 𝜌2, 𝜇, stop) 𝜌2 = [𝑖 ↦→ a1, 𝑥 ↦→ a1]
Look(𝑖)
↩−−−−−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇,upd(a1) · stop)

Upd
↩−−−→ (λ̄𝑥 .𝑥, 𝜌1, 𝜇, stop)

(4.1)

The corresponding by-name trace simply omits the highlighted update steps.
The last Look(𝑖) transition exemplifies that the lambda-bound variable in control
differs from the let-bound variable used to identify the heap entry.

81

4 Abstracting Denotational Interpreters

The second example evaluates e ≜ let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 , demonstrating
recursive let semantics and memoisation of 𝑖:

(e, [], [], stop) where
Let1
↩−−−→ (𝑖 𝑖, 𝜌1, 𝜇1, stop) 𝜌1 = [𝑖 ↦→ a1]
App1
↩−−−→ (𝑖, 𝜌1, 𝜇1, ap(a1) · stop) 𝜇1 = [a1 ↦→ (𝑖, 𝜌1, (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖)]
Look(𝑖)
↩−−−−−−→ ((λ̄𝑦.λ̄𝑥 .𝑥) 𝑖, 𝜌1, 𝜇1, 𝜅) 𝜅 = upd(a1) · ap(a1) · stop

App1
↩−−−→ (λ̄𝑦.λ̄𝑥 .𝑥, 𝜌1, 𝜇1, ap(a1) · 𝜅)
App2
↩−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇1, 𝜅) 𝜌2 = [𝑖 ↦→ a1, 𝑦 ↦→ a1]
Upd
↩−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2, ap(a1) · stop) 𝜇2 = [a1 ↦→ (𝑖, 𝜌2, λ̄𝑥 .𝑥)]
App2
↩−−−→ (𝑥, 𝜌3, 𝜇2, stop) 𝜌3 = [𝑖 ↦→ a1, 𝑦 ↦→ a1, 𝑥 ↦→ a1]
Look(𝑖)
↩−−−−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2,upd(a1) · stop)

Upd
↩−−−→ (λ̄𝑥 .𝑥, 𝜌2, 𝜇2, stop)

(4.2)

4.3 A Denotational Interpreter

In this section, I present the main contribution of this chapter, namely a gen-
eric denotational interpreter4 for a functional language which I instantiate with
different semantic domains. The choice of semantic domain determines the
evaluation strategy (call-by-name, call-by-value, call-by-need) and the degree to
which operational detail can be observed. Other semantic domains give rise to
useful summary-based static analyses such as usage analysis in Section 4.5. The
major contribution of my framework is that the derived summary-based analyses
may observe operational detail in an intuitive and semantically meaningful way.
Adhering to my design pattern pays off in that it enables sharing of soundness
proofs, thus drastically simplifying the soundness proof obligation per derived
analysis (Section 4.6).

4 This term was coined by Might [2010]. I find the term fitting, because a denotational inter-
preter is both a denotational semantics [Scott and Strachey 1971] as well as a total definitional
interpreter [Reynolds 1972].

82

4.3 A Denotational Interpreter

data Exp = Var Name | Lam Name Exp | App Exp Name
| Let Name Exp Exp | ConApp Tag [Name] | Case Exp Alts

type Name = String
type Alts = Tag :⇀ ([Name], Exp)
data Tag = ...; conArity :: Tag→ Int

Fig. 4.3: Syntax

type (:⇀) = Map
𝜀 :: Ord k ⇒ k :⇀ v

[↦→] :: Ord k ⇒ (k :⇀ v) → k → v → (k :⇀ v)
[↦→] :: Ord k ⇒ (k :⇀ v) → [k] → [v] → (k :⇀ v)
(!) :: Ord k ⇒ (k :⇀ v) → k → v

dom :: Ord k ⇒ (k :⇀ v) → Set k

(∈) :: Ord k ⇒ k → Set k → Bool
(�) :: (b→ c) → (a :⇀ b) → (a :⇀ c)
assocs :: (k :⇀ v) → [(k, v)]

Fig. 4.4: Environments

Denotational interpreters can be implemented in any higher-order language
such as OCaml, Scheme or Java with explicit thunks, but I picked Haskell as
implementation language for convenience.

I extract from this document runnable Haskell files. Furthermore, the (terminat-
ing) interpreter outputs are directly generated from this extract. For completenes,
I repeat the full definitions in Appendix D.

4.3.1 Semantic Domain

Just as traditional denotational semantics, denotational interpreters assign mean-
ing to programs in some semantic domain. Traditionally, the semantic domain
D comprises semantic values such as base values (integers, strings, etc.) and
functions D→ D. One of the main features of these semantic domains is that
they lack operational, or, intensional detail that is unnecessary to assigning each
observationally distinct expression a distinct meaning. For example, it is not
possible to observe evaluation cardinality, which is the whole point of analyses
such as usage analysis (Section 4.5).

83

4 Abstracting Denotational Interpreters

A distinctive feature of my work is that the semantic domains are instead
traces that describe the steps taken by an abstract machine, and that end in
semantic values. It is possible to describe usage cardinality as a property of
the traces thus generated, as required for a soundness proof of usage analysis.
I choose Dna, defined below, as the first example of such a semantic domain,
because it is simple and illustrative of the approach. Instantiated at Dna, the
generic interpreter will produce precisely the traces of the by-name variant of
the Krivine machine in Figure 4.2.

type Dna = D T
type D 𝜏 = 𝜏 (Value 𝜏);
data T v = Step Event (T v) | Ret v

data Event = Look Name | Upd | App1 | App2 | Let1 | Case1 | Case2
data Value 𝜏 = Stuck | Fun (D 𝜏 → D 𝜏) | Con Tag [D 𝜏]

instance Monad T where
return v = Ret v

Ret v >>= k = k v

Step e 𝜏 >>= k = Step e (𝜏 >>= k)

A trace T either returns a value (Ret) or makes a small-step transition (Step). Each
step Step ev rest is decorated with an event ev, which describes what happens in
that step. For example, event Look x describes the lookup of variable x ::Name in
the environment. Note that the choice of Event is use-case (i.e. analysis) specific
and suggests a spectrum of intensionality, with data Event = Unit on the more
abstract end of the spectrum and arbitrary syntactic detail attached to each of
Event’s constructors at the intensional end of the spectrum.5

A trace in Dna = T (Value T) eventually terminates with a Value that is either
stuck (Stuck), a function waiting to be applied to a domain value (Fun), or a
constructor application giving the denotations of its fields (Con). Let me postpone
worries about well-definedness and totality of this encoding to Section 4.4.2.

5 If my language had facilities for input/output and more general side-effects, I could have started
from a more elaborate trace construction such as (guarded) interaction trees [Frumin et al. 2023;
Xia et al. 2019].

84

4.3 A Denotational Interpreter

4.3.2 The Interpreter

Traditionally, a denotational semantics is expressed as a mathematical function,
often written JeK𝜌 , to give an expression e ::Exp a meaning, or denotation, in terms
of some semantic domain D. The environment 𝜌 :: Name :⇀D gives meaning to
the free variables of e, by mapping each free variable to its denotation in D. I
sketch the Haskell encoding of Exp in Figure 4.3 and the API of environments
and sets in Figure 4.4. For concise notation, I will use a small number of infix
operators: (:⇀) as a synonym for finite Maps, with m ! x for looking up x in
m, 𝜀 for the empty map, m[x ↦→ d] for updates, assocs m for a list of key-value
pairs in m, f �m for mapping f over every value in m, dom m for the set of keys
present in the map, and (∈) for membership tests in that set.
The denotational interpreter SJ K :: Exp → (Name :⇀ Dna) → Dna can

have a similar type as J K . However, to derive both dynamic semantics and
static analyses as instances of the same generic interpreter SJ K , I need to vary
the type of its semantic domain, which is naturally expressed using type class
overloading, thus:

SJ K :: (Trace d,Domain d,HasBind d) ⇒ Exp→ (Name :⇀ d) → d .

I have parameterised the semantic domain d over three type classes — Trace,
Domain and HasBind — whose signatures are given in Figure 4.6.6 Each of the
three type classes offer knobs that I will tweak to derive different evaluation
strategies as well as static analyses.

Figure 4.5 gives the complete definition of SJ K , with type class instances for
the domain Dna of Section 4.3.1 in Figure 4.7. Together this is enough to actually
run the denotational interpreter to produce traces. I use read ::String→ Exp as a
parsing function, and a Show instance for D 𝜏 that displays traces. For example,
we can evaluate the expression let 𝑖 = λ̄𝑥 .𝑥 in 𝑖 𝑖 like this:

𝜆> SJread "let i = λx.x in i i"K𝜀 :: Dna

Let1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App2 ↩−→ Look(𝑖) ↩−→ ⟨𝜆⟩,

where ⟨𝜆⟩ means that the trace ends in a Fun value. We cannot generally print
Dna or Functions thereof, but in this case the result would be the value λ̄𝑥 .𝑥 .

6 One can think of these type classes as a fold-like final encoding [Carette et al. 2007] of a domain.
However, the significance is in the decomposition of the domain, not the choice of encoding.

85

4 Abstracting Denotational Interpreters

SJ K :: (Trace d,Domain d,HasBind d) ⇒ Exp→ (Name :⇀ d) → d

SJeK𝜌 = case e of
Var x | x ∈ dom 𝜌→ 𝜌 ! x

| otherwise → stuck

Lam x body→ fun x $ 𝜆d→ step App2 (SJbodyK(𝜌 [x ↦→d]))
App e x | x ∈ dom 𝜌→ step App1 $ apply (SJeK𝜌) (𝜌 ! x)

| otherwise → stuck

Let x e1 e2→ bind (𝜆d1→SJe1K𝜌 [x ↦→step (Look x) d1])
(𝜆d1→ step Let1 (SJe2K𝜌 [x ↦→step (Look x) d1]))

ConApp k xs | all (∈ dom 𝜌) xs, length xs==conArity k→ con k (map (𝜌 !) xs)
| otherwise → stuck

Case e alts→ step Case1 $ select (SJeK𝜌) (cont � alts)
where

cont (xs, 𝑒𝑟) ds | length xs==length ds = step Case2 (SJ𝑒𝑟 K𝜌 [xs ↦→ds])
| otherwise = stuck

Fig. 4.5: Denotational Interpreter

This is in direct correspondence to the earlier call-by-name small-step trace (4.1)
on page 81.
The definition of SJ K , given in Figure 4.5, is by structural recursion over

the input expression. For example, to get the denotation of Lam x body, we
must recursively invoke SJ K on body, extending the environment to bind x to
its denotation. We wrap that body denotation in step App2, to prefix the trace
of body with an App2 event whenever the function is invoked, where step is a
method of class Trace. Finally, we use fun to build the returned denotation; the
details necessarily depend on the Domain, so fun is a method of class Domain.
While the lambda-bound x :: Name passed to fun is ignored in the Domain Dna
instance of the concrete by-name semantics, it is useful for abstract domains
such as that of usage analysis (Section 4.5). (I refrain from passing field binders
or other syntactic tokens in select and let binders in bind as well, because the
analyses considered do not need them.) The other cases follow a similar pattern;
they each do some work, before handing off to type class methods to do the
domain-specific work.
The HasBind type class defines a particular evaluation strategy, as we shall

see in Section 4.3.3. The bind method of HasBind is used to give meaning to
recursive let bindings: it takes two functionals for building the denotation of the

86

4.3 A Denotational Interpreter

classTracedwhere
step :: Event→d→d

classDomaindwhere
stuck :: d

fun :: Name→(d→d)→d

apply :: d→d→d

con :: Tag→[d]→d

select :: d→(Tag :⇀ ([d]→d))→d

classHasBinddwhere
bind :: (d→d)→(d→d)→d

Fig. 4.6: Interface of the semantic domain

instance Trace (T v) where
step = Step

instance Monad 𝜏 ⇒ Domain (D 𝜏) where
stuck = return Stuck
fun f = return (Fun f)
apply d a = d >>= 𝜆v→ case v of

Fun f → f a

→ stuck

con k ds = return (Con k ds)
select dv alts = dv >>= 𝜆v→ case v of

Con k ds | k ∈ dom alts→ (alts ! k) ds

→ stuck

instance HasBind Dna where
bind rhs body = let d = rhs d in body d

Fig. 4.7: By-name instance for Dna

right-hand side and that of the let body, given a denotation for the right-hand
side. The concrete implementation for bind given in Figure 4.7 computes a d

such that d = rhs d and passes the recursively-defined d to body.7 Doing so
yields a call-by-name evaluation strategy, because the trace d will be unfolded at
every occurrence of x in the right-hand side e1. The Appendix contains examples
of eager evaluation strategies that will yield from d inside bind instead of calling
body immediately.
I conclude this subsection with a few examples. First I demonstrate that the

interpreter is productive: we can observe prefixes of diverging traces without
risking a looping interpreter. To observe prefixes, we use a function takeT ::
Int→ T v → T (Maybe v): takeT n 𝜏 returns the first n steps of 𝜏 and replaces
the final value with Nothing (printed as ...) if it goes on for longer.

𝜆> takeT 5 $ SJread "let x = x in x"K𝜀 :: T (Maybe (Value T))

Let1 ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ Look(𝑥) ↩−→ ...

𝜆> takeT 7 $ SJread "let w = λy. y y in w w"K𝜀 :: T (Maybe (Value T))

7 Such a d corresponds to the guarded fixpoint of rhs. Strict languages can define this fixpoint as
d () = rhs (d ()) .

87

4 Abstracting Denotational Interpreters

Let1 ↩−→ App1 ↩−→ Look(𝑤) ↩−→ App2 ↩−→ App1 ↩−→ Look(𝑤) ↩−→ App2 ↩−→ ...

The reason SJ K is productive is due to the coinductive nature of T’s definition
in Haskell.8 Productivity requires that the monadic bind operator (>>=) for T
guards the recursion, as in the delay monad of Capretta [2005].
Data constructor values are printed as 𝐶𝑜𝑛(𝐾), where 𝐾 indicates the Tag.

Data types allow for interesting ways (type errors) to get Stuck (i.e. the wrong
value of Milner [1978]), printed as �:

𝜆> SJread "let z = Z() in let o = S(z) in case o of{S(n) -> n}"K𝜀 :: Dna

Let1 ↩−→ Let1 ↩−→ Case1 ↩−→ Look(𝑜) ↩−→ Case2 ↩−→ Look(𝑧) ↩−→ ⟨Con(𝑍)⟩
𝜆> SJread "let z = Z() in z z"K𝜀 :: Dna

Let1 ↩−→ App1 ↩−→ Look(𝑧) ↩−→ ⟨�⟩

4.3.3 More Evaluation Strategies

By varying the HasBind instance of the type D, we can endow our language Exp
with different evaluation strategies. The appeal of that is, firstly, that it is possible
to do so without changing the interpreter definition, supporting the claim that
the denotational interpreter design pattern is equally suited to model lazy as well
as strict semantics. More importantly, in order to prove usage analysis sound
wrt. by-need evaluation in Section 4.6, we need to define a semantic domain
for call-by-need! It turns out that the interpreter thus derived is the — to my
knowledge — first provably adequate denotational semantics for call-by-need
(Section 4.4.1).

Following a similar approach as Darais, Labich, et al. [2017], I maximise reuse
by instantiating the same D at different wrappers of T, rather than reinventing
Value and T.

Call-by-name

Let us redefine by-name semantics via theByName trace transformer in Figure 4.8,
so called because ByName 𝜏 inherits itsMonad and Trace instance from 𝜏 and
in reminiscence of Darais, Might, et al. [2015]. The old Dna can be recovered as
D (ByName T) and I refer to its interpreter instance as SnameJeK𝜌 .

8 In a strict language, we need to introduce a thunk in the definition of Step, e.g.
Step of event * (unit -> ’a t).

88

4.3 A Denotational Interpreter

SnameJeK𝜌 = SJeK𝜌 :: D (ByName T)
newtype ByName 𝜏 v = ByName {unByName :: 𝜏 v }
instance Monad 𝜏 ⇒ Monad (ByName 𝜏) where

return = ByName ◦ return

ByName m >>= f = ByName (m >>= unByName ◦ f)
instance Trace (𝜏 v) ⇒ Trace (ByName 𝜏 v) where

step e = ByName ◦ step e ◦ unByName

instance HasBind (D (ByName 𝜏)) where
bind rhs body = let d = rhs d in body d

Fig. 4.8: Redefinition of call-by-name semantics from Figure 4.7

Call-by-need

The use of a stateful heap is essential to the call-by-need evaluation strategy in
order to enable memoisation. So how do we vary 𝜃 such that D 𝜃 accommodates
state? We certainly cannot perform the heap update by updating entries in 𝜌 ,
because those entries are immutable once inserted, and we do not want to change
the generic interpreter. That rules out 𝜃 � T (as for ByName T), because then
repeated occurrences of the variable x must yield the same trace 𝜌 ! x. However,
the whole point of memoisation is that every evaluation of x after the first one
leads to a potentially different, shorter trace. This implies we have to paramaterise

every occurrence of x over the current heap 𝜇 at the time of evaluation, and
every evaluation of x must subsequently update this heap with its value, so that
the next evaluation of x returns the value directly. In other words, we need a
representation D 𝜃 � Heap→ T (Value 𝜃,Heap).
My trace transformer ByNeed in Figure 4.9 solves this type equation via

𝜃 ≜ ByNeed T. It embeds a standard state transformer monad, whose key
operations get and put are given in Figure 4.9.
So the denotation of an expression is no longer a trace, but rather a stateful

function returning a trace with state Heap (ByNeed 𝜏) in which to allocate
call-by-need thunks. The Trace instance of ByNeed 𝜏 simply forwards to that
of 𝜏 (i.e. often T), pointwise over heaps. Doing so needs a Trace instance for
𝜏 (Value (ByNeed 𝜏),Heap (ByNeed 𝜏)), but I found it more succinct to use a
quantified constraint (∀v. Trace (𝜏 v)), that is, I require a Trace (𝜏 v) instance
for every choice of v. Given that 𝜏 must also be a Monad, that is not an onerous
requirement.

89

4 Abstracting Denotational Interpreters

type Addr = Int
type Heap 𝜏 = Addr :⇀ D 𝜏 ; nextFree :: Heap 𝜏 → Addr
newtype ByNeed 𝜏 v

= ByNeed {unByNeed :: Heap (ByNeed 𝜏) → 𝜏 (v,Heap (ByNeed 𝜏)) }
type Dne = D (ByNeed T)
type Valuene = Value (ByNeed T)
type Heapne = Heap (ByNeed T)
SneedJeK𝜌 (𝜇) = unByNeed (SJeK𝜌 :: Dne) 𝜇 :: T (Valuene,Heapne)
get :: Monad 𝜏 ⇒ ByNeed 𝜏 (Heap (ByNeed 𝜏))
get = ByNeed (𝜆𝜇 → return (𝜇, 𝜇))
put :: Monad 𝜏 ⇒ Heap (ByNeed 𝜏) → ByNeed 𝜏 ()
put 𝜇 = ByNeed (𝜆 → return ((), 𝜇))
instance Monad 𝜏 ⇒ Monad (ByNeed 𝜏) where ...
instance (∀v. Trace (𝜏 v)) ⇒ Trace (ByNeed 𝜏 v) where

step e m = ByNeed (step e ◦ unByNeed m)
fetch :: Monad 𝜏 ⇒ Addr→ D (ByNeed 𝜏)
fetch a = get >>= 𝜆𝜇 → 𝜇 ! a

memo :: ∀𝜏 . (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ Addr→ D (ByNeed 𝜏) → D (ByNeed 𝜏)
memo a d = d >>= 𝜆v → ByNeed (upd v)

where upd Stuck 𝜇 = return (Stuck :: Value (ByNeed 𝜏), 𝜇)
upd v 𝜇 = step Upd (return (v, 𝜇 [a ↦→ memo a (return v)]))

instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByNeed 𝜏)) where
bind rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ memo a (rhs (fetch a))]
body (fetch a)

Fig. 4.9: Call-by-need

90

4.3 A Denotational Interpreter

The key part is again the implementation of HasBind for D (ByNeed 𝜏),
because that is the only place where thunks are allocated. The implementation of
bind designates a fresh heap address a to hold the denotation of the right-hand
side. Both rhs and body are called with fetch a, a denotation that looks up a in
the heap and runs it. If I were to omit the memo a action explained next, I would
thus have recovered another form of call-by-name semantics based on mutable
state instead of guarded fixpoints such as in ByName and ByValue. The whole
purpose of the memo a d combinator then is to memoise the computation of d

the first time we run the computation, via fetch a in the Var case of SneedJ K . So
memo a d yields from d until it has reached a value, and then updates the heap
after an additional Upd step. Repeated access to the same variable will run the
replacement memo a (return v), which immediately yields v after performing a
step Upd that does nothing.9

Although the code is carefully written, it is worth stressing how compact and
expressive it is. I was able to move from traces to stateful traces just by wrapping
traces T in a state transformer ByNeed, without modifying the main SJ K
function at all. In doing so, I provide the simplest encoding of a denotational
by-need semantics that I know of.
Here is an example evaluating let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 , starting in an empty

heap:

𝜆> SneedJread "let i = (λy.λx.x) i in i i"K𝜀 (𝜀) :: T (Valuene,Heapne)

Let1↩−→App1↩−→Look(𝑖)↩−→App1↩−→App2↩−→Upd↩−→App2↩−→Look(𝑖)↩−→Upd↩−→⟨(𝜆, [0↦→])⟩

This trace is in clear correspondence to the earlier by-need LK trace (4.2). We
can observe memoisation at play: Between the first bracket of Look and Upd
events, the heap entry for 𝑖 goes through a beta reduction App1 ↩−→ App2 before
producing a value. This work is cached, so that the second Look bracket does
not do any beta reduction.
The examples so far suggest that SneedJ K agrees with the LK machine on

many programs. The next section proves that SneedJ K agrees with the LK
machine on all programs, including ones that diverge. However, I will first

9 More serious semantics would omit updates after the first evaluation as an optimisation, i.e.
update with 𝜇 [a ↦→ return v], but doing so complicates relating the semantics to Figure 4.2,
where omission of update frames for values behaves differently. For now, my goal is not to
formalise this optimisation, but rather to show adequacy wrt. an established semantics.

91

4 Abstracting Denotational Interpreters

SvalueJeK𝜌 = SJeK𝜌 :: D (ByValue T)
newtype ByValue 𝜏 v = ByValue {unByValue :: 𝜏 v }
instance Monad 𝜏 ⇒ Monad (ByValue 𝜏) where ...
instance Trace (𝜏 v) ⇒ Trace (ByValue 𝜏 v) where ...
class Extract 𝜏 where getValue :: 𝜏 v → v

instance Extract T where
getValue (Ret v) = v

getValue (Step 𝜏) = getValue 𝜏

instance (Trace (D (ByValue 𝜏)),Monad 𝜏, Extract 𝜏)
⇒ HasBind (D (ByValue 𝜏)) where

bind rhs body = step Let0 $ do
let d = rhs (return v) :: D (ByValue 𝜏)

v = getValue (unByValue d) :: Value (ByValue 𝜏)
v1 ← d

body (return v1)
Fig. 4.10: Call-by-value

demonstrate that my interpreter can be instantiated to different call-by-value
semantics as well.

Call-by-value

Call-by-value eagerly evaluates a let-bound RHS and then substitutes its value,
rather than the reduction trace that led to the value, into every use site.

To show that my denotational interpreter pattern equally well applies to such
by-value evaluation strategies, I will introduce three more concrete semantic
domain instances for call-by-value in the following subsections. The first of these
semantics corresponds to the straightforward intuition for by-value evaluation.
Unfortunately, this instance turns out to be partial (i.e. it may loop for some
inputs). I will fix this by adopting higher-order state such as for call-by-need,
yielding the second by-value semantics. The third and final by-value semantics
is the clairvoyant semantics of Hackett and Hutton [2019], who provide a clever
semantics that is cost equivalent to call-by-need, yet abstains from higher-order
mutable state. It turns out that the clairvoyant interpreter is partial as well, and
it is unclear how to fix it.

92

4.3 A Denotational Interpreter

The first call-by-value evaluation strategy is implemented with the ByValue
trace transformer shown in Figure 4.10. Function bind defines a denotation
d :: D (ByValue 𝜏) of the right-hand side by mutual recursion with its returned
value v :: Value (ByValue 𝜏) that I will discuss shortly.

As its first action, bind yields a Let0 event, announcing in the trace that
the right-hand side of a Let is to be evaluated. Then monadic bind v1 ←
d; body (return v1) yields steps from the right-hand side d until its value
v1 ::Value (ByValue 𝜏) is reached, which is then passed returned (i.e. wrapped in
Ret) to the let body. Note that the steps in d are yielded eagerly, and only once,
rather than duplicating the trace at every use site in body, as the by-name form
body d would.
To understand the recursive definition of the denotation of the right-hand

side d and its value v, consider the case 𝜏 = T. Then return = Ret and we get d =

rhs (Ret v) for the value v at the end of the trace d, as computed by the type class
instance method getValue ::T v → v. The effect of Ret (getValue (unByValue d))
is that of stripping all Steps from d.
Since nothing about getValue is particularly special to T, it lives in its own

type class Extract so that we get a HasBind instance for different types of Traces,
such as more abstract ones in Section 4.5.
Let us trace let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖 𝑖 for call-by-value:

𝜆> SvalueJread "let i = (λy.λx.x) i in i i"K𝜀

Let0 ↩−→ App1 ↩−→ App2 ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑖) ↩−→ App2 ↩−→ Look(𝑖) ↩−→ ⟨𝜆⟩

The beta reduction of (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 now happens once within the Let0/Let1
bracket; the two subsequent Look events immediately halt with a value.
Alas, this model of call-by-value does not yield a total interpreter! Consider

the case when the right-hand side accesses its value before yielding one, e.g.

𝜆> takeT 5 $ SvalueJread "let x = x in x x"K𝜀

Let0 ↩−→ Look(𝑥) ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑥) ↩−→ ^CInterrupted

This loops forever unproductively, rendering the interpreter unfit as a denota-
tional semantics.

Lazy Initialisation and Black-holing

Recall that my simple ByValue transformer above yields a potentially looping
interpreter. Typical strict languages work around this issue in either of two

93

4 Abstracting Denotational Interpreters

SvinitJeK𝜌 (𝜇) = unByVInit (SJeK𝜌 :: D (ByVInit T)) 𝜇
newtype ByVInit 𝜏 v

= ByVInit {unByVInit :: Heap (ByVInit 𝜏) → 𝜏 (v,Heap (ByVInit 𝜏)) }
instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByVInit 𝜏)) where

bind rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ stuck]
step Let0 (memo a (rhs (fetch a))) >>= body ◦ return

Fig. 4.11: Call-by-value with lazy initialisation

SclairJeK𝜌 = runClair $ SJeK𝜌 :: T (Value (Clairvoyant T))
data Fork f a = Empty | Single a | Fork (f a) (f a)
data ParT m a = ParT (m (Fork (ParT m) a))
instance Monad 𝜏 ⇒ Alternative (ParT 𝜏) where

empty = ParT (pure Empty); l <|> r = ParT (pure (Fork l r))
newtype Clairvoyant 𝜏 a = Clairvoyant (ParT 𝜏 a)
runClair :: D (Clairvoyant T) → T (Value (Clairvoyant T))
instance (Extract 𝜏,Monad 𝜏,∀v. Trace (𝜏 v))

⇒ HasBind (D (Clairvoyant 𝜏)) where
bind rhs body = Clairvoyant (skip <|> let

′) >>= body

where skip = return (Clairvoyant empty)
let
′ = fmap return $ step Let0 $... fix ... rhs ... getValue ...

Fig. 4.12: Clairvoyant Call-by-value

ways: They enforce termination of the RHS statically (OCaml, ML), or they use
lazy initialisation techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme,
recursive modules in OCaml). We can recover a total interpreter using the
semantics of Nakata [2010], building on the same encoding as ByNeed and
initialising the heap with a black hole [Peyton Jones 1992] stuck in bind as in
Figure 4.11.

𝜆> SvinitJread "let x = x in x x"K𝜀 (𝜀) :: T (Value ,Heap)

Let0 ↩−→ Look(𝑥) ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑥) ↩−→ ⟨(�, [0 ↦→])⟩

94

4.3 A Denotational Interpreter

Clairvoyant Call-by-value

Clairvoyant call-by-value [Hackett and Hutton 2019] is an alternative to call-by-
need semantics that exploits non-determinism and a cost model to absolve of
the heap. We can instantiate my interpreter to generate the shortest clairvoyant
call-by-value trace as well, as sketched out in Figure 4.12. Doing so yields an
evaluation strategy that either skips or speculates let bindings, depending on
whether or not the binding is going to be needed in the future:

𝜆> SclairJread "let f = λx.x in let g = λy.f in g"K𝜀

Let1 ↩−→ Let0 ↩−→ Let1 ↩−→ Look(𝑔) ↩−→ ⟨𝜆⟩

𝜆> SclairJread "let f = λx.x in let g = λy.f in g g"K𝜀

Let0 ↩−→ Let1 ↩−→ Let0 ↩−→ Let1 ↩−→ App1 ↩−→ Look(𝑔) ↩−→ App2 ↩−→ Look(𝑓) ↩−→ ⟨𝜆⟩

The first example discards 𝑓 , but the second needs it when g is called, so the
trace starts with an additional Let0 event to evaluate f . Similar to ByValue,
the interpreter is not total so it is unfit as a denotational semantics without a
complicated domain theoretic judgment. Furthermore, the decision whether
or not a Let0 step is needed can be delayed for an infinite amount of time, as
exemplified by

𝜆> SclairJread "let i = Z() in let w = λy.y y in w w"K𝜀

^CInterrupted

The program diverges without producing even a prefix of a trace because the
binding for 𝑖 might be needed at an unknown point in the future (a liveness

property [Lamport 1977] and hence impossible to verify at runtime). This renders
Clairvoyant call-by-value inadequate for verifying properties of infinite execu-
tions.

95

4 Abstracting Denotational Interpreters

4.4 Totality and Semantic Adequacy

In this section, I prove that SneedJ K produces small-step traces of the lazy
Krivine machine and is indeed a denotational semantics.10 Excitingly, to my
knowledge, SneedJ K is the first denotational call-by-need semantics that was
proven so!

Specifically, denotational semantics must be total and adequate. Totality says
that the interpreter is well-defined for every input expression and adequacy

says that the interpreter produces similar traces as the reference semantics.
This is an important result because it allows us to switch between operational
reference semantics and denotational interpreter as needed, thus guaranteeing
compatibility of definitions such as absence in Definition 4.2.

I will start with an informal overview of the results in Sections 4.4.1 and 4.4.2
before giving a formal account culminating in Sections 4.4.5 and 4.4.6. As be-
fore, all (pen-and-paper) proofs omitted in the main body can be found in the
Appendix.

4.4.1 Adequacy of SneedJ K
For proving adequacy of SneedJ K , I will give a function 𝛼 from small-step traces
in the lazy Krivine machine (Figure 4.2) to denotational traces T, with Events
and all, such that

𝛼 (init (e) ↩−→ ...) = SneedJeK𝜀 (𝜀),
where init (e) ↩−→ ... denotes the maximal (i.e. longest possible) LK trace evalu-
ating the closed expression e. For example, for the LK trace (4.2) on page 82, 𝛼
produces the trace at the end of Section 4.3.3 on page 91.
It turns out that function 𝛼 preserves a number of important observable

properties, such as termination behavior (i.e. stuck, diverging, or balanced exe-
cution [Sestoft 1997]), length of the trace and transition events, as expressed in
the following Theorem:

Theorem 4.4 (Strong Adequacy). Let e be a closed expression, 𝜏 ≜ SneedJeK𝜀 (𝜀)□ 197
the denotational by-need trace and init (e) ↩−→ ... the maximal LK trace. Then

• 𝜏 preserves the observable termination properties of init (e) ↩−→

• 𝜏 preserves the length of init (e) ↩−→

10 Similar results for SnameJ K and SvinitJ K () should be derivative.

96

4.4 Totality and Semantic Adequacy

• every ev ::Event in 𝜏 = Step ev ... refers to a transition rule in init (e) ↩−→

Proof sketch. We formally define 𝛼 ((𝜎𝑖)𝑖∈𝑛) ≜ 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, stop), where 𝛼S∞
is defined in Figure 4.13 on page 106, and prove 𝛼 (init (e) ↩−→ ...) = SneedJeK𝜀 (𝜀).
Then it suffices to prove that 𝛼 preserves the observable properties of interest.

4.4.2 Totality of SnameJ K and SneedJ K
Theorem 4.5 (Totality). The interpretersSnameJeK𝜌 andSneedJeK𝜌 (𝜇) are defined
for every e, 𝜌 , 𝜇.

Proof sketch. In the Appendix on page 213, I provide an implementation of the
generic interpreter SJ K and its instances at ByName and ByNeed in Guarded
Cubical Agda, which offers a total type theory with guarded recursive types [Mø-
gelberg and Veltri 2019]. Agda enforces that all encodable functions are total,
therefore SnameJ K and SneedJ K must be total as well.
The essential idea of the totality proof is that there is only a finite number of

transitions between every Look transition. In other words, if every environment
lookup produces a Step constructor, then the semantics is total by coinduction.
Such an argument is quite natural to encode in guarded recursive types, hence
my use of Guarded Cubical Agda is appealing. □

This concludes the high-level, informal discussion of adequacy and totality
results for SneedJ K . We will now take a more in-depth tour to justify these
claims. This tour will start by recalling the limitations of inductive and coinduct-
ive definitions when it comes to formalising programming language semantics
in Section 4.4.3. Section 4.4.4 then explains how guarded recursive types ad-
dress these limitations and hence are a good fit to model denotational semantics.
Finally, Section 4.4.5 will describe how SneedJ K can be encoded in Guarded
Cubical Agda. While the previous three subsections motivate and introduce defin-
itions by guarded recursion in some detail, the adequacy proof in Section 4.4.6
showcases associated proofs by Löb induction. I will use both guarded recursion
and Löb induction extensively in many proofs of Section 4.6.

4.4.3 Limitations of Induction and Coinduction

Let us first recall what problem coinductive types solve and why their use in
formalisation is comparatively rare compared to inductive types.

97

4 Abstracting Denotational Interpreters

It is common in functional programming languages and theorem provers to
define functions by recursion on an inductive data type argument. Such functions
are automatically total, because inductive data is always of finite depth, admitting
a termination proof by well-founded induction on that depth.
But many total functions prevalent in lazy programming languages, such

as map (+2) :: [Int] → [Int] in Haskell, are not recursive in this sense! The
reason for that is that lazy input data such as the infinite list [1 . .] which
evaluates to [1, 2, 3, ...] can be of infinite depth, hence violating the finite depth
precondition. That is, a direct proof by induction that list ≜ map (+2) [1 . .]
is a total definition is not possible! It is total by coinduction, though, because
the definition of map (+2) is productive: To evaluate head list, only a finite
computation (1 + 2) needs to be carried out, and similarly for list !! 10, or any
finite prefix of list. This is because the recursive call in the definition of map is
guarded by the list constructor (:):

map f (x : xs) = f x : map f xs

While induction defines total objects (e.g. functions, proofs) by destructing an
inductive input value, coinduction defines total objects by constructing a coin-
ductive output value. Induction permits recursive calls only on the input’s parts at
any position in the function body, while coinduction permits recursive calls only
in guarded position, such as in recursive fields of a coinductive data constructor,
but with any input whatsoever.

It is fairly simple for a human or a computer to check what constitutes a part of
an inductive value and thus what is a valid inductive definition, but it is far more
complicated to check what constitutes a valid coinductive definition. Hence,
although most theorem provers do admit definitions by coinduction such as
map that satisfy simple syntactic productivity checks [Coquand 1994], syntactic
productivity is easily defeated by refactorings such as extracting local bindings:

map2 f [] = []
map2 f (x : xs) = f x : rest

where rest = map2 f xs

Here, rest occurs in guarded position and hence the recursive call to map2 occurs
in guarded position as well, but guardedness of the recursive call is no longer

98

4.4 Totality and Semantic Adequacy

syntactically evident and hence rejected by theorem provers such as Rocq11 or
Agda.

That is in constrast to inductive definitions, where it is simple to anticipate
the arguments of recursive calls. The recursive call to map2 is still decreasing
in the input list, and it is often simple enough to leave the code in a form
where the decreasing recursive call is evident. So it is fair to say that syntactic
productivity checks are a severe limitation of current implementations of
coinduction and render coinductive definitions far less useful than inductive
definitions.

This is particularly embarassing for expressing dynamic processes such as pro-
gram semantics, because their natural implementation is in terms of potentially
infinite program traces which are best expressed coinductively.
In fact, our data type T is exactly such a coinductive data type, and hence

we would like SneedJ K to be a coinductive definition as well. It is however
impossible to show that SneedJ K syntactically guards all its recursive calls,
because we do not even see the Step constructor syntactically in the definition of
SJ K , only calls to the type class method step! Thus, to prove SneedJ K total by
coinduction in Rocq or Agda, we would need to manually specialise and inline
many type class methods into SJ K . Alas, any such manual transformation
diminishes the confidence in the proof method!
There is another limitation why SneedJ K cannot easily be proven total by

coinduction: Recall that D 𝜏 = 𝜏 (Value 𝜏). Finite traces in the semantic domain
Dne end in a Valuene, and the data constructor Fun :: (D 𝜏 → D 𝜏) → Value 𝜏
has a negative recursive occurrence of Value 𝜏 ! This constructor is disallowed
in inductive as well as traditional coinductive data type definitions, which is one
reason why denotational semantics traditionally made use of algebraic domain
theory [Scott 1970], sized types [Hughes et al. 1996] or other fuel-based encodings
to prove totality.

4.4.4 Guarded Type Theory

Fortunately, guarded type theories both lift the syntactic productivity restriction
as well as allow restricted forms of negative recursion in data types.

11 Formerly Coq.

99

4 Abstracting Denotational Interpreters

Guarded type theories postpone the productivity check to the type system,
where it becomes a semantic instead of a syntactic property. This enables composi-
tional reasoning about productivity, and of course stability under type-preserving
refactorings such as extraction of the rest auxiliary definition in the revised im-
plementation map2 above.

The fundamental innovation of guarded recursive type theory is the integration
of the later modality ▶ [Nakano 2000] which allows to define coinductive data
types with negative recursive occurrences such as in the data constructor Fun
that we have identified as problematic above.

The way that is achieved is roughly as follows: The type ▶𝑇 represents data of
type 𝑇 that will become available after a finite amount of computation, such as
unrolling one layer of a fixpoint definition or one (:) constructor of an infinite
stream such as map (2+) [1 . .]. While peeling off one layer is a finite compu-
tation, there may be an infinite number of such layers in turn. Consuming the
entirety of such an infinite layering is impossible, but it is possible to observe
any finite prefix in a total manner.

The later modality comes with a general fixpoint combinator fix : ∀𝐴. (▶𝐴→
𝐴) → 𝐴 that can be used to define both coinductive types (via guarded recursive
functions on the universe of types [Birkedal and Mogelberg 2013]) as well as
guarded recursive terms inhabiting said types. The classic example is that of
infinite streams:

Str = N × ▶Str ones = fix(𝑟 : ▶Str). (1, 𝑟),

where ones : Str is the constant stream of 1. In particular, Str is the fixpoint
of a locally contractive functor 𝐹 (𝑋) = N × ▶𝑋 . According to Birkedal and
Mogelberg [2013], any type expression in simply typed lambda calculus defines
a locally contractive functor as long as any occurrence of 𝑋 is under a ▶. The
most exciting consequence is that changing the Fun data constructor to Fun ::
(▶ (D 𝜏) → D 𝜏) → Value 𝜏 makes Value 𝜏 a well-defined type,12 whereas
traditional coinductive theories reject any negative recursive occurrence.

As a type constructor, ▶ is an applicative functor [McBride and Paterson 2008]
via functions

next : ∀𝐴. 𝐴→ ▶𝐴 ⊛ : ∀𝐴, 𝐵. ▶(𝐴→ 𝐵) → ▶𝐴→ ▶𝐵,

12 The reason why the positive occurrence of D 𝜏 does not need to be guarded is that the type
of Fun can more formally be encoded by a mixed inductive-coinductive type, e.g. Value 𝜏 =

fix𝑋 . lfp𝑌 | Fun (𝑋 → 𝑌) | ...

100

4.4 Totality and Semantic Adequacy

allowing us to apply a familiar framework of reasoning around ▶. In order not to
obscure my work with pointless symbol pushing that is hard to verify without a
machine, I will often omit the idiom brackets [McBride and Paterson 2008] {| |}
to indicate where the ▶ “effects” happen.

4.4.5 Total Encoding in Guarded Cubical Agda

The purpose of this subsection is to understand howSnameJ K andSneedJ K can
be proved total by encoding them in Guarded Cubical Agda, which implements
Ticked Cubical Type Theory [Møgelberg and Veltri 2019]. The Agda code that
documents this proof can be found in the Appendix on page 213.

To understand the Agda code, let me outline the changes necessary to encode
SJ K as well as the concrete instances Dna and Dne from Figures 4.7 and 4.9.

• We need to delay in step; thus its definition in Trace changes to step ::
Event→ ▶d → d.

• All Ds that will be passed to lambdas, put into the environment or stored
in fields need to have the form step (Look x) d for some x :: Name and a
delayed d :: ▶ (D 𝜏). This is enforced as follows:

1. The Domain d type class gains an additional predicate parameter
p :: d → Set that will be instantiated by the semantics to a predicate
that checks that the d has the required form step (Look x) d for some
x :: Name, d :: ▶ (D 𝜏).

2. Then the method types of Domain use a Sigma type to encode con-
formance to p. For example, the type of fun changes to (Σ D p →
D) → D.

3. The guarded recursive data type Value has a constructor Fun ::
(Name × ▶ (D 𝜏) → D 𝜏) → Value 𝜏 , breaking the pre-
viously discussed negative recursive cycle by a ▶, and expecting
x :: Name, d :: ▶ (D 𝜏) such that the original D 𝜏 can be recovered
as step (Look x) d. This is in contrast to the original definition
Fun :: (D 𝜏 → D 𝜏) → Value 𝜏 which would not type-check. The
concrete Domain implementation then translates between Σ D p and
Name × ▶ (D 𝜏), essentially defunctionalising [Reynolds 1972] the
latter into the former.

• Expectedly, HasBind becomes more complicated because it encodes the
fixpoint combinator. I settled on bind :: ▶ (▶D→D) → (▶D→D) →D. (I

101

4 Abstracting Denotational Interpreters

tried rolling up step (Look x) in the definition of SJ K to get a simpler
type bind :: (Σ D p→ D) → (Σ D p→ D) → D, but then had trouble
defining ByNeed heaps independently of the concrete predicate p.)

• Higher-order mutable state is among the classic motivating examples for
guarded recursive types. As such it is no surprise that the state-passing of
the mutable Heap in the implementation of ByNeed requires breaking of
a recursive cycle by delaying heap entries, Heap 𝜏 = Addr :⇀ ▶ (D 𝜏).

• Weneed to pass around Tick binders inSJ K in a way that the type checker
is satisfied; an exercise that is a bit more involved than one might expect,
see the Appendix. Nevertheless, I find it remarkable how non-invasive
these adjustment are! I had to conduct almost no proof external to the
domain definition.

Thus I have proven that SJ K is a total, mathematical function, and fast and
loose equational reasoning about SJ K is not only morally correct [Danielsson
et al. 2006], but simply correct. Furthermore, since evaluation order doesn’t
matter in Agda or for SJ K , I could have defined it in a strict language (lowering
▶a as () → a) just as well.

4.4.6 Proof of Adequacy For SneedJ K
Building on the totality result for SneedJ K , I will prove in this subsection that
SneedJ K produces an abstraction of the small-step trace of the lazy Krivine
(LK) machine from Section 4.2. The main result is Theorem 4.17, from which the
earlier Theorem 4.4 in Section 4.4.1 follows.
To formalise the main result, I must characterise the maximal traces in the

LK transition system and relate them to the traces produced by SneedJ K via
function 𝛼S∞ in Figure 4.13.

Maximal Lazy Krivine Traces

Formally, an LK trace is a trace in (↩−→) from Figure 4.2, i.e. a non-empty and
potentially infinite sequence of LK states (𝜎𝑖)𝑖∈𝑛 , such that 𝜎𝑖 ↩−→ 𝜎𝑖+1 for
𝑖, (𝑖 + 1) ∈ 𝑛. The length of (𝜎𝑖)𝑖∈𝑛 is the potentially infinite number of ↩−→
transitions 𝑛, where infinity is expressed by the first limit ordinal𝜔 . The notation
𝑛 means {𝑚 ∈ N | 𝑚 ⩽ 𝑛} when 𝑛 ∈ N is finite (note that 0 ∈ N), and N when
𝑛 = 𝜔 is infinite.

102

4.4 Totality and Semantic Adequacy

The source state 𝜎0 exists for finite and infinite traces, while the target state
𝜎𝑛 is only defined when 𝑛 ≠ 𝜔 is finite. When the control expression of a state 𝜎
(selected via ctrl(𝜎)) is a value v, we call 𝜎 a reduction state, in which case the
continuation (selected via cont (𝜎)) determines the next transition. Otherwise, 𝜎
is a search state and ctrl(𝜎) determines the next transition.
An important kind of trace is an interior trace, one that never leaves the

evaluation context of its source state:
Definition 4.6 (Deep). An LK trace (𝜎𝑖)𝑖∈𝑛 is 𝜅-deep if every intermediate con-

tinuation 𝜅𝑖 ≜ cont (𝜎𝑖) extends 𝜅 (so 𝜅𝑖 = 𝜅 or 𝜅𝑖 = · 𝜅, abbreviated 𝜅𝑖 = ...𝜅).
Definition 4.7 (Interior). A trace (𝜎𝑖)𝑖∈𝑛 is called interior (notated as (𝜎𝑖)𝑖∈𝑛 inter)
if it is cont (𝜎0)-deep.

A balanced trace [Sestoft 1997] is an interior trace that is about to return from
the initial evaluation context; it corresponds to a big-step evaluation of the initial
control expression:
Definition 4.8 (Balanced). An interior trace (𝜎𝑖)𝑖∈𝑛 is balanced if the target state
exists and is a reduction state with continuation cont (𝜎0).
In the following I give an example for interior and balanced traces. I will

omit the first component of heap entries in the examples because they bear
no semantic significance apart from instrumenting Look transitions, and it is
confusing when the heap-bound expression is a variable 𝑥 , e.g. (𝑦, 𝜌, 𝑥). Of
course, function 𝛼S∞ in Figure 4.13 will need to look at the first component.
Example 4.9. Let 𝜌 = [𝑥 ↦→ a1], 𝜇 = [a1 ↦→ (, [], λ̄𝑦.𝑦)] and 𝜅 an arbitrary

continuation. The trace

(𝑥, 𝜌, 𝜇, 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇,upd(a1) · 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇, 𝜅)

is interior and balanced. Its proper prefixes are interior but not balanced. The suffix

(λ̄𝑦.𝑦, 𝜌, 𝜇,upd(a1) · 𝜅) ↩−→ (λ̄𝑦.𝑦, 𝜌, 𝜇, 𝜅)

is neither interior nor balanced.

As shown by Sestoft [1997], a balanced trace starting at a control expression e
and ending with v corresponds to a derivation of e ⇓ v in a big-step semantics or
a non-⊥ result in a Scott-style denotational semantics. It is when a derivation in
a big-step semantics does not exist that a small-step semantics shows finesse. In
this case, a small-step semantics differentiates two different kinds of maximally

interior (or, just maximal) traces, namely diverging and stuck traces:

103

4 Abstracting Denotational Interpreters

Definition 4.10 (Maximal). An LK trace (𝜎𝑖)𝑖∈𝑛 is maximal if and only if it is

interior and there is no 𝜎𝑛+1 such that (𝜎𝑖)𝑖∈𝑛+1 is interior. More formally,

(𝜎𝑖)𝑖∈𝑛 max ≜ (𝜎𝑖)𝑖∈𝑛 inter ∧ (�𝜎𝑛+1 . 𝜎𝑛 ↩−→ 𝜎𝑛+1 ∧ cont (𝜎𝑛+1) = ...cont (𝜎0)) .

Definition 4.11 (Diverging). An infinite and interior trace is called diverging.

Definition 4.12 (Stuck). A finite, maximal and unbalanced trace is called stuck.

Usually, stuckness is associated with a state of a transition system rather than
a trace. That is not possible in my framework; the following example clarifies.

Example 4.13 (Stuck and diverging traces). Consider the interior trace

(tt 𝑥, [𝑥 ↦→ a1], [a1 ↦→ ...], 𝜅) ↩−→ (tt, [𝑥 ↦→ a1], [a1 ↦→ ...], ap(a1) · 𝜅),

where tt is a data constructor. It is stuck, but its singleton suffix is balanced. An

example for a diverging trace, where 𝜌 = [𝑥 ↦→ a1] and 𝜇 = [a1 ↦→ (, 𝜌, 𝑥)], is

(let 𝑥 = 𝑥 in 𝑥, [], [], 𝜅) ↩−→ (𝑥, 𝜌, 𝜇, 𝜅) ↩−→ (𝑥, 𝜌, 𝜇,upd(a1) · 𝜅) ↩−→ ...

Note that balanced traces are maximal traces as well. In fact, balanced, diver-
ging and stuck traces are the only three kinds of maximal traces, as the following
lemma formalises:

Lemma 4.14 (Characterisation of maximal traces). An LK trace (𝜎𝑖)𝑖∈𝑛 is max-□ 197
imal if and only if it is balanced, diverging or stuck.

Interiority guarantees that the particular initial stack cont (𝜎0) of a maximal
trace is irrelevant to execution, so maximal traces that differ only in the initial
stack are bisimilar. This is a consequence of the fact that the semantics of a called
function may not depend on the contents of the call stack; this fact is encoded
implicitly in big-step derivations.

Abstraction preserves Termination Observable

One class of maximal traces is of particular interest: the maximal trace starting
in init (e)! Whether it is infinite, stuck or balanced is the semantically defining
termination observable of e. If we can show that SneedJeK𝜀 (𝜀) distinguishes these
behaviors of init (e) ↩−→ ..., we have proven SneedJ K adequate, and may use it
as a replacement for the LK transition system.
In order to show that SneedJ K preserves the termination observable of e,

104

4.4 Totality and Semantic Adequacy

• I define a family of representation functions 𝛼 from LK traces to by-need
traces, formally in T (Valuene,Heapne) (Figure 4.13),

• I show that the main function 𝛼S∞ preserves the termination observable
of a given LK trace init (e) ↩−→ ... (Lemma 4.16), and

• I show that running SneedJeK𝜀 (𝜀) is the same as mapping 𝛼S∞ over the
LK trace init (e) ↩−→ ..., hence the termination behavior is observable
(Theorem 4.17).

In the following, I will omit repeated wrapping and unwrapping of the ByNeed
newtype wrapper when constructing and taking apart elements in Dne. Fur-
thermore, I will sometimes need to disambiguate the clashing definitions from
Section 4.3 and Section 4.1 by adorning “Haskell objects” with a tilde, in which
case �̃� ≜ 𝛼H (𝜇) :: Heapne denotes a semantic by-need heap, defined as an ab-
straction of a syntactic LK heap 𝜇 ∈ H.
Now consider the trace abstraction function 𝛼S∞ from Figure 4.13. It maps

syntactic entities in the transition system to the definable entities in the denota-
tional by-need trace domain T (Valuene,Heapne), henceforth abbreviated as T
because it is the only use of the type constructor T in this subsection.
𝛼S∞ is defined by guarded recursion over the LK trace, in the following sense:

We regard (𝜎𝑖)𝑖∈𝑛 as a dependent pair type S∞ ≜ ∃𝑛 ∈ N𝜔 . 𝑛 → S, where N𝜔
is defined by guarded recursion as data N𝜔 = Z | S (▶N𝜔). Now N𝜔 contains
all natural numbers (where 𝑛 is encoded as (S ◦ next)𝑛 Z) and the transfinite
limit ordinal 𝜔 = fix (S ◦ next). We will assume that addition and subtraction
are defined as on Peano numbers, and 𝜔 + = +𝜔 = 𝜔 . When (𝜎𝑖)𝑖∈𝑛 ∈ S∞ is
an LK trace and 𝑛 > 1, then (𝜎𝑖+1)𝑖∈𝑛−1 ∈ ▶S∞ is the guarded tail of the trace.

As such, the expression {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑛−1, 𝜅0) |} has type ▶T, where the ▶ in the
type of (𝜎𝑖+1)𝑖∈𝑛−1 maps through 𝛼S∞ via the idiom brackets {| |}. Definitional
equality = on T is defined in the obvious structural way by guarded recursion
(as it would be if it was a finite, inductive type).

Function 𝛼S∞ expects an LK trace as well as a continuation parameter 𝜅0 that
remains constant; it is initialised to the continuation of the source state cont (𝜎0)
in order to tell apart stuck from balanced traces when 𝛼V is ultimately called on
the target state. To that end, the first two equations of 𝛼V will not match unless
the final continuation is the same as the initial continuation cont (𝜎0), indicated
by the (𝜅 = 𝜅0) test at the end of the line.

The event abstraction function 𝛼Ev (𝜎) encodes how intensional information
from small-step transitions is retained as Events. Its implementation does not
influence the adequacy result, and I imagine that this function is tweaked on

105

4 Abstracting Denotational Interpreters

𝛼Ev : S→ Event 𝛼E : E × H→ (Name :⇀ Dne)
𝛼H : H→ Heapne 𝛼V : S × K→ Valuene

𝛼S∞ : S∞ × K→ T (Valuene,Heapne)

𝛼Ev (𝜎) =

Let1 if 𝜎 = (let x = in , , ,)
App1 if 𝜎 = (e x, , ,)
Case1 if 𝜎 = (case of , , ,)
Look y if 𝜎 = (x, 𝜌, 𝜇,), 𝜇 (𝜌 (x)) = (y, ,)
App2 if 𝜎 = (λ̄ . , , , ap() ·)
Case2 if 𝜎 = (𝐾 , , , sel(,) ·)
Upd if 𝜎 = (v, , ,upd() ·)

𝛼E ([x ↦→ a], 𝜇) = [x ↦→ Step (Look y) (fetch a) | 𝜇 (a) = (y, ,)]

𝛼H ([a ↦→ (, 𝜌, e)]) = [a ↦→ memo a (SJeK𝛼E (𝜌,𝜇))]
𝛼V ((λ̄x.e, 𝜌, 𝜇, 𝜅), 𝜅0) = Fun (𝜆d → Step App2 (SJeK(𝛼E (𝜌,𝜇)) [x ↦→d])) (𝜅 = 𝜅0)
𝛼V ((𝐾 x, 𝜌, 𝜇, 𝜅), 𝜅0) = Con k (map (𝛼E (𝜌, 𝜇) !) xs) (𝜅 = 𝜅0)
𝛼V (, , 𝜇,),) = Stuck

𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝜅0) =

{
Step (𝛼Ev (𝜎0)) {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑛−1, 𝜅0) |} if 𝑛 > 0
Ret (𝛼V (𝜎0, 𝜅0), 𝛼H (𝜇)) otherwise
where (, , 𝜇,) = 𝜎0

Fig. 4.13: Abstraction functions for SneedJ K

an as-needed basis to retain more or less intensional detail, depending on the
particular trace property one is interested in observing. In our example, we
focus on Look y events that carry with them the y :: Name of the let binding
that allocated the heap entry. This event corresponds precisely to a Look(y)
transition, so 𝛼Ev (𝜎) maps 𝜎 to Look y when 𝜎 is about to make a Look(y)
transition. In that case, the control expression must be x, and y is the first
component of the heap entry 𝜇 (𝜌 (x)). The other cases are similar.

I will now establish a few auxiliary lemmas showing what kind of properties
of LK traces are preserved by 𝛼S∞ , and in which way. Let us warm up by defining
a length function on traces:

106

4.4 Totality and Semantic Adequacy

len :: T a→ N𝜔
len (Ret) = Z
len (Step 𝜏▶) = S {|len 𝜏▶ |}

The length is an important property of LK traces that is preserved by 𝛼 .
Lemma 4.15 (Abstraction preserves length). Let (𝜎𝑖)𝑖∈𝑛 be a trace. Then

len (𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, cont (𝜎0))) = 𝑛.

Proof. This is quite simple to see and hence a good opportunity to familiarise
ourselves with Löb induction, the induction principle of guarded recursion. Löb
induction arises simply from applying the guarded recursive fixpoint combinator
to a proposition:

löb = fix : ∀𝑃 . (▶𝑃 =⇒ 𝑃) =⇒ 𝑃

That is, we assume that our proposition holds later, i.e.

𝐼𝐻 ∈ (▶𝑃len ≜ ▶(∀(𝜎𝑖)𝑖∈𝑛 . len (𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, cont (𝜎0))) = 𝑛)),

and use 𝐼𝐻 to prove 𝑃len.
To that end, let (𝜎𝑖)𝑖∈𝑛 be an LK trace and define 𝜏 ≜ 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, cont (𝜎0)).

Now proceed by case analysis on 𝑛:
• Case Z: Then we have 𝜏 = Ret by definition of 𝛼S∞ , which maps to Z
under len.

• Case S {|m|}: Then 𝜏 = Step {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0)) |}, where
(𝜎𝑖+1)𝑖∈𝑚 ∈ ▶S∞ is the guarded tail of the LK trace (𝜎𝑖)𝑖∈𝑛 . Now we
apply the inductive hypothesis, as follows:

(𝐼𝐻 ⊛ (𝜎𝑖+1)𝑖∈𝑚) ∈ ▶(len (𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0))) =𝑚).

We use this fact and congruence to prove

𝑛 = S {|m|} = S {|len (𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚, cont (𝜎0))) |}
= len (𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, cont (𝜎0))).

□
It is rewarding to study the use of Löb induction in the proof above in detail,

because many proofs in this subsection as well as Section 4.6 will make good
use of it.

The next step is to prove that 𝛼S∞ preserves the termination observable; then
all that is left to do is to show that SneedJ K abstracts LK traces via 𝛼S∞ . The
preservation property is formally expressed as follows:

107

4 Abstracting Denotational Interpreters

Lemma 4.16 (Abstraction preserves termination observable). Let (𝜎𝑖)𝑖∈𝑛 be a □ 198
maximal trace. Then 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝑐𝑜𝑛𝑡 (𝜎0)) ...

• ends in Ret (Fun ,) or Ret (Con ,) if and only if (𝜎𝑖)𝑖∈𝑛 is balanced.

• is infinite if and only if (𝜎𝑖)𝑖∈𝑛 is diverging.

• ends in Ret (Stuck,) if and only if (𝜎𝑖)𝑖∈𝑛 is stuck.

The previous lemma allows us to apply the classifying terminology of maximal
LK traces to a 𝜏 :: T in the range of 𝛼S∞ . For such a maximal 𝜏 we will say that it
is balanced when it ends with Ret (v, 𝜇) for a v |==Stuck, stuck if it is ending in
Ret (Stuck, 𝜇) and diverging if it is infinite.

The final remaining step is to prove that SneedJ K produces an abstraction of
traces in the LK machine:

Theorem 4.17 (SneedJ K abstracts LK machine). Let (𝜎𝑖)𝑖∈𝑛 be a maximal LK

trace with source state (e, 𝜌, 𝜇, 𝜅). Then𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝜅) = SneedJeK𝛼E (𝜌,𝜇) (𝛼H (𝜇)),
where 𝛼S∞ is the function defined in Figure 4.13.

Proof. Let us abbreviate the proposed correctness relation as

𝑃𝛼 ((𝜎𝑖)𝑖∈𝑛) ≜ (𝜎𝑖)𝑖∈𝑛 max =⇒ 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝜅) = SneedJeK𝛼E (𝜌,𝜇) (𝛼H (𝜇))
where (e, 𝜌, 𝜇, 𝜅) = 𝜎0

We prove it by Löb induction, with 𝐼𝐻 ∈ ▶𝑃𝛼 as the inductive hypothesis.
Now let (𝜎𝑖)𝑖∈𝑛 be a maximal LK trace with source state 𝜎0 = (e, 𝜌, 𝜇, 𝜅) and

let 𝜏 ≜ SneedJeK𝛼E (𝜌,𝜇) (𝛼H (𝜇)). Then the goal is to show 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝜅) = 𝜏 .
We do so by cases over e, abbreviating �̃� ≜ 𝛼H (𝜇) and 𝜌 ≜ 𝛼E (𝜌, 𝜇):

• Case x: Note first that Look is the only applicable transition rule according
to rule inversion on ctrl(𝜎0) = x.
In case that 𝑛 = 0, (𝜎𝑖)𝑖∈𝑛 is stuck because ctrl(𝜎0) is not a value, hence
𝛼S∞ returns Ret (Stuck,). Since Look does not apply (otherwise 𝑛 > 0),
we must have x ̸∈ dom(𝜌), and hence 𝜏 = Ret (Stuck,) by calculation as
well.
Otherwise, 𝜎1 ≜ (e′, 𝜌′, 𝜇,upd(a) · 𝜅), 𝜎0 ↩−→ 𝜎1 via Look(y), and 𝜌 (x) =
a, 𝜇 (a) = (y, 𝜌′, e′). This matches 𝜌 ! x = step (Look y) (fetch a) in the
interpreter.
It suffices to show that the tails equate later.

108

4.4 Totality and Semantic Adequacy

We can infer that �̃� ! a = memo a (SneedJe
′K𝜌′) by definition of 𝛼H, so

fetch a �̃� = (�̃� ! a) �̃� = SneedJe
′K𝜌′ (�̃�) >>= 𝜆case

(Stuck, �̃�′) → Ret (Stuck, �̃�′)
(val, �̃�′) → Step Upd (Ret (val, �̃�′ [a ↦→ memo a (return val)]))

Let us define 𝜏▶ ≜ {|SneedJe
′K𝜌′ (�̃�) |} and apply the induction hypothesis

𝐼𝐻 to the maximal trace starting at 𝜎1. This trace has length𝑚 − 1 for
some𝑚 > 0. The induction hypothesis yields the equality

𝐼𝐻 ⊛ (𝜎𝑖+1)𝑖∈𝑚−1 ∈ {|𝛼S∞ ((𝜎𝑖+1)𝑖∈𝑚−1,upd(a) · 𝜅) = 𝜏
▶ |}

Any Steps in 𝜏▶ match the transitions of (𝜎𝑖+1)𝑖∈𝑚−1 per 𝐼𝐻 , and >>= simply
forwards these Steps. What remains to be shown is that the continuation
passed to >>= operates correctly.
If 𝜏▶ is infinite, we are done, because the continuation is never called. If 𝜏▶
ends in Ret (Stuck, �̃�𝑚), then (𝜎𝑖+1)𝑖∈𝑚−1 is stuck as well by Lemma 4.16.
Then so is (𝜎𝑖)𝑖∈𝑚 and it turns out that 𝑛 =𝑚. Likewise, the continuation
of 𝜏▶ will return Ret (Stuck, �̃�𝑚) unchanged, where �̃�𝑚 corresponds to
the final heap in 𝜎𝑚 via 𝛼H.
Otherwise 𝜏▶ ends with Ret (val, �̃�𝑚) and by Lemma 4.16 (𝜎𝑖+1)𝑖∈𝑚−1
is balanced; hence cont (𝜎𝑚) = upd(a) · 𝜅 and ctrl(𝜎𝑚) is a value. So
𝜎𝑚 = (v, 𝜌𝑚, 𝜇𝑚,upd(a) ·𝜅) and the Upd transition fires, reaching 𝜎𝑚+1 ≜
(v, 𝜌𝑚, 𝜇𝑚 [a ↦→ (y, 𝜌𝑚, v)], 𝜅). It turns out that 𝑛 = 𝑚 + 1 and 𝜎𝑚+1 is
the target state 𝜎𝑛 . That is because 𝜎𝑚+1 remains a reduction state and
has continuation 𝜅, so (𝜎𝑖)𝑖∈𝑚+1 is balanced. Likewise, the continuation
argument of >>= does a Step Upd on Ret (val, �̃�𝑚), updating the heap. By
cases on v and the Domain Dne instance we can see that

Ret (val, �̃�𝑚 [a ↦→ memo a (return val)])
= Ret (val, �̃�𝑚 [a ↦→ memo a (SneedJvK𝜌𝑚)])
= Ret (𝛼V (𝜎𝑛, 𝜅), 𝛼H (𝜇𝑚 [a ↦→ (y, 𝜌𝑚, v)]))

and this equality concludes the proof, because the heap in 𝜎𝑛 is exactly
𝜇𝑚 [a ↦→ (y, 𝜌𝑚, v)].

• Case e x: The cases where 𝜏 gets stuck or diverges before finishing evalu-
ation of e are similar to the variable case. So let us focus on the situation

109

4 Abstracting Denotational Interpreters

when 𝜏▶ ≜ {|SneedJeK𝜌 (�̃�) |} returns and let 𝜎𝑚 be LK state at the end of
the balanced trace (𝜎𝑖+1)𝑖∈𝑚−1 through e starting in stack ap(a) · 𝜅.
Now, either there exists a transition 𝜎𝑚 ↩−→ 𝜎𝑚+1, or it does not. When the
transition exists, it must must leave the stack ap(a) · 𝜅 due to maximality,
necessarily by an App2 transition. That in turn means that the value in
ctrl(𝜎𝑚) must be a lambda λ̄y.e′, and 𝜎𝑚+1 = (e′, 𝜌𝑚 [y ↦→ 𝜌 (x)], 𝜇𝑚, 𝜅).
Likewise, 𝜏▶ ends in

𝛼V (𝜎𝑚, ap(a) · 𝜅) = Fun (𝜆d → step App2 (SneedJe
′K𝜌𝑚 [y ↦→d]))

(where 𝜌𝑚 corresponds to the environment in 𝜎𝑚 in the usual way, sim-
ilarly for �̃�𝑚). The apply implementation of Domain Dne applies the
Fun value to the argument denotation 𝜌 ! x, hence it remains to be shown
thatSneedJe

′K𝜌𝑚 [y ↦→𝜌 ! x] (�̃�𝑚) is equal to𝛼S∞ ((𝜎𝑖+𝑚+1)𝑖∈𝑘 , 𝜅) later, where
(𝜎𝑖+𝑚+1)𝑖∈𝑘 is the maximal trace starting at 𝜎𝑚+1.
We can once again apply the induction hypothesis to this situation. From
this and our earlier equalities, we get 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝜅) = 𝜏 , concluding the
proof of the case where there exists a transition 𝜎𝑚 ↩−→ 𝜎𝑚+1.
When 𝜎𝑚 ̸↩−→, then ctrl(𝜎𝑚) is not a lambda, otherwise App2 would apply.
In this case, apply gets to see a Stuck or Con and returns Stuck as well.

• Case case e𝑠 of 𝐾 x→ e𝑟 : Similar to the application and lookup case.

• Cases λ̄x.e, 𝐾 x: The length of both traces is 𝑛 = 0 and the goal follows by
simple calculation.

• Case let x = e1 in e2: Let 𝜎0 = (let x = e1 in e2, 𝜌, 𝜇, 𝜅). Then
𝜎1 = (e2, 𝜌′, 𝜇′, 𝜅) by Let1, where 𝜌′ = 𝜌 [x ↦→ a], 𝜇′ = 𝜇 [a ↦→ (x, 𝜌′, e1)],
a ∉ dom(𝜇). Since the stack does not grow, maximality from the tail
(𝜎𝑖+1)𝑖∈𝑛−1 transfers to (𝜎𝑖)𝑖∈𝑛 . Straightforward application of the induc-
tion hypothesis to (𝜎𝑖+1)𝑖∈𝑛−1 yields the equality for the tail (after a bit of
calculation for the updated environment and heap), concluding the proof.

□

Thus, my denotational by-need interpreter is built on firm semantic ground.

110

4.5 Static Analysis

4.5 Static Analysis

So far, the semantic domains I have proposed have all been infinite, simply
because the dynamic traces they express are potentially infinite as well. However,
by instantiating the generic denotational interpreter on page 86 with a semantic
domain in which every element is finite data, we can run the interpreter on the
program statically, at compile time, to yield a finite abstraction of the dynamic
behavior. This gives us a static program analysis.

We can get a wide range of static analyses by choosing appropriate semantic
domains. For example, I have successfully realised the following analyses as
denotational interpreters:

• Section 4.5.1 defines a summary-based usage analysis, the running ex-
ample of this work. I prove that usage analysis correctly infers absence in
Section 4.613.

• Section 4.5.2 defines a type analysis with let generalisation that implements
Milner’s Algorithm J, inferring polytypes such as ∀𝛼3 . option (𝛼3 → 𝛼3)
that act as summaries.

• Section 4.5.3 defines 0CFA control-flow analysis [Shivers 1991], a non-
modular analysis lacking a finite summary mechanism, simply as a proof
of concept.

• To demonstrate that my framework scales to real-world compilers, I have
refactored relevant parts of Demand Analysis in the Glasgow Haskell
Compiler into an instance of a denotational interpreter for GHC Core
as an artefact. The code for this generic denotational interpreter can be
found in Appendix C. The resulting compiler bootstraps and passes the
testsuite.14 Demand Analysis is the real-world implementation of the
cardinality analysis work of Sergey, Vytiniotis, et al. [2017], generalising
usage analysis from Section 4.5.1 and implementing strictness analysis as
well. Section 4.5.5 contains a report of this case study.

13 Recall that the main body omits code for presentation purposes, but the full code can be looked
up in Appendix D.

14 There is a small caveat: I did not try to optimise for compiler performance in my proof of concept
and hence it regresses in a few compiler performance test cases. None of the runtime performance
test cases regress and the inferred demand signatures stay unchanged.

111

4 Abstracting Denotational Interpreters

4.5.1 Usage Analysis

In this subsection, I give a detailed account of usage analysis as an instance of the
denotational interpreter. Usage analysis generalises the summary-based absence
analysis from Section 4.1. It is a compelling example because it illustrates that
my framework is suitable to infer operational properties, such as an upper bound
on the number of variable lookups.

Trace Abstraction in Trace TU

In order to recover usage analysis as an instance of my generic interpreter, we
must define its finitely represented semantic domain DU. Often, the first step
in doing so is to replace the potentially infinite traces T in dynamic semantic
domains such as Dna with finite data such as TU in Figure 4.14. A usage trace

⟨𝜑, val⟩ :: TU v is a pair of a value val :: v and a finite map 𝜑 :: Uses, mapping
variables to a usage U. The usage 𝜑 !? x assigned to x is meant to approximate
the number of Look x events; U0 means “at most 0 times”, U1 means “at most
1 times”, and U𝜔 means “an unknown number of times”. In this way, TU is an
abstraction of T: it squashes all Look x events into a single entry 𝜑 !? x :: U and
discards all other events.
Consider as an example the by-name trace evaluating the expression

e ≜ let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗 :

Let1↩−→Let1↩−→App1↩−→App1↩−→Look(𝑖)↩−→App2↩−→Look(𝑗)↩−→App2↩−→Look(𝑗)↩−→⟨𝜆⟩

We would like to abstract this trace into ⟨[i ↦→ U1, j ↦→ U𝜔], ...⟩. One plausible
way to achieve this is to replace every Step (Look x) ... in the by-name trace with
a call to step (Look x) ... from the Trace TU instance in Figure 4.14, essentially
folding over the trace. The step implementation increments the usage of x

whenever a Look x event occurs. The addition operation used to carry out
incrementation is defined in type class instancesUVec U andUVec Uses, together
with scalar multiplication15. For example, U0 + u = u and U1 + U1 = U𝜔 in U, as
well as U0 ∗ u = U0, U𝜔 ∗ U1 = U𝜔 . These operations lift to Uses pointwise, e.g.
[i ↦→ U1] + (U𝜔 ∗ [j ↦→ U1]) = [i ↦→ U1, j ↦→ U𝜔].
Abstracting T into TU but keeping the concrete semantic Value definition

amounts to what Darais, Labich, et al. [2017] call a collecting semantics. To

15 UVec models U-modules. It is not a vector space because U lacks inverses, but the intuition is
close enough and the term “vector” more familiar.

112

4.5 Static Analysis

data U = U0 | U1 | U𝜔
type Uses = Name :⇀ U
class UVec a where
(+) :: a→ a→ a

(∗) :: U→ a→ a

instance UVec U where ...
instance UVec Uses where ...

data TU v = ⟨Uses, v⟩
instance Trace (TU v) where

step (Look x) ⟨𝜑, v⟩ = ⟨[x ↦→ U1] + 𝜑, v⟩
step 𝜏 = 𝜏

instance Monad TU where
return a = ⟨𝜀, a⟩
⟨𝜑1, a⟩ >>= k = let ⟨𝜑2, b⟩ = k a in ⟨𝜑1 + 𝜑2, b⟩

Fig. 4.14: Usage U and usage trace TU

SusageJeK𝜌 = SJeK𝜌 :: DU

data ValueU = U : ValueU | Rep U
type DU = TU ValueU
instance Domain DU where

stuck = ⊥
fun x f = case f ⟨[x ↦→ U1],Rep U𝜔 ⟩ of
⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

apply ⟨𝜑1, v1⟩ ⟨𝜑2, ⟩ = case peel v1 of
(u, v2) → ⟨𝜑1 + u ∗ 𝜑2, v2⟩

con ds = foldl apply ⟨𝜀,Rep U𝜔 ⟩ ds

select d fs = d >> lub [f (replicate (conArity k) ⟨𝜀,Rep U𝜔 ⟩)
| (k, f) ← assocs fs]

peel :: ValueU → (U,ValueU)
peel (Rep u) = (u,Rep u)
peel (u : v) = (u, v)
(!?) :: Uses→ Name→ U
𝜑 !? x | x ∈ dom 𝜑 = 𝜑 ! x

| otherwise = U0

instance Lat U where ...
instance Lat Uses where ...
instance Lat ValueU where ...
instance Lat DU where ...
instance HasBind DU where

bind rhs body = body (kleeneFix rhs)
Fig. 4.15: Summary-based usage analysis

113

4 Abstracting Denotational Interpreters

recover such an analysis-specific collecting semantics, it is sufficient to define
a Monad instance on TU mirroring trace concatenation and then running our
interpreter at, e.g. D (ByName TU) � TU (Value TU) on expression e from
earlier:

SJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗)K𝜀 = ⟨[i ↦→U1, j ↦→U𝜔], 𝜆⟩::D (ByName TU).

It is nice to explore whether the Trace instance encodes the desired operational
property in this way, but of little practical relevance because this interpreter
instance will diverge whenever the input expression diverges. We fix this in the
next subsection by introducing a finitely represented ValueU to replace Value TU.

Value Abstraction ValueU and Summarisation in Domain DU

In this subsection, we complement the trace type TU from the previous subsection
with an abstract value type ValueU to get the finitely represented semantic
domainDU = TU ValueU in Figure 4.15, and thus a static usage analysisSusageJ K
when we instantiate SJ K at DU.

The definition of ValueU is just a copy of 𝜋 ∈ Args in Figure 4.1 that lists
argument usage U instead of Absence flags; the entire intuition transfers. For
example, the ValueU abstracting λ̄𝑦.λ̄𝑧.𝑦 is U1 : U0 : Rep U𝜔 , because the first
argument is used once while the second is used 0 times. What we previously
called absence types 𝜃 ∈ AbsTy in Figure 4.1 is now the abstract semantic domain
DU. It is now evident that usage analysis is a modest generalisation of absence
analysis in Figure 4.1: a variable is absent (A) when it has usage U0, otherwise it
is used (U).
Consider the analysis result for the example expression from Section 4.1,

SusageJ(let 𝑘 = λ̄𝑦.λ̄𝑧.𝑦 in 𝑘 𝑥1 𝑥2)K𝜌𝑒 = ⟨[k ↦→U1, x1 ↦→U1],Rep U𝜔 ⟩.

Usage analysis successfully infers that 𝑥1 is used at most once and that 𝑥2 is
absent, because it does not occur in the reported Uses.
On the other hand,

SusageJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑖 𝑗)K𝜀 = ⟨[i ↦→U𝜔 , j ↦→U𝜔],Rep U𝜔 ⟩

demonstrates the limitations of the first-order summary mechanism. While the
program trace would only have one lookup for 𝑗 , the analysis is unable to reason
through the indirect call and conservatively reports that 𝑗 may be used many
times.

114

4.5 Static Analysis

The Domain instance is responsible for implementing the summary mechan-
ism. While stuck expressions do not evaluate anything and hence are denoted by
⊥ = ⟨𝜀,Rep U0⟩, the fun and apply functions play exactly the same roles as funx
and app in Figure 4.1. Let us briefly review how the summary for the right-hand
side λ̄𝑥 .𝑥 of 𝑖 in the previous example is computed:

SJLam x (Var x)K𝜌 = fun x (𝜆d → step App2 (SJVar xK𝜌 [x ↦→d]))
= case step App2 (SJVar xK𝜌 [x ↦→⟨[x ↦→U1],Rep U𝜔 ⟩]) of
⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : Rep U𝜔 ⟩

= case ⟨[x ↦→ U1],Rep U𝜔 ⟩ of
⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : Rep U𝜔 ⟩

= ⟨𝜀,U1 : Rep U𝜔 ⟩

The definition of fun x applies the lambda body to a proxy ⟨[x ↦→ U1],Rep U𝜔 ⟩
to summarise how the body uses its argument by way of looking at how it uses
x.16 Every use of x’s proxy will contribute a usage of U1 on x, and multiple uses
in the lambda body would accumulate to a usage of U𝜔 . In this case there is only
a single use of x and the final usage 𝜑 !? x = U1 from the lambda body will be
prepended to the value abstraction. Occurrences of x unleash the uninformative
top value (Rep U𝜔) from x’s proxy for lack of knowing the actual argument at
call sites.

The definition of apply to apply such summaries to an argument is nearly the
same as in Figure 4.1, except for the use of + instead of ⊔ to carry over U1 +U1 =

U𝜔 , and an explicit peel to view a ValueU in terms of : (it is Rep u ≡ u : Rep u).
The usage u thus pelt from the value determines how often the actual argument
was evaluated, and multiplying the uses of the argument 𝜑2 with u accounts for
that.
The following example illustrates the summary mechanism for data types:

SusageJ(let 𝑧 = 𝑍 () in case 𝑆 (𝑧) of 𝑆 (𝑛) → 𝑛)K𝜀 = ⟨[z ↦→U𝜔],Rep U𝜔 ⟩.

Our analysis imprecisely infers that z might be used many times when it is only
used once.17 This is achieved in con by repeatedly applying to the top value
(Rep U𝜔), as if a data constructor was a lambda-bound variable. Dually, select

does not need to track how fields are used and can pass ⟨𝜀,Rep U𝜔 ⟩ as proxies

16 As before, the exact identity of x is exchangeable; we use it as a De Bruijn level.
17 Following Sergey, Vytiniotis, et al. [2017] we could model demand as a property of evaluation
contexts and propagate uses of field binders to the scrutinee’s fields to do better.

115

4 Abstracting Denotational Interpreters

class Eq a⇒ Lat a where ⊥ :: a; (⊔) :: a→ a→ a;
kleeneFix :: Lat a⇒ (a→ a) → a; lub :: Lat a⇒ [a] → a

kleeneFix f = go ⊥ where go x = let x
′ = f x in if x

′ ⊑ x then x
′ else go x

′

Fig. 4.16: Order theory and Kleene iteration

for field denotations. The result uses anything the scrutinee expression used,
plus the upper bound of uses in case alternatives, one of which will be taken.
Note that the finite representation of the type DU rules out injective imple-

mentations of fun x :: (DU → DU) → DU and thus requires the aforementioned
approximate summary mechanism. There is another potential source of approx-
imation: the HasBind instance discussed next.

Finite Fixpoint Strategy in HasBind DU and Totality

The third and last ingredient to recover a static analysis is the fixpoint strategy
in HasBind DU, to be used for recursive let bindings.
For the dynamic semantics in Section 4.3 we made liberal use of guarded

fixpoints, that is, recursively defined values such as let d = rhs d in body d in
HasBind Dna (Figure 4.7). At least for SnameJ K and SneedJ K , we have proved
in Section 4.4.1 that these fixpoints always exist by a coinductive argument. Alas,
among other things this argument relies on the Step constructor — and thus the
step method — of the trace type T being lazy in the tail of the trace!
When we replaced T in favour of the finite data type TU in Section 4.5.1 to

get a collecting semantics D (ByName TU), we got a partial interpreter. That
was because the step implementation of TU is not lazy, and hence the guarded
fixpoint let d = rhs d in body d is not guaranteed to exist.

In general, finite data trace types cannot have a lazy step implementation, so
finite data domains such as DU require a different fixpoint strategy to ensure
termination. Depending on the abstract domain, different fixpoint strategies can
be employed. For an unusual example, in my type analysis (Section 4.5.2), we
generate and solve a constraint system via unification to define fixpoints. In case
of DU, we compute least fixpoints by Kleene iteration kleeneFix in Figure 4.16.
kleeneFix requires us to define an order onDU, which is induced byU0<U1<U𝜔
in the same way that the order on AbsTy in Section 4.1.2 was induced from the
order A < U on Absence flags.

116

4.5 Static Analysis

The iteration procedure terminates whenever the type class instances of DU
are monotone and there are no infinite ascending chains in DU. Alas, our ValueU
indeed contains such infinite chains, for example, U1 : U1 : ... : Rep U0! This is
easily worked around in practice by employing appropriate monotone widening
measures such as trimming any ValueU at depth 10 to flat Rep U𝜔 . The resulting
definition of HasBind is safe for by-name and by-need semantics.

4.5.2 Type Analysis: Algorithm J

Computing least fixpoints is common practice in static program analysis. How-
ever, some abstract domains employ quite different fixpoint strategies. The
abstract domain of the type analysis I define in this subsection is an interesting
example: Type analysis — specifically, Milner’s Algorithm J — computes fixpoints
by generating and solving a constraint system via unification. Furthermore, since
the domain is familiar, it is a good one to study in the context of denotational
interpreters.
Figure 4.17 outlines the abstract domain J Type at which the generic denota-

tional interpreter can be instantiated to perform Type analysis. I omit imple-
mentational details that are derivative of Milner’s description of Algorithm J.
The full implementation can be found in Appendix D, but the provided code is
sufficiently exemplary of the approach.
Type analysis StypeJ K infers the most general type of an expression, e.g.

StypeJ(let 𝑓 = λ̄𝑔.λ̄𝑥 .𝑔 𝑥 in 𝑓)K = ∀𝛼4, 𝛼5 . (𝛼4 → 𝛼5) → 𝛼4 → 𝛼5 .

The most general type can be polymorphic when it universally quantifies over
generic type variables such as 𝛼4 and 𝛼5 above. In general, such a PolyType
is of the form ∀𝛼. 𝜃 , where 𝜃 ranges over a monomorphic Type that can be
either a type variable TyVar 𝛼 (I will use 𝜃𝛼 as meta variable for this form), a
function type 𝜃1 :→: 𝜃2, or a type constructor application TyConApp, where
TyConApp OptionTyCon [𝜃1] is printed as option 𝜃1. The Wrong type indic-
ates a type error and is printed as wrong.
Key to the analysis is its abstract trace type J, offering means to invoke uni-

fication (unify), fresh name generation (freshTyVar , instantiatePolyTy) and let
generalisation (generaliseTy). My type J implements these effects by maintaining
two pieces of state via the standard monad transformer StateT:

1. a consistent set of type constraints as a unifying substitution Subst.

117

4 Abstracting Denotational Interpreters

data TyCon = BoolTyCon | NatTyCon | OptionTyCon | PairTyCon
data Type = Type :→: Type | TyConApp TyCon [Type] | TyVar Name | Wrong
data PolyType = PT [Name] Type
type Subst = Name :⇀ Type
type Constraint = (Type, Type)
newtype J a = J (StateT (Set Name, Subst) Maybe a)
unify :: Constraint→ J ()
freshTyVar :: J Type
instantiatePolyTy :: PolyType→ J Type
generaliseTy :: J Type→ J PolyType
closedType :: J Type→ PolyType

StypeJeK = closedType (SJeK𝜀) :: PolyType
instance Trace (J v) where step = id

instance Domain (J Type) where
stuck = return Wrong
fun f = do
𝜃𝛼 ← freshTyVar

𝜃 ← f (return 𝜃𝛼)
return (𝜃𝛼 :→: 𝜃)

con k ds = ...

apply v a = do
𝜃1 ← v

𝜃2 ← a

𝜃𝛼 ← freshTyVar

unify (𝜃1, 𝜃2 :→: 𝜃𝛼)
return 𝜃𝛼

select dv fs = ...

uniFix :: (J Type→ J Type) → J Type
uniFix rhs = do
𝜃𝛼 ← freshTyVar

𝜃 ← rhs (return 𝜃𝛼)
unify (𝜃𝛼 , 𝜃)
return 𝜃𝛼

instance HasBind (J Type) where
bind rhs body = do
𝜎 ← generaliseTy (uniFix rhs)
body (instantiatePolyTy 𝜎)

Fig. 4.17: Type analysis with let generalisation (Algorithm J)
118

4.5 Static Analysis

2. the set of used names as a Set Name. This is to supply fresh names
in freshTyVar and to instantiate a polytype ∀𝛼.𝛼 → 𝛼 to a monotype
𝛼1 → 𝛼1 for fresh 𝛼1 as done by instantiatePolyTy, but also to identify the
type variables which are generic [Milner 1978] in the ambient type context
and hence may be generalised by generaliseTy.

Unification failure is signalled by returning Nothing in the base monad Maybe,
and function closedType for handling J effects will return Wrong when that
happens:

StypeJ(let 𝑥 = None() in 𝑥 𝑥)K = wrong

The operational detail offered by Trace is ignored by J, but the Domain and
HasBind instances for the abstract semantic domain J Type are quite interesting.
Throughout the analysis, the invariant is maintained that the J Type denota-
tions of let-bound variables in the interpreter environment 𝜌 are of the form
instantiatePolyTy 𝜎 for a polytype 𝜎 , while lambda- and field-bound variables
are denoted by return 𝜃 , yielding the same monotype 𝜃 at all use sites. Thus,
let-bound denotations instantiate polytypes on-the-fly at occurrence sites, just
as in Algorithm J.
Both return 𝜃 as well as instantiatePolyTy 𝜎 are summaries in the sense of

Section 4.1.3, where the latter kind is more useful than the former. While stateful
computations of type J Type are not generally finitely representable, both 𝜎 and
𝜃 are just data, and hence the expressions return 𝜃 and instantiatePolyTy 𝜎 could
be defunctionalised into bespoke data constructors of J Type as well; hence they
are finitely representable denotations and thus summaries.

As expected, stuck terms are denoted by the monotype Wrong. The definition
of fun resembles the abstraction rule of Algorithm J, in that it draws a fresh
variable type 𝜃𝛼 ::Type (of the form TyVar 𝛼) to stand for the type of the argument.
This type is passed as a monotype return 𝜃𝛼 to the body denotation f , where it
will be added to the environment (cf. Figure 4.5) in order to compute the result
type 𝜃 of the function body. The type for the whole function is then 𝜃𝛼 :→: 𝜃 .
The definition for apply is a literal translation of Algorithm J as well. The cases
for con and select are omitted as their implementation follows a similar routine.
The generalisation and instantiation machinery comes to bear in the imple-

mentation of bind, which implements a combination of the fix and let cases in
Algorithm J, computing fixpoints by unification (uniFix). It is best understood
by tracing the right-hand side of 𝑜 in the following example:

StypeJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑜 = Some(𝑖) in 𝑜)K = ∀𝛼6. option (𝛼6 → 𝛼6)

119

4 Abstracting Denotational Interpreters

The implementation of bind ties the recursive knot by calling uniFix. It works
by calling the iteratee rhs (corresponding to Some(𝑖)) with a fresh unification
variable type 𝜃𝛼 , for example 𝛼1. The result of the call to rhs in turn is a monotype
𝜃 , for example option (𝛼3 → 𝛼3) for generic 𝛼3, meaning that 𝛼3 is a fresh name
introduced in the right-hand side while instantiating the polymorphic identity
function 𝑖 . Then 𝜃𝛼 is unified with 𝜃 , substituting 𝛼1 with option (𝛼3 → 𝛼3).
This concludes the implementation of Milner’s fix case.

For Milner’s let case, the type 𝜃𝛼 returned by the call to uniFix is generalised
to ∀𝛼3. option (𝛼3 → 𝛼3) by universally quantifying the generic variable 𝛼3. It
is easy for generaliseTy to deduce that 𝛼3 must be generic wrt. the right-hand
side, because 𝛼3 was freshly drawn in uniFix and thus does not occur in the set
of used Names prior to the call to generaliseTy. The generalised polytype 𝜎 is
then instantiated afresh via instantiatePolyTy 𝜎 at every use site of 𝑜 in the let
body, implementing polymorphic instantiation.
Thus we shall conclude this short excursion into type analysis and continue

with a classic, call-strings-based interprocedural analysis: control-flow analysis.

4.5.3 Control-flow Analysis

Traditionally, control-flow analysis (CFA) [Shivers 1991] is an important instance
of higher-order abstract interpreters [Darais, Labich, et al. 2017; Van Horn and
Might 2010]. Although one of the main advantages of denotational interpreters
is that summary-based analyses can be derived as instances, this subsection
demonstrates that a call-strings-based CFA can be derived as an instance from
the generic denotational interpreter in Figure 4.5 as well.

CFA overapproximates the set of syntactic values an expression evaluates to,
so as to narrow down the possible control-flow edges at application sites. The
resulting control-flow graph conservatively approximates the control-flow of
the whole program and can be used to apply classic intraprocedural analyses
such as interval analysis or constant propagation in an interprocedural setting.

Figure 4.18 implements the 0CFA variant of control-flow analysis. For a given
expression, it reports a set of program labels— textual representations of positions
in the program — that the expression might evaluate to:

ScfaJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗)K = {𝜆𝑦..} (4.1)

Here, 0CFA infers that the example expression will evaluate to the lambda
expression bound to 𝑗 . This lambda is uniquely identified by the reported label

120

4.5 Static Analysis

ScfaJeK = runCFA (SJeK𝜀); runCFA :: DC → Labels
newtype Labels = Lbls (Set Label)
type DC = State Cache Labels
data Cache = Cache (Label :⇀ ConCache) (Label :⇀ FunCache)
type ConCache = (Tag, [Labels])
data FunCache = FC (Maybe (Labels, Labels)) (DC → DC)
updConCache :: Label→ Tag→ [Labels] → State Cache ()
updFunCache :: Label→ (DC → DC) → State Cache ()
cachedCall :: Labels→ Labels→ DC
cachedCons :: Labels→ State Cache (Tag :⇀ [Labels])
instance HasBind DC where ...
instance Trace DC where step = id

instance Domain DC where
stuck = return ⊥
fun ℓ f = do

updFunCache ℓ f

return (Lbls (Set.singleton ℓ))
apply dv da = do

v ← dv

a← da

cachedCall v a

con ℓ k ds = do
lbls← sequence ds

updConCache ℓ k lbls

return (Lbls (Set.singleton ℓ))
select dv fs = do

v ← dv

tag2flds← cachedCons v

lub <$> sequence [f (map return (tag2flds ! k))
| (k, f) ← Map.assocs fs, k ∈ dom tag2flds]

Fig. 4.18: Domain DC for 0CFA control-flow analysis

121

4 Abstracting Denotational Interpreters

𝜆𝑦.. per the unique binder assumption in Section 4.1.1. Furthermore, the analysis
determined that the expression cannot evaluate to the lambda expression bound
to 𝑖 , hence its label 𝜆𝑥.. is not included in the set.
By contrast, when 𝑖 is dynamically called both with 𝑖 and with 𝑗 , the result

becomes approximate because 0CFA joins together the information from the two
call sites:

ScfaJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑖 𝑗)K = {𝜆𝑥 .., 𝜆𝑦..}

Labels for constructor applications simply print their syntax, e.g.

ScfaJ(let 𝑥 = let 𝑦 = 𝑆 (𝑥) in 𝑆 (𝑦) in case 𝑥 of {𝑍 () → 𝑥 ; 𝑆 (𝑧) → 𝑧})K = {𝑆 (𝑥)}.
(4.2)

Note that in this example, 0CFA discovers that 𝑥 evaluates to 𝑆 (𝑦) and hence is
able to conclude that the 𝑍 () branch of the case expression is dead. In doing so,
0CFA rules out that the expression evaluates to 𝑆 (𝑦), reporting 𝑆 (𝑥) as the only
value of the expression.

In general, the label (i.e. string) 𝑆 (𝑦) does not uniquely determine a position
in the program because the expression may occur multiple times. However,
eliminating such common subexpressions is semantics-preserving, so I argue
that this poor man’s notion of program labels is good enough for the purpose of
this demonstration.

To facilitate 0CFA as an instance of the generic denotational interpreter, I need
to slightly revise the Domain class to pass the syntactic label to fun and con:

type Label = String
class Domain d where

con :: Label → Tag→ [d] → d

fun :: Name→ Label → (d → d) → d

Constructing and forwarding labels appropriately inSJ K and adjusting previous
Domain instances is routine; the curious reader may consult Appendix D.

Figure 4.18 represents sets of labels with the type Labels, the type of abstract
values of the analysis. The abstract domain DC of 0CFA is simply a stateful
computation returning Labels. To this end, I define DC in terms of the standard
State monad to mutate a Cache, an abstraction of the heap discussed next.

Recall that each Label determines a syntactic value in the program. The Cache
maintains, for every labelled value encountered thus far, an approximation of its
action on Labels.

122

4.5 Static Analysis

For example, the interpreter denotes the syntactic constructor application
𝑆 (𝑦) in the right-hand side of 𝑥 in (4.2) by calling the Domain method con.
This method is implemented by updating the ConCache field under the label
𝑆 (𝑦) so that it carries the constructor tag 𝑆 as well as the Labels that its field 𝑦
denotes. In our example, 𝑦 denotes to the set {𝑆 (𝑥)}, so the ConCache entry at
label 𝑆 (𝑦) is updated to (𝑆, [{𝑆 (𝑥)}]). This information is then available when
evaluating the case expression in (4.2) with select, where the scrutinee 𝑥 returns
v ≜ {𝑆 (𝑦)}. Function cachedCons looks up for each label in v the respective
ConCache entry and merges these entries into an environment tag2flds ::Tag :⇀
[Labels], representing all the possible shapes the scrutinee can take. In our case,
tag2flds is just a singleton environment [𝑆 ↦→ [{𝑆 (𝑥)}]], because for the single
scrutinee label 𝑆 (𝑦), the ConCache only contains the entry (𝑆, [{𝑆 (𝑥)}]). This
environment is subsequently joined with the alternatives of the case expression.
The only alternative that matches is 𝑆 (𝑧) → 𝑧, where 𝑧 is bound to {𝑆 (𝑥)} from
the information in the ConCache. The alternative 𝑍 () → 𝑥 is dead because v

does not contain a label 𝑍 ().
For an example involving the FunCache, consider the example (4.1), repeated

here for easy reference:

ScfaJ(let 𝑖 = λ̄𝑥 .𝑥 in let 𝑗 = λ̄𝑦.𝑦 in 𝑖 𝑗 𝑗)K = {𝜆𝑦..}

When the lambda expression λ̄𝑥 .𝑥 in the right-hand side of 𝑖 is denoted by fun, it
updates the FunCache at label 𝜆𝑥 .. with the corresponding abstract transformer
(𝜆x → x) :: DC → DC, registering it for call sites. Later, the application site
𝑖 𝑗 is denoted by apply with the denotations of 𝑖 and 𝑗 . The denotation for 𝑖 is
bound to dv and returns a set v ≜ {𝜆𝑥 ..}, while the denotation for 𝑗 is bound
to da and returns a set a ≜ {𝜆𝑦..}. These sets are passed to cachedCall which
iterates over the labels in the callee v. For each such label, it looks up the abstract
transformer in FunCache, applies it to the set of labels a (taking approximative
measures described below) and joins together the labels returned from each call.
In our example, there is just a single callee label 𝜆𝑥.., the abstract transformer
of which is the identity function (𝜆x → x) :: DC → DC. Applying the identity
transformer to the set of labels {𝜆𝑦..} from the denotation of the argument 𝑗
returns this same set; the result of the application 𝑖 𝑗 .
The above description calls a function label’s abstract transformer anew at

every call site. This yields the exact control-flow semantics of the original control-
flow analysis work [Shivers 1991, Section 3.4], which is potentially diverging. The
way 0CFA (and my implementation of it) becomes finite is by maintaining only

123

4 Abstracting Denotational Interpreters

a single point approximation of each abstract transformer’s graph (𝑘-CFA would
maintain one point per contour). Maintaining the single point approximation
Maybe (Labels, Labels) in a field of the FunCache is a standard, if somewhat
delicate hassle in control-flow analyses.

This single point approximation could be seen as the transformer’s summary,
but this summary is call-site sensitive and thus potentially infinite, violating my
definition of “summary” in Section 4.1.3: Since the single point must be applicable
at all call sites, the function body must be reanalysed as the inputs from call
sites increase; thus the abstract transformer must be part of the denotation. The
denotation is thus not finitely representable, and not even properly inductive!
After all, DC transitively (through Cache) recurses into DC → DC, and the
negative occurrence of DC is problematic, as discussed in Section 4.4.3. This
highlights a common challenge with instances of CFA: the obligation to prove
that the analysis actually terminates on all inputs; an obligation that I will gloss
over in this short demonstration.

Note that the given formulation of 0CFA is not modular because it lacks finite
summaries; that is, the single point approximation for a function A.f is not
generally applicable at a call site in module B such as A.f B.x because the labels
that B.x evaluate to might not be known when compiling module A. Shivers
[1991, Section 3.8.2] proposes a solution to this problem that I chose not to
implement for the simple proof of concept here.

4.5.4 Stateful Analysis and Annotations

Thus far, the static analyses derived from the generic denotational interpreter
produce a single abstract denotation d ≜ SJeK𝜀 for the program expression e.
However, in practice static compiler analyses such as GHC’s Demand Analysis
usually drive a subsequent optimisation, for which a single denotation for the
entire program is insufficient. Rather, we need one for every sub-expression, or
at least every binding.
If we are interested in analysis results for variables bound in e, then either

the analysis must collect these results in d, or we must redundantly re-run the
analysis for subexpressions.

In this subsection, I will demonstrate how to lift a pure, single-result analysis
— such as the usage analysis we have seen — into a stateful analysis that gives
results for every binder, such that

124

4.5 Static Analysis

• it collects analysis results for bound variables in a separate, global map,
and

• it caches fixpoints in yet another global map, so that nested fixpoint itera-
tion can be sped up by starting from a previous approximation.

It is a common pattern for analyses to be stateful in this way [Sergey, Vytiniotis,
et al. 2017]; GHC’s Demand Analysis is a good real-world example. The following
demonstration targets usage analysis, but the technique should be easy to adapt
for other least-fixpoint-based analyses or for type analysis (omitting the caching
of fixpoints).

The Need for Isolating Bound Variable Usage

For a concrete example, let us compare the results of usage analysis from Sec-
tion 4.5.1 on the expression e1 ≜ let 𝑖 = λ̄𝑥 .(let 𝑗 = λ̄𝑦.𝑦 in 𝑗) in 𝑖 𝑖 𝑖 and its
subexpression e2 ≜ let 𝑗 = λ̄𝑦.𝑦 in 𝑗 :

SusageJ(let 𝑖 = λ̄𝑥 .(let 𝑗 = λ̄𝑦.𝑦 in 𝑗) in 𝑖 𝑖 𝑖)K𝜀 = ⟨[i ↦→U𝜔 , j ↦→U𝜔],Rep U𝜔 ⟩
SusageJ(let 𝑗 = λ̄𝑦.𝑦 in 𝑗)K𝜀 = ⟨[j ↦→U1],U1 : Rep U𝜔 ⟩

The analysis reports a different usage U1 for the bound variable 𝑗 in the subex-
pression e2 versus U𝜔 in the containing expression e1. This is because in order
for single-result usage analysis to report information on bound variable 𝑗 at all,
it treats 𝑗 like a free variable of 𝑖 , adding a use on 𝑗 for every call of 𝑖 . While this
treatment reflects that multiple Look(𝑗) events will be observed when evalu-
ating e1, each event associates to a different activation (i.e. heap entry) of the
let binding 𝑗 . The result U1 reported for 𝑗 in subexpression e2 is more useful
because it reflects that every activation of the binding 𝑗 is looked up at most once
over its lifetime, which is indeed the formal property of interest in Section 4.6.
Rather than to re-run the analysis for every let binding such as 𝑗 , I will now

demonstrate a way to write out an annotation for 𝑗 , just before analysis leaves
the let that binds 𝑗 . Annotations for bound variables constitute analysis state
that will be maintained separately from information on free variables.

Maintaining Annotations by Implementing StaticDomain

Figure 4.19 lifts the existing definition for single-result usage analysis SusageJ K
into a stateful analysis Susage;J K that writes out usage information on bound
variables into a separate map. Consider the result on the example expression

125

4 Abstracting Denotational Interpreters

class Domain d ⇒ StaticDomain d where
type Ann d :: ∗
extractAnn :: Name→ d → (d,Ann d)
funS :: Monad m⇒ Name→ (m d → m d) → m d

selectS :: Monad m⇒ m d → (Tag :⇀ ([m d] → m d)) → m d

bindS :: Monad m⇒ Name→ d → (d → m d) → (d → m d) → m d

instance StaticDomain DU where
type Ann DU = U
extractAnn x ⟨𝜑, v⟩ = (⟨Map.delete x 𝜑, v⟩, 𝜑 !? x)
funS x f = do
⟨𝜑, v⟩ ← f (return ⟨[x ↦→ U1],Rep U𝜔 ⟩)
return ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

selectS md mfs = do
d ← md

alts← sequence [f (replicate (conArity k) (return ⟨𝜀,Rep U𝜔 ⟩))
| (k, f) ← Map.assocs mfs]

return (d >> lub alts)
bindS init rhs body = kleeneFixAboveM init rhs >>= body

kleeneFixAboveM :: (Monad m, Lat a) ⇒ a→ (a→ m a) → m a

Susage;JeK𝜌 = runAnn (SJeKreturn�𝜌) :: (DU,Name :⇀ U)
data Refs s d = Refs (STRef s (Name :⇀ d)) (STRef s (Name :⇀ Ann d))
newtype AnnT s d a = AnnT (Refs s d → ST s a)
type AnnD s d = AnnT s d d

runAnn :: (∀s. AnnD s d) → (d,Name :⇀ Ann d)
instance Monad (AnnT s d) where ...
instance Trace d ⇒ Trace (AnnD s d) where

step ev (AnnT f) = AnnT (𝜆refs→ step ev <$> f refs)
instance StaticDomain d ⇒ Domain (AnnD s d) where ...
readCache :: Lat d ⇒ Name→ AnnD s d

writeCache :: Name→ d → AnnT s d ()
annotate :: StaticDomain d ⇒ Name→ AnnD s d → AnnD s d

instance (Lat d, StaticDomain d) ⇒ HasBind (AnnD s d) where
bind x rhs body = do

init ← readCache x

let rhs
′

d1 = do d2 ← rhs (return d1); writeCache x d2; return d2
annotate x (bindS x init rhs

′ (body ◦ return))
Fig. 4.19: Trace transformer AnnT for recording annotations and caching of fixpoints
126

4.5 Static Analysis

e1 from above, where the pair (𝑑, anns) returned by Susage;J K is printed as
𝑑 ; anns:

Susage;J(let 𝑖 = λ̄𝑥 .let 𝑗 = λ̄𝑦.𝑦 in 𝑗 in 𝑖 𝑖 𝑖)K𝜀 = ⟨𝜀,Rep U𝜔 ⟩; [i ↦→U𝜔 , j ↦→U1]

The annotations for both bound variables 𝑖 and 𝑗 are returned in an annotation
environment separate from the empty abstract free variable environment 𝜀 ::Uses
of the expression. Furthermore, the use U1 reported for 𝑗 is exactly as when
analysing the subexpression e2 in isolation, as required.

Lifting the single-result analysisSusageJ K defined onDU to a stateful analysis
Susage;J K requires implementing a type class instance StaticDomain DU.
Before going into detail about how this lifting is implemented in terms of type
AnnT, let us review its type class interface. The type class StaticDomain defines
the associated type Ann of annotations in the particular static domain, along
with a function extractAnn x d for extracting information on a let-bound x from
the denotation d. The instance for DU instantiates Ann DU to bound variable
use U, and extractAnn x ⟨𝜑, v⟩ isolates the free variable use 𝜑 ! x as annotation.
The remaining type class methods funS, selectS and bindS are simple monadic
generalisations of their counterparts in Domain and HasBind. As can be seen, I
again needed to slightly revise the HasBind type class in order to pass the name
x of the let-bound variable to bind and bindS, similar as for fun.
The implementation of StaticDomain requires very little extra code to main-

tain, because the original definitions of fun, select and bind can be recovered in
terms of the generalised definitions via the standard Identity monad as follows,
where coerce denotes a safe zero-cost coercion function provided by GHC [Breit-
ner et al. 2014]:

newtype Identity a = Identity { runIdentity :: a}
fun
′ :: StaticDomain d ⇒ Name→ Label→ (d → d) → d

fun
′

x f = runIdentity (funS x (coerce f))
select

′ :: StaticDomain d ⇒ d → (Tag :⇀ ([d] → d)) → d

select
′

d fs = runIdentity (selectS (Identity d) (coerce fs))
bind

′ :: (Lat d, StaticDomain d) ⇒ Name→ (d → d) → (d → d) → d

bind
′

x rhs body = runIdentity (bindS x ⊥ (coerce rhs) (coerce body))

Any reasonable instance of StaticDomain must satisfy the laws fun = fun
′,

select = select
′ and bind = bind

′.
Let us now look at how AnnT extends the pure, single-result usage analysis

into a stateful one that maintains annotations.

127

4 Abstracting Denotational Interpreters

Trace Transformer AnnT for Stateful Analysis

Every instance StaticDomain d induces an instance Domain (AnnD s d), where
the type AnnD s d is another example of a trace transformer: It transforms the
Trace instance on type d into a Trace instance for AnnD s d. The abstract domain
AnnD is defined in terms of the abstract trace type AnnT, which is a standard ST
monad utilising efficient and pure mutable state threads [Launchbury and Peyton
Jones 1994], stacked below aRefs environment that carries themutable ref cells. A
stateful analysis computation∀s. AnnD s DU is then runwith runAnn, initialising
Refswith ref cells pointing to empty environments. (The universal quantification
over s in the type of runAnn ensures that no mutable STRef from Refs escapes
the functional state thread of the underlying ST computation [Launchbury and
Peyton Jones 1994].)
The induced instance Domain (AnnD s d) is implemented by lifting opera-

tions stuck, apply and con into monadic AnnT s d context and by calling funS

and selectS. Finally, the stateful nature of the domain AnnD s d is exploited in
the HasBind (AnnD s d) instance, in two ways:

• The call to annotate writes out the annotation on the let-bound variable x

that is extracted from the denotation returned by the call to bindS. The
omitted definition of annotate is just a thin wrapper around extractAnn to
store the extracted annotation in the Name :⇀ Ann d ref cell of Refs, the
contents of which are returned from runAnn.

• The calls to readCache and writeCache read from and write to theName :⇀
d ref cell of Refs in order to provide the initial value init for fixpoint
iteration. To this end, kleeneFix is generalised to kleeneFixAboveM init f

which iterates the monadic function f starting from init until a reductive
point of f is found (i.e. a d such that f d ⊑ return d). When fixpoint
iteration is first started, there is no cached value, in which case readCache

returns⊥ to be used as the initial value, just as for the single-result analysis.
However, after every iteration of rhs, the call to writeCache persists the
current iterate, which will be the initial value of the fixpoint iteration for
any future calls to bind for the same let binding x.

The caching technique is important because naïve fixpoint iteration in single-
result analysis can be exponentially slow for nested let bindings, such as in

λ̄𝑧.let 𝑥1 = (let 𝑥2 = ...(let 𝑥𝑛 = 𝑧 in 𝑥𝑛)... in 𝑥2) in 𝑥1.

128

4.5 Static Analysis

Naïvely, every let binding needs two iterations per one iteration of its enclosing
binding: the first iteration assuming ⊥ as the initial value for 𝑥𝑖 and the next as-
suming the fixpoint ⟨[z ↦→ U1],Rep U𝜔 ⟩. Ultimately, 𝑧 is used in the denotation
of 𝑥𝑛 , ..., 𝑥1, totalling to 2𝑛 iterations for 𝑥𝑛 during stateless analysis.
Stateful caching of the previous fixpoint improves this drastically. The right-

hand side of 𝑥𝑛 = 𝑧 is only iterated 𝑛 + 1 times in total: once with ⊥ as the initial
value for 𝑥𝑛 , once more to confirm the fixpoint ⟨[z ↦→ U1],Rep U𝜔 ⟩ and then
𝑛 − 1 more times to confirm the fixpoints of 𝑥𝑛−1, ..., 𝑥1.

It is possible to improve the number of iterations for 𝑥𝑛 to a constant, by
employing classic chaotic iteration and worklist techniques. These techniques
require a decoupling of iteration order from the lexical nesting imposed by the
syntax tree, instead choosing the next iteratee by examining the graph of data
flow dependencies, as in Graf [2017]. Crucially, such sophisticated and stateful
data-flow frameworks can be developed and improved without complicating the
analysis domain, which is often very complicated in its own right.

4.5.5 Case Study: GHC’s Demand Analyser

To test how well my denotational interpreter framework scales to real-world
applications, I applied the design pattern to GHC’s existing Demand Analyser
and will reproduce the salient points here. GHC’s Demand Analyser infers nested
usage [Sergey, Vytiniotis, et al. 2017], strictness [Peyton Jones, Sestoft, et al. 2006]
and boxity information. These analysis results thus fuel a number of optimisa-
tions, such as dead code elimination and unboxing through the worker/wrapper
transformation [Gill and Hutton 2009], update avoidance [Gustavsson 1998], eta
expansion and eta reduction, and inlining under lambdas, to name a few.
Concretely, my refactoring entailed

• identifying which parts of the analyser need to be part of the Domain
interface,

• writing an abstract denotational interpreter for GHC Core, the typed
intermediate representation of GHC,

• validating the usefulness of this interpreter by instantiating it at the GHC
Core-specific analogue of the concrete by-need domain Dne, and finally

• defining the abstract Domain instance for Demand Analysis, to replace its
compositional analysis function on expressions by a call to the denotational
interpreter.

129

4 Abstracting Denotational Interpreters

data Expr
= Var Id
| Lit Literal
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Case Expr Id Type Alt
| Cast Expr Coercion
| Tick Tickish Expr
| Type Type
| Coercion Coercion

data Var = Id ... | TyVar ... | CoVar ...
type Id = Var -- always a term-level Id

data Literal = LitNumber ... | LitFloat ... | LitString ...
type Alt = (AltCon, [Var], Expr)
data AltCon = LitAlt Literal | DataAlt DataCon | DEFAULT
data Bind = NonRec Id Expr | Rec [(Id, Expr)]
data Type = ...

data Coercion = ...

Fig. 4.20: GHC Core

The resulting compiler bootstraps and passes the testsuite.

GHC Core

GHC Core implements a variant of the polymorphic lambda calculus System
𝐹𝜔 called System 𝐹𝐶 [Sulzmann et al. 2007]. Its definition in GHC is given in
Figure 4.20 and includes explicit type applications as well as witnesses of type
equality constraints called coercions.

GHC Core’s Expr has a lot in common with the untyped object language Exp
introduced in Section 4.1.1. For example, there are constructors for Var, App,
Lam, Let and Case. There are a number of differences, however:

• GHC Core allows non-variable arguments in applications. This has implic-
ations on the denotational interpreter, which must let-bind non-variable
arguments to establish A-normal form on-the-fly.

130

4.5 Static Analysis

• There is no distinguished ConApp form. That is because data constructors
are just special kinds of Ids and may be unsaturated; the interpreter must
eta-expand such data constructor applications on-the-fly.

• Case alternatives allow matching on literals (LitAlt) as well as data con-
structors (DataAlt), and include a default alternative (DEFAULT) that
matches any case not matched by other alternatives. Furthermore, after
Case evaluates the scrutinee, its value is bound to a designated Id called
the case binder that scopes over all case alternatives.

• Beyond data constructors, there are other distinguished Ids without a local
binding, such as “global” identifiers imported from a different module,
class method selectors and primitive operations defined by the runtime
system.

• Let bindings are either explicitly non-recursive (NonRec) or a mutually
recursive group with potentially many bindings (Rec).

• Not shown in Figure 4.20 is GHC’s support for inline unfoldings attached
to let-bound Ids as well as rewrite rules declared by RULES pragmas. Each
give rise to additional right-hand sides which must be handled with con-
servative care. Mistreatment of these subtle constructs in the Demand
Analyser has caused numerous bugs over the years.

Beyond these differences, GHCCore includes forms for embedding Literals, Types
and Coercions in select expression forms. Type abstraction and application use
regular Lam and App constructors, whereas rewriting an expression’s type along
a Coercion happens through Casts. The constructor Tick annotates debugging
and profiling information and can be ignored.

A Semantic Domain for GHC Core

Figure 4.21 defines the semantic domain abstraction for which I implemented
both a concrete ByNeed instance as well as an abstract instance for Demand
Analysis. Its design was inspired by the domain definition in Figure 4.6, but
ultimately driven by the hands-on desire to accommodate both ByNeed and
Demand Analysis as instances.

The stuck, con, fun, apply and select methods serve the exact same purpose as
in prior sections, generalised to deal with the Core expressions they are modelled

131

4 Abstracting Denotational Interpreters

data Event = Look Id | LookArg CoreExpr | Update
| App1 | App2 | Case1 | Case2 | Let1

class Trace d where step :: Event→ d → d

class Domain d where
stuck :: d

lit :: Literal→ d

global :: Id→ d

classOp :: Id→ Class→ d

primOp :: Id→ PrimOp→ d

fun :: Id→ (d → d) → d

con :: DataCon→ [d] → d

apply :: d → (Bool, d) → d

select :: d → CoreExpr→ Id→ [DAlt d] → d

erased :: d

keepAlive :: [d] → d → d

type DAlt d = (AltCon, [Id], d → [d] → d)
data BindHint = BindArg Id | BindLet Bind
class HasBind d where

bind :: BindHint→ [[d] → d] → ([d] → d) → d

Fig. 4.21: A Domain interface for GHC Core

after. Method apply receives an additional Bool to tell whether it is a runtime-
irrelevant type application. Unsurprisingly, there is a method lit for embedding
Literals, similar to con. Demand Analysis assigns special meaning to primitive
operations (primOp), class method selectors (classOp) and imported Ids (global),
so each get their own Domain method.
Types and coercions are erased at runtime, represented by method erased.

Coercion expressions, inline unfoldings and rewrite RULES keep alive their free
variables (keepAlive).

The HasBind type class accommodates both non-recursive as well as mutually
recursive let bindings. The BindHint is used to communicate whether such a
binding comes from the on-the-fly ANF-isation pass of the interpreter (BindArg)
or whether it was a manifest let binding in the Core program (BindLet).

132

4.5 Static Analysis

type D d = (Trace d,Domain d,HasBind d)
anfise :: D d ⇒ [Expr] → (Name :⇀ d) → ([d] → d) → d

evalConApp :: D d ⇒ DataCon→ [d] → d

SJ K :: D d ⇒ Expr→ (Name :⇀ d) → d

SJType K𝜌 = erased

SJLit lK𝜌 = lit l

SJVar xK𝜌 | not special = 𝜌 ! x

| otherwise = ...

SJLam x eK𝜌 = fun x (𝜆d → step App2 (SJeK𝜌 [x ↦→d]))
SJe@App { }K𝜌
| Var v ← f , Just dc ← isDataConWorkId_maybe v

= anfise as 𝜌 (evalConApp dc)
| otherwise

= anfise (f : as) 𝜌 $ 𝜆(df : das) →
go df (zipWith (𝜆d a→ (d, isTypeArg a)) das as)

where
(f , as) = collectArgs e

go df [] = df

go df ((d, is_ty) : ds) = go (step App1 $ apply df (is_ty, d)) ds

SJLet b@(NonRec x rhs) bodyK𝜌 =

bind (BindLet b)
[𝜆ds→ keepAliveUnfRules x 𝜌 (SJrhsK𝜌)]
(𝜆ds→ step Let1 (SJbodyK𝜌 [x ↦→step (Lookup x) (only ds)]))

...

Fig. 4.22: A glimpse of the Glasgow Haskell Denotational Interpreter (GHDi)

133

4 Abstracting Denotational Interpreters

The Glasgow Haskell Denotational Interpreter (GHDi)

Figure 4.22 shows a slightly adjusted and abridged version of the denotational
interpreter. The actual definition takes around 100 lines of Haskell; its full
definition can be looked up in Appendix C. Its highlights include erasure of
types, a new case for literals, on-the-fly ANF-isation in the application case and
picking out data constructor application from regular function application in
order to eta expand accordingly in evalConApp. Whenever an ANF-ised argument
is looked up, a LookArg event is emitted; this is simply for a lack of a globally
unique Id. In the Let case, the call to keepAliveUnfRules makes sure to keep alive
the free variables of inline unfoldings and rewrite rules attached to x.

The Domain and HasBind instance for the concrete semantics Dne is routine.
The resulting denotational interpreter can execute GHC Core expressions. To
demonstrate this, I wrote a small REPL around it that takes Haskell expressions,
optimises them using the GHC middle-end and then executes the resulting GHC
Core:

$./ghdi $(ghc --print-libdir)
prompt> let f x = x*42 :: Int; {-# NOINLINE f #-} in even $ f 3
Above expression as (optimised) Core:
join {

f_sZe [InlPrag=NOINLINE, Dmd=1C(1,L)] :: Int -> Bool
[LclId[JoinId(1)(Just [!])], Arity=1, Str=<1L>]
f_sZe (x_aYj [OS=OneShot] :: Int)

= case x_aYj of { I# x1_aHU ->
case remInt# (*# x1_aHU 42#) 2# of {
__DEFAULT -> False;
0# -> True

}
} } in

jump f_sZe (I# 3#)
Trace of denotational interpreter:
Let1->App1->Lookup(f_sZe)->Update->App2->Case1->
LookupArg(I# 3#)->Update->Case2->Case1->App1->
App1->App2->App2->LookupArg(*# x1_aHU 42#)->App1->App1->
App2->App2->Update->Case2-><(True, [0 ↦→_, 1↦→_, 2↦→_])>

134

4.5 Static Analysis

data Card = C_00 | C_01 | C_0N | C_10 | C_11 | C_1N
data SubDemand = ...

data Demand = Card :∗ SubDemand
type DmdT s v = AnalEnv→ SubDemand→ AnalM s (v,Uses)
type DmdVal = [Demand]
type DmdD s = DmdT s DmdVal

instance Trace (DmdD s) where
step (Look x) d = 𝜆env sd → do
(v, 𝜑) ← d env sd

if isBoundAtTopLvl env x then ... else pure (v, 𝜑 + [x ↦→ C_11 :∗ sd])
step d = d

instance Domain (DmdD s) where ...
instance HasBind (DmdD s) where ...

Fig. 4.23: A rough outline of the semantic domain of Demand Analysis

Demand Analysis as Denotational Interpreter

Figure 4.23 gives a rough sketch of the semantic domain definition for Demand
Analysis.

The overall goal is to infer a Demand for each variable binding, where a
demand n :∗ sd describes how often (n ::Card) and how deep (sd :: SubDemand) a
variable is evaluated. ACard is a generalisation of usage cardinalityU, describing
an interval of evaluation cardinality; for example, C_1Nmeans “evaluated at least
once, but potentially many times”. The cardinalities with lower bound 0 (C_00,
C_01, C_0N) correspond to the usage cardinalities U0, U1, U𝜔 ; the lower bound
encodes whether or not a variable was evaluated strictly. A SubDemand is best
understood as an abstraction of evaluation contexts. An in-depth description
with examples can be found in Sergey, Vytiniotis, et al. [2017].

The abstract trace type DmdT produces some value v as well as a Uses, just
as for TU in Section 4.5.1. However, it does so in a rather deep nest of types:

• AnalM s plays the role of AnnT s in Section 4.5.4, maintaining annotations
and speeding up fixpoint iteration.

• The analysis result is indexed by a SubDemand; a description of how
deep the expression is to be evaluated. The more precise the SubDemand

135

4 Abstracting Denotational Interpreters

describes the actual evaluation contexts the expression occurs in at runtime,
the more accurate are the Uses returned for that expression.

• Furthermore, an AnalEnv carries global state such as optimisation flags,
means for reducing types and further syntactic information about bindings,
such as whether a variable is bound at the top-level.

An abstract domain defined as a function sounds antithetical to the mantra in
Section 4.1.3 that abstract domains are finitely represented. However, Demand
Analysis only ever maintains one particular point of the indexed domain, that is,
every expression is analysed under one particular SubDemand. This SubDemand
may increase during fixpoint iteration, though, causing another round of analysis,
but there is always a top element in SubDemand to default to (for example for
exported functions). We apply the typical widening measures in HasBind, so in
practice Demand Analysis has not run into infinite loops for a couple of years.

Type DmdVal is similar to ValueU, except that it lists full Demands instead of
flat usage cardinalities U.

The Trace instance is very similar to the one for DU, it is just a little bit more
complicated because of special code for top-level bindings and the fact that
bindings get annotated with demands instead of simple usage cardinalities. The
demand C_11 :∗ sd describes a single, strict use of the variable in the evaluation
context described by sub-demand sd.
The resulting analysis is sufficient to bootstrap the compiler and passes the

testsuite. However, the compiler performance takes a serious hit due to the
implementation of bind :: BindHint → [[d] → d] → ([d] → d) → d. The
way fixpoint iteration updates one binding d in mutually recursive groups [d]
at a time is very inefficient for the linked list representation, also because every
[d] ultimately turns into as many updates of the Name :⇀ d mapping. It would
be far preferable to operate on the Name :⇀ d environment directly. Finding a
good abstraction that achieves this without exposing the whole environment is
left for future work.

It is nice that different static analyses fit into the same framework as the call-by-
need semantics. Another important benefit is that correctness proofs become
simpler, as we will see next.

136

4.6 Generic Abstract By-Name and By-Need Interpretation

4.6 Generic Abstract By-Name and By-Need

Interpretation

In this section I prove and apply an abstract interpretation theorem of the form

𝛼S (SneedJeK) ⊑ SD̂JeK.

This statement can be read as follows: For an expression e, the static analysis
SD̂JeK on the right-hand side overapproximates (⊒) a property of the by-need
semantics SneedJeK on the left-hand side. The abstraction function 𝛼S , given in
Figure 4.24, defines the semantic property of interest in terms of the abstract
domain D̂ of SD̂JeK𝜌 , which is short for SJeK𝜌 :: D̂. That is: the type class
instances on D̂ determine 𝛼S , and hence the semantic property that is soundly
abstracted by SD̂JeK𝜌 , as per the relationship between semantic properties and
Galois connections outlined in Section 2.3.
I will instantiate the theorem at DU in order to prove that usage analysis
SusageJeK𝜌 = SDUJeK𝜌 infers absence, just as absence analysis in Section 4.1.
This proof will be much simpler than the proof for Theorem 4.1, because the com-
plicated preservation proof is reusably contained in the abstract interpretation
theorem.

Similar to the storyline in Section 4.4, I will show how to use Theorem 4.18 be-
fore developing the theoretical framework to prove it, which I do in Sections 4.6.6
to 4.6.9.

4.6.1 A Reusable Abstract By-Need Interpretation Theorem

In this subsection, I introduce Theorem 4.18 for abstract by-need interpretation,
which we will apply to prove usage analysis sound in Section 4.6.3. The theorem
corresponds to the following derived inference rule, referring to the abstraction
laws in Figure 4.25 by name:

Mono Step-App Step-Sel Stuck-App Stuck-Sel
Beta-App Beta-Sel ByName-Bind Step-Inc Update

𝛼S (SneedJeK) ⊑ SD̂JeK

In other words: prove the abstraction laws for an abstract domain D̂ of your
choosing (such as DU) and I give you a proof of sound abstract by-need inter-
pretation for the static analysis SD̂J K!

137

4 Abstracting Denotational Interpreters

𝛼S : ((Name :⇀ Dne) → Dne) → ((Name :⇀ D̂) → D̂)
𝛼E : ℘(Heapne × (Name :⇀ Dne)) ⇄ (Name :⇀ D̂) : 𝛾E

𝛼D : Heapne → (℘(Dne) ⇄ D̂) : 𝛾D

𝛼T : ℘(T (Valuene,Heapne)) ⇄ D̂ : 𝛾T 𝛽T : T (Valuene,Heapne) → D̂

𝛼S (𝑆) (𝜌) = 𝛼T ({ 𝑆 (𝜌) (𝜇) | (𝜇, 𝜌) ∈ 𝛾E (𝜌) })
𝛼E (𝐸) (𝑥) = 𝛼T ({ 𝜌 (𝑥) (𝜇) | (𝜇, 𝜌) ∈ 𝐸 })
𝛼D (𝜇) (𝐷) = 𝛼T ({ 𝑑 (𝜇) | 𝑑 ∈ 𝐷 })
𝛼T (𝑇) =

⊔{ 𝛽T (𝜏) | 𝜏 ∈ 𝑇 }

𝛽T (𝜏) =

step e (𝛽T (𝜏 ′)) if 𝜏 = Step e 𝜏 ′

stuck if 𝜏 = Ret (Stuck, 𝜇)
fun (𝛼D (𝜇) ◦ f

∗ ◦ 𝛾D (𝜇)) if 𝜏 = Ret (Fun f , 𝜇)
con k (map (𝛼D (𝜇) ◦ { }) ds) if 𝜏 = Ret (Con k ds, 𝜇)

Fig. 4.24: Galois connection 𝛼S for by-need abstraction derived from Trace, Domain and
Lat instances on D̂

Note that I get to determine the abstraction function 𝛼S based on the Trace,
Domain and Lat instance on your D̂. Figure 4.24 defines how 𝛼S is thus derived.

Let us calculate𝛼S for the closed example expression e ≜ let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖:

𝛼S (SneedJ(let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖)K) (𝜀)
= 𝛽T (SneedJ(let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖)K𝜀 (𝜀)) (4.1)
= 𝛽T (Let1 ↩−→ Look(𝑖) ↩−→ App1 ↩−→ App2 ↩−→ Upd ↩−→ ⟨(𝜆, [0 ↦→])⟩) (4.2)
= step Let1 $ step (Look "i") $... $ (4.3)

fun (𝜆d̂ → ⊔{𝛽T (App2 ↩−→ d ([0↦→])) | d ∈ 𝛾D ([0↦→])(d̂)})
⊑ step Let1 $ step (Look "i") $... $ fun (𝜆d̂ → step App2 d̂) (4.4)
= ⟨[i ↦→ U1],U1 : Rep U𝜔 ⟩ :: DU (4.5)
= SusageJ(let 𝑖 = (λ̄𝑦.λ̄𝑥 .𝑥) 𝑖 in 𝑖)K𝜀

In (4.1), 𝛼S (SneedJeK) (𝜀) simplifies to 𝛽T (SneedJeK𝜀 (𝜀)). Function 𝛽T then folds
the by-need trace (4.2) into an abstract domain element in D̂. It does so by
eliminating every Step ev in the trace with a call to step ev, and every concrete
Value at the end of the trace with a call to the corresponding Domain method,

138

4.6 Generic Abstract By-Name and By-Need Interpretation

Mono
step, stuck, fun, apply, con, select, bind monotone

Step-App
step ev (apply d a) ⊑ apply (step ev d) a

Step-Sel
step ev (select d alts) ⊑ select (step ev d) alts

Stuck-App
d ∈ {stuck, con k ds}

stuck ⊑ apply d a

Stuck-Sel
d ∈ {stuck, fun x f } ∪ {con k ds | k ∉ dom alts}

stuck ⊑ select d alts

Beta-App
f polymorphic x fresh

f a ⊑ apply (fun x f) a

Beta-Sel
alts polymorphic k ∈ dom alts

(alts ! k) ds ⊑ select (con k ds) alts

ByName-Bind
rhs, body polymorphic

body (lfp rhs) ⊑ bind rhs body

Step-Inc
d ⊑ step ev d

Update
step Upd d = d

Fig. 4.25: By-name and by-need abstraction laws for type class instances of abstract

domain D̂

following the structure of types as in Backhouse and Backhouse [2004]. Since D̂
has a Lat instance, 𝛽T is a representation function [Nielson et al. 1999, Section 4.3],
giving rise to Galois connections 𝛼T ⇄ 𝛾T and 𝛼D (𝜇) ⇄ 𝛾D (𝜇). This implies
that 𝛼D (𝜇) ◦ 𝛾D (𝜇) ⊑ id, justifying the approximation step (⊑) in (4.4). For the
concrete example, we instantiate D̂ to DU in step (4.5) to assert that the resulting
usage type indeed coincides with the result of SusageJ K, as predicted by the
abstract interpretation theorem.

The abstraction function𝛼D for by-need elements d is a bit unusual because it is
indexed by a heap to give meaning to addresses referenced by d. My framework
is carefully set up in a way that 𝛼D (𝜇) is preserved when 𝜇 is modified by
memoisation “in the future”, reminiscent of Kripke’s possible worlds. For similar
reasons, the abstraction function for environments pairs up definable by-need
environments 𝜌 , the entries of which are of the form step (Look y) (fetch a),
with definable heaps 𝜇, the entries of which are of the form memo a d.

Thanks to fixing 𝛼S , we can prove the following abstraction theorem, corres-
ponding to the inference rule at the begin of this subsection:

139

4 Abstracting Denotational Interpreters

Theorem 4.18 (Abstract By-need Interpretation). Let e be an expression, D̂ a□ 163
domain with instances for Trace, Domain, HasBind and Lat, and let 𝛼S be the

abstraction function from Figure 4.24. If the abstraction laws in Figure 4.25 hold,

then SD̂J K is an abstract interpreter that is sound wrt. 𝛼S , that is,

𝛼S (SneedJeK) ⊑ SD̂JeK.

Let us unpack law Beta-App to see how the abstraction laws in Figure 4.25
are to be understood. To prove Beta-App, one has to show that ∀f a x . f a ⊑
apply (fun x f) a in the abstract domain D̂. This states that summarising f

through fun, then applying the summary to a must approximate a direct call to
f ; it amounts to proving correct the summary mechanism. In Section 4.1, I have
proved a substitution Lemma 4.3, which is a syntactic form of this statement.
The “f polymorphic” premise asserts that f is definable at polymorphic type
∀d . (Trace d,Domain d,HasBind d) ⇒ d → d, which is important to prove
Beta-App (in Section 4.6.2).
Law Beta-Sel states a similar property for data constructor redexes. Law

ByName-Bind expresses that the abstract bind implementation must be sound
for by-name evaluation, that is, it must approximate passing the least fixpoint lfp

of the rhs functional to body. The remaining laws are congruence rules involving
step and stuck as well as a monotonicity requirement for all involved operations.
These laws follow the mantra “evaluation improves approximation”; for example,
law Stuck-App expresses that applying a stuck term or constructor evaluates
to (and thus approximates) a stuck term, and Stuck-Sel expresses the same for
select stack frames. In Section 4.6.8, I show a result similar to Theorem 4.18 for
by-name evaluation which does not require the by-need specific laws Step-Inc
and Update.

Note that none of the laws mention the concrete semantics or the abstraction
function 𝛼S . This is how fixing the concrete semantics and 𝛼S pays off; the
usual abstraction laws such as 𝛼D (𝜇) (apply d a)⊑�apply (𝛼D (𝜇) (d)) (𝛼D (𝜇) (a))
further decompose into Beta-App. I think this is a nice advantage to my approach,
because the author of the analysis does not need to reason about by-need heaps
in order to soundly approximate a semantic trace property expressed via Trace
instance!

140

4.6 Generic Abstract By-Name and By-Need Interpretation

4.6.2 A Modular Proof for Beta-App: A Simpler Substitution

Lemma

In order to instantiate Theorem 4.18 for usage analysis in Section 4.6.3, I need to
prove in particular that DU satisfies the abstraction law Beta-App in Figure 4.25.
Beta-App corresponds to the syntactic substitution Lemma 4.3 of Section 4.1,
and this subsection presents its proof.

Before we discuss this proof, note that the proof for Lemma 4.3 has a serious
drawback: It relies on knowing the complete definition of AJ K and thus is non-
modular. As a result, the proof complexity scales in the size of the interpreter,
and whenever the definition of AJ K changes, Lemma 4.3 must be updated. The
complexity of such non-modular proofs would become unmanageable for large
denotational interpreters such as for WebAssembly [Brandl et al. 2023].
For Beta-App, dubbed semantic substitution, the proof fares much better:

Lemma 4.19 (Beta-App, Semantic substitution). Let x :: Name be fresh, a :: DU □ 198
and f :: (Trace d,Domain d,HasBind d) ⇒ d → d. Then f a⊑apply (fun x f) a

in DU.

As can be seen, its statement does not refer to the interpreter definition SJ K
at all. Instead, the complexity of its proof scales with the number of abstract
operations supported in the semantic domain of the interpreter for a much more
modular proof. This modular proof appeals to parametricity [Reynolds 1983] of
f ’s polymorphic type ∀d . (Trace d,Domain d,HasBind d) ⇒ d → d. Of course,
any function defined by the generic interpreter satisfies this requirement.
Without the premise of Beta-App, the law cannot be proved for usage ana-

lysis; the following monotone, but non-polymorphic definition for f is a counter-
example:

Example 4.20. Let z ≠ x ≠ y. The monotone function f :: DU → DU defined as

f ⟨𝜑, ⟩ = if 𝜑 !? y ⊑ U0 then ⟨𝜀,Rep U𝜔 ⟩ else ⟨[z ↦→ U1],Rep U𝜔 ⟩

violates f a ⊑ apply (fun x f) a. To see that, let a ≜ ⟨[y ↦→ U1],Rep U𝜔 ⟩ and
consider

f a = ⟨[z ↦→ U1],Rep U𝜔 ⟩ ̸⊑ ⟨𝜀,Rep U𝜔 ⟩ = apply (fun x f) a.

141

4 Abstracting Denotational Interpreters

To prove Lemma 4.19 via parametricity, we encode f ’s type in System 𝐹 as
𝑓 : ∀𝑋 . Dict(𝑋) → 𝑋 → 𝑋 (where Dict(d) encodes the type class dictionaries
of (Trace d,Domain d,HasBind d)) and derive the following free theorem:

𝑅 ⊆ 𝐴 × 𝐵 (inst1, inst2) ∈ Dict(𝑅) (𝑑1, 𝑑2) ∈ 𝑅
(𝑓𝐴 (inst1) (𝑑1), 𝑓𝐵 (inst2) (𝑑2)) ∈ 𝑅

The key to making use of parametricity is to find a useful instantiation of this
theorem, of relation 𝑅 in particular. I successfully proved Beta-App with the
following instantiation:

𝐴 ≜ 𝐵 ≜ DU, inst1 ≜ inst2 ≜ inst, 𝑑1 ≜ 𝑎, 𝑑2 ≜ pre(𝑥)
𝑅𝑥,𝑎 (𝑑1, 𝑑2) ≜ ∀𝑔. 𝑑1 = 𝑔(𝑎) ∧ 𝑑2 = 𝑔(pre(𝑥)) =⇒ 𝑔(𝑎) ⊑ apply(fun(𝑥,𝑔), 𝑎)

where pre(𝑥) ≜ ⟨[x ↦→ U1],Rep U𝜔 ⟩ is the argument that the implementation
of fun x f passes to f and inst is the canonical instance dictionary at DU. This
yields the following inference rule:

(inst, inst) ∈ Dict(𝑅𝑥,𝑎) 𝑎 ⊑ apply(fun(𝑥, id), 𝑎)
𝑓DU (inst) (𝑎) ⊑ apply(fun(𝑥, 𝑓DU (inst)), 𝑎)

where (inst, inst) ∈ Dict(𝑅𝑥,𝑎) entails showing one lemma per type class method,
such as

(∀𝑑1, 𝑑2 . 𝑅𝑥,𝑎 (𝑑1, 𝑑2) =⇒ 𝑅𝑥,𝑎 (𝑓1 (𝑑1), 𝑓2 (𝑑2)))
𝑅𝑥,𝑎 (fun(𝑦, 𝑓1), fun(𝑦, 𝑓2))

Discharging each of these 7+1 subgoals concludes the proof of Lemma 4.19. Next,
we will use Lemma 4.19 to instantiate Theorem 4.18 for usage analysis.

4.6.3 A Simpler Proof That Usage Analysis Infers Absence

Equipped with the generic abstract interpretation Theorem 4.18, I will prove in
this subsection that usage analysis from Section 4.5 infers absence in the same
sense as absence analysis from Section 4.1. The reason I do so is to evaluate the
proof complexity of my approach against the preservation-style proof framework
in Section 4.1.
Specifically, Theorem 4.18 makes it very simple to relate by-need semantics

with usage analysis, taking the place of the absence-analysis-specific preservation
lemma. I give the full proof inline:

142

4.6 Generic Abstract By-Name and By-Need Interpretation

Corollary 4.21 (SusageJ K abstracts SneedJ K). Let e be an expression and 𝛼S the

abstraction function from Figure 4.24. Then 𝛼S (SneedJeK) ⊑ SusageJeK.

Proof. By Theorem 4.18, it suffices to show the abstraction laws in Figure 4.25.

• Mono: Always immediate, since ⊔ and + are the only functions matching
on U, and these are monotonic.

• Stuck-App, Stuck-Sel: Trivial, since stuck = ⊥.

• Step-App, Step-Sel, Step-Inc, Update: Follows by unfolding step, apply,
select and associativity of +.

• Beta-App: Follows from Lemma 4.19.

• Beta-Sel: Very similar to Lemma 4.19. Note that con is quite like an
𝑛-ary function application (apply) to an unknown function (hence value
Rep U𝜔), whereas select is like the matching𝑛-ary abstraction (fun), except
that use of the field binders is not recorded because con assumes it to be
U𝜔 anyway.

• ByName-Bind: kleeneFix approximates the least fixpoint lfp since the
iteratee rhs is monotone. (As I said in Section 4.5.1, I omit a widening
operator for rhs that guarantees that kleeneFix terminates.)

□

The next step is to leave behind the definition of absence in terms of the LK
machine in favour of one using SneedJ K . That is a welcome simplification be-
cause it leaves us with a single semantic artefact — the denotational interpreter —
instead of an operational semantics and a separate static analysis as in Section 4.1.
Thanks to adequacy (Theorem 4.4), this new notion is not a redefinition but
provably equivalent to Definition 4.2:

Lemma 4.22 (Denotational absence). Variable x is used in e if and only if □ 205
there exists a by-need evaluation context E and expression e

′
such that the trace

SneedJE[Let x e
′

e]K𝜀 (𝜀) contains a Look x event. Otherwise, x is absent in e.

I define the by-need evaluation contexts for our language in the Appendix,
in Figure A.2 on page page 204. Thus insulated from the LK machine, we may
restate and prove Theorem 4.1 for usage analysis.

143

4 Abstracting Denotational Interpreters

Theorem4.23 (SusageJ K infers absence). Let 𝜌𝑒 ≜ [y ↦→ ⟨[y ↦→ U1],Rep U𝜔 ⟩] □ 210
be the initial environment with an entry for every free variable y of an expression

e. If SusageJeK𝜌𝑒 = ⟨𝜑, v⟩ and 𝜑 !? x = U0, then x is absent in e.

Proof sketch. If x is used in e, there is a traceSneedJE[Let x e
′

e]K𝜀 (𝜀) containing
a Look x event. The abstraction function 𝛼S induced by DU aggregates lookups
in the trace into a 𝜑 ′ :: Uses, e.g. 𝛽T (Look(𝑖) ↩−→ Look(𝑥) ↩−→ Look(𝑖) ↩−→
⟨...⟩) = ⟨[i ↦→ U𝜔 , x ↦→ U1], ...⟩. Clearly, it is 𝜑 ′ !? x ⊒ U1, because there is at
least one Look x. Corollary 4.21 and a context invariance Lemma A.15 prove
that the computed 𝜑 approximates 𝜑 ′, so 𝜑 !? x ⊒ 𝜑 ′ !? x ⊒ U1 ≠ U0. □

4.6.4 Comparison to Ad-hoc Preservation Proof

Although I have not disclosed the proof for Theorem 4.18 yet, we have seen
enough to draw a comparison to the preservation-style proof framework in
Section 4.1.

• Where there were multiple separate semantic artefacts in Section 4.1, such
as a small-step semantics and an extension of the absence analysis to
machine configurations 𝜎 in order to state preservation (Lemma A.9), my
proof only has a single semantic artefact that needs to be defined and un-
derstood: the denotational interpreter, albeit with different instantiations.

• What is more important is that a simple proof for Corollary 4.21 in half
a page replaces a tedious, error-prone and incomplete proof for the pre-
servation lemma of Section 4.1 (Lemma A.9). Of course, in this section I
lean on Theorem 4.18 to prove what amounts to a preservation lemma; the
difference is that my proof will properly account for heap update and can
be shared with other analyses that are sound wrt. by-name and by-need,
such as type analysis. Thus, I achieve the goal of disentangling semantic
details from the proof.

• Furthermore, the proof for Corollary 4.21 by parametricity in this section
is modular, in contrast to Lemma 4.3 which is proven by cases over the
interpreter definition. More work needs to be done to achieve a modular
proof of the underlying Theorem 4.18, however. We will see that the
pendant for abstract by-name interpretation (Theorem 4.28) already has a
modular proof.

144

4.6 Generic Abstract By-Name and By-Need Interpretation

4.6.5 Interlude

So far, we have seen how to use the abstract interpretation Theorem 4.18, but not
proved it. Proving this theorem correct is the overarching goal of the remaining
subsections of this section.
In order to properly define the representation function 𝛽T and thus 𝛼S from

Figure 4.24 on infinite traces, I will need to define the concept of a safety ex-

tension in Section 4.6.7. Before I prove Theorem 4.18 in Section 4.6.9, it is very
illuminating to first prove the corresponding by-name abstract interpretation
Theorem 4.28 in Section 4.6.8. This proof is modular because it appeals to
parametricity. After the non-modular proof for Theorem 4.18, I will discuss in
Section 4.6.10 why it cannot be proved modularly by parametricity, conjectur-
ing that defining and proving a Kripke logical relation on type structure could
provide a modular proof.

4.6.6 Abstracting Guarded Fixpoints

In this subsection, I show that least fixpoints abstract guarded fixpoints, an
important property in later proofs.

Suppose that we were only interested in the trace component of our semantic
domain, thus effectively restricting ourselves to T ≜ T (), and that we were
to approximate properties 𝑃 ∈ ℘(T) about such traces by a Galois connection
𝛼 : (℘(T), ⊆) ⇄ (D̂, ⊑) : 𝛾 . Alas, although the abstraction function 𝛼 is well-
defined as a mathematical function, it most certainly is not computable at infinite
inputs (in T∞), for example at the guarded fixpoint (recall that fix f = f (fix f))

fix (Step (Look x)) = Step (Look x) (Step (Look x) ...).

The whole point about static analyses is that they approximate program behavior
in finite data. As we have discussed in Section 4.5.1, this rules out use of guarded
fixpoints fix for usage analysis, so it computes the least fixpoint lfp instead.
Concretely, static analyses often approximate the abstraction of the guarded
fixpoint by the least fixpoint of the abstracted iteratee, assuming the following
approximation relationship, where f

∗ :: ℘(T) → ℘(T) denotes the lifting of f to
powersets:

𝛼 ({fix (Step (Look x))}) ⊑ lfp (𝛼 ◦ (Step (Look x))∗ ◦ 𝛾).

I will now formally prove this property:

145

4 Abstracting Denotational Interpreters

Lemma 4.24 (Guarded fixpoint abstraction). Let D̂ be a domain with an instance

for Lat, and let 𝛼 : (℘(T), ⊆) ⇄ (D̂, ⊑) : 𝛾 a Galois connection. Then, for any

iteratee f :: T→ T,
𝛼 ({fix f }) ⊑ lfp (𝛼 ◦ f

∗ ◦ 𝛾),

where lfp f̂ denotes the least fixpoint of f̂ and f
∗ :: ℘(T) → ℘(T) is the lifting of f

to powersets.

Proof. I should note that I will be sloppy in the treatment of the later modality
▶ here. Since I have proven totality of all expressions worth considering in
Section 4.4.2, the utility of being explicit is rather low (much more so since a
pen and paper proof is not type checked) and I will admit myself this kind of
sloppiness from now on.
Let us proceed by Löb induction.

𝛼 ({fix f }) ⊑ lfp (𝛼 ◦ f
∗ ◦ 𝛾)

= H fix f = f (fix f) I
𝛼 ({f (fix f)})

= H Commute f and { } I
𝛼 (f ∗ ({fix f }))
⊑ H id ⊑ 𝛾 ◦ 𝛼 I
𝛼 (f ∗ (𝛾 (𝛼 ({fix f }))))
⊑ H Induction hypothesis I
𝛼 (f ∗ (𝛾 (lfp (𝛼 ◦ f

∗ ◦ 𝛾))))
= H lfp f̂ = f̂ (lfp f̂) I

lfp (𝛼 ◦ f
∗ ◦ 𝛾)

□

4.6.7 Safety Properties and Safety Extension of a Galois

Connection

Figure 4.24 describes a semantic trace property as a “fold”, in terms of a Trace
instance. Of course such a fold (an inductive elimination procedure) has no
meaning when the trace is infinite! Yet it is always clear what I mean: When
the trace is infinite and described by a guarded fixpoint, I consider the meaning
of the fold as the limit (i.e. least fixpoint) of folding over its finite prefixes. In
this subsection, I will prove that this intuition is sound when abstracting safety

properties [Lamport 1977].

146

4.6 Generic Abstract By-Name and By-Need Interpretation

Suppose again that T ≜ T (), that T∞ ⊆ T denotes the subset of infinite traces
and that T∗ ⊆ T denotes the subset of finite traces. Then a safety trace property
𝑃 ⊆ T is defined as follows:

Definition 4.25 (Safety property). A trace property 𝑃 ⊆ T is a safety property
iff, whenever 𝜏1 ∈ T∞ violates 𝑃 (so 𝜏1 ̸∈ 𝑃), then there exists some proper prefix

𝜏2 ∈ T∗ (written 𝜏2 ⋖ 𝜏1) that already violates 𝑃 (𝜏2 ̸∈ 𝑃).

Note that both well-typedness (“𝜏 does not go wrong”) and usage cardinality
abstract safety properties. Conveniently, guarded recursive predicates (on traces)
always describe safety properties [Birkedal and Bizjak 2023; Spies et al. 2021].
The contraposition of the above definition is

∀𝜏1 ∈ T∞. (∀𝜏2 ∈ T∗ . 𝜏2 ⋖ 𝜏1 =⇒ 𝜏2 ∈ 𝑃) =⇒ 𝜏1 ∈ 𝑃,

and we can exploit safety to extend a finitary Galois connection, such as 𝛼S in
Figure 4.24 defined by a fold over the trace, to infinite inputs:

Lemma 4.26 (Safety extension). Let D̂ be a domain with an instance for Lat,
𝛼 : (℘(T∗), ⊆) ⇄ (D̂, ⊑) : 𝛾 a Galois connection and 𝑃 ∈ ℘(T) a safety property.

Then any domain element d̂ that soundly approximates 𝑃 via 𝛾 on finite traces

soundly approximates 𝑃 on infinite traces as well:

∀d̂ . 𝑃 ∩ T∗ ⊆ 𝛾 (d̂) =⇒ 𝑃 ∩ T∞ ⊆ 𝛾∞ (d̂),

where the safety extension 𝛼∞ : (℘(T∞), ⊆) ⇄ (D̂, ⊑) : 𝛾∞ of 𝛼 ⇄ 𝛾 is defined

by the following abstraction function:

𝛼∞ (𝑃) ≜ 𝛼 ({𝜏2 | ∃𝜏1 ∈ 𝑃 . 𝜏2 ⋖ 𝜏1})

Proof. First note that 𝛼∞ uniquely determines the Galois connection via the
representation function

𝛽∞ (𝜏1) ≜ 𝛼 (⋃{𝜏2 | 𝜏2 ⋖ 𝜏1}) .

Now let 𝜏 ∈ 𝑃 ∩ T∞. The goal is to show 𝜏 ∈ 𝛾∞ (d̂), as follows:

𝜏 ∈ 𝑃
=⇒ H 𝑃 safety property I

(∀𝜏2 . 𝜏2 ⋖ 𝜏 =⇒ 𝜏2 ∈ 𝑃 ∩ T∗)

147

4 Abstracting Denotational Interpreters

=⇒ H Assumption 𝑃 ∩ T∗ ⊆ 𝛾 (d̂) I
(∀𝜏2 . 𝜏2 ⋖ 𝜏 =⇒ 𝜏2 ∈ 𝛾 (d̂))

⇐⇒ H Definition of Union I⋃{𝜏2 | 𝜏2 ⋖ 𝜏} ⊆ 𝛾 (d̂)
⇐⇒ H Galois I

𝛼 (⋃{𝜏2 | 𝜏2 ⋖ 𝜏}) ⊑ d̂

⇐⇒ H Definition of 𝛽∞ I
𝛽∞ (𝜏) ⊑ d̂

⇐⇒ H Galois I
𝜏 ∈ 𝛾∞ (d̂)

□

From now on, we tacitly assume that all trace properties of interest are safety
properties, and that any Galois connection defined in Haskell via fold, such as in
Figure 4.24, has been extended to infinite traces via Lemma 4.26.

4.6.8 Abstract By-name Interpretation, in Detail

I will now prove that the by-name abstraction laws in Figure 4.25 induce an
abstract interpretation of by-name semantics via 𝛼S defined in Figure 4.26.
Compared to the by-need trace abstraction in Figure 4.24, the by-name trace

abstraction function in Figure 4.26 is similar yet somewhat simpler because no
heap is involved. We will see that the same is true for the soundness proofs: the
proof for by-need is structurally similar to by-name, however accounting for
heap update leads to considerable complication.
Note that I omit ByName newtype wrappers, as in many other preceding

sections, as well as the Name passed to fun as a poor man’s De Bruijn level. The
meaning of the Galois connection in Figure 4.26 on infinite traces is determined
by Lemma 4.26.
I will now prove sound by-name interpretation by appealing to parametri-

city [Reynolds 1983]. Specifically, I will apply the abstraction theorem to the
System 𝐹 encoding of the type of SJ K ,

SJ K : ∀𝑋 . Dict(𝑋) → Exp→ (Name ⇀ 𝑋) → 𝑋,

148

4.6 Generic Abstract By-Name and By-Need Interpretation

𝛼S : ((Name :⇀ Dna) → Dna) ⇄ ((Name :⇀ D̂) → D̂) : 𝛾S
𝛼E : ℘(Name :⇀ Dna) ⇄ (Name :⇀ D̂) : 𝛾E

𝛼D : ℘(Dna) ⇄ D̂ : 𝛾D 𝛽T : T (Value (ByName T)) → D̂

𝛼S (𝑆) (𝜌) = 𝛼T ({ 𝑆 (𝜌) | 𝜌 ∈ 𝛾E (𝜌) })
𝛼E (𝐸) (𝑥) = 𝛼T ({ 𝜌 (𝑥) | 𝜌 ∈ 𝐸 })
𝛼D (𝐷) =

⊔{ 𝛽T (𝑑) | 𝑑 ∈ 𝐷 }

𝛽T (𝜏) =

step e (𝛽T (𝜏)) if 𝜏 = Step e 𝜏 ′

stuck if 𝜏 = Ret Stuck
fun (𝛼D ◦ f

∗ ◦ 𝛾D) if 𝜏 = Ret (Fun f)
con k (map (𝛼D ◦ { }) ds) if 𝜏 = Ret (Con k ds)

Fig. 4.26: Galois connection 𝛼S for by-name abstraction derived from Trace, Domain
and Lat instances on D̂

where Dict(d) encodes (Trace d,Domain d,HasBind d). The abstraction the-
orem yields the following free theorem about relations 𝑅 between base values

𝑅 ⊆ 𝐴 × 𝐵 (inst1, inst2) ∈ Dict(𝑅) (𝜌1, 𝜌2) ∈ Name ⇀ 𝑅

(S𝐴JeK(inst1) (𝜌1),S𝐵JeK(inst2) (𝜌2)) ∈ 𝑅
(4.6)

In the following proof, I will instantiate 𝑅 at 𝑅(d, d̂) ≜ 𝛼D ({d}) ⊑ d̂ to show the
abstraction relationship.
I will need the following auxiliary lemma for the apply and select cases:

Lemma 4.27 (By-name bind). It is 𝛽T (d >>= f) ⊑ f̂ d̂ if

1. 𝛽T (d) ⊑ d̂, and

2. for all events ev and elements d̂′, ŝtep ev (f̂ d̂′) ⊑ f̂ (ŝtep ev d̂′), and

3. for all values v, 𝛽T (f v) ⊑ f̂ (𝛽T (Ret v)).

Proof. By Löb induction.
If d = Step ev d

′, define d̂′ ≜ 𝛽T (d′). We get

𝛽T (d >>= f) = 𝛽T (Step ev d
′ >>= f) = ŝtep ev (𝛽T (d′ >>= f))

⊑ H Induction hypothesis at 𝛽T (d′) = d̂′, Monotonicity of ŝtep I

149

4 Abstracting Denotational Interpreters

ŝtep ev (f̂ (𝛽T (d′)))
⊑ H Assumption (2) I

f̂ (ŝtep ev (𝛽T (d′))) = f̂ (𝛽T (d))
⊑ H Assumption (1) I

f̂ d̂

Otherwise, d = Ret v for some v :: Value.

𝛽T (Ret v >>= f) = 𝛽T (f v)
⊑ H Assumption (3) I

f̂ (𝛽T (Ret v)) = f̂ (𝛽T (d))
⊑ H Assumption (1) I

f̂ d̂

□

What follows is the sound abstraction proof that instantiates the free theorem.
Note that its statement fixes the interpreter definition to SJ K , however the
proof would still work if generalised to any definition with the same type as
SJ K ! Hence the proof is automatically modular in the sense of Section 4.6.2.

Theorem 4.28 (Abstract By-name Interpretation). Let e be an expression, D̂ a

domain with instances for Trace, Domain, HasBind and Lat, and let 𝛼S be the

abstraction function from Figure 4.26. If the by-name abstraction laws in Figure 4.25

hold, then SD̂J K is an abstract interpreter that is sound wrt. 𝛼S ,

𝛼S (SnameJeK) ⊑ SD̂JeK.

Proof. Let inst : Dict(Dna), înst : Dict(D̂) the canonical dictionaries from the
type class instance definitions. Instantiate the free theorem (4.6) above as follows:

𝐴 ≜ Dna, 𝐵 ≜ D̂, 𝑅(d, d̂) ≜ 𝛼D ({d}) ⊑ d̂, inst1 ≜ inst, inst2 ≜ înst, e ≜ e

Note that (𝜌, �̂�) ∈ (Name ⇀ 𝑅) ⇐⇒ 𝛼E ({𝜌}) ⊑ �̂� ⇐⇒ 𝜌 ∈ 𝛾E (�̂�) by simple
calculation.
The above instantiation yields, in Haskell,

(inst, înst) ∈ Dict(𝑅) 𝜌 ∈ 𝛾E (�̂�)
𝛼D ({SnameJeK𝜌 }) ⊑ SD̂JeK�̂�

150

4.6 Generic Abstract By-Name and By-Need Interpretation

and since 𝜌 and �̂� can be chosen arbitrarily and 𝛼D is defined elementwise by
𝛽T, we get

(inst, înst) ∈ Dict(𝑅)
𝛼D ({SnameJeK𝜌 | 𝜌 ∈ 𝛾E (�̂�)}) ⊑ SD̂JeK�̂�

We refold the definition of 𝛼S to get

(inst, înst) ∈ Dict(𝑅)
𝛼S (SnameJeK) ⊑ SD̂JeK

Hence, in order to show the goal, it suffices to prove (inst, înst) ∈ Dict(𝑅). By
the relational interpretation of products, we get one subgoal per instance method.
Note that 𝑅(d, d̂) ⇐⇒ 𝛽T (d) ⊑ d̂ by unfolding the definition of 𝛼D, and it is
more direct to argue in terms of the latter.

• Case step. Goal:
(d, d̂) ∈ 𝑅

(step ev d, ŝtep ev d̂) ∈ 𝑅
.

Then 𝛽T (Step ev d) = ŝtep ev (𝛽T (d)) ⊑ ŝtep ev d̂ by assumption and
monotonicity.

• Case stuck. Goal: (stuck,�stuck) ∈ 𝑅.
Then 𝛽T (stuck) = 𝛽T (Ret Stuck) = �stuck.

• Case fun. Goal:
∀(d, d̂) ∈ 𝑅. (f d, f̂ d̂) ∈ 𝑅
(fun f , f̂un f̂) ∈ 𝑅

.

Then 𝛽T (fun f) = 𝛽T (Ret (Fun f)) = f̂un (𝛼D ◦ f
∗ ◦ 𝛾D) and it suffices to

show that 𝛼D ◦ f
∗ ◦ 𝛾D ⊑ f̂ by monotonicity of f̂un.

(𝛼D ◦ f
∗ ◦ 𝛾D) d̂

= H Unfold ∗, 𝛼D, simplify I⊔{𝛽T (f d) | d ∈ 𝛾D (d̂)}
⊑ H Apply premise to 𝛽T (d) ⊑ d̂ I

f̂ d̂

• Case apply. Goal:
(d, d̂) ∈ 𝑅 (a, â) ∈ 𝑅
(apply d a, �apply d̂ â) ∈ 𝑅

.

apply d a is defined as d >>= 𝜆v → case v of Fun g → g a; → stuck. In

151

4 Abstracting Denotational Interpreters

order to show the goal, we need to apply Lemma 4.27 at f̂ d̂ ≜ �apply d̂ â.
We get three subgoals for the premises of Lemma 4.27:

– 𝛽T (d) ⊑ d̂: By assumption (d, d̂) ∈ 𝑅.
– ∀ev d̂′ . ŝtep ev (�apply d̂′ â) ⊑ �apply (ŝtep ev d̂′) â: By assumption

Step-App.
– ∀v. 𝛽T (case v of Fun g → g a; → stuck) ⊑ �apply (𝛽T (Ret v)) â:

By cases over v.

∗ Case v = Stuck: Then 𝛽T (stuck) = �stuck ⊑ �apply �stuck â by
assumption Stuck-App.

∗ Case v = Con k ds: Then 𝛽T (stuck) = �stuck⊑�apply (ĉon k d̂s) â

by assumption Stuck-App, for the suitable d̂s.
∗ Case v = Fun g: Then

𝛽T (g a)
⊑ H id ⊑ 𝛾D ◦ 𝛼D, rearrange I
(𝛼D ◦ g

∗ ◦ 𝛾D) (𝛼D a)
⊑ H Assumption 𝛽T (a) ⊑ â I
(𝛼D ◦ g

∗ ◦ 𝛾D) â

⊑ H Assumption Beta-App I�apply (f̂un (𝛼D ◦ g
∗ ◦ 𝛾D)) â

= H Definition of 𝛽T, v I�apply (𝛽T (Ret v)) â

• Case con. Goal:
(ds, d̂s) ∈ [𝑅]

(con k ds, ĉon k d̂s) ∈ 𝑅
.

Then 𝛽T (con k ds) = 𝛽T (Ret (Con k ds)) = ĉon k (map (𝛼D ◦ { }) ds).
The assumption (ds, d̂s) ∈ [𝑅] implies map (𝛼D ◦ { }) ds⊑ d̂s and the goal
follows by monotonicity of ĉon.

• Case select. Goal:
(d, d̂) ∈ 𝑅 (alts, âlts) ∈ Tag :⇀ ([𝑅] → 𝑅)

(select d alts, �select d̂ âlts) ∈ 𝑅
.

select d fs is defined as d >>= 𝜆v → case v of Con k ds | k ∈ dom alts →
(alts ! k) ds; → stuck. In order to show the goal, we need to apply

152

4.6 Generic Abstract By-Name and By-Need Interpretation

Lemma 4.27 at f̂ d̂ ≜ �select d̂ âlts. We get three subgoals for the premises
of Lemma 4.27:

– 𝛽T (d) ⊑ d̂: By assumption (d, d̂) ∈ 𝑅.
– ∀ev d̂′ . ŝtep ev (�select d̂′ âlts) ⊑ �select (ŝtep ev d̂′) âlts: By assump-

tion Step-Sel.
– ∀v. 𝛽T (case v of Con k ds | k ∈ dom alts → (alts ! k) ds; →

stuck) ⊑�select (𝛽T (Ret v)) âlts:
By cases over v. The first three all correspond to when the continu-
ation of select gets stuck.

∗ Case v = Stuck: Then 𝛽T (stuck) = �stuck ⊑ �select �stuck âlts by
assumption Stuck-Sel.

∗ Case v = Fun f : Then 𝛽T (stuck) = �stuck ⊑ �select (f̂un f̂) âlts

by assumption Stuck-Sel, for the suitable f̂ .

∗ Case v = Con k ds, k ̸∈ dom alts: Then 𝛽T (stuck) = �stuck ⊑�select (ĉon k d̂s) âlts by assumption Stuck-Sel, for the suitable
d̂s.

∗ Case v = Con k ds, k ∈ dom alts: Then

𝛽T ((alts ! k) ds)
⊑ H id ⊑ 𝛾D ◦ 𝛼D, rearrange I
(𝛼D ◦ (alts ! k)∗ ◦map 𝛾D) (map (𝛼D ◦ { }) ds)
⊑ H Assumption (alts, âlts) ∈ Tag :⇀ ([𝑅] → 𝑅) I
(âlts ! k) (map (𝛼D ◦ { }) ds)
⊑ H Assumption Beta-Sel I�select (ĉon k (map (𝛼D ◦ { }) ds)) âlts

= H Definition of 𝛽T, v I�select (𝛽T (Ret v)) âlts

• Case bind. Goal:

(∀(d, d̂) ∈ 𝑅. (rhs d, r̂hs d̂) ∈ 𝑅)
(∀(d, d̂) ∈ 𝑅. (body d,�body d̂) ∈ 𝑅)
(bind rhs body, b̂ind r̂hs �body) ∈ 𝑅

.

It is bind rhs body = body (fix rhs) and �body (lfp r̂hs) ⊑ b̂ind r̂hs �body by

153

4 Abstracting Denotational Interpreters

Assumption ByName-Bind. Let us first establish that (fix rhs, lfp r̂hs) ∈ 𝑅,
leaning on our theory about guarded fixpoint abstraction in Section 4.6.6:

𝛼D ({fix rhs})
⊑ H By Lemma 4.24 I

lfp (𝛼D ◦ rhs
∗ ◦ 𝛾D)

= H Unfolding ∗, 𝛼D I
lfp (𝜆d̂ → ⊔{𝛽T (rhs d) | d ∈ 𝛾D (d̂)})
⊑ H Apply premise about rhs to 𝛽T (d) ⊑ d̂ I

lfp r̂hs

Applying this fact to the second assumption proves

(body (fix rhs),�body (lfp r̂hs)) ∈ 𝑅

and thus the goal.

□

4.6.9 Abstract By-need Soundness, in Detail

The goal of this section is to prove Theorem 4.18 correct, which is applicable for
analyses that are sound both wrt. to by-name as well as by-need, such as usage
analysis or perhaps type analysis in Section 4.5.2 (I have however not tried to
prove the latter).

The setup in Section 4.6.8 with its Galois connection in Figure 4.26 is somewhat
similar to the Galois connection in Figure 4.24, however for by-need abstraction
the Galois connection for domain elements d :: Dne is indexed by a heap wrt. to
which the element is abstracted.

We will later see how this indexing yields a Kripke logical relation as the
soundness condition, and that, sadly, such a relation cannot easily be proven
by appealing to Reynolds’ parametricity. As a consequence, the following de-
velopment hardcodes the definition of SneedJ K and often proceeds by cases
on syntax of the object language instead of a more elegant and modular proof
strategy concerning just the semantic domain.
The reason we need to index correctness relations by a heap is as follows:

Although in Section 4.3.3 I considered an element d as an atomic denotation,
such a denotation actually only carries meaning when it travels together with a
heap 𝜇 that ties the addresses that d references to actual meaning.

154

4.6 Generic Abstract By-Name and By-Need Interpretation

𝜇1 ⇝ 𝜇2

⇝-Refl
⊢H 𝜇
𝜇 ⇝ 𝜇

⇝-Trans
𝜇1 ⇝ 𝜇2 𝜇2 ⇝ 𝜇3

𝜇1 ⇝ 𝜇3

⇝-Ext
a ̸∈ dom 𝜇 adom 𝜌 ⊆ dom 𝜇 ∪ {a}
𝜇 ⇝ 𝜇 [a ↦→ memo a (SneedJeK𝜌)]

⇝-Memo
𝜇1 ! a = memo a (SneedJeK𝜌1)

▶ (SneedJeK𝜌1 (𝜇1) = Step ev (SneedJvK𝜌2 (𝜇2)))
𝜇1 ⇝ 𝜇2 [a ↦→ memo a (SneedJvK𝜌2)]

Fig. 4.27: Heap progression relation

There are many elements (functions!) d :: Dne, many with very surprising
behavior, but we are only interested in elements definable by the interpreter:

Definition 4.29 (Definable by-need entities). We write ⊢D d, ⊢E 𝜌 or ⊢H 𝜇 to say
that the by-need element d, environment 𝜌 or heap 𝜇 is definable, defined as

• ⊢E 𝜌 ≜ ∀x ∈ dom 𝜌. ∃y a. 𝜌 ! x = step (Look y) (fetch a).

• adom 𝜌 ≜ {a | 𝜌 ! x = step (Look y) (fetch a)}.

• ⊢D d ≜ ∃e 𝜌. ⊢E 𝜌 ∧ d = SneedJeK𝜌 .

• adom d ≜ adom 𝜌 where d = SneedJeK𝜌 .

• ⊢H 𝜇 ≜ ∀a. ∃d . 𝜇 ! a = memo a d ∧ ▶ (⊢D d ∧ adom d ⊆ dom 𝜇).

We refer to adom d (resp. adom 𝜌) as the address domain of d (resp. 𝜌).

Henceforth, I assume that all elements d, environments 𝜌 and heaps 𝜇 of
interest are definable in this sense. It is easy to see that definability is preserved
by SneedJ K whenever the environment or heap is extended; the important case
is the implementation of bind.

The indexed family of abstraction functions improves whenever the heap with
which we index is “more evaluated” — the binary relation (⇝) (“progresses to”)
on heaps in Figure 4.27 captures this progression. It is defined as the smallest pre-
order (rules ⇝-Refl, ⇝-Trans) that contains rules ⇝-Ext and ⇝-Memo. The
former corresponds to extending the heap in the Let case. The latter corresponds
to memoising a heap entry after it was evaluated in the Var case.

155

4 Abstracting Denotational Interpreters

Heap progression is the primary mechanism by which we can reason about the
meaning of programs: If 𝜇1 progresses to 𝜇2 (i.e. 𝜇1 ⇝ 𝜇2), and adom d ⊆dom 𝜇1,
then d 𝜇1 has the same by-name semantics as d 𝜇2, with the latter potentially
terminating in fewer steps. We will exploit this observation in the abstract in
Lemma 4.33, and now work towards a proof.
To that end, it is important to build witnesses of 𝜇1 ⇝ 𝜇2 in the first place:

Lemma 4.30 (Evaluation progresses the heap).
If SneedJeK𝜌1 (𝜇1) = Step ev (SneedJvK𝜌2 (𝜇2)), then 𝜇1 ⇝ 𝜇2.

Proof. By Löb induction and cases on e.

• Case Var x: Let ev1 ≜ tail (init (ev)).

(𝜌1 ! x) 𝜇1
= H ⊢E 𝜌1, some y, a I
Step (Look y) (fetch a 𝜇1)

= H Unfold fetch I
Step (Look y) ((𝜇1 ! a) 𝜇1)

= H ⊢H 𝜇, some e, 𝜌3 I
Step (Look y) (memo a (SneedJeK𝜌3) 𝜇1)

= H Unfold memo I
Step (Look y) (SneedJeK𝜌3 (𝜇1) >>= upd)

= H SneedJeK𝜌3 (𝜇1) = Step ev1 (SneedJvK𝜌2 (𝜇3)) for some 𝜇3 I
Step (Look y) (Step ev1 (SneedJvK𝜌2 (𝜇3) >>= upd))

= H Unfold >>=, upd I
Step (Look y) (Step ev1 (SneedJvK𝜌2 (𝜇3) >>= 𝜆v 𝜇3 →
Step Upd (Ret (v, 𝜇3 [a ↦→ memo a (return v)]))))

Now let sv :: Valuene be the semantic value such that SneedJvK𝜌2 (𝜇3) =
Ret (sv, 𝜇3).

= H Unfold SneedJvK𝜌2 , ev = [Look y] ++ ev1 ++ [Upd] I
Step ev (Ret (sv, 𝜇3 [a ↦→ memo a (return sv)]))

= H Refold SneedJvK𝜌2 I
Step ev (SneedJvK𝜌2 (𝜇3 [a ↦→ memo a (SneedJvK𝜌2)]))

= H Determinism of SneedJ K , assumption I
Step ev (SneedJvK𝜌2 (𝜇2))

156

4.6 Generic Abstract By-Name and By-Need Interpretation

We have

𝜇1 ! a = memo a (SneedJeK𝜌3) (4.7)
▶ (SneedJeK𝜌3 (𝜇1) = Step ev1 (SneedJvK𝜌2 (𝜇3))) (4.8)
𝜇2 = 𝜇3 [a ↦→ memo a (SneedJvK𝜌2)] (4.9)

We can apply rule ⇝-Memo to Equation (4.7) and Equation (4.8) to get
𝜇1 ⇝ 𝜇3 [a ↦→ memo a (SneedJvK𝜌2)], and rewriting along Equation (4.9)
proves the goal.

• Case Lam x body, ConApp k xs: Then 𝜇1 = 𝜇2 and the goal follows by
⇝-Refl.

• Case App e1 x: Let us assume that

SneedJe1K𝜌1 (𝜇1) = Step ev1 (SneedJLam y e2K𝜌3 (𝜇3))
SneedJe2K𝜌3 [y ↦→𝜌 ! x] (𝜇3) = Step ev2 (SneedJvK𝜌2 (𝜇2))

so that 𝜇1 ⇝ 𝜇3, 𝜇3 ⇝ 𝜇2 by the induction hypothesis. The goal follows
by ⇝-Trans, because ev = [App1] ++ ev1 ++ [App2] ++ ev2.

• Case Case e1 alts: Similar to App e1 x.

• Case Let x e1 e2:

SneedJLet x e1 e2K𝜌1 (𝜇1)
= H Unfold SneedJ K I

bind (𝜆d1 → SneedJe1K𝜌1 [x ↦→step (Look x) d1])
(𝜆d1 → step Let1 (SneedJe2K𝜌1 [x ↦→step (Look x) d1]))
𝜇1

= H Unfold bind, a ≜ nextFree 𝜇 with a ∉ dom 𝜇 I
step Let1 (SneedJe2K𝜌1 [x ↦→step (Look x) (fetch a)] (
𝜇1 [a ↦→ memo a (SneedJe1K𝜌1 [x ↦→step (Look x) (fetch a)])]))

Let me abbreviate d1 ≜ SneedJe1K𝜌1 [x ↦→step (Look x) (fetch a)] . We apply the
induction hypothesis at SneedJe2K𝜌1 [x ↦→step (Look x) (fetch a)] to conclude
that 𝜇1 [a ↦→ memo a d1] ⇝ 𝜇2.
On the other hand, we have 𝜇1 ⇝ 𝜇1 [a ↦→ memo a d1] by rule ⇝-Ext
(note that a ̸∈ dom 𝜇), so the goal follows by ⇝-Trans.

157

4 Abstracting Denotational Interpreters

□

It is often necessary, but non-trivial to cope with equality of elements d modulo
readdressing. Fortunately, we only need to consider equality in the abstract, that
is, modulo 𝛽D, where 𝛽D (𝜇) (d) ≜ 𝛼D (𝜇) ({d}) is the representation function of
𝛼D.

Lemma 4.31 (Abstract readdressing). If a1 ∈ dom 𝜇1, but a2 ̸∈ dom 𝜇1, then
𝛽D (𝜇1) (SneedJeK𝜌1) = 𝛽D (𝜇2) (SneedJeK𝜌2), where 𝜌2 and 𝜇2 are renamings of

𝜌1 and 𝜇1 defined as follows:

• 𝜌2 ! x =

{
step (Look y) (fetch a2) if 𝜌1 ! x = step (Look y) (fetch a1)
𝜌1 ! x otherwise

• a1 ̸∈ dom 𝜇2

• 𝜇2 ! a =

memo a2 (SneedJe1K𝜌4) if a = a2, 𝜌4 renaming of 𝜌3,

𝜇1 ! a1 = memo a1 (SneedJe1K𝜌3)
memo a (SneedJe1K𝜌4) where 𝜌4 renaming of 𝜌3,

𝜇1 ! a = memo a (SneedJe1K𝜌3)

Proof. Simple proof by Löb induction and cases on e. □

Readdressing allows us to prove an abstract pendant of the venerable frame

rule of separation logic [Reynolds 2002]:

Lemma 4.32 (Abstract frame rule). If adom 𝜌 ⊆ dom 𝜇 and a ̸∈ dom 𝜇, then

𝛽D (𝜇) (SneedJeK𝜌) = 𝛽D (𝜇 [a ↦→ memo a d]) (SneedJeK𝜌).

Proof. By Löb induction and cases on e. Only the cases that access the heap are
interesting.

• Case Var x: We never fetch a, because a ̸∈ adom 𝜌 . Furthermore,
the environment 𝜌1 of the heap entry SneedJe1K𝜌1 thus fetched satisfies
adom 𝜌1 ⊆ dom 𝜇 so that we may apply the induction hypothesis.

• Case Let x e1 e2: Follows by the induction hypothesis after readdressing
the extended heap (Lemma 4.31) so that the induction hypothesis can be
applied.

□

158

4.6 Generic Abstract By-Name and By-Need Interpretation

The frame rule in turn is important to show that heap progression preserves
the results of the abstraction function:

Lemma 4.33 (Heap progression preserves abstraction). Let D̂ be a domain with

instances for Trace, Domain, HasBind and Lat, satisfying Beta-App, Beta-Sel,

ByName-Bind and Step-Inc from Figure 4.25.

𝜇1 ⇝ 𝜇2 ∧ adom d ⊆ dom 𝜇1 =⇒ 𝛽D (𝜇2) (d) ⊑ 𝛽D (𝜇1) (d).

Proof. By Löb induction. Element d is definable of the form d = SneedJeK𝜌 for
definable 𝜌 . Proceed by cases on e. Only the Var and Let cases are interesting.

• Case Let x e1 e2: We need to readdress the extended heaps with
Lemma 4.31 so that 𝜇1 [a1 ↦→ memo a1 d1] ⇝ 𝜇2 [a1 ↦→ memo a1 d1]
is preserved, in which case the goal follows by applying the induction
hypothesis.

• Case Var x: Let us assume that 𝜇1 ⇝ 𝜇2 and adom d ⊆ dom 𝜇1. We
get d = step (Look y) (fetch a) for some y and a. Furthermore, let us
abbreviate memo a (SneedJ𝑒𝑖K𝜌𝑖) ≜ 𝜇𝑖 ! a. The goal is to show

step (Look y) (𝛽D (𝜇2) (memo a (SneedJe2K𝜌2)))
⊑ step (Look y) (𝛽D (𝜇1) (memo a (SneedJe1K𝜌1)))

Monotonicity allows us to drop the step (Look y) context

▶ (𝛽D (𝜇2) (memo a (SneedJe2K𝜌2)) ⊑ 𝛽D (𝜇1) (memo a (SneedJe1K𝜌1))).

Now we proceed by induction on 𝜇1 ⇝ 𝜇2, which we only use to prove
correct the reflexive and transitive closure in⇝-Refl and ⇝-Trans.

– Case⇝-Refl: Then 𝜇1 = 𝜇2 and hence 𝛽D (𝜇1) = 𝛽D (𝜇2).
– Case⇝-Trans: Apply the induction hypothesis to the sub-derivations

and apply transitivity of ⊑.

– Case ⇝-Ext
a1 ̸∈ dom 𝜇1 adom 𝜌 ⊆ dom 𝜇1 ∪ {a1}
𝜇1 ⇝ 𝜇1 [a1 ↦→ memo a1 (SneedJeK𝜌)]

:

We get to refine 𝜇2 = 𝜇1 [a1 ↦→ memo a1 (SneedJeK𝜌)]. Since a ∈
dom 𝜇1, we have a1 ≠ a and thus 𝜇1 ! a = 𝜇2 ! a, thus e1 = e2, 𝜌1 = 𝜌2.
We can exploit monotonicity of ▶and simplify the goal to

159

4 Abstracting Denotational Interpreters

𝛽D (𝜇1 [a1 ↦→ memo a1 (SneedJeK𝜌)]) (memo a (SneedJe1K𝜌1))
⊑ 𝛽D (𝜇1) (memo a (SneedJe1K𝜌1))

This follows by applying the abstract frame rule (Lemma 4.32), be-
cause adom 𝜌1 ⊆ dom 𝜇1.

– Case ⇝-Memo

𝜇1 ! a1 = memo a1 (SneedJeK𝜌3)
▶ (SneedJeK𝜌3 (𝜇1) = Step ev (SneedJvK𝜌4 (𝜇3)))

𝜇1 ⇝ 𝜇3 [a1 ↦→ memo a1 (SneedJvK𝜌4)]
:

We get to refine 𝜇2 = 𝜇3 [a1 ↦→ memo a1 (SneedJvK𝜌4)]. When
a1 ≠ a, we have 𝜇1 ! a = 𝜇2 ! a and the goal follows as in the ⇝-Ext
case. Otherwise, a = a1, e1 = e, 𝜌3 = 𝜌1, 𝜌4 = 𝜌2, e2 = v.
The goal can be simplified to

▶ (𝛽D (𝜇2) (memo a (SneedJvK𝜌2)) ⊑ 𝛽D (𝜇1) (memo a (SneedJe1K𝜌1)))

We reason under ▶as follows

𝛽D (𝜇2) (memo a (SneedJvK𝜌2))
= H 𝜇2 ! a = memo a (SneedJvK𝜌2) already; update no-op I
𝛽T (Step Update (SneedJvK𝜌2 (𝜇2)))

= H 𝜇2 = 𝜇3 [a ↦→ memo a (SneedJvK𝜌2)] I
𝛽D (𝜇3) (memo a (SneedJvK𝜌2))
⊑ H Assumption Step-Inc I

step ev (𝛽D (𝜇3) (memo a (SneedJvK𝜌2)))
= H Unfold memo, 𝛽D I

step ev (𝛽T (SneedJvK𝜌2 (𝜇3) >>= upd))
= H Refold 𝛽T, >>= I
𝛽T (Step ev (SneedJvK𝜌2 (𝜇3)) >>= upd)

= H SneedJe1K𝜌1 (𝜇1) = Step ev (SneedJvK𝜌2 (𝜇3)) I
𝛽T (SneedJe1K𝜌1 (𝜇1) >>= upd)

= H Refold memo, 𝛽D I
𝛽D (𝜇1) (memo a (SneedJe1K𝜌1))

□

The preceding lemma corresponds to the Upd step of the preservation
Lemma A.9 from Section 4.1 where we (and Sergey, Vytiniotis, et al. [2017])
resorted to hand-waving. Here, we hand-wave no more!

160

4.6 Generic Abstract By-Name and By-Need Interpretation

In order to prove the main soundness Theorem 4.18, we need two auxiliary
lemmas. Similar to Lemma 4.27, the first is about (>>=), while the other is about
environment access.

Lemma 4.34 (By-need bind). It is 𝛽T ((d >>= f) 𝜇1) ⊑ f̂ d̂ if

1. 𝛽T (d 𝜇1) ⊑ d̂, and

2. for all events ev and elements d̂′, ŝtep ev (f̂ d̂′) ⊑ f̂ (ŝtep ev d̂′), and

3. for all values v and heaps 𝜇2 such that 𝜇1 ⇝ 𝜇2, 𝛽T (f v 𝜇2) ⊑
f̂ (𝛽T (Ret (v, 𝜇2))).

Proof. By assumption (1), it suffices to show 𝛽T ((d >>= f) 𝜇1) ⊑ f̂ (𝛽T (d 𝜇1)). Let
us first consider the case where the trace 𝜏 ≜ d 𝜇1 is infinite; then 𝜏 = (d >>= f) 𝜇1
and hence 𝛽T ((d >>= f) 𝜇1) = 𝛽T (𝜏). By Löb induction.

𝛽T ((d >>= f) 𝜇1) = 𝛽T (𝜏) = 𝛽T (Step ev 𝜏 ′) = ŝtep ev (𝛽T (𝜏 ′))
⊑ H Induction hypothesis at 𝛽T (𝜏 ′), Monotonicity of ŝtep I

ŝtep ev (f̂ (𝛽T (𝜏 ′)))
⊑ H Assumption (2) I

f̂ (ŝtep ev (𝛽T (𝜏 ′))) = f̂ (𝛽T (𝜏))

Otherwise, d 𝜇1 is finite and d = SneedJeK𝜌1 for some e,𝜌1 since d is definable.
Then SneedJeK𝜌1 (𝜇1) = Step ev (SneedJvK𝜌2 (𝜇2)) for some number of events ev,
v, 𝜌2 and 𝜇2. By Lemma 4.30, we have 𝜇1 ⇝ 𝜇2. We proceed by induction on ev.
The induction step is the same as in the infinite case above; we shift the Step

transition out of the argument to 𝛽T, apply the induction hypothesis and apply
assumption (2).
The interesting case is the base case, when ev is empty and SneedJeK𝜌1 (𝜇1) =
SneedJvK𝜌2 (𝜇2). Then we get, defining sv as return sv ≜ SneedJvK𝜌2 ,

𝛽T ((return sv >>= f) 𝜇2) = 𝛽T (f sv 𝜇2)
⊑ H Assumption (3) at 𝜇1 ⇝ 𝜇2 I

f̂ (𝛽T (Ret sv, 𝜇2)) = f̂ (𝛽T (SneedJvK𝜌2 (𝜇2)))

Note that in order to apply assumption (3) at 𝜇2 above, we need that 𝜇1 ⇝ 𝜇2.
This would not be possible without generalising for any such 𝜇2 in the first
place. □

161

4 Abstracting Denotational Interpreters

Lemma 4.35 (By-need environment unrolling). Let D̂ be a domain with instances

for Trace, Domain, HasBind and Lat, satisfying Update from Figure 4.25, and let

𝜇 ! a = memo a (SneedJe1K𝜌1) and 𝜌 ! x = step (Look y) (fetch a).
If ▶ (∀e 𝜌 𝜇. 𝛽T (SneedJeK𝜌 (𝜇)) ⊑ (SD̂JeK𝛽D (𝜇)�𝜌)),
then 𝛽D (𝜇) (𝜌 ! x) ⊑ step (Look x) (SD̂Je1K𝛽D (𝜇)�𝜌1).

Proof. Note that the antecedent is exactly the Löb induction hypothesis of The-
orem 4.18.

𝛽D (𝜇) (𝜌 ! x)
= H Unfold 𝜌 ! x, 𝜇 ! a, 𝛽D and fetch a I

step (Look x) (𝛽T (memo a (SneedJe1K𝜌1) 𝜇))
= H Unfold memo a I

step (Look x) (𝛽T ((SneedJe1K𝜌1 >>= upd) 𝜇))
⊑ H Apply Lemma 4.34; see below I

step (Look x) (SD̂Je1K𝛽D (𝜇)�𝜌1)

In the last step, we apply Lemma 4.34 under step (Look x) at f ≜ upd, f̂ = id,
d ≜ SneedJe1K𝜌1 , d̂ ≜ SD̂Je1K𝛽D (𝜇)�𝜌1 , which yields three subgoals (under ▶):

• 𝛽T (SneedJe1K𝜌1 (𝜇)) ⊑ SD̂Je1K𝛽D (𝜇)�𝜌1 : By assumption.

• ∀ev d̂′ . ŝtep ev (id d̂′) ⊑ id (ŝtep ev d̂′): By reflexivity.

• ∀v 𝜇2 . 𝜇 ⇝ 𝜇2 =⇒ 𝛽T (upd v 𝜇2) ⊑ id (𝛽T (Ret (v, 𝜇2))):
– Case v = Stuck: Then upd v 𝜇2 = Ret (v, 𝜇2) and the goal follows

by reflexivity.
– Case v = Fun f , v = Con k ds:

Then upd v 𝜇2 = Step Update (Ret (v, 𝜇2 [a ↦→ memo a (return v)])).
By law Update, it suffices to show
𝛽T (Ret (v, 𝜇2 [a ↦→ memo a (return v)])) ⊑ 𝛽T (Ret (v, 𝜇2)). It is
𝜇2 ⇝ 𝜇2 [a ↦→ memo a (return v)] by⇝-Memo and the goal follows
by Lemma 4.33.

□

Finally, we can prove Theorem 4.18.

162

4.6 Generic Abstract By-Name and By-Need Interpretation

Theorem 4.18 (Abstract By-need Interpretation). Let e be an expression, D̂ a ⟲ 139
domain with instances for Trace, Domain, HasBind and Lat, and let 𝛼S be the

abstraction function from Figure 4.24. If the abstraction laws in Figure 4.25 hold,

then SD̂J K is an abstract interpreter that is sound wrt. 𝛼S , that is,

𝛼S (SneedJeK) ⊑ SD̂JeK.

Proof. We simplify our proof obligation to the single-trace case.

∀e. 𝛼S (SneedJeK) ⊑ SD̂JeK
⇐⇒ H Unfold 𝛼S , 𝛼T I
∀e �̂� . ⊔{𝛽T (SneedJeK𝜌 (𝜇)) | (𝜌, 𝜇) ∈ 𝛾E (�̂�)} ⊑ SD̂JeK�̂�
⇐⇒ H (𝜌, 𝜇) ∈ 𝛾E (�̂�) ⇐⇒ 𝛼E ({(𝜌, 𝜇)}) ⊑ �̂� , unfold 𝛼E, refold 𝛽D I
∀e 𝜌 𝜇. 𝛽T (SneedJeK𝜌 (𝜇)) ⊑ SD̂JeK𝛽D (𝜇)�𝜌

where 𝛽T ≜ 𝛼T ◦ { } and 𝛽D (𝜇) ≜ 𝛼D (𝜇) ◦ { } are the representation functions
corresponding to 𝛼T and 𝛼D, and the operation f � 𝜌 from Figure 4.4 maps f

over every entry in 𝜌 . We proceed by Löb induction and cases over e.

• Case Var x: The case x ̸∈ dom 𝜌 follows by reflexivity. Otherwise,

𝛽T (SneedJVar xK𝜌 (𝜇)) = 𝛽T ((𝜌 ! x) 𝜇) = SD̂JVar xK𝛽D (𝜇)�𝜌 .

• Case Lam x body:

𝛽T (SneedJLam x bodyK𝜌 (𝜇))
= H Unfold SneedJ K , 𝛽T I

fun (𝜆d̂ → ⊔{step App2 (𝛽T (SneedJbodyK𝜌 [x ↦→d] (𝜇))) | d ∈ 𝛾D (𝜇) d̂})
⊑ H Induction hypothesis I

fun (𝜆d̂ → ⊔{step App2 (SD̂JbodyK𝛽D (𝜇)�𝜌 [x ↦→d]) | d ∈ 𝛾D (𝜇) d̂})
⊑ H Least upper bound / 𝛼D (𝜇) ◦ 𝛾D (𝜇) ⊑ id I

fun (𝜆d̂ → step App2 (SD̂JbodyK(𝛽D (𝜇)�𝜌) [x ↦→d̂]))
= H Refold SD̂J K I
SD̂JLam x bodyK𝛽D (𝜇)�𝜌

• Case ConApp k xs:

𝛽T (SneedJConApp k xsK𝜌 (𝜇))
= H Unfold SneedJ K , 𝛽T I

163

4 Abstracting Denotational Interpreters

con k (map ((𝛽D (𝜇) � 𝜌) !) xs)
= H Refold SD̂J K I
SD̂JLam x bodyK𝛽D (𝜇)�𝜌

• Case App e x: Very similar to the apply case in Theorem 4.28, except that
we apply the by-need variant of the bind Lemma 4.34.
The stuck case is simple. Otherwise, we have

𝛽T (SneedJApp e xK𝜌 (𝜇))
= H Unfold SneedJ K , 𝛽T, apply I

step App1 ((SneedJeK𝜌 >>= 𝜆v →
case v of Fun f → f (𝜌 ! x); → stuck) 𝜇)

⊑ H Apply Lemma 4.34; see below I
step App1 (�apply (SD̂JeK𝛽D (𝜇)�𝜌) (𝛽D (𝜇) (𝜌 ! x)))

= H Refold SD̂J K I
SD̂JeK𝛽D (𝜇)�𝜌

In the ⊑ step, we apply Lemma 4.34 under step App1, which yields three
subgoals (under ▶, and abbreviating â ≜ 𝛽D (𝜇) (𝜌 ! x)):

– 𝛽T (SneedJeK𝜌 (𝜇)) ⊑ SD̂JeK𝛽D (𝜇)�𝜌 : By induction hypothesis.

– ∀ev d̂′ . ŝtep ev (�apply d̂′ â) ⊑ �apply (ŝtep ev d̂′) â: By assumption
Step-App.

– ∀v 𝜇2 . 𝜇 ⇝ 𝜇2 =⇒ 𝛽T ((case v of Fun g → g (𝜌 ! x); →
stuck) 𝜇2) ⊑ �apply (𝛽T (Ret (v, 𝜇2))) â: By cases over v.

∗ Case v = Stuck: Then 𝛽T (stuck 𝜇2) = �stuck ⊑ �apply �stuck â by
assumption Stuck-App.

∗ Case v = Con k ds: Then 𝛽T (stuck 𝜇2) = �stuck⊑�apply (ĉon k d̂s) â

by assumption Stuck-App, for the suitable d̂s.
∗ Case v = Fun g: Note that g has a parametric definition, of the
form (𝜆d → step App2 (SJe1K𝜌 [x ↦→d])). This is important to
apply Beta-App below.

𝛽T (g (𝜌 ! x) 𝜇2)
⊑ H id ⊑ 𝛾D (𝜇2) ◦ 𝛼D (𝜇2), rearrange I

164

4.6 Generic Abstract By-Name and By-Need Interpretation

(𝛼D (𝜇2) ◦ g
∗ ◦ 𝛾D (𝜇2)) (𝛽D (𝜇2) (𝜌 ! x))

⊑ H 𝛽D (𝜇2) (𝜌 ! x) ⊑ 𝛽D (𝜇) (𝜌 ! x) = â by Lemma 4.33 I
(𝛼D (𝜇2) ◦ g

∗ ◦ 𝛾D (𝜇2)) â

⊑ H Assumption Beta-App I�apply (f̂un (𝛼D (𝜇2) ◦ g
∗ ◦ 𝛾D (𝜇2))) â

= H Definition of 𝛽T, v I�apply (𝛽T (Ret v, 𝜇2)) â

• Case Case e alts: Very similar to the select case in Theorem 4.28.
The cases where the interpreter returns stuck follow by parametricity.
Otherwise, we have (for the suitable definition of âlts, which satisfies
𝛼D (𝜇2) ◦ (alts ! k)∗ ◦map (𝛾D (𝜇2)) ⊑ âlts ! k by induction)

𝛽T (SneedJCase e altsK𝜌 (𝜇))
= H Unfold SneedJ K , 𝛽T, select I

step Case1 ((SneedJeK𝜌 >>= 𝜆v →
case v of Con k ds | k ∈ dom alts→ (alts ! k) ds; → stuck) 𝜇)

⊑ H Apply Lemma 4.34; see below I
step Case1 (�select (SD̂JeK𝛽D (𝜇)�𝜌) âlts)

= H Refold SD̂J K I
SD̂JeK𝛽D (𝜇)�𝜌

In the ⊑ step, we apply Lemma 4.34 under step Case1, which yields three
subgoals (under ▶):

– 𝛽T (SneedJeK𝜌 (𝜇)) ⊑ SD̂JeK𝛽D (𝜇)�𝜌 : By induction hypothesis.

– ∀ev d̂′ . ŝtep ev (�select d̂′ âlts) ⊑ �select (ŝtep ev d̂′) âlts: By assump-
tion Step-Select.

– ∀v 𝜇2 . 𝜇 ⇝ 𝜇2 =⇒ 𝛽T ((case v of Con k ds | k ∈ dom alts →
(alts ! k) ds; → stuck) 𝜇2) ⊑�select (𝛽T (Ret (v, 𝜇2))) âlts: By cases
over v.

∗ Case v = Stuck: Then 𝛽T (stuck 𝜇2) = �stuck ⊑ �select �stuck âlts

by assumption Stuck-Sel.
∗ Case v = Fun f : Then 𝛽T (stuck 𝜇2) = �stuck⊑�select (f̂un f̂) âlts

by assumption Stuck-Sel, for the suitable f̂ .

165

4 Abstracting Denotational Interpreters

∗ Case v = Con k ds, k ̸∈ dom alts: Then 𝛽T (stuck 𝜇2) = �stuck ⊑�select (ĉon k d̂s) âlts by assumption Stuck-Sel, for the suitable
d̂s.

∗ Case v = Con k ds, k ∈ dom alts: Note that alts has a parametric
definition. This is important to apply Beta-Sel below.

𝛽T ((alts ! k) ds 𝜇2)
⊑ H id ⊑ 𝛾D (𝜇2) ◦ 𝛼D (𝜇2), rearrange I
(𝛼D (𝜇2) ◦ (alts ! k)∗ ◦map (𝛾D (𝜇2))) (map (𝛼D (𝜇2) ◦ { }) ds)
⊑ H Abstraction property of âlts I
(âlts ! k) (map (𝛼D (𝜇2) ◦ { }) ds)
⊑ H Assumption Beta-Sel I�select (ĉon k (map (𝛼D (𝜇2) ◦ { }) ds)) âlts

= H Definition of 𝛽T, v I�select (𝛽T (Ret v)) âlts

• Case Let x e1 e2: We can make one step to see

SneedJLet x e1 e2K𝜌 (𝜇) = Step Let1 (SneedJe2K𝜌1 (𝜇1)),

where 𝜌1 ≜ 𝜌 [x ↦→ step (Look x) (fetch a)], a ≜ nextFree 𝜇, 𝜇1 ≜ 𝜇 [a ↦→
memo a (SneedJe1K𝜌1)], and 𝜇 ⇝ 𝜇1 by ⇝-Ext.
Then (𝛽D (𝜇1) � 𝜌1) ! y ⊑ (𝛽D (𝜇) � 𝜌) ! y whenever x ≠ y by Lemma 4.33,
and (𝛽D (𝜇1)�𝜌1) ! x⊑step (Look x) (SD̂Je1K(𝛽D (𝜇1)�𝜌) [x ↦→𝛽D (𝜇1) (𝜌1 ! x)])
by Lemma 4.35. From the latter fact, we gather that (𝛽D (𝜇1)� 𝜌1) ! x must
be smaller than the least fixpoint of the functional
𝜆d̂1 → step (Look x) (SD̂Je1K(𝛽D (𝜇1)�𝜌) [x ↦→d̂1]

). In conclusion:

𝛽T (SneedJLet x e1 e2K𝜌 (𝜇))
= H Unfold SneedJ K , bind, 𝛽T I

step Let1 (𝛽T (SneedJe2K𝜌1 (𝜇1)))
⊑ H Induction hypothesis I

step Let1 (SD̂Je2K𝛽D (𝜇1)�𝜌1)
⊑ H By Lemma 4.35, unfolding 𝜌1 I

let d̂ = step (Look x) (SD̂Je1K(𝛽D (𝜇1)�𝜌) [x ↦→𝛽D (𝜇1) (𝜌1 ! x)]) in
step Let1 (SD̂Je2K(𝛽D (𝜇1)�𝜌) [x ↦→d̂])

166

4.6 Generic Abstract By-Name and By-Need Interpretation

⊑ H Least fixpoint, rolling out step (Look x) I
let r̂hs d̂1 = SD̂Je1K(𝛽D (𝜇1)�𝜌) [x ↦→step (Look x) d̂1]

in

step Let1 (SD̂Je2K(𝛽D (𝜇1)�𝜌) [x ↦→step (Look x) (lfp r̂hs)])
⊑ H 𝛽D (𝜇1) (𝜌 ! y) ⊑ 𝛽D (𝜇) (𝜌 ! y) by Lemma 4.33 I

let r̂hs d̂1 = SD̂Je1K(𝛽D (𝜇)�𝜌) [x ↦→step (Look x) d̂1]
in

step Let1 (SD̂Je2K(𝛽D (𝜇)�𝜌) [x ↦→step (Look x) (lfp r̂hs)]
⊑ H Assumption ByName-Bind I

let r̂hs d̂1 = SD̂Je1K(𝛽D (𝜇)�𝜌) [x ↦→step (Look x) d̂1]
in

b̂ind r̂hs (𝜆d̂1 → step Let1 (SD̂Je2K(𝛽D (𝜇)�𝜌) [x ↦→step (Look x) d̂1]
))

= H Refold SD̂JLet x e1 e2K𝛽D (𝜇)�𝜌 I
SD̂JLet x e1 e2K𝛽D (𝜇)�𝜌

□

4.6.10 Parametricity and Relationship to Kripke Logical

Relations

I remarked right at the begin of the previous subsection that the Galois connection
in Figure 4.24 is really a family of definitions indexed by a heap 𝜇. It is not possible
to regard the “abstraction of a d” in isolation; rather, Lemma 4.33 expresses that
once an “abstraction of a d” holds for a particular heap 𝜇1, this abstraction will
hold for any heap 𝜇2 that the semantics may progress to.
Unfortunately, this indexing also means that I cannot apply parametricity to

prove the abstract by-need interpretation Theorem 4.18, as I did for abstract
by-name interpretation (Theorem 4.28). Such a proof would fail when the heap
is extended (in bind), because then the index 𝜇 of the soundness relation

𝑅𝜇 (d, d̂) ≜ 𝛽D (𝜇) (d) ⊑ d̂

for Theorem 4.18 must change as well. Concretely, we would roughly need the
following free theorem

(rhs, r̂hs) ∈ 𝑅𝜇 [a ↦→d] → 𝑅𝜇 [a ↦→d] (body,�body) ∈ 𝑅𝜇 [a ↦→d] → 𝑅𝜇 [a ↦→d]

(bind rhs body, b̂ind r̂hs �body) ∈ 𝑅𝜇

167

4 Abstracting Denotational Interpreters

However, parametricity only yields

(rhs, r̂hs) ∈ 𝑅𝜇 → 𝑅𝜇 (body,�body) ∈ 𝑅𝜇 → 𝑅𝜇

(bind rhs body, b̂ind r̂hs �body) ∈ 𝑅𝜇

and it is impossible to prove (fetch a, fetch a) ∈ 𝑅𝜇 for the fresh a not bound in
𝜇: the expression 𝛽D (𝜇) (fetch a) would not be defined.

But all is not lost: In the past 20 years the research community made immense
progress in understanding so-called Kripke logical relations [Ahmed 2004], and I
think that 𝑅𝜇 could well be used to define one.
To see the connection to Kripke logical relations (which I will explain mo-

mentarily), note that parametricity is essentially a procedure for constructing
and proving logical relations by following polymorphic type structure. A logical
relation is a relation that is preserved by evaluation [Nielson et al. 1999]. Para-
metricity lifts the logical relation 𝑅𝜇 on base values to arbitrary polymorphic
System 𝐹 types such as that of SJ K . Furthermore, it provides a reusable proof
(by induction on the typing derivation) that any System 𝐹 term must preserve
any logical relation constructed for its type. Reynolds [1983] called this property
the “Abstraction Theorem”; contemporary work refers to it as a “Fundamental
Property” of a logical relation.
When the object language System 𝐹 accumulates features such as mutable

state or recursive types and thus non-termination, it is necessary to index the
logical relation with a step-index, or even the mutable heap 𝜇 in which the logical
relation applies. This index describes a possible world of Kripke [1963], equipped
with a preorder describing what worlds are accessible from the current world.
In my work, the possible worlds are the definable heaps, and heap progression
(⇝) is the accessibility relation. Lemma 4.33 states that the soundness relation
𝑅𝜇 is monotonic wrt. (⇝), so it should be possible to construct a Kripke logical
relation for 𝑅𝜇 .

The construction of the Kripke logical relation would be different from that of
parametricity. In particular, for the type of bind we would get the free theorem

∀𝜇1 . 𝜇 ⇝ 𝜇1 =⇒ (rhs, r̂hs) ∈ 𝑅𝜇1 → 𝑅𝜇1
∀𝜇2 . 𝜇 ⇝ 𝜇2 =⇒ (body,�body) ∈ 𝑅𝜇2 → 𝑅𝜇2

(bind rhs body, b̂ind r̂hs �body) ∈ 𝑅𝜇

Notably, both ocurrences of 𝜇1 vary in tandem and admit an extended heap, so
that (fetch a, lfp r̂hs) ∈ 𝑅𝜇 [a ↦→d] can be proved. We instantiate the premises as

168

4.7 Related Work

follows
(rhs (fetch a), r̂hs (lfp r̂hs)) ∈ 𝑅𝜇 [a ↦→d]

(body (fetch a),�body (lfp r̂hs)) ∈ 𝑅𝜇 [a ↦→d]

and that is enough to show the goal (bind rhs body, b̂ind r̂hs �body) ∈ 𝑅𝜇 .
I have not investigated this avenue any deeper, but it is a promising one to

achieve a modular proof for Theorem 4.18. A modular proof would enable my
proof framework to scale up to arbitrarily complex denotational interpreters,
such as one for a by-need semantics of Haskell, for example. However, defining
such a Kripke logical relation framework on pen and paper seems quite complex
and I would first focus efforts on full mechanisation of denotational interpreters
in an interactive theorem prover; the work of Sterling et al. [2023] and Aagaard
et al. [2023] seems promising in that regard.

4.7 Related Work

Call-by-need, Semantics

Arguably, Josephs [1989] described the first denotational by-need semantics,
predating the work of Launchbury [1993] and Sestoft [1997], but not the
more machine-centric (rather than transition system centric) work on the G-
machine [Johnsson 1984]. I improve on Josephs’s work in that my encoding is
simpler, rigorously defined (Section 4.4.2) and proven adequate wrt. Sestoft’s by-
need semantics (Section 4.4.1). The clairvoyant semantics of Hackett and Hutton
[2019] is a denotational cost semantics for call-by-need, but unfortunately I fail
to see how their approach can be extended to totally generate detailed by-need
small-step traces, cf. Section 4.3.3.
Sestoft [1997] related the derivations of Launchbury’s big-step natural se-

mantics for the language in Section 4.1.1 to the subset of balanced small-step
LK traces. Balanced traces are a proper subset of maximal LK traces that — by
nature of big-step semantics — excludes stuck and diverging traces.
My denotational interpreter bears strong resemblance to a denotational se-

mantics [Scott and Strachey 1971], or to a definitional interpreter [Reynolds
1972] featuring a finally encoded domain [Carette et al. 2007] using higher-order
abstract syntax [Pfenning and Elliott 1988]. The key distinction to these ap-
proaches is that my approach generates small-step traces, totally and adequately,
observable by abstract interpreters.

169

4 Abstracting Denotational Interpreters

Definitional Interpreters

Reynolds [1972] introduced “definitional interpreter” as an umbrella term to
classify prevalent styles of interpreters for higher-order languages at the time.
Chiefly, it differentiates compositional interpreters that necessarily use higher-
order functions of the meta language from those that do not, and are therefore
non-compositional. The former correspond to (partial) denotational interpreters,
whereas the latter correspond to big-step interpreters.

Ager et al. [2004] pick up on Reynold’s idea and successively transform a
partial denotational interpreter into a variant of the LK machine, going the
reverse route of Section 4.4.1.

Coinduction and Fuel

Leroy and Grall [2009] show that a coinductive encoding of big-step semantics is
able to encode diverging traces by proving it equivalent to a small-step semantics,
much like I did for a denotational semantics. The work of Atkey and McBride
[2013] and Møgelberg and Veltri [2019] had big influence on my use of the later
modality and Löb induction.
The Trace type class is appropriate for tracking “pure” transition events, but

it is not up to the task of modelling user input, for example. A redesign of Trace
inspired (and instantiated) by guarded interaction trees [Frumin et al. 2023; Xia
et al. 2019] would help with that.

Contextual Improvement

Abstract interpretation is useful to prove that an analysis approximates the right
trace property, but it does not help to prove an optimisation conditional on some
trace property sound, yet alone an improvement [Moran and Sands 1999]. If
I were to prove dead code elimination sound based on my notion of absence,
would I use my denotational interpreter to do so? Probably not; I would try to
conduct as much of the proof as possible in the equational theory, i.e. on syntax.
If need be, I could always switch to denotational interpreters via Theorem 4.4,
just as in Lemma 4.22. Hackett and Hutton [2019] have done so as well.

Abstract Interpretation and Relational Analysis

Cousot [2021] recently condensed his seminal work rooted in Cousot and Cousot
[1977]. The book advocates a compositional, trace-generating semantics and

170

4.7 Related Work

then derives compositional analyses by calculational design, inspiring me to
attempt the same. However, while Cousot and Cousot [1994] and Cousot and
Cousot [2002] work with denotational semantics for a higher-order language,
it was unclear to me how to derive a compositional, trace-generating semantics
for a higher-order language. The required changes to the domain definitions
seemed daunting, to say the least. My solution delegates this complexity to
the underlying theory of guarded dependent type theory [Bizjak et al. 2016;
Møgelberg and Veltri 2019].

I deliberately tried to provide a simple framework and thus stuck to cartesian
(i.e. pointwise) abstraction of environments as in Cousot [2021, Chapter 27], but
I expect relational abstractions to work just as well; however it is questionable
whether the proofs would still be able to appeal to parametricity. My generic
denotational interpreter is a higher-order generalisation of the generic abstract
interpreter in Cousot [2021, Chapter 21]. The abstraction laws in Figure 4.25
correspond to Definition 27.1 and Theorem 4.18 to Theorem 27.4.

Abstractions of Reachable States

CFA [Shivers 1991] computes a useful control-flow graph abstraction for higher-
order programs, thus lifting classic intraprocedural analyses such as constant
propagation to the interprocedural setting. The contour depth parameter 𝑘
allows to trade precision for performance, although in practice it is often 𝑘 ⩽ 1.
Montagu and Jensen [2021] derive CFA from small-step traces. I think that a

variant of my denotational interpreter would be a good fit for their collecting
semantics. Specifically, the semantic inclusions of Lemma 2.10 that govern
the transition to a big-step style interpreter follow simply by adequacy of my
interpreter, Theorem 4.4.

Abstracting Abstract Machines [Van Horn and Might 2010] derives a comput-
able reachable states semantics [Cousot 2021] from any small-step semantics, by
bounding the size of the heap. Many analyses such as control-flow analysis arise
as abstractions of reachable states. Darais, Labich, et al. [2017] and others apply
the AAM recipe to big-step interpreters in the style of Reynolds.
Whenever AAM is involved, abstraction follows some monadic structure in-

herent to dynamic semantics [Darais, Labich, et al. 2017; Sergey, Devriese, et
al. 2013]. In my work, this is apparent in the Domain (D 𝜏) instance depend-
ing on Monad 𝜏 . Decomposing such structure into a layer of reusable monad
transformers has been the subject of Darais, Might, et al. [2015] and Keidel

171

4 Abstracting Denotational Interpreters

and Erdweg [2019]. The trace transformers of Section 4.3 enable reuse along a
different dimension.

A big advantage of the big-step framework of Keidel, Poulsen, et al. [2018] is
that soundness proofs are modular in the sense of Section 4.6.2. In the future,
I hope to modularise the proof for Theorem 4.18 by defining a Kripke logical
relation as outlined in Section 4.6.10.

Summaries of Functionals vs. Call Strings

Lomet [1977] used procedure summaries to capture aliasing effects, crediting the
approach to untraceable reports by Allen [1974] and Rosen [1975]. Sharir, Pnueli,
et al. [1978] were aware of both [Cousot and Cousot 1977] and [Allen 1974], and
generalised aliasing summaries into the “functional approach” to interprocedural
data flow analysis, distinguishing it from the “call strings approach” (i.e. 𝑘-CFA).

That is not to say that the approaches cannot be combined; modular analysis
led Shivers [1991, Section 3.8.2] to implement the xproc summary mechanism. He
also acknowledged the need for accurate intra-modular summary mechanisms
for scalability reasons in Section 11.3.2. I am however doubtful that the powerset-
centric AAM approach could integrate summary mechanisms; the whole recipe
rests on the fact that the set of expressions and thus evaluation contexts is finite.
Mangal et al. [2014] have shown that a summary-based analysis can be equi-

valent to∞-CFA for arbitrary complete lattices and outperform 2-CFA in both
precision and speed.

Cardinality Analysis

More interesting cardinality analyses involve the inference of summaries called
demand transformers [Sergey, Vytiniotis, et al. 2017], such as implemented in the
DemandAnalysis of the GlasgowHaskell Compiler. I intend to usemy framework
to describe improvements to Demand Analysis in the future. A soundness proof
would require a slightly different Galois connection than Figure 4.24, because
Demand Analysis is not sound wrt. by-name evaluation; a testament to its
precision.

172

5
Conclusion and Future Work

In this thesis, I presented two projects that advance the state of the art in static
program analysis of programs written in a functional language.
First, I described Lower Your Guards, a coverage checking algorithm that

distills rich pattern-matching into simple guard trees. Guard trees are amenable
to analyses that are not easily expressible in coverage checkers that work over
structural pattern-matches.

The last four years of continued maintenance of GHC’s implementation offer
a compelling retrospective: the approach scales well to new language features,
causes very few functional bug reports in practice, and offers robust perform-
ance. Its implementation fits nicely into one of GHC’s many well-engineered
architecture and should be applicable to its cousins in the ML tradition.
As outlined in the Introduction, the second project is the result of breaking

free from a struggle for words by defining a new language. In my case, the
language is that of denotational interpreters, in terms of which I hope to describe
the many static higher-order analyses of GHC.

I showed that this language is indeed useful, because both standard dynamic se-
mantics for functional programming languages as well as useful summary-based
static analyses can be succinctly and comprehensibly expressed as denotational
interpreters. Moreover, denotational interpreters lend themselves well to formal-
isation and soundness proofs by abstract interpretation.

In brief: Functional programming is an attractive paradigm for its succinct-
ness, maintainability and tendency to prevent programmer errors, while
static program analyses detect programmer errors and inform compiler
optimisations. My work concerns the static analysis of functional programs:
I presented (i) a static analysis for detecting incomplete pattern-matches, as
well as (ii) the framework of denotational interpreters to formalise higher-
order program analyses and prove them sound wrt. a dynamic semantics.

5 Conclusion and Future Work

5.1 Future Work

My work on denotational interpreters opens up new research strands, and I shall
conclude this thesis with a discussion.

Formalising GHC’s Demand Analysis

The ultimate purpose of my work on denotational interpreters has always been
to describe GHC’s Demand Analysis, in order settle a research effort that has
been ongoing for three decades [Sergey, Peyton Jones, et al. 2014]. However,
after conceiving and properly describing denotational interpreters, I sadly find
myself for a lack of time to close this parenthesis that I opened in Graf [2017].

There are a number of other analyses in GHC that could well be described as
denotational interpreters. Examples include the boxity analysis (in the sense of
Henglein and Jørgensen [1994]) I contributed to GHC, a tentative termination
analysis and a forward arity analysis.

Machine-checked Formalisation

Although I conducted most proofs using pen-and-paper only, I tried to maintain
as much formal rigour as possible in order to encode the proofs in an interactive
theorem prover. It might seem baffling that I did not use Guarded Cubical
Agda to formalise all proofs in the first place. The reason is that I found the
ergonomics in need of improvement and the lack of proof tactics frustrating. In
the future, I would like to try again using an axiomatisation of impredicative

Guarded Dependent Type Theory [Sterling et al. 2023] in Lean 4 or Rocq, hoping
that these languages will ultimately provide a first class executable treatment of
guarded dependent type theory. The next step would be to define a parametric
Kripke-style logical relation as outlined in Section 4.6.10 in order to derive a
modular proof for Theorem 4.18, so that the necessary proofs of my framework
scale effortlessly to denotational interpreters of large surface languages such as
Haskell or WebAssembly.

174

Bibliography

Frederik Lerbjerg Aagaard, Jonathan Sterling, and Lars Birkedal. Nov. 2023. “A denotationally-based
program logic for higher-order store”. Electronic Notes in Theoretical Informatics and Computer

Science, Volume 3 - Proceedings of MFPS XXXIX, (Nov. 2023). doi: 10.46298/entics.12232.
Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. 2004. “A functional correspondence between

call-by-need evaluators and lazy abstract machines”. Information Processing Letters, 90, 5, 223–232.
doi: https://doi.org/10.1016/j.ipl.2004.02.012.

Amal Jamil Ahmed. 2004. “Semantics of types for mutable state”. PhD thesis. USA. AAI3136691.
Frances E. Allen. 1974. “Interprocedural Data Flow Analysis”. In: Information Processing, Proceedings

of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974. Ed. by Jack L. Rosenfeld.
North-Holland, 398–402.

Andrew W. Appel and David McAllester. Sept. 2001. “An Indexed Model of Recursive Types for
Foundational Proof-Carrying Code”. ACM Trans. Program. Lang. Syst., 23, 5, (Sept. 2001), 657–683.
doi: 10.1145/504709.504712.

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. “A
Call-by-Need Lambda Calculus”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’95). Association for Computing Machinery, San
Francisco, California, USA, 233–246. isbn: 0897916921. doi: 10.1145/199448.199507.

Robert Atkey and Conor McBride. 2013. “Productive coprogramming with guarded recursion”.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming

(ICFP ’13). Association for Computing Machinery, Boston, Massachusetts, USA, 197–208. isbn:
9781450323260. doi: 10.1145/2500365.2500597.

Lennart Augustsson. 1985. “Compiling pattern matching”. In: Functional Programming Languages

and Computer Architecture. Ed. by Jean-Pierre Jouannaud. Springer Berlin Heidelberg, Berlin,
Heidelberg, 368–381. isbn: 978-3-540-39677-2.

Kevin Backhouse and Roland Backhouse. 2004. “Safety of abstract interpretations for free, via logical
relations and Galois connections”. Science of Computer Programming, 51, 1, 153–196. Mathematics
of Program Construction (MPC 2002). doi: https://doi.org/10.1016/j.scico.2003.06.002.

Lars Birkedal and Aleš Bizjak. Aug. 2023. Lecture Notes on Iris: Higher-Order Concurrent Separation

Logic. https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf. Aarhus University. Aarhus,
Denmark, (Aug. 2023).

Lars Birkedal and Rasmus Ejlers Mogelberg. 2013. “Intensional Type Theory with Guarded Recursive
Types qua Fixed Points on Universes”. In: Proceedings of the 2013 28th Annual ACM/IEEE Sym-

posium on Logic in Computer Science (LICS ’13). IEEE Computer Society, USA, 213–222. isbn:
9780769550206. doi: 10.1109/LICS.2013.27.

Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg, and Lars Birkedal. 2016.
“Guarded Dependent Type Theory with Coinductive Types”. In: Foundations of Software Science
and Computation Structures. Ed. by Bart Jacobs and Christof Löding. Springer Berlin Heidelberg,
Berlin, Heidelberg, 20–35. isbn: 978-3-662-49630-5.

https://doi.org/10.46298/entics.12232
https://doi.org/https://doi.org/10.1016/j.ipl.2004.02.012
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/2500365.2500597
https://doi.org/https://doi.org/10.1016/j.scico.2003.06.002
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1109/LICS.2013.27

Bibliography

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017.
“Quantified class constraints”. In: Proceedings of the 10th ACM SIGPLAN International Symposium

on Haskell (Haskell 2017). Association for Computing Machinery, Oxford, UK, 148–161. isbn:
9781450351829. doi: 10.1145/3122955.3122967.

Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen. 2023. “Modular Abstract Defini-
tional Interpreters for WebAssembly”. In: 37th European Conference on Object-Oriented Program-

ming (ECOOP 2023) (Leibniz International Proceedings in Informatics (LIPIcs)). Ed. by Karim Ali
and Guido Salvaneschi. Vol. 263. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 5:1–5:28. isbn: 978-3-95977-281-5. doi: 10.4230/LIPIcs.ECOOP.2023.5.

Joachim Breitner. Apr. 2016. “Lazy Evaluation: From natural semantics to a machine-checked compiler
transformation”. PhD thesis. Karlsruher Institut für Technologie, Fakultät für Informatik, (Apr.
2016). doi: 10.5445/IR/1000054251.

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. 2014. “Safe zero-
cost coercions for Haskell”. In: Proceedings of the 19th ACM SIGPLAN International Conference on

Functional Programming (ICFP ’14). Association for Computing Machinery, Gothenburg, Sweden,
189–202. isbn: 9781450328739. doi: 10.1145/2628136.2628141.

Venanzio Capretta. July 2005. “General Recursion via Coinductive Types”. Logical Methods in Com-

puter Science, Volume 1, Issue 2, (July 2005). doi: 10.2168/LMCS-1(2:1)2005.
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2007. “Finally Tagless, Partially Evaluated”.

In: Programming Languages and Systems. Ed. by Zhong Shao. Springer Berlin Heidelberg, Berlin,
Heidelberg, 222–238. isbn: 978-3-540-76637-7.

Jesper Cockx and Andreas Abel. July 2018. “Elaborating Dependent (Co)Pattern Matching”. Proc.
ACM Program. Lang., 2, ICFP, (July 2018). doi: 10.1145/3236770.

Thierry Coquand. 1994. “Infinite objects in type theory”. In: Types for Proofs and Programs. Ed. by
Henk Barendregt and Tobias Nipkow. Springer Berlin Heidelberg, Berlin, Heidelberg, 62–78. isbn:
978-3-540-48440-0.

P. Cousot and R. Cousot. 1994. “Higher-order abstract interpretation (and application to comportment
analysis generalizing strictness, termination, projection and PER analysis of functional languages)”.
In: Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL’94), 95–112.
doi: 10.1109/ICCL.1994.288389.

Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press. isbn: 9780262044905. https:
//mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/.

Patrick Cousot and Radhia Cousot. 1977. “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints”. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’77). Association
for Computing Machinery, Los Angeles, California, 238–252. isbn: 9781450373500. doi: 10.1145/
512950.512973.

Patrick Cousot and Radhia Cousot. 2002. “Modular Static ProgramAnalysis”. In:Compiler Construction.
Ed. by R. Nigel Horspool. Springer Berlin Heidelberg, Berlin, Heidelberg, 159–179. isbn: 978-3-
540-45937-8.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Jan. 2006. “Fast and Loose
Reasoning is Morally Correct”. SIGPLAN Not., 41, 1, (Jan. 2006), 206–217. doi: 10.1145/1111320.
1111056.

David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn. Aug. 2017. “Abstracting
Definitional Interpreters (Functional Pearl)”. Proc. ACM Program. Lang., 1, ICFP, (Aug. 2017). doi:
10.1145/3110256.

176

https://doi.org/10.1145/3122955.3122967
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://doi.org/10.5445/IR/1000054251
https://doi.org/10.1145/2628136.2628141
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/3236770
https://doi.org/10.1109/ICCL.1994.288389
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1111320.1111056
https://doi.org/10.1145/1111320.1111056
https://doi.org/10.1145/3110256

David Darais, Matthew Might, and David Van Horn. 2015. “Galois transformers and modular abstract
interpreters: reusable metatheory for program analysis”. In: Proceedings of the 2015 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2015). Association for Computing Machinery, Pittsburgh, PA, USA, 552–571. isbn:
9781450336895. doi: 10.1145/2814270.2814308.

Henning Dieterichs. Apr. 2021. Formal Verification of Pattern Matching Analyses. Supervised by
Sebastian Graf and Sebastian Ullrich. (Apr. 2021).

Joshua Dunfield. Aug. 2007. “A Unified System of Type Refinements”. PhD thesis. Carnegie Mellon
University, (Aug. 2007). CMU-CS-07-129.

Richard A. Eisenberg and Jan Stolarek. 2014. “Promoting Functions to Type Families in Haskell”.
In: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell (Haskell ’14). Association for
Computing Machinery, Gothenburg, Sweden, 95–106. isbn: 9781450330411. doi: 10.1145/2633357.
2633361.

Richard A. Eisenberg and Stephanie Weirich. 2012. “Dependently Typed Programming with
Singletons”. In: Proceedings of the 2012 Haskell Symposium (Haskell ’12). ACM, Copenhagen,
Denmark, 117–130. doi: 10.1145/2364506.2364522.

David Eppstein. 1992. “Parallel recognition of series-parallel graphs”. Information and Computation,
98, 1, 41–55. doi: https://doi.org/10.1016/0890-5401(92)90041-D.

Mattias Felleisen and D. P. Friedman. 1987. “A Calculus for Assignments in Higher-Order Languages”.
In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL ’87). Association for Computing Machinery, Munich, West Germany, 314. isbn:
0897912152. doi: 10.1145/41625.41654.

Dan Frumin, Amin Timany, and Lars Birkedal. 2023. Modular Denotational Semantics for Effects with

Guarded Interaction Trees. (2023). arXiv: 2307.08514 [cs.PL].
Jacques Garrigue and Jacques Le Normand. 2011. “Adding GADTs to OCaml: the direct approach”.

In:Workshop on ML.
GHC issue. 2018a. -Wincomplete-patterns gets confused when combining GADTs and pattern guards.

(2018). https://gitlab.haskell.org/ghc/ghc/issues/15385.
GHC issue. 2020a. -Wincomplete-record-updates ignores context. (2020). https://gitlab.haskell.org/ghc/

ghc/issues/17783.
GHC issue. 2017a. -Woverlapping-patterns warns on wrong patterns for Int. (2017). https://gitlab.

haskell.org/ghc/ghc/issues/14546.
GHC issue. 2019a. `case (x :: Void) of _ -> ()` should be flagged as redundant. (2019). https://gitlab.

haskell.org/ghc/ghc/issues/17376.
GHC issue. 2018b. “Pattern match has inaccessible right hand side” with TypeRep. (2018). https :

//gitlab.haskell.org/ghc/ghc/issues/14851.
GHC issue. 2019b. 67-pattern COMPLETE pragma overwhelms the pattern match checker. (2019).

https://gitlab.haskell.org/ghc/ghc/issues/17096.
GHC issue. 2019c. Add Luke Maranget’s series in “Warnings for Pattern Matching”. (2019). https:

//gitlab.haskell.org/ghc/ghc/issues/17264.
GHC issue. 2018c. Bogus -Woverlapping-patterns warning with OverloadedStrings. (2018). https :

//gitlab.haskell.org/ghc/ghc/issues/15713.
GHC issue. 2018d. Compiling a function with a lot of alternatives bottlenecks on insertIntHeap. (2018).

https://gitlab.haskell.org/ghc/ghc/issues/14667.
GHC issue. 2017b. COMPLETE sets don’t work at all with data family instances. (2017). https://gitlab.

haskell.org/ghc/ghc/issues/14059.

177

https://doi.org/10.1145/2814270.2814308
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1145/2364506.2364522
https://doi.org/https://doi.org/10.1016/0890-5401(92)90041-D
https://doi.org/10.1145/41625.41654
https://arxiv.org/abs/2307.08514
https://gitlab.haskell.org/ghc/ghc/issues/15385
https://gitlab.haskell.org/ghc/ghc/issues/17783
https://gitlab.haskell.org/ghc/ghc/issues/17783
https://gitlab.haskell.org/ghc/ghc/issues/14546
https://gitlab.haskell.org/ghc/ghc/issues/14546
https://gitlab.haskell.org/ghc/ghc/issues/17376
https://gitlab.haskell.org/ghc/ghc/issues/17376
https://gitlab.haskell.org/ghc/ghc/issues/14851
https://gitlab.haskell.org/ghc/ghc/issues/14851
https://gitlab.haskell.org/ghc/ghc/issues/17096
https://gitlab.haskell.org/ghc/ghc/issues/17264
https://gitlab.haskell.org/ghc/ghc/issues/17264
https://gitlab.haskell.org/ghc/ghc/issues/15713
https://gitlab.haskell.org/ghc/ghc/issues/15713
https://gitlab.haskell.org/ghc/ghc/issues/14667
https://gitlab.haskell.org/ghc/ghc/issues/14059
https://gitlab.haskell.org/ghc/ghc/issues/14059

Bibliography

GHC issue. 2017c. COMPLETE sets nerf redundant pattern-match warnings. (2017). https://gitlab.
haskell.org/ghc/ghc/issues/13965.

GHC issue. 2018e. Completeness of View Patterns With a Complete Set of Output Patterns. (2018).
https://gitlab.haskell.org/ghc/ghc/issues/15884.

GHC issue. 2018f. EmptyCase thinks pattern match involving type family is not exhaustive, when it

actually is. (2018). https://gitlab.haskell.org/ghc/ghc/issues/14813.
GHC issue. 2018g. Erroneous “non-exhaustive pattern match” using nested GADT with strictness

annotation. (2018). https://gitlab.haskell.org/ghc/ghc/issues/15305.
GHC issue. 2019d. GHC thinks pattern match is exhaustive. (2019). https://gitlab.haskell.org/ghc/ghc/

issues/16289.
GHC issue. 2016a. In a record-update construct:ghc-stage2: panic! (the ‘impossible’ happened). (2016).

https://gitlab.haskell.org/ghc/ghc/issues/12957.
GHC issue. 2016b. Inaccessible RHS warning is confusing for users. (2016). https://gitlab.haskell.org/

ghc/ghc/issues/13021.
GHC issue. 2018h. Inconsistency w.r.t. coverage checking warnings for EmptyCase under unsatisfiable

constraints. (2018). https://gitlab.haskell.org/ghc/ghc/issues/15450.
GHC issue. 2018i. Inconsistent pattern-match warnings when using guards versus case expressions.

(2018). https://gitlab.haskell.org/ghc/ghc/issues/15753.
GHC issue. 2019e. Incorrect non-exhaustive pattern warning with PatternSynonyms. (2019). https:

//gitlab.haskell.org/ghc/ghc/issues/16129.
GHC issue. 2017d. Incorrect pattern match warning on nested GADTs. (2017). https://gitlab.haskell.

org/ghc/ghc/issues/14098.
GHC issue. 2019f. Minimality of missing pattern set depends on constructor declaration order. (2019).

https://gitlab.haskell.org/ghc/ghc/issues/17386.
GHC issue. 2015a. New pattern-match check can be non-performant. (2015). https://gitlab.haskell.org/

ghc/ghc/issues/11195.
GHC issue. 2015b. No non-exhaustive pattern match warning given for empty case analysis. (2015).

https://gitlab.haskell.org/ghc/ghc/issues/10746.
GHC issue. 2018j. nonVoid is too conservative w.r.t. strict argument types. (2018). https://gitlab.haskell.

org/ghc/ghc/issues/15584.
GHC issue. 2019g. Panic during tyConAppArgs. (2019). https://gitlab.haskell.org/ghc/ghc/issues/17112.
GHC issue. 2016c. Pattern coverage checker ignores dictionary arguments. (2016). https://gitlab.haskell.

org/ghc/ghc/issues/12949.
GHC issue. 2017e. Pattern match checker mistakenly concludes pattern match on pattern synonym is

unreachable. (2017). https://gitlab.haskell.org/ghc/ghc/issues/14253.
GHC issue. 2020b. Pattern match checker stumbles over reasonably tricky pattern-match. (2020). https:

//gitlab.haskell.org/ghc/ghc/issues/17703.
GHC issue. 2019h. Pattern match checking open unions. (2019). https://gitlab.haskell.org/ghc/ghc/

issues/17149.
GHC issue. 2020c. Pattern match coverage checker allocates twice as much for trivial program with

instance constraint vs. without. (2020). https://gitlab.haskell.org/ghc/ghc/issues/17891.
GHC issue. 2016d. Pattern match incompleteness / inaccessibility discrepancy. (2016). https://gitlab.

haskell.org/ghc/ghc/issues/11984.
GHC issue. 2019i. Pattern match overlap checking doesn’t consider -XBangPatterns. (2019). https :

//gitlab.haskell.org/ghc/ghc/issues/17234.
GHC issue. 2020d. Pattern match warning emitted twice. (2020). https://gitlab.haskell.org/ghc/ghc/

issues/17646.

178

https://gitlab.haskell.org/ghc/ghc/issues/13965
https://gitlab.haskell.org/ghc/ghc/issues/13965
https://gitlab.haskell.org/ghc/ghc/issues/15884
https://gitlab.haskell.org/ghc/ghc/issues/14813
https://gitlab.haskell.org/ghc/ghc/issues/15305
https://gitlab.haskell.org/ghc/ghc/issues/16289
https://gitlab.haskell.org/ghc/ghc/issues/16289
https://gitlab.haskell.org/ghc/ghc/issues/12957
https://gitlab.haskell.org/ghc/ghc/issues/13021
https://gitlab.haskell.org/ghc/ghc/issues/13021
https://gitlab.haskell.org/ghc/ghc/issues/15450
https://gitlab.haskell.org/ghc/ghc/issues/15753
https://gitlab.haskell.org/ghc/ghc/issues/16129
https://gitlab.haskell.org/ghc/ghc/issues/16129
https://gitlab.haskell.org/ghc/ghc/issues/14098
https://gitlab.haskell.org/ghc/ghc/issues/14098
https://gitlab.haskell.org/ghc/ghc/issues/17386
https://gitlab.haskell.org/ghc/ghc/issues/11195
https://gitlab.haskell.org/ghc/ghc/issues/11195
https://gitlab.haskell.org/ghc/ghc/issues/10746
https://gitlab.haskell.org/ghc/ghc/issues/15584
https://gitlab.haskell.org/ghc/ghc/issues/15584
https://gitlab.haskell.org/ghc/ghc/issues/17112
https://gitlab.haskell.org/ghc/ghc/issues/12949
https://gitlab.haskell.org/ghc/ghc/issues/12949
https://gitlab.haskell.org/ghc/ghc/issues/14253
https://gitlab.haskell.org/ghc/ghc/issues/17703
https://gitlab.haskell.org/ghc/ghc/issues/17703
https://gitlab.haskell.org/ghc/ghc/issues/17149
https://gitlab.haskell.org/ghc/ghc/issues/17149
https://gitlab.haskell.org/ghc/ghc/issues/17891
https://gitlab.haskell.org/ghc/ghc/issues/11984
https://gitlab.haskell.org/ghc/ghc/issues/11984
https://gitlab.haskell.org/ghc/ghc/issues/17234
https://gitlab.haskell.org/ghc/ghc/issues/17234
https://gitlab.haskell.org/ghc/ghc/issues/17646
https://gitlab.haskell.org/ghc/ghc/issues/17646

GHC issue. 2019j. Pattern match warnings are per Match, not per GRHS. (2019). https://gitlab.haskell.
org/ghc/ghc/issues/17465.

GHC issue. 2017f. Pattern synonym exhaustiveness checks don’t play well with EmptyCase. (2017).
https://gitlab.haskell.org/ghc/ghc/issues/13717.

GHC issue. 2019k. Pattern-match checker: True /= False. (2019). https://gitlab.haskell.org/ghc/ghc/
issues/17251.

GHC issue. 2019l. PmCheck treats Newtype patterns the same as constructors. (2019). https://gitlab.
haskell.org/ghc/ghc/issues/17248.

GHC issue. 2016e. Representation of value set abstractions as trees causes performance issues. (2016).
https://gitlab.haskell.org/ghc/ghc/issues/11528.

GHC issue. 2019m. Strictness of pattern synonym matches and pattern-match checking. (2019). https:
//gitlab.haskell.org/ghc/ghc/issues/17357.

GHC issue. 2017g.Wildcard patterns and COMPLETE sets can lead to misleading redundant pattern-

match warnings. (2017). https://gitlab.haskell.org/ghc/ghc/issues/13363.
GHC team. 2020. COMPLETE pragmas. (2020). https://downloads.haskell.org/~ghc/8.8.3/docs/html/

users_guide/glasgow_exts.html#pragma-COMPLETE.
Andy Gill and Graham Hutton. 2009. “The worker/wrapper transformation”. Journal of Functional

Programming, 19, 2, 227–251. doi: 10.1017/S0956796809007175.
Sebastian Graf. Aug. 2017. Call Arity vs. Demand Analysis. (Aug. 2017).
Sebastian Graf, Simon Peyton Jones, and Sven Keidel. 2024. Abstracting Denotational Interpreters.

(2024). arXiv: 2403.02778 [cs.PL].
Sebastian Graf, Simon Peyton Jones, and Ryan G. Scott. Aug. 2020. “Lower your guards: a compos-

itional pattern-match coverage checker”. Proc. ACM Program. Lang., 4, ICFP, (Aug. 2020). doi:
10.1145/3408989.

Jörgen Gustavsson. 1998. “A Type Based Sharing Analysis for Update Avoidance and Optimisation”. In:
Proceedings of the Third ACM SIGPLAN International Conference on Functional Programming (ICFP
’98). Association for Computing Machinery, Baltimore, Maryland, USA, 39–50. isbn: 1581130244.
doi: 10.1145/289423.289427.

Jennifer Hackett and Graham Hutton. July 2019. “Call-by-Need is Clairvoyant Call-by-Value”. Proc.
ACM Program. Lang., 3, ICFP, (July 2019). doi: 10.1145/3341718.

Fritz Henglein and Jesper Jørgensen. 1994. “Formally optimal boxing”. In: Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’94). Association for
Computing Machinery, Portland, Oregon, USA, 213–226. isbn: 0897916360. doi: 10.1145/174675.
177874.

John Hughes, Lars Pareto, and Amr Sabry. 1996. “Proving the Correctness of Reactive Systems
Using Sized Types”. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’96). Association for Computing Machinery, St. Petersburg Beach,
Florida, USA, 410–423. isbn: 0897917693. doi: 10.1145/237721.240882.

Thomas Johnsson. 1984. “Efficient Compilation of Lazy Evaluation”. In: Proceedings of the 1984 SIG-
PLAN Symposium on Compiler Construction (SIGPLAN ’84). Association for Computing Machinery,
Montreal, Canada, 58–69. isbn: 0897911393. doi: 10.1145/502874.502880.

Mark B. Josephs. 1989. “The semantics of lazy functional languages”. Theoretical Computer Science,
68, 1, 105–111. doi: https://doi.org/10.1016/0304-3975(89)90122-9.

Pavel Kalvoda and Tom Sydney Kerckhove. 2019. Structural and semantic pattern matching analysis

in Haskell. (2019). arXiv: 1909.04160 [cs.PL].

179

https://gitlab.haskell.org/ghc/ghc/issues/17465
https://gitlab.haskell.org/ghc/ghc/issues/17465
https://gitlab.haskell.org/ghc/ghc/issues/13717
https://gitlab.haskell.org/ghc/ghc/issues/17251
https://gitlab.haskell.org/ghc/ghc/issues/17251
https://gitlab.haskell.org/ghc/ghc/issues/17248
https://gitlab.haskell.org/ghc/ghc/issues/17248
https://gitlab.haskell.org/ghc/ghc/issues/11528
https://gitlab.haskell.org/ghc/ghc/issues/17357
https://gitlab.haskell.org/ghc/ghc/issues/17357
https://gitlab.haskell.org/ghc/ghc/issues/13363
https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#pragma-COMPLETE
https://downloads.haskell.org/~ghc/8.8.3/docs/html/users_guide/glasgow_exts.html#pragma-COMPLETE
https://doi.org/10.1017/S0956796809007175
https://arxiv.org/abs/2403.02778
https://doi.org/10.1145/3408989
https://doi.org/10.1145/289423.289427
https://doi.org/10.1145/3341718
https://doi.org/10.1145/174675.177874
https://doi.org/10.1145/174675.177874
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/502874.502880
https://doi.org/https://doi.org/10.1016/0304-3975(89)90122-9
https://arxiv.org/abs/1909.04160

Bibliography

Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Simon Peyton Jones. 2015. GADTs
meet their match (extended version). Tech. rep. KU Leuven. https://people.cs.kuleuven.be/~tom.
schrijvers/Research/papers/icfp2015.pdf.

Sven Keidel and Sebastian Erdweg. Oct. 2019. “Sound and reusable components for abstract inter-
pretation”. Proc. ACM Program. Lang., 3, OOPSLA, (Oct. 2019). doi: 10.1145/3360602.

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. July 2018. “Compositional Soundness Proofs
of Abstract Interpreters”. Proc. ACM Program. Lang., 2, ICFP, (July 2018). doi: 10.1145/3236767.

Saul Kripke. 1963. “Semantical Considerations on Modal Logic”. Acta Philosophica Fennica, 16, 83–94.
L. Lamport. 1977. “Proving the Correctness of Multiprocess Programs”. IEEE Transactions on Software

Engineering, SE-3, 2, 125–143. doi: 10.1109/TSE.1977.229904.
John Launchbury. 1993. “A Natural Semantics for Lazy Evaluation”. In: Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’93). Association
for Computing Machinery, Charleston, South Carolina, USA, 144–154. isbn: 0897915607. doi:
10.1145/158511.158618.

John Launchbury and Simon Peyton Jones. 1994. “Lazy functional state threads”. In: Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation (PLDI
’94). Association for Computing Machinery, Orlando, Florida, USA, 24–35. isbn: 089791662X. doi:
10.1145/178243.178246.

Xavier Leroy and Hervé Grall. 2009. “Coinductive big-step operational semantics”. Information

and Computation, 207, 2, 284–304. Special issue on Structural Operational Semantics (SOS). doi:
https://doi.org/10.1016/j.ic.2007.12.004.

D. B. Lomet. 1977. “Data Flow Analysis in the Presence of Procedure Calls”. IBM Journal of Research

and Development, 21, 6, 559–571. doi: 10.1147/rd.216.0559.
Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. “A Correspondence between Two Approaches

to Interprocedural Analysis in the Presence of Join”. In: Programming Languages and Systems. Ed.
by Zhong Shao. Springer Berlin Heidelberg, Berlin, Heidelberg, 513–533. isbn: 978-3-642-54833-8.

Luc Maranget. 2007. “Warnings for pattern matching”. Journal of Functional Programming, 17, 387–
421, 3.

Simon Marlow et al.. 2010. Haskell 2010 Language Report. https://web.archive.org/web/201007102011
51/https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-230003.1. Accessed:
2010-07-10. (2010).

ConorMcBride and Ross Paterson. 2008. “Applicative programmingwith effects”. Journal of Functional
Programming, 18, 1, 1–13. doi: 10.1017/S0956796807006326.

MatthewMight. 2010.Architectures for interpreters: Substitutional, denotational, big-step and small-step.
https://web.archive.org/web/20100216131108/https://matt.might.net/articles/writing- an-
interpreter-substitution-denotational-big-step-small-step/. Accessed: 2010-02-16. (2010).

Robin Milner. 1978. “A theory of type polymorphism in programming”. Journal of Computer and

System Sciences, 17, 3, 348–375. doi: https://doi.org/10.1016/0022-0000(78)90014-4.
Rasmus Ejlers Møgelberg and Niccolò Veltri. Jan. 2019. “Bisimulation as Path Type for Guarded

Recursive Types”. Proc. ACM Program. Lang., 3, POPL, (Jan. 2019). doi: 10.1145/3290317.
Benoît Montagu and Thomas Jensen. 2021. “Trace-Based Control-FlowAnalysis”. In: Proceedings of the

42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI 2021). Association for ComputingMachinery, Virtual, Canada, 482–496. isbn: 9781450383912.
doi: 10.1145/3453483.3454057.

Andrew Moran and David Sands. 1999. “Improvement in a Lazy Context: An Operational Theory
for Call-by-Need”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of

180

https://people.cs.kuleuven.be/~tom.schrijvers/Research/papers/icfp2015.pdf
https://people.cs.kuleuven.be/~tom.schrijvers/Research/papers/icfp2015.pdf
https://doi.org/10.1145/3360602
https://doi.org/10.1145/3236767
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/178243.178246
https://doi.org/https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1147/rd.216.0559
https://web.archive.org/web/20100710201151/https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-230003.1
https://web.archive.org/web/20100710201151/https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-230003.1
https://doi.org/10.1017/S0956796807006326
https://web.archive.org/web/20100216131108/https://matt.might.net/articles/writing-an-interpreter-substitution-denotational-big-step-small-step/
https://web.archive.org/web/20100216131108/https://matt.might.net/articles/writing-an-interpreter-substitution-denotational-big-step-small-step/
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3290317
https://doi.org/10.1145/3453483.3454057

Programming Languages (POPL ’99). Association for Computing Machinery, San Antonio, Texas,
USA, 43–56. isbn: 1581130953. doi: 10.1145/292540.292547.

Hiroshi Nakano. 2000. “A Modality for Recursion”. In: Proceedings of the 15th Annual IEEE Symposium

on Logic in Computer Science (LICS ’00). IEEE Computer Society, USA, 255. isbn: 0769507255.
Keiko Nakata. 2010. “Denotational Semantics for Lazy Initialization of letrec”. In: 7th Workshop on

Fixed Points in Computer Science, FICS 2010, Brno, Czech Republic, August 21-22, 2010. Ed. by Luigi
Santocanale. Laboratoire d’Informatique Fondamentale de Marseille, 61–67. https://hal.archives-
ouvertes.fr/hal-00512377/document%5C#page=62.

Keiko Nakata and Jacques Garrigue. Sept. 2006. “Recursive Modules for Programming”. SIGPLAN
Not., 41, 9, (Sept. 2006), 74–86. doi: 10.1145/1160074.1159813.

Sebastian Nanz and Carlo A. Furia. 2015. “A Comparative Study of Programming Languages in
Rosetta Code”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1, 778–788. doi: 10.1109/ICSE.2015.90.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis.
Springer. isbn: 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6.

Ulf Norell. Sept. 2007. “Towards a practical programming language based on dependent type the-
ory”. PhD thesis. Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden, (Sept. 2007).

Nicolas Oury. 2007. “Pattern Matching Coverage Checking with Dependent Types Using Set Ap-
proximations”. In: Proceedings of the 2007 Workshop on Programming Languages Meets Program

Verification (PLPV ’07). Association for Computing Machinery, Freiburg, Germany, 47–56. isbn:
9781595936776. doi: 10.1145/1292597.1292606.

Simon Peyton Jones. 1992. “Implementing lazy functional languages on stock hardware: The Spineless
Tagless G-machine”. Journal of Functional Programming. doi: 10.1017/S0956796800000319.

Simon Peyton Jones and Sebastian Graf. 2023. Triemaps that match. (2023). arXiv: 2302.08775 [cs.PL].
Ed. by John T. O’Donnell and Kevin Hammond. “Measuring the effectiveness of a simple strictness

analyser”. Functional Programming, Glasgow 1993: Proceedings of the 1993 Glasgow Workshop on

Functional Programming, Ayr, Scotland, 5–7 July 1993. Springer London, London, 201–221. isbn:
978-1-4471-3236-3. doi: 10.1007/978-1-4471-3236-3_17.

Simon Peyton Jones, Peter Sestoft, and John Hughes. July 2006. Demand Analysis. (July 2006). https:
//www.microsoft.com/en-us/research/publication/demand-analysis/.

F. Pfenning and C. Elliott. 1988. “Higher-order abstract syntax”. In: Proceedings of the ACM SIGPLAN

1988 Conference on Programming Language Design and Implementation (PLDI ’88). Association for
Computing Machinery, Atlanta, Georgia, USA, 199–208. isbn: 0897912691. doi: 10.1145/53990.
54010.

Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A. Eisenberg. 2016. “Pattern Syn-
onyms”. In: Proceedings of the 9th International Symposium on Haskell (Haskell 2016). Association
for Computing Machinery, Nara, Japan, 80–91. isbn: 9781450344340. doi: 10.1145/2976002.2976013.

Benjamin C. Pierce. 2002. Types and Programming Languages. (1st ed.). The MIT Press. isbn:
0262162091.

Gordon D. Plotkin. 2004. “A structural approach to operational semantics”. The Journal of Logic and
Algebraic Programming, 60-61, 17–139. doi: 10.1016/j.jlap.2004.05.001.

Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. Sept. 2017. “A large-scale
study of programming languages and code quality in GitHub”. Commun. ACM, 60, 10, (Sept. 2017),
91–100. doi: 10.1145/3126905.

John C. Reynolds. 1972. “Definitional Interpreters for Higher-Order Programming Languages”. In:
Proceedings of the ACM Annual Conference - Volume 2 (ACM ’72). Association for Computing

181

https://doi.org/10.1145/292540.292547
https://hal.archives-ouvertes.fr/hal-00512377/document%5C#page=62
https://hal.archives-ouvertes.fr/hal-00512377/document%5C#page=62
https://doi.org/10.1145/1160074.1159813
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/1292597.1292606
https://doi.org/10.1017/S0956796800000319
https://arxiv.org/abs/2302.08775
https://doi.org/10.1007/978-1-4471-3236-3_17
https://www.microsoft.com/en-us/research/publication/demand-analysis/
https://www.microsoft.com/en-us/research/publication/demand-analysis/
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/2976002.2976013
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1145/3126905

Bibliography

Machinery, Boston, Massachusetts, USA, 717–740. isbn: 9781450374927. doi: 10.1145/800194.
805852.

John C. Reynolds. 2002. “Separation logic: a logic for shared mutable data structures”. In: Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, 55–74. doi: 10.1109/LICS.2002.1029817.

John C. Reynolds. 1983. “Types, Abstraction and Parametric Polymorphism”. In: Information Processing

83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983. Ed. by
R. E. A. Mason. North-Holland/IFIP, 513–523.

Barry K Rosen. 1975. Data flow analysis for recursive PL/I programs. IBM Thomas J. Watson Research
Center.

John Rushby, Sam Owre, and Natarajan Shankar. 1998. “Subtypes for specifications: Predicate
subtyping in PVS”. IEEE Transactions on Software Engineering, 24, 9, 709–720.

Dana Scott. Nov. 1970. Outline of a Mathematical Theory of Computation. Tech. rep. PRG02. OUCL,
(Nov. 1970), 30.

Dana Scott and Christopher Strachey. Aug. 1971. Toward a Mathematical Semantics for Computer

Languages. Tech. rep. PRG06. OUCL, (Aug. 1971), 49.
R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Dec. 1995. “Adaptive Pattern Matching”. SIAM J.

Comput., 24, 6, (Dec. 1995), 1207–1234. doi: 10.1137/S0097539793246252.
Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and

Frank Piessens. 2013. “Monadic abstract interpreters”. In: Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’13). Association for
Computing Machinery, Seattle, Washington, USA, 399–410. isbn: 9781450320146. doi: 10.1145/
2491956.2491979.

Ilya Sergey, Simon Peyton Jones, and Dimitrios Vytiniotis. June 2014. “Theory and practice of
demand analysis in Haskell”. Unpublished draft. (June 2014). https://www.microsoft.com/en-
us/research/publication/theory-practice-demand-analysis-haskell/.

Ilya Sergey, Dimitrios Vytiniotis, Simon Peyton Jones, and Joachim Breitner. 2017. “Modular, higher
order cardinality analysis in theory and practice”. Journal of Functional Programming, 27, e11. doi:
10.1017/S0956796817000016.

Peter Sestoft. 1997. “Deriving a lazy abstract machine”. Journal of Functional Programming, 7, 3,
231–264. doi: 10.1017/S0956796897002712.

Peter Sestoft. 1996. “ML pattern match compilation and partial evaluation”. In: Partial Evaluation.
Springer, 446–464.

Micha Sharir, Amir Pnueli, et al.. 1978. Two approaches to interprocedural data flow analysis. New
York University. Courant Institute of Mathematical Sciences . . .

Olin Grigsby Shivers. May 1991. “Control-Flow Analysis of Higher-Order Languages or Taming
Lambda”. In: (May 1991).

Matthieu Sozeau. 2010. “Equations: A Dependent Pattern-Matching Compiler”. In: Interactive Theorem
Proving. Ed. by Matt Kaufmann and Lawrence C. Paulson. Springer Berlin Heidelberg, Berlin,
Heidelberg, 419–434. isbn: 978-3-642-14052-5.

Matthieu Sozeau and Cyprien Mangin. July 2019. “Equations Reloaded: High-Level Dependently-
Typed Functional Programming and Proving in Coq”. Proc. ACM Program. Lang., 3, ICFP, (July
2019). doi: 10.1145/3341690.

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and
Lars Birkedal. 2021. “Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation
Logic”. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI 2021). Association for Computing Machinery, Virtual,
Canada, 80–95. isbn: 9781450383912. doi: 10.1145/3453483.3454031.

182

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1137/S0097539793246252
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/2491956.2491979
https://www.microsoft.com/en-us/research/publication/theory-practice-demand-analysis-haskell/
https://www.microsoft.com/en-us/research/publication/theory-practice-demand-analysis-haskell/
https://doi.org/10.1017/S0956796817000016
https://doi.org/10.1017/S0956796897002712
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3453483.3454031

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2023. Denotational semantics of general store

and polymorphism. (2023). https://arxiv.org/abs/2210.02169 arXiv: 2210.02169 [cs.PL].
Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. “System

Fwith type equality coercions”. In: Proceedings of the 2007 ACM SIGPLAN InternationalWorkshop on

Types in Languages Design and Implementation (TLDI ’07). Association for Computing Machinery,
Nice, Nice, France, 53–66. isbn: 159593393X. doi: 10.1145/1190315.1190324.

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. “Toward understanding compiler bugs
in GCC and LLVM”. In: Proceedings of the 25th International Symposium on Software Testing and

Analysis (ISSTA 2016). Association for Computing Machinery, Saarbrücken, Germany, 294–305.
isbn: 9781450343909. doi: 10.1145/2931037.2931074.

David N. Turner, Philip Wadler, and Christian Mossin. 1995. “Once upon a type”. In: Proceedings
of the Seventh International Conference on Functional Programming Languages and Computer

Architecture (FPCA ’95). Association for Computing Machinery, La Jolla, California, USA, 1–11.
isbn: 0897917197. doi: 10.1145/224164.224168.

David Van Horn and Matthew Might. 2010. “Abstracting Abstract Machines”. In: Proceedings of the
15th ACM SIGPLAN International Conference on Functional Programming (ICFP ’10). Association
for Computing Machinery, Baltimore, Maryland, USA, 51–62. isbn: 9781605587943. doi: 10.1145/
1863543.1863553.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton Jones. 2014. “Refine-
ment Types for Haskell”. In: Proceedings of the 19th ACM SIGPLAN International Conference on Func-

tional Programming (ICFP ’14). ACM, Gothenburg, Sweden, 269–282. doi: 10.1145/2628136.2628161.
Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler,

and Ranjit Jhala. Dec. 2017. “Refinement Reflection: Complete Verification with SMT”. Proc. ACM
Program. Lang., 2, POPL, (Dec. 2017). doi: 10.1145/3158141.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Sept. 2011. “Out-
sideIn(X): Modular Type Inference with Local Assumptions”. J. Funct. Program., 21, 4-5, (Sept.
2011), 333–412. doi: 10.1017/S0956796811000098.

Hongwei Xi. 1998a. “Dead Code Elimination Through Dependent Types”. In: Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages (PADL ’99). Springer-Verlag,
London, UK, 228–242.

Hongwei Xi. Sept. 1998b. “Dependent Types in Practical Programming”. PhD thesis. Carnegie Mellon
University, (Sept. 1998).

Hongwei Xi. 2003. “Dependently typed pattern matching”. Journal of Universal Computer Science, 9,
851–872.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. “Guarded Recursive Datatype Constructors”. In:
Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’03). ACM, New Orleans, Louisiana, USA, 224–235. doi: 10.1145/604131.604150.
Hongwei Xi and Frank Pfenning. 1998. “Eliminating Array Bound Checking through Dependent

Types”. In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation (PLDI ’98). Association for Computing Machinery, Montreal, Quebec, Canada,
249–257. isbn: 0897919874. doi: 10.1145/277650.277732.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and
Steve Zdancewic. Dec. 2019. “Interaction Trees: Representing Recursive and Impure Programs in
Coq”. Proc. ACM Program. Lang., 4, POPL, (Dec. 2019). doi: 10.1145/3371119.

183

https://arxiv.org/abs/2210.02169
https://arxiv.org/abs/2210.02169
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/3371119

Bibliography

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and
José Pedro Magalhães. 2012. “Giving Haskell a Promotion”. In: Proceedings of the 8th ACM SIG-

PLAN Workshop on Types in Language Design and Implementation (TLDI ’12). ACM, Philadelphia,
Pennsylvania, USA, 53–66. doi: 10.1145/2103786.2103795.

184

https://doi.org/10.1145/2103786.2103795

A
Proofs for Chapter 4

A.1 Proofs for Section 4.1

Definition 4.2 (Absence). A variable x is used in an expression e if and only if

there exists a trace (let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ... that looks up the

heap entry of x, i.e. it evaluates x. Otherwise, x is absent in e.

Note that for the proofs I assume the recursive let definition

AJlet x = e1 in e2K𝜌 = AJe2K𝜌 [x ↦→lfp(𝜆𝜃 . x&AJe1K𝜌 [x↦→𝜃])] .

The partial order on AbsTy necessary for computing the least fixpoint lfp follows
structurally from A < U, as described in Section 4.1.

Abbreviation A.1. The syntax 𝜃 .𝜑 for an AbsTy 𝜃 = ⟨𝜑, 𝜋⟩ returns the 𝜑 com-

ponent of 𝜃 . The syntax 𝜃 .𝜋 returns the 𝜋 component of 𝜃 .

Definition A.2 (Abstract substitution). The operation

𝜑 [x Z⇒ 𝜑 ′] ≜ 𝜑 [x ↦→ A] ⊔ (𝜑 (x) ∗ 𝜑 ′)

is called the abstract substitution operation on Uses and it is overloaded for AbsTy,
so that (⟨𝜑, 𝜋⟩) [x Z⇒ 𝜑y] ≜ ⟨𝜑 [x Z⇒ 𝜑y], 𝜋⟩.

Abstract substitution is useful to give a concise description of the effect of
syntactic substitution:

Lemma A.3. AJ(λ̄x.e) yK𝜌 = (AJeK𝜌 [x ↦→⟨[x↦→U],Rep U⟩]) [x Z⇒ 𝜌 (y).𝜑].

Proof. Follows by unfolding the application and lambda case and then refolding
abstract substitution. □

A Proofs for Chapter 4

Lemma A.4. Lambda-bound uses do not escape their scope. That is, when x is
lambda-bound in e, it is (AJeK𝜌).𝜑 (x) = A.

Proof. By induction on e. In the lambda case, any use of x is cleared to A when
returning. □

Lemma A.5. AJ(λ̄x.λ̄y.e) zK𝜌 = AJλ̄y.((λ̄x.e) z)K𝜌 .

Proof. AJ(λ̄x.λ̄y.e) zK𝜌
H Unfold AJ K, Lemma A.3 I

= (funy (𝜆𝜃y. AJeK𝜌 [x↦→⟨[x ↦→U],Rep U⟩,y ↦→𝜃y])) [x Z⇒ 𝜌 (z).𝜑]
H 𝜌 (z) (y) = A by Lemma A.4, x ≠ y ≠ z I

= funy (𝜆𝜃y. (AJeK𝜌 [x↦→⟨[x ↦→U],Rep U⟩,y ↦→𝜃y]) [x Z⇒ 𝜌 (z).𝜑])
H Refold AJ K I

= AJλ̄y.((λ̄x.e) z)K𝜌

□

Lemma A.6. AJ(λ̄x.e) y zK𝜌 = AJ(λ̄x.e z) yK𝜌 .

Proof. AJ(λ̄x.e) y zK𝜌
H Unfold AJ K, Lemma A.3 I

= app((AJeK𝜌 [⟨ [x ↦→U],Rep U⟩]) [x Z⇒ 𝜌 (y).𝜑]) (𝜌 (z))
H 𝜌 (z) (x) = A by Lemma A.4, y ≠ x ≠ z I

= app(AJeK𝜌 [⟨ [x ↦→U],Rep U⟩]) (𝜌 (z)) [x Z⇒ 𝜌 (y).𝜑]
H Refold AJ K I

= AJ(λ̄x.e z) yK𝜌

□

186

A.1 Proofs for Section 4.1

Lemma A.7. AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌 = AJ(λ̄x.let z = e1 in e2) yK𝜌 .

Proof. The key of this lemma is that it is equivalent to postpone the abstract
substitution from the let RHS e1 to the let body e2. This can easily be proved
by induction on e2, which I omit here, but indicate the respective step below as
“hand-waving”. Note that I assume the (more general) recursive let semantics as
defined at the beginning of this section.

AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌
H Unfold AJ K I

= AJ(λ̄x.e2) yK𝜌 [z↦→lfp(𝜆𝜃 . z&AJ(λ̄x.e1) yK𝜌 [z↦→𝜃])]

H Lemma A.3 I
= (AJe2K𝜌 [x↦→⟨[x ↦→U],Rep U⟩,z↦→𝜃z]) [x Z⇒ 𝜌 (y).𝜑]
where 𝜃z = lfp(𝜆𝜃 . z & (AJe1K𝜌 [x↦→⟨[x↦→U],Rep U⟩,z ↦→𝜃]) [x Z⇒ 𝜌 (y).𝜑])
H Hand-waving above I

= (AJe2K𝜌 [x↦→⟨[x ↦→U],Rep U⟩,z↦→𝜃 ′z]) [x Z⇒ 𝜌 (y).𝜑]
where 𝜃 ′z = lfp(𝜆𝜃 . z &AJe1K𝜌 [x ↦→⟨[x↦→U],Rep U⟩,z ↦→𝜃])
H Refold AJ K I

= (AJlet z = e1 in e2K𝜌 [x↦→⟨[x ↦→U],Rep U⟩]) [x Z⇒ 𝜌 (y).𝜑]
H Lemma A.3 I

= AJ(λ̄x.let z = e1 in e2) yK𝜌

□

Lemma 4.3 (Substitution). AJeK𝜌 [x↦→𝜌 (y)] ⊑ AJ(λ̄x.e) yK𝜌 . ⟲ 76

Proof. By induction on e.

• Case z: When x ≠ z, then z is bound outside the lambda and can’t possibly
use x, so 𝜌 (z).𝜑 (x) = A. We have

AJzK𝜌 [x↦→𝜌 (y)]
H x ≠ z I

= 𝜌 (z)
H Refold AJ K I

187

A Proofs for Chapter 4

= AJzK𝜌 [x↦→⟨[x ↦→U],Rep U⟩]

H 𝜌 (z).𝜑 (x) = A I
= (AJzK𝜌 [x↦→⟨[x ↦→U],Rep U⟩]) [x Z⇒ 𝜌 (y).𝜑]

H Lemma A.3 I
= AJ(λ̄x.z) yK𝜌

Otherwise, we have x = z, thus 𝜌 (x) = ⟨[x ↦→ U], 𝜋 = Rep U⟩, and thus

AJzK𝜌 [x ↦→𝜌 (y)]
H x = z I

= 𝜌 (y)
H 𝜋 ⊑ Rep U I

⊑ ⟨𝜌 (y).𝜑,Rep U⟩
H Definition of [Z⇒] I

= (⟨[x ↦→ U],Rep U⟩) [x ↦→ 𝜌 (y).𝜑]
H Refold AJ K I

= (AJzK𝜌 [x↦→⟨[x↦→U],Rep U⟩]) [x Z⇒ 𝜌 (y).𝜑]
H Lemma A.3 I

= AJ(λ̄x.z) yK𝜌

• Case λ̄z.e′: AJλ̄z.e′K𝜌 [x↦→𝜌 (y)]
H Unfold AJ K I

= funz (𝜆𝜃z. AJe′K𝜌 [z ↦→𝜃z,x↦→𝜌 (y)])
H Induction hypothesis, monotonicity I

⊑ funz (𝜆𝜃z. AJ(λ̄x.e′) yK𝜌 [z ↦→𝜃z])
H Refold AJ K I

= AJλ̄z.((λ̄x.e′) y)K𝜌
H Lemma A.5 I

= AJ(λ̄x.λ̄z.e′) yK𝜌

• Case e′ z: When x = z:
AJe′ zK𝜌 [x↦→𝜌 (y)]

188

A.1 Proofs for Section 4.1

H Unfold AJ K I
= app(AJe′K𝜌 [x↦→𝜌 (y)]) (𝜌 (y))

H Induction hypothesis, monotonicity I
⊑ app(AJ(λ̄x.e′) yK𝜌) (𝜌 (y))

H Refold AJ K I
= AJ(λ̄x.e′) y yK𝜌

H Lemma A.6 I
= AJ(λ̄x.e′ y) yK𝜌

H Compositionality in (λ̄x.e′ □) y I
= AJ(λ̄x.e′ x) yK𝜌

H x = z I
= AJ(λ̄x.e′ z) yK𝜌

When x ≠ z: AJe′ zK𝜌 [x ↦→𝜌 (y)]
H Unfold AJ K I

= app(AJe′K𝜌 [x↦→𝜌 (y)]) (𝜌 (z))
H Induction hypothesis, monotonicity I

⊑ app(AJ(λ̄x.e′) yK𝜌) (𝜌 (z))
H Refold AJ K I

= AJ(λ̄x.e′) y zK𝜌
H Lemma A.6 I

= AJ(λ̄x.e′ z) yK𝜌

• Case let z = e1 in e2:
AJlet z = e1 in e2K𝜌 [x↦→𝜌 (y)]
H Unfold AJ K I

= AJe2K𝜌 [x ↦→𝜌 (y),z↦→lfp(𝜆𝜃 . z&AJe1K𝜌 [x↦→𝜌 (y),z↦→𝜃])]

H Induction hypothesis, monotonicity I
⊑ AJ(λ̄x.e2) yK𝜌 [z ↦→lfp(𝜆𝜃 . z&AJ(λ̄x.e1) yK𝜌 [z↦→𝜃])]

H Refold AJ K I
= AJlet z = (λ̄x.e1) y in (λ̄x.e2) yK𝜌

189

A Proofs for Chapter 4

H Lemma A.7 I
= AJ(λ̄x.let z = e1 in e2) yK𝜌

□

Whenever there exists 𝜌 such that 𝜌 (x).𝜑 ̸⊑ (AJeK𝜌) .𝜑 (recall that 𝜃 .𝜑 selects
theUses in the first field of the pair𝜃), then also 𝜌e (x).𝜑 ̸⊑ AJeK𝜌e . The following
lemma captures this intuition:

Lemma A.8 (Diagonal factoring). Let 𝜌 and 𝜌Δ be two environments such that

∀x. 𝜌 (x) .𝜋 = 𝜌Δ (x).𝜋 .
If 𝜌Δ .𝜑 (x) ⊑ 𝜌Δ .𝜑 (y) if and only if x = y, then every instantiation of AJeK

factors through AJeK𝜌Δ , that is,

AJeK𝜌 = (AJeK𝜌Δ) [x Z⇒ 𝜌 (x).𝜑]

Proof. By induction on e.

• Case e = y: We assert AJyK𝜌 = 𝜌 (y) = 𝜌Δ (y) [y Z⇒ 𝜌 (y).𝜑] by simple
unfolding.

• Case e = e′ y:

AJe′ yK𝜌
H Unfold AJ K I

= app(AJe′K𝜌 , 𝜌 (y))
H Induction hypothesis, variable case I

= app((AJe′K𝜌Δ) [x Z⇒ 𝜌 (x).𝜑], 𝜌Δ (y) [x Z⇒ 𝜌 (x).𝜑]).
H ⊔ and ∗ commute with [Z⇒] I

= app(AJe′K𝜌Δ , 𝜌Δ (y)) [x Z⇒ 𝜌 (x).𝜑]
H Refold AJ K I

= (AJe′ yK𝜌Δ) [x Z⇒ 𝜌 (x).𝜑]

• Case e = λ̄y.e′: Note that x ≠ y because y is not free in e.

AJλ̄y.e′K𝜌
H Unfold AJ K I

190

A.1 Proofs for Section 4.1

= funy (𝜆𝜃 . AJe′K𝜌 [y ↦→𝜃])
H Property of funy I

= funy (𝜆𝜃 . (AJe′K𝜌 [y ↦→⟨[y ↦→U],Rep U⟩]))
H Induction hypothesis I

= funy (𝜆𝜃 . (AJe′K𝜌Δ [y ↦→⟨[y ↦→U],Rep U⟩]) [x Z⇒ 𝜌 (x).𝜑, y Z⇒ [y ↦→ U]])
H 𝜃 [y Z⇒ [y ↦→ U]] = 𝜃 I

= funy (𝜆𝜃 . (AJe′K𝜌Δ [y ↦→⟨[y ↦→U],Rep U⟩]) [x Z⇒ 𝜌 (x).𝜑])
H 𝜃 [y Z⇒ [y ↦→ U]] = 𝜃 I

= funy (𝜆𝜃 . (AJe′K𝜌Δ [y ↦→𝜃]) [x Z⇒ 𝜌 (x).𝜑])
H Property of funy I

= funy (𝜆𝜃 . AJe′K𝜌Δ [y ↦→𝜃]) [x Z⇒ 𝜌 (x).𝜑]
H Refold AJ K I

= (AJλ̄y.e′K𝜌Δ) [x Z⇒ 𝜌 (x).𝜑]

• Case let y = e1 in e2: Note that x ≠ y because y is not free in e.

AJlet y = e1 in e2K𝜌
H Unfold AJ K I

= AJe2K𝜌 [y↦→lfp(𝜆𝜃 . y&AJe1K𝜌 [y ↦→𝜃])]

H Induction hypothesis I
= AJe2K𝜌 [y↦→lfp(𝜆𝜃 . y&(AJe1K𝜌Δ [y ↦→⟨[y ↦→U],𝜃 .𝜋 ⟩]) [xZ⇒𝜌 (x) .𝜑,y Z⇒𝜃 .𝜑])]

H Again, backwards I
= AJe2K𝜌 [y ↦→lfp(𝜆𝜃 . y&(AJe1K𝜌Δ [y ↦→𝜃]) [xZ⇒𝜌 (x) .𝜑])]

H Similarly for e2, push out the subst as in Lemma A.7 I

= (AJe2K𝜌Δ [y ↦→lfp(𝜆𝜃 . y&AJe1K𝜌Δ [y ↦→𝜃])]
) [x Z⇒ 𝜌 (x).𝜑]

H Refold AJ K I

= (AJlet y = e1 in e2K𝜌Δ) [x Z⇒ 𝜌 (x).𝜑]

□

191

A Proofs for Chapter 4

CJ K : S→ AbsTy

CJ(e, 𝜌, 𝜇, 𝜅)K = apps𝜇 (𝜅,AJeK𝛼 (𝜇)◦𝜌)
𝛼 (𝜇) = lfp(𝜆�̃�. [a ↦→ x &AJe′K�̃�◦𝜌′ | 𝜇 (a) = (x, 𝜌′, e′)])

apps𝜇 (stop, 𝜃) = 𝜃
apps𝜇 (ap(a) · 𝜅, 𝜃) = apps𝜇 (𝜅, app(𝜃, 𝛼 (𝜇) (a)))

apps𝜇 (upd(a) · 𝜅, 𝜃) = apps𝜇 (𝜅, 𝜃)

Fig. A.1: Absence analysis extended to small-step configurations

For the purposes of the preservation proof, I will write 𝜌 with a tilde to denote
that abstract environment of type Var → AbsTy, to disambiguate it from a
concrete environment 𝜌 from the LK machine.

In Figure A.1, I give the extension of CJ K to whole machine configurations 𝜎 .
Although CJ K looks like an entirely new definition, it is actually derivative of
AJ K via a context lemma à la Moran and Sands [1999, Lemma 3.2]: The environ-
ments 𝜌 simply govern the transition from syntax to operational representation
in the heap. The bindings in the heap are to be treated as mutually recursive
let bindings, hence a fixpoint is needed. For safety properties such as absence,
a least fixpoint is appropriate. Apply frames on the stack correspond to the
application case of AJ K and invoke the summary mechanism. Update frames
are ignored because my analysis is not heap-sensitive.
Now we can prove that CJ K is preserved/improves during reduction:

Lemma A.9 (Preservation of CJ K). If 𝜎1 ↩−→ 𝜎2, then CJ𝜎1K ⊒ CJ𝜎2K.

Proof. By cases on the transition.

• Case Let1: Then e = let y = e1 in e2 and

(let y = e1 in e2, 𝜌, 𝜇, 𝜅) ↩−→ (e2, 𝜌 [y ↦→ a], 𝜇 [a ↦→ (y, 𝜌 [y ↦→ a], e1)], 𝜅).

Abbreviating 𝜌1 ≜ 𝜌 [y ↦→ a], 𝜇1 ≜ 𝜇 [a ↦→ (y, 𝜌1, e1), we have

CJ𝜎1K
H Unfold CJ𝜎1K I

= apps𝜇 (𝜅) (AJlet y = e1 in e2K𝛼 (𝜇)◦𝜌)
H Unfold AJlet y = e1 in e2K I

192

A.1 Proofs for Section 4.1

= apps𝜇 (𝜅) (AJe2K(𝛼 (𝜇)◦𝜌) [y ↦→y&lfp(𝜆𝜃 . AJe1K(𝛼 (𝜇)◦𝜌) [y ↦→𝜃])])

H Move fixpoint outwards, refold 𝛼 I
= apps𝜇1 (𝜅) (AJe2K𝛼 (𝜇1)◦𝜌1)

H Refold CJ𝜎2K I
= CJ𝜎2K

• Case App1: Then (e′ y, 𝜌, 𝜇, 𝜅) ↩−→ (e′, 𝜌, 𝜇, ap(𝜌 (y)) · 𝜅).

CJ𝜎1K
H Unfold CJ𝜎1K I

= apps𝜇 (𝜅) (AJe′ yK𝛼 (𝜇)◦𝜌)
H Unfold AJe′ yK(𝛼 (𝜇)◦𝜌) I

= apps𝜇 (𝜅) (app(AJe′K𝛼 (𝜇)◦𝜌 , 𝛼 (𝜇) (𝜌 (y))))
H Rearrange I

= apps𝜇 (ap(𝜌 (y)) · 𝜅) (AJe′K𝛼 (𝜇)◦𝜌)
H Refold CJ𝜎2K I

= CJ𝜎2K

• Case App2: Then (λ̄y.e′, 𝜌, 𝜇, ap(a) · 𝜅) ↩−→ (e′, 𝜌 [y ↦→ a], 𝜇, 𝜅).

CJ𝜎1K
H Unfold CJ𝜎1K I

= apps𝜇 (ap(a) · 𝜅) (AJλ̄y.e′K𝛼 (𝜇)◦𝜌)
H Unfold apps I

= apps𝜇 (𝜅) (app(AJλ̄y.e′K𝛼 (𝜇)◦𝜌 , 𝛼 (𝜇) (a)))
H Unfold RHS of Lemma 4.3 I

⊒ apps𝜇 (𝜅) (AJe′K(𝛼 (𝜇)◦𝜌) [y↦→𝛼 (𝜇) (a)])
H Rearrange I

= apps𝜇 (𝜅) (AJe′K(𝛼 (𝜇)◦𝜌 [y ↦→a]))
H Refold CJ𝜎2K I

= CJ𝜎2K

193

A Proofs for Chapter 4

• Case Look: Then e = y, a ≜ 𝜌 (y), (z, 𝜌′, e′) ≜ 𝜇 (a) and (y, 𝜌, 𝜇, 𝜅) ↩−→
(e′, 𝜌′, 𝜇,upd(a) · 𝜅).

CJ𝜎1K
H Unfold CJ𝜎1K I

= apps𝜇 (𝜅) (AJyK𝛼 (𝜇)◦𝜌)
H Unfold AJyK I

= apps𝜇 (𝜅) ((𝛼 (𝜇) ◦ 𝜌) (y))
H Unfold 𝛼 I

= apps𝜇 (𝜅) (z &AJe′K𝛼 (𝜇)◦𝜌′)
H Drop [z ↦→ U] I

⊒ apps𝜇 (𝜅) (AJe′K𝛼 (𝜇)◦𝜌′)
H Definition of apps𝜇 I

= apps𝜇 (upd(a) · 𝜅) (AJe′K𝛼 (𝜇)◦𝜌′)
H Refold CJ𝜎2K I

= CJ𝜎2K

• Case Upd: Then (v, 𝜌, 𝜇 [a ↦→ (y, 𝜌′, e′)],upd(a) · 𝜅) ↩−→ (v, 𝜌, 𝜇 [a ↦→
(y, 𝜌, v)], 𝜅).
This case is a bit hand-wavy and shows how heap update during by-need
evaluation is dreadfully complicated to handle, even though AJ K is heap-
less and otherwise correct wrt. by-name evaluation. The culprit is that in
order to show CJ𝜎2K ⊑ CJ𝜎1K, we have to show

AJvK𝛼 (𝜇)◦𝜌 ⊑ AJe′K𝛼 (𝜇′)◦𝜌′ . (A.1)

Intuitively, this is somewhat clear, because 𝜇 “evaluates to” 𝜇′ and v is
the value of e′, in the sense that there exists 𝜎 ′ = (e′, 𝜌′, 𝜇′, 𝜅) such that
𝜎 ′ ↩−→∗ 𝜎1 ↩−→ 𝜎2.
Alas, who guarantees that such a 𝜎 ′ actually exists? We would need to re-
arrange the lemma for that and argue by step indexing (a.k.a. coinduction)
over prefixes of maximal traces (to be rigorously defined later). That is, we
presume that the statement

∀𝑛. 𝜎0 ↩−→𝑛
𝜎2 =⇒ CJ𝜎2K ⊑ CJ𝜎0K

194

A.1 Proofs for Section 4.1

has been proved for all 𝑛 < 𝑘 and proceed to prove it for 𝑛 = 𝑘 . So we
presume 𝜎0 ↩−→𝑘−1

𝜎1 ↩−→ 𝜎2 and CJ𝜎1K ⊑ CJ𝜎0K to arrive at a similar
setup as before, only with a stronger assumption about 𝜎1. Specifically,
due to the balanced stack discipline we know that 𝜎0 ↩−→𝑘−1

𝜎1 factors
over 𝜎 ′ above. We may proceed by induction over the balanced stack
discipline (we will see in Section 4.4.1 that this amounts to induction over
the big-step derivation) of the trace 𝜎 ′ ↩−→∗ 𝜎1 to show Equation (A.1).
This reasoning was not specific toAJ K at all. I show a more general result
in Theorem 4.18 that can be reused across many more analyses.
Assuming Equation (A.1) has been proved, we proceed

CJ𝜎1K
H Unfold CJ𝜎1K I

= apps𝜇 (upd(a) · 𝜅) (AJvK𝛼 (𝜇)◦𝜌)
H Definition of apps𝜇 I

= apps𝜇 (𝜅) (AJvK𝛼 (𝜇)◦𝜌)
H Above argument that AJvK𝛼 (𝜇)◦𝜌 ⊑ AJe′K𝛼 (𝜇′)◦𝜌′ I

⊒ apps𝜇 [a ↦→(y,𝜌,v)] (𝜅) (AJvK𝛼 (𝜇 [a ↦→(y,𝜌,v)])◦𝜌)
H Refold CJ𝜎2K I

= CJ𝜎2K

□

Theorem 4.1 (AJ K infers absence). If AJeK𝜌e = ⟨𝜑, 𝜋⟩ and 𝜑 (x) = A, then x is ⟲ 76
absent in e.

Proof. We show the contraposition, that is, if x is used in e, then 𝜑 (x) = U.
Since x is used in e, there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→ (e, 𝜌1, 𝜇1, 𝜅) ↩−→∗ (y, 𝜌′ [y ↦→ a], 𝜇′, 𝜅′)
Look(x)
↩−−−−−−→ ...,

where 𝜌1 ≜ 𝜌 [x ↦→ a], 𝜇1 ≜ 𝜇 [a ↦→ (x, 𝜌 [x ↦→ a], e′)]. Without loss of
generality, we assume the trace prefix ends at the first lookup at a, so 𝜇′ (a) =
𝜇1 (a) = (x, 𝜌1, e′). If that was not the case, we could just find a smaller prefix
with this property.

195

A Proofs for Chapter 4

Let us abbreviate 𝜌 ≜ (𝛼 (𝜇1) ◦ 𝜌1). Under the above assumptions, 𝜌 (y).𝜑 (x) =
U implies x = y for all y, because 𝜇1 (a) is the only heap entry in which x occurs
by the shadowing assumptions on syntax. By unfolding CJ K and AJyK we can
see that

[x ↦→ U] ⊑ 𝛼 (𝜇1) (a).𝜑 = 𝛼 (𝜇′) (a).𝜑 = AJyK𝛼 (𝜇′)◦𝜌′ [y ↦→a] .𝜑
⊑ (CJ(y, 𝜌′ [y ↦→ a], 𝜇′, 𝜅′)K).𝜑 .

By Lemma A.9, we also have

(CJ(y, 𝜌′ [y ↦→ a], 𝜇′, 𝜅′)K).𝜑 ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑 .

And with transitivity, we get [x ↦→ U] ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑 . Since there was
no other heap entry for x and a cannot occur in 𝜅 or 𝜌 due to well-addressedness,
we have [x ↦→ U] ⊑ (CJ(e, 𝜌1, 𝜇1, 𝜅)K).𝜑 if and only if [x ↦→ U] ⊑ (AJeK𝜌).𝜑 .
With Lemma A.8, we can decompose

[x ↦→ U]
H Above result I

⊑ (AJeK𝜌) .𝜑
H 𝜌Δ (x) ≜ ⟨[x ↦→ U], 𝜌 (x).𝜋⟩, Lemma A.8 I

= ((AJeK𝜌Δ) [y Z⇒ 𝜌 (y).𝜑]) .𝜑
H 𝜋 ⊑ Rep U, hence 𝜌Δ ⊑ 𝜌e I

⊑ ((AJeK𝜌e) [y Z⇒ 𝜌 (y).𝜑]) .𝜑
H Definition of [Z⇒] I

=
⊔
{𝜌 (y).𝜑 | AJeK𝜌e .𝜑 (y) = U}

But since 𝜌 (y).𝜑 (x) = U implies x = y (refer to definition of 𝜌), we must have
(AJeK𝜌e).𝜑 (x) = U, as required. □

A.2 Proofs for Section 4.4

Theorem 4.4 (Strong Adequacy). Let e be a closed expression, 𝜏 ≜ SneedJeK𝜀 (𝜀)⟲ 96
the denotational by-need trace and init (e) ↩−→ ... the maximal LK trace. Then

• 𝜏 preserves the observable termination properties of init (e) ↩−→

196

A.2 Proofs for Section 4.4

• 𝜏 preserves the length of init (e) ↩−→

• every ev ::Event in 𝜏 = Step ev ... refers to a transition rule in init (e) ↩−→

Proof. We formally define 𝛼 ((𝜎𝑖)𝑖∈𝑛) ≜ 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, stop), where 𝛼S∞ is
defined in Figure 4.13.
Then SneedJeK𝜀 (𝜀) = 𝛼 (init (e) ↩−→ ...) follows directly from Theorem 4.17.

The function 𝛼Ev in Figure 4.13 formalises the intuition in which LK transitions
abstract into Events. Preservation of length is proved in Lemma 4.15 and preser-
vation of the termination observable is proved in Lemma 4.16. □

Lemma 4.14 (Characterisation of maximal traces). An LK trace (𝜎𝑖)𝑖∈𝑛 is max- ⟲ 104
imal if and only if it is balanced, diverging or stuck.

Proof.

⇒: Let (𝜎𝑖)𝑖∈𝑛 be maximal. Then it is interior by definition. Thus, if 𝑛 = 𝜔

is infinite, then it is diverging. Otherwise, (𝜎𝑖)𝑖∈𝑛 is finite. If it is not
balanced, then it is still maximal and finite, hence stuck. Otherwise, it is
balanced.

⇐: Let (𝜎𝑖)𝑖∈𝑛 be balanced, diverging or stuck.
If (𝜎𝑖)𝑖∈𝑛 is balanced, then it is interior, and 𝜎𝑛 is a reduction state with
continuation cont (𝜎0). Now suppose there would exist 𝜎𝑛+1 such that
(𝜎𝑖)𝑖∈𝑛+1 was interior. Then the transition 𝜎𝑛 ↩−→ 𝜎𝑛+1 must be one of
the reduction transition rules Upd, App2 and Case2, which are the only
ones in which 𝜎𝑛 is a reduction state (i.e. ctrl(𝜎𝑛) is a value v). But all
reduction transitions leave cont (𝜎0), which is in contradiction to interiority
of (𝜎𝑖)𝑖∈𝑛+1. Thus, (𝜎𝑖)𝑖∈𝑛 is maximal.
If (𝜎𝑖)𝑖∈𝑛 is diverging, it is interior and infinite, hence 𝑛 = 𝜔 . Indeed
(𝜎𝑖)𝑖∈𝜔 is maximal, because the expression 𝜎𝜔+1 is undefined and hence
does not exist.
If (𝜎𝑖)𝑖∈𝑛 is stuck, then it is maximal by definition.

□

Lemma 4.16 (Abstraction preserves termination observable). Let (𝜎𝑖)𝑖∈𝑛 be a ⟲ 108
maximal trace. Then 𝛼S∞ ((𝜎𝑖)𝑖∈𝑛, 𝑐𝑜𝑛𝑡 (𝜎0)) ...

• ends in Ret (Fun ,) or Ret (Con ,) if and only if (𝜎𝑖)𝑖∈𝑛 is balanced.

• is infinite if and only if (𝜎𝑖)𝑖∈𝑛 is diverging.

197

A Proofs for Chapter 4

• ends in Ret (Stuck,) if and only if (𝜎𝑖)𝑖∈𝑛 is stuck.

Proof. The second point follows by a similar inductive argument as in Lemma 4.15.
In the other cases, we may assume that 𝑛 is finite. If (𝜎𝑖)𝑖∈𝑛 is balanced, then

𝜎𝑛 is a reduction state with continuation cont (𝜎0), so its control expression is
a value. Then 𝛼S∞ will conclude with Ret (𝛼V (,)), and the latter is never
Ret (Stuck,). Conversely, if the trace ended with Ret (Fun) or Ret (Con),
then cont (𝜎𝑛) = cont (𝜎0) and ctrl(𝜎𝑛) is a value, so (𝜎𝑖)𝑖∈𝑛 forms a balanced
trace. The stuck case is similar. □

A.3 Proofs for Section 4.6

A.3.1 Usage Analysis Proofs

Here I give the usage analysis proofs that play a tangential role in the main body.

Abbreviation A.10 (Field access). ⟨𝜑 ′, v′⟩.𝜑 ≜ 𝜑 ′, ⟨𝜑 ′, v′⟩.v = v
′
.

Lemma 4.19 (Beta-App, Semantic substitution). Let x :: Name be fresh, a :: DU⟲ 141
and f :: (Trace d,Domain d,HasBind d) ⇒ d → d. Then f a⊑apply (fun x f) a

in DU.

Proof. We instantiate the free theorem for f

𝑅 ⊆ 𝐴 × 𝐵 (inst1, inst2) ∈ Dict(𝑅) (𝑑1, 𝑑2) ∈ 𝑅
(𝑓𝐴 (inst1) (𝑑1), 𝑓𝐵 (inst2) (𝑑2)) ∈ 𝑅

as follows

𝐴 ≜ 𝐵 ≜ DU, inst1 ≜ inst2 ≜ inst, 𝑑1 ≜ 𝑎, 𝑑2 ≜ pre(𝑥)
𝑅𝑥,𝑎 (𝑑1, 𝑑2) ≜ ∀𝑔. 𝑑1 = 𝑔(𝑎) ∧ 𝑑2 = 𝑔(pre(𝑥)) =⇒ 𝑔(𝑎) ⊑ apply(fun(𝑥,𝑔), 𝑎)

and get (translated back into Haskell)

(inst, inst) ∈ Dict(𝑅x,a) (a, pre x) ∈ 𝑅x,a

(f a, f (pre x)) ∈ 𝑅x,a

where pre x ≜ ⟨[x ↦→ U1],Rep U𝜔 ⟩ defines the proxy for x, exactly as in the
implementation of fun x, and inst is the canonical instance dictionary for DU.

198

A.3 Proofs for Section 4.6

We will first apply this inference rule and then show that the goal follows
from (f a, f (pre x)) ∈ 𝑅x,a.
The above inference rule can be used to show the overall goal f a ⊑

apply (fun x f) a:

(f a, f (pre x)) ∈ 𝑅𝑥,𝑎
⇐⇒ H Definition of 𝑅𝑥,𝑎 , apply, fun, detailed reasoning below I

f a ⊑ let ⟨𝜑, v⟩ = f (pre x) in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩
⇐⇒ H refold apply, fun I

f a ⊑ apply (fun x f) a

To apply the inference rule, we must prove its premises. Before we do so, it
is very helpful to eliminate the quantification over arbitrary g in the relation
𝑅𝑥,𝑎 (𝑑1, 𝑑2). To that end, we first need to factor fun x g = abs x (g (pre x)),
where abs is defined as follows:

abs x ⟨𝜑, v⟩ = ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

And we simplify 𝑅x,a (𝑑1, 𝑑2), thus

∀g. d1 = g a ∧ d2 = g (pre x) =⇒ g a ⊑ apply (fun x g) a

⇐⇒ H fun x g = abs x (g (pre x)) I
∀g. d1 = g a ∧ d2 = g (pre x) =⇒ g a ⊑ apply (abs x (g (pre x))) a

⇐⇒ H Use d1 = g a and d2 = g (pre x) I
∀g. d1 = g a ∧ d2 = g (pre x) =⇒ d1 ⊑ apply (abs x d2) a

⇐⇒ H There exists a g satisfying d1 = g a and d2 = g (pre x) I
d1 ⊑ apply (abs x d2) a

⇐⇒ H Inline apply, abs, simplify I
d1 ⊑ let ⟨𝜑, v⟩ = d2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

Note that this implies d1 .𝜑 !? x = U0, because 𝜑 [x ↦→ U0] !? x = U0 and
a.𝜑 !? x = U0 by the scoping discipline.

It turns out that 𝑅x,a is reflexive on all d for which d .𝜑 ?! x = U0; indeed, then
the inequality becomes an equality. (This corresponds to summarising a function
that does not use its argument.) That is a fact that we need in the stuck, fun, con

and select cases below, so we prove it here:

∀d . d ⊑ ⟨(d .𝜑) [x ↦→ U0] + (d .𝜑 !? x) ∗ a.𝜑, d .v⟩
⇐⇒ H Use (d .𝜑 ?! x) = U0 I
∀d . d ⊑ ⟨d .𝜑, d .v⟩ = d

199

A Proofs for Chapter 4

The last proposition is reflexivity on ⊑.
Now we prove the premises of the abstraction theorem:

• (a, pre x) ∈ 𝑅x,a: The proposition unfolds to

a ⊑ let ⟨𝜑, v⟩ = pre x in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩
⇐⇒ H Unfold pre, simplify I

a ⊑ ⟨a.𝜑,Rep U𝜔 ⟩

The latter follows from a.v ⊑ Rep U𝜔 because Rep U𝜔 is the Top element.

• (inst, inst) ∈ Dict(𝑅x,a): By the relational interpretation of products, we
get one subgoal per instance method.

– Case step. Goal:
(d1, d2) ∈ 𝑅x,a

(step ev d1, step ev d2) ∈ 𝑅x,a

.

Assume the premise (d1, d2) ∈ 𝑅x,a, show the goal. All cases other
than ev = Look y are trivial, because then step ev d = d and the goal
follows by the premise. So let ev = Look y. The goal is to show

step (Look y) d1 ⊑ let ⟨𝜑, v⟩ = step (Look y) d2 in
⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

We begin by unpacking the assumption (d1, d2) ∈ 𝑅x,a to show it:

d1 ⊑ let ⟨𝜑, v⟩ = d2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩
=⇒ H step (Look y) is monotonic I
step (Look y) d1
⊑ step (Look y) ⟨(d2 .𝜑) [x ↦→ U0] + (d2 .𝜑 !? x) ∗ a.𝜑, d2.v⟩
⇐⇒ H Refold step (Look y) I

step (Look y) d1
⊑ ⟨(d2 .𝜑) [x ↦→ U0] + [y ↦→ U1] + (d2.𝜑 !? x) ∗ a.𝜑, d2 .v⟩
⇐⇒ H x ≠ y because y is let-bound I

step (Look y) d1
⊑ let ⟨𝜑, v⟩ = step (Look y) d2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

– Case stuck. Goal: (stuck, stuck) ∈ 𝑅x,a

Follows from reflexivity, because stuck = ⊥, and ⊥.𝜑 !? x = U0.

200

A.3 Proofs for Section 4.6

– Case fun. Goal:
∀(d1, d2) ∈ 𝑅x,a . (f 1 d1, f 2 d2) ∈ 𝑅x,a

(fun y f 1, fun y f 2) ∈ 𝑅x,a

.

Additionally, we may assume x ≠ y by lexical scoping.
Now assume the premise. The goal is to show

fun y f 1 ⊑ let ⟨𝜑, v⟩ = fun y f 2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

Recall that fun y f = abs y (f (pre y)) and that abs y is monotonic.
Note that we have (pre y, pre y) ∈ 𝑅x,a because of x ≠ y and
reflexivity. That in turn yields (f 1 (pre y), f 2 (pre y)) ∈ 𝑅x,a by
assumption. This is useful to kick-start the following proof, showing
the goal:

f 1 (pre y)
⊑ let ⟨𝜑, v⟩ = f 2 (pre y) in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

=⇒ H Monotonicity of abs y I
abs y (f 1 (pre y))
⊑ abs y (let ⟨𝜑, v⟩ = f 2 (pre y) in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩)
⇐⇒ H x ≠ y and a.𝜑 !? y = U0 due to scoping, I

H 𝜑 !? x unaffected by floating abs I
abs y (f 1 (pre y))
⊑ let ⟨𝜑, v⟩ = abs y (f 2 (pre y)) in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩
⇐⇒ H Rewrite abs y (f (pre y)) = fun y f I

fun y f 1
⊑ let ⟨𝜑, v⟩ = fun y f 2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

– Case apply. Goal:
(l1, l2) ∈ 𝑅x,a (r1, r2) ∈ 𝑅x,a

(apply l1 r1, apply l2 r2) ∈ 𝑅x,a

.

Assume the premises. The goal is to show

apply l1 r1 ⊑ let ⟨𝜑, v⟩ = apply l2 r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

apply l1 r1
⊑ H l1 ⊑ apply (abs x l2), r2 ⊑ apply (abs x r2), monotonicity I

apply (let ⟨𝜑, v⟩ = l2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩)
(let ⟨𝜑, v⟩ = r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩)

201

A Proofs for Chapter 4

⊑ H Componentwise, see below I
let ⟨𝜑, v⟩ = apply l2 r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩

For the last step, we show the inequality for 𝜑 and v independently.
For values, it is easy to see by calculation that the value is v ≜
snd (peel l2 .v) in both cases. The proof for the Uses component is
quite algebraic; we will abbreviate u ≜ fst (peel l2.v):

(apply (let ⟨𝜑, v⟩ = l2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩)
(let ⟨𝜑, v⟩ = r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩)).𝜑

= H Unfold apply I
(l2 .𝜑) [x ↦→ U0] + (l2 .𝜑 !? x) ∗ a.𝜑

+ u ∗ ((r2.𝜑) [x ↦→ U0] + (r2 .𝜑 !? x) ∗ a.𝜑)
= H Distribute u ∗ (𝜑1 + 𝜑2) = u ∗ 𝜑1 + u ∗ 𝜑2 I
(l2 .𝜑) [x ↦→ U0] + (l2 .𝜑 !? x) ∗ a.𝜑

+ u ∗ (r2 .𝜑) [x ↦→ U0] + u ∗ (r2.𝜑 !? x) ∗ a.𝜑

= H Commute I
(l2 .𝜑) [x ↦→ U0] + u ∗ (r2.𝜑) [x ↦→ U0]
+ (l2.𝜑 !? x) ∗ a.𝜑 + u ∗ (r2.𝜑 !? x) ∗ a.𝜑

= H 𝜑1 [x ↦→ U0] + 𝜑2 [x ↦→ U0] = (𝜑1 + 𝜑2) [x ↦→ U0], I
H u ∗ 𝜑1 + u ∗ 𝜑2 = u ∗ (𝜑1 + 𝜑2) I
(l2 .𝜑 + u ∗ r2 .𝜑) [x ↦→ U0] + ((l2 .𝜑 + u ∗ r2.𝜑) !? x) ∗ a.𝜑

= H Refold apply I
let ⟨𝜑, ⟩ = apply l2 r2 in 𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑

– Case con. Goal:
(ds1, ds2) ∈ [𝑅𝑥,𝑎]

(con k ds1, con k ds2) ∈ 𝑅x,a

.

We have shown that apply is compatible with 𝑅x,a, and foldl is so as
well by parametricity. The field denotations ds1 and ds2 satisfy 𝑅x,a

by assumption; hence to show the goal it is sufficient to show that
(⟨𝜀,Rep U𝜔 ⟩, ⟨𝜀,Rep U𝜔 ⟩) ∈ 𝑅x,a. And that follows by reflexivity
since 𝜀 ?! x = U0.

– Case select. Goal:
(d1, d2) ∈ 𝑅x,a (fs1, fs2) ∈ Tag :⇀ ([𝑅𝑥,𝑎] → 𝑅𝑥,𝑎)

(select d1 fs1, select d2 fs2) ∈ 𝑅x,a

.

Similar to the con case, large parts of the implementation are com-
patible with 𝑅𝑥,𝑎 already. With (⟨𝜀,Rep U𝜔 ⟩, ⟨𝜀,Rep U𝜔 ⟩) ∈ 𝑅x,a

proved in the con case, it remains to be shown that lub :: [DU] → DU

202

A.3 Proofs for Section 4.6

and (>>) ::DU → DU → DU preserve 𝑅𝑥,𝑎 . The proof for (>>) is very
similar to but simpler than the apply case, where a subexpression
similar to ⟨𝜑1 + 𝜑2, b⟩ occurs. The proof for lub follows from the
proof for the least upper bound operator ⊔.
So let (l1, l2), (r1, r2) ∈ 𝑅𝑥,𝑎 and show that (l1 ⊔ r1, l2 ⊔ r2) ∈ 𝑅𝑥,𝑎 .
The assumptions imply that l1.v⊑ l2.v and r1 .v⊑ r2.v, so (l1⊔r1).v⊑
(l2 ⊔ r2).v follows by properties of least upper bound operators.
Let us now consider the Uses component. The goal is to show

(l1 ⊔ r1).𝜑 ⊑ (let ⟨𝜑, v⟩ = l2 ⊔ r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩).𝜑

For the proof, we need the algebraic identity ∀a b c d . a + c ⊔ b + d ⊑
a ⊔ b + c ⊔ d in U. This can be proved by exhaustive enumeration of
all 81 cases; the inequality is proper when a = d = U1 and b = c = U0
(or vice versa). Thus we conclude the proof:

(l1 ⊔ r1).𝜑 = l1 .𝜑 ⊔ r1 .𝜑
= H By assumption, l1 ⊑ apply (abs x l2) I

H and r1 ⊑ apply (abs x r2); monotonicity I
((l2 .𝜑) [x ↦→ U0] + (l2 .𝜑 !? x) ∗ a.𝜑)
⊔ ((r2 .𝜑) [x ↦→ U0] + (r2.𝜑 !? x) ∗ a.𝜑)
⊑ H Follows from ∀a b c d . a + c ⊔ b + d ⊑ a ⊔ b + c ⊔ d in U I
((l2 .𝜑) [x ↦→ U0] ⊔ (r2 .𝜑) [x ↦→ U0])
+ ((l2 .𝜑 !? x) ∗ a.𝜑 ⊔ (r2.𝜑 !? x) ∗ a.𝜑)

= H 𝜑1 [x ↦→ U0] ⊔ 𝜑2 [x ↦→ U0] = (𝜑1 ⊔ 𝜑2) [x ↦→ U0] I
((l2 ⊔ r2).𝜑) [x ↦→ U0] + ((l2 ⊔ r2).𝜑 !? x) ∗ a.𝜑

= H Refold ⟨𝜑, v⟩ I
(let ⟨𝜑, v⟩ = l2 ⊔ r2 in ⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ a.𝜑, v⟩).𝜑

– Case bind. Goal:
∀(d1, d2) ∈ 𝑅x,a . (f 1 d1, f 2 d2), (g1 d1, g2 d2) ∈ 𝑅x,a

(bind f 1 g1, bind f 2 g2) ∈ 𝑅x,a

.

By the assumptions, the definition bind f g = g (kleeneFix f) pre-
serves 𝑅𝑥,𝑎 if kleeneFix does. Since kleeneFix ::Lat a⇒ (a→ a) → a

is parametric, it suffices to show that the instance of Lat preserves
𝑅𝑥,𝑎 . We have already shown that ⊔ preserves 𝑅𝑥,𝑎 , and we have
also shown that stuck = ⊥ preserves 𝑅𝑥,𝑎 . Hence we have shown the
goal.

203

A Proofs for Chapter 4

E ∈ EC ::= □ | E x | case E of 𝐾 x→ e | let x = e in E | let x = E in E[x]

trans : EC × H × K→ EC
trans(E, [x ↦→ e], 𝜅) = let x = e in trans(E, [], 𝜅)
trans(E, [], ap(x) · 𝜅) = trans(E x, [], 𝜅)
trans(E, [], sel(𝐾 x→ e) · 𝜅) = trans(case E of 𝐾 x→ e, [], 𝜅)
trans(E, [],upd(x) · 𝜅) = let x = E in trans(□, [], 𝜅) [x]
trans(E, [], stop) = E

Fig. A.2: Syntax of by-need evaluation contexts and translation function trans to Mark I
machine contexts

In Section 4.5.1, I introduced a widening operator widen :: DU →
DU to the definition of bind, that is, I defined bind rhs body =

body (kleeneFix (widen ◦ rhs)). For such an operator, I would
additionally need to show that widen preserves 𝑅𝑥,𝑎 . Since the
proposed cutoff operator in Section 4.5.1 only affects the ValueU
component, the only proof obligation is to show monotonicity:
∀d1 d2. d1.v ⊑ d2 .v =⇒ (widen d1).v ⊑ (widen d2).v. This is
a requirement that my widening operator must satisfy anyway.

□

In the proof for Theorem 4.23 I exploit that usage analysis is somewhat invari-
ant under wrapping of by-need evaluation contexts, roughly U𝜔 ∗ SusageJeK𝜌𝑒 ⊒
SusageJE[e]K𝜀 . To prove that, I first need to define what the by-need evaluation
contexts of my language are.
Moran and Sands [1999, Lemma 4.1] describe a principled way to derive

the call-by-need evaluation contexts E from machine contexts (□, 𝜇, 𝜅) of the
Sestoft Mark I machine; a variant of Figure 4.2 that uses syntactic substitution of
variables instead of delayed substitution and addresses, so 𝜇 ∈ Var ⇀ Exp and
no closures are needed.
I follow their approach, but inline applicative contexts,1 thus defining the

by-need evaluation contexts with hole □ for our language in Figure A.2. The
correspondence toMark I machine contexts (□, 𝜇, 𝜅) is encoded by the translation

1 The result is that of Ariola et al. [1995, Figure 3] in A-normal form and extended with data types.

204

A.3 Proofs for Section 4.6

function trans in that same figure. It translates from mark I machine contexts
(□, 𝜇, 𝜅) to evaluation contexts E. Certainly the most interesting case is that of
upd frames, encoding by-need memoisation. This translation function has the
following property:

Lemma A.11 (Translation, without proof). init (trans(□, 𝜇, 𝜅) [e]) ↩−→∗ (e, 𝜇, 𝜅),
and all transitions in this trace are search transitions (App1, Case1, Let1, Look).

In other words: every machine configuration 𝜎 corresponds to an evaluation
context E and a focus expression e such that there exists a trace init (E[e]) ↩−→∗ 𝜎
consisting purely of search transitions, which is equivalent to all states in the
trace except possibly the last being search states.
I encode evaluation contexts in Haskell as follows, overloading hole filling

notation []:

data ECtxt = Hole | Apply ECtxt Name | Select ECtxt Alts
| ExtendHeap Name Expr ECtxt | UpdateHeap Name ECtxt Expr

[] :: ECtxt→ Expr→ Expr
Hole[e] = e

(Apply E x) [e] = App E[e] x

(Select E alts) [e] = Case E[e] alts

(ExtendHeap x e1 E) [e2] = Let x e1 E[e2]
(UpdateHeap x E e1) [e2] = Let x E[e1] e2

Lemma 4.22 (Denotational absence). Variable x is used in e if and only if ⟲ 143
there exists a by-need evaluation context E and expression e

′
such that the trace

SneedJE[Let x e
′

e]K𝜀 (𝜀) contains a Look x event. Otherwise, x is absent in e.

Proof. Since x is used in e, there exists a trace

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ...

We proceed as follows:

(let x = e′ in e, 𝜌, 𝜇, 𝜅) ↩−→∗ ...
Look(x)
↩−−−−−−→ ...

⇐⇒ H E ≜ trans(□, 𝜌, 𝜇, 𝜅) I (A.1)

init (E[let x = e′ in e]) ↩−→∗ ...
Look(x)
↩−−−−−−→ ...

205

A Proofs for Chapter 4

⇐⇒ H Apply 𝛼S∞ (Figure 4.13) I
𝛼S∞ (init (E[let x = e′ in e]) ↩−→∗, []) = ...Step (Look x)...

⇐⇒ H Theorem 4.4 I
SneedJE[Let x e

′
e]K𝜀 (𝜀) = ...Step (Look x)...

Note that the trace we start with is not necessarily a maximal trace, so step (A.1)
finds a prefix that makes the trace maximal. We do so by reconstructing the
syntactic evaluation context E with trans (cf. Lemma A.11) such that

init (E[let x = e′ in e]) ↩−→∗ (let x = e′ in e, 𝜌, 𝜇, 𝜅)

Then the trace above is a suffix of the maximal trace that starts in state
init (E[let x = e′ in e]) and it contains at least one Look(x) transition. This
Look(x) transition cannot occur in the unshared trace prefix, because that would
mean that x occurs in E, violating the distinct bound variables invariant from
Section 4.1.1.
The next two steps apply adequacy of SneedJ K to the trace, making the shift

from LK trace to denotational interpreter. □

Lemma A.12 (Used variables are free). If x does not occur in e and in 𝜌 (that is,

∀y. (𝜌 ! y).𝜑 !? x = U0), then (SusageJeK𝜌).𝜑 !? x = U0.

Proof. By induction on e. □

For concise notation, I define the following abstract substitution operation:

Definition A.13 (Abstract substitution). I call 𝜑 [x Z⇒ 𝜑 ′] ≜ 𝜑 [x ↦→ U0] + (𝜑 !?
x) ∗ 𝜑 ′ the abstract substitution operation on Uses and overload this notation for

TU, so that ⟨𝜑, v⟩[x Z⇒ 𝜑 ′] ≜ ⟨𝜑 [x Z⇒ 𝜑 ′], v⟩.

From Lemma 4.19, I can derive the following auxiliary lemma:

Lemma A.14. If x does not occur in 𝜌 , then

SusageJeK𝜌 [x ↦→d] ⊑ (SusageJeK𝜌 [x ↦→⟨[x ↦→U1],Rep U𝜔 ⟩]) [x Z⇒ d .𝜑] .

Proof. Define f d̂ ≜ SusageJeK
𝜌 [x ↦→d̂] and a ≜ d. Note that f could be defined

polymorphically as f d = SJeK𝜌 [x ↦→d] , for suitably polymorphic 𝜌 . Furthermore,
x could well be lambda-bound, since it does not occur in the range of 𝜌 (and that
is really what we need). Hence we may apply Lemma 4.19 to get

206

A.3 Proofs for Section 4.6

SusageJeK𝜌 [x ↦→d]
⊑ H Lemma 4.19 I

apply (fun x (𝜆d̂ → SusageJeK
𝜌 [x ↦→d̂])) d

= H Inline apply, fun I
let ⟨𝜑, v⟩ = SusageJeK𝜌 [x ↦→⟨[x ↦→U1],Rep U𝜔 ⟩] in
⟨𝜑 [x ↦→ U0] + (𝜑 !? x) ∗ d .𝜑, v⟩

= H Refold [Z⇒] I
(SusageJeK𝜌 [x ↦→⟨[x ↦→U1],Rep U𝜔 ⟩]) [x Z⇒ d] .𝜑

□

Lemma A.15 (Context closure). Let e be an expression and E be a by-need

evaluation context in which x does not occur. Then (SusageJE[e]K𝜌𝐸).𝜑 ?! x ⊑U𝜔 ∗
((SusageJeK𝜌𝑒).𝜑 !? x), where 𝜌𝐸 and 𝜌𝑒 are the initial environments that map free

variables z to their proxy ⟨[z ↦→ U1],Rep U𝜔 ⟩.

Proof. By induction on the size of E and cases on E:

• Case Hole:

(SusageJHole[e]K𝜌𝐸).𝜑 !? x

= H Definition of [] I
(SusageJeK𝜌𝐸).𝜑 !? x

⊑ H 𝜌𝑒 = 𝜌𝐸 I
U𝜔 ∗ (SusageJeK𝜌𝐸).𝜑 !? x

By reflexivity.

• Case Apply E y: Since y occurs in E, it must be different to x.

(SusageJ(Apply E y) [e]K𝜌𝐸).𝜑 !? x

= H Definition of [] I
(SusageJApp E[e] yK𝜌𝐸).𝜑 !? x

= H Definition of SusageJ K I
(apply (SusageJE[e]K𝜌𝐸) (𝜌𝐸 !? y)) .𝜑 !? x

= H Definition of apply I
let ⟨𝜑, v⟩ = SusageJE[e]K𝜌𝐸 in
case peel v of (u, v2) → (⟨𝜑 + u ∗ ((𝜌𝐸 !? y).𝜑), v2⟩.𝜑 !? x)

= H Unfold ⟨𝜑, v⟩.𝜑 = 𝜑 , x absent in 𝜌𝐸 !? y I

207

A Proofs for Chapter 4

let ⟨𝜑, v⟩ = SusageJE[e]K𝜌𝐸 in
case peel v of (u, v2) → 𝜑 !? x

= H Refold ⟨𝜑, v⟩.𝜑 = 𝜑 I
(SusageJE[e]K𝜌𝐸).𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒).𝜑 !? x

• Case Select E alts: Since x does not occur in alts, it is absent in alts as
well by Lemma A.12. (Recall that select analyses alts with ⟨𝜀,Rep U𝜔 ⟩ as
field proxies.)

(SusageJ(Select E alts) [e]K𝜌𝐸).𝜑 !? x

= H Definition of [] I
(SusageJCase E[e] altsK𝜌𝐸).𝜑 !? x

= H Definition of SusageJ K I
(select (SusageJE[e]K𝜌𝐸) (cont � alts)) .𝜑 !? x

= H Definition of select I
(SusageJE[e]K𝜌𝐸 >> lub (...alts...)).𝜑 !? x

= H x absent in lub (...alts...) I
(SusageJE[e]K𝜌𝐸).𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒).𝜑 !? x

• Case ExtendHeap y e1 E: Since x does not occur in e1, and the initial
environment is absent in x as well, we have (SusageJe1K𝜌𝐸).𝜑 !? x = U0 by
Lemma A.12.

(SusageJ(ExtendHeap y e1 E) [e]K𝜌𝐸).𝜑 !? x

= H Definition of [] I
(SusageJLet y e1 E[e]K𝜌𝐸).𝜑 !? x

= H Definition of SusageJ K I
let rhs d = SusageJe1K𝜌𝐸 [y ↦→step (Look y) d] in
(SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) (kleeneFix rhs)]).𝜑 !? x

⊑ H Abstract substitution; Lemma A.14 I
let rhs d = SusageJe1K𝜌𝐸 [y ↦→step (Look y) d] in
(SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩]) [y Z⇒

step (Look y) (kleeneFix rhs)] .𝜑 !? x

208

A.3 Proofs for Section 4.6

= H Unfold [Z⇒], ⟨𝜑, v⟩.𝜑 = 𝜑 I
let rhs d = SusageJe1K𝜌𝐸 [y ↦→step (Look y) d] in
let ⟨𝜑, ⟩ = SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩] in
let ⟨𝜑2, ⟩ = step (Look y) (kleeneFix rhs) in
(𝜑 [y ↦→ U0] + (𝜑 !? y) ∗ 𝜑2) !? x

= H x absent in 𝜑2, see above I
let ⟨𝜑, ⟩ = SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩] in
𝜑 !? x

⊑ H Induction hypothesis I
U𝜔 ∗ (SusageJeK𝜌𝑒).𝜑 !? x

• Case UpdateHeap y E e1: Since x does not occur in e1, and the initial
environment is absent in x as well, we have
(SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩]).𝜑 !? x = U0 by Lemma A.12.

(SusageJ(UpdateHeap y E e1) [e]K𝜌𝐸).𝜑 !? x

= H Definition of [] I
(SusageJLet y E[e] e1K𝜌𝐸).𝜑 !? x

= H Definition of SusageJ K I
let rhs d = SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) d] in
(SusageJe1K𝜌𝐸 [y ↦→step (Look y) (kleeneFix rhs)]).𝜑 !? x

⊑ H Abstract substitution; Lemma A.14 I
let rhs d = SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) d] in
(SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩]) [y Z⇒ step

(Look y) (kleeneFix rhs)] .𝜑 !? x

= H Unfold [Z⇒], ⟨𝜑, v⟩.𝜑 = 𝜑 I
let rhs d = SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) d] in
let ⟨𝜑, ⟩ = SusageJe1K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩] in
let ⟨𝜑2, ⟩ = step (Look y) (kleeneFix rhs) in
(𝜑 [y ↦→ U0] + (𝜑 !? y) ∗ 𝜑2) !? x

= H 𝜑 !? y ⊑ U𝜔 , x absent in 𝜑 , see above I
let rhs d = SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) d] in
let ⟨𝜑2, ⟩ = step (Look y) (kleeneFix rhs) in
U𝜔 ∗ 𝜑2 !? x

= H Refold ⟨𝜑, v⟩.𝜑 I
let rhs d = SusageJE[e]K𝜌𝐸 [y ↦→step (Look y) d] in

209

A Proofs for Chapter 4

U𝜔 ∗ (step (Look y) (kleeneFix rhs)) .𝜑 !? x

= H x ≠ y I
U𝜔 ∗ (kleeneFix (𝜆d → SusageJE[e]K𝜌𝐸 [y ↦→d])) .𝜑 !? x

= H Argument below I
U𝜔 ∗ (SusageJE[e]K𝜌𝐸 [y ↦→⟨[y ↦→U1],Rep U𝜔 ⟩]).𝜑 !? x

⊑ H Induction hypothesis, U𝜔 ∗ U𝜔 = U𝜔 I
U𝜔 ∗ (SusageJeK𝜌𝑒).𝜑 !? x

The rationale for removing the kleeneFix is that under the assumption that
x is absent in d (such as is the case for d ≜ ⟨[y ↦→ U1],Rep U𝜔 ⟩), then it
is also absent in SusageJE[e]K𝜌𝐸 [y ↦→d] per Lemma A.12. Otherwise, we go
to U𝜔 anyway.
UpdateHeap is why it is necessary to multiply with U𝜔 above; in the
context let 𝑥 = □ in 𝑥 𝑥 , a variable 𝑦 put in the hole would really be
evaluated twice under call-by-name (where let 𝑥 = □ in 𝑥 𝑥 is not an
evaluation context).
This unfortunately means that the used-once results do not generalise to
arbitrary by-need evaluation contexts and it would be unsound to elide
update frames for 𝑦 based on the inferred use of 𝑦 in let 𝑦 = ... in e; for
e ≜ 𝑦 we would infer that 𝑦 is used at most once, but that is wrong in
context let 𝑥 = □ in 𝑥 𝑥 .

□

Theorem4.23 (SusageJ K infers absence). Let 𝜌𝑒 ≜ [y ↦→ ⟨[y ↦→ U1],Rep U𝜔 ⟩]⟲ 144
be the initial environment with an entry for every free variable y of an expression

e. If SusageJeK𝜌𝑒 = ⟨𝜑, v⟩ and 𝜑 !? x = U0, then x is absent in e.

Proof. We show the contraposition, that is, if x is used in e, then 𝜑 !? x ≠ U0.
By Lemma 4.22, there exists E, e

′ such that

SneedJE[Let x e
′

e]K𝜀 (𝜀) = ... Step (Look x)

This is the big picture of how we prove 𝜑 !? x ≠ U0 from this fact:

SneedJE[Let x e
′

e]K𝜀 (𝜀) = ...Step (Look x)... (A.2)
=⇒ H Usage abstraction I
(𝛼S (SneedJE[Let x e

′
e]K𝜀) (𝜀)) .𝜑 ⊒ [x ↦→ U1] (A.3)

210

A.3 Proofs for Section 4.6

=⇒ H Corollary 4.21 I
(SusageJE[Let x e

′
e]K𝜀).𝜑 ⊒ [x ↦→ U1] (A.4)

=⇒ H Lemma A.15 I
U𝜔 ∗ (SusageJeK𝜌𝑒) .𝜑 = U𝜔 ∗ 𝜑 ⊒ [x ↦→ U1]

=⇒ H U𝜔 ∗ U0 = U0 < U1I
𝜑 !? x ≠ U0

Step (A.2) abstracts the trace by applying the usage abstraction function
𝛼S . This function calls 𝛽T which replaces every Step constructor with the step

implementation of TU; The Look x event on the right-hand side implies that its
image under 𝛼S is at least [x ↦→ U1].

Step (A.3) applies the central abstract interpretation Corollary 4.21 that is the
main topic of this section, abstracting the dynamic trace property in terms of
the static semantics.

Finally, step (A.4) applies Lemma A.15, which proves that absence information
doesn’t change when an expression is put in an arbitrary evaluation context.
The final step is just algebra. □

211

B
Agda Code for Section 4.4.5

This Appendix contains the Agda code for Section 4.4.5. It was built and type-
checked against Agda 2.6.4.

Guarded Cubical Agda Prelude

The following module is copied from the “example”1 linked from the Agda user’s
guide on Guarded Cubical.2 It can be considered part of the builtins or “runtime
system” of Guarded Cubical Agda; I had no part in defining it.
Note the definition of the later modality ⊲ in terms of a tick abstraction. This

definition can be thought of as the Reader Tick monad, only that the monad
instance is impossible to define with tick abstraction because it would lead to an
unsound system. We will however use it mostly as if ⊲𝐴 were just an ordinary
function returning 𝐴.
The black triangle variant ▶𝐴 is the dependent variant of the tick function

type ⊲𝐴; it is useful to define guarded recursive types such as EnvD later on.

{-# OPTIONS –guarded –cubical #-}
module Later where

open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Agda.Primitive.Cubical

module Prims where
primitive

1 https://github.com/agda/agda/blob/1c449e23b/test/Succeed/LaterPrims.agda
2 https://agda.readthedocs.io/en/v2.6.4/language/guarded-cubical.html

https://agda.readthedocs.io/en/v2.6.4/language/guarded-cubical.html

B Agda Code for Section 4.4.5

primLockUniv : Set1

open Prims renaming (primLockUniv to LockU) public

private
variable
l : Level
A B : Set l

postulate
Tick : LockU

⊲_ : ∀ {l}→ Set l→ Set l
⊲ A = (@tick x : Tick) -> A

▶_ : ∀ {l}→ ⊲ Set l→ Set l
▶ A = (@tick x : Tick)→ A x

next : A→ ⊲ A

next x _ = x

⊛ : ⊲ (A→ B)→ ⊲ A→ ⊲ B

⊛ f x a = f a (x a)
infixr 21 _⊛_

map⊲ : (f : A→ B)→ ⊲ A→ ⊲ B

map⊲ f x α = f (x α)

transpLater : ∀ (A : I→ ⊲ Set)→ ▶ (A i0)→ ▶ (A i1)
transpLater A u0 a = primTransp (\ i→ A i a) i0 (u0 a)

postulate
dfix : ∀ {l} {A : Set l}→ (⊲ A→ A)→ ⊲ A

pfix : ∀ {l} {A : Set l} (f : ⊲ A→ A)→ dfix f ≡ next (f (dfix f))

fix : ∀ {l} {A : Set l}→ (⊲ A→ A)→ A

fix f = f (dfix f)

214

Partial Functions

What follows is just a simple helper module to model environments as partial
functions with finite support.

{-# OPTIONS –cubical #-}
module PartialFunction where

open import Cubical.Relation.Nullary.Base
open import Cubical.Foundations.Prelude hiding (_[_↦→_])
open import Cubical.Data.Empty.Base
open import Data.Maybe
open import Data.List
open import Data.Product
open import Function.Base

⇀ : ∀ {ℓ}→ Set ℓ → Set ℓ → Set ℓ
A⇀ B = A→Maybe B
infix 1 _⇀_

empty-pfun : ∀{A B : Set}→ A ⇀ B

empty-pfun _ = nothing

[↦→_] : ∀ {A B : Set} {{dec : {x y : A}→ Dec (x ≡ y)}}
→ (A⇀ B)→ A→ B→ (A ⇀ B)

[↦→_] {{dec}} ρ x b y with dec {x} {y}
... | yes _ = just b
... | no _ = ρ y

[↦→*_] : ∀ {A B : Set} {{dec : {x y : A}→ Dec (x ≡ y)}}
→ (A⇀ B)→ List A→ List B→ (A ⇀ B)

[↦→*_] {A} {B} {{dec}} ρ xs as = aux (Data.List.zip xs as)
where
aux : List (A × B)→ (A ⇀ B)
aux [] y = ρ y

aux ((x , b) :: xs) y with dec {x} {y}
... | yes _ = just b
... | no _ = aux xs y

pmap : ∀ {A B : Set}→ (A⇀ B)→ List A ⇀ List B

215

B Agda Code for Section 4.4.5

pmap f [] = just []
pmap {_} {B} f (a :: as) with f a

... | nothing = nothing

... | just b = aux b (pmap f as)
where
aux : B→Maybe (List B)→Maybe (List B)
aux b nothing = nothing
aux b (just bs) = just (b :: bs)

Syntax

What follows is a straightforward encoding of expression syntax Exp. I use
natural numbers to identify variables and constructors, because it is simpler than
using strings in Agda.

{-# OPTIONS –cubical #-}
open import Cubical.Core.Everything hiding (_[_ ↦→_])
open import Cubical.Foundations.Prelude hiding (_[_ ↦→_])
open import Cubical.Data.Nat
open import Cubical.Relation.Nullary.Base
open import Data.List
open import Data.Product
open import Data.Maybe
open import Data.Bool

Var = N
Con = N

decEq-N : (x y : N)→ Dec (x ≡ y)
decEq-N zero zero = yes refl
decEq-N zero (suc y) = no znots
decEq-N (suc y) zero = no snotz
decEq-N (suc x) (suc y) with decEq-N x y

... | yes p = yes (cong suc p)

... | no np = no (λ p→ np (injSuc p))

instance
decEq-N-imp : {x y : N}→ Dec (x ≡ y)

216

decEq-N-imp {x} {y} = decEq-N x y

Alt : Set

data Exp : Set where
ref : Var→ Exp
lam : Var→ Exp→ Exp
app : Exp→ Var→ Exp
let’ : Var→ Exp→ Exp→ Exp
conapp : Con→ List Var→ Exp
case’ : Exp→ List Alt→ Exp

Alt = Con × List Var × Exp

findAlt : Con→ List Alt→Maybe (List Var × Exp)
findAlt _ [] = nothing
findAlt K ((K’ , vs , rhs) :: xs) with decEq-N K K’

... | yes _ = just (vs , rhs)

... | no _ = findAlt K xs

Denotational Interpreter

Finally, I can define the generic denotational interpreter from Figure 4.5 in Agda. I
do so without defining any concrete instances; the ByName and ByNeed variants
will follow in another module.

{-# OPTIONS –cubical –guarded #-}
module Semantics where

open import Later
open import Syntax
open import Data.Nat
open import Data.String
open import Data.List as List
open import Data.List.Membership.Propositional
open import Data.Maybe hiding (_»=_)
open import Data.Sum
open import Data.Product

217

B Agda Code for Section 4.4.5

open import Data.Bool hiding (T)
open import Function
open import PartialFunction
open import Cubical.Foundations.Prelude hiding (_[_ ↦→_])
open import Cubical.Core.Everything hiding (_[_ ↦→_])
open import Cubical.Relation.Nullary.Base

First I define the Event data type and the type class definitions for Trace,
Domain and HasBind. Note the use of Σ 𝐷 𝑝 in fun, apply and select to charac-
terise the subtype of denotations that will end up in the environment. Also mind
the use of the later modality in step as well as bind.

data Event : Set where
look : Var→ Event
update : Event
app1 : Event
app2 : Event
case1 : Event
case2 : Event
let1 : Event

record Trace (T : Set) : Set where
field
step : Event→ ⊲ T → T

open Trace {{...}} public

record Domain (D : Set) (p : D→ Set) : Set where
field
stuck : D
fun : (Σ D p→ D)→ D

apply : D→ Σ D p→ D

con : Var→ List (Σ D p)→ D

select : D→ List (Var × (List (Σ D p)→ D))→ D

open Domain {{...}} public

record HasBind (D : Set) : Set where
field
bind : ⊲(⊲ D→ D)→ (⊲ D→ D)→ D

open HasBind {{...}} public

218

I will instantiate this predicate with the following predicate is-env, which
simply expresses that any 𝑑 that ends up in an environment must be of the form
step (look 𝑥) d⊲ for some 𝑥 and d⊲.

is-env : ∀ {D} {{trc : Trace D}}→ D→ Set
is-env {D} d = ∃[x] ∃[d⊲] (d ≡ step {D} (look x) d⊲)

219

B Agda Code for Section 4.4.5

And finally, I can encode SJ_K in this type class algebra, pretty much as in
Figure 4.5. The definition differs in three ways:

• I need to prove is-env when a let binding introduces new bindings to the
environment.

• I omit tests comparing data constructor arity because that is not particu-
larly interesting here; the mismatching cases would just return stuck.

• The definition is a bit more involved than in Haskell because of the diligent
passing of Ticks. This is in order to convince Agda that SJ_K is productive
by construction, so that no separate proof of totality is necessary.

SJ_K_ : ∀ {D} {{_ : Trace D}} {{_ : Domain D is-env}} {{_ : HasBind D}}
→ Exp→ (Var ⇀ Σ D is-env)→ D

SJ_K_ {D} e ρ = fix sem e ρ

where
sem : ⊲(Exp→ (Var ⇀ Σ D is-env)→ D)→ Exp→ (Var ⇀ Σ D is-env)→ D

sem recurse⊲ (ref x) ρ with ρ x

... | nothing = stuck

... | just (d , _) = d

sem recurse⊲ (lam x body) ρ =
fun (λ d → step app2 (λ α → recurse⊲ α body (ρ [x ↦→ d])))

sem recurse⊲ (app e x) ρ with ρ x

... | nothing = stuck

... | just d = step app1 (λ α → apply (recurse⊲ α e ρ) d)
sem recurse⊲ (let’ x e1 e2) ρ =
bind (λ α d1→

recurse⊲ α e1 (ρ [x ↦→ (step (look x) d1 , x , d1 , refl)]))
(λ d1→ step let1 (λ α →
recurse⊲ α e2 (ρ [x ↦→ (step (look x) d1 , x , d1 , refl)])))

sem recurse⊲ (conapp K xs) ρ with pmap ρ xs

... | nothing = stuck

... | just ds = con K ds

sem recurse⊲ (case’ e𝑠 alts) ρ =
step case1 (λ α → select (recurse⊲ α e𝑠 ρ) (List.map alt alts))
where
alt : Con × List Var × Exp→ Con × (List (Σ D is-env)→ D)
alt (k , xs , e𝑟) = (k , (λ ds→
step case2 (λ α → recurse⊲ α e𝑟 (ρ [xs ↦→* ds]))))

220

Concrete domain instances ByName, ByNeed

Separately from the denotational interpreter, we can prove that its instances at
ByName and ByNeed are well-defined as well.
In order to do so, I first need to define the concrete type D, which needs the

concrete trace type T as well as the concrete value type Value.

{-# OPTIONS –cubical –guarded –rewriting #-}

– | Definitions and instances for T, Value, D, ByName, ByNeed
module Concrete where

open import Later
open import Syntax
open import Data.Nat
open import Data.String
open import Data.List as List
open import Data.List.Membership.Propositional
open import Data.Maybe hiding (_»=_)
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Data.Bool hiding (T; _∧_; _∨_)
open import Function
open import PartialFunction
open import Cubical.Foundations.Prelude hiding (_[_↦→_])
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Core.Everything hiding (_[_↦→_])
open import Cubical.Relation.Nullary.Base
open import Agda.Builtin.Equality renaming (_≡_ to _≡≡_) hiding (refl)
open import Agda.Builtin.Equality.Rewrite
open import Semantics

record Monad (M : Set→ Set) : Set1 where
field
return : ∀ {A}→ A→ M A

»= : ∀ {A} {B}→ M A→ (A→ M B)→ M B

» : ∀ {A} {B}→ M A→ M B→ M B

221

B Agda Code for Section 4.4.5

l » r = l »= (λ _→ r)

open Monad {{...}} public

data T (A : Set) : Set where
ret-T : A→ T A

step-T : Event→ ⊲ T A→ T A

Value : (Set→ Set)→ Set
D : (Set→ Set)→ Set

As explained in Section 4.4.5, a notable difference to the definition of Value in
the main body is that I need to break the negative occurrence in fun by the use
of dependent later ▶. This embedding is abstracted into the following type EnvD:

data EnvD (D : ⊲ Set) : Set where
stepLook : Var→ ▶ D→ EnvD D

Note that EnvD 𝐷 is effectively the subtype of 𝐷 of denotations that go into
the environment 𝜌 . One should think of stepLook 𝑥 𝑑′ as a 𝑑 such that 𝑑 =

step (look 𝑥) 𝑑′.
Actually, I would prefer to simply express the subtyping relationship via
Σ 𝐷 is-env, as in the type of fun, but the use of is-env : D 𝑇 → Set requires an
instance of Trace (D 𝑇) in the type of fun-V, leading to a circular definition of
ValueF.

Defining the bijection to EnvD is easy, enough, though:

toSubtype : ∀ {D} {{_ : Trace D}}→ EnvD (next D)→ Σ D is-env
toSubtype {{_}} (stepLook x d⊲) = (step (look x) d⊲ , x , d⊲ , refl)

fromSubtype : ∀ {D} {{_ : Trace D}}→ Σ D is-env→ EnvD (next D)
fromSubtype {{_}} (_ , x , d⊲ , _) = stepLook x d⊲

I can also prove that the pair indeed forms a bijection:

env-iso : ∀ {D} {{_ : Trace D}}→ Iso (EnvD (next D)) (Σ D is-env)
env-iso = iso toSubtype fromSubtype from-to to-from
where
from-to : ∀ d → toSubtype (fromSubtype d) ≡ d

from-to (d , x , d⊲ , prf) i = (prf (~ i) , x , d⊲ , λ i1→ prf (i1 ∨ (~ i)))

222

to-from : ∀ d → fromSubtype (toSubtype d) ≡ d

to-from (stepLook x d⊲) = refl

Next up is the definition of Value, which is complicated by the fact that Agda’s
positivity checker has no builtin support for the later modality, so Value needs
to be defined in terms of the guarded fixpoint of the signature functor ValueF
defined below. I still need to turn off the positivity checker because of the
recursion through τ, which however will always be instantiated with a positive
functor. An alternative without this pragma would be to monomorphise ValueF
for ByName and ByNeed separately.

{-# NO_POSITIVITY_CHECK #-}
data ValueF (τ : Set→ Set) (d− : ⊲ Set) : Set where
stuck-V : ValueF τ d

−

fun-V : (EnvD d
− → (D τ))→ ValueF τ d

−

con-V : Con→ List (EnvD d
−)→ ValueF τ d

−

Value τ = ValueF τ (dfix (τ ◦ ValueF τ))
D τ = τ (Value τ)

Is is easy to verify that D is the guarded fixpoint of 𝜏 ◦ ValueF 𝜏 :

_ : ∀ {τ }→ D τ ≡ fix (τ ◦ ValueF τ)
_ = refl

It is not completely obvious that the EnvDs that occur in a Value are still
isomorphic to the subtype Σ 𝐷 is-env.

EnvD≡is-env : ∀ τ → {{_ : Trace (D τ)}}
→ EnvD (dfix (τ ◦ ValueF τ)) ≡ Σ (D τ) is-env

EnvD≡is-env τ = roll · subty
where
roll : EnvD (dfix (τ ◦ ValueF τ)) ≡ EnvD (next (D τ))
roll i = EnvD (pfix (τ ◦ ValueF τ) i)
subty : EnvD (next (D τ)) ≡ Σ (D τ) is-env
subty = isoToPath (env-iso {D τ })

This equivalence is used to great effect in the type class instance for Domain,
which otherwise is exactly as in Section 4.3.

223

B Agda Code for Section 4.4.5

return-T : ∀ {A}→ A→ T A

return-T = ret-T

»=-T : ∀ {A} {B}→ T A→ (A→ T B)→ T B

ret-T a »=-T k = k a

step-T e τ »=-T k = step-T e (λ α → τ α »=-T k)

instance
monad-T : Monad T
monad-T = record { return = ret-T; _»=_ = _»=-T_ }

instance
trace-T : ∀ {V }→ Trace (T V)
trace-T = record { step = step-T }

stuck-Value : ∀ {τ } {{_ : Monad τ }}→ D τ

stuck-Value = return stuck-V

fun-Value : ∀ {τ } {{_ : Monad τ }} {{_ : Trace (D τ)}}
→ (Σ (D τ) is-env→ D τ)→ D τ

fun-Value {τ } f = return (fun-V (f ◦ transport (EnvD≡is-env τ)))

apply-Value : ∀ {τ } {{_ : Monad τ }} {{_ : Trace (D τ)}}
→ D τ → Σ (D τ) is-env→ D τ

apply-Value {τ } dv da = dv »= aux
where
aux : Value τ → D τ

aux (fun-V f) = f (transport− (EnvD≡is-env τ) da)
aux _ = stuck-Value

con-Value : ∀ {τ } {{_ : Monad τ }} {{_ : Trace (D τ)}}
→ Con→ List (Σ (D τ) is-env)→ D τ

con-Value {τ } K ds = return (con-V K (List.map (transport− (EnvD≡is-env τ)) ds))

select-Value : ∀ {τ } {{_ : Monad τ }} {{_ : Trace (D τ)}}
→ D τ → List (Con × (List (Σ (D τ) is-env)→ D τ))→ D τ

select-Value {τ } dv alts = dv »= aux alts
where
aux : List (Con × (List (Σ (D τ) is-env)→ D τ))→ Value τ → D τ

aux ((K’ , alt) :: alts) (con-V K ds) with decEq-N K K’

224

... | yes _ = alt (List.map (transport (EnvD≡is-env τ)) ds)

... | no _ = aux alts (con-V K ds)
aux _ _ = stuck-Value

instance
domain-Value : ∀ {τ } {{_ : Monad τ }} {{_ : Trace (D τ)}}→ Domain (D τ) is-env
domain-Value = record { stuck = stuck-Value;

fun = fun-Value; apply = apply-Value;
con = con-Value; select = select-Value }

This suffices to define the ByName interpreter. The instance of HasBind is par-
ticularly interesting, because it again employs the guarded fixpoint combinator
fix:

record ByName (τ : Set→ Set) (v : Set) : Set where
constructor mkByName
field get : τ v

instance
monad-ByName : ∀ {τ } {{_ : Monad τ }}→Monad (ByName τ)
monad-ByName =
record { return = mkByName ◦ return;

»= = λ m k→ mkByName (ByName.get m »= (ByName.get ◦ k)) }

instance
trace-ByName : ∀ {τ } {{_ : ∀ {V }→ Trace (τ V)}} {V }→ Trace (ByName τ V)
trace-ByName =
record { step = λ e τ → mkByName (step e (λ α → ByName.get (τ α))) }

instance
has-bind-ByName : ∀ {τ } {v}→ HasBind (ByName τ v)
has-bind-ByName {τ } =
record { bind = λ rhs body→ body (λ α → fix (λ rhs⊲→ rhs α rhs⊲)) }

eval-by-name : Exp→ D (ByName T)
eval-by-name e = SJ e K empty-pfun

For the ByNeed instance, I need to define heaps. Heaps represent higher-order
state, the total modelling of which is one of the main motivations for guarded
type theory. As such, the heap is also the place where I need to break another

225

B Agda Code for Section 4.4.5

negative recursive occurrence through the use of the later modality, this time
without overriding the totality checker.

Furthermore, I postulate the existence of a bump allocator nextFree as well as
the well-addressedness invariant from Section 4.2, that is, any address allocated is
in the domain of the heap. It would take a few tiresome and distracting invariants
to turn these postulates into proofs, which is why it was not done.

Addr : Set
Addr = N

record ByNeed (τ : Set→ Set) (v : Set) : Set

Heap : ⊲ Set→ Set
Heap D = Addr ⇀ ▶ D

postulate nextFree : ∀ {D}→ Heap D→ Addr
postulate well-addressed : ∀ {D} (µ : Heap D) (a : Addr)→ ∃[d] (µ a ≡ just d)

The definition of ByNeed and its type class instances are structurally the
same as in the main body. However, the guarded fixpoint again requires explicit
unrolling whenever the heap is accessed, for which I need to establish and
transport along a few equalities. Furthermore, in step-ByNeed I need to pass
around the Tick variable 𝛼 .

ByNeedF : (Set→ Set)→ ⊲ Set→ Set→ Set
ByNeedF τ d

−
v = Heap d

− → τ (v × Heap d
−)

record ByNeed τ v where
constructor mkByNeed
field get : ByNeedF τ (dfix (D ◦ ByNeedF τ)) v

≡-ByNeed : ∀ τ v→ ByNeed τ v ≡ ByNeedF τ (dfix (D ◦ ByNeedF τ)) v
≡-ByNeed _ _ = isoToPath (iso ByNeed.get mkByNeed (λ _→ refl) (λ _→ refl))

≡-HeapD : ∀ τ → dfix (D ◦ ByNeedF τ) ≡ next (D (ByNeed τ))
≡-HeapD τ = pfix (D ◦ ByNeedF τ) · (λ i→ next (D (λ v→ sym (≡-ByNeed τ v) i)))

≡-▶HeapD : ∀ τ → ▶ dfix (D ◦ ByNeedF τ) ≡ ⊲ D (ByNeed τ)
≡-▶HeapD τ i = ▶ ≡-HeapD τ i

226

≡-DByNeed :
∀ τ → D (ByNeed τ) ≡ ByNeedF τ (next (D (ByNeed τ))) (Value (ByNeed τ))
≡-DByNeed τ = ≡-ByNeed τ (Value (ByNeed τ))

· (λ i→ ByNeedF τ (≡-HeapD τ i) (Value (ByNeed τ)))

return-ByNeed : ∀ {τ } {{_ : Monad τ }} {v}→ v→ ByNeed τ v

return-ByNeed v = mkByNeed (λ µ→ return (v , µ))

»=-ByNeed : ∀ {τ } {{_ : Monad τ }} {a} {b}
→ ByNeed τ a→ (a→ ByNeed τ b)→ ByNeed τ b

»=-ByNeed {τ } {a} {b} m k = mkByNeed (λ µ→ ByNeed.get m µ »= aux)
where
aux : (a × Heap (dfix (D ◦ ByNeedF τ)))→ τ (b × Heap (dfix (D ◦ ByNeedF τ)))
aux (a , µ’) = ByNeed.get (k a) µ’

instance
monad-ByNeed : ∀ {τ } {{_ : Monad τ }}→Monad (ByNeed τ)
monad-ByNeed = record { return = return-ByNeed; _»=_ = _»=-ByNeed_ }

step-ByNeed : ∀ {τ } {v} {{_ : ∀ {V }→ Trace (τ V)}}
→ Event→ ⊲(ByNeed τ v)→ ByNeed τ v

step-ByNeed {τ } {v} e m = mkByNeed (λ µ→ step e (λ α → ByNeed.get (m α) µ))

instance
trace-ByNeed : ∀ {τ } {v} {{_ : ∀ {V }→ Trace (τ V)}}→ Trace (ByNeed τ v)
trace-ByNeed = record { step = step-ByNeed }

The next step is to define fetch, the function that accesses the heap. Unfor-
tunately, my definition needs to appeal to a postulate that would generally be
unsafe to use. To see why this postulate is necessary and why my use of it is
actually safe, consider the following definition:

stepLookFetch : ∀ {τ } {{_ : Monad τ }} {{_ : ∀ {V }→ Trace (τ V)}}
→ Var→ Addr→ D (ByNeed τ)

stepLookFetch {τ } x a = mkByNeed (λ µ→
let d⊲ = fst (well-addressed µ a) in
step (look x) (λ α → ByNeed.get (transport (≡-▶HeapD τ) d⊲ α) µ))

(Note that fst (well-addressed 𝜇 𝑎) simply returns the heap entry in 𝜇 at
address 𝑎, which must be present by my assumption of well-addressedness.)

227

B Agda Code for Section 4.4.5

This definition constructs the total Agda equivalent of the Haskell expression
step (Look x) (fetch a), for the given variable x and address a. Ultimately, all
denotations in the interpreter environment 𝜌 will take this form under by-need
evaluation. (In Definition 4.29 I define an even sharper characterisation.) In fact,
all uses of fetch will take this form!
Unfortunately, it is hard to decompose stepLookFetch into separate function

calls to step and fetch : Addr→ ⊲(D (ByNeed T)), because the latter will then
need to bind the tick variable𝛼 (part of ⊲) before the heap 𝜇 (part ofD (ByNeed T)).
This is in contrast to the order of binders in stepLookFetch, which may bind 𝜇
before 𝛼 , because look steps leave the heap unchanged. (See step-ByNeed above
for confirmation, which is inlined into stepLookFetch).

The flipped argument order is problematic for my definition of fetch, because
ticked type theory conservatively assumes that 𝜇 might depend on 𝛼 — when
in reality it does not in stepLookFetch! The result is that the subexpression
ByNeed.get (𝑑 ⊲ 𝛼) 𝜇 would not be well-typed under the flipped order, because

• 𝑑⊲ comes from 𝜇, and
• 𝜇 might already depend on 𝛼 , because
• 𝜇 was introduced after 𝛼 , and hence
• 𝑑⊲ may not be applied to 𝛼 again in ticked type theory.

I currently know of no way to encode this knowledge without a postulate of the
following form:

postulate
flip-tick : ∀ {A B : Set}→ (A→ ⊲ B)→ ⊲ (A→ B)
flip-tick-beta : ∀ {A B : Set} {f : A→ ⊲ B} {µ : A} {@tick α : Tick}

→ flip-tick f α µ≡≡f µ α

{-# REWRITE flip-tick-beta #-}

It is most helpful to look at the postulated “implementation rule” flip-tick-beta to
see when use of flip-tick is safe: Given some 𝑓 and a heap 𝜇 that does not depend
on some tick variable 𝛼 , call 𝑓 with 𝜇 first instead of 𝛼 . So flip-tick literally flips
around the arguments it receives before calling 𝑓 , and unless 𝜇 does not depend
on 𝛼 , the application of flip-tick is stuck because the rule does not apply.
I use flip-tick in the implementation of fetch exactly to flip back the binding

order to what it will be in the use site stepLookFetch:

228

fetch : ∀ {τ } {{_ : Monad τ }}→ Addr→ ⊲(D (ByNeed τ))
fetch {τ } a = map⊲ mkByNeed (flip-tick (λ µ→
let d⊲ = fst (well-addressed µ a) in
(λ α → ByNeed.get (transport (≡-▶HeapD τ) d⊲ α) µ)))

Agda is able to calculate that this definition of fetch is equivalent to the one
inlined into stepLookFetch:

postulate-ok : ∀ {τ x a} {{_ : Monad τ }} {{_ : ∀ {V }→ Trace (τ V)}}
→ step (look x) (fetch {τ } a) ≡ stepLookFetch x a

postulate-ok = refl

(Note that this proof automatically applies flip-tick-beta by the REWRITE
pragma above.)

This should be sufficient justification for my use of flip-tick. The definition of
memo is a bit more involved but does not need any postulates at all:

memo : ∀ {τ } {{_ : Monad τ }} {{_ : ∀ {V }→ Trace (τ V)}}
→ Addr→ ⊲(D (ByNeed τ))→ ⊲(D (ByNeed τ))

memo {τ } a d⊲ = fix memo’ d⊲
where
memo’ : ⊲(⊲(D (ByNeed τ))→ ⊲(D (ByNeed τ)))

→ ⊲(D (ByNeed τ))→ ⊲(D (ByNeed τ))
memo’ rec⊲ d⊲ α1 = do
v ← d⊲ α1
step update (λ _α2→ mkByNeed (λ µ→
return (v , µ [a ↦→ transport− (≡-▶HeapD τ)

(rec⊲ α1 (λ _→ return v))])))

Building on fetch and memo, I define the HasBind instance as follows

bind-ByNeed : ∀ {τ } {{_ : Monad τ }} {{_ : ∀ {V }→ Trace (τ V)}}
→ ⊲ (⊲(D (ByNeed τ))→ D (ByNeed τ))
→ (⊲(D (ByNeed τ))→ D (ByNeed τ))
→ D (ByNeed τ)

bind-ByNeed {τ } rhs body = do
a ← mkByNeed (λ µ→ return (nextFree µ , µ))
mkByNeed (λ µ→
return (tt , µ [a ↦→ transport− (≡-▶HeapD τ)

229

B Agda Code for Section 4.4.5

(memo a (λ α → rhs α (fetch a)))]))
step let1 (λ _α → body (fetch a))

instance
has-bind-ByNeed : ∀ {τ } {{_ : Monad τ }} {{_ : ∀ {V }→ Trace (τ V)}}

→ HasBind (D (ByNeed τ))
has-bind-ByNeed = record { bind = bind-ByNeed }

eval-by-need : Exp→ T (Value (ByNeed T) × Heap (next (D (ByNeed T))))
eval-by-need e = transport (≡-DByNeed T) (SJ e K empty-pfun) empty-pfun

This completes the definition of eval-by-need which is thus proven total.

230

C
Denotational Interpreter for GHC

Core in Section 4.5.5

The following code lists the main module of my fork of GHC1, relative to a
development version of GHC 9.102. It implements the denotational interpreter
for GHC Core, and GHC’s Demand Analysis can be made an instance of this
interpeter.

{−# LANGUAGE GeneralizedNewtypeDeriving #−}
{−# LANGUAGEQuantifiedConstraints #−}
{−# LANGUAGE DeriveFunctor #−}
{−# LANGUAGE LambdaCase #−}
{−# LANGUAGE FlexibleInstances #−}
{−# LANGUAGE UndecidableInstances #−}
module GHC.Core.Semantics where
import GHC.Prelude
import GHC.Core
import GHC.Core.Coercion
import GHC.Core.DataCon
import qualified GHC.Data.Word64Map as WM

import GHC.Types.Literal
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Var.Env
import GHC.Types.Unique.Set

1 https://gitlab.haskell.org/ghc/ghc/-/tree/33f4bdd
2 https://gitlab.haskell.org/ghc/ghc/-/tree/1350345

https://gitlab.haskell.org/ghc/ghc/-/tree/33f4bdd
https://gitlab.haskell.org/ghc/ghc/-/tree/1350345

C Denotational Interpreter for GHC Core in Section 4.5.5

import GHC.Utils.Misc
import GHC.Utils.Outputable
import Control.Monad
import Control.Monad.Trans.State
import Data.Word
import GHC.Core.Utils hiding (findAlt)
import GHC.Core.Type
import GHC.Builtin.PrimOps
import GHC.Builtin.Types
import GHC.Types.Var
import GHC.Core.TyCo.Rep
import GHC.Core.FVs
import GHC.Core.Class
import GHC.Types.Id.Info
import GHC.Types.Unique
import GHC.Builtin.Names

data Event
= Look Id
| LookArg CoreExpr
| Update
| App1
| App2
| Case1
| Case2
| Let1

class Trace d where
step :: Event→ d → d

type DAlt d = (AltCon, [Id], d → [d] → d)
class Domain d where

stuck :: d

erased :: d

lit :: Literal→ d

global :: Id→ d

classOp :: Id→ Class→ d

primOp :: Id→ PrimOp→ d

fun :: Var→ (d → d) → d

232

con :: DataCon→ [d] → d

apply :: d → (Bool, d) → d

select :: d → CoreExpr→ Id→ [DAlt d] → d

keepAlive :: [d] → d → d

data BindHint
= BindArg Id
| BindLet CoreBind

class HasBind d where
bind :: BindHint→ [[d] → d] → ([d] → d) → d

keepAliveVars :: Domain d ⇒ [Id] → IdEnv d → d → d

keepAliveVars xs 𝜌

| Just ds← traverse (lookupVarEnv 𝜌) xs = keepAlive ds

| otherwise = const stuck

keepAliveCo :: Domain d ⇒ Coercion→ IdEnv d → d → d

keepAliveCo co = keepAliveVars (nonDetEltsUniqSet $ coVarsOfCo co)
keepAliveUnfRules :: Domain d ⇒ Id→ IdEnv d → d → d

keepAliveUnfRules x =

keepAliveVars (nonDetEltsUniqSet $ bndrRuleAndUnfoldingIds x)
feignBndr :: Name→ PiTyBinder→ Var
feignBndr n (Anon (Scaled mult ty)) = mkLocalIdOrCoVar n mult ty

feignBndr n (Named (Bndr tcv)) = tcv ‘setVarName‘ n

feignId :: Name→ Type→ Id
feignId n ty = mkLocalIdOrCoVar n ManyTy ty

mkPap :: (Trace d,Domain d) ⇒ [PiTyBinder] → ([d] → d) → d

mkPap arg_bndrs app_head =

go [] (zipWith feignBndr localNames arg_bndrs)
where

go ds [] = app_head (reverse ds)
go ds (x : xs) = fun x (𝜆d → step App2 $ go (d : ds) xs)

x1, x2 :: Name
localNames :: [Name]
localNames@(x1 : x2: _) =
[mkSystemName (mkUniqueInt ’I’ i) (mkVarOcc "local") | i← [0 . .]]

anfise

:: (Trace d,Domain d,HasBind d)

233

C Denotational Interpreter for GHC Core in Section 4.5.5

⇒ [CoreExpr] → IdEnv d → ([d] → d) → d

anfise es 𝜌 k = go (zip localNames es) []
where

go [] ds = k (reverse ds)
go ((x, e) : es) ds = anf _one x e 𝜌 $ 𝜆d → go es (d : ds)
anf _one (Lit l) k = k (lit l)
anf _one (Var x) 𝜌 k = evalVar x 𝜌 k

anf _one (Coercion co) 𝜌 k = keepAliveCo co 𝜌 (k erased)
anf _one (Type _ty) k = k erased

anf _one x (Tick _t e) 𝜌 k = anf _one x e 𝜌 k

anf _one x (Cast e co) 𝜌 k = keepAliveCo co 𝜌 (anf _one x e 𝜌 k)
anf _one x e 𝜌 k =

bind (BindArg (feignId x e_ty)) [_→ SJeK𝜌]
(𝜆ds→ let d = step (LookArg e) (only ds) in

if isUnliftedType e_ty && not (exprOkForSpeculation e)
then seq_ (d, e, e_ty) (k d)
else k d)

where
e_ty = exprType e

seq_ :: Domain d ⇒ (d,CoreExpr, Type) → d → d

seq_ (a, e, ty) b = select a e wildCardId [(DEFAULT, [], _a _ds→ b)]
where

wildCardId :: Id
wildCardId =

feignBndr wildCardName (Anon (Scaled ManyTy ty) FTF_T_T)
evalConApp :: (Trace d,Domain d,HasBind d) ⇒ DataCon→ [d] → d

evalConApp dc args = case compareLength args rep_ty_bndrs of
EQ → con dc args

GT → stuck

LT → mkPap rest_bndrs $ 𝜆etas→ con dc (args ++ etas)
where

rep_ty_bndrs = fst $ splitPiTys (dataConRepType dc)
rest_bndrs = dropList args rep_ty_bndrs

evalVar :: (Trace d,Domain d,HasBind d) ⇒ Var→ IdEnv d → (d → d) → d

evalVar x 𝜌 k = case idDetails x of
| isTyVar x → k erased

DataConWorkId dc → k (evalConApp dc [])

234

DataConWrapId → k (SJunfoldingTemplate (idUnfolding x)KemptyVarEnv)
PrimOpId op → k (primOp x op)
ClassOpId cls → k (classOp x cls)
| isGlobalId x → k (global x)

→ maybe stuck k (lookupVarEnv 𝜌 x)
SJ K :: (Trace d,Domain d,HasBind d) ⇒ CoreExpr→ IdEnv d → d

SJCoercion coK𝜌 = keepAliveCo co 𝜌 erased

SJType _tyK = erased

SJLit lK = lit l

SJTick _t eK𝜌 = SJeK𝜌
SJCast e coK𝜌 = keepAliveCo co 𝜌 (SJeK𝜌)
SJVar xK𝜌 = evalVar x 𝜌 id

SJLam x eK𝜌 =

fun x (𝜆d → step App2 (SJeKextendVarEnv 𝜌 x d))
SJeK @App { } 𝜌
| Var v ← f , Just dc ← isDataConWorkId_maybe v

= anfise as 𝜌 (evalConApp dc)
| otherwise

= anfise (f : as) 𝜌 $ 𝜆(df : das) →
go df (zipWith (𝜆d a→ (d, isTypeArg a)) das as)

where
(f , as) = collectArgs e

go df [] = df

go df ((d, is_ty) : ds) = go (step App1 $ apply df (is_ty, d)) ds

SJLet b@(NonRec x rhs) bodyK𝜌 =

bind (BindLet b)
[_→ keepAliveUnfRules x 𝜌 $

SJrhsK𝜌]
(𝜆ds→ step Let1 $
SJbodyKextendVarEnv 𝜌 x (step (Look x) (only ds)))

SJLet b@(Rec binds) bodyK𝜌 =

bind (BindLet b)
[𝜆ds→ keepAliveUnfRules x (new_𝜌 ds) $

SJrhsKnew_𝜌 ds | (x, rhs) ← binds]
(𝜆ds→ step Let1 (SJbodyKnew_𝜌 ds))

where
xs = map fst binds

235

C Denotational Interpreter for GHC Core in Section 4.5.5

new_𝜌 ds = extendVarEnvList 𝜌 $
zipWith (𝜆x d → (x, step (Look x) d)) xs ds

SJCase e b _ty altsK𝜌 = step Case1 $
select (SJeK𝜌) e b

[(con, xs, cont xs rhs) | Alt con xs rhs← alts]
where

cont xs rhs scrut ds = step Case2 $ SJrhsK $ extendVarEnvList 𝜌 $
zipEqual "eval Case{}" (b : xs) (scrut : ds)

data T v = Step Event (T v) | Ret v

deriving Functor
instance Applicative T where

pure = Ret
(<∗>) = ap

instance Monad T where
Ret a >>= f = f a

Step ev t >>= f = Step ev (t >>= f)
instance Trace (T v) where

step = Step

type D 𝜏 = 𝜏 (Value 𝜏)
data Value 𝜏

= Stuck
| Erased
| Litt Literal
| Fun (D 𝜏 → D 𝜏)
| Con DataCon [D 𝜏]

instance (Trace (D 𝜏),Monad 𝜏) ⇒ Domain (D 𝜏) where
stuck = return Stuck
lit l = return (Litt l)
fun _x f = return (Fun f)
con k ds = return (Con k ds)
apply d (_b, a) = d >>= 𝜆case Fun f → f a; → stuck

select d _f _b fs = d >>= 𝜆v → case v of
Stuck → stuck

Con k ds | Just (, , f) ← findAlt (DataAlt k) fs→ f (return v) ds

Litt l | Just (, , f) ← findAlt (LitAlt l) fs → f (return v) []
| Just (, , f) ← findAlt DEFAULT fs → f (return v) []

→ stuck

236

global = stuck

classOp _x _cls = stuck

primOp _x op = case op of
IntAddOp→ intop (+)
IntMulOp→ intop (∗)
IntRemOp→ intop rem

→ stuck

where
intop op = binop int_ty int_ty $ 𝜆v1 v2 → case (v1, v2) of
(Litt (LitNumber LitNumInt i1), Litt (LitNumber LitNumInt i2))
→ Litt (LitNumber LitNumInt (i1 ‘op‘ i2))
→ Stuck

binop ty1 ty2 f = mkPap [ty1, ty2] $ 𝜆[d1, d2] → f <$> d1 <∗> d2
int_ty = Anon (Scaled ManyTy intTy) FTF_T_T

erased = return Erased
keepAlive d = d

findAlt :: AltCon→ [DAlt d] → Maybe (DAlt d)
findAlt con alts

= case alts of
(deflt@(DEFAULT, ,) : alts) → go alts (Just deflt)
→ go alts Nothing

where
go [] deflt = deflt

go (alt@(con1, ,) : alts) deflt

= case con ‘cmpAltCon‘ con1 of
LT→ deflt

EQ → Just alt

GT→ go alts deflt

type Addr = Word64
type Heap 𝜏 = WM.Word64Map (D 𝜏)
newtype ByNeed 𝜏 v = ByNeed { runByNeed :: StateT (Heap (ByNeed 𝜏)) 𝜏 v }

deriving (Functor,Applicative,Monad)
instance (∀v. Trace (𝜏 v)) ⇒ Trace (ByNeed 𝜏 v) where

step ev (ByNeed (StateT m)) = ByNeed $ StateT $ step ev ◦m

fetch :: Monad 𝜏 ⇒ Addr→ D (ByNeed 𝜏)
fetch a = ByNeed get >>= 𝜆𝜇 → 𝜇WM. ! a

237

C Denotational Interpreter for GHC Core in Section 4.5.5

memo :: ∀𝜏 . (Monad 𝜏,∀v. Trace (𝜏 v))
⇒ Addr→ D (ByNeed 𝜏) → D (ByNeed 𝜏)

memo a d = d >>= ByNeed ◦ StateT ◦ upd

where upd Stuck 𝜇 = return (Stuck :: Value (ByNeed 𝜏), 𝜇)
upd v 𝜇 = step Update (return (v,WM.insert a (memo a (return v)) 𝜇))

freeList :: Heap 𝜏 → [Addr]
freeList 𝜇 = [a . .]

where a = case WM.lookupMax 𝜇 of Just (a,) → a + 1; → 0
instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByNeed 𝜏)) where

bind _hint rhss body = do
as← take (length rhss) ◦ freeList <$> ByNeed get

let ds = map fetch as

ByNeed $ modify (𝜆𝜇 → foldr (𝜆(a, rhs) →
WM.insert a (memo a (rhs ds))) 𝜇 (zip as rhss))

body ds

evalByNeed :: CoreExpr→ T (Value (ByNeed T),Heap (ByNeed T))
evalByNeed e = runStateT (runByNeed (SJeKemptyVarEnv)) WM.empty

238

D
Extracted Haskell code for

Chapter 4

Here I list the complete code for Chapter 4.
The following module defines the expression data type and its helpers:

module Exp where
import qualified Data.Map as Map

type Name = String -- [a-z][a-zA-Z0-9]+

data Tag
= FF | TT | None | Some | Pair | S | Z

deriving (Show,Read, Eq,Ord, Enum,Bounded)
conArity :: Tag→ Int
conArity Pair = 2
conArity Some = 1
conArity S = 1
conArity = 0
data Exp

= Var Name
| App Exp Name
| Lam Name Exp
| Let Name Exp Exp
| ConApp Tag [Name]
| Case Exp Alts

type Alts = Map.Map Tag ([Name], Exp)
type Label = String
label :: Exp→ Label
label e = case e of

D Extracted Haskell code for Chapter 4

Lam x → "\\lambda " ++ x ++ ".."
ConApp k xs→ show k ++ "(" ++

showSep (showString ",") (map showString xs) [] ++ ")"
→ undefined

showSep :: ShowS→ [ShowS] → ShowS
showSep [] = id

showSep [s] = s

showSep sep (s : ss) = s ◦ sep ◦ showString " " ◦ showSep sep ss

The full definitions for Section 4.3 follow:

{−# LANGUAGE DerivingVia #−}
{−# LANGUAGE PartialTypeSignatures #−}
{−# LANGUAGEQuantifiedConstraints #−}
{−# LANGUAGE UndecidableInstances #−}
module Interpreter where
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Data.List (foldl

′)
import Text.Show (showListWith)
import Data.Functor.Identity
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Control.Monad.Trans.State
import Exp
-- Finite maps

type (:⇀) = Map
𝜀 :: Ord k ⇒ k :⇀ v

[↦→] :: Ord k ⇒ (k :⇀ v) → k → v → (k :⇀ v)
[↦→] :: Ord k ⇒ (k :⇀ v) → [k] → [v] → (k :⇀ v)
(!) :: Ord k ⇒ (k :⇀ v) → k → v

dom :: Ord k ⇒ (k :⇀ v) → Set k

(∈) :: Ord k ⇒ k → Set k → Bool
(�) :: (b→ c) → (a :⇀ b) → (a :⇀ c)
assocs :: (k :⇀ v) → [(k, v)]

240

𝜀 = Map.empty

𝜌 [x ↦→ d] = Map.insert x d 𝜌

𝜌 [xs ↦→ ds] = foldl
′ (uncurry ◦ [↦→]) 𝜌 (zip xs ds)

[x ↦→ d] = Map.singleton x d

(�) = Map.map

infixr 9 �
(!) = (Map. !)
dom = Map.keysSet

(∈) = Set.member

assocs = Map.assocs

-- Semantic domain: values and traces

type D 𝜏 = 𝜏 (Value 𝜏);
data T v = Step Event (T v) | Ret v

takeT :: Int→ T a→ T (Maybe a)
takeT 0 = return Nothing
takeT (Ret a) = return (Just a)
takeT n (Step e t) = Step e (takeT (n − 1) t)
data Value 𝜏 = Stuck | Fun (D 𝜏 → D 𝜏) | Con Tag [D 𝜏]
data Event = Look Name | Upd | App1 | App2

| Let0 | Let1 | Case1 | Case2
instance Functor T where

fmap f (Ret a) = Ret (f a)
fmap f (Step e t) = Step e (fmap f t)

instance Applicative T where
pure = Ret
(<∗>) = ap

instance Monad T where
Ret v >>= k = k v

Step e 𝜏 >>= k = Step e (𝜏 >>= k)
-- Type class algebra

class Trace d where
step :: Event→ d → d

class Domain d where
stuck :: d

fun :: Name→ Label→ (d → d) → d

apply :: d → d → d

241

D Extracted Haskell code for Chapter 4

con :: Label→ Tag→ [d] → d

select :: d → (Tag :⇀ ([d] → d)) → d

class HasBind d where
bind :: Name→ (d → d) → (d → d) → d

instance Trace (T v) where
step = Step

instance Monad 𝜏 ⇒ Domain (D 𝜏) where
stuck = return Stuck
fun f = return (Fun f)
apply d a = d >>= 𝜆v → case v of

Fun f → f a

→ stuck

con k ds = return (Con k ds)
select dv alts = dv >>= 𝜆v → case v of

Con k ds | k ∈ dom alts→ (alts ! k) ds

→ stuck

-- Generic denotational interpreter S

SJ K :: (Trace d,Domain d,HasBind d) ⇒ Exp→ (Name :⇀ d) → d

SJeK𝜌 = case e of
Var x | x ∈ dom 𝜌 → 𝜌 ! x

| otherwise → stuck

Lam x body → fun x (label e) $ 𝜆d → step App2 (SJbodyK(𝜌 [x ↦→d]))
App e x | x ∈ dom 𝜌 → step App1 $ apply (SJeK𝜌) (𝜌 ! x)

| otherwise → stuck

Let x e1 e2 → bind x (𝜆d1 → SJe1K𝜌 [x ↦→step (Look x) d1])
(𝜆d1 → step Let1 (SJe2K𝜌 [x ↦→step (Look x) d1]))

ConApp k xs | all (∈ dom 𝜌) xs, length xs==conArity k

→ con (label e) k (map (𝜌 !) xs)
| otherwise

→ stuck

Case e alts→ step Case1 $ select (SJeK𝜌) (cont � alts)
where

cont (xs, 𝑒𝑟) ds | length xs==length ds = step Case2 (SJ𝑒𝑟 K𝜌 [xs ↦→ds])
| otherwise = stuck

-- By-name semantics

SnameJ K :: Exp→ (Name :⇀ Dna) → Dna

242

SnameJeK𝜌 = SJeK𝜌 :: Dna

newtype ByName 𝜏 v = ByName {unByName :: (𝜏 v) }
deriving newtype (Functor,Applicative,Monad)

type Dna = D (ByName T)
instance Trace (𝜏 v) ⇒ Trace (ByName 𝜏 v) where

step e = ByName ◦ step e ◦ unByName

instance HasBind (D (ByName 𝜏)) where
bind rhs body = body (fix rhs)

takeName :: Int→ ByName T a→ T (Maybe a)
takeName n (ByName 𝜏) = takeT n 𝜏

-- Heaps

type Addr = Int
type Heap 𝜏 = Addr :⇀ D 𝜏

nextFree :: Heap 𝜏 → Addr
nextFree h = case Map.lookupMax h of
Nothing → 0
Just (k,) → k + 1
-- By-need semantics

SneedJ K () :: Exp→ (Name :⇀ Dne) → Heapne → T (Valuene,Heapne)
SneedJeK𝜌 (𝜇) = unByNeed (SJeK𝜌 :: Dne) 𝜇
newtype ByNeed 𝜏 v

= ByNeed {unByNeed :: Heap (ByNeed 𝜏) → 𝜏 (v,Heap (ByNeed 𝜏)) }
type Dne = D (ByNeed T)
type Valuene = Value (ByNeed T)
type Heapne = Heap (ByNeed T)
get :: Monad 𝜏 ⇒ ByNeed 𝜏 (Heap (ByNeed 𝜏))
get = ByNeed (𝜆𝜇 → return (𝜇, 𝜇))
put :: Monad 𝜏 ⇒ Heap (ByNeed 𝜏) → ByNeed 𝜏 ()
put 𝜇 = ByNeed (𝜆 → return ((), 𝜇))
instance (∀v. Trace (𝜏 v)) ⇒ Trace (ByNeed 𝜏 v) where

step e m = ByNeed (step e ◦ unByNeed m)
fetch :: Monad 𝜏 ⇒ Addr→ D (ByNeed 𝜏)
fetch a = get >>= 𝜆𝜇 → 𝜇 ! a

memo :: ∀𝜏 . (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ Addr→ D (ByNeed 𝜏) → D (ByNeed 𝜏)

243

D Extracted Haskell code for Chapter 4

memo a d = d >>= 𝜆v → ByNeed (upd v)
where upd Stuck 𝜇 = return (Stuck :: Value (ByNeed 𝜏), 𝜇)

upd v 𝜇 = step Upd (return (v, 𝜇 [a ↦→ memo a (return v)]))
instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByNeed 𝜏)) where

bind 𝜂 rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ memo a (rhs (fetch a))]
body (fetch a)

deriving via StateT (Heap (ByNeed 𝜏)) 𝜏 instance Functor 𝜏 ⇒
Functor (ByNeed 𝜏)

deriving via StateT (Heap (ByNeed 𝜏)) 𝜏 instance Monad 𝜏 ⇒
Applicative (ByNeed 𝜏)

deriving via StateT (Heap (ByNeed 𝜏)) 𝜏 instance Monad 𝜏 ⇒
Monad (ByNeed 𝜏)
-- Partial by-value interpreter

SvalueJ K :: Exp→ (Name :⇀ D (ByValue T)) → D (ByValue T)
SvalueJeK𝜌 = SJeK𝜌 :: D (ByValue T)
newtype ByValue 𝜏 v = ByValue {unByValue :: 𝜏 v }
instance Trace (𝜏 v) ⇒ Trace (ByValue 𝜏 v) where

step e (ByValue 𝜏) = ByValue (step e 𝜏)
class Extract 𝜏 where getValue :: 𝜏 v → v

instance Extract T where
getValue (Ret v) = v

getValue (Step 𝜏) = getValue 𝜏

instance (Trace (D (ByValue 𝜏)),Monad 𝜏, Extract 𝜏)
⇒ HasBind (D (ByValue 𝜏)) where

bind 𝜂 rhs body = step Let0 $ do
let d = rhs (return v) :: D (ByValue 𝜏)

v = getValue (unByValue d) :: Value (ByValue 𝜏)
v1 ← d

body (return v1)
deriving instance Functor 𝜏 ⇒ Functor (ByValue 𝜏)
deriving instance Applicative 𝜏 ⇒ Applicative (ByValue 𝜏)
deriving instance Monad 𝜏 ⇒ Monad (ByValue 𝜏)
-- By-value semantics with lazy initialisation

SvinitJ K () :: Exp→ (Name :⇀ D (ByVInit T)) → Heap → T (Value ,Heap)

244

SvinitJeK𝜌 (𝜇) = unByVInit (SJeK𝜌 :: D (ByVInit T)) 𝜇
newtype ByVInit 𝜏 v

= ByVInit {unByVInit :: Heap (ByVInit 𝜏) → 𝜏 (v,Heap (ByVInit 𝜏)) }
instance (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (ByVInit 𝜏)) where

bind 𝜂 rhs body = do 𝜇 ← get

let a = nextFree 𝜇

put 𝜇 [a ↦→ stuck]
step Let0 (memo a (rhs (fetch a))) >>= body ◦ return

deriving via StateT (Heap (ByVInit 𝜏)) 𝜏 instance Functor 𝜏 ⇒
Functor (ByVInit 𝜏)

deriving via StateT (Heap (ByVInit 𝜏)) 𝜏 instance Monad 𝜏 ⇒
Applicative (ByVInit 𝜏)

deriving via StateT (Heap (ByVInit 𝜏)) 𝜏 instance Monad 𝜏 ⇒
Monad (ByVInit 𝜏)

get :: Monad 𝜏 ⇒ ByVInit 𝜏 (Heap (ByVInit 𝜏))
get = ByVInit (𝜆𝜇 → return (𝜇, 𝜇))
put :: Monad 𝜏 ⇒ Heap (ByVInit 𝜏) → ByVInit 𝜏 ()
put 𝜇 = ByVInit (𝜆 → return ((), 𝜇))
instance (∀v. Trace (𝜏 v)) ⇒ Trace (ByVInit 𝜏 v) where

step e m = ByVInit (step e ◦ unByVInit m)
fetch :: Monad 𝜏 ⇒ Addr→ D (ByVInit 𝜏)
fetch a = get >>= 𝜆𝜇 → 𝜇 ! a

memo :: ∀𝜏 . (Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ Addr→ D (ByVInit 𝜏) → D (ByVInit 𝜏)
memo a d = d >>= 𝜆v → ByVInit (upd v)

where upd Stuck 𝜇 = return (Stuck :: Value (ByVInit 𝜏), 𝜇)
upd v 𝜇 = return (v, 𝜇 [a ↦→ memo a (return v)])

-- Partial clairvoyant interpreter

SclairJ K :: Exp→ (Name :⇀ D (Clairvoyant T)) → T (Value (Clairvoyant T))
SclairJeK𝜌 = runClair $ SJeK𝜌
data Fork f a = Empty | Single ! a | Fork (f a) (f a)

deriving Functor

newtype ParT 𝜏 a = ParT {unParT :: 𝜏 (Fork (ParT 𝜏) a) }
deriving Functor

instance Monad 𝜏 ⇒ Applicative (ParT 𝜏) where
pure a = ParT (pure (Single a))

245

D Extracted Haskell code for Chapter 4

(<∗>) = ap

instance Monad 𝜏 ⇒ Monad (ParT 𝜏) where
ParT mas >>= k = ParT $ mas >>= 𝜆x → case x of

Empty→ pure Empty
Single a→ unParT (k a)
Fork l r → pure (Fork (l >>= k) (r >>= k))

instance Monad 𝜏 ⇒ Alternative (ParT 𝜏) where
empty = ParT (pure Empty)
l <|> r = ParT (pure (Fork l r))

newtype Clairvoyant 𝜏 a = Clairvoyant {unClair :: ParT 𝜏 a}
deriving newtype (Functor,Applicative,Monad)

instance (∀v. Trace (𝜏 v)) ⇒ Trace (Clairvoyant 𝜏 v) where
step e (Clairvoyant (ParT mforks)) = Clairvoyant $ ParT $ step e mforks

leftT :: Monad 𝜏 ⇒ ParT 𝜏 a→ ParT 𝜏 a

leftT (ParT 𝜏) = ParT $ 𝜏 >>= 𝜆x → case x of
Fork l → unParT l

→ undefined

rightT :: Monad 𝜏 ⇒ ParT 𝜏 a→ ParT 𝜏 a

rightT (ParT 𝜏) = ParT $ 𝜏 >>= 𝜆x → case x of
Fork r → unParT r

→ undefined

parFix :: (Extract 𝜏,Monad 𝜏) ⇒ (Fork (ParT 𝜏) a→ ParT 𝜏 a) → ParT 𝜏 a

parFix f = ParT $ fix (unParT ◦ f ◦ getValue) >>= 𝜆x → case x of
Empty→ pure Empty
Single a→ pure (Single a)
Fork → pure (Fork (parFix (leftT ◦ f)) (parFix (rightT ◦ f)))

instance (Extract 𝜏,Monad 𝜏,∀v. Trace (𝜏 v)) ⇒ HasBind (D (Clairvoyant 𝜏)) where
bind rhs body = Clairvoyant (skip <|> let

′) >>= body

where
skip = return (Clairvoyant empty)
let
′ = fmap return $ unClair $ step Let0 $ Clairvoyant $ parFix $
unClair ◦ rhs ◦ Clairvoyant ◦ ParT ◦ return

headParT :: (Monad 𝜏, Extract 𝜏) ⇒ ParT 𝜏 v → 𝜏 (Maybe v)
headParT 𝜏 = go 𝜏

where
go :: (Monad 𝜏, Extract 𝜏) ⇒ ParT 𝜏 v → 𝜏 (Maybe v)

246

go (ParT 𝜏) = 𝜏 >>= 𝜆x → case x of
Empty → pure Nothing
Single a→ pure (Just a)
Fork l r → case getValue (go l) of
Nothing→ go r

Just → go l

runClair :: (Monad 𝜏, Extract 𝜏) ⇒ D (Clairvoyant 𝜏) → 𝜏 (Value (Clairvoyant 𝜏))
runClair (Clairvoyant m) = headParT m >>= 𝜆x → case x of
Nothing→ error "Expected at least one Clairvoyant trace"
Just t → pure t

A bit of order theory:

module Order where
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set

class Eq a⇒ Lat a where
⊥ :: a

(⊔) :: a→ a→ a;
(⊑) :: Lat a⇒ a→ a→ Bool
x ⊑ y = x ⊔ y==y

lub :: (Foldable f , Lat a) ⇒ f a→ a

lub = foldr (⊔) ⊥
instance (Ord k, Lat v) ⇒ Lat (Map k v) where
⊥ = Map.empty

(⊔) = Map.unionWith (⊔)
instance (Ord a, Lat a) ⇒ Lat (Set a) where
⊥ = Set.empty

(⊔) = Set.union

instance (Lat a, Lat b) ⇒ Lat (a, b) where
⊥ = (⊥,⊥)
(a1, b1) ⊔ (a2, b2) = (a1 ⊔ a2, b1 ⊔ b2)

instance Lat a⇒ Lat [a] where
⊥ = []

247

D Extracted Haskell code for Chapter 4

[] ⊔ ys = ys

xs ⊔ [] = xs

(x : xs) ⊔ (y : ys) = x ⊔ y : xs ⊔ ys

kleeneFixAbove :: Lat a⇒ a→ (a→ a) → a

kleeneFixAbove a f = stationary $ iterate f a

where stationary (a : b : r) = if b ⊑ a then b else stationary (b : r)
kleeneFix :: Lat a⇒ (a→ a) → a

kleeneFix = kleeneFixAbove ⊥
kleeneFixAboveM :: (Monad m, Lat a) ⇒ a→ (a→ m a) → m a

kleeneFixAboveM a f = f a >>= 𝜆b→ if b ⊑ a then return b else kleeneFixAboveM b f

And finally the definitions for Section 4.5:

{−# LANGUAGE TypeFamilies #−}
{−# LANGUAGE DerivingVia #−}
module StaticAnalysis where
import Prelude hiding ((+), (∗))
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Functor.Identity
import Control.Monad
import Control.Monad.ST
import Control.Monad.Trans.Reader
import Control.Monad.Trans.State
import Data.STRef
import Data.Foldable
import Data.Coerce
import qualified Data.List as List
import Exp
import Order
import Interpreter
-- Usage cardinality U

data U = U0 | U1 | U𝜔
type Uses = Name :⇀ U
class UVec a where
(+) :: a→ a→ a

248

(∗) :: U→ a→ a

infixl 6 +
infixl 7 ∗
instance UVec U where
U1 + U1 = U𝜔
u1 + u2 = u1 ⊔ u2
U0 ∗ = U0
∗ U0 = U0

U1 ∗ u = u

U𝜔 ∗ = U𝜔
deriving instance Eq U
instance Lat U where
⊥ = U0
U0 ⊔ u = u

u ⊔ U0 = u

U1 ⊔ U1 = U1
⊔ = U𝜔

instance UVec Uses where
(+) = Map.unionWith (+)
u ∗m = Map.map (u∗) m

-- Usage trace UT and usage domain UD

data TU v = ⟨Uses, v⟩
instance Trace (TU v) where

step (Look x) ⟨𝜑, v⟩ = ⟨[x ↦→ U1] + 𝜑, v⟩
step 𝜏 = 𝜏

deriving instance Functor TU
instance Applicative TU where

pure a = ⟨𝜀, a⟩
(<∗>) = ap

instance Monad TU where
return a = ⟨𝜀, a⟩
⟨𝜑1, a⟩ >>= k = let ⟨𝜑2, b⟩ = k a in ⟨𝜑1 + 𝜑2, b⟩

deriving instance Eq a⇒ Eq (TU a)
instance Extract TU where getValue ⟨ , v⟩ = v

data ValueU = U : ValueU | Rep U
type DU = TU ValueU

249

D Extracted Haskell code for Chapter 4

instance Eq ValueU where
Rep u1==Rep u2 = u1==u2
v1 ==v2 = peel v1==peel v2

instance Lat ValueU where
⊥ = (Rep U0)
Rep u1 ⊔ Rep u2 = Rep (u1 ⊔ u2)
Rep u1 ⊔ v = u1 : Rep u1 ⊔ v

v ⊔ Rep u2 = v ⊔ u2 : Rep u2
u1 : v1 ⊔ u2 : v2 = u1 ⊔ u2 : v1 ⊔ v2

instance Lat DU where
⊥ = ⟨⊥,⊥⟩
⟨𝜑1, v1⟩ ⊔ ⟨𝜑2, v2⟩ = ⟨𝜑1 ⊔ 𝜑2, v1 ⊔ v2⟩

-- Usage analysis

SusageJ K :: Exp→ (Name :⇀ DU) → DU
SusageJeK𝜌 = SJeK𝜌
instance Domain DU where

stuck = ⊥
fun x f = case f ⟨[x ↦→ U1],Rep U𝜔 ⟩ of
⟨𝜑, v⟩ → ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

apply ⟨𝜑1, v1⟩ ⟨𝜑2, ⟩ = case peel v1 of
(u, v2) → ⟨𝜑1 + u ∗ 𝜑2, v2⟩

con ds = foldl apply ⟨𝜀,Rep U𝜔 ⟩ ds

select d fs = d >> lub [f (replicate (conArity k) ⟨𝜀,Rep U𝜔 ⟩)
| (k, f) ← assocs fs]

peel :: ValueU → (U,ValueU)
peel (Rep u) = (u,Rep u)
peel (u : v) = (u, v)
(!?) :: Uses→ Name→ U
𝜑 !? x | x ∈ dom 𝜑 = 𝜑 ! x

| otherwise = U0

instance HasBind DU where
bind rhs body = body (kleeneFix rhs)
-- Types

data TyCon = BoolTyCon | NatTyCon | OptionTyCon | PairTyCon
deriving (Eq, Enum,Bounded)

data Type = Type :→: Type | TyConApp TyCon [Type] | TyVar Name | Wrong

250

deriving (Eq)
data PolyType = PT [Name] Type
freeVars :: Type→ Set Name
freeVars (TyVar x) = Set.singleton x

freeVars (a :→: r) = freeVars a ‘Set.union‘ freeVars r

freeVars (TyConApp as) = Set.unions (map freeVars as)
freeVars Wrong = Set.empty

splitFunTys :: Type→ ([Type], Type)
splitFunTys ty = go [] ty

where
go as (a :→: r) = go (a : as) r

go as ty = (reverse as, ty)
conTy :: Tag→ PolyType
conTy TT = PT [] (TyConApp BoolTyCon [])
conTy FF = PT [] (TyConApp BoolTyCon [])
conTy Z = PT [] (TyConApp NatTyCon [])
conTy S = PT [] (TyConApp NatTyCon [] :→: TyConApp NatTyCon [])
conTy None = PT ["a_none"]
(TyConApp OptionTyCon [TyVar "a_none"])

conTy Some = PT ["a_some"]
(TyVar "a_some" :→: TyConApp OptionTyCon [TyVar "a_some"])

conTy Pair = PT ["a_pair", "b_pair"]
(TyVar "a_pair" :→: TyVar "b_pair" :→:
TyConApp PairTyCon [TyVar "a_pair", TyVar "b_pair"])

tyConTags :: TyCon→ [Tag]
tyConTags tc =

[k | k ← [minBound . .maxBound]
, let PT ty = conTy k

, TyConApp tc
′ ← [snd (splitFunTys ty)]

, tc==tc
′]

-- Domain of Algorithm J

type Subst = Name :⇀ Type
type Constraint = (Type, Type)
newtype J a = J {unJ :: StateT (Set Name, Subst) Maybe a}
deriving instance Functor J
instance Applicative J where

251

D Extracted Haskell code for Chapter 4

pure = J ◦ pure

(<∗>) = ap

instance Monad J where
J m >>= k = J (m >>= unJ ◦ k)

runJ :: J PolyType→ PolyType
runJ (J m) = case evalStateT m (Set.empty, 𝜀) of

Just ty → ty

Nothing→ PT [] Wrong

applySubst :: Subst→ Type→ Type
applySubst subst ty@(TyVar y)
| Just ty ← Map.lookup y subst = ty

| otherwise = ty

applySubst subst (a :→: r) =
applySubst subst a :→: applySubst subst r

applySubst subst (TyConApp k tys) =
TyConApp k (map (applySubst subst) tys)

applySubst ty = ty

addCt :: Constraint→ Subst→ Maybe Subst
addCt (l, r) subst = case (applySubst subst l, applySubst subst r) of
(l, r) | l==r → Just subst

(TyVar x, ty)
| not (occurs x ty)
→ Just (Map.insert x ty subst)

(, TyVar) → addCt (r, l) subst

(a1 :→: r1, a2 :→: r2) → addCt (a1, a2) subst >>= addCt (r1, r2)
(Wrong,Wrong) → Just subst

(TyConApp k1 tys1, TyConApp k2 tys2) | k1==k2 →
foldrM addCt subst (zip tys1 tys2)
→ Nothing

where
occurs x ty = applySubst [x ↦→ ty] ty |==ty

unify :: Constraint→ J ()
unify ct = J $ StateT $ 𝜆(names, subst) → case addCt ct subst of
Just subst

′ → Just ((), (names, subst
′))

Nothing → Nothing

freshTyVar :: J Type

252

freshTyVar = J $ state $ 𝜆(ns, subst) →
let n = "\\alpha_{" ++ show (Set.size ns) ++ "}"
in (TyVar n, (Set.insert n ns, subst))

freshenVars :: [Name] → J Subst
freshenVars alphas = foldM one 𝜀 alphas

where
one subst alpha = do

beta← freshTyVar

pure subst [alpha ↦→ beta]
instantiatePolyTy :: PolyType→ J Type
instantiatePolyTy (PT alphas ty) = do

subst ← freshenVars alphas

return (applySubst subst ty)
instantiateCon :: Tag→ J Type
instantiateCon k = instantiatePolyTy (conTy k)
generaliseTy :: J Type→ J PolyType
generaliseTy (J m) = J $ do
(outer_names,) ← get

ty ← m

(_names
′, subst) ← get

let ty
′ = applySubst subst ty

let one n = freeVars $ applySubst subst (TyVar n)
let fvΓ = Set.unions (Set.map one outer_names)
let generics = freeVars ty

′ ‘Set.difference‘ fvΓ

return (PT (Set.toList generics) ty
′)

closedType :: J Type→ PolyType
closedType d = runJ (generaliseTy d)
-- Type analysis

StypeJ K :: Exp→ PolyType
StypeJeK = closedType (SJeK𝜀) :: PolyType
instance Trace (J v) where step = id

instance Domain (J Type) where
stuck = return Wrong
fun f = do
𝜃𝛼 ← freshTyVar

𝜃 ← f (return 𝜃𝛼)

253

D Extracted Haskell code for Chapter 4

return (𝜃𝛼 :→: 𝜃)
con k ds = do

con_app_ty ← instantiateCon k

arg_tys← sequence ds

res_ty ← freshTyVar

unify (con_app_ty, foldr (:→:) res_ty arg_tys)
return res_ty

apply v a = do
𝜃1 ← v

𝜃2 ← a

𝜃𝛼 ← freshTyVar

unify (𝜃1, 𝜃2 :→: 𝜃𝛼)
return 𝜃𝛼

select dv fs = case Map.assocs fs of
[] → stuck

fs@((k,): _) → do
con_ty ← dv

res_ty ← snd ◦ splitFunTys <$> instantiateCon k

let TyConApp tc tc_args = res_ty

unify (con_ty, res_ty)
ks_tys← enumerateCons tc tc_args

tys← forM ks_tys $ 𝜆(k, tys) →
case List.find (𝜆(k′,) → k

′==k) fs of
Just (, f) → f tys

→ stuck

case tys of
[] → stuck

ty : tys
′ → mapM (𝜆ty

′ → unify (ty, ty′)) tys
′ >> return ty

enumerateCons :: TyCon→ [Type] → J [(Tag, [J Type])]
enumerateCons tc tc_arg_tys = forM (tyConTags tc) $ 𝜆k → do

ty ← instantiateCon k

let (field_tys, res_ty) = splitFunTys ty

unify (TyConApp tc tc_arg_tys, res_ty)
return (k,map pure field_tys)

instance HasBind (J Type) where
bind rhs body = do
𝜎 ← generaliseTy (uniFix rhs)

254

body (instantiatePolyTy 𝜎)
uniFix :: (J Type→ J Type) → J Type
uniFix rhs = do
𝜃𝛼 ← freshTyVar

𝜃 ← rhs (return 𝜃𝛼)
unify (𝜃𝛼 , 𝜃)
return 𝜃𝛼

-- Domain of control-flow analysis CD

newtype Labels = Lbls (Set Label) deriving (Eq,Ord)
instance Lat Labels where
⊥ = Lbls Set.empty

Lbls l ⊔ Lbls r = Lbls (Set.union l r)
-- If I were serious, I should have used the flat lattice over ‘Tag‘.

instance Lat Tag where
⊥ = error "no bottom Tag"
k1 ⊔ k2 = if k1 |==k2 then error "k1 /= k2" else k1

type ConCache = (Tag, [Labels])
data FunCache = FC (Maybe (Labels, Labels)) (DC → DC)
data Cache = Cache {cCons :: Label :⇀ ConCache, cFuns :: Label :⇀ FunCache}
type DC = State Cache Labels
runCFA :: DC → Labels
runCFA m = evalState m (Cache ⊥ ⊥)
overCons :: ((Label :⇀ ConCache) → (Label :⇀ ConCache)) → Cache→ Cache
overCons f (Cache cons funs) = Cache (f cons) funs

overFuns :: ((Label :⇀ FunCache) → (Label :⇀ FunCache)) → Cache→ Cache
overFuns f (Cache cons funs) = Cache cons (f funs)
updConCache :: Label→ Tag→ [Labels] → State Cache ()
updConCache ℓ k vs = modify $ overCons $ 𝜆cons→
Map.singleton ℓ (k, vs) ⊔ cons

updFunCache :: Label→ (DC → DC) → State Cache ()
updFunCache ℓ f = modify $ overFuns $ 𝜆funs→
Map.singleton ℓ (FC Nothing f) ⊔ funs

cachedCall :: Labels→ Labels→ DC

cachedCall (Lbls ℓ) v = fmap lub $ forM (Set.toList ℓ) $ 𝜆ℓ → do
FC cache f ← gets (Map.findWithDefault ⊥ ℓ ◦ cFuns)

255

D Extracted Haskell code for Chapter 4

let call in_ out = do
let in_′ = in_ ⊔ v

modify $ overFuns (Map.insert ℓ (FC (Just (in_′, out)) f))
out
′ ← f (return in_′)

modify $ overFuns (Map.insert ℓ (FC (Just (in_′, out
′)) f))

return out
′

case cache of
Just (in_, out)
| v ⊑ in_ → return out

| otherwise→ call in_ out

Nothing → call ⊥ ⊥
cachedCons :: Labels→ State Cache (Tag :⇀ [Labels])
cachedCons (Lbls ℓ) = do

cons← cCons <$> get

return $ Map.fromListWith (⊔)
[cons ! ℓ | ℓ ← Set.toList ℓ, ℓ ∈ dom cons]

instance Eq FunCache where
FC cache1 ==FC cache2 = cache1==cache2

instance Lat FunCache where
⊥ = FC Nothing (const (return ⊥))
FC cache1 f 1 ⊔ FC cache2 f 2 = FC cache

′
f
′

where
f
′

d = do
v ← d

lv ← f 1 (return v)
rv ← f 2 (return v)
return (lv ⊔ rv)

cache
′ = case (cache1, cache2) of

(Nothing,Nothing) → Nothing
(Just c1,Nothing) → Just c1
(Nothing, Just c2) → Just c2
(Just (in_1, out1), Just (in_2, out2))
| in_1 ⊑ in_2, out1 ⊑ out2 → Just (in_2, out2)
| in_2 ⊑ in_1, out2 ⊑ out1 → Just (in_1, out1)
| otherwise → error "uh oh"

instance Eq Cache where
c1==c2 = cFuns c1==cFuns c2 && cCons c1==cCons c2

256

instance Lat Cache where
⊥ = Cache Map.empty Map.empty

c1 ⊔ c2 = Cache (f cCons) (f cFuns)
where

f :: Lat fld ⇒ (Cache→ fld) → fld

f fld = fld c1 ⊔ fld c2
-- Control-flow analysis

ScfaJ K :: Exp→ Labels
ScfaJeK = runCFA (SJeK𝜀)
instance HasBind DC where

bind rhs body = go ⊥ >>= body ◦ return

where
go :: Labels→ DC
go v = do

cache← get

v
′ ← rhs (return v)

cache
′ ← get

if v
′ ⊑ v && cache

′ ⊑ cache

then return v
′

else go v
′

instance Trace DC where step = id

instance Domain DC where
stuck = return ⊥
fun ℓ f = do

updFunCache ℓ f

return (Lbls (Set.singleton ℓ))
apply dv da = do

v ← dv

a← da

cachedCall v a

con ℓ k ds = do
lbls← sequence ds

updConCache ℓ k lbls

return (Lbls (Set.singleton ℓ))
select dv fs = do

v ← dv

tag2flds← cachedCons v

257

D Extracted Haskell code for Chapter 4

lub <$> sequence [f (map return (tag2flds ! k))
| (k, f) ← Map.assocs fs, k ∈ dom tag2flds]

-- Stateful analysis, Static domain

class Domain d ⇒ StaticDomain d where
type Ann d :: ∗
extractAnn :: Name→ d → (d,Ann d)
funS :: Monad m⇒ Name→ Label→ (m d → m d) → m d

selectS :: Monad m⇒ m d → (Tag :⇀ ([m d] → m d)) → m d

bindS :: Monad m⇒ Name→ d → (d → m d) → (d → m d) → m d

fun
′ :: StaticDomain d ⇒ Name→ Label→ (d → d) → d

fun
′

x lbl f = runIdentity (funS x lbl (coerce f))
select

′ :: StaticDomain d ⇒ d → (Tag :⇀ ([d] → d)) → d

select
′

d fs = runIdentity (selectS (Identity d) (coerce fs))
bind

′ :: (Lat d, StaticDomain d) ⇒ Name→ (d → d) → (d → d) → d

bind
′

x rhs body = runIdentity (bindS x ⊥ (coerce rhs) (coerce body))
data Refs s d = Refs (STRef s (Name :⇀ d)) (STRef s (Name :⇀ Ann d))
newtype AnnT s d a = AnnT (Refs s d → ST s a)
type AnnD s d = AnnT s d d

deriving via ReaderT (Refs s d) (ST s) instance Functor (AnnT s d)
deriving via ReaderT (Refs s d) (ST s) instance Applicative (AnnT s d)
deriving via ReaderT (Refs s d) (ST s) instance Monad (AnnT s d)
instance Trace d ⇒ Trace (AnnD s d) where

step ev (AnnT f) = AnnT (𝜆refs→ step ev <$> f refs)
instance StaticDomain d ⇒ Domain (AnnD s d) where

stuck = return stuck

fun x l f = funS x l f

con l k ds = con l k <$> sequence ds

apply f d = apply <$> f <∗> d

select md mfs = selectS md mfs

instance (Lat d, StaticDomain d) ⇒ HasBind (AnnD s d) where
bind x rhs body = do

init ← readCache x

let rhs
′

d1 = do d2 ← rhs (return d1); writeCache x d2; return d2
annotate x (bindS x init rhs

′ (body ◦ return))
readCache :: Lat d ⇒ Name→ AnnD s d

readCache n = AnnT $ 𝜆(Refs cache) → do

258

c ← readSTRef cache

return (Map.findWithDefault ⊥ n c)
writeCache :: Name→ d → AnnT s d ()
writeCache n d = AnnT $ 𝜆(Refs cache) →

modifySTRef
′

cache $ 𝜆c → c[n ↦→ d]
annotate :: StaticDomain d ⇒ Name→ AnnD s d → AnnD s d

annotate x ad = do
d ← ad

let (d′, ann) = extractAnn x d

AnnT $ 𝜆(Refs anns) → modifySTRef
′

anns $ 𝜆a→ a[x ↦→ ann]
return d

′

runAnn :: (∀s. AnnD s d) → (d,Name :⇀ Ann d)
runAnn m = runST $ do

r@(Refs anns) ← Refs <$> newSTRef 𝜀 <∗> newSTRef 𝜀

d ← case m of AnnT f → f r

anns← readSTRef anns

return (d, anns)
-- Stateful usage analysis

Susage;J K :: Exp→ (Name :⇀ DU) → (DU,Name :⇀ U)
Susage;JeK𝜌 = runAnn (SJeKreturn�𝜌)
instance StaticDomain DU where

type Ann DU = U
extractAnn x ⟨𝜑, v⟩ = (⟨Map.delete x 𝜑, v⟩, 𝜑 !? x)
funS x 𝜂 f = do
⟨𝜑, v⟩ ← f (return ⟨[x ↦→ U1],Rep U𝜔 ⟩)
return ⟨𝜑 [x ↦→ U0], 𝜑 !? x : v⟩

selectS md mfs = do
d ← md

alts← sequence [f (replicate (conArity k) (return ⟨𝜀,Rep U𝜔 ⟩))
| (k, f) ← Map.assocs mfs]

return (d >> lub alts)
bindS init rhs body = kleeneFixAboveM init rhs >>= body

259

Index of Definitions

▶ see later modality
(∈) . 83
map membership test

(!) . 83
map lookup

(�) . 83
adjust values of map

(⇀) . 79
finite map

(:⇀) . 83
Haskell type of finite map

(↩−→) . 80
LK machine transition relation

𝑓 [𝑎 ↦→ 𝑏] 79
function update notation

𝜀 . 83
empty map

[𝑎1 ↦→ 𝑏1, ..., 𝑎𝑛 ↦→ 𝑏𝑛] 79
map literal notation

AJ K . 73
absence analysis

SclairJ K 94
partial clairvoyant interpreter

SJ K . 85
generic denotational interpreter

SnameJ K 88
by-name semantics

SneedJ K () 89
by-need semantics

SusageJ K 112
usage analysis

SvalueJ K 91
partial by-value interpreter

SvinitJ K () 93
by-value semantics with lazy

initialisation

A-normal form 72
absence . 72
formal definition 76

abstract interpretation 9
abstraction law 136
𝛼S∞ () . 105

LK adequacy abstraction function

𝛼S . 147
by-name abstraction function

𝛼S . 136
by-need abstraction function

address domain 153
adequacy 95
ANF see A-normal form
assocs . 83
key-value pairs in the map

coinduction 97
compositional 75
configuration 79
control expression 79
ctrl(𝜎) . 102
control expression of 𝜎

definable by-need entities . . . 152
denotation 75

261

Index of Definitions

denotational interpreter 82
denotational semantics 69
dom . 83
domain of the map

entangled soundness proof . . . 78
environment
of absence analysis 72
of the denotational interpreter

84
of the LK machine 79

frame rule 156

Galois connection 8
(⇄) see Galois connection
guarded . 97
guarded fixpoints and recursion
99

guarded type theory 98

heap
of the denotational by-need se-

mantics SneedJ K 88
of the LK machine 79
progression relation 153

init (e) . 79
initial machine state for e

later modality 99
logical relation 77

memoisation 81
modular
analysis 75
proof 139

negative occurrence 98

operational detail 83
an operational property other

than termination

operational property 78
a trace property

preservation lemma, preservation
proof . 76

productive 97
syntactic productivity 97

readressing 155
representation function . . . 8, 138

safety
extension (of a function) . . 145
property 145

semantic domain 75
semantic value 82
state
of the LK machine 79
reduction 102
search 102
source 102
target 102

substitution lemma 76
summary 75
mechanism 75

termination observable 104
totality . 95
trace
balanced 102
interior 102
maximal 103
transformer 126

trace transformer 88

262

Index of Definitions

trace . 83
records the steps taken by an

abstract machine

usage . 111
trace . 111

well-addressedness 79

263

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Structure

	Background
	Haskell
	Lazy Evaluation and Purity
	Higher-Kinded Types and Quantified Constraints
	Generalised Algebraic Datatypes

	Order Theory
	Abstract Interpretation

	Lower Your Guards: A Compositional Pattern-Match Coverage Checker
	Problem Statement
	Guards
	Programmable Patterns
	Strictness
	Type-Equality Constraints

	Lower Your Guards: A New Coverage Checker
	Desugaring to Guard Trees
	Checking Guard Trees
	Reporting Errors
	Generating Inhabitants of a Refinement Type
	Expanding a Normalised Refinement Type to a Pattern
	Normalising a Refinement Type
	Testing for Inhabitation

	Extensions
	Long-Distance Information
	Empty Case
	View Patterns
	Pattern Synonyms
	COMPLETE Pragmas
	Literals
	Newtypes
	Strictness, Divergence and Other Side-Effects
	Or-patterns

	Implementation
	Phase Ordering
	Interleaving U and A
	Throttling for Graceful Degradation
	Maintaining Residual COMPLETE Sets
	Reporting Uncovered Patterns
	Structured Guard Tree Types

	Evaluation
	Performance Tests
	GHC Issues

	Soundness
	Semantics
	Formal Soundness Statement

	Related Work
	Comparison with GADTs Meet Their Match
	Comparison with Similar Coverage Checkers
	Other Representations of Constraints
	Positive and Negative Information
	Strict Fields in Inhabitation Testing

	Abstracting Denotational Interpreters
	Problem Statement
	Object Language
	Absence Analysis
	Compositionality, Summaries and Modularity
	Summaries vs. Abstracting Abstract Machines
	Problem: Proving Soundness of Summary-Based Analyses

	Reference Semantics: Lazy Krivine Machine
	A Denotational Interpreter
	Semantic Domain
	The Interpreter
	More Evaluation Strategies

	Totality and Semantic Adequacy
	Adequacy of Sneedwidth.3em width.3em
	Totality of Snamewidth.3em width.3em and Sneedwidth.3em width.3em
	Limitations of Induction and Coinduction
	Guarded Type Theory
	Total Encoding in Guarded Cubical Agda
	Proof of Adequacy For Sneedwidth.3em width.3em

	Static Analysis
	Usage Analysis
	Type Analysis: Algorithm J
	Control-flow Analysis
	Stateful Analysis and Annotations
	Case Study: GHC's Demand Analyser

	Generic Abstract By-Name and By-Need Interpretation
	A Reusable Abstract By-Need Interpretation Theorem
	A Modular Proof for Beta-App: A Simpler Substitution Lemma
	A Simpler Proof That Usage Analysis Infers Absence
	Comparison to Ad-hoc Preservation Proof
	Interlude
	Abstracting Guarded Fixpoints
	Safety Properties and Safety Extension of a Galois Connection
	Abstract By-name Interpretation, in Detail
	Abstract By-need Soundness, in Detail
	Parametricity and Relationship to Kripke Logical Relations

	Related Work

	Conclusion and Future Work
	Future Work

	Bibliography
	Proofs for *ch:abs-den
	Proofs for *sec:problem
	Proofs for *sec:tot-ad
	Proofs for *sec:soundness
	Usage Analysis Proofs

	Agda Code for *sec:totality-formal
	Denotational Interpreter for GHC Core in *sec:demand-analysis
	Extracted Haskell code for *ch:abs-den
	Index of Definitions

