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Abstract

The continuous ranked probability score (crps) is the most commonly used scor-
ing rule in the evaluation of probabilistic forecasts for real-valued outcomes. To
assess and rank forecasting methods, researchers compute the mean crps over given
sets of forecast situations, based on the respective predictive distributions and out-
comes. We propose a new, isotonicity-based decomposition of the mean crps into
interpretable components that quantify miscalibration (MSC), discrimination abil-
ity (DSC), and uncertainty (UNC), respectively. In a detailed theoretical analysis,
we compare the new approach to empirical decompositions proposed earlier, gener-
alize to population versions, analyse their properties and relationships, and relate
to a hierarchy of notions of calibration. The isotonicity-based decomposition guar-
antees the nonnegativity of the components and quantifies calibration in a sense
that is stronger than for other types of decompositions, subject to the nondegen-
eracy of empirical decompositions. We illustrate the usage of the isotonicity-based
decomposition in case studies from weather prediction and machine learning.

1 Introduction

Probabilistic predictions are forecasts in the form of predictive probability distributions,
which ought to be as sharp as possible subject to calibration (Gneiting et al., 2007).
Informally, predictive distributions are calibrated if they provide a statistically coherent
explanation of the outcomes. Sharpness, on the other hand, quantifies how well one
can discriminate different scenarios for future events according to the forecast and is a
property of the forecast only. For the comparative evaluation of probabilistic forecasts,
proper scoring rules should be employed (Gneiting and Raftery, 2007). A proper scoring
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rule assigns a numerical score to a probabilistic forecast with corresponding observed
realization, and addresses calibration and sharpness simultaneously. If we compare two
competing forecasts according to their scores, it is natural to ask in which aspect one
forecast is superior to the other. This motivates the decomposition of average realized
scores into more interpretable terms measuring calibration, discrimination ability, and
uncertainty, respectively.

Historically, the first score decomposition was introduced by Murphy (1973), who
proposed a decomposition of the mean Brier score (BS). For a sequence of forecast–
observation pairs (p1, y1), . . . , (pn, yn), consisting of predictive probabilities pi ∈ [0, 1]
and corresponding binary outcomes yi ∈ {0, 1}, the empirical average Brier score

BS =
1

n

n∑
1=1

(pi − yi)
2

quantifies the overall performance of the assessed forecasts based on the actual observa-
tions. Murphy (1973) motivates a decomposition of BS into interpretable components:
a term measuring miscalibration (MCB) or reliability, a term measuring discrimination
ability (DSC) or resolution, and a term quantifying the overall uncertainty (UNC) of the
outcome. Originally derived as a vector partition by Murphy (1973), Siegert (2017) gives
a persuasive interpretation of the Murphy decomposition: For k = 1, . . . , n, consider the
conditional event probability qk, i.e., the proportion of realized binary events (yi = 1)
in the cases where the forecast was pk. Denote by BSc the empirical Brier score of the
calibrated forecasts q1, . . . , qk, and by BSr the empirical Brier score with respect to the
static reference forecast r = (1/n)

∑n
i=1 yi, namely,

BSc =
1

n

n∑
1=1

(qi − yi)
2 and BSr =

1

n

n∑
1=1

(r − yi)
2 . (1)

Siegert (2017) shows that the Murphy decomposition reads as

BS =
(
BS− BSc

)︸ ︷︷ ︸
MCB

−
(
BSr − BSc

)︸ ︷︷ ︸
DSC

+ BSr︸︷︷︸
UNC

. (2)

The three terms of this exact decomposition reveal deeper insight into the performance
of the assessed forecasts: The predictive probabilities are calibrated if they are close
to their conditional event probabilities, and hence, low values of MCB indicate a good
performance in terms of calibration. A perfectly calibrated forecast sequence can be con-
structed by issuing the marginal probability r over all instances. Even though perfectly
calibrated, such a sequence would not be informative, since the same predictive proba-
bility is issued throughout. For such a sequence, we would obtain DSC = 0, which has a
negative effect on the score, whereas larger values of DSC are obtained if the calibrated
forecasts can discriminate different scenarios better than the reference forecast. Finally,
the UNC component informs about the inherent difficulty of the prediction problem and
is independent of the forecasts.
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The rationale behind the decomposition in (2) can be summarized as the follow-
ing recipe: Having available a calibration method that transforms the original forecasts
p1, . . . , pn into calibrated forecasts q1, . . . , qn, one can measure miscalibration as the dif-
ference in the mean score of the original forecasts to the calibrated ones, resulting in the
MCB term. The CORP (Consistent, Optimally binned, Reproducible, and PAV algo-
rithm based) score decomposition suggested by Dimitriadis et al. (2021) uses this general
recipe, where the calibrated forecasts q1, . . . , qn are computed by applying nonparamet-
ric isotonic regression on the vector (y1, . . . , yn) with respect to the order induced by
(p1, . . . , pn). The authors argue that “the assumption of nondecreasing CEPs is natural,
as decreasing estimates are counterintuitive, routinely being dismissed as artifacts by
practitioners” (Dimitriadis et al., 2021, p. 4). If we consider, e.g., the conditional event
probability over all events where we predicted a positive outcome with probability 0.5,
then we should expect this value to be smaller than the conditional event probability
over all events where we predicted a positive outcome with probability 0.6. As noted
by Bentzien and Friederichs (2014), Siegert (2017), Leutbecher and Haiden (2021), and
Gneiting et al. (2023a), and discussed in detail by Gneiting and Resin (2023), the recipe
extends to scores other than the Brier score and general types of statistical functionals.

In this paper, we focus on the continuous ranked probability score (crps; Matheson
and Winkler, 1976). The crps is one of the most prominent scoring rules for the evalua-
tion of probabilistic forecasts for real-valued outcomes and is popular across application
areas and methodological communities; see, e.g., Gneiting et al. (2005), Hothorn et al.
(2014), Pappenberger et al. (2015), Rasp and Lerch (2018), and Gasthaus et al. (2019).
The crps is defined in terms of any cumulative distribution function (cdf) F on R and
y ∈ R, and given by

crps(F, y) =

∫
R

(
F (z)− 1{y ≤ z}

)2
dz.

For a sequence of forecast–observation pairs (F1, y1), . . . , (Fn, yn), comprising a predictive
distribution Fi and a corresponding real-valued outcome yi, the mean crps,

CRPS =
1

n

n∑
i=1

crps(Fi, yi) (3)

serves to quantify the overall performance of the forecasts. Possible decompositions of
the mean score at (3) have been discussed in the literature, with the most prominent
approaches being introduced by Hersbach (2000) and Candille and Talagrand (2005).
These methods offer promising solutions but come with severe limitations. In a nutshell,
the Hersbach decomposition lacks a theoretical background and the desirable property
that the components of the decomposition are nonnegative, whereas the decomposition of
Candille and Talagrand (2005) is not practically feasible, as acknowledged by the authors.
Another approach for decomposing the mean crps is by exploiting its representation as
an integral over Brier scores, compare (6), and then integrating existing decompositions
of BS. Similarly, the crps can be expressed as an integral over quantile scores, see (7),
and existing decompositions for quantile scores can be leveraged to decompose the mean
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score at (3). However, these approaches have the drawback that miscalibration and
discrimination ability are not measured with respect to the full probabilistic forecasts
but only with respect to individual threshold or quantile levels.

In this article, we propose a new decomposition of the mean crps based on Isotonic
Distributional Regression (IDR; Henzi et al., 2021). In the case of binary outcomes,
Dimitriadis et al. (2021) argue that isotonicity between the predictive probabilities and
the calibrated forecasts is a natural constraint, since violations of isotonicity lead to poor
predictive performance. This argument generalizes to the real-valued setting, since it is
natural to assume that the conditional law of the outcome, given the forecast, should tend
to be small (large) if the predictive distribution is small (large), where notions of small
and large are understood with respect to the usual stochastic order. IDR is a nonpara-
metric distributional regression technique that honors the shape constraint of isotonicity
between covariates and responses. Applying IDR to the data (F1, y1), . . . , (Fn, yn) yields
calibrated forecasts, whereas the marginal distribution of the outcomes y1, . . . , yn serves
as static reference forecast. The general recipe from (1) and (2) then yields mean scores
for the calibrated forecast and the reference forecast, respectively, and a corresponding
exact decomposition,

CRPS = MCBISO −DSCISO +UNC0,

of the mean crps at (3), to which we refer as the isotonicity-based decomposition. The
isotonicity-based approach guarantees the nonnegativity of the three components, and
the miscalibration term admits a persuasive interpretation in terms of calibration.

While auto-calibration serves as the universal notion of calibration for binary events
(Gneiting and Ranjan, 2013, Theorem 2.11), for real-valued random outcomes, numerous
different notions of calibration are found in the literature (Dawid, 1984; Diebold et al.,
1998; Strähl and Ziegel, 2017; Arnold et al., 2023), as reviewed by Gneiting and Resin
(2023). The strongest notion is auto-calibration and, ideally, one would like to mea-
sure miscalibration as deviation from auto-calibration, as targeted by the decomposition
of Candille and Talagrand (2005). However, the Candille–Talagrand approach yields
degenerate empirical decompositions. Therefore, we quantify miscalibration as the devi-
ation from isotonic calibration, as introduced by Arnold and Ziegel (2023) in a study of
the population version of IDR. Isotonic calibration is closer to auto-calibration than the
notions of calibration targeted by the Hersbach decomposition, or by the aforementioned
decompositions based on Brier or quantile scores.

The remainder of the paper is organized as follows. Section 2 reviews the previously
proposed decompositions and their properties. In Section 3, we develop the empirical
version of the new isotonicity-based decomposition, followed by a thorough study of
the population versions of the various types of decomposition and their properties in
Section 4, with particular emphasis on calibration. In Section 5, we apply the proposed
isotonicity-based decomposition in case studies from meteorology and machine learning.
The main part of the paper closes with a discussion in Section 6. Proofs, technical
comments, and a series of detailed analytic examples in population settings are available
in Appendices A through D.
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2 Previously proposed empirical decompositions

2.1 Preliminaries

Throughout the article, we denote by P(R) the class of all probability distributions on R
with finite first moment. We treat its elements interchangeably as probability measures
or cumulative distribution functions (cdfs).

Single-valued forecasts for functionals of an unknown quantity should be compared
using consistent scoring functions (Gneiting, 2011). For example, the quadratic score
s(x, y) = (x− y)2, and the piecewise linear quantile score

qsα(x, y) = (1{y ≤ x} − α) (x− y), (4)

where x, y ∈ R, are consistent scoring functions for the mean functional, and for the
quantile at level α ∈ (0, 1), respectively. In other words,

∫
(x − y)2 dF (y) is minimal

when x is the mean of F ∈ P(R), and
∫
qsα(x, y) dF (y) is minimal when x is a quantile

of F at level α ∈ (0, 1).
Probabilistic forecasts specify a probability measure over all possible values of the

outcome, and predictive performance ought to be be compared and evaluated using
proper scoring rules (Gneiting and Raftery, 2007). A popular proper scoring rule for
probability forecasts of a binary outcome is the Brier score

sB(p, y) = (p− y)2, (5)

where p ∈ [0, 1] and 1 − p are the predicted probabilities of the outcomes y = 1 and
y = 0, respectively. A key example of a proper scoring rule for predictive distributions
over R is the continuous ranked probability score (crps), defined for all F ∈ P(R) and
y ∈ R, and given equivalently by

crps(F, y) =

∫
sB(F (z),1{y ≤ z}) dz (6)

=

∫ 1

0
qsα(F

−1(α), y) dα, (7)

where sB and qsα are defined at (5) and (4), respectively, and where F−1 denotes the
quantile function defined as F−1(α) = inf{z ∈ R | F (z) ≥ α} for α ∈ (0, 1). The
representation at (7) is due to Laio and Tamea (2007).

We consider a collection
(F1, y1), . . . , (Fn, yn) (8)

of tuples that comprise a forecast Fi ∈ P(R) in the form of a cdf and the respective
outcome yi ∈ R, where i = 1, . . . , n. Our aim is to decompose the empirical mean score,

CRPS =
1

n

n∑
i=1

crps(Fi, yi), (9)

of the forecast–observation pairs at (8) into three distinct components, namely, miscali-
bration (MCB), discrimination (DSC), and uncertainty (UNC). The following desirable
properties are relevant.
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(E1) The decomposition is exact, i.e.,

CRPS = MCB−DSC +UNC.

(E2) The components MCB, DSC, and UNC are nonnegative.

(E3) The decomposition is not degenerate. Here, a decomposition is degenerate if
MCB = 0 whenever F1, . . . , Fn are pairwise distinct.

(E4) The DSC component vanishes if F1 = · · · = Fn.

(E5) The UNC component can be expressed in terms of the outcomes y1, . . . , yn only.

These conditions do not depend on the use of any specific scoring rule; they are desirable
for decompositions of mean scores in general.

An exact decomposition (E1) is desirable, since it allows us to fully decompose the
mean score. A degenerate decomposition is undesirable, as in typical practice, such as in
the case studies in Section 5, the issued forecast distributions are pairwise distinct, and
then the method is useless. A static forecast, i.e., F1 = · · · = Fn, has no discrimination
ability, hence (E4) is desirable. Requirement (E5) is natural since intrinsic uncertainty
does not depend on the activities of forecasters.

Finally, we argue that there ought to be a population version of the decomposition
that applies to any admissible joint distribution P of tuples (F, Y ). Furthermore, the
population version ought to reduce to the empirical version if P is the empirical measure
for the data at (8). We study decompositions at the population level in Section 4.

2.2 Candille–Talagrand decomposition

Candille and Talagrand (2005) naturally extend the idea of the Murphy decomposition
at (2). To describe their approach, let δy denote the Dirac or point measure in y ∈ R, and
let the marginal law F̂mg = 1

n

∑n
i=1 δyi denote the empirical distribution of the outcomes

y1, . . . , yn in (8). Let F̂i be the auto-calibrated version of the forecast Fi in (8), i.e., let
F̂i be the normalized version of

∑n
j=1 1{Fj = Fi} δyj for i = 1, . . . , n. Then

CRPSmg =
1

n

n∑
i=1

crps(F̂mg, yi) and CRPSac =
1

n

n∑
i=1

crps(F̂i, yi) (10)

are the mean score of the marginal forecast and the auto-calibrated forecast, respectively.
Candille and Talagrand (2005) define uncertainty, miscalibration, and discrimination
components as

UNC0 = CRPSmg, (11)

MCBCT = CRPS− CRPSac, DSCCT = CRPSmg − CRPSac, (12)

respectively, to yield the Candille–Talagrand (CT) decomposition

CRPS = MCBCT −DSCCT +UNC0. (13)
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The Candille–Talagrand decomposition tackles the core idea of auto-calibration and
satisfies properties (E1), (E2), (E4), and (E5), but fails to satisfy the nondegeneracy
condition (E3), which prohibits its practical use.

To avoid a degenerate decomposition, one might partition the forecasts into equiv-
alence classes of cdfs that are considered identical when calibrating (Candille and Ta-
lagrand, 2005, p. 2147). However, the choice of such a partition is challenging and the
decomposition depends on its effects, akin to the effects of binning on the classical re-
liability diagram for probability forecasts of a binary event as described by Dimitriadis
et al. (2021) and references therein.

2.3 Brier score based decomposition

The Brier score based representation of individual crps values at (6) implies that

CRPS =
1

n

n∑
i=1

crps(Fi, yi) =

∫ ∞

−∞
BSz dz, (14)

where

BSz =
1

n

n∑
i=1

sB(Fi(z),1{yi ≤ z}).

In this light, a natural way of decomposing CRPS lies in integrating a given decomposi-
tion of the mean Brier score, as proposed and implemented by Ferro and Fricker (2012),
Tödter and Ahrens (2012), and Lauret et al. (2019), among other authors.

Specifically, suppose that, for each z ∈ R, there is a decomposition BSz = MCBBS,z−
DSCBS,z +UNCBS,z of the mean Brier score. Then we can define

MCBBS =

∫ ∞

−∞
MCBBS,z dz, DSCBS =

∫ ∞

−∞
DSCBS,z dz, UNCBS =

∫ ∞

−∞
UNCBS,z dz.

(15)
The CORP approach of Dimitriadis et al. (2021) yields a compelling decomposition of
the mean Brier score, which does neither require tuning, nor binning of the assessed
predictive probabilities, and enforces a natural shape constraint of isotonicity between
the predictive probabilities and the calibrated forecasts. Throughout this article, we
decompose the mean Brier score by the CORP approach and refer to the induced de-
composition, namely,

CRPS = MCBBS −DSCBS +UNCBS, (16)

as the Brier score based (BS) decomposition of CRPS. Details of this approach are
reviewed in Appendix A.1, where we prove the following result.

Proposition 2.1. For the Brier score based decomposition at (16) it holds that UNCBS =
UNC0, and the decomposition satisies properties (E1), (E2), (E3), (E4), and (E5).

Despite these favorable properties, the Brier score based decomposition is subject to
shortcomings and inconsistencies, due to the isolated treatment of probability forecasts
at fixed thresholds. For discussion, we refer the reader to Section 2.6 and Appendix A.
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2.4 Quantile score based decomposition

In view of the quantile score representation of the crps at (7), a natural approach to
decomposing the mean score CRPS leverages decompositions of the mean quantile score
at (4). Specifically, the quantile score representation implies that

CRPS =
1

n

n∑
i=1

crps(Fi, yi) =

∫ ∞

−∞
QSα dα,

where

QSα =
1

n

n∑
i=1

qsα(F
−1
i (α), yi).

Suppose that for each α ∈ (0, 1), there is a decomposition QSα = MCBQS,α−DSCQS,α+
UNCQS,α of the mean quantile score, and define MCBQS as the integral of MCBQS,α over
α ∈ (0, 1), and similarly for the discrimination and uncertainty components. The CORP
score decomposition of Dimitriadis et al. (2021) and its core idea of isotonicity as a
shape constraint between issued and calibrated forecasts extend naturally to quantiles,
as discussed by Gneiting and Resin (2023, Section 3.3) and Gneiting et al. (2023b,
Section 3.3). Throughout the article, we decompose the mean quantile score by the
CORP approach and refer to the resulting decomposition, namely,

CRPS = MCBQS −DSCQS +UNCQS, (17)

as the quantile score based (QS) decomposition of CRPS. For details, we refer the reader
to Appendix A.2 where we prove the following result.

Proposition 2.2. For the quantile score based decomposition at (17) it holds that
UNCQS = UNC0, and the decomposition satisfies properties (E1), (E2), (E3), (E4),
and (E5).

The quantile score based decomposition is subject to shortcomings in analogy to the
issues with the Brier score based approach, due to the reliance on quantile forecasts at
fixed levels; for further discussion see Section 2.6 and Appendix A.

2.5 Hersbach decomposition

The decomposition of Hersbach (2000) applies specifically to ensemble forecasts and
operates under the implicit assumption of a continuous outcome. For the data at (8),
Hersbach’s assumptions imply, without loss of generality, that for i = 1, . . . , n the fore-
cast Fi is the empirical cdf of a fixed number m of values xi1 ≤ · · · ≤ xim, with the
outcome yi ̸∈ {xi1, . . . , xim} being distinct from these values. However, with a view
towards a generalization of the Hersbach decomposition, we allow for any real-valued
outcome yi. Figure 5 in Appendix B illustrates in detail how the case yi ∈ {xi1, . . . , xim}
should be handled in the Hersbach decomposition.
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In line with the other types of decomposition, Hersbach (2000) defines the uncertainty
component as UNC0 at (11). The miscalibration component, which Hersbach (2000)
refers to as reliability, is

MCBHBo =
m∑
ℓ=0

ḡℓ (pℓ − ōℓ)
2 ,

where pℓ = ℓ/m for ℓ = 0, . . . ,m, and ḡℓ is the average width of bin i, i.e.,

ḡℓ =
1

n

n∑
i=1

(xiℓ+1 − xiℓ) (18)

for ℓ = 1, . . . ,m − 1. The term ōℓ approximates the average frequency of an outcome
below the midpoint of bin ℓ; specifically,

ōℓ = f̄ℓ − m̄ℓ,

where

f̄ℓ =
1

nḡℓ

n∑
i=1

1{Fi(yi) ≤ pℓ} (xiℓ+1 − xiℓ) and m̄ℓ =
1

nḡℓ

n∑
i=1

1{xiℓ < yi < xiℓ+1} (yi − xiℓ)

(19)

for ℓ = 1, . . . ,m − 1. For any ℓ with xiℓ < xiℓ+1 it holds that Fi(yi) ≤ pl if, and
only if, yi < xiℓ+1. To complete the specification, we let ō0 = (1/n)

∑n
i=1 1{yi < xi1}

and ōm = (1/n)
∑n

i=1 1{xim < yi}, and if these quantities are nonzero then we let
ḡ0 = (1/(nō0))

∑n
i=1 1{yi < xi1} (xi1−yi) and ḡm = (1/(nōm))

∑n
i=1 1{xim < yi} (yi−xim).

The miscalibration component thus measures deviations from uniformity for the rank
histogram (Hamill, 2001; Gneiting et al., 2007).

Hersbach (2000) defines the resolution (in our terminology, the discrimination) com-
ponent DSCHBo = MCBHBo+UNC0−CRPS as the remainder, to complete the original
Hersbach (HBo) decomposition

CRPS = MCBHBo −DSCHBo +UNC0. (20)

Towards a generalization, we introduce a slightly modified miscalibration component,

MCBHB =
m−1∑
ℓ=1

ḡℓ
(
pℓ − f̄ℓ

)2
, (21)

and a respectively modified discrimination component, DSCHB = MCBHB + UNC0 −
CRPS, to yield the modified Hersbach, or simply Hersbach (HB) decomposition,

CRPS = MCBHB −DSCHB +UNC0. (22)

The interpretation of the miscalibration component remains unchanged, as MCBHB and
MCBHBo differ only slightly, with f̄ℓ in (21) being the approximate frequency of an
outcome below the right endpoint of bin ℓ. For a more detailed comparison and the
proof of the following result, we refer the reader to Appendix B.
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Table 1: Candille–Talagrand (CT), quantile score based (QS), Brier score based (BS),
and Hersbach (HB) decomposition of the mean score CRPS, as applied to the one-day
ahead raw ensemble (ENS) forecast of precipitation accumulation at Frankfurt Airport
(Section 5.1), and the EasyUQ forecast for the Boston and Wine data, respectively
(Section 5.2).

Forecast CRPS UNC0 MCBCT MCBQS MCBBS MCBHB

ENS 0.75 1.21 0.75 0.18 0.16 0.08

EasyUQ (Boston) 1.75 4.76 1.75 0.72 0.57 0.36

EasyUQ (Wine) 0.35 0.43 0.35 0.04 0.07 0.08

Proposition 2.3. The original and modified Hersbach decompositions at (20) and (22),
respectively, satisfy properties (E1), (E3), and (E5), while properties (E2) and (E4) fail
to hold.

As discussed thus far, the Hersbach decomposition requires that the forecasts as-
sume the form of an ensemble. Further shortcomings have been discussed in the litera-
ture (Siegert, 2017); in particular, it has been noted that the discrimination component
DSCHBo is defined “somewhat artificially” (Hersbach, 2000, p. 565) and that it can be
negative, thus violating (E2). The original Hersbach decomposition has been extended
by Lalaurette so that it applies to forecasts with strictly increasing cdfs (Candille and Ta-
lagrand, 2005, Appendix A). We discuss and generalize Lalaurette’s extension in Section
4.4, and our analysis demonstrates that the extensions can more naturally be interpreted
as extensions of the modified Hersbach decomposition. In Appendix D.1 we describe em-
pirical versions that apply in the general case of forecast distributions with finite support,
and to mixed discrete-continuous distributions for nonnegative quantities, respectively.

2.6 Numerical example and discussion

For illustration, we consider forecasts from the case studies in Section 5. The decompo-
sitions from Sections 2.2 through 2.5 all use the uncertainty component UNC0 at (11),
and they specify the discrimination component as

DSC• = CRPS−MCB• −UNC0,

where • indicates the type of decomposition, namely, the Candille–Talagrand (CT), the
Brier score based (BS), the quantile score based (QS), or the modified Hersbach (HB)
decomposition.

Table 1 displays the mean score CRPS, the uncertainty component UNC0, and the
various MCB• terms for the ENS forecast of precipitation accumulation at Frankfurt
Airport, as studied in our Section 5.1 and Henzi et al. (2021), and the EasyUQ forecasts
for the Boston Housing and Wine data, as considered in our Section 5.2 and Walz
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et al. (2024). The ENS forecast is an ensemble forecast with m = 52 members and
so the Hersbach decomposition at (20) applies; for the EasyUQ forecasts, we apply
formula (45) from Appendix D.1. For the first two examples in the table, it holds
that CRPS = MCBCT > MCBQS > MCBBS > MCBHB, where the initial equality
reflects the degeneracy of the Candille–Talagrand decomposition. In our experience,
the subsequent inequalities hold in many, though not all, empirical examples. However,
as we state in further generality at (25) and in Corollary 4.6, it always holds that
CRPS ≥ MCBCT ≥ max{MCBBS,MCBQS}.

While the Candille–Talagrand decomposition seems attractive and preferable from
theoretical perspectives, the degeneracy prohibits its practical use. The Hersbach decom-
position has been popular in the specific setting of ensemble forecasts, but has serious
shortcomings including but not limited to the possibility of a negative discrimination
component. The Brier score and quantile score based decompositions have desirable
properties, but they define the components of the decomposition in terms of isolated
functionals (probabilities and quantiles, respectively) rather than the entire predictive
distributions, which is “unsatisfactory” (Ferro and Fricker, 2012, p. 1958) and entails
the artifacts described in Remarks A.1 and A.2, respectively. Furthermore, it is not
obvious whether the Brier score based or the quantile score based decomposition ought
to be preferred. In this light, there remains the need for a decomposition that is both
practically feasible and theoretically justifiable and appealing.

3 Empirical isotonicity-based decomposition

We propose a method that builds on the idea of the Candille–Talagrand decomposition,
but replaces auto-calibration with a slightly weaker notion of calibration, namely, isotonic
calibration. The resulting isotonicity-based decomposition, which we develop in this
section, can be interpreted as a nondegenerate approximation to the Candille–Talagrand
decomposition.

3.1 Empirical isotonicity-based decomposition

Recall that we denote by P(R) the class of the probability distributions on R with finite
first moment. For cdfs F,G, F is stochastically smaller than or equal to G, for short
F ≤st G, if F (x) ≥ G(x) for all x ∈ R. The stochastic order defines a partial order on
P(R) and we refer to Shaked and Shanthikumar (2007) for a comprehensive study.

In the spirit of the Candille–Talagrand decomposition, a calibration tool ought to
be applied to the assessed forecasts F1, . . . , Fn from (8), and we propose that this tool
be isotonic distributional regression (IDR; Henzi et al., 2021). IDR is a nonparametric
distributional regression method under the shape constraint of isotonicity between co-
variates and responses: For training data consisting of covariates x1, . . . , xn in a partially
ordered set (X ,⪯) and real-valued responses y1, . . . , yn, Henzi et al. (2021) prove that
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there exists a unique minimizer of the criterion

1

n

n∑
i=1

crps(Pi, yi) (23)

over all vectors of cdfs (P1, . . . , Pn) with Pi ≤st Pj if xi ⪯ xj for i, j = 1, . . . , n, and they
refer to this minimizer as the IDR solution.

The constraint of isotonicity between the assessed and the calibrated forecasts is
natural, and hence, we apply IDR to the data (F1, y1), . . . , (Fn, yn) at (8) with the
stochastic order serving as the partial order on the covariate space P(R). In a number of
practically relevant situations the stochastic order is too strong, since it does not allow
for crossings between cdfs, and we discuss modifications that resolve this problem in the
latter part of this section. For now, we assume that there are sufficiently many pairs of
cdfs across F1, . . . , Fn that can be ranked in stochastic order.

Let F̌1, . . . , F̌n denote the calibrated forecasts that are obtained by using IDR, let

CRPSISO =
1

n

n∑
i=1

crps(F̌i, yi)

denote the mean score of the calibrated forecasts, let the marginal forecast F̂mg and its
mean score CRPSmg be defined as at (10), and let

MCBISO = CRPS− CRPSISO, DSCISO = CRPSmg − CRPSISO.

Then the isotonicity-based (ISO) decomposition

CRPS = MCBISO −DSCISO +UNC0 (24)

differs from the Candille–Talagrand decomposition at (12) by the choice of the calibration
method only, as it draws on the slightly weaker notion of isotonic calibration in lieu
of auto-calibration. The isotonicity-based decomposition has desirable and appealing
properties, as follows.

Proposition 3.1. The isotonicity-based decomposition at (24) satisfies (E1), (E2),
(E3), (E4), and (E5). Furthermore, MCBISO = 0 if, and only if, Fi = F̌i for i =
1, . . . , n, and DSCISO = 0 if, and only if, F̌i = F̂mg for i = 1, . . . , n.

Proof. By definition, the isotonicity-based decomposition satisfies properties (E1) and
(E5). The IDR solution is the unique minimizer of the criterion (23) over all vectors of
distributions (P1, . . . , Pn) that are stochastically ordered with the same order relations
as the covariates. Here, the covariates are F1, . . . , Fn and the partial order on the
covariate space is the stochastic order. Therefore, (F1, . . . , Fn) is an admissible vector of
distributions in the minimization problem, whence MCBISO ≥ 0. A further admissible
vector in the minimization problem is the constant vector with entries F̂mg, whence
DSCISO ≥ 0, so (E2) is satisfied. The examples in the case study in Section 5 imply that
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the isotonicity-based decomposition satisfies (E3). Assume now that F1 = · · · = Fn.
Then we obtain F̂mg as the IDR solution, whence DSCISO = 0, so (E4) is satisfied.
Finally, if MCBISO = 0 then Fi = F̌i, since IDR is the unique minimizer of the criterion
at (23), and analogously, if DSCISO = 0 then F̌i = F̂mg for i = 1, . . . , n.

Generally, the determination of the pairwise stochastic order relations between the
distributions F1, . . . , Fn requires O(n2) operations. As IDR can be implemented in at
most O(n2) operations (Henzi et al., 2021, 2022), the computation of the isotonicity-
based decomposition is of complexity O(n2). In contrast, the Brier score based and
quantile score based decompositions require O(n) or more distinct determinations of
pairwise stochastic order relations (cf. Appendices A.1 and A.2) and, hence, the im-
plementation is of complexity at least O(n2 log n). The computation of the Hersbach
decomposition for an ensemble forecast of size m requires O(mn) operations.

In its present form, the isotonicity-based decomposition is fully automated in the
sense that it does not involve any tuning parameter. For the examples in Table 1,
MCBISO equals 0.34, 0.80, and 0.072, respectively, and so MCBISO is larger than MCBBS

(which equals 0.068 in the third example) and MCBQS and smaller than the essentially
useless MCBCT = CRPS term. As we demonstrate in Section 4.5, it is always true that

CRPS ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (25)

In view of these theoretical guarantees in concert with its non-degeneracy and generality,
we contend that the isotonicity-based method is more compelling than the Brier score
or quantile score based decompositions.

3.2 Computational implementation

When the predictive distributions are empirical distributions, stochastic order relations
can be found by comparing the cdfs at a finite number of real numbers, namely, the
respective jump points. If the predictive distributions are parametric, analytical results
in terms of the parameters may be available; see, e.g., Shaked and Shanthikumar (2007)
and the proof of Proposition 1 in Gneiting and Vogel (2022).

In relevant applications, the stochastic order may be to strong, since it allows for
no crossings of the forecasts. For example, for Gaussian forecasts F = N (µ, σ2) and
G = N (ν, τ2), F and G only order with respect to the stochastic order in case of σ = τ ,
a condition which is rarely satisfied if parameters are estimated from data. Generally, if
F and G are members of a location-scale family, they are stochastically ordered if, and
only if, they have equal scale parameter, subject to minimal conditions. If only very few
forecasts in the dataset are comparable with respect to the stochastic order, applying
IDR results in calibrated forecast that are close to Dirac measures of the corresponding
observations. Hence, in principle, the isotonicity-based decomposition faces the same
problem as the Candille–Talagrand decomposition in this setting. However, we argue
that there is a convincing remedy to the issue.
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Consider settings where only few of the predictive distributions Fi in the collection
at (8) are comparable with respect to the stochastic order. Frequently, predictive distri-
butions fail to order due to crossings of the cdfs in a far tail. Recent work by Brehmer
and Strokorb (2019) and Taillardat et al. (2023) casts doubt on the ability of the average
crps to distinguish tail behaviour of the forecast distribution, which provides support for
the evaluation of the forecasts on a bounded interval only. Motivated by these findings,
instead of decomposing the original mean score CRPS as given in (9), we decompose

CRPS
(a,b)

=
1

n

n∑
i=1

crps(F̃
(a,b)
i , yi), (26)

where for lower and upper threshold values a ≤ min{y1, . . . , yn} and b ≥ max{y1, . . . , yn},
respectively,

F
(a,b)
i (x) =


0, x < a,

Fi(x), x ∈ [a, b),

1, x ≥ b,

(27)

for i = 1, . . . , n. Given an error tolerance ϵ > 0, we determine the thresholds a and b
such that the condition∣∣∣CRPS− CRPS

(a,b)
∣∣∣ = CRPS− CRPS

(a,b)
< ϵ (28)

is satisfied, where the equality holds since CRPS ≥ CRPS
(a,b)

. Condition (28) is equiv-
alent to

I(a, b) =
1

n

n∑
i=1

(∫ a

−∞
Fi(x)

2 dx+

∫ ∞

b
(1− Fi(x))

2 dx

)
< ϵ.

A simple method for determining the thresholds a and b to be used in (27) is described
in Algorithm 1. If the support of the predictive distributions is bounded from above or
below (e.g., in the case of precipitation accumulations, which are necessarily nonnega-
tive), it is natural to set a or b equal to the respective bound (e.g., a = 0 for precipitation
accumulations).

The computation of this modified isotonicity-based decomposition remains of com-
plexity O(n2). Furthermore, the following result shows that, even with the approxima-
tion, theoretical guarantees from (25) continue to hold.

Proposition 3.2. Let CRPS = MCBISO−DSCISO+UNC0 = MCBBS−DSCBS+UNC0

denote decompositions for data (F1, y1), . . . , (Fn, yn), and let

CRPS
(a,b)

= MCB
(a,b)
ISO −DSC

(a,b)
ISO +UNC0 = MCB

(a,b)
BS −DSC

(a,b)
BS +UNC0

denote the respective decompositions for modified data (F
(a,b)
1 , y1), . . . , (F

(a,b)
n , yn), where

F
(a,b)
1 , . . . , F

(a,b)
n derive from F1, . . . , Fn as in (27). Then I(a, b) = CRPS−CRPS

(a,b)
<

ϵ implies that

MCBISO ≥ MCB
(a,b)
ISO ≥ MCB

(a,b)
BS > MCBBS − ϵ. (29)
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Algorithm 1 Thresholds a, b

1: ϵ = CRPS/1000
2: a = min{y1, . . . , yn} and b = max{y1, . . . , yn}
3: if I(a, b) ≥ ϵ then
4: δ = (b− a)/100
5: while I(a, b) ≥ ϵ do
6: a = a− δ and b = b+ δ
7: end while
8: end if
9: return a, b

Proof. The properties of the IDR solution imply CRPSISO ≤ CRPS
(a,b)
ISO ≤ CRPS

(a,b) ≤
CRPS, and we conclude that

MCBISO = CRPS− CRPSISO ≥ CRPS
(a,b) − CRPS

(a,b)
ISO = MCB

(a,b)
ISO .

To complete the proof, we apply the inequality (25) to the modified data to yield

MCB
(a,b)
ISO ≥ MCB

(a,b)
BS , and we note that a ≤ min{y1, . . . , yn} and b ≥ max{y1, . . . , yn},

whence MCBBS −MCB
(a,b)
BS = I(a, b) < ϵ.

Assume that the predictive cdfs belong to a location-scale family with full support,
i.e., there exists a distribution F0 ∈ P(R) with full support on R such that for i = 1, . . . , n
and x ∈ R, Fi(x) = F0((x− µi)/σi) for some location µi ∈ R and scale σi > 0. Then for
any i, j = 1, . . . , n, the stochastic order relations between the modified distributions can
be obtained based on the parameters (Gneiting and Vogel, 2022, proof of Proposition
1), in that

F
(a,b)
i ≤st F

(a,b)
j

if, and only if, µi ≤ µj and either σi = σj or (µiσj − µjσi)/(σj − σi) /∈ [a, b]. In
more complex but not uncommon situations, e.g., when the predictive distributions are
mixtures of Gaussians, it may be hard to decide analytically whether or not there is a
stochastic dominance relation between any two such distributions. A remedy is then to
numerically evaluate and compare the cdfs on a suitably chosen grid of threshold values.
As a default we suggest and use an equidistant grid from a to b of size 5000. As long
as the grid is sufficiently dense, order relations hardly ever change with the size of the
grid, as experimental experience demonstrates.

In order to increase the number of comparable pairs amongst F1, . . . , Fn, it may
appear natural to exchange the stochastic order with a weaker partial order on P(R),
rather than restricting the support of the predictive distributions to a bounded interval
[a, b] ⊆ R. However, we show in Appendix C that isotonic calibration is generally
only compatible with the stochastic order. Therefore, the stochastic order is the only
valid choice of a partial order if IDR is applied to generate a calibrated forecast for an
isotonicity-based approach in the spirit of the Candille–Talagrand decomposition.
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4 Population level analysis

In this section, we present population level versions of all decompositions which we have
discussed so far, and we analyse their relations to notions of calibration. The population
quantity to be decomposed is the expected score

E crps(F, Y ), (30)

where the expectation is with respect to the joint law P of the random tuple (F, Y ) on a
probability space (Ω,F ,P), where F is a cdf-valued random quantity, which we interpret
as the forecast, and the random variable Y is the real-valued outcome. For subsequent
use, we assume the existence of a standard uniform variable U on (Ω,F ,P), which is
independent of (F, Y ). Evidently, if P is the empirical distribution for the data at (8)
the expectation at (30) reduces to the mean score CRPS from (9).

In all types of decompositions the population version of the uncertainty component
is the expected score

UNC0 = E crps(Fmg, Y ) (31)

of the marginal law Fmg of Y . Again, the expectation is with respect to P, and if P is
the empirical distribution of the data at (8) then (31) reduces to (11). In this light, the
decompositions at the population level read

E crps(F, Y ) = MCB• −DSC• +UNC0,

where • indicates the type, namely, CT, BS, QS, HB, or our new ISO. Therefore, it
suffices to specify the miscalibration component MCB•; the discrimination component
is deduced as DSC• = MCB• +UNC0 − E crps(F, Y ).

4.1 Desiderata for decompositions at the population level

We adapt the desirable properties (E1) through (E5) for decompositions of a mean score
from Section 2 to the population setting, as follows.

(P1) The decomposition is exact.

(P2) The components MCB, DSC, and UNC are nonnegative.

(P3) The MCB component vanishes if, and only if, the forecast is calibrated in a well
defined sense.

(P4) The DSC component vanishes if the forecast is static, i.e., there is an F0 ∈ P(R)
such that F = F0 almost surely.

(P5) The UNC component only depends on the unconditional distribution Fmg of the
outcome.
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Concerning (P3), a notion of forecast calibration has to be specified. In the special
case of a binary outcome, there is a unique, clear-cut notion of calibration (Gneiting and
Ranjan, 2013, Theorem 2.11). Here, we consider the case of a real-valued outcome, for
which numerous notions of calibration exist (Gneiting and Resin, 2023). Auto-calibration
is the strongest such notion, but typically cannot be used in practice. Indeed, it turns
out that (E3) and (P3) are competing requirements in the sense that if a decomposition
satisfies (P3) with respect to auto-calibration, then (E3) is violated and the decompo-
sition becomes degenerate. If a weaker notion of calibration is requested for (P3), then
(E3) can be satisfied for the empirical counterpart of the decomposition. Requirement
(P4) is natural, since a static forecast has no discrimination ability at all. Finally, prop-
erty (P5) is motivated by the observation that intrinsic uncertainty does not depend on
the forecast; evidently, the criterion is satisfied by UNC0 at (31).

4.2 Isotonic conditional expectations and laws

The population versions of the isotonicity-based, Brier score based, and quantile score
based decompositions rely on conditional expectations given σ-lattices and isotonic con-
ditional laws. We give a short overview of the necessary concepts and refer to Arnold and
Ziegel (2023) for further details. Readers not familiar with measure theory might skip
the current subsection and intuitively think of the conditional expectation and the con-
ditional law of a random variable Y given a σ-lattice A, which we denote E(Y | A) and
PY |A, respectively, as classical conditional expectations and laws under the constraint of
isotonicity.

Consider the probability space (Ω,F ,P). A subset A ⊆ F is a σ-lattice if it is closed
under countable unions and intersections and Ω, ∅ ∈ A. Let A ⊆ F be a σ-lattice and let
X and Z be integrable random variables defined on (Ω,F ,P). We call X A-measurable
if {X > x} ∈ A for all x ∈ R and define the σ-lattice generated by X, denoted by
L (X), as the smallest σ-lattice which contains {X > x} for all x ∈ R. We call an
A-measurable random variable X̃ a conditional expectation of X given A, for short
E(X | A), if E(X1A) ≤ E(X̃1A) for all A ∈ A and E(X1B) = E(X̃1B) for all B ∈ σ(X̃),
where σ(X̃) denotes the σ-algebra generated by X̃. Brunk (1965) showed that E(X | A)
is almost surely unique and coincides with the classical conditional expectations if A is a
σ-algebra. Conditional expectations given σ-lattices are closely connected to isotonicity
as illustrated in Arnold and Ziegel (2023). In particular, for any integrable random
variable X and random variable Z, there exists an increasing Borel measurable function
f : R → R such that E(X | L (Z)) = f(Z). This result is analogous to the well-
known factorization result for classical conditional expectations given σ-algebras, with
the difference that, additionally, f has to be increasing.

Isotonic conditional laws can be defined in analogy to classical conditional laws.
Specifically, the isotonic conditional law (ICL) of the random variable Y givenA, denoted
PY |A, is a Markov kernel from (Ω,F) to (R,B(R)) such that ω 7→ PY |A(ω, (y,∞)) is a
version of P(Y > y | A) = E(1{Y > y} | A) for any y ∈ R. Arnold and Ziegel (2023)
show the existence and uniqueness of ICL. Equivalently, ICL emerges as the minimizer
of an expected score, where the scoring rule may be taken from a large class of proper
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scoring rules that includes the crps.
We are particularly interested in ICL with respect to the σ-lattice generated by the

forecast F . We call B ⊆ P(R) an upper set if P ∈ B and P ≤st Q implies Q ∈ B for
Q ∈ P(R), and we denote by U the family of all upper sets in P(R). For the forecast
F , we define the σ-lattice generated by F as the family of all preimages of measurable
upper sets under F , i.e., L (F ) =

{
F−1(B) | B ∈ B(P(R)) ∩ U} ⊆ F , where B(P(R))

denotes the σ-algebra on P(R) with respect to the weak topology. For details, we refer
the reader to Definition 3.1 of Arnold and Ziegel (2023).

In a nutshell, PY |L (F ) arises as the best available prediction for the distribution of
Y , given all information in the forecast F , under the assumption that smaller (greater)
values of F correspond to smaller (greater) values of the conditional law with respect to
the stochastic order.

4.3 Calibration

A strong notion of calibration is auto-calibration, which formalizes the idea that the
outcome is indistinguishable from a random draw from the posited distribution F .
Specifically, the random forecast F is auto-calibrated (Tsyplakov, 2013) if PY |F = F ,
or equivalently

F (x) = P(Y ≤ x | F ) almost surely for all x ∈ R. (32)

For any threshold value x ∈ R, we may condition on the random variable F (x) instead of
the random distribution F in (32), to obtain the weaker notion of threshold calibration.
Specifically, the forecast F is called threshold calibrated (Henzi et al., 2021) if

F (x) = P(Y ≤ x | F (x)) almost surely for all x ∈ R.

Essentially, for a threshold calibrated forecast F , we can take F (x) at face value for any
x ∈ R. In a slight adaptation of the definition in Gneiting and Resin (2023), we call the
forecast F quantile calibrated if

F−1(α) = qα(Y | F−1(α)) almost surely for all α ∈ (0, 1),

where for any α ∈ (0, 1), qα(Y | F−1(α)) denotes the lower-α-quantile of the conditional
law of Y given F−1(α). Equivalently, one can think of qα(Y | F−1(α)) as a σ(F−1(α))-
measurable random variable which minimizes E qsα(G, Y ) over all σ(F−1(α))-measurable
random variables G; see Armerin (2014).

The forecast F is called isotonically calibrated if F is almost surely equal to the
isotonic conditional law of Y given L (F ), i.e., F = PY |L (F ) almost surely. By Propo-
sition 5.3 of Arnold and Ziegel (2023), auto-calibration implies isotonic calibration, and
isotonic calibration implies threshold calibration and quantile calibration.

The probability integral transform (PIT) of the cdf-valued random quantity F is the
random variable ZF = F (Y−)+U(F (Y )−F (Y−)), where F (y−) = limx↑y F (x) denotes
the left-hand limit of F at y ∈ R, with a random variable U that is standard uniform and
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Figure 1: Implications between auto-calibration (AC), isotonic calibration (IC), thresh-
old calibration (TC), and quantile calibration (QC). Implications with respect to prob-
abilistic calibration (PC) are indicated by hooked arrows and hold under Assumption
2.15 of Gneiting and Resin (2023).

independent of F and Y . The PIT of a continuous cdf F simplifies to ZF = F (Y ). The
forecast F is probabilistically calibrated if ZF is uniformly distributed on the unit interval
(Gneiting and Ranjan, 2013). Originally suggested by Dawid (1984), checks for proba-
bilistic calibration, and for the uniformity of the closely related rank histogram, consti-
tute a cornerstone of forecast evaluation (Diebold et al., 1998; Hamill, 2001; Gneiting
et al., 2007). Under regularity conditions, a threshold calibrated or quantile calibrated
forecast is probabilistically calibrated; details and a direct implication from isotonic cal-
ibration to a weak form of probabilistic calibration are available in Gneiting and Resin
(2023, Section 3.3) and Arnold and Ziegel (2023, Appendix D), respectively. Figure 1
summarizes relationships between the notions of calibration discussed in this section.

4.4 Population level decompositions

We now give generalizations of the empirical decompositions discussed in Sections 2 and
3 that apply at the population level. Recall that we consider the joint law P of the
random tuple (F, Y ). As before, we let P(R) denote the class of the Borel probability
measures on R that have a finite first moment. In the current and the subsequent
subsection, we generally operate under the following regularity conditions. For proofs,
we refer the reader to Appendix D.1.

Assumption 4.1. Let the marginal law Fmg of Y be such that Fmg ∈ P(R), and suppose
that

E
∫
|x| dF (x) <∞. (33)

In view of the kernel score representation of the crps (Gneiting and Raftery, 2007,
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eq. (21)), Assumption 4.1 implies that

E crps(F, Y ) = EE(crps(F, Y ) | F )

= E
(
EF (|X − Y | | F )− 1

2
EF (|X −X ′| | F )

)
≤ EEF |X|+ E |Y | <∞,

where X and X ′ are independent random variables with law F . Similarly, it follows that
E crps(Fmg, Y ) < ∞. Furthermore, the properties of isotonic and standard conditional
laws imply that E crps(PY |L (F ), Y ) ≤ E crps(F, Y ) and E crps(PY |F , Y ) ≤ E crps(F, Y ),
respectively. In this light, Assumption 4.1 ensures that E crps(F, Y ), E crps(Fmg, Y ),
E crps(PY |L (F ), Y ), and E crps(PY |F , Y ) are finite.

The population version of the Candille–Talagrand decomposition at (13) is

E crps(F, Y ) = MCBCT −DSCCT +UNC0, (34)

where UNC0 is defined at (31), and

MCBCT = E crps(F, Y )− E crps(PY |F , Y ).

Similarly, the population version of the isotonicity-based decomposition at (24) is

E crps(F, Y ) = MCBISO −DSCISO +UNC0, (35)

where
MCBISO = E crps(F, Y )− E crps(PY |L (F ), Y ).

The decomposition at (35) is analogous to the theoretically preferred Candille–Talagrand
decomposition at (34), except that the performance of the forecast F is compared with
the isotonic conditional law PY |L (F ) rather than the conditional law PY |F . The general
decompositions at (34) and (35) reduce to (13) and (24), respectively, when P is the
empirical distribution of the data in (8).

The population version of the Brier score based decomposition at (16) is

E crps(F, Y ) = MCBBS −DSCBS +UNC0, (36)

where

MCBBS = E crps(F, Y )− E
∫ (

P(Y ≤ z | L (F (z)))− 1{Y ≤ z}
)2

dz.

Similarly, the population version of the quantile based based decomposition at (17) is

E crps(F, Y ) = MCBQS −DSCQS +UNC0, (37)

where

MCBQS = E crps(F, Y )− E
∫ 1

0
qsα

(
qα(Y | L (F−1(α))), Y

)
dα.
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The properties of isotonic conditional expectations and isotonic conditional quantiles
imply that E

∫
(P(Y ≤ z | L (F (z))) − 1{Y ≤ z})2 dz ≤ E crps(F, Y ) < ∞ and

E
∫ 1
0 qsα(qα(Y | L (F−1(α))), Y ) dα ≤ E crps(F, Y ) < ∞. The decompositions at (36)

and (37) reduce to (16) and (17), respectively, when P is the empirical distribution of
the data in (8).

Finally, we consider the Hersbach decomposition. To this end, let νF be the image
of the Lebesgue measure λ under F , i.e., νF (A) = λ(F−1(A)), and define the measures
given by

µ(A) = E (νF (A)) (38)

and

τ(A) = E
(∫

A
1{F (Y ) ≤ p}dνF (p)

)
, (39)

respectively, where A ∈ B(0, 1) is any Borel set. We are now ready to state a population
version of the Hersbach decomposition from Section 2.5.

Proposition 4.1. Let Assumption 4.1 hold, and let µ and τ be the measures defined
at (38) and (39), respectively. Then τ is absolutely continuous with respect to µ; let f
denote the respective Radon–Nikodym derivative. It holds that

E crps(F, Y ) = MCBHB −DSCHB +UNC0, (40)

where UNC0 is given at (31),

MCBHB =

∫ 1

0
(p− f(p))2 dµ(p), DSCHB = UNC0 −

∫ 1

0
f(p)(1− f(p)) dµ(u)−MS,

and

MS = E
[
1{F (Y ) = 0} (F−1(0+)− Y ) + 1{F (Y ) > 0} (2F (Y )− 1)(Y − F−1(F (Y )))

]
.

(41)

The MS component can only be nonzero when Y lies outside the support of F with
positive probability; hence, we write MS for misspecified support. Note that MS can be
negative, e.g., if F = (δ0 + 3 δ2)/4 and Y = 1 almost surely then MS = −1/2.

The following result is a special case of the more general statement in Corollary
D.1 in Appendix D.1. It shows that the population decomposition nests the modified
empirical Hersbach decomposition.

Corollary 4.2. If P is the empirical measure of a collection of forecast–observation
pairs (F1, y1), . . . , (Fn, yn), where each Fi is the empirical cdf of a sample of size m,
then the population decomposition at (40) reduces to the modified empirical Hersbach
decomposition at (22).

The next result demonstrates that Proposition 4.1 subsumes the Hersbach–Lalaurette
decomposition for strictly increasing forecast cdfs as given in Appendix A of Candille
and Talagrand (2005).

21



Corollary 4.3. Let Assumption 4.1 hold, and suppose that F−1 is almost surely abso-
lutely continuous. Then MS = 0 and the measure µ at (38) has density

γ(p) = E
(

d

dp
F−1(p)

)
(42)

with respect to the Lebesgue measure on the unit interval. Furthermore, the measure τ
at (39) has Radon–Nikodym derivative defined by

f(p) =
1

γ(p)
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
(43)

if γ(p) > 0, and f(p) = 0 otherwise, with respect to µ.

Considering a practically relevant case, we derive in Example D.1 in Appendix D.1 the
empirical Hersbach decomposition for probabilistic forecasts of a nonnegative quantity,
assuming that the forecast distributions are mixtures of a point mass at zero and a
strictly positive density on the positive halfline.

4.5 Properties of the decompositions

The population versions of the Candille–Talagrand, isotonicity-based, Brier score based,
and quantile score based decompositions satisfy properties (P1), (P2), (P4), and (P5),
and property (P3) with auto-calibration, isotonic calibration, threshold calibration, and
quantile calibration, respectively. The following theorem and its proof summarize and
elaborate on property (P3) and lend theoretical support to the use of the isotonicity-
based decomposition. While in principle one would like to quantify miscalibration in
terms of deviations from auto-calibration, as done by the Candille–Talagrand decom-
position, the empirical version thereof is degenerate. By imposing the natural shape
constraint of isotonicity between the assessed and the calibrated forecasts, a practically
useful decomposition is obtained that does not rely on implementation choices, save for
a possible choice of threshold values a and b in the modified cdfs F (a,b) at (27). The
isotonicity-based decomposition quantifies miscalibration as deviation from isotonic cal-
ibration, which is closer to auto-calibration than threshold or quantile calibration as
illustrated in Figure 1.

All proofs for this section are deferred to Appendix D.2.

Theorem 4.4. Under Assumption 4.1 the following statements hold.

(a) The Candille–Talagrand decomposition at (34) is exact and satisfies

– MCBCT ≥ 0 with equality if, and only if, F is auto-calibrated;

– DSCCT ≥ 0 with equality if, and only if, PY |F = Fmg almost surely.

(b) The isotonicity-based decomposition at (35) is exact and satisfies

– MCBISO ≥ 0 with equality if, and only if, F is isotonically calibrated;
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– DSCISO ≥ 0 with equality if, and only if, PY |L (F ) = Fmg almost surely.

(c) The Brier score based decomposition at (36) is exact and satisfies

– MCBBS ≥ 0 with equality if, and only if, F is threshold calibrated;

– DSCBS ≥ 0 with equality if, and only if, for all z ∈ R, P(Y ≤ z | L (F (z)))
= P(Y ≤ z) almost surely.

(d) The quantile score based decomposition at (37) is exact and satisfies

– MCBQS ≥ 0 with equality if F is quantile calibrated; conversely, if the random
element (Y, F−1(α)) satisfies Assumption 6.1 in Arnold and Ziegel (2023) for
all α ∈ (0, 1) then MCBQS = 0 implies quantile calibration of F ;

– DSCQS ≥ 0 with equality if, and only if, for all α ∈ (0, 1), qα(Y | L (F−1(α)))
= qα(Y ) almost surely.

In view of known relationships between notions of calibration (Gneiting and Resin,
2023, Sections 2.2 and 2.3) the following implications hold.

Corollary 4.5. Under Assumption 4.1, an auto-calibrated forecast yields MCBCT =
MCBISO = MCBBS = MCBQS = 0.

Corollary 4.6. Under Assumption 4.1, it holds that

E crps(F, Y ) ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (44)

Importantly, while formulated at the population level, the above results apply to
the empirical versions of the decompositions, by identifying the joint distribution P of
the tuple (F, Y ) with the empirical law of the data at (8). In particular, the relations
in (44) nest the respective inequalities (25) for the empirical decompositions. For the
isotonicity-based decomposition, if modified cdfs F (a,b) are used the results apply to the
latter, and we refer to (29) for relationships to the respective components computed on
the original cdfs.

Finally, we consider the Hersbach decomposition from Proposition 4.1, which strug-
gles to satisfy the desirable properties from Section 4.1. By definition, properties (P1)
and (P5) hold. The miscalibration component is clearly nonnegative. However, DSCHB

may be negative as in Example E.3, i.e., property (P2) is violated. Moreover, the exam-
ple in the proof of Proposition 2.3 shows that the Hersbach decomposition fails to satisfy
(P4). Concerning (P3), Hersbach (2000) and Candille and Talagrand (2005) argue that
the Hersbach reliability component is closely related to the rank histogram and hence
one might expect that MCBHB = 0 if, and only if, F is probabilistically calibrated.
However, the examples in Appendices E.4 and E.5 show that probabilistic calibration
is neither sufficient nor necessary for MCBHB = 0. The following proposition collects
calibration properties in relation to the Hersbach decomposition.

Proposition 4.7. Let Assumption 4.1 hold and consider the population version of the
Hersbach decomposition at (40).
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MCB = MCBCT 0 < MCB < MCBCT MCB = 0

CT ISO BS QS HB

E5

E4

E3

E2

E1

Figure 2: The graphic indicates for the population level examples E1, . . . , E5 in Ap-
pendix E whether the MCB• term, where • stands for CT, ISO, BS, QS, or HB, re-
spectively, agrees with the theoretically preferred quantity MCBCT (green), is smaller
than MCBCT but remains positive (orange), or deceptively equals zero (red). Connected
segments indicate equality of corresponding terms. For analytic results, see Table 2.

(a) If Y ∈ supp(F ) almost surely, then MS = 0, where MS is defined at (41).

(b) For an auto-calibrated forecast, it holds that MS = MCBHB = 0.

(c) Suppose that F belongs to a location family, i.e., for all x ∈ R, F (x) = F0(x− µ)
for some F0 ∈ P(R) and random location µ. Suppose furthermore that F0 has no
jumps and F−1

0 is absolutely continuous. Then MCBHB = 0 if F is probabilistically
calibrated.

In Appendix E we compare the different types of decompositions in a number of
analytic examples at the population level. Figure 2 summarizes how the respective
miscalibration terms relate to the theoretically preferred MCBCT component.

5 Case studies

We now illustrate the use of the isotonicity-based decomposition from Section 3 in case
studies on weather forecasts and benchmark regression tasks from machine learning,
respectively. For simplicity, we use an abbreviated notation for the components of the
mean score CRPS throughout this section, namely, MCB = MCBISO, DSC = DSCISO,
and UNC = UNC0, respectively. Note the opposite orientation of MCB and DSC, in that
higher DSC corresponds to better discrimination ability, whereas lower MCB indicates
better calibration.

When one seeks to simultaneously compare CRPS, MCB, and DSC between larger
numbers of forecast methods, tables get cumbersome. Therefore, we suggest a graphical
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display, namely, the MCB–DSC plot, which is motivated by similar displays in Dimitri-
adis et al. (2023) and Gneiting et al. (2023b). In this type of graphic, MCB is plotted
against DSC, and isolines correspond to specific values of the mean score CRPS, which
is constant along parallel lines. The uncertainty component UNC is independent of the
forecast method, and we display it in the upper left or upper right corner of the plot.

5.1 Probabilistic quantitative precipitation forecasts

Ensemble prediction systems have tremendously improved weather forecasts over the
past decades (Bauer et al., 2015). However, ensemble forecasts remain subject to biases
and dispersion errors, and hence require some form of statistical postprocessing (Gneiting
and Raftery, 2005; Vannitsem et al., 2018). Here we consider the case study in Henzi et al.
(2021), which compares the performance of raw and postprocessed ensemble forecasts
for 24-hour accumulated precipitation in terms of the mean score CRPS, which we
decompose into MCB, DSC, and UNC, respectively.

Following Henzi et al. (2021), we consider forecasts and observations for 24-hour ac-
cumulated precipitation from 6 January 2007 to 1 January 2017 at Brussels, Frankfurt,
London, and Zurich in millimeters. The 52 member raw ensemble (ENS) forecast op-
erated by the European Centre for Medium-Range Weather Forecasts comprises a high
resolution member, a control member at lower resolution, and 50 perturbed members at
the same lower resolution but with perturbed initial conditions (Molteni et al., 1996). We
use data from 2007 to 2014 to train the postprocessing techniques Bayesian model averag-
ing (BMA; Sloughter et al., 2007), ensemble model output statistics (EMOS; Scheuerer,
2014), heteroscedastic censored logistic regression (HCLR; Messner et al., 2014) and two
versions, IDRcw and IDRst, of isotonic distributional regression (IDR; Henzi et al., 2021),
where IDRcw is documented in Henzi et al. (2021) and IDRst uses the stochastic order
on the ensemble cdfs. For further implementation details we refer the reader to Henzi
et al. (2021). The years 2015 and 2016 form the evaluation period.

The ENS and IDR forecast distributions have finite support and we apply the
isotonicity-based decomposition of CRPS in its pure form from Section 3.1. For the
other forecasts, which employ mixtures of a point mass at zero (for no precipitation)
and a density at positive accumulations as predictive distributions, we fix a = 0 and use
Algorithm 1 to determine the upper bound b, which generally is identical to, or very
slightly higher than, the highest accumulation observed in the test data; then we com-
pute stochastic order relations on an equidistant grid of size 5000 over [a, b] and apply
the isotonicity-based decomposition in its approximate form from Section 3.2.

The respective MCB–DSC plots for Brussels, Frankfurt, London, and Zurich are
shown in Figure 3. We note an increase of the mean score CRPS values with the pre-
diction horizon, which is due to a decrease in discrimination ability. The raw ensemble
(ENS) forecasts discriminate very well, but are poorly calibrated. The postprocess-
ing methods yield considerable improvement in CRPS, subject to a trade-off between
MCB and DSC. The EMOS and HCLR techniques, which employ inflexible paramet-
ric densities with fixed shape, excel in terms of discrimination, but lack in calibration.
In contrast, the BMA and IDR techniques, which are much more flexible, are better
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Figure 3: MCB–DSC plots for forecasts of 24-hour accumulated precipitation at Brussels,
Frankfurt, London, and Zurich, at prediction horizons of one to five days ahead. The
mean score CRPS is constant along the parallel lines and shown in the unit of millimeters.
Acronyms are defined in the text, and details of the forecast methods are documented
in Henzi et al. (2021, Section 5).
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calibrated, but inferior in terms of discrimination ability.

5.2 Benchmark regression problems from machine learning

A sizable strand of recent literature in machine learning is concerned with methods for
uncertainty quantification for neural networks, where the task is the transformation of
single-valued neural network output into predictive distributions (Gawlikowski et al.,
2023). In this literature, performance is typically evaluated in terms of the mean log-
arithmic score (Gneiting and Raftery, 2007, Section 4.1) which, in sharp contrast to
the crps, can only be applied to methods that generate predictive densities. Further-
more, extant measures for the assessment of calibration and discrimination ability tend
to be ad hoc. In this section, we demonstrate the use of the mean score CRPS and its
isotonicity-based decomposition into MCB, DSC, and UNC in this context.

We adopt the benchmark regression tasks setting originally proposed by Hernandéz-
Lobato and Adams (2015) and consider the datasets and methods from the middle
block of Table 6 in Walz et al. (2024), except that we skip results for the Naval and
Year datasets, for which there are missing entries. The experimental setting is based on
single-valued output from a neural network, which learns a regression function based on
a collection of covariates or features. In this setting, Walz (2022) compare competing
methods for uncertainty quantification, including the popular Monte Carlo Dropout ap-
proach (MC Dropout; Gal and Ghahramani, 2016) and a scalable Laplace approximation
based technique (Laplace; Immer et al., 2021; Ritter et al., 2018) that operate within
the neural network learning pipeline. Their competitors include output-based methods
that learn on training data of previous single-valued model output and outcomes only,
without accessing feature values, namely, the Single Gaussian technique, conformal pre-
diction (CP; Vovk et al., 2020), and the EasyUQ technique (Walz, 2022), which is based
on IDR (Henzi et al., 2021). Furthermore, we consider smoothed versions of the discrete
CP and EasyUQ distributions, termed Smooth CP and Smooth EasyUQ, respectively.
For implementation details, we refer the reader to Walz (2022).

The CP and EasyUQ distributions have finite support, and the Single Gaussian incurs
normal distribution with a fixed variance, but varying mean. For these three methods,
we use the isotonicity-based decomposition of CRPS in the standard form from Section
3.1. The Laplace method also employs normal distributions, but with varying mean and
variances. The MC Dropout technique yields mixtures of normal distributions, and the
Smooth CP and Smooth EasyUQ distributions are mixtures of Student-t distributions
(or normal distributions as a limit case). For these methods, we use the approximations
described in Section 3.2.

The MCB–DSC plots in Figure 4 illustrate the mean score CRPS and the MCB,
DSC, and UNC components for the eight datasets and seven methods, respectively.
The MC Dropout technique yields predictive distributions that are poorly calibrated, a
finding that is well documented in the machine learning literature (Gawlikowski et al.,
2023), though with high discrimination ability. The predictive distributions generated by
the Laplace method trade better calibration for diminished discrimination ability. The
simplistic Single Gaussian technique performs surprisingly well, typically with both the
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MCB and the DSC component being small relative to the competitors. The EasyUQ and
CP distributions generally are well calibrated, with low MCB components throughout,
and often superior overall performance. Smoothing of the discrete EasyUQ and CP
distributions has only small effects. The only exception is for the EasyUQ forecast for
the Wine dataset, which has only ten unique outcomes that correspond to quality levels,
thus favoring the discrete basic EasyUQ distributions, which place all probability mass
on this small set of outcomes.

6 Discussion

In line with the general idea of the CORP approach of Dimitriadis et al. (2023) and Gneit-
ing and Resin (2023), we have developed an isotonicity-based decomposition of the mean
score CRPS. Both theoretically and computationally, the isotonicity-based decomposi-
tion serves as an attractive alternative to the Candille–Talagrand decomposition, which
is of theoretical appeal, but yields degenerate decompositions in practice. Remarkably,
Proposition 3.2 ensures that theoretical guarantees for the standard implementation
from Section 3.1 very nearly carry over to the approximate implementation described in
Section 3.2. Code in R (R Core Team, 2023) for the computation of the isotonicity-based
decomposition and replication materials are available at https://github.com/evwalz/
isodisregSD and https://github.com/evwalz/paper_isocrpsdeco, respectively.

Due to its linear computational complexity, the Hersbach decomposition is a vi-
able option for decomposing CRPS for ensemble forecasts with a moderate number m
of members, even when the size n of the evaluation set at (8) is very large and the
isotonicity-based approach with its quadratic complexity is not feasible. We recom-
mend that it be used in the modified form described in Section 2.5, which allows for
extensions beyond the case of ensemble forecasts, as described in Appendix D.1. A
useful facet of the Hersbach decomposition is that it applies to general (nonnegatively)
weighted sums (rather than simple averages only) of crps scores (Hersbach, 2000). The
isotonicity-based decomposition generalizes to weighted sums as well, as the theoretical
guarantees for IDR (Henzi et al., 2021) continue to apply in weighted case, and software
developed by Alexander Henzi (https://github.com/AlexanderHenzi/isodistrreg)
handles the extension. We leave details to future work.

As noted, the desirable properties (E1), . . . , (E5) in the empirical case and (P1),
. . . , (P5) in the population case remain valid for decomposition of the mean score under
proper scoring rules other than the crps. For instance, in various applications a certain
region of the potential range of the outcome is of particular interest, and predictive
performance might then be assessed with emphasis on these regions. In such settings,
one may use versions of the crps as proposed by Gneiting and Ranjan (2013), namely,

crpsw(F, y) =

∫ ∞

−∞
w(x) sB(F (x),1{y ≤ x}) dx
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and

crpsv(F, y) =

∫ 1

0
v(α) qsα(F

−1(α), y) dα,

where w and v, respectively, are nonnegative weight functions. In view of the universal-
ity property of IDR (Henzi et al., 2021, Theorem 2), the isotonicity-based decomposition
extends naturally to means of these types of scores, while preserving its desirable prop-
erties.

However, the isotonicity-based approach fails if a mean of logarithmic scores (Gneit-
ing and Raftery, 2007, Section 4.1) is sought to be decomposed, for the logarithmic
score, which allows for the comparison of density forecasts only, cannot be applied to
the discrete IDR distributions. While in principle isotonic recalibration by IDR, on
which isotonicity-based decompositions are based, could be replaced by recalibration
with other methods, it is not at all evident what type of technique ought to be used,
and we are unaware of any such method that would share the optimality properties of
IDR that underlie the theoretical guarantees enjoyed by the isotonicity-based approach.

Various authors have pondered the use of the crps, which is favored by the meteoro-
logical and renewable energy literatures, as opposed to the logarithmic score, which is
of particular popularity in econometrics and machine learning, with the choice arising
both in the context of estimation via empirical score minimization and in the evalu-
ation of predictive performance (Gneiting and Raftery, 2007). For example, D’Isanto
and Polsterer (2018, Appendix B) argue that in neural network learning empirical score
minimization in terms of the mean crps is preferable to optimization of the logarithmic
score. In the evaluation of predictive performance, the availability of the theoretically
supported and practically feasible isotonicity-based decomposition, in concert with the
applicability of the score to discrete forecast distributions, strengthens arguments in
favor of the crps.
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A. Henzi, A. Mösching, and L. Dümbgen. Accelerating the pool-adjavent-violators al-
gorithm for isotonic distributional regression. Methodol. Comput. Appl. Probab., 24:
2633–2645, 2022.
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A Technical details for the Brier score and quantile score
based decompositions

In this appendix we describe the Brier score (BS) and quantile score (QS) based decom-
positions from Sections 2.3 and 2.4 for the mean score CRPS of the forecast–observation
pairs (F1, y1), . . . , (Fn, yn) at (8). Both decompositions build on a general version of
the pool-adjacent-violators (PAV) algorithm for nonparametric isotonic regression (Ayer
et al., 1955). While historically work on the PAV algorithm has focused on the mean
functional (Barlow et al., 1972; Robertson et al., 1988; de Leeuw et al., 2009), the al-
gorithm yields optimal isotonic fits under any identifiable functional; see, e.g., Jordan
et al. (2022) and Gneiting and Resin (2023, Section 3.1).

A.1 Brier score based decomposition

For each threshold value z ∈ R, we interpret F1(z), . . . , Fn(z) as probability forecasts
for the binary event ξi(z) = 1{yi ≤ z}, where i = 1, . . . , n. We obtain calibrated
forecasts F́1(z), . . . , F́n(z) by applying the PAV algorithm for the mean functional on
ξ1(z), . . . , ξn(z) with respect to the order induced by F1(z), . . . , Fn(z). This yields the
CORP decomposition of the mean Brier score

BSF (z) =
1

n

n∑
i=1

sB
(
Fi(z), ξi(z)

)
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as proposed by Dimitriadis et al. (2021), namely,

BSF (z) =
(
BSF (z) − BSF́ (z)

)
︸ ︷︷ ︸

MCBBS,z

−
(
BSF́ (z) − BSF̂mg(z)

)
︸ ︷︷ ︸

DSCBS,z

+ BSF̂mg(z)︸ ︷︷ ︸
UNCBS,z

,

where F̂mg(z) =
1
n

∑n
i=1 ξi(z) for z ∈ R,

BSF́ (z) =
1

n

n∑
i=1

sB
(
F́i(z), ξi(z)

)
and BSF̂mg(z)

=
1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
.

Integration of the MCBBS,z,DSCBS,z and UNCBS,z components over z ∈ R yields the
Brier score based score components and decomposition at (15) and (16), respectively.

Computationally, it suffices to run the PAV algorithm at z ∈ {y1, . . . , yn} and at the
crossing points of the cdfs F1, . . . , Fn.

Proof of Proposition 2.1. We note that

UNCBS =

∫
BSF̂mg(z)

dz =

∫
1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
dz

=
1

n

n∑
i=1

∫ (
F̂mg(z)− ξi(z)

)2
dz =

1

n

n∑
i=1

crps(F̂mg, yi) = UNC0,

which implies that (E5) is satisfied. Property (E1) is immediate. Dimitriadis et al.
(2021) show that MCBBS,z and DSCBS,z are nonnegative for all z ∈ R and thus (E2)
is satisfied. Example E.3 implies that the decomposition is not degenerate, so (E3)
is satisfied. Finally, suppose that F1 = · · · = Fn. Then for each z ∈ R, the PAV
algorithm for the mean functional on ξ1(z), . . . , ξn(z) with respect to the order induced by
F1(z) = · · · = Fn(z) yields the constant calibrated forecast F̂mg(z). Hence DSCBS = 0,
so that (E4) is satisfied.

Remark A.1. The functions F́1, . . . , F́n are not necessarily increasing and hence they
generally fail to be cdfs. For instance, let n = 2 and z < z′. If F1(z) < F2(z), F1(z

′) =
F2(z

′) and y2 ≤ z < z′ < y1, then F́2(z) = 1 > 1/2 = F́2(z
′), so F́2 is not increasing.

A.2 Quantile score based decomposition

For each level α ∈ (0, 1), we consider F−1
1 (α), . . . , F−1

n (α) as point forecasts in the
form of the α-quantile. We apply the PAV algorithm for the α-quantile functional on
y1, . . . , yn with respect to the order induced by F−1

1 (α), . . . , F−1
n (α) to yield calibrated

α-quantile forecasts F̀−1
1 (α), . . . , F̀−1

n (α). This induces the CORP decomposition of the
mean quantile score

QSF−1(α) =
1

n

n∑
i=1

qsα
(
F−1
i (α), yi

)
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as described by Gneiting and Resin (2023, Section 3.3) and Gneiting et al. (2023b,
Section 3.3), namely,

QSF−1(α) =
(
QSF−1(α) −QSF̀−1(α)

)︸ ︷︷ ︸
MCBQS,α

−
(
QSF̀−1(α) −QSF̂−1

mg (α)

)︸ ︷︷ ︸
DSCQS,α

+ QSF̂−1
mg (α)︸ ︷︷ ︸

UNCQS,α

,

where F̂−1
mg (α) is the quantile function of the marginal empirical law of the outcomes

y1, . . . , yn,

QSF̀−1(α) =
1

n

n∑
i=1

qsα
(
F̀−1
i (α), yi

)
, QSF̂−1

mg (α)
=

1

n

n∑
i=1

qsα
(
F̂−1
mg (α), yi

)
.

Integration of the MCBQS,α,DSCQS,α and UNCQS,α components over α ∈ (0, 1) yields
the quantile score based decomposition at (17).

For an exact computation, the PAV algorithm needs to be run at all quantile levels
l/k, where k = 1, . . . , n and l = 1, . . . , k − 1, and at all crossing points of the quantile
functions F−1

1 , . . . , F−1
n . In practice, it suffices to apply the PAV algorithm on a fine

grid of quantile levels.

Proof of Proposition 2.2. In analogy to the proof of Proposition 2.1, we find that

UNCQS =

∫ 1

0
QSF̂−1

mg (α)
dα =

∫ 1

0

1

n

n∑
i=1

qsα
(
F̂−1
mg (α), yi

)
dα

=
1

n

n∑
i=1

∫ 1

0
qsα

(
F̂−1
mg (α), yi

)
dα =

1

n

n∑
i=1

crps(F̂mg, yi) = UNC0,

and hence (E5) is satisfied. Property (E1) is clear by definition. Theorem 3.3 of Gneiting
and Resin (2023) implies that MCBQS,α and DSCQS,α are nonnegative for all α ∈ (0, 1)
and thus (E2) is satisfied. Example E.3 shows that the decomposition is not degen-
erate, i.e., (E3) is satisfied. Finally, suppose that F1 = · · · = Fn. Then for each
α ∈ (0, 1), applying the PAV algorithm on y1, . . . , yn with respect to the order induced
by F−1

1 (α) = · · · = F−1
n (α) yields the constant calibrated forecast F̀−1(α) = F̂−1

mg (α)

and hence DSCQS = 0, i.e., (E4) is satisfied.

Remark A.2. In analogy to the statements in Remark A.1, the functions F̀−1
1 , . . . , F̀−1

n

are not necessarily increasing and hence may not be quantile functions. For example,
let n = 2 and α < α′ < 1/2, and suppose that y1 < y2, F−1

1 (α) < F−1
2 (α), and

F−1
1 (α′) = F−1

2 (α′). Then F̀−1
2 (α) = y2 > y1 = F̀−1

2 (α′) whence F̀−1
2 is not increasing.

B Technical details for the original and modified Hersbach
decompositions

As in Section 2.5, we consider a collection of the form at (8) of forecast–outcome pairs
(F1, y1), . . . , (Fn, yn), where for i = 1, . . . , n, the forecast Fi is the empirical cdf of
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Figure 5: Adaptation of Figure 2 from Hersbach (2000) with the empirical cdf of x1 <
· · · < x5 and outcome y. Hersbach (2000) assumes that y /∈ {x1, . . . , x5} and divides the
quantity xℓ+1 − xℓ for ℓ = 1, . . . ,m − 1 into αℓ and βℓ, as illustrated in the left panel.
When y = x3 the original decomposition sets α2 = β3 = 0. However, according to display
(26) in Hersbach (2000), if y ↑ x3 then α2 → x3 − x2, β2 → 0, and β3 = x4 − x3, and if
y ↓ x3 then α2 = x3 − x2, α3 → 0, and β3 → x4 − x3. This suggests that α2 = x3 − x2,
α3 = 0, β2 = 0, and β3 = x4 − x3 when y = x3, as indicated in the right panel and in
accordance with the quantity f̄3 in the modified Hersbach decomposition.
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a fixed number m of numbers xi1 ≤ · · · ≤ xim. Hersbach (2000) implicitly assumes
that yi /∈ {xi1, . . . , xim} for i = 1, . . . , n. If this condition is not satisfied, the exten-
sion of the original Hersbach decomposition at (20), which is implemented in the R
function crpsDecomposition from the verification package (https://rdrr.io/cran/
verification/), is problematic. Our suggested modified Hersbach decomposition at
(22) resolves this issue, as illustrated graphically in Figure 5.

We proceed to a comparison of the orginal with the modified Hersbach decomposition.
For i = 1, . . . , n, Hersbach (2000) defines the quantities

αi
ℓ = (xiℓ+1 − xiℓ)1{yi > xℓ+1}+ (yi − xℓ)1{xiℓ < yi < xiℓ+1},

βi
ℓ = (xiℓ+1 − xiℓ)1{yi < xiℓ}+ (xiℓ+1 − yi)1{xiℓ < yi < xiℓ+1},

for ℓ = 1, . . . ,m− 1, and

αi
m = (yi − xim)1{yi > xim} and βi

0 = (xi1 − yi)1{yi < xi1}.

For ℓ = 1, . . . ,m − 1, let ᾱℓ = (1/n)
∑n

i=1 α
i
ℓ, β̄ℓ = (1/n)

∑n
i=1 β

i
ℓ, ḡℓ = ᾱℓ + β̄ℓ, and

ōℓ = β̄ℓ/ḡℓ. To complete the specification, let ō0 = (1/n)
∑n

i=1 1{yi < xi1}, ḡ0 = 1{ō0 ̸=
0}β̄0/ō0, ōm = (1/n)

∑n
i=1 1{xim < yi}, and ḡm = 1{ōm ̸= 0}ᾱm/(1 − ōm), where

β̄0 = (1/n)
∑n

i=1 β
i
0 and αm = (1/n)

∑n
i=1 α

i
m.

As before, let pℓ = ℓ/m for ℓ = 0, . . . ,m. Hersbach (2000) defines the miscalibration
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component as

MCBHBo =
m∑
ℓ=0

ḡℓ (pℓ − ōℓ)
2 .

In contrast, we let

MCBHB =

m−1∑
ℓ=1

ḡℓ
(
pℓ − f̄ℓ

)2
,

where f̄ℓ = (1/n)
∑n

i=1 f̄
i
ℓ with f̄ i

ℓ = (1/ḡℓ)1{yi < xiℓ+1 }(αi
ℓ + βi

ℓ) for i = 1, . . . , n and
ℓ = 1, . . . ,m − 1. In other words, Hersbach (2000) includes terms for l = 0 and l = m
in the miscalibration component and compares the nominal level pℓ with the quantity
ōℓ, which approximates the frequency of an outcome below the midpoint of bin l. In
contrast, we omit the outer terms and compare pℓ with f̄ℓ, which approximates the
frequency of an outcome below the right endpoint of bin l.

Proof of Proposition 2.3. By definition, both decompositions are exact and the uncer-
tainty component UNC0 depends only on the outcomes, i.e., (E1) and (E5) are satisfied.
Example E.3 shows that (E3) is satisfied, and that (E2) fails to hold for the modified
Hersbach decomposition. Consider the sample (F, y1), (F, y2) with F = (δ−1/2+ δ1/2)/2,

y1 = −1/6 and y2 = 1/6. Then CRPS = 1/4 and UNC0 = 1/12. Moreover, ḡ1 = 1,
ḡ0 = ḡ2 = 0, ō1 = 1/2, ō0 = ō2 = 0, and f̄1 = 1. Thus MCBHBo = 0, MCBHB = 1/4,
DSCHBo = −1/6, and DSCHB = 1/12. This demonstrates that the original Hersbach
decomposition does not satisfy (E2) and (E4) and that (E4) fails to hold for the mod-
ified decomposition as well. Numerical examples in Hersbach (2000) show that (E3) is
satisfied for the original Hersbach decomposition.

C Relaxations of the stochastic order

Consider any partial order ≤′ on P(R), which is weaker than the stochastic order in
the sense that G ≤st H implies G ≤′ H for G,H ∈ P(R). Possible choices include
the almost-first-stochastic-dominance order proposed by Leshno and Levy (2002) or
stochastic dominance of order (1 + γ) as proposed by Müller et al. (2017). If there are
only few forecasts in a sample (F1, y1), . . . , (Fn, yn) ∈ P(R) × R that are comparable
with respect to ≤st, one could think of applying IDR with respect to ≤′ instead of ≤st

in order to obtain more comparable forecasts. In this appendix, we explain why such an
approach is bound to fail.

Let Y be a random variable and F be a random forecast defined on the same prob-
ability space. Recall from Section 4.2 that ICL forms the population version of IDR
(Arnold and Ziegel, 2023, Proposition 4.1). In analogy to Definition 3.1 of Arnold and
Ziegel (2023), one could define the σ-lattice generated by F with respect to the weaker
order ≤′ as L ′(F ) = {F−1(B) | B ∈ B(P(R)) ∩ U ′}, where U ′ denotes the family of
all upper sets in P(R) with respect to ≤′. However, if the space P(R) equipped with
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the partial order ≤′ and the topology of weak convergence satisfies Assumption C.1
of Arnold and Ziegel (2023), the corresponding notion of isotonic calibration, namely,
PY |L ′(F ) = F , fails to be intuitive for two reasons. First, auto-calibration does not
imply the respective notion of calibration. Second, G ≤′ H already implies G ≤st H
for all G and H in the support of F by Theorem 3.3 of Arnold and Ziegel (2023).
Clearly, this implication may only hold if ≤′ equals ≤st on the support of F , which is
violated for any ≤′ that is strictly weaker than ≤st, contrary to the scope of a relaxation.
Moreover, there is no theoretical guarantee that the corresponding miscalibration term
MCBISO′ = E crps(F, Y )− E crps(PY |L ′(F ), Y ) is nonnegative.

D Proofs for Section 4

D.1 Proofs for Section 4.4 and extensions

Proof of Proposition 4.1. Following Appendix A in Candille and Talagrand (2005), we
apply the change of variable z 7→ p = F (z) to demonstrate that E crps(F, Y ) can be
represented as

E
∫
S
(F (z)− 1{F (Y ) ≤ F (z)})2 dz + E

∫
S
(2F (z)− 1)(1{F (Y ) ≤ F (z)} − 1{Y ≤ z}) dz,

where S = {z ∈ R | (F (z) − 1{Y ≤ z})2 > 0}. The indicator is essential, since if
F (Y ) = 0 then 1{F (Y ) ≤ F (z)} = 1 and the integrals may not exist. We decompose S
into the disjoint sets S1 = S ∩ {z ∈ R | F (z) > 0} and S2 = S ∩ {z ∈ R | F (z) = 0} =
{z ∈ R | Y ≤ z, F (z) = 0}, and use the equivalence 1{F (Y ) ≤ F (z)} − 1{Y ≤ z} =
1{Y > z, F (Y ) = F (z)} to show that

E crps(F, Y ) = E
∫
S1

(F (z)− 1{F (Y ) ≤ F (z)})2 dz + E
∫
S2

1{Y ≤ z, F (z) = 0} dz

+ E
∫
S
(2F (Y )− 1)1{Y > z, F (Y ) = F (z)} dz

= E
∫
S1

(F (z)− 1{F (Y ) ≤ F (z)})2 dz +MS,

where MS is given at (41).
We have τ(A) ≤ E

∫
A 1 dνF (u) = E(νF (A)) = µ(A) for A ∈ B(0, 1), i.e., τ is abso-

lutely continuous with respect to µ. Hence τ has a density f with respect to µ, and we
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find that

E crps(F, Y ) = E
∫
S
(F (z)− 1{F (Y ) ≤ F (z)})2 dz +MS

= E
∫ 1

0
(p− 1{F (Y ) ≤ p})2 dνF (p) +MS

=

∫ 1

0
p2 dµ(p)−

∫ 1

0
(2p− 1) dτ(p) +MS

=

∫ 1

0
p2 dµ(p)−

∫ 1

0
(2p− 1) f(p) dµ(p) +MS

=

∫ 1

0
(p− f(p))2 dµ(p) +

∫ 1

0
f(p) (1− f(p)) dµ(p) +MS,

which yields the claimed decomposition.

In the following corollary to Proposition 4.1, which is a more general result than
Corollary 4.2, we consider forecast–observation pairs (F1, y1), . . . , (Fn, yn), where for
each i = 1, . . . , n, Fi is a distribution with a finite number mi of support points xi1 <
· · · < ximi

and (cumulative) probability values pi1 < · · · < pimi
, so that Fi(x

i
ℓ) = piℓ for

ℓ = 1, . . . ,mi. Let 0 < p̂1 < . . . < p̂M = 1 be the unique probability values from the set
{piℓ | i = 1, . . . , n; ℓ = 1, . . . ,mi}. For i = 1, . . . , n and j = 1, . . . ,M − 1, we define

σi
j =

{
ℓ if p̂j = piℓ,

0 if p̂j /∈ {pi1, . . . , pimi
}.

Corollary D.1. Assume that P is the empirical measure of forecast–observation pairs
(F1, y1), . . . , (Fn, yn), where each Fi is a distribution with finite support as described
above. Then

MCBHB =
M−1∑
j=1

ĝj(p̂j − f̂j)
2 (45)

where, for j = 1, . . . ,M − 1,

ĝj =
1

n

n∑
i=1

1{σi
j ̸= 0}

(
xiσi

j+1 − xiσi
j

)
, (46)

f̂j =
1

nĝj

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − xiσi
j

)
. (47)

Proof. For i = 1, . . . , n, let νi be the image measure of Fi with respect to the Lebesgue
measure, i.e.,

νi =
M−1∑
j=1

δp̂j1{σ
i
j ̸= 0}

(
xiσi

j+1 − xiσi
j

)
,
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and thus, µ =
∑M−1

j=1 δp̂j ĝj , where ĝj is given at (46). Therefore, for any A ∈ B(0, 1), we
have

τ(A) = E
∫
A
1{F (Y ) ≤ u} dνF (u)

=
1

n

n∑
i=1

M−1∑
j=1

δp̂j (A)1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − xiσi
j

)

=
M−1∑
j=1

δp̂j (A)
1

n

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − xiσi
j

)
=

M−1∑
j=1

δp̂j (A)f̂j ĝj .

We conclude that the Radon–Nikodym derivative of τ with respect to µ is f(p̂j) = f̂j
for j = 1, . . . ,M − 1, where f̂j is given at (47).

To specialize Corollary D.1 to the ensemble setting of Corollary 4.2, let mi = m and
piℓ = ℓ/m for i = 1, . . . , n and ℓ = 1, . . . ,m − 1. Then M = m, p̂j = j/m, and the
quantities in (18) and (46) coincide, as do the first quantity in (19) and that in (47).

Proof of Corollary 4.3. Since F−1 is almost surely absolutely continuous, for any 0 <
a < b < 1, we have almost surely

νF ([a, b)) = λ(F−1([a, b))) = F−1(b)− F−1(a) =

∫ F−1(b)

F−1(a)
dp =

∫ b

a

d

dp
F−1(p) dp.

That is, the random measure νF almost surely possesses a density ( d/dp)F−1(p) with
respect to the Lebesgue measure, and it follows that the measure µ has density γ at (42)
with respect to the Lebesgue measure. Since for A ∈ B(0, 1),

τ(A) = E
∫
A
1{F (Y ) ≤ p} dνF (p) =

∫
A
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
dp,

the density f of the measure τ with respect to µ is given as stated at (43).

The following example relates to the case study on probabilistic quantitative pre-
cipitation forecasts in Section 5.1, where it applies to the BMA, EMOS, and HCLR
forecasts, respectively.

Example D.1. Let (F1, y1), . . . , (Fn, yn) be forecast–observation pairs for a nonnegative
(possibly, censored) quantity, so that yi ≥ 0 for i = 1, . . . , n. Suppose that, for i =
1, . . . , n,

Fi(x) =

{
0 for x < 0,

pi0 +
∫ x
0 fi(t) dt for x ≥ 0,

for some 0 ≤ pi0 < 1 and a strictly positive continuous function fi : (0,∞) → R+ with∫∞
0 fi(t) dt = 1−pi0. Then F−1

i is absolutely continuous and has derivative fi(F
−1
i (p))−1
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for p ∈ (pi0, 1) and zero otherwise. Hence, MCBHB =
∫ 1
0 (p− f(p))2 γ(p) dp by Corollary

4.3, where

γ(p) =
1

n

n∑
i=1

1

fi(F
−1
i (p))

1(pi0,1)
(p), f(p) =

1

nγ(p)

n∑
i=1

1{Fi(yi) ≤ p} 1

fi(F
−1
i (p))

1(pi0,1)
(p)

for p ∈ (0, 1) with γ(p) > 0, and f(p) = 0 otherwise.

D.2 Proofs for Section 4.5

Proof of Theorem 4.4. Concerning part (a), we consider the Brier score based decompo-
sition of CRPS and apply Fubini’s theorem to obtain

MCBCT =

∫ (
E
(
F (z)− 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F )− 1{Y ≤ z}

)2)
dz, (48)

DSCCT =

∫ (
E
(
Fmg(z)− 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F )− 1{Y ≤ z}

)2)
dz. (49)

Recall that for any z ∈ R, the expectation E (1{Y ≤ z}− p)2 is minimized by P(Y ≤ z |
F ) over all σ(F )-measurable random variables p, and this minimizer is P-almost surely
unique. Since F (z) and the constant Fmg(z) are σ(F )-measurable, it follows from (48)
and (49) that MCBCT ≥ 0 and DSCCT ≥ 0, respectively. Equality in (48) holds if, and
only if, F is auto-calibrated. Equality in (49) holds if, and only if, PY |F = Fmg, i.e.,
P(Y ≤ z | F ) = Fmg(z) for all z ∈ R.

For part (b), in analogy to the above, we find that

MCBISO =

∫ (
E
(
F̄ (z)− 1{Y > z}

)2 − E
(
P(Y > z | L (F ))− 1{Y > z}

)2)
dz, (50)

DSCISO =

∫ (
E
(
F̄mg(z)− 1{Y > z}

)2 − E
(
P(Y > z | L (F ))− 1{Y > z}

)2)
dz,

(51)

where F̄ (z) = 1 − F (z), and F̄mg(z) = 1 − Fmg(z). Recall that for any z ∈ R, the
expectation E(1{Y > z} − p)2 is minimized by P(Y > z | L (F )) over all L (F )-
measurable random variables p, and the minimizer is P-almost surely unique. Since F̄ (z)
and the constant F̄mg(z) are L (F )-measurable, it follows directly that MCBISO ≥ 0 and
DSCISO ≥ 0. Equality in (50) holds if, and only if, F is isotonically calibrated, and
equality in (51) holds if, and only if, PY |L (F ) = Fmg.

To demonstrate part (c), it suffices to observe from Arnold and Ziegel (2023, Lemma
5.4) that threshold calibration is equivalent to P(Y ≤ z | L (F (z))) = F (z) for z ∈ R.
The rest of the argument is analogous to the above.

Finally, for part (d), recall that for α ∈ (0, 1), a random variable is a condi-
tional quantile qα(Y | L (F−1(α))) if, and only if, it minimizes EQSα(X,Y ) over all
L (F−1(α))−measurable random variables X, see Arnold and Ziegel (2023). It fol-
lows that MCBQS ≥ 0 and DSCQS ≥ 0. Assume that F is quantile calibrated; then
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qα
(
Y | L

(
F−1(α)

))
= F−1(α) for α ∈ (0, 1) and hence MCBQS = 0. Conversely, if

MCBQS = 0 then Fubini’s theorem implies∫ 1

0

(
E qsα

(
F−1(α), Y

)
− E qsα

(
qα
(
Y | L (F−1(α))

)
, Y

))
dα = 0.

Since the integrand is non-negative, it follows that qα
(
Y | L (F−1(α))

)
= F−1(α) for

almost all α ∈ (0, 1) and, hence, there exists a Lebesgue null set N ⊆ (0, 1) with
qα(Y | L (F−1(α))) = F−1(α) for all α ∈ (0, 1) \ N . Assume for a contradiction
that N ̸= ∅ and consider α0 ∈ N . Choose (αn)n∈N ⊆ (0, 1) \ N with αn ↑ α0 as
n → ∞. Since F−1(αn) → F−1(α0) almost surely and qsαn

(·, y) → qsα0
(·, y) point-

wise for any y ∈ R, it follows that qsαn
(F−1(αn), Y )→ qsα0

(F−1(α0), Y ) almost surely,
and hence, E qsαn

(F−1(αn), Y )→ E qsα0
(F−1(α0), Y ) by dominated convergence. Anal-

ogously, E qsαn
(X,Y ) → EQSα0

(X,Y ) for X = qα0(Y | L (F−1(α0))) and, hence,
E qsα0

(X,Y ) ≥ E qsα0
(F−1(α0), Y ) since E qsαn

(X,Y ) ≥ E qsαn
(F−1(αn), Y ) for all

n ∈ N. This shows that qα
(
Y | L (F−1(α))

)
is an α-quantile of F for α ∈ (0, 1). By

construction in Section 6 of Arnold and Ziegel (2023), qα
(
Y | L (F−1(α))

)
is the small-

est possible minimizer of E qsα(X,Y ), so it coincides with F−1(α) for all α ∈ (0, 1) and,
hence, N = ∅. Clearly, DSCQS = 0 if qα

(
Y | L (F−1(α))

)
= qα(Y ) for α ∈ (0, 1).

Conversely, if DSCQS = 0 then qα
(
Y | L (F−1(α))

)
= qα(Y ) for α ∈ (0, 1).

Proof of Corollary 4.6. For any z ∈ R, PY |F (·, (z,∞)) minimizes E(p − 1{Y > z})2
over all σ(F )-measurable random variables p, and hence, also over all L (F )-measurable
random variables since any L (F )-measurable random variable is also σ(F )-measurable,
see Arnold and Ziegel (2023, Lemma 3.1). Thus, we apply Fubini to derive

E crps(PY |F , Y ) =

∫
E (PY |F (·, (z,∞))− 1{Y > z})2 dz

≤
∫

E (PY |L (F )(·, (z,∞))− 1{Y > z})2 dz = E crps(PY |L (F ), Y ),

which implies MCBCT ≥ MCBISO. Moreover, for any z ∈ R we know that L (F (z)) ⊆
L (F ), where for any σ-lattice A ⊆ F , Ā denotes the σ-lattice which consists of all
complements of elements in A. Hence, we may argue similarly that

E crps(PY |L (F ), Y ) =

∫
E(1− PY |L (F )(·, (z,∞))− 1{Y ≤ z})2 dz

≤
∫

E(P(Y ≤ z | L (F (z)))− 1{Y ≤ z})2 dz,

which implies MCBISO ≥ MCBBS. Finally for any α ∈ (0, 1), we have that P−1
Y |L (F )(α)

minimizes E qsα(X,Y ) over all L (F )-measurable random variables X. We use that
L (F−1(α)) ⊆ L (F ), to derive that

E crps(PY |L (F ), Y ) =

∫ 1

0
E qsα(P

−1
Y |L (F )(α), Y ) dα ≤

∫ 1

0
E qsα(qα(Y | L (F−1(α)), Y ) dα

and hence MCBISO ≥ MCBQS.
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Proof of Proposition 4.7. The claim in part (a) follows from the definition of MS at (41).
For part (b), suppose that F is auto-calibrated. Then Y ∈ supp(F ) almost surely and
hence MS = 0 by part (a). The tower property implies for any A ∈ B(0, 1) that

τ(A) = E
(
E
(∫

A
1{F (Y ) ≤ p} dνF (p)

∣∣∣ F))
= E

(∫
A
E (1{F (Y ) ≤ p} | F ) dνF (p)

)
= E

(∫
A
F (F−1(p)) dνF (p)

)
,

where the last equality follows since if Y ∈ supp(F ), then F (Y ) ≤ p if and only if
Y ≤ F−1(p) and P(Y ≤ F−1(p) | F ) = F (F−1(p)) by auto-calibration. By the properties
of generalized inverses (Embrechts and Hofert, 2013), we have F (F−1(p)) ≥ p for all
p ∈ (0, 1). However, if F (F−1(p)) > p for all p ∈ B in some B ∈ B(0, 1), then F−1(B) =
{x ∈ R | F (x) ∈ B} = ∅ and hence νF (B) = 0 almost surely. That is, νF ({p ∈ (0, 1) :
F (F−1(p)) > p} = 0 almost surely and thus

τ(A) = E
(∫

A
F (F−1(p)) dνF (p)

)
= E

(∫
A
p dνF (p)

)
=

∫
A
p dµ(p).

We conclude that f(p) = p µ-almost surely and hence MCBHB = 0.
The condition in part (c) is equivalent to assuming that d

dpF
−1 is almost surely

constant for all p ∈ (0, 1). Since F is probabilistically calibrated, we have for any
p ∈ (0, 1),

f(p) =
1

γ(p)
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
=

γ(p)

γ(p)
E (1{F (Y ) ≤ p}) = P(F (Y ) ≤ p) = p

and hence MCBHB = 0.

E Analytic examples at the population level

In this section we compare the population level decompositions from Section 4 in a
number of examples in the prediction space setting. Table 2 collects and summarizes
the analytic forms of the decomposition components in these examples. Assumption 4.1
is satisfied throughout.

E.1 Auto-calibrated Gaussian

In this example, the predictive distribution F is Gaussian with mean µi and standard
deviation σi > 0 with probability wi for i = 1, . . . , n, where wi + · · · + wn = 1. Condi-
tionally on F , the outcome Y has distribution F , so F is auto-calibrated. We conclude
that

MCBCT = MCBISO = MCBBS = MCBQS = 0.
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Table 2: Analytic form of the various different types of decomposition in population
level examples E.1, . . . , E.5. For details and supporting calculations see the text.

Example E.1 E.2 E.3 E.4 E.5

E crps(F, Y )
∑n

i=1wi
σi√
π

1
6 1 39

80
5
24 t

UNC0
1
2

∑n
i,j=1wiwj A(µi − µj , σ

2
i + σ2

j )
2
5

3
4

3
2

2
9 t

MCBCT 0 1
30 1 7

400
3

200 t

MCBISO 0 1
30 1 9

2800
3

200 t2

MCBQS 0 1
30

13
16

9
2800 0

MCBBS 0 1
30

1
2

9
2800 0

MCBHB 0 0 1
8

1
1600 0

Since auto-calibration implies probabilistic calibration, Proposition 4.7 yields MCBHB =
MSHB = 0. Finally, we apply formulas in Grimit et al. (2006) to obtain

E crps(F, Y ) =

n∑
i=1

wi
σi√
π

and UNC0 =
1

2

n∑
i,j=1

wiwjA(µi − µj , σ
2
i + σ2

j ),

where A(µ, σ2) = 2σφ(µσ ) + µ(2Φ(µσ ) − 1), with φ and Φ denoting the density and the
cdf of the standard normal distribution, respectively.

E.2 Example in Candille and Talagrand (2005)

In this example of Candille and Talagrand (2005, p. 2145), the forecast F is F1, which
is uniform on (−1, 0), or F2, which is uniform on (0, 1), with equal probability. Given
F = F1, the conditional cdf of Y is Q1(z) = 1 − z2 for z ∈ (−1, 0), and given F = F2,
the conditional cdf of Y is Q2(z) = z2 for z ∈ (0, 1).

For i = 1, 2, we denote by Gi the isotonic conditional law of Y given F = Fi. Since
F1 ≤st F2 and Q1 ≤st Q2 it follows that Qi = Gi for i = 1, 2 and the isotonicity-
based decomposition coincides with the Candille–Talagrand decomposition. For any
z ∈ (−1, 1), F1(z) and F2(z) strictly order and hence the random variable F (z) already
reveals the value of F . That is, σ(F (z)) = σ(F ) and hence P(Y ≤ z | F (z)) = P(Y ≤
z | F ) = PY |F (z). Since this conditional probability is already an increasing function
of F (z), we may conclude by Proposition 3.2. in Arnold and Ziegel (2023) that P(Y ≤
z | L (F (z))) = PY |F (z) for all z ∈ R and hence the Brier score based decomposition
correspond with the Candille–Talagrand decomposition. Analogously the claim can be
shown for the quantile score based decomposition. Thus the isotonicity-based, Brier score
based, and quantile score based decompositions coincide with the Candille–Talagrand
decomposition, where E crps(F, Y ) = 1/6, MCBCT = 1/30, and UNC0 = 2/5.
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The forecasts satisfy the conditions in part (c) of Proposition 4.7, therefore MCBHB =
0. Since Y ∈ supp(F ) almost surely, we have MS = 0.

E.3 Example with two atoms

This simple example illustrates that the Brier score and quantile score based decompo-
sitions do not coincide in general, that the corresponding calibration methods do not
necessarily produce valid cdfs or quantile functions, respectively, and that DSCHB can
be negative.

Consider the distributions F1 = (δ1 + δ2)/2 and F2 = (δ0 + δ3)/2, where δz denotes
the Dirac measure at z ∈ R. Assume that F is F1 and F2 with equal probability and that
Y = y1 if F = F1 and Y = y2 if F = F2. Let y1 = 3 and y2 = 0, so the marginal law Fmg

of Y is F2. We readily compute E crps(F, Y ) = 1 and E crps(Fmg, Y ) = UNC0 = 3/4.
An application of the PAV algorithm for the mean functional on (1{y1 ≤ z},1{y2 ≤

z}) with respect to the order induced by (F1(z), F2(z)) at threshold z ∈ R results in

F́1(z) =
1
21[1,3)(z) + 1[3,∞)(z) and F́2(z) = 1[0,1)(z) +

1
21[1,3)(z) + 1[3,∞)(z),

and we see that F́2 fails to be increasing. Similarly, an application of the PAV algorithm
for the α-quantile on (y1, y2) with respect to the order induced by (F−1

1 (α), F−1
2 (α)) at

level α ∈ (0, 1) results in

F̀−1
1 (α) = 3 and F̀−1

2 (α) = 31( 1
2
,1](α),

so F̀−1
2 fails to be increasing. Furthermore, it follows easily that MCBBS = 1/2 ̸=

13/16 = MCBQS. As the conditional law of Y given F is a Dirac measure, E crps(PY |F , Y ) =
0 and MCBCT = 1. Similarly, MCBISO = 1 since F1 and F2 do not order.

According to the formulas in Section 2.5, ḡ1 = 2 and f̄1 = (1{F1(y1) ≤ 1
2} +

31{F2(y2) ≤ 1/2})/(2ḡ1) = 3/4 and thus MCBHB = (p1 − f̄1)
2 ḡ1 = 1/8, whence we

conclude that DSCHB = MCBHB +UNC0 − E crps(F, Y ) = −1/8.

E.4 Example 2.4 a) in Gneiting and Resin (2023)

Let F be a mixture of uniform distributions on [0, 1], [1, 2], and [2, 3] with weights p1, p2,
and p3, respectively, and let Y be drawn from a mixture of these distributions with
weights q1, q2, and q3, respectively, where the tuple (p1, p2, p3; q1, q2, q3) attains each of
the values (

1
2 ,

1
4 ,

1
4 ;

5
10 ,

1
10 ,

4
10

)
,

(
1
4 ,

1
2 ,

1
4 ;

1
10 ,

8
10 ,

1
10

)
,

(
1
4 ,

1
4 ,

1
2 ;

4
10 ,

1
10 ,

5
10

)
with equal probability. We note that F is probabilistically calibrated, and still we find
that MCBHB ̸= 0.

Let F1, F2, and F3 denote the distributions that F attains. For i = 1, 2, 3, let Qi be
the conditional law of Y given F = Fi, and let Gi be the isotonic conditional law of Y
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given F = Fi. The marginal law Fmg of Y is uniform on [0, 3] and, hence,

UNC0 = E crps(Fmg, Y ) =

∫ ∫
(Fmg(x)− 1{y ≤ x})2 dx dFmg(y)

=
1

3

∫ 3

0

∫ 3

0

(x
3
− 1{y ≤ x}

)2
dx dy =

3

2
.

It holds that F1 ≤st F2 ≤st F3 but only Q1 ≤st Q3, hence PY |F ̸= PY |L (F ). Let r = 10/7,
s = 11/7. On (−∞, r], we have the pointwise inequalities Q2 ≤ Q3 ≤ Q1; on [r, s], we
have Q3 ≤ Q2 ≤ Q1; and on [s,∞), we have Q3 ≤ Q1 ≤ Q2. Consider the pooled cdfs
Q12 = (Q1 + Q2)/2 and Q23 = (Q2 + Q3)/2. The Gi’s may be derived by pooling the
Qi’s according to the given order constraint G1 ≤st G2 ≤st G3, namely,

G1(z) = Q1(z)1(−∞,s](z) +Q12(z)1[s,∞)(z),

G2(z) = Q23(z)1(−∞,r](z) +Q2(z)1[r,s](z) +Q12(z)1[s,∞)(z),

G3(x) = Q23(z)1(−∞,r](x) +Q3(z)1[r,∞)(z).

By the law of total expectation and Fubini’s theorem,

E crps(F, Y ) =
1

3

3∑
i=1

E
(
crps(F, Y ) | F = Fi

)
=

1

3

3∑
i=1

∫ ∫ (
Fi(x)− 1{y ≤ x}

)2
dx dQi(y)

=
1

3

3∑
i=1

∫ ∫ (
Fi(x)− 1{y ≤ x}

)2
dQi(y) dx

=
1

3

3∑
i=1

∫ (
F 2
i (x)− 2Fi(x)Qi(x) +Qi(x)

)
dx.

Similarly, we find that E crps(G, Y ) = (1/3)
∑3

i=1

∫
(G2

i (x)−2Gi(x)Qi(x)+Qi(x)) dx and
E crps(Q,Y ) = (1/3)

∑3
i=1

∫
(Qi(x)−Q2

i (x)) dx; hence E crps(F, Y ) = 39/80, E crps(G, Y )
= 339/700, and E crps(Q,Y ) = 47/100. We conclude that

MCBCT = 39
80 −

47
100 = 7

400 and MCBISO = 39
80 −

339
700 = 9

2800 .

Since the predictive distributions are ordered with respect to ≤st, it follows that for
every threshold z, the ordering of Fi(z) is the same. For z ∈ (−∞, 1], F2(z) and F3(z)
coincide but this also holds for G2(z) and G3(z). Similarly, for z ∈ [2,∞), F1(z) and
F2(z) coincide but this also holds for G1(z) and G2(z). This implies that the Brier
score based and the isotonocity-based decompositions coincide. Since the stochastic
order is equivalently characterized by pointwise orderings of lower quantile functions,
the quantile score based and the isotonicity-based decompositions also coincide.
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As all F−1
i ’s are absolutely continuous, we may apply Corollary 4.3 to compute

MCBHB. For p ∈ (0, 1) \ {1/4, 1/2, 3/4} we find that

d

dp
F−1
1 (p) = 21(0, 1

2
)(p) + 41( 1

2
,1)(p),

d

dp
F−1
3 (p) = 41(0, 1

2
)(p) + 21( 1

2
,1)(p),

d

dp
F−1
2 (p) = 41(0, 1

4
)(p) + 21( 1

4
, 3
4
)(p) + 41( 3

4
,1)(p),

hence

γ(p) = 1
3

∑3
i=1 E

(
d
dpF

−1(p)
∣∣∣F = Fi

)
= 10

3 1(0, 14 )
(p) + 8

31( 14 ,
3
4
)(p) +

10
3 1( 34 ,1)

(p).

The law of total expectation implies

E
(
1{F (Y ) ≤ p} d

dpF
−1(p)

)
=

10

3
p1(0, 1

4
)(p) +

(
3

15
+

34

15
p

)
1( 1

4
, 3
4
)(p) +

10

3
p1( 3

4
,1)(p),

and hence,

f(p) = p1(0, 1
4
)(p) +

(
3
40 + 17

20p
)
1( 1

4
, 3
4
)(p) + p1( 3

4
,1)(p).

Finally, we obtain

MCBHB =
∫
(p− f(p))2 γ(p) dp =

∫ 3
4
1
4

(
3
20p−

3
40

)2 8
3 dp = 1

1600 .

E.5 Example 2.14 b) in Gneiting and Resin (2023)

For y1 < y2 < y3, let F be a mixture of the Dirac measures on y1, y2, and y3 with
weights p1, p2, and p3, and let Y be drawn from a mixture of the same Dirac measures
with weights q1, q2, and q3, respectively. Suppose that the tuple (p1, p2, p3; q1, q2, q3)
attains each of the values(

1
2 ,

1
4 ,

1
4 ;

5
10 ,

4
10 ,

1
10

)
,

(
1
4 ,

1
2 ,

1
4 ;

1
10 ,

5
10 ,

4
10

)
,

(
1
4 ,

1
4 ,

1
2 ;

4
10 ,

1
10 ,

5
10

)
with equal probability. Let t1 = y2 − y1 > 0, t2 = y3 − y2 > 0, and t = t1 + t2.
It is immediate that E crps(F, Y ) = 5t/24 and UNC0 = E crps(Fmg, Y ) = 2t/9. As
Gneiting and Resin (2023) show, F is threshold and quantile calibrated, hence MCBBS =
MCBQS = 0.

Let F1, F2, and F3 denote the three discrete distributions that F may attain. For
i = 1, 2, 3, denote by Qi the conditional law of Y given F = Fi and by Gi the isotonic
conditional law of Y given F = Fi, namely,

G1 =
1
2δy1 +

4
10δy2 +

1
10δy3 , G2 =

1
4δy1 +

7
20δy2 +

4
10δy3 , G3 =

1
4δy1 +

1
4δy2 +

1
2δy3 .

Since the image of the random vector (F, Y ) is finite and ICL is the population version
of IDR (Arnold and Ziegel, 2023, Proposition 4.1), one obtains the Gi’s alternatively
by applying IDR on the finite sample of size n = 30 with five occurrences of (F1, y1),
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four of (F1, y2), one each of (F1, y3 and (F2, y1), five of (F2, y2), four each of (F2, y3)
and (F3, y1), one of (F3, y2), and five of (F3, y3). The MCBCT and MCBISO components
may be calculated in analogy to previous examples. We obtain MCBCT = 3t/200 and
MCBISO = 3t2/200.

To compute the Hersbach decomposition, let νi be the image of the Lebesgue measure
on (0, 1) under Fi where i = 1, 2, 3. We have ν1 = t1δ1/2 + t2δ3/4, ν2 = t1δ1/4 + t2δ3/4,
and ν3 = t1δ1/4 + t2δ1/2, and hence, µ = (1/3)(2t1 δ1/4 + t δ1/2 + 2t2 δ3/4). For ℓ = 1, 2, 3
and pl = l/4, and for any A ∈ B(0, 1), the quantities fℓ = f(pℓ) satisfy

τ(A) = E
∫
A
1{F (Y ) ≤ p} dνF (p) (52)

=

∫
A
f(p) dµ(p) = f1

2t1
3

δ1/4(A) + f2
t

3
δ1/2(A) + f3

2t2
3

δ3/4(A),

where the expectation in (52) may be calculated by the law of total expectation:

E
∫
A 1{F (Y ) ≤ p} dν(p) = 1

3

3∑
i=1

E
(∫

A
1{F (Y ) ≤ p} dνF (p)

∣∣ F = Fi

)

=
1

3

3∑
i=1

∫ ∫
A
1{Fi(y) ≤ p}dνi(p) dQi(y)

=
t1
6
δ1/4(A) +

t

6
δ1/2(A) +

t2
2
δ3/4(A).

We conclude that fℓ = pℓ for ℓ = 1, 2, 3, and hence MCBHB = 0.
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