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Abstract The Lotka-Volterra model is instrumental
for understanding the dynamic interactions between
predator and prey populations, especially as human
activities like habitat destruction, pollution, and climate
change rapidly alter living environments, making it
more important than ever to understand the underlying
mechanisms that drive population changes and to pre-
dict andmitigate the impacts of human interventions on
wildlife populations. In this study, we investigate how
periodic hunting and variations in food quantity impact
the classical Hamiltonian Lotka-Volterra model.We do
this by modeling variations in the prey reproduction
rate with a periodically varying coefficient. We aim to
understand how the system responds to these periodic
disturbances and to identify the conditions under which
the population sizes undergo significant oscillations.
Our findings suggest that specific frequencies of hunt-
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ing or food quantity variations can drive populations
out of equilibrium to dangerously low levels, increasing
the risk of extinction. The analysis is based on pertur-
bationmethods, primarily addressing the 1:1 resonance
and using action-angle variables to simplify the system
into new canonical coordinates. The results have sig-
nificant implications for understanding and managing
biological systems, offering insights that can aid in pre-
serving species by identifying critical hunting thresh-
olds and frequencies. We also give estimates for the
time period of the Lotka-Volterra model in the vicin-
ity of the nontrivial equilibrium and very far from the
equilibrium.

Keywords Lotka-Volterra model · Level-crossing ·
Action-angle coordinates · Resonance · Transient
process · Population dynamics · Hamiltonian systems

1 Introduction

The dynamic interactions between species in ecosys-
tems are complex and often involve both consumption
and predation. One of the foundational models used to
study these interactions is the Lotka-Volterra model,
which captures predator–prey dynamics through dif-
ferential equations [1]. Originally developed by Alfred
J. Lotka in 1920 [2] and independently by Vito Volterra
in 1926 [3], this model has been instrumental in under-
standing how species populations vary over time due
to their interactions.
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The Lotka-Volterra equations describe how the pop-
ulation of a prey species grows exponentially in the
absence of predators and how the predator population
declines in the absence of prey. When these species
interact, the model predicts oscillatory dynamics in
which the predator population lags behind the prey
population, resulting in cyclical variations [2,3]. These
works laid the foundation for a vast body of research
exploring various extensions and modifications of the
model to better reflect ecological systems in the real
world [1,4–8].

The model not only attracted the attention of biol-
ogists and ecologists, but also prompted mathemati-
cians to start working on it and its generalizations.
A significant extension to the classical Lotka-Volterra
model involves incorporating time-varying coefficients
to account for periodic environmental changes, such as
seasonal hunting, variations in food availability, or set-
tling and migration of species.

In [9], a decomposition-aggregation framework
using vector Lyapunov functions was proposed for sta-
bility analysis of Lotka-Volterra equations. Equations
with nonlinear time-varying coefficients were studied
to derive stability conditions for nonnegative equilibria
and analyze ultimate boundedness of motions.

Redheffer made significant theoretical contribu-
tions by providing conditions under which the Lotka-
Volterra equations have unique and stable solutions in
a generalized n-dimensional case with time-dependent
model coefficients, rigorously proving the reliability
of the model [10,11]. However, because of its gen-
eral nature, his work is very theoretical and cannot be
directly applied to practical calculations.

Táboas investigated the bifurcations of periodic
solutions in a periodically forced Lotka-Volterra
predator–prey model, focusing on the principal 1:1 res-
onance [12]. The study demonstrated that under spe-
cific conditions, the system exhibits exactly two T -
periodic solutions near the singular point, highlighting
the unique dynamics induced by the periodic forcing.

In [13], the authors numerically investigated the
periodic harvesting of one or both predator–prey
species, pointing out that theLotka-Volterramodelwith
periodic harvesting is essential for integrated farming
systemsbecause it helps optimize production andmain-
tain sustainability, allowing farmers to manage better
systems where, for example, vegetables are prey and
fish are predators, thusmaximizing the benefits of com-
bining crops with livestock [14,15].

It is well known that the Lotka-Volterra equations
have a Hamiltonian structure and admit a conserva-
tion law [16]. Plank [17] explores the Hamiltonian
structure of the Lotka-Volterra equations in both two-
dimensional and n-dimensional cases, aiming to con-
struct all possible Hamiltonian functions for the two-
dimensional Lotka-Volterra equations and extend these
functions to the n-dimensional case by choosing an
appropriate Poisson structure, with the main result that
Hamiltonian functions used in the two-dimensional
case can also be applied to the n-dimensional case,
providing a unified approach to analyzing the Hamil-
tonian dynamics of Lotka-Volterra systems across dif-
ferent dimensions.

The canonical formalism using action-angle (AA)
variables is a powerful tool in dynamical systems the-
ory, especially for analyzingHamiltonian systems [18–
21]. These variables have played a crucial role in the
derivation of important results such as the theory of adi-
abatic invariants [18], the Kolmogorov-Arnold-Moser
theorem [20,22,23] and the canonical perturbation the-
ory [20,23].

This approach is efficient for studying both
autonomous and non-autonomous Hamiltonian sys-
tems, particularly in the vicinity of the primary reso-
nance. Transforming the system into AA variables sim-
plifies the averaged differential equations by deriving
an additional conservation law, which allows analyti-
cal calculation of solutions and provides deeper insight
into the system’s behavior [24]. This method is par-
ticularly useful for describing slow-fast processes and
analyzing whether the motion escapes a specific region
of the phase space or leads to the crossing of some
predefined level of a system observable.

Recent research byGendelman et al. has focused on
the dynamics of Hamiltonian systems, exploring how
periodic perturbations can lead to escape phenomena
[25–29].

In this study, we investigate the impact of periodic
hunting and variations in food quantity on the Lotka-
Volterra model by introducing a periodically varying
coefficient. By modeling these disturbances, we aim to
understand how specific frequencies of hunting or food
quantity variations can drive populations out of equi-
librium, potentially leading to extinction. Our analy-
sis employs perturbation methods, focusing on the 1:1
resonance and using AA variables to simplify the sys-
tem into new canonical coordinates. The findings of
this study have significant implications for the preser-
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vation of species, providing insights that can aid in the
management of biological systemsmore effectively.By
identifying the frequency-dependent critical amplitude
variations of the prey reproduction rate, our research
offers valuable guidance for ecological management
and conservation efforts.

This article is structured as follows. Section2presents
the classical Lotka-Volterra equations and defines the
level-crossing problem. In Sect. 3, we reduce the prob-
lem by first transforming the equations into AA vari-
ables, followed by averaging under the assumption of
1:1 resonance. The averaged equations yield a new
integral of motion, which is used to calculate the criti-
cal forcing amplitude depending on the excitation fre-
quency. In Sect. 4, we compare the analytical results
with the numerical ones. Finally, Sect. 5 concludes
the work and provides scope for further research. In
the Appendix, additional results concerning the time
period of the unperturbed Lotka-Volterra model are
presented under the assumptions of small or very large
deviations from the equilibrium.

2 Problem setting

We investigate the Lotka-Volterra equations of the fol-
lowing form:

dX

dτ
= α̃(t)X − β̃XY, (1)

dY

dτ
= γ̃ XY − δ̃Y, (2)

where X and Y ∈ R
+
0 denote the prey and predator

population size, respectively. We assume that β̃, γ̃ , δ̃ ∈
R

+
0 . We introduce the nondimensional variables x and

y and the nondimensional time t as follows

x := γ̃

δ̃
X, y := β̃

δ̃
Y, t := δ̃τ, (3)

Equations (1) can be rewritten as

dx

dt
= α(t)x − xy, with α(t) := α̃(t)

δ̃
(4)

dy

dt
= xy − y. (5)

We assume that the nondimensional reproduction rate
of the prey species varies harmonically with time,

including a positive bias, that is,α(t) = α0− f sin(ωt+
β) with α0 ∈ R

+
0 .

We are interested in the dynamics of this system,
starting at the non-trivial equilibrium

x0 = 1, y0 = α0, (6)

which has the linearized angular eigenfrequency

Ω := √
α0. (7)

We define the critical and dangerously small popula-
tion sizes xcrit and ycrit for both species. Our study
focuses on determining the parameter values of the
excitation f, ω, andβ forwhich the population of either
species becomes dangerously low. For an example of
the time evolution of the system demonstrating nonlin-
ear effects, see Fig. 1.

For the analysis, we use the canonical AA formal-
ism. SinceEqs. (4)–(5) do not fulfill theHamilton equa-
tions

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (8)

we introduce the following change of variables

p := − ln x, q := − ln
y

Ω2 . (9)

Equations (4)–(5) become

ṗ = Ω2 (
e−q − 1

) + f sin(ωt + β), (10)

q̇ = 1 − e−p,

p(0) = 0, q(0) = 0. (11)

The Hamiltonian corresponding to Eqs. (10)–(11) is
given by

H(p, q, t) = p + e−p + Ω2 (
q + e−q) − Ω2 − 1

︸ ︷︷ ︸
=:H0(q,p)=:η

− q f sin(ωt + β)
︸ ︷︷ ︸

=: f̂ (t)
= H0(q, p) − q f̂ (t). (12)

Equations (10)–(11) cannot be solved exactly. Even
in the case of the unperturbed Lotka-Volterra model,
the explicit solution in time cannot be presented in
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Fig. 1 Large amplitude, nonlinear vibrations caused by low-amplitude oscillations in the prey reproduction rate. Equilibrium initial
conditions are used. The critical population size of both species is depicted with red dashed line. (Color figure online)

terms of known functions [12,30–32]. The exact solu-
tion to the special case with α̃0 = −δ̃ was reported in
[33]. However, this does not represent a true predator–
prey system since the predator population can per-
sist even if the prey population goes extinct. Until
recently, no explicit analytical formula has been known
for the initial-condition-dependent oscillation period
in the Lotka-Volterra system [30,34]. The transforma-
tion to canonical AA coordinates in an integral form
is provided in Appendix A. However, without explicit
formulas, a change in the AA coordinates is unfeasible
unless further simplifying assumptions aremade on the
model.

Therefore, we assume that the system’s energy
remains small, i.e., η ∈ O(ε), where we use ε to denote
a small but not exactly specified positive number that
helps to distinguish between different orders of mag-
nitudes. Then, we define the following non-small vari-
ables

E := η

ε
, P := p√

ε
, Q := q√

ε
. (13)

Further, we assume that the excitation force is small,
i.e.

f = εF, with F ∈ O(1). (14)

We also assume that the excitation frequency is close
to the linearized eigenfrequency of the system, that is,

ω = Ω(1 + √
εΔ), with Δ ∈ O(1). (15)

Then, we expand Eqs. (10)–(11) into Taylor series,
truncate the series, and neglect all terms of o(ε). The
surrogate model is given as

Ṗ = Ω2
(

−Q +
√

εQ2

2
− εQ3

6

)

+ √
εF sin(ωt + β), (16)

Q̇ = P −
√

εP2

2
+ εP3

6
,

P(0) = 0, Q(0) = 0. (17)

Eqs. (16)–(17) remain difficult to solve analytically in
closed form. Thus, we focus on the primary 1:1 res-
onance regime. The transient dynamics near the 1:1
resonance can be effectively analyzed using primary
averaging [21,35,36]. This approach can be applied in
variousways, but for generality, we employ theAA for-
malism. The approach is briefly presented here, based
on [25]. The Hamiltonian is given as
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Fig. 2 Displacement vs. energy-based critical levels (shown in
red). The critical upper levels of p and q depicted by continuous
straight lines are in fact lower limits on x and y, as indicated by
Eq. (9). The red region represents the zone where either the prey
or predator species are endangered. A theoretically stricter, but
practically almost equivalent boundary of the danger zone can be
defined in terms of the system energy, depicted by the red dashed
line. The green area enclosed by the level sets of the energy η is
linearly proportional to the action I (η). (Color figure online)

HS(Q, P, t) = P2

2
− P3

6

√
ε + P4

24
ε

+Ω2
(
Q2

2
− Q3

6

√
ε + Q4

24
ε

)

︸ ︷︷ ︸
:=H0(Q,P)=E

(18)

− Q
√

εF sin(ωt + β)

= H0(Q, P) − Q
√

εF sin(ωt + β),

(19)

where H0(p, q) = E =const. denotes the Hamiltonian
of the unperturbed, surrogate autonomous system. The
critical values of Q and P are given by

Pcrit := − ln (xcrit)√
ε

, Qcrit := −
ln

(
ycrit
Ω2

)

√
ε

. (20)

Note that reaching both critical values at the same time,
that is, P(tcrit) = Pcrit and Q(tcrit) = Qcrit is practi-
cally impossible.We can observe that if one of the coor-
dinates just reaches the critical level, which implies that
the trajectory is tangential to the critical line, the other
coordinate is close to zero (cf. Fig. 2).

Therefore, the critical energy level Ecrit canbe expressed
in terms of Pcrit and Qcrit as

Ecrit := min

(
P2
crit

2
− P3

crit

6

√
ε + P4

crit

24
ε,

Ω2

(
Q2

crit

2
− Q3

crit

6

√
ε + Q4

crit

24
ε

) )
.

(21)

For a graphical representation of the different level-
crossing definitions, see Fig. 2.

Additionally, it is important to note that xcrit and ycrit
are not only determined by Pcrit and Qcrit, but also by ε.
We can more conveniently redefine the level crossing
condition by setting Ecrit := 1/2 and choosing ε corre-
sponding to xcrit and ycrit without significantly affecting
the generality.

3 Reduction to the 1:1 resonance manifold

3.1 The general procedure

In what follows, we recapitulate the general proce-
dure for finding a first integral of the equations aver-
aged around the 1:1 resonance based on [25]. In gen-
eral, the transformation to AA variables can be made
using well-known formulas [18] for a given Hamilto-
nian H0(p, q):

I (E) = 1

2π

∮
P(Q, E)dQ, (22)

θ(E, Q) = ∂

∂ I

∫ Q

0
P(Q, I )dQ, (23)

where H0(P, Q) = E defines a constant energy level
for the unperturbed Hamiltonian H0(P, Q). By invert-
ing expressions (22)–(23), one can then obtain explicit
formulas for the canonical change of variables P =
P(I, θ) and Q = Q(I, θ). Although this procedure
is viable, it will be more convenient to calculate only
I (E) with the formula given in Eq. (22) and deter-
mine Q(E, θ) and P(E, θ) using theLinstedt-Poincaré
method.

The canonical transformation defined here does not
incorporate explicit time dependence; thus, the Hamil-
tonian of Eq. (18) is expressed in the following form in
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terms of AA variables:

HS = H0(I ) − Q(I, θ)
√

εF sin(ωt + β). (24)

Since the conservative part of Hamiltonian (18) was
used for the AA transformation, the transformed H0

does not depend on the angle variable θ . Due to the
2π -periodicity of the angle variable, Hamiltonian (18)
can be rewritten in terms of Fourier series [24,25,35]:

HS =H0(I ) −
(
AQ
0 (I ) +

∞∑

n=1

AQ
n (I ) cos(nθ)

+ BQ
n (I ) sin(nθ)

)√
εF sin(ωt + β).

(25)

The Hamilton equations then become:

İ = −∂HS

∂θ
=

( ∞∑

n=1

−AQ
n (I )n sin(nθ)

+ BQ
n (I )n cos(nθ)

)√
εF sin(ωt + β),

(26)

θ̇=∂HS

∂ I
=∂H0

∂ I
−

(
∂AQ

0 (I )

∂ I
+

∞∑

n=1

∂AQ
n (I )

∂ I
cos(nθ)

+ ∂BQ
n (I )

∂ I
sin(nθ)

)√
εF sin(ωt + β).

(27)

To address the 1:1 resonance regime, one should
assume a slow evolution of the phase shift variable
ϑ = θ − ωt − β; all other phase combinations in
Eqs. (26)–(27) should be treated as fast phase variables.
Averaging over these fast phase variables gives the fol-
lowing system of slow-flow equations:

J̇ =
√

εF

2

(
AQ
1 (J ) cosΨ + BQ

1 (J ) sinΨ
)

, (28)

Ψ̇ = ∂H0

∂ J
−

√
εF

2

(

−∂AQ
1

∂ J
sinΨ + ∂BQ

1

∂ J
cosΨ

)

.

(29)

Here, J (t) = 〈I (t)〉 is the average of the action vari-
able, and Ψ (t) = 〈ϑ(t)〉 is the average of the phase
difference over the fast phases. Direct differentiation

shows that system (28)–(29) has the followingfirst inte-
gral:

C = H0(J ) +
√

εF

2

(
AQ
1 (J ) sinΨ − BQ

1 (J ) cosΨ
)

− ωJ. (30)

Expression (30) defines a family of 1:1 resonancemani-
folds (RMs) of the system. The initial conditions deter-
mine the constant C-the values of the action and the
slow phase at which the system is captured by the RM.
Alternative to Eq. (30), one might formulate a conser-
vation lawwith respect to the averaged energy ξ = 〈E〉
as well. In this case, the first integral reads as follows.

Cξ =
√

εF

2

(
AQ
1 (J (ξ)) sinΨ − BQ

1 (J (ξ)) cosΨ
)

+ ξ − ωJ (ξ). (31)

3.2 Application to the Lotka-Volterra system

3.2.1 Calculation of the action

We proceed with calculating Eq. (22). It can be rewrit-
ten as a surface integral as

I (E) = 1

2π

∫

A
dPdQ, (32)

where A represents the area enclosed by the periodic
trajectory on the P −Q plane (cf. green area in Fig. 2).
Suppose that the boundary of ∂A is given in polar coor-
dinates by R(ϕ), then the action becomes

I (E) = 1

4π

∫ 2π

0
R2(ϕ)dϕ. (33)

To estimate R(ϕ), we use a perturbation method and
assume

R = R0 + √
εR1/2 + εR1 + . . . (34)

After rewriting H0(Q, P) from Eq. (18) into polar
coordinates using P = R cosϕ and Q = R sin ϕ,
we can insert the ansatz from Eq. (34), and solve for
R0, R1/2, . . . by collecting the corresponding terms of
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ε. Then, R2(ϕ) can be calculated and integrated result-
ing in

I (E) = E

Ω
+ Ω2 + 1

24Ω3 E2ε + o(ε). (35)

As a by-product of the calculation [18], we also obtain
the energy-dependent time period as

T (E) = 2π
dI

dE
= 2π

Ω

(
1 + Ω2 + 1

12Ω2 Eε

)
+ o(ε)

(36)

Details on the calculations can be found inAppendixB.
Although not used directly in the analysis, for com-

pleteness, see Appendix C for an asymptotic analysis
with large values of the energy.

3.2.2 Calculation of the angle

It is well-known [18], that the angle is a linear function
of the time, more specifically

θ = dE

dI
t + const. (37)

Therefore, if the trajectories of the unperturbed system
Q(t; E) and P(t; E) can be obtained by any means,
the calculation of θ as described by Eq. (23) and con-
secutive inversion to Q(θ, E) and P(θ, E) is no longer
necessary. Obtaining such a solution is possible using
the Poincaré-Linstedt method.

Suppose that the solution of Eqs. (16)–(17) with ini-
tial conditions

P(0) = P∗(E), Q(0) = 0, (38)

can be written as the following series.

P(t) = P0(t) + √
εP12(t) + εP1(t) + . . . (39)

Q(t) = Q0(t) + √
εQ12(t) + εQ1(t) + . . . (40)

Furthermore, to be able to suppress secular terms, we
reuse the letter τ to introduce the rescaled time τ = Ωεt
with

Ωε = Ω + √
εω12 + εω1 + . . . (41)

Denoting the derivatives of τ by �′, we can write Eqs.
(16)–(17) as

ΩεP
′ = Ω2

(
−Q +

√
εQ2

2
− εQ3

6

)
, (42)

ΩεQ
′ = P −

√
εP2

2
+ εP3

6
,

P(0) = P∗(E),

Q(0) = 0. (43)

Details on the solution of Eqs. (42)–(43) can be found
in Appendix D.

Note that τ is exactly 2π periodic, therefore θ ≡ τ .
In Eq. (30), only the first Fourier coefficients of Q(θ, ξ)

are needed, which are given in terms of the averaged
energy as

AQ
1 (ξ) = − 2ξ

3Ω2

√
ε − 5

√
2ξ3/2

36Ω2 ε + . . . (44)

BQ
1 (ξ) =

√
2ξ

Ω
−

√
2

(
7Ω2 + 11

)
ξ3/2

144Ω3 ε + . . . (45)

3.3 Level-crossing mechanisms

With Eqs. (35) and (44)–(45), and taking into account
the assumptions on f and ω given in Eqs. (14)–(15),
the conservation law (31) can be evaluated. Omitting
the terms of o(ε), we find

Cξ = ξ + F
√

ε

2

((

− 2ξ

3Ω2

√
ε − 5

√
2ξ3/2

36Ω2 ε

)

sinΨ

−
(√

2ξ

Ω
−

√
2

(
7Ω2 + 11

)
ξ3/2

144Ω3 ε

)

cosΨ

)

− (1 + Δ
√

ε)ξ

(
1 + Ω2 + 1

24Ω2 ξε

)
. (46)

Equation (46) can be simplified to

Cξ = −
(
F cos (Ψ )

√
2

√
ξ

2Ω
+ Δξ

)
√

ε

−
(
Fξ sin(Ψ )

3Ω2 +
(
Ω2 + 1

)
ξ2

24Ω2

)

ε + o(ε).

(47)

Omitting terms of o(ε), division by−√
ε and introduc-

ing 2N 2 := ξ to get rid of square roots yields a new
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Fig. 3 The levels sets of the integral of motion (48) for the three level-crossing mechanisms with critical forcing value Fcrit. The LPT
is shown with a green continuous line. The critical level Ncrit = 1/2 is shown with a dashed red line. (Color figure online)

Fig. 4 Critical force amplitude Fcrit depicted against the fre-
quency deviation Δ for Ω = 1 (cf. Eq. (50))

conservation law

D = F cos (Ψ ) N

Ω
+ 2N 2Δ

+
(
2N 2F sin(Ψ )

3Ω2 +
(
Ω2 + 1

)
N 4

6Ω2

)
√

ε.

(48)

In contrast to the system investigated in [26], the con-
servation law includes the parameter ε.

Expression (48) is utilized to examine the transient
dynamics on the RM further. The phase portrait on the
RM aligns with the level sets of the conservation law
(46). As stated in Eq. (21), the event of crossing the
critical energy level Ecrit = 1/2 in the averaged system
should correlate with the phase trajectory reaching the

limit

Ncrit = 1

2
(49)

for some value of the slow phase Ψcrit. Consequently,
the population size of the species will reach a danger-
ously low level if the RM trajectory, corresponding to
the chosen initial conditions, achieves Ncrit. As men-
tioned above, in this study, we focus on the trajectory
with zero initial conditions, which is often also referred
to as the limiting phase trajectory (LPT) [37–40]. From
expression (48), it follows that the LPT is defined by the
condition D = 0. We note that the LPT is not special
to this problem, and different initial conditions would
result in crossing the critical level being governed by
other phase trajectories on the RM.

Two primary mechanisms for level crossing on the
RM can be identified. The first mechanism, applicable
to positive and small negative detuning values, as well
as for large negative detuning valuesΔ, is illustrated in
Fig. 3a and c.

In this simple scenario, for F < Fcrit, the LPT does
not reach Ncrit, and the population sizes remain in the
safe region. For F > Fcrit, the LPT reaches Ncrit,
resulting in critical population sizes. At the boundary
F = Fcrit, the line N = Ncrit is tangent to the LPT
at some Ψcrit (cf. Fig. 3a and c). We will refer to this
level-crossing scenario as the maximum mechanism.

For larger negative detuning values, crossing the
critical level occurs through a more complex scenario,
as shown in Fig. 3b. In this scenario, for F < Fcrit,
the LPT stays below the saddle point on the RM,
and the population size remains in the safe zones.
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Fig. 5 Comparison of the analytical model with simulation
results generated by the surrogate Lotka-Volterra model given
by Eqs. (16)–(17). For simulations, three different values of ε

are used. Two different initial phase values {0, π} are applied in
each case. At time t = 0, the system is in (non-trivial) equilib-
rium. Ω = 1

For F > Fcrit, the level crossing occurs. The thresh-
old F = Fcrit signifies the point at which the LPT
reaches the saddle (over an infinite amount of time).
An infinitesimal increment of F causes the LPT to
approach the saddle infinitely closely.However, instead
of reaching it, the solution’s amplitude starts to grow-
initially gradually, then increasingly rapidly-eventually
reaching the critical level (cf. Fig. 1). This process is
known as the saddle mechanism.

It is worth emphasizing that the level-crossing prob-
lem of the Lotka-Volterra system with small nonlin-
earities (cf. Eqs. (16)–(17)) is primarily governed by
the maximum mechanism, with the saddle mechanism
emerging due to nonlinear perturbations. Even small
nonlinearities lead to significant changes in the sys-
tem dynamics. Due to the simplicity of the integral of
motion (48), explicit expressions can be derived for the
critical forcing depending on the frequency detuning
for both transition scenarios. The critical forcing curve
is given by

Fcrit(Δ) ≈

⎧
⎪⎪⎨

⎪⎪⎩

−ΔΩ − Ω2+1
48Ω

√
ε for Δ < Δ2,

8Ω2(−Δ)
3
2

3
√

Ω2+1
ε− 1

4 for Δ2 < Δ < Δmin,

ΔΩ + Ω2+1
48Ω

√
ε for Δmin < Δ,

(50)

with the interval boundaries

Δmin ≈ −
(
Ω2 + 1

)

64Ω2

√
ε, Δ2 ≈ −

(
Ω2 + 1

)

16Ω2

√
ε.

(51)

The minimally needed force amplitude is given at the
intersection of the saddle and the right branch of the
maximum mechanism at Δcrit,min as

Fcrit,min ≈
(
Ω2 + 1

)

192Ω

√
ε (52)

For the detailed derivation of the critical forcing curve,
seeAppendix E. For ε = 0.1, the critical force is shown
inFig. 4. The results showqualitative similarity to those
found in [26], with the difference that the bookkeeping
parameter ε remains in the expression.

4 Numerical results and model validation

This section presents the numerical results and vali-
dates the model using various analyses. First, we per-
form an analysis using the surrogate model given in
Eqs. (16)–(17) with Ω = 1, ε = {0.05, 0.1, 0.5} and
for the initial phase excitation values of β = {0, π/2}.
The results are depicted in Fig. 5, illustrating the critical
force curves Fcrit(Δ).

In Fig. 6, the same analysis is performed, butwith the
original model, given in Eqs. (10)–(11), for the same
initial phase values but with Ω = 2.

The results indicate a good agreement between the
analytical and numerical models for smaller values of
ε, and even for ε = 0.5, the agreement remains reason-
ably good. The analytical model can predict significant
variations in the system, potentially reducing the pop-
ulation size by half (cf. Fig. 1), which is a substantial
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Fig. 6 Comparison of the analytical model with simulation
results generated by the original Lotka-Volterra model given by
Eqs. (4)–(5). For simulations, three different values of ε are used.

Two different initial phase values {0, π} are applied in each case.
At time t = 0, the system is in (non-trivial) equilibrium. Ω = 2

Fig. 7 Level-crossing time of the Lotka-Volterra model with
periodic variations depicted against the excitation frequency ω

and excitation amplitude F for initial phase β = π/2, Ω = 1
and equilibrium initial conditions. The critical population size is
taken to be 10% of the equilibrium population size. The simula-
tions are integrated up to tend = 500

impact. We can observe that in the vicinity of the mini-
mumcritical force Fcrit,min, the effect of the excitation’s
initial phase, as predicted by the analytical model, is
negligible.

Finally, in Fig. 7, numerical simulation results of
the level-crossing time of the original Lotka-Volterra
model depicted against the excitation frequency and
amplitude are shown with Ω = 1 for a critical popu-
lation size xcrit = ycrit = 0.1. Strong nonlinear effects
can be observed further away from the minimum, such
as fractal-like boundary and sub- and superharmonic
resonances. However, even in the strongly nonlinear
system, no chaos is observed around the sharpV-shaped
minimum at these levels of the critical population sizes.

5 Conclusions and scope for future research

In this study, we examined the effects of seasonal vari-
ations on the reproductive rates of prey species. These
variations can result from various factors such as hunt-
ing, temporal variations in food availability, disease, or
other causes that lead to population oscillations. Our
findings indicate that significant amplitude variations
can arise when the system is initiated at equilibrium.
These variations have a dual impact: they can jeopar-
dize the population by driving it to critically low levels,
but they also offer potential control mechanisms. For
example, regulated hunting could mitigate these varia-
tions, thereby reducing excitation within the system.

The implications of these results extend to integrated
farming models where predator and prey species are
co-farmed. Strategic harvesting of one or both species
can optimize farm yield in such systems. Addition-
ally, our research demonstrates that converting to AA
variables and subsequent averaging around the princi-
pal resonant manifold traditionally applied to naturally
Hamiltonian systems, such as mechanical ones being
quadratic in momenta, can be effectively applied to any
Hamiltonian system. Specifically, we have shown that
this approach applies to the Lotka-Volterra model, a
non-naturally Hamiltonian system.

Our analysis revealed a pronounced minimum in
the critical forcing amplitude when initial conditions
commence at equilibrium, reflecting results observed
in the previous literature. Looking ahead, several new
research directions emerge from our findings. A nat-
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ural extension is to analyze the dynamical integrity
of the Lotka-Volterra system by incorporating non-
equilibrium initial conditions, which involves studying
the safe basins of the dynamics and sensitivity to exci-
tation amplitude and frequency [41].

Based on Fig. 7, it may be worthwhile to investigate
the 2:1 resonance within the same model. A similar V-
shaped curve appears around an excitation frequency
that is twice the frequency of themain resonance, inves-
tigated in the current paper.

Furthermore, the hybrid approach to transitioning
from the original coordinates to the action and angle
coordinates, where the angle variable is treated as a
stretched time, offers a new perspective. This method
is suitable for small perturbations using the Linstedt-
Poincaré method and may also work for larger non-
linearities if the exact solution of the basic Hamilto-
nian can still be computed, allowing for an extension
of the method for other Hamiltonian systems (e.g., epi-
demology [42,43]). These systems, characterized by
conservation laws that can be interpretable as energy,
can benefit from the analysis performed here.

In conclusion, our research provides a framework for
understanding and controlling population variations in
predator–prey systems and offers insights for broader
applications across various scientific disciplines deal-
ing with ordinary differential equations.
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Appendices

Appendix A: Conversion to AA coordinates of the
strongly-nonlinear LV system

We start with the Hamiltonian given by

H(q, p) = p + e−p + Ω2 (
q + e−q) − α − 1 = η.

(53)

By isolating p, we have:

p + e−p = η + Ω2 + 1 − Ω2 (
q + e−q) =: z(η, q).

(54)

To solve this equation, we transform it into the standard
form for theLambertW function. Let x = −e−p . Then,
we have:

xex = −e−z . (55)

TheLambertW function gives the solution to this equa-
tion [44]:

x = Wn
(−e−z) . (56)

Substituting back for x , we obtain:

p = − ln(−x) = ln

(
1

−Wn
(−e−z

)

)

. (57)

Alternatively, we can express p directly in terms of the
Lambert W function [44]:

p = Wn
(−e−z) + z. (58)

In our specific case, z is real. Hence, the branches
W−1 and W0 of the Lambert W function are sufficient
to describe our solutions corresponding to p−(q) and
p+(q), respectively (cf. Fig. 8).

We define

μ := η

Ω2 + 1. (59)
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Fig. 8 The functions p−(q) and p+(q)

The extremal values of q are given by:

qmin = W−1
(−e−μ

) + μ, (60)

qmax = W0
(−e−μ

) + μ. (61)

The action I (η) can be written as:

I (η) = 1

2π

∮
p(q, η)dq (62)

= 1

2π

∫ qmax

qmin

(p+(q, η) − p−(q, η)) dq. (63)

Substituting the expressions for p+ and p−:

I (η) = 1

2π

∫ qmax

qmin

W0
(−e−z) − W−1

(−e−z) dq.

(64)

Similarly, the angle variable θ is given by:

θ(q, η) = dη

d I

∫ q

0

∂p(q, η)

∂η
dq. (65)

With the expression for p:

θ(q, η) = dη

d I

∫ q

0

1

1 + Wn
(−e−z

)dq. (66)

Despite these manipulations, no analytical solution
could be found for these integrals. Finding the integrals
would be equivalent to finding the explicit analytical
solution of the Lotka-Volterra equations. The closest
attempt in the literature with Ω = 1 can be found in
[31].

Appendix B: Calculation of the action for small
energy values

We start by rewriting the Hamiltonian of the unper-
turbed surrogate problem given by H0 in polar coordi-
nates by inserting P = R cosϕ and Q = R sin ϕ:

H0(Q, P)= R2 cos2 ϕ

2
−√

ε
R3 cos3 ϕ

6
+ε

R4 cos4 ϕ

24

+ Ω2
(
R2 sin2 ϕ

2
− √

ε
R3 cos3 ϕ

6

+ ε
R4 cos4 ϕ

24

)
= E . (67)

We define:

A(ϕ) := cos4 ϕ + α sin4 ϕ

24
, (68)

B(ϕ) := cos3 ϕ + α sin3 ϕ

6
, (69)

C(ϕ) := cos2 ϕ + α sin2 ϕ

2
(70)

Thus, we have:

A(ϕ)R4ε − B(ϕ)R3√ε + C(ϕ)R2 = E . (71)

Assuming R = R0+√
εR1/2+εR1+. . ., we substitute

in Eq. (71) and collect the terms of ε0, ε1/2, ε resulting
in

CR2
0 −E

+(2CR1/2R0 − BR3
0)

√
ε

+(AR4
0 − 3BR1/2R

2
0 + CR2

1/2 + 2CR0R1)ε + . . .

= 0. (72)

Solving for R0, R1/2, R1, we find:

R0=
√
E√
C

, R1/2= BE

2C2 , R1 = 5B2 − 4AC

8C7/2 E3/2.

(73)

Thus, the radius R and its square R2 are given by:

R=
√
E√
C

+ B

2C2 E
√

ε+5B2−4AC

8C7/2 E3/2ε+O(ε3/2),

(74)

R2 = E

C
+ BE3/2

C5/2

√
ε

+
(

B2

4C4 + 5B2 − 4AC

4C4

)
E2ε
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+ O(ε3/2). (75)

The action becomes:

I (E) = 1

2π

∫ 2π

0

R2(ϕ)

2
dϕ

= 1

4π

∫ 2π

0

(
E

C
+ BE3/2

C5/2

√
ε

+
(

B2

4C4+5B2−4AC

4C4

)
E2ε

)
dϕ+O(ε3/2)

(76)

I (E) = E

Ω
+ Ω2 + 1

24Ω3 E2ε

+ o(ε). (77)

Finally, the period T is given by:

T = 2π
dI

dE
= 2π

Ω

(
1 + Ω2 + 1

12Ω2 Eε

)
+ o(ε). (78)

Appendix C: Calculation of the action for large
energy values

In Appendix A, the action was given as an integral,
but its explicit value remained unknown since we
were unable to evaluate the integral in a closed form.
In Appendix B, we determined the action for small
energy values. Now, we analyze the case where the
energy is large, i.e. H0(p, q) = η � 1, allowing for
some assumptions about the function H0(p, q). Since
I = Area/2π , we focus on finding the area enclosed
by the curve defined by H0(p, q) = η. We define the
total area into three different sections as shown in Fig. 9

We approximate the three parts one by one under
different assumptions:

• A1: q � e−q ,
• A2: p � e−p,
• A3: q � e−q and p � e−p.

Under these assumptions, H0(p, q) = η can be sim-
plified to the following equations.

q1(p) ≈ η + 1 + Ω2 − p − e−p

Ω2 , (79)

p2(q) ≈ η + 1 + Ω2 − Ω2 (
q + e−q) , (80)

q3(p) ≈ − ln
(
η + 1 + Ω2 − e−p

)
+ 2 lnΩ. (81)

Fig. 9 Dividing the area enclosed by the unperturbed Hamilto-
nian H0(p, q) into different parts

Fig. 10 Surrogate boundaries for H0(p, q) = η = 25 and Ω =
1

p−
1 , p+

1 , q−
2 and p−

3 denote the positive and negative
roots of each equations, respectively. Equations (79)–
(81) are depicted in Fig. 10 for η = 25 and Ω = 1.

The areas are given by the integrals:

A1 =
∫ p+

1

p−
1

q1(p) dp, A2 =
∫ 0

q−
2

p2(q) dq,

A3 = −
∫ 0

p−
3

q3(p) dp, (82)

where:

p−
1 := W−1

(
−e−η−Ω2−1

)
+ η + Ω2 + 1, (83)

p+
1 := W0

(
−e−η−Ω2−1

)
+ η + Ω2 + 1, (84)

123



A. Genda et al.

q−
2 := W−1

(
−e− η+Ω2+1

Ω2

)
+ η + Ω2 + 1

Ω2 , (85)

p−
3 := − ln(η + 1). (86)

The areas become

A1 =
[
η + 1 + Ω2

Ω2 p − p2

2Ω2 + e−p

Ω2

]p+
1

p−
1

, (87)

A2 =
[
(η + 1 + Ω2)q − Ω2

(
q2

2
− e−q

)]0

q−
2

, (88)

A3 =
[
Li2

(
e−p

η + 1 + Ω2

)
+ p ln

η + 1 + Ω2

Ω2

]0

p−
3

.

(89)

where Lin(x) denotes the dilogarithm, defined as

Li2(z) := −
∫ z

0

ln(1 − t)

t
dt. (90)

After the insertion of the integral boundaries and sub-
sequent simplifications, the areas become:

A1(η) = 1

2Ω2

(
W 2−1(−e−B) + 2W−1(−e−B)

− W 2
0 (−e−B) − 2W0(−e−B)

)
, (91)

A2(η) = Ω2

(

1 − C2

2
+ W 2−1(−e−C )

2
+ W−1(−e−C )

)

,

(92)

A3(η) = Li2

(
1

η + 1 + Ω2

)
− Li2

(
η + 1

η + 1 + Ω2

)

+ ln(η + 1) ln
η + 1 + Ω2

Ω2 , (93)

with

B := η + Ω2 + 1, C := η + Ω2 + 1

Ω2 . (94)

The time period is given by:

T = dA

dη
= d(A1 + A2 + A3)

dη
. (95)

After differentiation and simplification, we get:

dA1

dη
=

W0

(
−e−η−1−Ω2

)
− W−1

(
−e−η−1−Ω2

)

Ω2 ,

(96)

dA2

dη
= −

η + 1 + Ω2 + Ω2W−1

(
−e− η+1+Ω2

Ω2

)

Ω2 ,

(97)

dA3

dη
=

ln
(

(η+1)η
Ω2 + η + 1

)

η + Ω2 + 1
. (98)

Assuming large values of η, we can focus on the
asymptotic behavior by taking only the leading-order
terms [45]:

dA1

dη
= η

Ω2+ ln(η + 1+Ω2)

Ω2 +1 + Ω2

Ω2 +O

(
ln η

η

)
,

(99)

dA2

dη
= ln

(
η + 1 + Ω2

)

Ω2 − 2 lnΩ

Ω2 + O

(
ln η

η

)
,

(100)

dA3

dη
= O

(
ln η

η

)
. (101)

In total, for the asymptote, we have:

TA ≈ η

Ω2 + 2

Ω2 ln(η + 1 + Ω2)

+ 1 + 1

Ω2 − 2
lnΩ

Ω2 + O

(
ln η

η

)
, (102)

which differs in the leading-order term from the time
period obtained for small values of the energy being
η/Ω .

Figures 11 and 12 compare the exact time peri-
ods found numerically with the analytical estimates
for small η (cf. Equation (78)), for large η (cf. Equa-
tion (95)), and for the asymptotic expansion of Eq.
(95) given by Eq. (102), with two different values for
Ω = {1, 2}. We can see a good agreement with the
exact numerical data for η values where the assump-
tions of the calculations are met, respectively. In the
particular case of Ω = 1, the estimate for small η

remains valid even for large values of η.
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Fig. 11 Log-log plot of the time period of the solution depicted
against the energy η for Ω = 1. In this special case, the analytic
estimate for small energy values (cf. Equation (78)) also works
well even if η is large

Fig. 12 Log-log plot of the time period of the solution depicted
against the energy η for Ω = 2. The analytic estimate for small
energy values (cf. Equation (78)) does not work for large η values

Appendix D: Solution of the unperturbed system
with the Poincaré-Linstedt method

Based on Eqs. (16)–(17), the unperturbed system is
given by

Ṗ ≈ Ω2
(

−Q +
√

εQ2

2
− εQ3

6

)
, (103)

Q̇ ≈ P −
√

εP2

2
+ εP3

6
, (104)

We apply the Poincaré-Lindstedt method, assuming:

Ωε = Ω + √
εω1/2 + εω1 + . . . , (105)

P(t) = P0(t) + √
εP1/2(t) + εP1(t) + . . . , (106)

Q(t) = Q0(t) + √
εQ1/2(t) + εQ1(t) + . . . . (107)

Inserting these expansions into the equations, we col-
lect the terms of different orders of magnitudes:

ε0 : P ′
0 = −ΩQ0, Q′

0 = 1

Ω
P0, (108)

ε1/2 : P ′
1/2 = −ΩQ1/2 − ω1/2

Ω
P ′
0 + Ω

2
Q2

0, (109)

Q′
1/2 = 1

Ω
P1/2 − ω1/2

Ω
Q′

0 − P2
0

2Ω
, (110)

ε1 : P ′
1 = −ΩQ1 − ω1/2

Ω
P ′
1/2 − ω1

Ω
P ′
0

+ ΩQ0Q1/2 − ΩQ3
0

6
, (111)

Q′
1 = 1

Ω
P1 − ω1/2

Ω
Q′

1/2 − ω1

Ω
Q′

0

− Q0Q1/2

Ω
+ Q3

0

6Ω
. (112)

The initial conditions are:

P0(0) = P∗(E), Q0(0) = 0,

P1/2(0) = 0, Q1/2(0) = 0,

P1(0) = 0, Q1(0) = 0.

The leading order system with ε0 has the solution:

P0(τ ) = P∗ cos(τ ), Q0(τ ) = P∗
Ω

sin(τ ). (113)

Thus, we have the following inhomogeneous linear
ODES for ε1/2.

P ′
12 = −ΩQ12 + P∗ω12 sin τ

Ω
+ P2∗ sin2 τ

2Ω
(114)

Q′
12 = 1

Ω
P12 − P∗ cos τω12

Ω2 − P2∗ cos2 τ

2Ω
. (115)

We set ω1/2 = 0 to suppress secular terms.
Continuing in this manner, we find solutions for

P1/2(τ ), Q1/2(τ ), P1(τ ), and Q1(τ ), eventually lead-
ing to the expression for ω1:

ω1 := − P2∗ (Ω2 + 1)

24Ω
, (116)

in order to suppress further secular terms. Finally, com-
bining all orders and noting that the solution in τ is
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periodic in 2π , i.e., θ ≡ τ , the solution in terms of
Fourier series of the angle is obtained as

P(E, θ) = AP
0 +

∞∑

n=1

(
AP
n cos(nθ) + BP

n sin(nθ)
)

,

(117)

Q(E, θ) = AQ
0 +

∞∑

n=1

(
AQ
n cos(nθ) + BQ

n sin(nθ)
)

.

(118)

We truncate the expansion at n = 3, as any further
terms have only a contribution of o(ε).

P(P∗(E), θ) = P2∗ (−εP∗ + 3
√

ε)

12
− P∗(−13Ω2P2∗ ε + 48

√
εΩ2P∗ + 23εP2∗ − 288Ω2)

288Ω2 cos(θ)

+ P2∗ (−3εP∗ + 8
√

ε)

24Ω
sin(θ)

P2∗ (−Ω2P∗ε + 3
√

εΩ2 − 4εP∗)
36Ω2 cos(2θ)

− P2∗
√

ε

6Ω
sin(2θ) + P3∗ ε(Ω2 − 3)

96Ω2 cos(3θ) + P3∗ ε

24Ω
sin(3θ) + o(ε), (119)

Q(P∗(E), θ) = 1

12

P2∗
Ω2 (−εP∗ + 3ε1/2)

− 1

24

P2∗
Ω2 (−εP∗ + 8ε1/2) cos(θ)

− 1

288

P∗(−Ω2P2∗ ε+48ε1/2Ω2P∗+11εP2∗ −288Ω2)

Ω3 sin(θ)

+ 1

12

P2∗
Ω2 (εP∗ + ε1/2) cos(2θ)

− 1

18

P2∗ (−Ω2P∗ε + 3ε1/2Ω2 − εP∗)
Ω3 sin(2θ)

− 1

24

P3∗
Ω2 ε cos(3θ)

+ 1

96

P3∗ ε(3Ω2 − 1)

Ω3 sin(3θ). (120)

Assuming 1:1 resonance in Eqs. (26)–(27), the rel-
evant coefficients are only AQ

1 (E) and BQ
1 (E). From

P2∗
2

− √
ε
P3∗
6

+ ε
P4∗
24

= E, (121)

we can express P∗ as follows.

P∗ ≈ √
2E + E

3

√
ε +

√
2E3/2

18
ε + o(ε), (122)

which yields

AQ
1 (E) = − 2E

3Ω2

√
ε − 5

√
2E3/2

36Ω2 ε + . . . (123)

BQ
1 (E) =

√
2E

Ω
−

√
2

(
7Ω2 + 11

)
E3/2

144Ω3 ε + . . .

(124)

Appendix E: Obtaining the critical force curve

E.1 Maximum mechanism

In the case of the maximummechanism, the maximum
value of N along its trajectory reaches a predefined

threshold Nmax = 1/2 at its maximum. Since N (Ψ )

is smooth at the maximum, the curve is tangent to the
critical level line Nmax. Since we focus on the initial
equilibrium conditions, we also know the value of the
first integral at the maximum: D = 0. To find the crit-
ical force using the maximum mechanism, we start by
solving the following equation.

∂N

∂Ψ

∣∣∣
Ψ1,2

= ∂D

∂Ψ

∣∣∣
Ψ1,2(N )

= 0. (125)

Next, we solve:

D(Nmax, Ψ1,2(Nmax); Fcrit)
∣∣∣
Nmax= 1

2

= 0, (126)

which yields the critical force Fcrit,MM(Δ,Ω, ε). From
condition ∂D

∂Ψ
= 0, we get:

2FN 2 cos(Ψ )
√

ε − F sin(Ψ )N

Ω
= 0 (127)

Solving for Ψ1,2:

Ψ1,2 =
⎧
⎨

⎩

arctan
(
2N

√
ε

3Ω

)
,

arctan
(
2N

√
ε

3Ω

)
+ π.

(128)

Inserting Nmax = 1
2 into D(Nmax, Ψ1,2) = 0, we

find:
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Fcrit,MM,1,2 = ±48ΔΩ2 + √
ε(Ω2 + 1)

16
√
9Ω2 + ε

(129)

≈
{

−ΔΩ − Ω2+1
48Ω

√
ε + O(ε)

ΔΩ + Ω2+1
48Ω

√
ε + O(ε)

(130)

E.2 Saddle mechanism

The saddle mechanism is more intricate than the maxi-
mummechanism. We have to solve the three equations
to find the critical force in this case. Since D(N , Ψ ) is
smooth, the saddle must fulfill

∂D

∂Ψ

∣∣
∣
Nsaddle,Ψsaddle

= 0, (131)

∂D

∂N

∣∣
∣
Nsaddle,Ψsaddle

= 0. (132)

The third equation is given by the condition that the
LPT goes through the saddle, i.e.

D(Nsaddle, Ψsaddle; Fcrit) = 0. (133)

Eq. (131) is the same as Eq. (125) and produces the
same two roots as given in Eq. (128). However, it can
be shown that Ψsaddle = Ψ1.

If Dsaddle < 0, the level sets of D = 0 are not
connected, they fall apart in two closed contours with
values below Nsaddle and another with values above
Nsaddle. At the moment the value Dsaddle becomes 0
(cf. Fig. 3b), the two distinct contours unite and the
trajectory reaches Nmax = 1/2, if condition (129) is
also met. It is important to note that a saddle does not
exist for all Δ values. Equation (132) yields

−2
√

ε

3

(
Ω2 + 1

Ω2

)
N 3
saddle − 8FN 2

saddleε

3Ω2
√
4N 2

saddleε + 9Ω2

− 4ΔNsaddle − 3F
√
4N 2

saddleε + 9Ω2
= 0,

(134)

where as Eq. (133) yields

(Ω2 + 1)N 4
saddle

6Ω2

√
ε + 2N 2

saddleΔ

Ω2

+ Fcrit cos(Ψ1)Nsaddle = 0
(135)

Division of Eq. (135) by Nsaddle and elimination of
N 3
saddle from Eqs. (134)–(135) yields the solution for

Fcrit

Fcrit(Nsaddle) = −
12ΔNsaddle Ω2

√
4N 2

saddleε + 9Ω2

8N 2
saddleε + 27Ω2

(136)

Nsaddle =
√
3

√

ε
3
2
√
3

√
Ω2 + 1

√
−ε

(
128Δ

√
ε − 27Ω2 − 27

) − 9ε2
(
Ω2 + 1

)
Ω

4
√

Ω2 + 1 ε
3
2

(137)

Insertion of Eq. (137) in Eq. (136) yields a very long
expression that is difficult to interpret. However, a
series expansion in ε yields the simple expression

Fcrit,SM = 8Ω2(−Δ)3/2

3
√

Ω2 + 1
ε−1/4 + o(ε−1/4), (138)

defining the smallest values of the excitation amplitude
dictated by the saddle mechanism.

E.3 Smallest possible force value leading to level cross-
ing

The smallest possible force value causing the crossing
of the critical level Nmax is

Fcrit,min=Ω2+1

192Ω

√
ε, taken at Δmin= − Ω2+1

64Ω2

√
ε,

(139)

where the right branch of the maximum mechanism
and the saddle mechanism intersect (cf. Fig. 4), which
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is also the value of the frequency shiftΔwhere the right
branch of themaximummechanism becomesmore sig-
nificant than the saddle mechanism.

The left branch of the maximummechanism is more
significant than the saddle mechanism if Nsaddle >

Nmax = 1/2, in which case reaching the saddle
already implies reaching the critical level. This tran-
sition occurs at

Δ2 = −
(
Ω2 + 1

)

16Ω2

√
ε, (140)

with the critical force value

Fcrit,2 =
(
Ω2 + 1

) √
ε

24Ω
. (141)

Thus, the whole critical force amplitude curve is given
by:

Fcrit(Δ) =

⎧
⎪⎪⎨

⎪⎪⎩

−ΔΩ − Ω2+1
48Ω

√
ε for Δ < Δ2,

8Ω2(−Δ)3/2

3
√

Ω2+1
ε−1/4 for Δ2 < Δ < Δmin,

ΔΩ+Ω2+1
48Ω

√
ε for Δmin < Δ.

(142)
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