KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning Based Prediction of Thermal History During The Laser-Based Powder Bed Fusion (PBF-LB) Additive Manufacturing Process

Schüßler, Philipp ORCID iD icon 1; Schulze, Volker 1; Dietrich, Stefan ORCID iD icon 1
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract:

Laser-Based Powder Bed Fusion (PBF-LB) is a key technology in additive manufacturing (AM) for metals, offering a high degree of design freedom for complex geometries. Accurate modeling of the thermal history and resulting material properties is critical, especially for steels with solid-state phase transformations. This research integrates high-fidelity multi-scale finite element method (FEM) simulations and long-short term memory recurrent neural networks (RNNLSTM) to efficiently predict thermal histories. The RNN-LSTM model, trained on FEM-generated data, demonstrated high prediction accuracy for demonstrators of different sizes. The performance of the model was trained and evaluated for three datasets, with the steady-state dataset yielding the highest prediction accuracy. This approach can improve material characterization in PBF-LB, optimize printing strategies, and elucidate the relationship between process parameters and the resulting microstructure.

Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 10.01.2025
Sprache Englisch
Identifikator KITopen-ID: 1000177889
Erschienen in Solid Freeform Fabrication Symposium
Veranstaltung 35th Solid Freeform Fabrication Symposium (2024), Austin, Texas, USA, 11.08.2024 – 14.08.2024
Verlag University of Texas at Austin
Seiten 818-826
Externe Relationen Abstract/Volltext

Originalveröffentlichung
DOI: 10.26153/tsw/58117
Seitenaufrufe: 16
seit 07.02.2025
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page