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Abstract
Recently, combinations of generative and Bayesian deep learning have been introduced in particle
physics for both fast detector simulation and inference tasks. These neural networks aim to
quantify the uncertainty on the generated distribution originating from limited training statistics.
The interpretation of a distribution-wide uncertainty however remains ill-defined. We show a clear
scheme for quantifying the calibration of Bayesian generative machine learning models. For a
Continuous Normalizing Flow applied to a low-dimensional toy example, we evaluate the
calibration of Bayesian uncertainties from either a mean-field Gaussian weight posterior, or Monte
Carlo sampling network weights, to gauge their behaviour on unsteady distribution edges. Well
calibrated uncertainties can then be used to roughly estimate the number of uncorrelated truth
samples that are equivalent to the generated sample and clearly indicate data amplification for
smooth features of the distribution.

1. Introduction

The upcoming high-luminosity runs of the LHC will push the quantitative frontier of data taking to over
25-times its current rates. To ensure precision gains from such high statistics, this increase in experimental
data needs to be met by an equal amount of simulation. The required computational power is predicted to
outgrow the increase in budget in the coming years [1, 2]. One solution to this predicament is the
augmentation of the expensive, Monte Carlo-based, simulation chain with generative machine learning. A
special focus is often put on the costly detector simulation [3, 4].

This approach is only viable under the assumption that the generated data is not statistically limited to
the size of the simulated training data. Previous studies have shown, for both toy data [5] and calorimeter
images [6], that samples generated with generative neural networks can surpass the training statistics due to
powerful interpolation abilities of the network in data space. These studies rely on comparing a distance
measure between histograms of generated data and true hold-out data to the distance between smaller,
statistically limited sets of Monte Carlo data and the hold-out set. The phenomenon of a generative model
surpassing the precision of its training set is also known as amplification. While interesting in theory and
crucial for the pursuit of the amplification approach, these studies can not be performed in experimental
applications as they rely on large validation sets multiple orders of magnitude bigger than the training data.

Recently, generative architectures employing Bayesian network weight posteriors have been applied to
event generation [7] allowing the generation of sets of data with a corresponding uncertainty on the
generated data distribution. In the limit of large generated sets, this uncertainty is entirely based in the
statistical limitations of the training data. For well calibrated uncertainty predictions, this raises the question
whether an estimate of statistical power of the generated data can be formed from the uncertainty prediction
itself. In this paper,
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• we introduce a technique for quantifying the calibration of Bayesian uncertainties on generative neural
networks based on the mean coverage of the prediction.

• We then develop an estimate of the number of simulated truth eventsmatching the generated set in statistical
power and validate this estimate.

For applications where the uncertainty calibration can be ensured, for example by evaluating on a validation
region, this approach gives an inherent quantification of the significance of a generated set.

In Bayesian neural networks (BNNs) and beyond, calibrating uncertainty quantification is crucial for
correct application of the prediction results [8]. While we prefer the uncertainties to align perfectly with the
prediction error, overconfident predictions will lead to inflated significance values and false discoveries.
Underconfident predictions on the other hand will obscure findings, but not lead to false results and can thus
be tolerated to small extend.

Bayesian generative machine learning is inherently different from other BNNs in particle physics
applications such as regression [9] or classification [10, 11]. Notably, in generative modeling, a low density
region of data cannot be understood as low training statistics, but rather as a feature of the data that has to
reproduced by the network. The uncertainty estimate thus behaves similarly to a low-dimensional,
parameterized fit [12] introducing high error estimates at steep features of the data distribution or whenever
the function class induced by the network architecture is not sufficient to reproduce the data. In a subsequent
study of the quality of event generators [13], the authors also connect low uncertainty to good performance
of the posterior mean in terms of a classifier test, but find that the weight distribution of a classifier is more
sensitive to diverse failure modes than the Bayesian uncertainty.

In section 2, we will explain the basic concepts of BNNs, while the connection to generative machine
learning will be made in section 3. We introduce the toy data, as well as the employed binning in section 4
and use them to evaluate the calibration of two different classes of BNNs in section 5. The idea of employing
the Bayesian uncertainties for amplification is developed and deployed in section 6, before we conclude in
section 7.

2. BNNs

In contrast to traditional, frequentist deep neural networks, in a Bayesian phrasing of deep learning, a
distribution on the network weights is applied. This distribution encodes the belief in the occurrence of the
weight configuration θ. This, so called posterior distribution

π (θ|D) =
π (D|θ) π (θ)

π (D)
(2.1)

is formed from our prior beliefs π(θ) and the likelihood π(D|θ) of the dataD under the model. While the
likelihood gives the probability of the data given its modelling through the network and thus encodes the
data inherent distribution (aleatoric uncertainty), the posterior distribution provides the uncertainty due to
a lack of data (epistemic uncertainty) [14].

Multiple methods of accessing the posterior distribution exist. For a broad overview over the existing
techniques, we refer the readers to [8, 14–16]. They can mostly be classified as either approximating or
sampling the posterior.

One popular option is approximating the posterior as an uncorrelated Gaussian distribution by learning
a mean and a standard deviation per network weight. These parameters of the approximation are then
inferred with (stochastic) variational inference. This technique is also referred to as ‘Bayes-by-Backprop’ [17]
or within High-Energy Physics often understood as ‘Bayesian Neural Networks’. We will refer to it as
‘Variational Inference Bayes’(VIB).

For sampling the posterior, Markov Chain Monte Carlo (MCMC) methods are employed, with full
Hamiltonian Monte Carlo (HMC) often considered the gold-standard [18]. To adapt this class of methods to
the large datasets and high dimensional parameter spaces of deep learning stochastic and gradient-based
chains have been developed. Most notably among them are stochastic gradient HMC [19] and its variations.
Due to its easy application to different machine learning tasks and great performance on previous generative
applications [20], we use AdamMCMC [21] as one instance of MCMC-based Bayesian inference of network
weights.

With access to the posterior distribution of a neural network fθ(x) = y, we can generate the network
prediction as the posterior mean prediction and its uncertainty prediction as

ŷ=

ˆ
dθπ (θ|D) fθ (x) and σ2

ŷ =

ˆ
dθπ (θ|D) [ fθ (x)− ŷ]2 . (2.2)

2
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Here, the integration is approximated as a summation over an ensemble of network weights obtained from
the posterior directly via sampling or from its approximation.

For generative machine learning, a per-sample uncertainty cannot be evaluated due to the unsupervised
setup of the problem. We thus generate sets of data with every network weight instance in the ensemble,
calculate histograms for each set and report the mean and standard deviation per bin over all sets. This
allows us to compare against the expected truth values in each histogram bin.

3. Bayesian continuous normalizing flows (CNFs)

Generative models of various flavours have been applied for fast simulation of detector effects [3, 4].
Meanwhile, Normalizing Flows, both block-based [22] and continuous [23], can be connected to Bayesian
machine learning straight-forwardly, as the log-likelihood of the model is accessible. Due to the recent
success of diffusion-style models in detector emulation [24–29] and their high data efficiency, we combine
both and concentrate on CNFs in this study.

Let x ∈ Rd be a point in the data setD. Following [30] , we first introduce the flowmapping
ϕt : [0,1]×Rd → Rd parameterized by a time parameter t ∈ [0,1]. In analogy to the application of multiple
blocks in a coupling-block flow [22], the change of the flow mapping between target and latent space is
determined by an ordinary differential equation (ODE)

d

dt
ϕt (x) = vt (ϕt (x)) , ϕ0 (x) = x, (3.1)

through a time dependent vector-field vt : [0,1]×Rd → Rd. For Diffusion Models this differential equation is
promoted to a stochastic differential equation through the addition of time-dependent noise. For both cases,
the vector-field is approximated using a deep neural network

ṽt (·,θ)≈ vt.

By convention, the flow is constructed to model latent data from a standard Gaussian at t= 0 and
detector/toy data at t= 1. This defines the the boundaries of the probability path induced by the flow
mapping

pt (x) = p0
(
ϕ−1
t (x)

)
det

(
∂ϕ−1

t (x)

∂x

)
. (3.2)

To circumvent solving the ODE to calculate the likelihood of the input data during training, we employ
conditional flow matching (CFM) [30]. Instead of the arduous ODE solving, the CFM loss objective matches
the neural network predictions ṽt(x;θ) to an analytical solution ut, by minimizing their respective
mean-squared distance

LCFM(θ) = Et,q(x1),pt(x|x1) ∥ut(x|x1)− ṽt(x;θ))∥2 . (3.3)

The expectation value is calculated by sampling t∼ U(0,1), x1 ∼ q and x∼ pt(·|x1), with q the probability
distribution of the detector/toy data. An efficient and powerful choice of ut is the optimal transport
path [30]. By applying a Gaussian conditional probability path the CFM loss objective reduces to

LCFM(θ) = Et,q(x1),p(x0)

∥∥∥(x1 − (1−σmin)x0)− ṽt(σtx0 +µt;θ))
∥∥∥2. (3.4)

Here, we use the conventions µt = tx1 and σt = 1− (1−σmin)t, as well as the Gaussian latent distribution
p(x0) =N (0,1) and a small parameter σmin, that mimics the noise level of the training data.

3.1. VIB
The parameters of an approximation π̃(θ) of the posterior distribution π(θ|D) can be inferred, by
minimizing their Kullback–Leibler (KL) divergence using stochastic gradient descent methods [17]. As the
posterior is not analytically accessible, Bayes’ theorem (2.1) is employed to rewrite the KL divergence in
terms of the log-likelihood and the distance to the prior

LVIB = DKL [ π̃ (θ) ,π (θ|D)] =−
ˆ

dθ π̃ (θ) logπ (D|θ)+DKL [ π̃ (θ) ,π (θ)]+ constant. (3.5)

The log-likelihood of the data under the CNF can be directly employed here. However, calculating the
log-likelihood of a CNF is costly as the ODE (3.1) needs to be solved for every point in the training data. The

3
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authors of [7] thus propose, to substitute the log-likelihood with the CFM loss (3.4) and attribute for the
difference by a tunable factor k

LVIB−CFM = Eπ̃(θ)LCFM + kDKL [ π̃ (θ) ,π (θ)] . (3.6)

Similar to changing the width of the prior π(θ), varying k adjusts the balance of the CFM-loss to the prior
and thus both the bias and variance of the predicted distributions. Trainings at low values of k produce better
fits at smaller uncertainties, while higher values impact the fit performance by imposing higher smoothness
at the trade-off of higher estimated uncertainties. In our experience, promoting a CFMmodel to a BNN this
way increases the training time considerably, due to the low impact and thus slow convergence of the KL-loss
term. Possible ways to mitigate this include initiating the prior distribution and the variational parameters
from the a pretrained deterministic neural network [31].

3.2. MCMC
A competing approach to variational inference-based Bayesian deep learning is MCMC sampling. Our
approach to MCMC sampling for neural networks, AdamMCMC [21], uses the independence of the sampled
invariant distribution to the starting point to initiate the sampling from CFM-trained model parameters θ0.
This drastically reduces the optimization time over the joint optimization of section 3.1, and makes
employing the costly log-likelihood for the consequent uncertainty quantification feasible.

For every step of the chain, the ODE (3.1) is solved to determine the negative log-likelihood LNLL of the
data to construct a chain drawn from a proposal distribution around an Adam [32] step

θ̃i+1 = Adam(θi,LNLL (θi)) . (3.7)

In combination with a proposal distribution that is elongated in the direction of the step

τi ∼ q(·|θi) =N
(
θ̃i+1,σ

21+σ∆

(
θ̃i+1 − θi

)(
θ̃i+1 − θi

)⊤)
. (3.8)

This algorithm handles high dimensional sampling for neural networks very efficiently and results in a high
acceptance rate in a subsequent stochastic Metropolis–Hastings correction with acceptance probability

α=
exp(−λLNLL (τi))q(θi |τi)
exp(−λLNLL (θi))q(τi |θi)

, (3.9)

for a large range of noise parameter settings. If the added noise σ is low, the results remain close to the
stochastic optimization without error estimates close to zero, but if the noise levels are high, the random walk
through parameter space dominates and the algorithm does not converge to a sensible parameter values. This
behaviour is masked by diminishing acceptance probabilities for very low and very high σ [21].

Both the inverse temperature parameter λ and the noise parameter σ tune the predicted uncertainties. In
theory small λ and high σ will result in high error estimates, albeit in practice the dependence on the inverse
temperatures is very weak. We thus limit ourselves to adapting the noise parameter to align the generated
uncertainties.

After an initial burn-in period, which can be skipped when initializing from a pretrained model,
repeatedly saving the network parameters after gaps of length l ensures approximately independent
parameter samples. The set of sampled parameters

ΘMCMC =
{
θ(1), . . .,θ(nMCMC)

}
:= {θ1·l, . . .,θnMCMC·l} . (3.10)

Follows the tempered posterior distribution, due to Bayes’ theorem and the resulting proportionality

π̃λ (θ|D)∝ exp(−λLNLL (θ))π (θ) . (3.11)

4. Toy setup

4.1. Gamma function ring
Similar to previous studies on data amplification [5], we employ the CNF on a low-dimensional ring
distribution. Generative Architectures often struggle with changes in the topology between latent space,
typically Normal distributed, and data space [33]. The ring structure reflects this ‘topological worst case’. A
generalization of the results from a similar, topologically complicated, but low-dimensional toy to
high-dimensional, simulated, and topologically less problematic calorimeter images was performed in [6]. In

4
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Figure 1. Left: Histogram of one training data set (10000 points). The data follows a ring structure with a sharp edge at r= 4 and
a long tail to higher radii. Mid: Marginal distribution of the training data in radial direction. Right: 5× 5 quantiles generated
from a data set of 10M points and filled with the training data. The quantiles are constructed with equal probability of the truth
data to fall into every quantiles.

this paper, we focus on the calibration of generative uncertainties and draw a connection to data
amplification. We thus limit the study to two dimensions for illustrative purposes and to reduce
computational costs. Nevertheless, the calibration can be executed analogously for higher dimensional
distributions. We generate samples from a ring distribution with an unsteady edge at a radius of r= 4, by
sampling in spherical coordinates from

ϕ ∼ uniform(0,2π) and r− 4∼ Γ(α,β) ,

with parameters α= β = 2 for the Gamma distribution. Per training, we use an independent sample of
N= 10000 points. Before passing the data to the CNF, we transform into Cartesian coordinates to obtain the
ring shape shown in figure 1. This construction allows us to estimate the behaviour of the uncertainties at
distribution edges and simultaneously prevents divergences of the probability distribution in (x,y) = (0,0).

4.2. Hyperparameter choices
Due to the low dimensionality of the toy example, we do not need to employ complicated architectures to
obtain a good approximation of the vector-field ṽt(·,θ). Based on a small grid search, a Multi-Layer
Perceptron with 3 layers of 32 nodes and ELU activation is sufficient to reproduce the training data well. Each
of the 3 layers takes the time variable t as an additional input. The neural network part of the CNF thus totals
a mere 2498 parameters.

When parameterizing the weight posterior approximation π̃(θ) as an uncorrelated Normal distribution,
as is standard in VIB [17], the number of parameters consequently doubles. For VIB we train using the Adam
optimizer [32] at a learning rate of 10−3 for up to 250k epochs of 10 batches of 1000 datapoints each. To
prevent overfitting, we evaluate the model at the earliest epoch after convergence of the KL-loss term. This
point depends on the choice of k and varies between 75k for k= 50 and 250k for k= 1. We do 5 runs each for
multiple values of k ∈ [1,5,10,50] to regulate the uncertainty quantification. For this range of k we have
previously found sensible density estimation and optimization convergence trough performing a log-linearly
spaced scan in k ∈ [10−4,105]) with only one run per parameter choice.

For the AdamMCMC sampling, we start the chain from a pretrained model. The model is first optimized for
2500 epochs (Adam with learning rate of 10−3) using only the CFM-loss (3.4). For the deterministic model,
this is enough to converge. We then run the sampling at a the same learning rate as the optimization with
σ∆ ≈ 50 and λ= 1.0. This choice of σ∆ ensures high acceptance rates, while the choice of λ reflects sampling
from the untempered posterior distribution, as per (3.11). We add a sample to the collection at intervals of
100 epochs, to ensure the independence of the sampled weights. To adjust the calibration, we scan the noise
value at four points σ ∈ [0.01,0.05,0.1,0.5]. This parameter span is based on a log-linearly spaced scan in
σ ∈ [10−4,10]). Once again, we calculate 5 chains per noise parameter setting.

4.3. Quantiles
As in [5], we evaluate the generated data in histogram bins of equal probability mass. We will refer to these
bins as quantiles Qj, their count as qj and the set of all quantiles as Q= {Q1, . . .,QnQ}. To construct bins with
the same expected occupancy, we use spherical coordinates. In angular direction, the space can simply be
divided into linearly spaced quantiles, while in radial direction we use the quantiles of a 10M generated truth
dataset to gauge the boundaries of the quantiles. To guaranty even population, we always choose the same
number of quantiles in both dimensions. Figure 1 illustrates the construction and occupancy for 5× 5
quantiles in Cartesian coordinates.

5
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For correlated data, quantiles can be constructed by iteratively dividing a truth set into sets of equal
size [6]. The binning is however not relevant for the discussion of calibration and analogous arguments can
be made for arbitrary histograms. The advantage of quantiles over other binning schemes is the clear
definition of the number of bins without an offset by an arbitrary amount of insignificant bins in the sparsely
or unpopulated areas of the data space. This allows us to show the behaviour of calibration and amplification
over the number of bins in sections 5 and 6.

5. Calibration

To align the uncertainty quantification, for AdamMCMC we generate 10M points from the CNF for the
nMCMC = 10 parameter samples inΘMCMC. We obtain a set of points G(i) per parameter sample θ(i), with the
corresponding count

g(i)j =#
{
x ′ ∈ Qj | x ′ ∈ G(i)

}
in quantile Qj. Each count corresponding to a parameter sample thus constitutes one drawing of a random
variable Gj whose distribution is induced by the posterior.

Analogously, for VIB we draw a setΘVIB of parameters from the posterior approximation π̃(θ), generate
10M samples from each and calculate the quantile counts to generate drawings of Gj. As the training cost
does not depend on the number of draws for VIB, we use nVIB = 50 samples for better accuracy.

Using the quantile values g(i)j , we approximate the cumulative distribution function (CDF)

F̂Gj,Θ

(
gj
)
≈ FGj

(
gj
)
= P

(
Gj ⩽ gj

)
, (5.1)

from its empirical counterpart using linear interpolation. We leave the setΘ general, without a subscript, for
now. From the approximated CDF, we construct symmetric confidence intervals for a given confidence level c
from its inversion

Ij,Θ (c) =
[
F̂−1
Gj,Θ

(
0.5− c

2

)
, F̂−1

Gj,Θ

(
0.5+

c

2

)]
. (5.2)

The chosen confidence level c corresponds to the expected or nominal coverage.
To evaluate the observed coverage, we draw 5 different training sets from the Gamma ring distribution

and calculate a VIB- and AdamMCMC-CNF ensemble each

Θ s
MCMCandΘ s

VIBfor s ∈ {1, . . .,5} .

For every model, we construct a confidence interval and evaluate the number of intervals containing the
expected count of the truth distribution, i.e. 1/nQ. The ratio of models with an interval containing the truth
value over the total number of models gives the empirical coverage per bin

ĉj =
#
{
1/nQ ∈ Ij,Θ s (c) | s ∈ {1, . . .,5}

}
5

, (5.3)

where we again keep the subscript on the set of parameters unspecified. For one quantile this coverage
estimate is very coarse as it can only take on one of six values. Since we want to check the agreement of
nominal and empirical coverage for multiple nominal coverage values, we report the mean empirical
coverage

c̄=
〈
ĉj
〉
j∈{1,...,nQ}

(5.4)

over all quantiles. The range of possible mean values is big enough to compare to a fine spacing in nominal
coverage.

This also allows us to judge the agreement of nominal and empirical coverage in the full data space in a
single figure. However, it also introduces the possibility for over- and underconfident areas to cancel each
other out. This issue will be treated in more detial in sections 5.1 and 5.2.

Figure 2 shows the mean empirical coverage over all quantiles for 50 values of the nominal coverage
linearly spaced between 0 and 1 and over three different numbers of quantiles. For a well calibrated
uncertainty estimation, the empirical estimate closely follows the nominal coverage and the resulting curve is
close to the diagonal of the plot. For figure 2 we can see that high noise levels in the MCMC chain lead to
overestimated errors and a prediction that is underconfident on average. Inversely, low noise levels lead to
overconfident predictions. From our chosen grid, σ= 0.1 shows the best agreement.

6
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Figure 2.Mean empirical coverage for confidence intervals calculated from 10 samples of the Bayesian weight posterior drawn
with AdamMCMC using 4 different hyperparameter settings. Higher σ will generally result in larger uncertainties. The empirical
coverage is calculated from 5 independent runs and averaged over all quantiles. The panels show a clear dependence of the
calibration on the number of quantiles increasing from left to right.

Figure 3.Mean empirical coverage for confidence intervals calculated from 50 drawings from the VIB approximation of the
Bayesian weight posterior with 4 different hyperparameter settings. Larger k increases the dependence of the fit on the prior. The
empirical coverage is calculated from 5 independent runs and averaged over all quantiles. The panels again show a clear
dependence of the calibration on the number of quantiles increasing from left to right.

It further becomes apparent that the calibration depends on the number of quantiles. For lower numbers
of quantiles, the fluctuations in the generated distribution average out and both the mean prediction and
error estimation are more precise, while for higher numbers of quantiles good calibration becomes
challenging while limited to 10 posterior samples.

For VIB in figure 3, where we evaluate 50 posterior samples, calibration seems to improve for high nQ.
While at lower numbers only a very small prior trade-off k leads to overconfident intervals and larger values
result in underconfident predictions, at higher numbers of quantiles previously underconfident predictions
appear well calibrated.

5.1. Scaling with the number of quantiles
To further investigate the calibration of our Bayesian generative neural networks, we pick the seemingly best
calibrated parameter settings for both methods. For AdamMCMC this is σ= 0.1 and for VIB k= 10. We
generate nMCMC = nVIB = 50 samples from the posterior for both methods now and evaluate the scaling with
the number of quantiles in more detail.

As we do not want to evaluate one calibration plot for each quantile, we reduce the diagonal calibration
plots by calculating the mean (absolute) deviation between empirical and nominal coverage

MD= ⟨̄c− c⟩c∈[0,1] and MAD= ⟨|̄c− c|⟩c∈[0,1] , (5.5)

where the mean empirical coverage still depends on the nominal coverage c̄= c̄(c). The composition of the
mean on the quantiles, the absolute value, and the mean on the nominal coverage allows for under- and
overestimation in individual quantiles to cancel out.

To gauge this we promote the index over all quantiles j to a tuple of indices ( jr, jϕ). We write ĉ( jr,jϕ) for the
empirical coverage in the jrth radial and jϕth angular bin. By limiting the average over the empirical

7
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Figure 4. Left: Mean absolute deviation between the nominal and the empirical coverage (5 runs) for 50 posterior samples from
both, VIB at k= 10 and AdamMCMC at σ= 0.1. The panel shows a strong dependence on the number of quantiles. From evaluating
the calibration plots for all numbers of quantiles individually, we know both methods are undercertain at low numbers. With
increasing nQ, the calibration mean exhibits a strong dependence on the order of the absolute and average operations. When only
the over- and underdensities along radial or angular dimension can cancel out, the mean calibration of the VIB-CNFs drastically
decreases. Right: Difference between nominal and empirical coverage (mean over angular direction) for the radial direction of
200× 200 quantiles. Values below 0 indicate overcertainty, while values above indicate undercertain predictions. While the
predictions of the AdamMCMC-CNFs are well calibrated to slightly undercertain along the radius, the prediction of the VIB-CNFs
starts out overcertain due to the oversmoothing caused by the strong prior dependence. When averaging over all radii, the
VIB-CNF predictions cancel exactly and the BNN seems well calibrated.

coverage (5.4) to one of the dimensions

c̄jr =
〈
ĉ( jr,jϕ)

〉
jϕ

and c̄jϕ =
〈
ĉ( jr,jϕ)

〉
jr

(5.6)

we construct marginal coverage distributions in the remaining directions. We can then again calculate the
mean absolute deviation to the nominal coverage and suspend the average in the remaining direction until
the very end

MADr =
〈〈

|̄cjr − c|
〉
c∈[0,1]

〉
jr

and MADϕ =
〈〈

|̄cjϕ − c|
〉
c∈[0,1]

〉
jϕ

By switching the order, only quantile counts in direction of the first mean (5.6) can even out. When starting
out with the average in the angular dimension, we end up with an estimate where the fluctuations in the
radial direction are preserved in the absolute mean and vice versa.

The left panel of figure 4 shows the dependence of the three different coverage deviation averages on the
number of quantiles. To keep the effect of statistic fluctuations per bin to a minimum, we generate sets of
1000 · nQ artificial points with the CNFs and evaluate between 2× 2 and 200× 200 quantiles.

We find a clear dependence of the coverage means on the number of quantiles. At low numbers, the mean
prediction averages over large areas of the data space increasing the quality of the mean prediction. The
uncertainty estimation is thus underconfident for both methods and the mean absolute deviations are high
and do not depend on the order of averaging. For low numbers of quantiles, calibration is much better,i.e.
the absolute deviation is closer to 0. While for AdamMCMC we cannot see big changes depending on the
averaging order. This indicates a calibration independent of the dimension. At the same time, we find large
discrepancies for VIB. This variation can be understood from the marginal calibrations.

5.2. Calibration at sharp features in radial direction
The right panel of figure 4 displays the the marginal empirical coverage in radial direction c̄r for 200× 200
quantiles and both BNN methods. We can see a distinct difference in the uncertainty quantification.

While the VIB prediction seems very well calibrated in total, in the radial direction, the VIB
underestimates its bias for the steeply rising part of the data distribution between r ∈ [4.0,5.0]. For the same
interval, the MCMC prediction is well calibrated and less underconfident than for higher radii. For r> 5
both models slightly overestimate the uncertainty and show very similar calibration.

In terms of absolute uncertainty, both methods actually predict very similar results. However, the mean
prediction of the VIB-CNF is strongly biased by the prior KL-loss term, resulting in large underpopulation of
the generated density due to oversmoothing for r< 4.5 and a corresponding overpopulation in r ∈ [4.5,5.0].
We have tested the predictions for k= 50 and the behaviour is magnified at higher values of k. For lower
values (k= 5), the oversmoothing is reduced to the area below r= 4.3 at the cost of an overestimated tail. The
AdamMCMC-CNF shows signs of oversmoothing as well, but only very close to the start of the radial
distribution.

8
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6. Bayesiamplification

Based on the previous discussion of both the total and marginal calibration, we can confidently say that our
AdamMCMC-CNF is well calibrated, albeit slightly underconfident for some areas of data space and small
numbers of bins. It is, however, important to note that truth information was needed to evaluate the
calibration of the BNN. In a practical application, this would require either a validation region or a large
hold-out set, the latter of which would partially defeat the purpose of data amplification in fast detector
simulation. However, for applications with validations regions, such as generative anomaly detection [34,
35], precision improvements through data amplification can be realized.

With a well calibrated BNN, we can try and develop a measure of the statistical power of the generated set
from the uncertainties. We do so by relating the uncertainty to the statistics of an uncorrelated set of points T
from the truth distribution. For nbins arbitrary bins, we expect the count in the jth bin to be approximately
Poisson distributed with mean and variance tj. For the same bin, the set of nMCMC = 50 AdamMCMC-CNF
posterior samples gives a mean prediction

ḡj =
〈
g(i)j

〉
i∈{1,...,nMCMC}

and variance σ2
ḡj =

〈(
g(i)j − ḡj

)2〉
i∈{1,...,nMCMC}

.

We will now use the posterior mean and variance to construct an estimator t̂j of the Poisson equivalent to the
per-bin predictions. Using only the mean t̂j := ḡj, the equivalent will simply be the generated statistics.
Thereby, we would disregard the correlations in the generated data through limited training data completely.

By instead equating the variance of the BNN to that of the equivalent uncorrelated set t̂j := σ2
ḡj , we

would introduce an unwanted dependence on the uncertainty prediction. Overestimated uncertainties would
lead to an overestimation of the statistical power.

As we do not want to overestimate the generative performance, we aim to have undercertain predictions
to lead to an underestimation of the uncorrelated equivalent. Such a behaviour can be constructed using the
coefficient of variation

1√
t̂j
:=

σḡj

ḡj
⇐⇒ t̂j =

ḡ2j
σ2
ḡj

. (6.1)

The equivalent uncorrelated statistics now decreases for overestimated σḡj . Both the predictions from the
absolute and from the relative error give the similar estimates for well calibrated errors in our tests.

We calculate the equivalent truth set size for both the VIB-CNF and AdamMCMC-CNF and the quantiles
from section 5. In figure 5, we report the amplification as the ratio of the sum over all bin estimates and the
training statistics

nbins∑
j=1

t̂j/N

in the left panel, as well as the mean estimate over all bins on the right.
Since the amplification contains the sum over all quantiles of our setup and t̂j depends on the

fluctuations of the individual predictions g(i)j around the posterior mean prediction only, we expect it to scale
linearly in the number of bins. This seems in good agreement with the figure. For large numbers of quantiles,
where the BNNs are best calibrated, the average amplification per bin converges to a constant value. Fitting a
exponential linear function exp(a+ b · log(x)) = a ′ · xb to these last 8 points of figure 5 using least squares,
we indeed find no significant deviations from b= 1. We estimate a ′ = (4.3± 2.9) · 10−3 and b= 0.99± 0.06
for the VIB-CNF and a ′ = 0.012± 0.004 and b= 0.99± 0.04 for the AdamMCMC-CNF. At lower numbers, the
deviations of the model output for different parameters in the Bayesian set integrate over large intervals of
the data space leading to smaller error estimates and increased amplification per bin.

This behaviour is consistent with the previous studies [5, 6] and the observation that one can not
improve the estimation of low moments of the distribution, like the distribution mean, by oversampling with
a generative neural network. From figure 5, we can also estimate the minimum amount of bins to leverage
the amplification. For the MCMC sample, evaluating at 100 bins is expected to yield an improved density
estimation over using only the training set. This number could decrease for a less underconfident model. For
highly granular binning, we find amplification estimates of more than a factor 100.

For smaller training statistics, we expect a higher initial amplification at low numbers of bins, while the
corresponding larger uncertainty estimate will result in a flatter slope. The number of quantiles where an
amplification larger than 1 first occurs will be smaller in such a case. Higher training statistics on the other
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Figure 5. Left: Amplification estimate generated by equating the error prediction per bin for both BNNs to the Poisson error of an
independent data set. Higher uncertainty results in lower amplification. Errorbars are calculated from the ensemble of 5 runs
done per BNN method. Again, we use 50 samples of the weight posterior (approximation) for both methods. The faint solid lines
show the result of exponential linear fit (least squares) to the last 8 points. Right: The mean estimate over all quantiles converges
to a constant value at high numbers of quantiles resulting in linear scaling of the amplification with the number of quantiles.

Figure 6. Jensen–Shannon divergence between the mean prediction by the Bayesian CNFs and the true data distribution (solid
line) and between a uncorrelated data set of the size predicted by the BNN error estimate and the true data (dashed line). Both
divergences align only for well calibrated uncertainties (AdamMCMC at high numbers of quantiles) and indicate over- and
underestimated errors otherwise. Uncertainties are reported from the ensemble of 5 independent runs done for estimation of the
empirical coverage.

hand will lead to a steeper slope and a later trade-off point. The results of [5] imply, that amplification effects
are stronger in larger data spaces, due to the reduced density of the training data.

Similar calculations can be done for arbitrary binnings to justify the use of generative machine learning
in a specific analysis. The evaluation of the Bayesian uncertainty prediction however requires the calculation
of multiple sets of fast-simulation data points. This reduces the speed benefits of applying generative
machine learning over more classical tools like MCMC simulation or inference.

6.1. Checking amplification with Jensen–Shannon (JS) divergence
To test how well the sum over all bin estimates

N̂=

nbins∑
j=1

t̂j

actually gauges the size of an equivalent independent data set, we calculate the JS divergence

D̄JS (p,q) =
1

2

nbins∑
j=1

(
pj log

pj
1
2

(
pj + qj

) + qj log
qj

1
2

(
pj + qj

)) , (6.2)

between the histogram estimation of the density in our quantiles and the known data distribution. The JS
divergence is bounded by 0 and log2, with smaller values indicating similarity between the compared
distributions.

In our toy setup, the bins are constructed as quantiles. We evaluate the JS divergence for pj =
ḡj

1000·nQ , the

mean prediction of the BNN relative to total number generated, and qj = 1/nQ the probability per quantile
when sampling from the data distribution. In figure 6, we compare it to the JS divergence for pj = tj/N̂, the
relative population of the quantiles for a set of N̂ points drawn from the truth distribution, and the true
quantile count qj = 1/nQ for a large range of nQ.
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Where the BNN is well calibrated, i.e. for AdamMCMC and nQ > 103, the quality of the mean prediction
lines up with the results of the uncorrelated set drawn to the size of the BNN errors. The Bayesian coefficient
of variation correctly predicts the equivalent uncorrelated statistics. At lower numbers of quantiles, the error
is overestimated. Consequently, the statistical equivalent is underestimated. This can also be observed for the
VIB-CNF. However, for large number of quantiles where the uncertainty at low radii is underestimated, see
section 5.2, the performance of the mean prediction is worse than anticipated by the BNN. Good calibration
on the full data space therefore is important for a reliable prediction of N̂.

7. Conclusion

In the previous chapters, we present a novel evaluation of the uncertainty provided by a Bayesian generative
neural network in a histogram. To this end, we propose constructing confidence intervals per histogram bin
and compare the nominal coverage of the constructed interval to the empirical coverage obtained from a
small ensemble of BNNs.

We observe a strong dependence of the calibration on the parameters of both a VIB-CNF and an
MCMC-sampled CNF. Furthermore, we find a strong tendency to oversmooth with strong priors leading to
underestimation of the data density and corresponding error at the non-differentiable inner edge of our toy
distribution. While present in both approaches, this behavior was predominantly displayed by the VIB-CNFs.

We further use the calibrated errors to estimate the statistical power of the generated data in terms of the
size of an equivalent independently sampled data set. This estimate correctly quantifies the performance of
the BNNs mean prediction when the errors are well calibrated and assigns a concrete number to the data
amplification in dependence of the employed binning. For a correct amplification estimate, it is crucial that
the errors are well calibrated in the full data space.

Similar calibration checks can be applied wherever a generative neural network is used for inference or
generation with a sufficient validation set or for interpolation into hold-out regions of the data.
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