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1 Introduction

In a recent series of papers [1, 2] we have studied O(ΛQCD) power corrections to top quark
production in hadron collisions using the approach based on infra-red renormalons.1 In this
paper we extend these analyses by accounting for top quark decays. Such an extension is
non-trivial. Indeed, since the top quark width Γt serves as an infra-red regulator, its interplay
with the non-perturbative QCD parameter ΛQCD and its proxy in the context of renormalon
calculus — the gluon mass λ — is important. Since Γt ≫ ΛQCD ∼ λ, top quarks decay
before hadronisation. A renormalon-based analysis of power corrections in such a case is
technically very challenging, because the produced top quarks are off-shell, and diagrams
where real or virtual gluons connect production and decay stages of off-shell top quarks have
to be considered. Although this problem represents an interesting challenge for future work,
we believe that it makes sense to start by considering the opposite case Γt ≪ ΛQCD ∼ λ,
which can be studied in the narrow width approximation. Even if the phenomenological
relevance of such an analysis is limited, it provides, for the very first time, an estimate of the
non-perturbative corrections to a full physical process with unstable particles at a hadron
collider and, as such, might be quite valuable for modelling the non-perturbative effects.

The narrow width approximation leads to important technical simplifications since, in
this case, QCD radiative corrections cannot connect top quark production and top quark
decay sub-processes [5, 6]. In fact, the QCD corrections to top quark production and
decay process are known through next-to-next-to-leading order in this approximation [7, 8].

1An in-depth discussion of infra-red renormalons in QCD can be found in review [3]. For a detailed
description of how these methods can be used in the context of hadron collider applications, see ref. [4].
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Figure 1. The Born amplitude for single top production and decay.

However, even when the narrow width approximation is used, the production and decay
sub-processes are not independent; the communication between them occurs because of
momentum conservation and polarisation effects.2 For the case of single top production, that
we study in this paper, this implies that e.g. the direction of the outgoing light-quark jet
and the direction of the positron in the top quark decay are not independent in spite of
the fact that they originate from widely separated sub-processes. As we will show below,
linear power corrections affect angular distributions in single top production. In fact, we
find that they vanish when positrons from top decays and light jets from the production
process are collinear to each other, but are non-trivial functions of momenta of final state
particles otherwise. We will also show that the O(ΛQCD) effects that we discuss in this paper
impact the various observables designed to study top quark polarisation [14–16] differently,
so that for each of them a dedicated study is required.

The paper is organised as follows. In the next section we describe the narrow width
approximation and present the result for the differential cross section of single top production
followed by top decay in a way that is useful for the subsequent analysis. In sections 3 and 4
we discuss the calculation of O(λ) corrections to the production and decay sub-processes.
In section 5, O(λ) corrections due to mass-parameter redefinition are studied. In section 6,
corrections to observables are discussed and the final formulas are derived. We conclude in
section 7. In the appendix we illustrate an alternative approach to the calculation of power
corrections where, at variance with the method used in the previous publications [1, 2], we
deal directly with the amplitude of the process rather than with its square.

2 The narrow width approximation

In this paper we consider the following partonic process

u(pu) + b(pi) → d(pd)+t(pt)
↘ b(pf ) + ν(p1) + e+(p2).

(2.1)

It is shown in figure 1. The amplitude for this process can be written as

M = Ai
dec

iδij(/pt
+ mt)

p2t − m2
t + imtΓt

Aj
prod, (2.2)

2Theoretical studies of spin correlations in top quark pair production and polarisation effects in single top
production have a long history, see e.g. refs. [9–13] for original and more recent work.
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where i, j are colour indices. In the on-shell p2t → m2
t limit, the quantities Adec and Aprod

correspond to on-shell amplitudes for the respective sub-processes from which the top quark
spinors are removed.

The expression for the cross section becomes

dσP D = 1
N

dΦ(pu, pi; pd, {pdec})
(p2t − m2

t )2 + m2
tΓ2

t

∑
spins

Ai
dec(/pt

+ mt)Ai
prodĀj

prod(/pt
+ mt)Āj

dec, (2.3)

where the suffix PD indicates production and decay, dΦ is the phase space of the process
in eq. (2.1), the sum over spins includes external particles only and {pdec} describes the
momenta pf,1,2 that refer to particles originating from the “decay” of the virtual top quark.
The normalisation factor N includes all the averaging factors needed to compute the cross
section of the process in eq. (2.1) as well as the relevant flux factor.

To simplify eq. (2.3), we note that since in the narrow width approximation no colour
transfer between production and decay amplitudes occurs, the following equation holds

Ai
dec . . . Āj

dec =
δij

Nc
Ak

dec . . . Āk
dec, (2.4)

where Nc = 3 is the number of colours. Hence,

dσP D = 1
N Nc

dΦ(pu, pi; pd, {pdec})
(p2t − m2

t )2 + m2
tΓ2

t

∑
spins

Ai
dec(/pt

+ mt)Aj
prodĀj

prod(/pt
+ mt)Āi

dec. (2.5)

To proceed further, we factorise the phase space

dΦ(pu, pi; pd, {pdec}) =
dp2t
2π

dΦ(pu, pi; pd, pt) dΦ(pt; {pdec}), (2.6)

and make use of the fact that we work in the narrow width approximation which implies
that the following equation holds

1
(p2t − m2

t )2 + m2
tΓ2

t

∣∣∣∣∣
Γt/mt→0

= 2π

2mtΓt
δ(p2t − m2

t ). (2.7)

We obtain

dσP D = dΦ(pu, pi; pd, pt) dΦ(pt; {pdec})
N Nc 2mtΓt

∑
spins

Ai
dec(/pt

+ mt)Aj
prodĀj

prod(/pt
+ mt)Āi

dec. (2.8)

It is easy to see that the following (matrix) equation holds3∑
spins

(/pt
+ mt)Āi

decA
i
dec(/pt

+ mt) = X /ρt,D
, (2.9)

where the sum extends over the polarisations of the top quark decay products and where
we have defined the top quark spin density matrix

/ρt,D
= (/pt

+ mt)
(
1 + γ5/sD

)
2 . (2.10)

3This is due to the fact that helicities of all other external particles are fixed, so that the top quark must
be in a pure spin state. See appendix for more details.
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In eq. (2.9), X is a function of scalar products constructed out of the top quark momentum pt

and the momenta of its decay products, and sµ
D is a space-like unit vector that also depends

on pt and the momenta of the particles in top decay. To find X, we compute the trace
of both sides of eq. (2.9) and obtain∑

spins
2mtTr

[
(/pt

+ mt)Āi
decA

i
dec

]
= 2mt X. (2.11)

We can write this equation in a better way by using the formula for the differential decay
width of the unpolarised top quark

dΓt =
dΦ(pt; {pdec})

4mtNc

∑
spins

Tr
[
(/pt

+ mt)Āi
decA

i
dec

]
. (2.12)

It follows that

X =
∑
spins

Tr
[
(/pt

+ mt)Āi
decA

i
dec

]
= 4mtNc

dΓt

dΦ(pt; {pdec})
. (2.13)

Finally, using this result as well as eq. (2.9), we re-write eq. (2.8) as

dσP D = 2dΓt

Γt
× dσt(sD). (2.14)

In the above equation, dσt(sD) is the cross section for producing a single top quark whose
spin is aligned with the axis sD; it is defined as

dσt(sD) = dΦ(pu, pi; pd, pt)
N

∑
spins

Tr
[
/ρt,D

Aj
prodĀj

prod

]
. (2.15)

We note that we will refer to the spin axis sD as the top quark spin vector below. It is
important to emphasise that for the process in eq. (2.1) this vector depends on the momenta
of the top quark decay products. It is computed in the appendix and given in eq. (A.15).
The calculation of the top quark polarised cross section in eq. (2.14) proceeds in the standard
way. The only difference with the unpolarised case is that instead of the density matrix
(/pt

+ mt) one has to use /ρt,D
.

The formula for the cross section shown in eq. (2.14) is suitable for computing QCD
corrections to the production process followed by tree-level decay. When tree-level production
is followed by the QCD-corrected decay, it is more convenient to deal with the decay of the
polarised top quark. Following the discussion above, we find

dσP D = 2dΓt(sP )
Γt

× dσt, (2.16)

where this time dσt is the unpolarised top quark production cross section and dΓt(sP ) is
the decay rate of a polarised top quark

dΓt(sP ) =
dΦ(pt; {pdec})

4mtNc

∑
spins

Tr
[
/ρt,P

Āi
decA

i
dec

]
. (2.17)
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The corresponding spin density matrix reads

/ρt,P
= (/pt

+ mt)
(1 + γ5/sP )

2 . (2.18)

The polarisation vector of the top quark sP is given in eq. (A.16). We note that at leading
order the two representations of the full differential cross section, given in eqs. (2.14) and (2.16),
are equivalent, so that the following equation holds

dσt dΓt(sP ) = dσt(sD) dΓt. (2.19)

This equation allows us to use one representation to study radiative corrections to the
production process and another one to study radiative corrections to top decay. Furthermore,
eq. (2.19) will be useful for studying effects related to the redefinition of the top quark mass.
Such a redefinition is needed to remove O(λ) corrections caused by the fact that the pole
mass of the top quark is used in perturbative computations and that this mass parameter
itself receives O(λ) corrections when expressed through a short-distance mass [17, 18].

Eq. (2.19) will also be useful for simplifying the final result. In particular, for single top
production, the above equation assumes a particularly simple form4

dσt dΓt(sP ) = dσt(sD) dΓt =
1
2dσtdΓt (1− sD · sP ) . (2.20)

Hence, by choosing the explicit form of one of the two spin vectors and pretending that the
other one is general, one can put the polarisation information either to the production or
to the decay sub-process of the full process in eq. (2.1).

3 QCD corrections to the production sub-process

We consider the production sub-process

u(pu) + b(pi) → d(pd) + t(pt), (3.1)

with the assumption that the top quark is polarised. As explained in ref. [19], corrections to
the light-quark line do not produce linear O(λ) contributions. For this reason, we only need
to consider the QCD corrections to the heavy-quark line. To describe this process, we can
use eq. (2.14) and compute the standard perturbative contributions to the polarised cross
section. In our discussion, we will assume that the reader is familiar with the computation
for the unpolarised case reported in ref. [1], and we will mostly emphasise the differences
between the two cases in what follows.

3.1 Real emission contributions

We begin with the real emission corrections to the process in eq. (3.1)

u(pu) + b(pi) → d(qd) + t(qt) + g(k). (3.2)

The gluon g(k) is massive, k2 = λ2. We remark that we have used slightly different notations
for the four-momenta of the top quark and the down quark in eqs. (3.1) and (3.2). This is

4For the derivation of this formula, see eq. (A.10) and the discussion before it.
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done for future convenience since, as we will see, momenta qt and qd will absorb the recoil
due to the emitted soft gluon. We will also consider the top quark to be polarised, and
we will denote its spin vector with sµ

D.
The calculation proceeds along the lines described in ref. [1] where the case of stable

top quark was discussed. The main element of that discussion was the Low-Burnett-Kroll
theorem [20, 21] that can be used to describe soft radiation in QCD with next-to-leading-power
accuracy.5 This theorem was derived from the transversality of the amplitude with respect to
the gluon momentum which allowed us to relate soft gluon emission by the external particles
and the structure-dependent radiation. The fact that the top quark spinor represents a state
with a particular polarisation plays no role in this argument. Hence, upon writing

Aprod = gsT a
ijϵµMµ, (3.3)

and repeating all the steps described in ref. [1], we arrive at the following result

Mµ = Jµ
t ūtN(qt + k, pi, qd, . . .)ui + Jµ

i ūtN(qt, pi − k, qd, . . .)ui

+ ūt [Sµ
t N(qt, pi, qd, . . .) + N(qt, pi, qd, . . .)Sµ

i ]ui

− ūt

[
∂N(qt, pi, qd, . . .)

∂qt,µ
+ ∂N(qt, pi, qd, . . .)

∂pi,µ

]
ui.

(3.4)

In the above expression, N is the tree-level amplitude for single top production from which
top and bottom spinors have been removed, and

Jµ
t = 2qµ

t + kµ

dt
, Sµ

t = σµνkν

dt
,

Jµ
i = 2pµ

i − kµ

di
, Sµ

i = σµνkν

di
,

(3.5)

are top (bottom) currents and spin operators, respectively. The two quantities in the above
equation, dt = (qt + k)2 − m2

t and di = (pi − k)2, are the denominators of top and bottom
propagators. Furthermore, σµν = [γµ, γν ]/2.

We can further simplify the expression in eq. (3.4) by combining the first two terms,
expanded to first subleading power in k, with the last two terms. We obtain

Mµ = JµūtN(qt, pi, qd, . . .)ui + ūt(LµN(qt, pi, qd, . . .))ui

+ ūt [Sµ
t N(qt, pi, qd, . . .) + N(qt, pi, qd, . . .)Sµ

i ]ui,
(3.6)

where we have introduced the notation

Jµ = Jµ
t + Jµ

i , Lµ = Lµ
t − Lµ

i , (3.7)

with

Lµ
t = 2

dt

(
pµ

t kν ∂

∂qν
t

− (ptk)
∂

∂qt,µ

)
, Lµ

i = 2
di

(
pµ

i kν ∂

∂pν
i

− (pik)
∂

∂pi,µ

)
. (3.8)

5An extension of this theorem to processes with polarised particles can be found in ref. [22].
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Eq. (3.6) expresses the amplitude with the emission of a soft gluon through the elastic
amplitude and its derivatives. However, we observe further simplifications if we square the
amplitude and sum over the polarisations of the external particles, or consider external
states with definite helicities. We find

|M|2 = −gµνMµMν,+ = − JµJµTr
[
/ρt,D

N/pi
N̄
]
− JµTr

[
/ρt,D

N/pi
LµN̄

]
− JµTr

[
/ρt,D

(LµN)/pi
N̄
]
+ JµTr

[
[Sµ

t , /ρt,D
]N/pi

N̄
]

+ JµTr
[
/ρt,D

N[/pi
, Sµ

i ]N̄
]

. (3.9)

Note that the only difference between eq. (3.9) and a similar expression for |M|2 in ref. [1] is
that the density matrix /ρt,D

defined in eq. (2.10) appears in eq. (3.9) instead of (/pt
+mt). Since,

[Sµ
t , /ρt,D

] = (−Lµ
t − Sµ

t ) /ρt,D
= −(Lµ + Sµ

t )/ρt,D
, [Sµ

i , /pi
] = −Lµ

i /pi
= (Lµ + Sµ

t )/pi
, (3.10)

where
Sµ

t = 2
dt

(
sµ

Dkν ∂

∂sν
D

− (sDk) ∂

∂sD,µ

)
, (3.11)

we obtain

|M|2 = − JµJµTr
[
/ρt,D

N/pi
N̄
]
− JµTr

[
/ρt,D

N/pi
LµN̄

]
− JµTr

[
/ρt,D

(LµN)/pi
N̄
]

− JµTr
[
((Lµ + St,µ)/ρt,D

)N/pi
N̄
]
− JµTr

[
/ρt,D

N((Lµ + St,µ)/pi
)N̄
]

.
(3.12)

We emphasise that in the above formulas, starting from eq. (3.10), derivatives with respect to
the four-momenta of partons that appear in the operators Lt/i do not act on the polarisation
vector sµ

D.
Making use of the fact that Lµ is a linear differential operator, and that the only

dependence on sµ
D is in the density matrix /ρt,D

, we combine the last four terms to obtain
a derivative of the leading order polarised amplitude. The final result reads

|M|2 = − (JµJµ + Jµ(Lµ + Sµ
t ))Fp(pu, pi, qt, qd, sD), (3.13)

where
Fp(pu, pi, qt, qd, sD) = Tr

[
/ρt,D

N/pi
N̄
]

, (3.14)

is the matrix element squared for the production process with polarised top quark and where,
by construction, derivatives with respect to momenta do not act on /sD. We also note that
one can obtain the unpolarised result by simply setting sD → 0 in eq. (3.14) and multiplying
the result by a factor 2. By a slight abuse of notation, we will write

2Fp(pu, . . . , qd, sD → 0) ≡ Fp(pu, . . . , qd), (3.15)

in what follows.
Similarly to the stable-top case, the first term on the right hand side in eq. (3.13)

contributes to the top quark production cross section starting at order O(λ0), whereas the
second and the third ones contribute at order O(λ). To extract O(λ) contributions from the
first term in eq. (3.13), we redefine the momenta of various particles to remove the momentum
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k from the energy-momentum conserving delta-function. However, an important difference
between stable and unstable top cases occurs at this point because the top quark momentum
appears both in the production and in the decay phase spaces. Hence, redefinition of the
top quark momentum in the production process leads to the redefinition of the top quark
momentum in the decay and one needs to understand how to deal with it.

To adhere as much as possible to the discussion of single top production and top decay that
were studied separately in ref. [1], we employ the momenta redefinitions used there. We write

qt = pt − k + (ptk)
(ptpd)

pd, qd = pd −
(ptk)
(ptpd)

pd. (3.16)

Repeating the steps described in ref. [1], we find

dΦP (pu, pi; qd, qt, k) = dΦP (pu, pi; pd, pt) [dk]λ
(
1 + (kpd)

(ptpd)
− (kpt)

(ptpd)
+O(λ2)

)
, (3.17)

where
[dk]λ = d4k

(2π)3 δ+(k2 − λ2). (3.18)

In the stable-top case, once the above transformation is performed and relevant matrix
elements squared are expanded in k, integration over k becomes possible. The same happens
when decay is considered except that we need to account for the change in the differential
decay width and the decay phase space introduced by momenta redefinitions in eq. (3.16).

Momenta redefinitions are only relevant for the leading O(λ−2) term in eq. (3.13). Its
contribution to the cross section is proportional to

dΦP ({qin}; pd, pt) dΓt(qt, {qdec}) J (0)
µ J (0),µ Fp(. . . , qt, qd, sD(qt, q2))|qt→pt+...,qd→pd+...,

(3.19)

where dΦP is the phase space of the production subprocess after momenta redefinition and
expansion in k, and J

(0)
µ is the leading power contribution to the eikonal current given in

eq. (3.7). The required momenta shifts are shown in eq. (3.16). We note that the differential
width that appears in the above expression depends on the original top quark momentum
qt. Furthermore, momenta redefinitions also affect the spin vector of the top quark sD as
it depends on the top quark momentum qt.

To understand how to expand eq. (3.19) to first sub-leading order in the gluon momentum,
we note that the top quark momentum redefinition in eq. (3.16) can be interpreted as a
Lorentz transformation. Indeed, we can write eq. (3.16) as follows

qµ
t = Λµνpt,ν , (3.20)

where
Λµν = gµν −

kµpν
d − pµ

dkν

(ptpd)
= gµν + δΛµν . (3.21)

Since δΛµν is an anti-symmetric traceless matrix, it can be interpreted as an infinitesimal
Lorentz transformation.
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This observation has important implications for the calculation of the differential decay
width dΓt(qt, {qdec}) that appears in eq. (3.19). Indeed, after momentum transformation,
it becomes

dΓt(qt, {qdec}) = dΓt(Λpt, {qdec}) = dΓt(Λpt, {Λpdec}) = dΓt(pt, {pdec}), (3.22)

where we also transformed momenta of the final state particles in the decay and made use of
the fact that the differential width is invariant under Lorentz transformations.

Although the above result implies that momenta redefinitions in the production do
not generate O(k) corrections in the unpolarised decay width that appears in eq. (3.19),
the need to redefine momenta of final-state particles in the decay has implications for the
spin vector sD. Indeed, sD depends on qt and q2 and, therefore, changes when the above
momenta transformations are performed. It is easy to see that this change is described
by a Lorentz boost

sµ
D(qt, q2) = ΛµνsD,ν(pt, p2), (3.23)

where Λµν is given in eq. (3.21).
We are now in a position to write the result for the O(λ) contribution to the differential

cross section of the process in eq. (2.1) due to an emission of a soft gluon in the production
sub-process. It arises as a sum of the correction to the production matrix element described in
eq. (3.13), correction to the production phase-space shown in eq. (3.17) and corrections to the
leading order term shown in eq. (3.19) and discussed afterwards. Many of these contributions
do not involve modifications of the spin vector sD and are identical to contributions studied in
ref. [1]. New spin-dependent contributions arise because of the spin-operator St in eq. (3.13)
and because of the Lorentz boost of the spin-vector in eq. (3.23) that has to be inserted
into the function Fp in eq. (3.19) and expanded in k.

Hence, we write

Tλ

[
dσR,prod

P D

]
= 2dΓt

Γt
Tλ

[
dσR

t (sD)
]

k
+ Tλ

[
dσR,prod

P D, new

]
k

, (3.24)

where subscript k indicates that the integration over gluon momentum is still to be performed.
Furthermore, the first term on the right hand side in eq. (3.24) is the same as in the no-decay
case [1] except that one employs the polarised cross section for single top production, and
the second term is new. It reads

Tλ

[
dσR,prod

P D,new

]
k
=−dΦP (. . . ;pt,pd)

N
[dk]λ 2

dΓt

Γt
J (0)

α O(s),α Fp(. . . ,pt,pd,sD(pt,p2)), (3.25)

where
O(s),α = Sα

t − J (0),αsD,µ δΛµν ∂

∂sν
D

. (3.26)

To complete the computation of the real-emission contributions we need to integrate over
the gluon momentum. This is straightforward since in both old and new contributions in
eq. (3.24) the dependence on the gluon momentum k is exposed and one can use the formulas
in appendix A of ref. [1] to calculate the relevant integrals over k. Hence, we find

Tλ

[
dσR,prod

P D

]
= 2dΓt

Γt
Tλ

[
dσR

t (sD)
]
+ Tλ

[
dσR,prod

P D,new

]
. (3.27)
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The first term on the right hand side of eq. (3.27) can be found in eq. (2.31) of ref. [1], where
FLO should be replaced with Fp(. . . , sD), and the second (new) term reads

Tλ

[
dσR,prod

P D, new

]
= αsCF

2π

πλ

mt
2 dΓt

Γt
sµ

D Wµν
∂

∂sD,ν
dσt(sD). (3.28)

The rank-two tensor in eq. (3.28) can be written as

W µν = ωµν
dt − ωµν

it + 2m2
t (pipd)

(ptpi)(ptpd)
ωµν

id , (3.29)

where the quantity

ωµν
xy =

pµ
xpν

y − pµ
y pν

x

(pxpy)
, (3.30)

describes an infinitesimal boost in the (px − py) plane. Eq. (3.28) provides an additional real
emission contribution to the O(λ) terms when single top production process is combined
with top quark decay in the narrow width approximation.

3.2 Virtual corrections and renormalisation in the production sub-process

As explained in ref. [1], the O(λ) contributions from the virtual corrections can be treated
in the same way as the real emission ones. In this section we study the virtual corrections
to the production sub-process of the process in eq. (2.1) and use the polarised top-quark
spinor to describe the influence of the top quark decay.

Similarly to the real emission case, the O(λ) contributions to the virtual corrections can
only arise from the region of soft k ∼ λ loop momenta. Our goal, therefore, is to establish a
similar soft expansion of one-loop virtual corrections to the single top production process
u(pu) + b(pi) → d(pd) + t(pt). We again consider corrections to the heavy-quark line since
corrections to the light-quark line do not produce O(λ) contributions [19]. We write

Avirt = g2sCF δijMvirt, (3.31)

where i, j are the colour indices of the top quark and the bottom quark. Proceeding as
in ref. [1], we find

Mvirt=
∫ d4k

(2π)4
−i

k2−λ2

[
Jα

t Ji,α ūt (N(pt,pi, . . .)+kµDp,µN(pt,pi, . . .))ui

−Jα
t ūtN(pt,pi, . . .)Si,αui+Jα

i ūtSt,αN(pt,pi, . . .)ui−(Jα
t +Jα

i )ūtDp,αNui

]
,

(3.32)

where dt = (pt + k)2 − m2
t and di = (pi + k)2,

Dµ
p = ∂

∂pt,µ
+ ∂

∂pi,µ
, (3.33)

and
Jα

t = 2pα
t + kα

dt
, Sα

t = σαβkβ

dt
,

Jα
i = 2pα

i + kα

di
, Sα

i = σαβkβ

di
.

(3.34)

– 10 –



J
H
E
P
1
1
(
2
0
2
4
)
1
1
2

Similar to the real emission case, the dependence on the loop momentum has been made
explicit so that the integration over k becomes straightforward. However, it is better to
square the matrix element before integrating over the loop momentum k. We do this following
ref. [1] and accounting for the fact that the top quark is polarised. We find

δvirt[MM+] =
∫ d4k

(2π)4
−i

k2 − λ2

[
2Jα

t Ji,αTr
[
/ρt,D

N/pi
N̄
]

+ Jα
t Ji,αkµ Tr

[
/ρt,D

(Dp,µN)/pi
N̄ + /ρt,D

N/pi
(Dp,µN̄)

]
− (Jα

t + Jα
i )Tr

[
/ρt,D

(Dp,αN)/pi
N̄ + /ρt,D

N/pi
(Dp,αN̄)

]
+ Jα

i Tr
[
[/ρt,D

, St,α]N/pi
N̄
]
− Jα

t Tr
[
/ρt,D

N[Si,α, /pi
]N̄
] ]

,

(3.35)

where M = M0 +Mvirt. The above equation contains all O(λ) corrections to MM+.
We can further simplify eq. (3.35) following steps already discussed in the previous section

where the real emission contribution was considered. Indeed, using

[/ρt,D
, Sα

t ] = (Lα
t + Sα

t )/ρt,D
,

[/pi
, Sα

i ] = Lα
i /pi

,
(3.36)

we arrive at

δ[MM+]virt =
∫ d4k

(2π)4
−i

k2 − λ2

[
2Jα

t Ji,αTr
[
/ρt,D

N/pi
N̄
]

+ Jα
t Ji,αkµ Tr

[
/ρt,D

(Dp,µN)/pi
N̄ + /ρt,D

N/pi
(Dp,µN̄)

]
− (Jα

t + Jα
i )Tr

[
/ρt,D

(Dp,αN)/pi
N̄ + /ρt,D

N/pi
(Dp,αN̄)

]
+ Jα

i Tr
[
((Lt,α + St,α)/ρt,D

)N/pi
N̄
]
+ Jα

t Tr
[
/ρt,D

N(Li,α/pi
)N̄
] ]

.

(3.37)

We stress that, similar to the real emission case, derivatives with respect to momenta do
not act on the spin vector sD that appears in the density matrix /ρt,D

.
We note that the difference between the result in eq. (3.37) and a similar result computed

for the unpolarised case in ref. [1], is the appearance of the spin-dependent density matrix /ρt,D

everywhere in eq. (3.37) and the presence of an additional term that contains the operator
St,α. This term evaluates to∫ d4k

(2π)4
−i

k2−λ2 Jα
i St,αTr

[
/ρt,D

N/pi
N̄
]
=− 1

8π2
πλ

mt

(pisD)
(pipt)

pν
t

∂

∂sν
D

Tr
[
/ρt,D

N/pi
N̄
]
, (3.38)

as follows from the integrals collected in appendix A of ref. [1]. Hence, we can write the
virtual contribution as

Tλ

[
dσV,prod

P D

]
= 2dΓt

Γt
Tλ

[
dσV

t (sD)
]
+ Tλ

[
dσV,prod

P D,new

]
, (3.39)

where the first term on the right hand side can be found in eq. (3.16) of ref. [1] and the
second term is new. We note that in the first term we again need to replace FLO with
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Fp(. . . , sD) and (/pt
+ mt) with /ρt,D

to account for the polarisation effects. The second term
in eq. (3.39) is a new contribution. It reads

Tλ

[
dσV,prod

P D,new

]
= −αsCF

2π

πλ

mt
2 dΓt

Γt
sD,µ ωµν

it

∂

∂sν
D

dσt(sD). (3.40)

Finally, contributions due to wave function and (explicit) mass renormalisation are not affected
by the fact that the top quark is polarised. Hence, we conclude that these contributions
can be borrowed from ref. [1] without any modification

Tλ

[
dσRen,prod

P D

]
= 2dΓt

Γt
Tλ

[
dσRen

t (sD)
]

. (3.41)

To summarise, O(λ) contributions to the cross section of the process in eq. (2.1) caused by
the radiation of real and virtual gluons and the renormalisation in the production sub-process
are obtained as the sum of the contributions given in eqs. (3.27), (3.39) and (3.41). Each of
these contributions is written as the sum of two terms: the “old one” that are identical to
the stable-top production case discussed in ref. [1], except for the fact that one has to employ
there the polarised leading order cross section, and the “new one” which is entirely due to
the fact that there are spin correlations between production and decay processes. When
single top production was considered in isolation, “old corrections” were cancelling against
the redefinition of the top quark mass parameter; a similar cancellation also exists in the
current case. However, before discussing this point, we need to compute the O(λ) power
correction to the decay sub-process. We do this in the next section.

4 Corrections to the decay sub-process

In this section we explain how the O(λ) power correction to the top quark decay sub-process is
computed. Following the discussion in section 2, the top quark is polarised and its polarisation
vector sP is determined by the kinematics of the production sub-process. We note that
corrections to the decay of an unpolarised top quark considered in isolation can be found
in appendix B in ref. [1].

Our starting point is eq. (2.16). The momenta assignments differ from the ones in
appendix B of ref. [1]; for this reason we emphasise that we consider the decay process

t(pt) → ν(p1) + e+(p2) + b(pf ). (4.1)

The calculation of the real-emission contributions proceeds similarly to the case of the
single top production and along the lines of appendix B of ref. [1]. We use the following
momenta assignment to describe the real-emission process

t(pt) → ν(p1) + e+(q2) + b(qf ) + g(k), (4.2)

with k2 = λ2. We again use the Low-Burnett-Kroll theorem [20–22] shown in eq. (3.13)
where for the process in eq. (4.2) we have

Jµ = Jµ
t + Jµ

f , Jµ
t = 2pµ

t − kµ

dt
, Jµ

f =
2qµ

f + kµ

df
, (4.3)

with dt = (pt − k)2 − m2
t and df = (qf + k)2.
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In order to factorise the phase space of the gluon momentum from the rest of the decay
phase space, we employ a momentum mapping. In variance with the case of the production
sub-process, this mapping does not need to involve the top quark momentum and, hence,
the production process remains unaffected. Following ref. [1], we write

qf = pf − k + (pf k)
(p2pf )

p2, q2 =
(
1− (pf k)

(p2pf )

)
p2. (4.4)

Using this transformation, the phase space changes as follows [1]

dΦD(pt; p1, q2, qf , k) = dΦD(pt; p1, p2, pf ) [dk]λ
(
1 + (p2k)

(pf p2)
− (pf k)

(pf p2)
+O(λ2)

)
. (4.5)

Since these momenta transformations do not impact pt and, therefore, the “spin” of the
top quark as defined by the production process, the only addition to the unpolarised case
for the width arises because of the analog of the Sµ

t term in eq. (3.13) which is already O(λ)
and, hence, can be easily integrated over k. We therefore find

Tλ

[
dσR,dec

P D

]
= 2

Tλ

[
dΓR

t (sP )
]

Γt
dσt + Tλ

[
dσR,dec

P D, new

]
, (4.6)

where in the first term formulas from unpolarised case can be employed except that the
leading order matrix element squared should be replaced with the polarised one. The second
term is new; after integration over the momentum of the soft gluon it evaluates to

Tλ

[
dσR,dec

P D,new

]
= −αsCF

2π

πλ

mt
2 dσt

Γt
sP,µ ωµν

tf

∂

∂sν
P

dΓt(sP ). (4.7)

We also need to compute virtual corrections and perform mass and wave function
renormalisation for the decay sub-process. The virtual corrections are computed in the same
way as what was described for the production sub-process and in appendix B of ref. [1]. We find

Tλ

[
dσV,dec

P D

]
= 2

Tλ

[
dΓV

t (sP )
]

Γt
dσt + Tλ

[
dσV,dec

P D,new

]
, (4.8)

where

Tλ

[
dσV,dec

P D,new

]
= αsCF

2π

πλ

mt
2 dσt

Γt
sP,µ ωµν

tf

∂

∂sν
P

dΓt(sP ). (4.9)

The renormalisation contributions are not affected by the polarisation of the top quark
and, therefore, can be directly borrowed from the results in appendix B in ref. [1] except that
the differential decay width has to be computed for the polarised top quark. Hence, we write

Tλ

[
dσRen,dec

P D

]
= 2

Tλ

[
dΓRen

t (sP )
]

Γt
dσt. (4.10)
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5 Redefinition of the top quark mass parameter

In cases when the top quark production and the top quark decay are considered separately, it
is known [1] that the cancellation of O(λ) contributions is only possible if the production cross
section and the decay rate are expressed through a short-distance top quark mass and not
through the pole mass. For reasons of technical convenience, we performed the renormalisation
in the on-shell scheme, similar to what was done in ref. [1].6 To derive the final results, we
need to switch to a short-distance mass parameter. We explain below how to do this in case
when top quark production and decay are considered simultaneously.

As explained in ref. [1], we can switch to a short-distance mass parameter by redefining
momenta of final-state particles. Our goal will be to do this in such a way that, when spin
correlations are neglected, we obtain formulas which are identical to the ones in ref. [1], where
production and decay are considered separately.

We begin with the momenta transformations for particles that originate from top decay
and write

qµ
f = p̃µ

f − κqt + κ
(p̃f qt)
(p̃f p̃2)

p̃µ
2 , qµ

2 = p̃µ
2

(
1− κ

(p̃f qt)
(p̃f p̃2)

)
. (5.1)

This momentum transformation leads to the following change in the decay phase space [1]

dΦD(qt;qf , q2, q1)=dΦD((1+κ)qt; p̃f , p̃2, q1)
(
1+κ

(p̃2qt)
(p̃f p̃2)

−κ
(p̃f qt)
(p̃f p̃2)

+O(λ2)
)

. (5.2)

It follows from the above equation that the mass of the decaying top quark becomes

m̃t =
√
(1 + κ)2q2t = (1 + κ)mt. (5.3)

Hence,
m̃t − mt = κmt, (5.4)

which implies that κmt is the shift in the mass parameter and where κ is defined as in ref. [1],

κ = αsCF

2π

πλ

mt
. (5.5)

To proceed further, it is convenient to define the top quark momentum that appears
in the decay phase space

p̃t = (1 + κ)qt. (5.6)

When the production and decay processes are considered together, the top quark momentum
appears in the phase space of the production sub-process; hence, the above redefinition will
modify the production phase space and the matrix element. We begin with the analysis
of the production phase space and write7

dΦP (. . . ; qt, qd) =
d4qt

(2π)3 δ(q2t − m2
t ) [dqd] (2π)4δ(pu + pi − qt − qd)

= (1− 2κ) d
4p̃t

(2π)4 δ(p̃2t − m̃2
t )[dqd](2π)4δ(pu + pi − p̃t + κp̃t − qd).

(5.7)

6A calculation that directly uses the mass parameter defined in a short-distance scheme, see the appendix.
7To derive this formula, one needs to account for the fact that q2

t ̸= m2
t a priori. Hence, δ(q2

t − m2
t ) =

δ((1 − 2κ)(p̃2
t − m̃2

t )) = (1 + 2κ)δ(p̃2
t − m̃2

t ).
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We then perform one more momentum redefinition but this time we change the momenta in
such a way that the top quark remains on a (new) mass shell. We write

p̃t = pt + κpt −
κm2

t

(ptpd)
pd, qd =

(
1 + κm2

t

(ptpd)

)
pd. (5.8)

This gives

dΦP (pu, pi; qt, qd) = dΦP (pu, pi; pt, pd)
(
1 + κm2

t

(ptpd)
+O(λ2)

)
, (5.9)

where p2t = m̃2
t .

We note that the change p̃t → pt impacts the decay phase space again. However, it
is easy to solve this problem because this momentum change can be written as a Lorentz
transformation

p̃µ
t = Λµν

m pt,ν , (5.10)

where
Λµν

m = gµν + κ ωµν
td . (5.11)

It follows that the decay phase transforms as follows

dΦD (p̃t; {p̃dec}) = dΦD(Λmpt, {Λmpdec}) = dΦD(pt, {pdec}). (5.12)

We have worked out the momenta transformations required to modify the mass of a top
quark in a process where it is produced and then decays. We now need to combine the several
transformations and write down formulas that elucidate phase-space and matrix-element
transformations of the full process. We use the representation shown in eq. (2.14) where
unpolarised decay width and polarised production cross section are combined. We use the
invariance of the decay matrix element squared Fd under Lorentz transformations and find

dΦP (pu, pi; qt, qd)Fp(pu, pi; qt, qd, sD(qt, q2)) dΦD(qt; qf , q2, q1)Fd(qt; qf , q2, q1)

= dΦP jp Fp

(
. . . ; pt − κξd pd, (1 + κξd) pd, ΛmsD

(
(1− κ) pt, (1− κξ2) p2

))
× dΦD jd Fd

(
(1− κ) pt; pf + κδpf , (1− κξ2) p2, p1

)
+O(κ2),

(5.13)

where the phase spaces dΦp,d depend on the transformed momenta {p}, Λm is the boost
defined in eq. (5.11) and

jp = 1 + κm2
t

(ptpd)
, jd = 1 + κ

(p2pt)
(pf p̃2)

− κ
(pf pt)
(pf p2)

,

ξd = m2
t

(ptpd)
, ξ2 =

(pf pt)
(pf p2)

, δpµ
f = −pµ

t + (pf pt)
(pf p2)

pµ
2 .

(5.14)

To obtain O(λ) correction to the cross section of the process in eq. (2.1) related to
mass redefinition, we expand eq. (5.13) in κ and keep linear terms. These terms can be
combined into three groups:

– 15 –



J
H
E
P
1
1
(
2
0
2
4
)
1
1
2

1. the term that originates from the expansion of Fp caused by the O(κ) contribution to
the matrix Λm acting on sD;

2. all O(κ) terms that appear from the expansion of the second line in eq. (5.13) but
without a term discussed in the previous item and without a correction to the argument
of the spin vector sD;

3. terms that originate from the expansion of the third line in eq. (5.13) in κ and terms
that originate from the expansion of the argument of spin vector sD in function Fp.

We now discuss these three groups of terms separately. The term in the first item is new.
Terms in the second item provide the required contribution to cancel all “old” O(λ) corrections
to the production sub-process discussed in section 3. Note that this cancellation occurs for
the polarised matrix element squared Fp(. . . , sD) since this is what appears in eq. (5.13).

The contribution of the third group of terms should, in principle, cancel all “old” O(λ)
terms to the decay sub-process, described in section 4. However, it follows from eq. (5.13) that
this contribution lacks the polarisation vector sP , which is present in the similar contributions
in section 4. Hence, to claim this cancellation, we need to put it back into the decay matrix
element squared. This is possible because the following identity holds

Fp

(
. . . ; pt, pd, sD

(
(1− κ) pt, (1− κξ2) p2

))
Fd

(
(1− κ) pt; pf + κδpf , (1− κξ2)p2, p1

)
= Fp

(
. . . ; pt, pd

)
Fd

(
(1− κ) pt; pf + κδpf , (1− κξ2)p2, p1, sP (pt, pd)

)
, (5.15)

thanks to the relation between polarised production and decay cross sections shown in
eq. (2.20).

We conclude that the only new term that we need to consider is the term in the first
item that arises from the boost of the spin vector. It evaluates to

Tλ [dσnew
mass] = −αsCF

2π

πλ

mt
2 dΓt

Γt
sD,µ ωµν

td

∂

∂sν
D

dσt(sD). (5.16)

Other terms that arise from the mass redefinition combine with “old” contributions to the
production and decay sub-processes and cancel in the same way as discussed in ref. [1].

6 Results and corrections to observables

The final result is obtained by combining the O(λ) contributions to single top production and
decay process derived in sections 3, 4 and 5. As we argued extensively during the calculation
many O(λ) contributions cancel in the sum; the only ones that survive involve polarisation
effects which is an important new feature of a process with a long-lived particle that is first
produced and then decays. They are obtained by adding eqs. (3.28), (3.40), (4.7), (4.9), (5.16).
We find

Tλ[dσP D] = αsCF

2π

πλ

mt
2 dΓt

Γt
sD,µ

(
2ωµν

ti +2ωµν
dt +

2m2
t (pipd)

(ptpi)(ptpd)
ωµν

id

)
∂

∂sν
D

dσt(sD). (6.1)

We can use eq. (2.20) as well as the relations sP · pt = sD · pt = 0, to find

Tλ[dσP D] = −αsCF

2π

πλ

mt

dΓtdσt

Γt

2m2
t (pipd)

(ptpi)(ptpd)
sD,µωµν

id sP,ν . (6.2)
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The expression in eq. (6.2) assumes a particularly simple form in the top quark rest
frame. Indeed, in this case

sµ
D = (0, n⃗2) , sµ

P = (0, n⃗d), (6.3)

where n⃗2 and n⃗d are unit vectors aligned with directions of the positron and d-quark in
this frame, respectively. This implies that

2m2
t (pipd)

(ptpi)(ptpd)
sD,µωµν

id sP,ν =2((n⃗2 ·n⃗i)−(n⃗2 ·n⃗d)(n⃗i ·n⃗d))= 2[n⃗2×n⃗d]·[n⃗i×n⃗d], (6.4)

where n⃗i is the direction of the incoming b quark in the top quark rest frame. We conclude
that, in the top quark rest frame, eq. (6.2) takes a remarkably simple form

Tλ[dσP D] = −αsCF

2π

πλ

mt

dΓtdσt

Γt
2 [n⃗2 × n⃗d] · [n⃗i × n⃗d]. (6.5)

For the case, when the observable does not depend on decay momenta, we recover our
previous result presented in ref. [1]. Indeed, integrating over the total phase space of the
decay products and using the fact that∫

dΓt n⃗2 = 0, (6.6)

in the top quark rest frame, we recover the stable-top-quark result [1]

Tλ[σP D] = 0. (6.7)

Nevertheless, eq. (6.5) shows that, in general, there is an O(λ) contribution to the differential
cross section related to polarisation effects. However, because we have used momenta
redefinitions to derive this result, it is important to account for them also in the observables
since they are defined using the original momenta.

To this end, we consider an observable X and study the following integral

OX =
∫

dσP D X. (6.8)

In principle, the observable X is generic; however, we would like to focus upon observables
that are used in practice to study polarisation effects in single top production [14–16]. For this
reason, we assume that the observable X depends on the top quark momentum, the d-quark
momentum, the incoming b-quark momentum (the collision axis) and the positron momentum

X = X(qt, qd, qi, q2). (6.9)

When different contributions to eq. (6.8) are studied and different mappings are performed,
there will be shifts in the arguments of the function X that are proportional to the gluon
momentum k or to the mass-redefinition parameter κ. We are interested in terms that
originate in the expansion of the function X in these small parameters.

There are three contributions that affect the arguments of X: real radiation in production,
real radiation in decay and mass redefinition. As the first step, we summarise the momenta
redefinitions for each of these contributions. Since none of these momenta redefinitions changes
the collision axis, we will not show qi among the arguments of X in what follows. We find:
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• Radiation in the production subprocess:

X → X

(
Λpt,

(
1− (ptk)

(ptpd)

)
pd,Λp2

)
, (6.10)

where
Λµν = gµν + pµ

dkν − kµpν
d

(ptpd)
. (6.11)

• Radiation in the decay subprocess:

X → X

(
pt, pd,

(
1− (pf k)

(pf p2)

)
p2

)
, (6.12)

• Mass redefinition:

X → X

(
(1− κ) Λmpt,

(
1 + κ

m2
t

(ptpd)

)
pd,

(
1− κ

(pf pt)
(pf p2)

)
Λmp2

)
, (6.13)

where
Λµν

m = gµν + κ
pµ

t pν
d − pµ

dpν
t

(ptpd)
. (6.14)

We then expand X in series for each of the three contributions and integrate over the
gluon momentum k where appropriate. This is straightforward, and the matrix element
squared is only needed in the eikonal approximation. The result reads

δX = αsCF

2π

πλ

mt

[(
pµ

t − 2m2
t

(ptpi)
pµ

i

)
∂X

∂pµ
t

− 2p2,ν

(
ωνµ

td + m2
t (pdpi)

(ptpd)(ptpi)
ωνµ

di

)
∂X

∂pµ
2

]
. (6.15)

We note that the above result assumes that the mass parameter does not appear in the
definition of the observable; if this is not the case, the mass parameter needs to be replaced
with

√
p2t .

Eq. (6.15) is applicable to any observable; the only constraint is that it can only depend
on the momenta of final-state particles shown in eq. (6.9). Hence, we conclude that the
complete linear correction to the expectation value of such an observable reads

Tλ[OX ] = αsCF

2π

πλ

mt

∫ dΓtdσt

Γt

[
− 2m2

t (pipd)
(ptpi)(ptpd)

sD,µωµν
id sP,ν X

+(1−sD ·sP )
[(

pµ
t −

2m2
t

(ptpi)
pµ

i

)
∂X

∂pµ
t

−2p2,ν

(
ωνµ

td + m2
t (pdpi)

(ptpd)(ptpi)
ωνµ

di

)
∂X

∂pµ
2

]]
.

(6.16)

We will now analyse this general formula. First we note that one can consider observables
that depend on the top quark momentum, but are inclusive with respect to the momenta of
its decay products. Then X is a function of pt only. For such observables, we can integrate
over the momenta of the top quark decay products. Then, considering the integrand in the
top quark rest frame and using eq. (6.6), we conclude that the first term on the right hand
side in eq. (6.16) vanishes. The second term then coincides with the correction to observable
discussed in ref. [1] and the last term vanishes if X is a function of pt only.
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There are also observables that are designed to study polarisation effects in single top
production. Perhaps the simplest observable that belongs to this class is the one used by the
CMS collaboration where the asymmetry between the direction of the outgoing light jet in
single top production (d-jet in our case) and the direction of positron in top decay is studied
in the top quark rest frame [15]. We can construct such an observable by simply multiplying
the production and decay spin polarisation vectors, sP and sD. Since in the top rest frame

sD · sP = −n⃗2 · n⃗d = − cos θd2, (6.17)

any function of this variable will provide a probe of polarisation effects; the observable used
by the CMS collaboration corresponds to

XCMS = θ(−sDsP )− θ(sDsP ). (6.18)

Using eq. (6.15), it is easy to show that

δXCMS = 0, (6.19)

which then implies that the only relevant term in eq. (6.16) that contributes for such
observables is the first term in the integrand of eq. (6.16).

It is interesting to note that one can arrive at the same result without any computation.
In fact, there is a simple argument that can be used to argue that for any observable X that
depends upon the directions of pt, pd and p2 only8 there cannot be any change in X after
the remapping described in this paper. To illustrate this argument, consider radiation in the
production. According to eq. (6.10) the momenta redefinitions lead to

X(pt,pd,p2)→X

(
Λpt,

(
1− (ptk)

(ptpd)

)
pd,Λp2

)
=X

(
Λpt,

(
1+ (pdk)

(ptpd)

)
pd,Λp2

)
, (6.20)

where in the last step we used the fact that the observable X depends on the direction of pd.
This implies that the exact form of rescaling is irrelevant, and we can change it at will. Since(

1 + (pdk)
(ptpd)

)
pd = Λpd, (6.21)

we find

X

(
Λpt,

(
1 + (pdk)

(ptpd)

)
pd,Λp2

)
= X (Λpt,Λpd,Λp2) = X (pt, pd, p2) , (6.22)

where in the last step Lorentz invariance of the observable was used. Hence, we conclude
that the momenta redefinitions employed in the description of the real emission in production
do not change an observable which depends on directions of final-state particles. The same
reason also applies to the momenta transformations employed to describe radiation in decay
and the mass redefinition.

To complete the analysis of the CMS asymmetry, we need to understand the fate of
the first term in eq. (6.16). Considering this term in the top rest frame, we find that it
involves the following integral ∫

dΓt [n⃗2 × n⃗d] X(n⃗2 · n⃗d). (6.23)

8We note that sD and sP belong to this category.
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Since for any function X ∫
dΓt n⃗2 X(n⃗2 · n⃗d) ∼ n⃗d, (6.24)

the integral in eq. (6.23) vanishes. We conclude that the asymmetries in single top production
studied by the CMS collaboration [14, 15] are not affected by the non-perturbative effects
that can be modelled with renormalons.

A more complex polarisation observable was studied by the ATLAS collaboration [16].
To define it, a reference system in the top rest frame is introduced, where the three axes are9

e⃗z = n⃗d, e⃗y = n⃗i × n⃗d

|n⃗i × n⃗d|
, e⃗x = e⃗y × e⃗z = n⃗i × n⃗d

|n⃗i × n⃗d|
× n⃗d. (6.25)

The observable Q is defined as follows

Q(n⃗2, {e⃗}) = 4θ(n⃗2 · e⃗z) + 2θ(n⃗2 · e⃗x) + θ(n⃗2 · e⃗y). (6.26)

We now determine the expectation value of Q at leading order and the non-perturbative
correction to it. First, writing the leading order cross section using the reference frame
described above, we obtain

dσP D = dσt
dΓt

Γt
(1 + e⃗z · n⃗2) . (6.27)

If we integrate over the top quark decay products without imposing any cuts on final-state
particles, the following equations hold∫

dΓt θ(n⃗2 · a⃗) = 1
2Γt,

∫
dΓt n⃗2 θ(n⃗2 · a⃗) = 1

4Γt a⃗, (6.28)

where a⃗ is an arbitrary unit vector. We use eq. (6.28) together with the leading order cross
section in eq. (6.27) to find

⟨Q(n⃗2, {e⃗})⟩ =
∫
dσP D Q(n⃗2, {e⃗})∫

dσP D
= 9

2 . (6.29)

To compute the power corrections to this result, we need to combine the corrections to
the cross section and to the observable. We begin with the latter. The correction to the
observable is computed using eq. (6.15). To apply this equation to the observable Q, we
should write it in a Lorentz-covariant form. To this end, we write

Q(n⃗2, {e⃗}) = 4θ(Q̂z) + 2θ(Q̂x) + θ(Q̂y), (6.30)

with

Q̂x = n⃗2 · e⃗x = 1
|n⃗i × n⃗d|

[
(n⃗2 · n⃗d) (n⃗i · n⃗d)− (n⃗i · n⃗2)

]
,

Q̂y = n⃗2 · e⃗y = 1
|n⃗i × n⃗d|

p2t
(ptp2) (ptpi) (ptpd)

ϵµνρσ pµ
t pν

2pρ
i pσ

d ,

Q̂z = n⃗2 · e⃗z = n⃗2 · n⃗d,

(6.31)

9We note that in our calculation n⃗i denotes the direction of the incoming b-quark in the top quark rest
frame, whereas in the ATLAS paper [16] the direction of the incoming light quark is chosen to define the
reference system. These vectors are not back-to-back in the top quark rest frame but, thanks to momentum
conservation, in this reference frame their vector products with n⃗d are the same up to a sign.
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and note that the covariant generalisation of the scalar product of two vectors in the top
rest frame is given by

n⃗i · n⃗j = 1− p2t (pipj)
(ptpi) (ptpj)

. (6.32)

After that, the calculation becomes straightforward. We obtain

δQ̂x = 0, δQ̂y = 0, δQ̂z = 0, (6.33)

so that also in this case there is no change in the observable

δQ = 0. (6.34)

Written in the reference system defined in eq. (6.25), the non-perturbative shift in the
cross section shown in eq. (6.5) becomes

Tλ[dσP D] = αsCF

2π

πλ

mt

dΓtdσt

Γt
2 |n⃗i × n⃗d| (e⃗x · n⃗2). (6.35)

We then integrate the product of this quantity with the observable Q over the top quark
decay products, and find∫

Tλ[dσP D] Q(n⃗2, {e⃗}) = αsCF

2π

πλ

mt
dσt

2|n⃗i × n⃗d|
Γt

e⃗x ·
∫

dΓt Q(n⃗2, {e⃗}) n⃗2

= αsCF

2π

πλ

mt
dσt

4|n⃗i × n⃗d|
Γt

e⃗x ·
∫

dΓt θ(n⃗2 · e⃗x) n⃗2

= αsCF

2π

πλ

mt
dσt |n⃗i × n⃗d|.

(6.36)

We use this equation to determine the non-perturbative correction to the expectation value
of the observable Q

⟨Q⟩ = 1
σt

∫
dσt

(9
2 + αsCF

2π

πλ

mt
|n⃗i × n⃗d|

)
, (6.37)

at fixed center-of-mass collision energy
√

s. We note that in the center-of-mass frame of
partonic collision, the absolute value of the vector product of n⃗i and n⃗d reads

|n⃗i × n⃗d| =

√√√√ 4m2
t s t u(

s − m2
t

)2 (
m2

t − t
)2 = 2mt s pd⊥

(m2
t − t)(s − m2

t )
, (6.38)

where pd⊥ is the transverse momentum of the d-jet relative to the collision axis. We note
that in the last step we used the fact that t u = s pd

2
⊥.

Integrating over the scattering angle, we find
1
σt

∫
dσt |n⃗i × n⃗d| = fQ(s, mt, mW ), (6.39)

where the function fQ reads

fQ(s,mt,mW )=
πmtmW

√
s
√

s̄
(
−m4

t +m2
t

(
m2

W +s
)
−2mtmW

√
s
√

s̄+m2
W s
)

(
m2

t −m2
W

)2 (
s−m2

t

)2 , (6.40)
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and we have defined the quantity

s̄ = s − m2
t + m2

W . (6.41)

The non-perturbative correction to the expectation value of the variable Q in proton collisions
is obtained by convoluting the above result with parton distribution functions. In principle,
since the function fQ(s, mt, mW ) depends on the center-of-mass energy, parton distribution
functions do not decouple. However, in practice, f(s, mt, mW ) is a slowly changing function
of s. Indeed, it changes from the value

lim
s→m2

t

f(s, mt, mW ) = π

4 ≈ 0.785, (6.42)

at the threshold, to

lim
s→∞

f(s, mt, mW ) = π mt mW

(mt + mW )2 ≈ 0.68, (6.43)

at s = ∞ for physical values of mt and mW . Hence, we find the following estimate for the
ATLAS variable Q in proton-proton collisions

⟨Q⟩ ≈ 9
2 + αsCF

2π

πλ

mt

π

4 . (6.44)

The above result does not account for realistic event selection criteria which in many
ways introduce additional directions into the integration over top quark decay products.
However, it does illustrate the point that non-perturbative effects that we discuss in this
paper have a small but direct impact on the measured values of the top quark polarisation
observables at hadron colliders.

An outstanding problem in collider physics is the measurement of the top quark mass
with an ultrahigh precision in a credible way [23]. The tricky issue is the control (or lack of
it) of non-perturbative corrections, which is very hard to do for exclusive observables that
are used currently for the highest-precision measurements. In this regard, suggestions were
made to study lepton observables from top quark decay because they are considered to be
less prone to contaminations by non-perturbative effects. Interestingly, our analysis allows us
to make exact statements to this effect, albeit in the narrow width approximation.

To this end, consider the following quantity

L⊥ = |p⃗2 · e⃗y|, (6.45)

where p⃗2 is the positron three-momentum in the top quark rest frame. The vector e⃗y is
defined in eq. (6.25); it is orthogonal to the collision plane of single top production process.
Hence, L⊥ measures the component of the lepton momentum that points outside of the
collision plane. We are interested in computing the average value of L⊥. Since∫

dΓt n⃗2 θ(p⃗2 · e⃗y) ∼ e⃗y, (6.46)

it follows that neither the term sP · sD in the leading order cross section, nor the power
correction Tλ[dσP D] receive contribution from the above integral. Since it is also easy to check
that L⊥ does not receive any corrections from momenta redefinitions, δL⊥ = 0, it follows that

⟨L⊥⟩ =
1
Γt

∫
dΓt L⊥ +O(λ2) = 1

2Γt

∫
dΓt

(p2pt)
mt

= m2
t + m2

W

8mt
+O(λ2), (6.47)

where in the last step we employed the narrow width approximation for the W -boson to
integrate over the positron momentum.
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In summary, the point of the above calculation is to demonstrate that there are no linear
power corrections to L⊥, so that the (short-distance) top quark mass can be determined from
this observable with very high precision. An obvious reservation is that the above calculation
is valid in the case when no fiducial cuts are imposed on final-state particles but it is also
obvious that to perform such measurements in practice, cutting-edge simulations are required
that account for perturbative and parton shower effects.

7 Conclusions

In this paper we have studied linear power corrections to the process of single top production
followed by the top quark decay. Our primary interest is the impact of top quark instability
on these corrections. Working in the narrow width approximation, we have found that linear
power corrections do affect the top quark production cross section if the top quark is allowed
to decay, at variance with the case of a stable top quark that was studied earlier in ref. [1].

The non-perturbative corrections that we have found in this article do affect measurements
of the top quark polarisation in such processes, and also influence the kinematic distributions
of leptons in top quark decays that were suggested as “clean” observables for measuring
the top quark mass. However, the particular form of power corrections, that we derived in
this paper, allows us to show that “out of the collision plane” component of the positron
momentum from top quark decays does not receive linear non-perturbative corrections.
Since the average value of this observable depends on mt, it is an interesting candidate for
measuring the top quark mass.

Finally, the results discussed in this paper are obtained in the narrow width approximation
for the top quark which corresponds to an unphysical limit Γt ≪ ΛQCD. The next important
step is to extend these result to the physical case Γt ≫ ΛQCD. Then, the analysis becomes
significantly more complicated because top quark production process and top quark decay do
not factorise any more. Nevertheless, we hope that our understanding of non-perturbative
power corrections to top quark production processes achieved in this paper as well as in
refs. [1, 2] will allow us to successfully analyse this challenging problem.
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A Alternative derivation of power corrections

The goal of this appendix is to discuss an alternative derivation of power corrections to
the single top production and decay process. Here we deal directly with the amplitudes as
opposed to amplitudes squared, as was done in earlier papers [1, 2]. Below, we first discuss
the Born amplitude and cross section and then continue with the real emission and virtual
corrections to the top quark production and decay process. We use directly a short-distance
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mass scheme for the top quark mass in the calculation and we explain how to do this by
considering the self-energy insertion in the (nearly) on-shell top quark line.

The Born cross section

The Born diagram for single top production and decay is shown in figure 1. The colour
structure of this process is quite simple. We will ignore it for now and reconstruct it at the
end. In the narrow width approximation, we write the Born amplitude as

BP D = i

p2t − m2
t + imtΓt

ū(pf )ND

 ∑
λs=±1

u(pt, s, λs)ū(pt, s, λs)

NP u(pi), (A.1)

where the subscripts P and D denote production and decay, and we have displayed explicitly
the bi − t− bf fermion line. The functions NP (ND) contain all remaining structures pertinent
to the production and decay processes. We assume that a quantisation axis s, satisfying the
conditions s2 = −1 and pt · s = 0, has been chosen for the top quark spin. We denote the
signs of the top quark spin along the quantisation axis s with λs. We then define

BP (s, λs) = ū(pt, s, λs)NP u(pi),
BD(s, λs) = ū(pf )NDu(pt, s, λs),

(A.2)

and write the Born cross section for single top production and decay as follows

|A|2 = 1
2mtΓt

2πδ(p2t − m2
t )|BP D|2,

|BP D|2 =
∑

λs,λ′
s

[BP (s, λs)B∗
P (s, λ′

s)][BD(s, λs)B∗
D(s, λ′

s)],
(A.3)

where we have used the narrow width approximation, see eq. (2.7). The form of the
amplitude in eq. (A.3) is the expected product of spin correlation matrices. In single top
production process, a further simplification occurs since there are choices of the top quark spin
quantisation axes such as BD(s,−1) = 0 or BP (s,−1) = 0. The fact that such quantisation
axes must exist is a consequence of the fact that the helicities of all massless particles in
single top production and decay are fixed by the charged-current interactions, so that also
the top quark must be in a pure spin state.10 If we call such a quantisation axis for the
production process sP , we can write

BP (s, λs) = ū(pt, s, λs)B = ū(pt, s, λs)
[1 + γ5/sP

2 + 1− γ5/sP

2

]
B

= ū(pt, s, λs)
1 + γ5/sP

2 B.

(A.4)

In eq. (A.4) B denotes whatever is left of BP (s, λs) when the ū spinor is removed, and the
last step follows from the fact that

ū(pt, s, λs)
[1− γ5/sP

2

]
, (A.5)

is an eigenstate of the projection of the top quark spin operator on the axis sP with an
eigenstate −1/2, which by assumption does not contribute to the production process.

10This suggests that this property should also be valid in a class of single top production processes with the
addition of colour-neutral particles with definite spin.
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Upon squaring the amplitude, we find

|BP (s, λs)|2 = B̄
1 + γ5/sP

2 u(pt, s, λs)ū(pt, s, λs)
1 + γ5/sP

2 B

= B̄
1 + γ5/sP

2

[
(/pt

+ mt)
1 + λsγ5/s

2

] 1 + γ5/sP

2 B.

(A.6)

Working out the simple Dirac algebra we find

1 + γ5/sP

2

[
(/pt

+ mt)
1 + λsγ5/s

2

] 1 + γ5/sP

2 = 1− λss · sP

2 (/pt
+ mt)

1 + γ5/sP

2 . (A.7)

We then insert this result into eq. (A.6) and obtain

|BP (s, λs)|2 =
1− λss · sP

2
∑
±λ′

s

B∗
P (sP , λ′

s)BP (sP , λ′
s) =

1− λss · sP

2 |BP |2 , (A.8)

where we have introduced the notation |BP |2 = ∑
λs

|BP (s, λs)|2.
A similar formula can be derived for the decay amplitude,

|BD(s, λs)|2 =
1− λss · sD

2 |BD|2 , (A.9)

where the proper quantisation axis sD differs from the one in the production. Combining
the results for the production and decay amplitudes, we obtain

|BP D|2 = 1− sP · sD

2 |BP |2 |BD|2 . (A.10)

This result can be derived from eq. (A.3) by choosing the quantisation axis to be either sP or
sD in which case only a single term λs = 1 contributes to sums over spin projections, and
using either eq. (A.8) or (A.9). We also note that the differential decay width takes the form

dΓt =
1

4mt
dΦD|BD|2, (A.11)

where we had to divide by two for the spin average. On the other hand our expression for the
differential cross section (ignoring spin and colour averages for the initial fermions) is given by

dσP D = 1
2mtΓt

dΦPdΦD|BD|2|BP (sD)|2 = 2dΓt

Γt
dσ(sD), (A.12)

which agrees with eq. (2.14). For the case of single top production depicted in figure 1,
we can easily identify the quantisation axes sP and sD. We begin by computing sD. The
decay amplitude is proportional to

BD ∼ ūf γµ(1− γ5)ut ū1γµ(1− γ5)v2 = −ūf γµ(1− γ5)ut ū2Rγµ(1 + γ5)v1R

= − [ū2R(1− γ5)ut] [ūf (1 + γ5)v1R] ,
(A.13)

where we have introduced the charge conjugate spinors u2R and v1R for the positron and the
neutrino, and the last step uses a Fierz identity. The subscript R on the conjugate spinors
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is to remind that they are right-handed, i.e. ū2,Rγ5 = −ū2,R. We write

ū2,R(p2)u(pt, s) = 1
2 ū2,R(p2)

(
2 + γ5

mt

(p2pt)

(
/p2 −

(p2pt)
m2

t

(/pt
− mt)

))
u(pt, s)

= 1
2u2,R(p2)

(
1 + γ5

mt

(p2pt)

(
/p2 −

(p2pt)
m2

t
/pt

))
u(pt, s)

= u2,R(p2)
1 + γ5/sD

2 u(pt, s),

(A.14)

where sD reads

sµ
D = mt

(p2pt)
pµ
2 − 1

mt
pµ

t , (A.15)

and satisfies the conditions s2D = −1 and sD · pt = 0. We note that in deriving eq. (A.14),
we used the fact that the spinors ū2,R and u(pt, s) satisfy the respective Dirac equations,
and that ū2,Rγ5 = −ū2,R as follows from its definition. It follows from eq. (A.14) that the
top quark in the decay is polarised along the axis sD, and we will refer to this quantity
as the top quark spin vector in the decay.

Repeating the same calculation for the production amplitude, we easily find that top
quarks are produced polarised along the quantisation axis which is given by the following
equation

sµ
P = mt

(pdpt)
pµ

d − 1
mt

pµ
t . (A.16)

Again, we will refer to this vector as the top quark spin vector in the production. Furthermore,
in the following we will use a simplified notation, where omitting the λs argument implies
that it is taken equal to one.

Real corrections in production

We will use the letter q rather than p to indicate momenta of particles that are affected by
recoil when a soft gluon is emitted. We will also denote the top spin vector as sq, since it
must be orthogonal to qt. Momentum conservation is given by

pi + pu = qt + qd + k. (A.17)

The difference between q’s and p’s (and between s and sq) are of order k, so we can change
q’s into p’s and sq into s when dealing with subleading terms.

It was mentioned several times that to compute linear power corrections, we only need
to consider gluon radiation off the heavy quark line. We split this contribution into two
diagrams, one that describes radiation off the final-state top quark, and the other one that
describes gluon radiation off the b quark in the initial state.

We begin by computing the contribution to the amplitude of the gluon emission from
the final state top quark. It is given by

Rµ
P,f = ū(qt, sq)γµ /qt

+ /k + mt

(qt + k)2 − m2
t

NP (qt + k, qi)u(qi)

= ū(qt, sq)
2qµ

t + kµ + σµνkν

(qt + k)2 − m2
t

NP (qt + k, qi)u(qi),
(A.18)
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where the gluon polarisation vector has been omitted. For simplicity, we have omitted the
arguments of RP,f . We should remind the reader, however, that it depends upon all the q

and p momenta, and upon the spin vector sq. The arguments in NP show that this function
depends on the q momenta. NP is similar to the Born diagram case, except that the incoming
top quark momentum is off-shell. Nevertheless, it is a well-defined function of the external
momenta. We are interested in the leading O(k−1) and next-to-leading O(k0) terms in the
limit of small gluon momentum k. When performing the manipulations below, we will always
discard terms that vanish in the k → 0 limit.

We focus on the term σµνkν in eq. (A.18) acting on the ū spinor. Consider the following
equation

ū(qt, sq)(1 + aµσµνkν) = ūa, (A.19)

where ua is defined as

ua ≡ (1 + kνσνµaµ)u(qt, sq), (A.20)

and aµ is an arbitrary four-vector. We note that, up to an irrelevant phase, a general Lorentz
transformation of a spinor is given by the following expression

Ŝ(Λ)u(p, s) = u(Λp,Λs), (A.21)

where for an infinitesimal transformation

Λαβ = gαβ + ωαβ , ωαβ = −ωβα, (A.22)

the spinor transformation matrix Ŝ(Λ) reads

Ŝ(Λ) = e
1
4 ωαβσαβ ≈ 1 + 1

4ωαβσαβ . (A.23)

If we choose

ωµν = 2(aµkν − aνkµ), (A.24)

we find the following equation for the spinor ua

ua = u(Λqt,Λsq). (A.25)

Then, writing

σνµkνaµu(qt, sq) = u(Λqt,Λsq)− u(qt, sq), (A.26)

and expanding the right-hand side in powers of k through linear terms, we find

kνσνµaµu = ∂u

∂pσ
t

Λσρpt,ρ +
∂u

∂sσ
Λσρsρ,

∂u

∂pσ
t

Λσρpt,ρ = 2aµ

(
pµ

t kσ ∂

∂pσ
t

− (ptk)
∂

∂pt,µ

)
u = dt aµLµ

t u,

∂u

∂sσ
Λσρsρ = 2aµ

(
sµkσ ∂

∂sσ
− (sk) ∂

∂sµ

)
u = dt aµSµ

t u,

(A.27)
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where dt = 2(ptk) is the denominator of the top propagator without the subleading k2 = λ2

term. Eqs. (A.27) implicitly define the operators Lt and St as given by

Lµ
t = 2

dt

(
pµ

t kν ∂

∂pν
t

− (ptk)
∂

∂pt,µ

)
, Sµ

t = 2
dt

(
sµ kν ∂

∂sν
− (sk) ∂

∂sµ

)
. (A.28)

Since the vector a is arbitrary, from eq. (A.27) we infer the following result

kνσνµu = dt(Lµ
t + Sµ

t )u. (A.29)

Next, using the definition of the current Jt in eq. (3.5), and discarding terms of order k,
we write the amplitude as

Rµ
P,f = Jµ

t ū(qt, sq)N(qt + k, qi)u(qi) + [(Lµ
t + Sµ

t )ū(pt, s)]Nu(pi). (A.30)

We note that if the arguments of the function N are not written explicitly, it is to be
understood as N(pt, pi). To simplify the leading term, we write

Jµ
t ū(qt,sq)N(qt+k,qi)u(qi)= Jµ

t ū(qt,sq)N(qt, qi)u(qi)+
2pµ

t

dt
ū(pt,s) kα ∂N

∂pα
t

u(pi). (A.31)

As stated earlier, the function N(qt + k, qi) is a well-defined function of its arguments
and can be constructed from Feynman graphs. It is not uniquely defined, however, if
momentum conservation is violated, and this is exactly what happens in eq. (A.31) both in
the leading term N(qt, qi) and when derivative with respect to pt in the last term is taken.
To interpret this equation, we need to assume that N is extended in some way to account
for the momentum non-conservation. The ambiguity introduced by such arbitrariness must
cancel in the end, since it was not present in the initial formula. We will see later that
this, in fact, is the case. We finally write

Rµ
P,f = Jµ

t BP (sq, q)+ū(pt,s)
[(

Lµ
t +

∂

∂pt,µ

)
N

]
u(pi)+[(Lµ

t +Sµ
t )ū(pt,s)]Nu(pi), (A.32)

where
BP (sq, q) = ū(qt, sq)N(qt, qi)u(qi). (A.33)

A similar calculation can be performed for the radiation off the b-quark in the initial
state. We obtain

Rµ
P,i = Jµ

i BP (sq, q) + ū(pt, s)
[(

−Lµ
i + ∂

∂pi,µ

)
N

]
u(pi)− ū(pt, s)[Lµ

i u(pi)], (A.34)

where Ji and Li are defined in eqs. (3.5) and (3.8). Unlike the case of radiation off the top
quark, no term analogous to the St operator arises here, since the u(pi) spinor is a helicity
eigenstate, and helicity is Lorentz invariant. We thus find

RP,f +RP,i = J BP (sq, q) + (Lt + St − Li) [ū(pt, s)Nu(pi)]

+ ū(pt, s)
[(

∂

∂pt
+ ∂

∂pi

)
N

]
u(pi).

(A.35)

where, as usual, J = Jt + Ji.
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We note that all terms that appear in the first line in eq. (A.35) vanish if we multiply
the equation by kµ, while the term on the second line does not.11 On the other hand, since
this term is non-singular in the soft limit, its lack of transversality must be compensated by
non-singular contributions caused by the radiation from internal lines, that must have the form

Rµ
P,int = ū(pt, s)Nµ

regu(pi). (A.36)

Current conservation implies

[RP,f +RP,i +RP,int] · k = ū(pt, s) k ·
[

∂N

∂pt
+ ∂N

∂pi
+ Nreg

]
u(pi) = 0. (A.37)

In order for this equation to hold for any value of k we therefore must have

Nreg = −
(

∂N

∂pt
+ ∂N

∂pi

)
. (A.38)

Thus, the full result for gluon emission in production reads

RP = RP,f +RP,i +RP,int = J BP (sq, q) + (Lt + St − Li)BP (s). (A.39)

We now introduce the mapping from q- to p-momenta. We employ the mapping already
used in ref. [1], and discussed at length near eq. (3.16). Since the mass of the top is not
changed by the mapping, it must be possible to write it as a Lorentz transformation Λ
which is given in eq. (3.21). In the present context, we should remember that we also need
a transformation for sq, that can be conveniently chosen to be given by the same Lorentz
transformation, so that the identities s2q = s2 and qt · sq = pt · s hold. For convenience we
report here the complete mapping transformation:

qt = Λpt = pt − k + (ptk)
(ptpd)

pd, qd = pd −
(ptk)
(ptpd)

pd,

sq = Λs = s + (sk)
(ptpd)

pd −
(spd)
(ptpd)

k.

(A.40)

We recall that also the decay momenta must change, since the top quark momentum has
changed. However, since this change is the Lorentz transformation Λ, the decay amplitude
does not change. Our final result is then

Rµ
P = JµBP (s, p) + Dµ

P,rBP (s, p), (A.41)

where

DP,r = JDrec + (Lt + St − Li),

Drec =
(
−k + (ptk)

(ptpd)
pd

)
· ∂

∂pt
− (ptk)

(ptpd)
pd ·

∂

∂pd
+
( (ks)
(ptpd)

pd −
(pds)
(ptpd)

k

)
· ∂

∂s
.

(A.42)

Drec is the differential operator associated with the momenta and spin mappings, and it can
be immediately read out of eq. (A.40). It is straightforward to verify that DP,r preserves

11In fact it does vanish in the single top production case. It does not necessarily vanish if we consider some
associated production process, and we prefer to keep the discussion general.

– 29 –



J
H
E
P
1
1
(
2
0
2
4
)
1
1
2

physical conditions, such as the momentum conservation, the on-shell conditions and the
spin transversality condition,

Dµ
P,r (pi + pu − pt − pd)ν = 0, Dµ

P,r p2i = 0, Dµ
P,r p2d = 0,

Dµ
P,r p2t = 0, Dµ

P,r s · pt = 0, Dµ
P,r s2 = 0. (A.43)

Thus, eq. (A.41) depends upon BP (s, p) evaluated with momenta and spin satisfying the
physical conditions, since the derivative acts in a direction tangent to the manifold where
the Born amplitude is unambiguously defined.

To obtain the full amplitude for the top production and decay process, we should multiply
eq. (A.41) with the decay amplitude. Since, as discussed earlier, we can assume that the
momentum mapping satisfies the equation

BD(sq, q) = BD(s, p), (A.44)

the full amplitude for the production and decay reads

Rµ
P D =

∑
λs=±1

[
JµBP (s, λs)BD(s, λs) + BD(s, λs)Dµ

P,rBP (s, λs)
]

. (A.45)

As we explained earlier, if we choose s = sD only contribution with λs = +1 survives in the
sum. Thus, upon squaring the above formula we arrive at

−gµνRµ
P DRν,+

P D = |Rµ
P D|2 = |BD|2

{
−J2|BP (s)|2 − J · DP,r|BP (s)|2

}
s=sD

. (A.46)

The k-dependence is exposed in the above formula and, after momenta redefinitions, integra-
tion over gluon momentum factorises from the rest of phase space. The needed integrals in
k can be found in ref. [1]. The result for the linear term in λ arising from the integration
is given by

Tλ

[
|Rµ

P D|2
]
= −|BP D|2Tλ

[∫ d3k
2k0(2π)3 J2

]
+ |BD|2

[
D̃P,r|BP (s)|2

]
s=sD

, (A.47)

where
D̃P,r = −Tλ

[∫ d3k
2k0(2π)3 J · DP,r

]
. (A.48)

We will not show the result of the integration of the first term in the above equation because,
as we will see later, it can be combined with other contributions and argued to cancel in
a way similar to what was found in ref. [1]. Computing the required integral explicitly for
the second term in eq. (A.47), we find

D̃P,r = −β

[
(pis)(2m2

t pd − (ptpd)pt)− (pds)(2m2
t pi − (ptpi)pt)

(ptpd)(ptpi)
· ∂

∂s

+
(

m2
t

(ptpd)
pd −

m2
t

(ptpi)
pi

)
· ∂

∂pt
− m2

t

(ptpi)
pi ·

∂

∂pi
− m2

t

(ptpd)
pd ·

∂

∂pd

]
,

(A.49)

where
β = 1

2(2π)2
λπ

mt
. (A.50)
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Virtual corrections in production

We continue with the discussion of the virtual correction to the heavy line in the production
subprocess. We write it as follows

VP =
∫ d4k

(2π)4
−i

k2 − λ2 + iϵ
FV P (k, . . .), (A.51)

where

FV P =
[
ū(pt, s)γµ /pt

+ /k + mt

(pt + k)2 − m2
t + iϵ

N(pt + k, pi + k) /pi
+ /k

(pi + k)2 + iϵ
γµu(pi)

+ ū(pt, s)γµ /pt
+ /k + mt

(pt + k)2 − m2
t + iϵ

Nµu(pi) + ū(pt, s)Nµ
/pi

+ /k

(pi + k)2 + iϵ
γµu(pi)

]
.

(A.52)

The first line provides a contribution where a virtual gluon is emitted by an incoming
bottom and absorbed by the outgoing top quark, and the terms in the second line describe
contributions where virtual gluons are emitted by either bottom or top quarks and are absorbed
by the internal lines of the diagrams. Potential contributions where gluons are emitted and
absorbed by internal lines are not shown as they cannot produce O(λ) corrections [1]. Using
the Dirac equations, and neglecting contributions that cannot produce O(λ) corrections,
we rewrite the above expression as follows

FV P = ū(pt, s) 2pµ
t + kµ + σµνkν

(pt + k)2 − m2
t + iϵ

N(pt + k, pi + k)2pt,µ + kµ − σµρkρ

(pi + k)2 + iϵ
u(pi)

+ ū(pt, s) 2pµ
t

(pt + k)2 − m2
t + iϵ

Nµu(pi) + ū(pt, s)Nµ
2pµ

i

(pi + k)2 + iϵ
u(pi) .

(A.53)

Using again eq. (A.38) and eq. (A.29) we arrive at

VP =
∫ d4k

(2π)4
−i

k2 − λ2 + iϵ

{
Jt · Ji BP (s) + [(Ji · (Lt + St) + Jt · Li)BP (s)]

− ū(pt, s)
(

Jt ·
∂N

∂pt
+ Ji ·

∂N

∂pi

)
u(pi)

}
,

(A.54)

where the currents Jt and Ji have now changed appropriately for eq. (A.52), and the definitions
of Lt, St and Li are given in eqs. (A.28) and (3.8) except that the newly defined denominators
dt, di should be used there.

The second term on the right hand side of eq. (A.54) is not a total derivative. To remedy
this, we assume that spinors can be written as functions of their momentum alone.12 To
do this, in the expression for u(pt, s, λs) we systematically replace the mass mt with

√
p2t .

This implies the following modification in the density matrix
∑

λs=±1
u(pt, s, λs)ū(pt, s, λs) =

(
/pt

+
√

p2t

)
. (A.55)

12This choice does not affect the Lt + St and the Li derivatives, since they act as Lorentz transformations
on the argument of the spinor, leaving the mass and the constraints on the spin parameter s unchanged.
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The replacement mt →
√

p2t is important for simplifying eq. (A.54), because it implies

pt ·
∂

∂pt
u(pt.s) =

1
2u(pt.s). (A.56)

This result easily follows from the fact that the mass dimension of a spinor is 1/2 and that
once the mass is eliminated in favour of

√
p2t , pt becomes the only mass scale that appears

in the formula for the spinor. Hence, we find

ū(pt, s)
(

Jt ·
∂N

∂pt
+ Ji ·

∂N

∂pi

)
u(pi)

=
(

Ji ·
∂

∂pi
+ Jt ·

∂

∂pt

)
[ū(pt, s)Nu(pi)]−

( 1
di

+ 1
dt

)
ū(pt, s)Nu(pi).

(A.57)

Defining
DP,v = Ji · (Lt + St) + Jt · Li − Ji ·

∂

∂pi
− Jt ·

∂

∂pt
, (A.58)

we write eq. (A.54) as

VP =
∫ d4k

(2π)4
−i

k2 − λ2 + iϵ

[(
Jt · Ji +

1
di

+ 1
dt

)
BP (s) + DP,vBP (s)

]
. (A.59)

We note that the derivative DP,v violates the physicality constraint related to momentum
conservation; we will see that it is restored once the mass renormalisation is accounted for.

Since the dependence on the gluon momentum k is exposed in eq. (A.59), we can
integrate over it. Similar to the discussion of the real-emission contribution, we leave terms
proportional to BP (s) as they are, since we will argue later that their cancellation is already
demonstrated in ref. [1]. We obtain

Tλ[VP ] = Tλ

[∫ d4k
(2π)4

−i

k2 − λ2 + iϵ

(
Jt · Ji +

1
di

+ 1
dt

)]
BP (s) + D̃P,vBP (s),

D̃P,v = β

(ptpi)

(
−(pis) pt ·

∂

∂s
+ m2

t pi ·
∂

∂pi
+ m2

t pi ·
∂

∂pt

)
.

(A.60)

We then multiply eq. (A.60) by the decay amplitude, set s = sD to get rid of the spin
summation, compute the interference with the Born amplitude, and finally obtain

2|BP D|2Tλ

[∫ d4k
(2π)4

−i

k2 − λ2 + iϵ

(
Jt · Ji +

1
di

+ 1
dt

)]
+ |BD|2

[
D̃P,v|BP (s)|2

]
s=sD

.

(A.61)

Real corrections in decay

We can describe radiation in the top quark decay following the approach used in the discussion
of the production process. The only essential difference is in the momentum mapping, that
we choose to coincide with the one discussed in ref. [1]. Details are given in eq. (4.4). Both
the initial top quark momentum and its spin vector are not affected by the mapping. The
decay amplitude expanded through linear terms in the gluon momentum reads

Rµ
D(s) = JµBD(s) + Dµ

D,rBD(s), Dµ
D,r = JµDrec − (Lµ

t + Sµ
t − Lµ

f ), (A.62)
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where the currents are given in eq. (4.3). The differential operator associated with the
mapping can be immediately read out of eq. (4.4). It reads

Drec =
(
−k + (pf k)

(p2pf )
p2

)
· ∂

∂pf
− (pf k)

(p2pf )
p2 ·

∂

∂p2
. (A.63)

The operators Lt and St are defined in eq. (A.27) but now dt = −2(ptk) has to be used
there. The definition of Lf is the same as the one for Li after the replacement i → f is
performed. The operator DD,r is easily seen to preserve the physicality conditions for the
decay. Proceeding as for eq. (A.46), we get

|Rµ
P D|2 = |BP |2

{
−J2|BD(s)|2 − J · DD,r|BD(s)|2

}
s=sP

. (A.64)

After the momentum mapping, the integration over k factorises and can be performed.
Defining

D̃D,r = Tλ

[∫ d3k
2k0(2π)4 (−J ·DD,r)

]

=β

[
(pf s)
(ptpf )

pt ·
∂

∂s
+ (ptpf )
(p2pf )

p2 ·
(

∂

∂p2
− ∂

∂pf

)
+
(

pt−
m2

t

(ptpf )
pf

)
·
(

∂

∂pf
+ ∂

∂pt

)]
,

(A.65)

we find for the total amplitude squared

Tλ

[
|RP D|2

]
= |BP D|2Tλ

[∫ d3k
2k0(2π)4 (−J2)

]
+ |BP |2

[
D̃D,r|BD(s)|2

]
s=sP

. (A.66)

Virtual corrections in decay

The calculation of the virtual corrections in the decay process closely follows the production
case, and the result can be obtained from eq. (A.60) after the substitution i → f . We obtain

Tλ[VD] = Tλ

[∫ d4k
(2π)4

−i

k2 − λ2 + iϵ

(
Jt · Jf + 1

df
+ 1

dt

)]
BD(s) + D̃D,vBD(s) ,

D̃D,v = β

(ptpf )

(
−(pf s) pt ·

∂

∂s
+ m2

t pf · ∂

∂pf
+ m2

t pf · ∂

∂pt

)
.

(A.67)

The final contribution is

2|BP D|2Tλ

[∫ d4k
(2π)4

−i

k2 − λ2 + iϵ

(
Jt · Jf + 1

df
+ 1

dt

)]

+ |BP |2
[
D̃D,v|BD(s)|2

]
s=sP

.

(A.68)

Top quark self-energy contribution

Finally, we need to account for the top quark self-energy correction shown in figure 2. Since we
perform the calculation in a short-distance scheme (e.g. the MS scheme), no O(λ) correction
can arise from the mass counter-terms, and we do not need to account for them. Following
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Figure 2. The graph with the top quark self-energy insertion. The complex conjugate diagram
should also be added.

the discussion in section 7 in ref. [1], we find that the term of order λ from the self-energy
insertion to the left of the cut line in figure 2 reads

Σ = κ

[
− 1
4mt

(p2t − m2
t )− (/pt

− mt) + mt

]
, (A.69)

where
κ = 4παsCF β = αsCF

2π

πλ

mt
. (A.70)

The product of the denominators of the top propagators in figure 2 yields

1
(p2t − m2

t )2 + (mtΓt)2
1

(p2t − m2
t ) + imtΓt

. (A.71)

When this expression is combined with the complex conjugate of figure 2, it becomes

2(p2t −m2
t )

((p2t −m2
t )2+(mtΓt)2)2

=− ∂

∂p2t

1
(p2t −m2

t )2+(mtΓt)2
≈− π

mtΓt
δ′(p2t −m2

t ), (A.72)

where δ′(p2t −m2
t ) is the derivative of a delta function with respect to p2t . Thus, the net effect

of the self-energy correction amounts to the following replacement in the Born cross section

i(/pt
+ mt)δ(p2t − m2

t ) → − i(/pt
+ mt)iΣi(/pt

+ mt)δ′(p2t − m2
t )

= iκ

[3
2(/pt

+ mt)− mt

]
δ(p2t − m2

t ) + iκ(/pt
+ mt)2m2

t δ′(p2t − m2
t ),

(A.73)

where the relation δ′(x)x = −δ(x) was used.
In the self-energy computation, one needs to consider slightly off-shell momenta of the

top quark. This means that we cannot set p2t = m2
t in the factor involving the derivative

of the delta function. We thus rewrite this term as follows

/pt
+ mt =

(
/pt

+
√

p2t

)
+ m2

t − p2t

mt +
√

p2t

. (A.74)
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Inserting this identity in eq. (A.73) we obtain

(/pt
+mt)δ(p2t −m2

t )→κ
3
2(/pt

+mt)δ(p2t −m2
t )+κ

(
/pt
+
√

p2t

)
2m2

t δ′(p2t −m2
t ). (A.75)

The first term in the above equation leads to a term proportional to |BP D|2, and it can
be set aside with all other terms of this form. Using for consistency eq. (A.55), we obtain
for the second term

|BP D|2(2m2
t κδ′(p2t − m2

t )) = |BP D|2
[
δ
(
p2t − m2

t (1− 2κ)
)
− δ(p2t − m2

t )
]

. (A.76)

In order to compute the result we need to perform a change of variables in the first term.
We first relabel all the p’s into q’s and s into sq. In particular

δ
(
p2t − m2

t (1− 2κ)
)
→ δ

(
q2t − m2

t (1− 2κ)
)

. (A.77)

Then we recall that in the unpolarised case [1] two different mappings were used for single-top
production process and for top decay. The momenta and spin transformations for the decay
are given in eq. (5.1), and we report them here for convenience

qt = pt(1−κ), qf = pf −κpt+κ
(pf p)
(pf p2)

p2, q2= p2

(
1−κ

(pf pt)
(pf p2)

)
, sq = s. (A.78)

Notice that the spin is unchanged, since the top momentum is only rescaled. For the
production we use

qt = pt − κ
p2t

(pdpt)
pd, qd = pd

(
1 + κ

p2t
(pdpt)

)
, sq = Λms, (A.79)

where Λm = 1 + κωtd (see eq. (5.11)) and ωtd is given in eq. (3.30). The transformation for
sq can be seen to satisfy the condition sq · qt = s · pt and s2q = s2, as will become clear in
the following. We should modify these transformations in such a way that the top quark
momentum transforms in the same way in both production and decay processes. This is
achieved by using the fact that Λm is a Lorentz transformation, and that the top momentum
mapping can be written as the product of a rescaling times Λm. It is sufficient then to apply
Λm also to all decay products. In summary, we write

qt = (1− κ)Λmpt, qd = pd

(
1 + κ

p2t
(pdpt)

)
, sq = Λms,

qf = Λm

(
pf − κpt + κ

(pf pt)
(pf p2)

p2

)
, q2 =

(
1− κ

(pf pt)
(pf p2)

)
Λmp2, q1 = Λmp1,

(A.80)

where only O(κ) terms need to be retained on the right hand sides of the above equations.
Notice that the first line is just a rewriting of eq. (A.79), while the second line is the
Lorentz transformation applied to the eq. (A.78). Momenta modifications induce changes
in the squared amplitudes. Depending on whether momenta in the production or decay
undergo these transformations, we group such terms into modification of production and
decay amplitudes and write

Dm
∣∣∣∑
±1

BD(λs)BP (λs)
∣∣∣2 = |BP |2[Dm|BD(s)|2]s=sP + |BD|2[Dm|BP (s)|2]s=sD . (A.81)
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The differential operator Dm is associated with the transformations shown in eq. (A.80).
It can be written as

Dm|BD(s)|2=κ

[
−pt ·

∂

∂pt
+
(
−pt+

(pf pt)
(pf p2)

p2

)
· ∂

∂pf
− (pf pt)
(pf p2)

p2 ·
∂

∂p2

]
|BD(s)|2, (A.82)

Dm|BP (s)|2=κ

[
(−pt+ωtdpt)·

∂

∂pt
+ p2t
(pdpt)

pd ·
∂

∂pd
+(ωtds)· ∂

∂s

]
|BP (s)|2, (A.83)

where we have simply dropped from Dm the derivatives with respect to variables not contained
in the corresponding amplitude and, in the case of the derivative of the decay amplitude, we
have removed the Lorentz transformation, since it affects all the decay momenta and the
spin vector s, and the decay amplitude is Lorentz invariant.

Assembling everything

We begin by considering the non-derivative terms that appear in eqs. (A.47), (A.61), (A.66),
(A.68), (A.82), (A.83). They arise from the dominant terms in the cross sections, from
Jacobians due to momenta transformations and in the calculation of the virtual contributions
in production and decay. Their calculation is straightforward, and can be carried out along
the lines of ref. [1], where it has been shown that they cancel.

We continue with terms that contain derivatives with respect to momenta and spins of
external particles. Combining such contributions in the virtual corrections for production,
eq. (A.61), the real emission contributions in production, eq. (A.47), and the corresponding
part of the self-energy correction, eq. (A.83), we find

|BD|2
[(

Dm + κ

β
[D̃P,v + D̃P,r]

)
|BP (s)|2

]
s=sD

. (A.84)

It is a matter of simple algebra to verify that the derivative operator Dm + κ/βD̃P,v, with
Dm restricted to the production variables, and, independently, D̃P,r preserve all physicality
conditions, cf. eq. (A.43). The result shown in eq. (A.84) becomes

|BD|2κ
[{

s ·
(
2ωti + 2ωdt +

2m2
t (pipd)

(ptpi)(ptpd)
ωid

)
· ∂

∂s

}
|BP (s)|2

]
s=sD

. (A.85)

For the decay contribution, assembling eqs. (A.66), (A.68) and (A.82) we get

|BP |2
[(

Dm + κ

β
[D̃D,v + D̃D,r]

)
|BD(s)|2

]
s=sP

= 0. (A.86)

The sum of eqs. (A.85) and (A.86) agrees with eq. (6.1).
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