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ABSTRACT
We propose a mean functional that exists for arbitrary probability distributions and characterizes the Pareto
distribution within the set of distributions with finite left endpoint. This is in sharp contrast to the mean
excess plot, which is meaningless for distributions without an existing mean and has nonstandard behavior
when the mean is finite, but the second moment does not exist. The construction of the plot is based on the
principle of a single huge jump, which differentiates between distributions with moderately heavy and super
heavy tails. We present an estimator of the tail function based on U-statistics and study its large sample
properties. Several loss datasets illustrate the use of the new plot.

ARTICLE HISTORY
Received October 2023
Accepted October 2024

KEYWORDS
Heavy tails; Infinite mean;
Pareto distribution; Regularly
varying distribution; Single
huge jump; Tail index

1. Introduction

Pareto distributions are probably the most important and widely
used class of heavy-tailed distributions. A possible parameteri-
zation is

F(x; α) = 1 − (xm/x)α , x ≥ xm > 0, (1)

where α > 0. The generalized Pareto distribution (GPD) for
ξ > 0 is parameterized by

G(x; β , ξ) = 1 − (1 + ξx/β)−1/ξ , x > 0,

where β > 0. For ξ > 0, a GPD can be converted to the form in
(1) by a location-scale transformation. For α ≤ 1 (i.e., ξ ≥ 1),
the mean is infinite; if 1 < α ≤ 2 (i.e., 1/2 ≤ ξ < 1), the mean
exists, but the variance is infinite.

A main tool for determining the adequacy of the (general-
ized) Pareto distribution as a model for the tails of sample data is
the mean excess (ME) function, also known as the mean residual
life function in reliability theory. It is given by

M(u) = E [X − u|X > u] , u > 0,

where X is a positive random variable with EX < ∞. In fact, the
GPD class with ξ < 1 is characterized by the linearity of the ME
function (Embrechts, Klüppelberg, and Mikosch 1997). The tail
behavior of sample data by visual means can then be explored
by the ME plot, that is a plot of the empirical counterpart of the
ME function. Given an iid sample X1, . . . , Xn ∼ X, the empirical
ME function is defined by

M̂(u) =
∑n

i=1(Xi − u)1 (Xi > u)∑n
i=1 1 (Xi > u)

, u > 0.

If X(1) ≤ · · · ≤ X(n) denote the order statistics of X1, . . . , Xn,
one typically plots the pairs (X(k), M̂(X(k)) for 1 < k ≤ n,
see Ghosh and Resnick (2010) or Das and Ghosh (2016). An
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unfortunate feature of the ME plot is that it is well-defined
only for distributions with finite expectation. Indeed, Ghosh and
Resnick (2010) showed that the ME plot converges to a random
curve in the case ξ > 1, which also holds in the case ξ = 1 after
suitable rescaling. Thus, the ME plot is inconsistent when ξ ≥
1. Consequently, knowledge about the finiteness of the mean
is required, a task that faces fundamental difficulties (Romano
2004), although there are some attempts to construct tests for or
against the existence of a finite mean (Fedotenkov 2013; Trapani
2016). For statistical inference (e.g., confidence bounds), a finite
second moment, that is ξ < 1/2 for the generalized Pareto
distribution, is required to obtain a normal limit (see Das and
Ghosh (2013) for a thorough discussion).

There are several other plotting tools used in connection with
heavy tails and extreme values, for example the Pareto QQ plot,
plots of estimators of the extreme value index like the Hill plot,
see, for example, Drees (2012) or Das and Ghosh (2013).

The chasm between Pareto distributions with and with-
out existing first moment (the latter are called extremely
heavy-tailed) has been addressed in several papers over the
past decades. For example, having exposures in multiple iid
extremely heavy-tailed Pareto losses is worse than having only
one Pareto loss of the same total exposure. More formally, it
can be shown that a convex combination of such Pareto losses
is larger in the usual stochastic order than a single infinite
mean loss. This penalizes diversification, which is impossible
if the expectation is finite. This phenomenon has been recog-
nized by a number of authors over the years. It is found in
the portfolio diversification literature (Samuelson 1967) and in
the dependence and value-at-risk literature (Embrechts, McNeil,
and Straumann 2002). The most comprehensive set of results
is provided in a recent paper by Chen, Embrechts, and Wang
(2023).

The importance of loss models without finite variance or even
finite mean has been demonstrated by the thorough analysis of
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Figure 1. Plots for Danish fire insurance data. Left panel: Graph of the new Pareto tail function; the right scale indicates the corresponding shape parameter α under Pareto
model. Right panel: Mean excess function.

various datasets. For an impressive list of such examples, see
Chen, Embrechts, and Wang (2023). As another example, Cirillo
and Taleb (2020) concluded that the sizes of pandemics, prop-
erly transformed into a distribution with unbounded support,
have infinite mean. In view of these examples, it is extremely
unsatisfactory that the ME plot breaks down in this important
range of parameter values where variance or mean does not
exist. To circumvent these problems, we propose an alternative
mean functional that exists for arbitrary probability distribu-
tions and characterizes the Pareto distribution within the set of
distributions with finite left endpoint. Specifically, assume that
X, X1, X2 are iid random variables from an absolutely continuous
distribution with support [xm, ∞). Then, the function

tX(u) = t(u) = E

[ |X1 − X2|
X1 + X2

∣∣∣ min{X1, X2} ≥ u
]

(2)

is constant if and only if X has the distribution function F(·; α)

for some α > 0.
Let us illustrate the use of the plots with two examples. First,

we consider large fire insurance claims in Denmark, available
as dataset danish in the R package evir (Pfaff and McNeil
2018). The ME plot of this dataset with sample size 2167 is shown
in the right panel of Figure 1. The ME function shows an upward
trend, indicating a heavy-tailed distribution. Since it follows a
reasonably straight line, we may assume that the data follows a
(generalized) Pareto distribution with positive shape parameter
α. For this dataset, a detailed analysis using methods from
extreme value theory (EVT) is available (McNeil 1997; Resnick
1997; McNeil, Frey, and Embrechts 2015), indicating a heavy-
tailed distribution with a tail index α less than 2. Thus, the usual
asymptotic results for the ME function assuming a finite second
moment are not valid, and its interpretation is difficult. The left
panel of Figure 1 shows our new Pareto tail plot. The graph is
more or less horizontal with values between 0.25 and 0.35 (left
axis), corresponding to values of α between 1.8 and 1.1 (right
axis). Notice the bulge for thresholds u between 5 and 15. For
the specific values u = 5, 10, 15, we get values of 0.30, 0.26, 0.25,
corresponding to α = 1.40, 1.70, 1.82, respectively. Looking at

the width of the (pointwise) confidence intervals given by the
dashed lines, we see that the data are compatible with Pareto
models at each of these values. These results are in good agree-
ment with the cited literature: Table 1 in McNeil (1997) gives
estimates for α between 1.4 and 2.0; Resnick (1997) concludes
“based on an amalgam of the QQ, Hill and moment plots, we
settle on an estimate of α = 1.4”.

Our second example considers a classical dataset of wind
catastrophes taken from Hogg and Klugman (1984, p. 64). It
represents 40 losses (in million U.S. dollars) due to wind-related
disasters. Data are reported to the nearest million, including only
losses of 2 million or more. Brazauskas and Serfling (2003) and
Rizzo (2009) proposed goodness-of-fit tests for the Pareto model
and applied them to the de-grouped wind catastrophes data, and
concluded that there were no evidence against the model. In
addition to the tests used in these articles, there are a variety of
formal tests for Pareto models, see Chu, Dickin, and Nadarajah
(2019) for an overview. Estimates for α under this model range
from 0.605 to 0.791. The right panel of Figure 2 again shows
the mean excess function, which, however, is meaningless for
values of α less than 1. The left panel shows the new Pareto tail
plot. The graph decreases, starting at 0.45 for the full dataset
and decreasing to 0.33 for u = 6 and 0.16 for u = 10, using
only the 15 and 10 largest claims, respectively. Under a Pareto
model, these values would correspond to α = 0.79, 1.26 and
2.89, but the plot clearly argues against the validity of this model.
This is not a contradiction to the above remark: the fact that
the goodness-of-fit tests do not reject the hypothesis of a Pareto
distribution does not prove that the hypothesis holds.

The article is organized as follows. Section 2 formally presents
the new characterization of the Pareto distribution and states
some fundamental properties. Section 3 introduces and dis-
cusses the intimately connected principle of a single huge jump,
which differentiates between distributions with moderately
heavy and super heavy tails. In Section 4, an estimator of the tail
function based on U-statistics is introduced, and its large sam-
ple properties are analyzed. Section 5 analyzes three additional
datasets. Section 6 concludes the article.
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Figure 2. Plots for wind catastrophe losses. Left panel: Graph of the new Pareto tail function; the right scale indicates the corresponding shape parameter α under Pareto
model. Right panel: Mean excess function (not meaningful for α ≤ 1).

2. A New Characterization of the Pareto Distribution

In an abstract, Srivastava (1965) indicated a characterization of
the Pareto distribution with distribution function F(x, α) = 1−
(xm/x)α for x ≥ xm > 0, where α > 0, as follows. Let F be
an absolutely continuous distribution function with F(xm) = 0,
and X ∼ F. Let X(1) ≤ · · · ≤ X(n) denote the order statistic of
a sample of size n from F. Then, X(1) and (X1 + · · · + Xn)/X(1)

are independent if and only if X follows the Pareto distribution.
This leads to the following result.

Theorem 1. Assume that X, X1, X2 ∼ F are iid random variables,
where the distribution function F is absolutely continuous with
F(xm) = 0. Then, the function tX : [xm, ∞) → [0, 1] defined in
(2) satisfies

tX(u) = tX(xm), for all u ≥ xm,

if and only if X is Pareto distributed, that is X ∼ F(·, α) for some
α > 0.

If X ∼ F(·, α), then, independent of xm,

t̃α = tX(xm) =

⎧⎪⎪⎨⎪⎪⎩
2α

∑α−1
k=1

(−1)α+1−k

k
+(−1)α+1 2α log 2 − 1, α ∈ N,

α
(
�

(
α+1

2
) − �

(
α
2
)) − 1, α > 0, α /∈ N,

(3)

where �(z) = d
dz log �(z) denotes the digamma function.

For Pareto distributed random variables with shape param-
eter α > 0, the proof of Theorem 1 in Appendix A shows that
t̃α = 2

∫ 1
0 αyα−1/(1 + y)dy − 1. Using integration by parts, we

obtain

t̃α = 2
∫ 1

0

yα

(1 + y)2 dy.

This representation reveals that t̃α is strictly decreasing as a
function of α, with lim t̃α = 1 for α → 0, and lim t̃α = 0
for α → ∞. Specific values are given by t̃1/2 = π/2 − 1 ≈
0.571,̃ t1 = 2 log 2 − 1 ≈ 0.368, t̃2 = 3 − 4 log 2 ≈ 0.227 and
t̃3 = −4 + 6 log 2 ≈ 0.159.

Since the conditional distribution of a Pareto-distributed
random variable X, given X > y (where y > xm), is a Pareto
distribution with the same α but with minimum y instead of
xm, we have tX|X>y(u) = tX(u) for u ≥ y. Furthermore, the
function t satisfies tcX(u) = tX(u/c) for c > 0 and u ≥ cxm.
It has the following interpretation (see Asmussen and Lehtomaa
2017): if both X1 and X2 contribute equally to the sum X1 + X2,
then t should eventually obtain values close to 0; if only one of
the variables tends to be of the same magnitude as the whole
sum, then t is close to 1 for large u. However, in contrast to the
functional g considered in Asmussen and Lehtomaa (2017) and
Iwashita and Klar (2023), this evaluation is performed only if
both X1 and X2 are large, and not already if the sum is large.
This interpretation will be explored further in the next section.

3. The Principle of a Single Huge Jump

Let X1 and X2 be independent random variables, having the
same Weibull distribution with shape parameter k. To illus-
trate the principle of a single big jump, Foss, Korshunov, and
Zachary (2013) considered the distribution of the random vari-
able X1/X1 + X2 conditional on the sum X1 + X2 = u for
increasing values of u. They showed that for k < 1, that is for
heavy-tailed distributions, this distribution converges for u →
∞ to (δ0 +δ1)/2, where δx denotes the Dirac measure in x. Here,
the distribution (function) F is said to be heavy-tailed if∫ ∞

−∞
eλxF(dx) = ∞ for all λ > 0,

otherwise F is said to be light-tailed (Foss, Korshunov, and
Zachary 2013). For Weibull distributions with k > 1, that
is light-tailed distributions, and as u → ∞, the distribution
converges to δ1/2. For k = 1, that is for the exponential distri-
bution, there is no concentration of mass. Further results in this
direction have been obtained by Lehtomaa (2015).

Instead of X1/u, we can consider the distribution of the
random variable (X(2) − X(1))/u conditional on the sum X1 +
X2 = u, which converges to δ1 for k < 1, and to δ0 for k > 1 as
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u → ∞. The first behavior is typical for heavy-tailed variables,
and is an example of the principle of a single big jump: if the
sum X1 +X2 is large, then one of the variables is large compared
to the other. For light-tailed distributions, however, both of the
variables X1 and X2 contribute equally, and the difference is
small compared to the sum.

Now let X1 and X2 be nonnegative and iid random variables.
Assume that X1 has unbounded support (xm, ∞) and density
function f . Let us consider a similar setting as above, but where
we condition on min{X1, X2} = u instead of X1 + X2 = u.
We will see that this change leads to a formally similar partition
within the distributions with heavy tails. Since the joint den-
sity of the order statistics (X(1), X(2)) is given by f()(x1, x2) =
2f (x1)f (x2) for x1 < x2, the joint density of (Y1, Y2) =
(X(1), (X(2) − X(1))/(X(1) + X(2))) is

g(y1, y2) = 2f (y1) f
(

y1(1 + y2)

1 − y2

)
2y1

(1 − y2)2 ,

y1 > xm, 0 < y2 < 1.

Division by the density of the first order statistics yields the
density of the random variable Z = (X(2) − X(1))/(X(1) + X(2))

conditional on the minimum X(1) = u as

g(z|u) =
2u f

(
u(1+z)

1−z

)
(1 − z)2 F̄(u)

, 0 < z < 1, u > xm. (4)

Example 2. (a) For the Weibull distribution with shape param-
eter k, we obtain

g(z|u) = 2kuk(1 + z)k−1(1 − z)−(k+1)

exp
{
−uk

[
((1 + z)/(1 − z))k − 1

]}
for 0 < z < 1, u > 0. It follows that the conditional
distribution converges to a one-point distribution in 0 as
u → ∞ for arbitrary k. Thus, for heavy-tailed Weibull
distributions, the distribution of Z conditional on X(1) = u
behaves completely different from conditioning on X1 +
X2 = u as u → ∞.

(b) For the Pareto distribution with shape parameter α, the
conditional density is

g(z|u) = g̃α(z) = 2α (1 + z)−(α+1)(1 − z)α−1,
0 < z < 1,

for all u > xm. The conditional distribution does not depend
on u, in agreement with Theorem 1. Thus, there is no
concentration of mass and the family of Pareto distributions
takes over the role of the exponential distributions in the
first scenario.

(c) Denote by Rα the class of regularly varying distributions,
where F̄(x) = L(x)/xα with α > 0 and L(·) is slowly vary-
ing, that is limx→∞ L(tx)/L(x) = 1 for t > 0. Assume that
F has an ultimately decreasing density f , that is there exists c
such that f is decreasing on [c, ∞). This ensures that f (x) =
αL̃(x)/xα+1 with L̃(x) ∼ L(x) as x → ∞ (Embrechts,
Klüppelberg, and Mikosch 1997, Th. A.3.7). Here, f (x) ∼
g(x) as x → ∞ means that limx→∞ f (x)/g(x) = 1. Then,
the conditional density is

g(z|u) = 2α
(1 − z)α−1

(1 + z)α+1

L̃
(

u(1+z)
1−z

)
L(u)

, 0 < z < 1,

for all u > xm. Therefore, g(z|u) ∼ g̃α(z) as u → ∞.
Thus, the limiting behavior of g(z|u) for distributions in Rα

coincides with that of a Pareto distribution with the same
shape parameter.

The left panel in Figure 3 shows graphs of g(z|u) for the
log-gamma distribution with density

f (x) = αβ

�(β)
(log x)β−1x−α−1, x ≥ 1 (α, β > 0),

for increasing values of u. The conditional density g(z|u)

of this regularly varying distribution converges to g̃α(z)
(plotted in red) as u → ∞.

(d) The right panel in Figure 3 shows graphs of g(z|u) for
the (standard) log-Cauchy distribution, a distribution with
heavier tails than Pareto distributions. Here, the conditional
distribution of Z converges to a one point distribution in 1
as u → ∞.

Figure 3. Plots of the conditional density g(z|u) in (4) for log-gamma (with α = 0.7, β = 2, left panel) and log-Cauchy distribution (right panel) for increasing values of
the boundary. Left panel: g(z|u) (in black) converges to g̃α(z) (in red) as u → ∞. Right panel: g(z|u) converges to δ1 as u → ∞.
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The last example of the log-Cauchy distribution shows an
effect which can be called the principle of a single huge jump:
if each of the variables X1 and X2 takes values over a large
boundary, then one of the variables will still typically be much
larger than the other. Distributions that follow this principle,
and hence, g(z|u) → δ1 as u → ∞, could be called super
heavy-tailed. There are other definitions of super heavy-tailed
distributions in the literature (Alves, de Haan, and Neves 2009;
Cormann and Reiss 2009); their connections to the definition
given here require further investigation. On the contrary, if
we consider observations X1 and X2 over a large boundary
for Weibull distributions, then X1 and X2 contribute equally,
and the difference is small compared to the sum. Thus, such
distributions, where g(z|u) → δ0 as u → ∞, are (at most)
moderately heavy-tailed. In between are the Pareto distributions
for arbitrary shape parameters, where a limiting density of g(z|u)

exists without any concentration of probability mass.
The shape of the conditional density in Example 2 c) suggests

that the limiting behavior of t(u) as u → ∞ for the class of
regularly varying distributions is the same as for Pareto distri-
butions. If L is slowly varying, then L(ux)/L(x) → 1 as x → ∞
uniformly over compact u sets (Embrechts, Klüppelberg, and
Mikosch 1997, Th. A.3.2). Strengthening this property, we can
indeed find the limiting behavior of t for a subset of regularly
varying distributions; the proof is given in Appendix B.

Theorem 3. Assume that X, X1, X2 ∈ Rα are iid ran-
dom variables, where the distribution is absolutely continu-
ous with an ultimately decreasing density. Assume further that
limx→∞ L(ux)/L(x) = 1 uniformly in u on (xm, ∞). Then,

lim
u→∞ tX(u) = t̃α ,

where t̃α is defined in Theorem 1.

4. An Estimator of t(u) based on U-statistics

To estimate t based on the order statistics X(1) ≤ · · · ≤ X(n) ,
define U-statistics

U(1)
n (u) = 2

n(n − 1)

∑
1≤i<j≤n

X(j) − X(i)

X(i) + X(j)
1

(
X(i) ≥ u

)
,

U(2)
n (u) = 2

n(n − 1)

∑
1≤i<j≤n

1
(
X(i) ≥ u

)
= 2

n(n − 1)

n∑
i=1

(n − i)1
(
X(i) ≥ u

)
,

where 1(B) is the indicator function of the event B. A non-
parametric estimator of t(u) is then given by the ratio of these
statistics:

t̂n(u) = U(1)
n (u)

U(2)
n (u)

, u ≥ xm.

Note that it suffices to evaluate t̂n at the sample points, yielding

t̂n
(
X(k)

) = 1(n−k+1
2

) ∑
k≤i<j

X(j) − X(i)

X(i) + X(j)
, k = 1, . . . , n − 1.

Hence, t̂n itself can be seen as a U-statistic, applied to the n−k+1
largest observations. For computational purposes, note that

t̂n
(
X(k)

) = n − k + 2
n − k

t̂n
(
X(k−1)

)
− 1(n−k+1

2
) n∑

j=k

X(j) − X(k−1)

X(k−1) + X(j)
, k = 2, . . . , n − 1.

This can be evaluated very quickly, starting with t̂n(X(n−1)) =
(X(n) − X(n−1))/(X(n) + X(n−1)).

Figure 4 shows the graphs of t̂n(u) for simulated samples
with sample size 10,000 from different distributions on (1, ∞).
The bound u is in the range from 1 to the 0.995-quantile of the
sample. The two dotted horizontal lines in the plots are given
by t̃1 ≈ 0.39 and t̃2 ≈ 0.23 in (3). The top row shows the
Pareto distribution with shape parameter 0.5 and the Pareto
distributions of type 2 and 3 with scale parameter θ = 5 and
shape parameter α = 1.5 and 3, respectively. Their densities are
given by

f2(x) = α

θ(1 + (x − 1)/θ)α+1 ,

f3(x) = α((x − 1)/θ)α−1

θ
(
1 + (

(x − 1)/θ
)α)2 , x > 1,

and satisfy the assumptions of Theorem 3. As expected, t̂n(u)

is nearly constant after a short settling period. The middle row
shows log-gamma distributions with α = 0.5, 1.5, 3 and β = 2.
These regularly varying distributions don’t satisfy the uniform
convergence assumption in Theorem 3. Nevertheless, t̂n seems
to converge to the limits corresponding to the shape parameter
α. Finally, the bottom row shows shifted gamma distributions,
whose conditional densities g(z|u)) converge to δ0, as it is the
case for Weibull distributions. Inspection of the proof of Theo-
rem 3 suggests that in this case, t(u) converges to 0 as u → ∞,
and the plots support this suggestion.

Remark 4. By the results in Section 2, t̃α is strictly decreasing in
α. Thus, one can estimate the parameter α of the Pareto distribu-
tion using t̂n. More generally, one can estimate the tail index of
a distribution with Pareto tails (for various possible definitions
see Fedotenkov (2020), Assumptions A1–A8), based on the k
largest observations of a sample. This adds another method to
the more than one hundred Pareto tail index estimators listed in
Fedotenkov (2020).

4.1. Large Sample Properties of t̂n

The U-statistic U(l)
n (u) are unbiased estimators of θ

(l)
u =

E[h(l)(X1, X2; u)], l = 1, 2, where the kernels h(l) of degree 2 are
defined by

h(1)(x1, x2; u) = |x1 − x2|
x1 + x2

1 (min{x1, x2} > u) ,

h(2)(x1, x2; u) = 1 (min{x1, x2} > u) .



6 B. KLAR

Figure 4. Graphs of t̂n(u) for simulated samples from different distributions on (1, ∞) with sample size 10,000. Upper row: Pareto distributions of type 1,2,3 with shape
parameter 0.5, 1.5, 3. Middle row: Log-gamma distributions with α = 0.5, 1.5, 3 and β = 2. Lower row: Shifted gamma distributions, each with expected value 10.

By the strong law of large numbers for U-statistics (Lee 1990,
p. 122), U(l)

n (u), l = 1, 2, and hence, t̂n(u) are strongly consis-
tent estimators for θ

(l)
u and t(u), respectively. Using the general

theory of U-statistics (see Lee (1990, p. 76) or Korolyuk and
Borovskich (1994, p. 132)), we can derive the joint asymptotic
distribution of (U(1)

n (u), U(2)
n (u)).

Proposition 5. For l = 1, 2, let

ψ(l)(x1, x2; u) = h(l)(x1, x2; u) − θ(l)
u ,

ψ
(l)
1 (x1; u) = E

[
ψ(l)(x1, X2; u)

]
.

Further, define

η
(l)
1 (u) = E

[(
ψ

(l)
1 (X1; u)

)2
]

(l = 1, 2),

η
(1,2)
1 (u) = E

[
ψ

(1)
1 (X1; u) ψ

(2)
1 (X1; u)

]
.

If η
(l)
1 (u) > 0 for l = 1, 2, then,

√
n

((
U(1)

n (d)

U(2)
n (u)

)
−

(
θ

(1)
u

θ
(2)
u

))
D−→ N2(0, 4u), where

u =
(

η
(1)
1 (u) η

(1,2)
1 (u)

η
(1,2)
1 (u) η

(2)
1 (u)

)
.

Using Proposition 5 and the delta method, we can derive the
asymptotic behavior of t̂n(u).

Theorem 6. Let νu = θ
(2)
u > 0, and η

(l)
1 (u) > 0 for l = 1, 2.

Then,

√
nνu

(
t̂n(u) − t(u)

) D−→ N
(
0, σ 2

u
)

, (5)

where

σ 2
u = 4

νu

(
η

(1)
1 (u) − 2t(u) η

(1,2)
1 (u) + t2(u) η

(2)
1 (u)

)
. (6)
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Table 1. Empirical coverage probability of 0.95-confidence intervals for t(u) based
on different estimators for effective sample size neff = 20, u = 3 and varying α.

α σ̂ 2
u σ̂ 2

B,u σ̂ 2
J,u

0.2 90.0 93.2 93.2
0.5 91.6 92.3 93.4
1.0 92.0 92.1 93.3
2.0 93.0 93.0 93.7
3.0 93.5 93.4 93.8

Next, we want to construct confidence intervals for t(u).
Based on Theorem 6, a confidence interval with asymptotic
coverage probability 1 − γ is given by[

max

{
t̂n(u) − z1−γ /2 σ̂u

(nU(2)
n (u))1/2

, 0

}
,

min

{
t̂n(u) + z1−γ /2 σ̂u

(nU(2)
n (u))1/2

, 1

}]
,

where zp = �−1(p), and σ̂ 2
u is an estimator of the variance of√nνd t̂n(u), corresponding to σ 2

u in (6). A possible approach
is to derive unbiased estimators σ 2

U(l) (l = 1, 2) and σ 2
U(1,2) of

var(U(l)
n (u)) and cov(U(1)

n (u), U(2)
n (u)), respectively. This can be

done efficiently with complexity O(n2), see Appendix C. Then,
an estimator of σ 2

u is given by

σ̂ 2
u = n

U(2)
n (d)

(
σ 2

U(1) − 2t̂n(u) σ 2
U(1,2) + t̂2

n(u) σ 2
U(2)

)
. (7)

Further possible estimators are the bootstrap variance estimator
σ̂ 2

B,u and the jackknife estimator σ̂ 2
J,u. Details can be found in

Shirahata and Sakamoto (1992) and Iwashita and Klar (2023).

4.2. Empirical Coverage Probability of Confidence
Intervals for t(u)

In this section, we empirically study the coverage probabilities
of confidence intervals for t(u) based on the three variance
estimators introduced in Section 5. As distributions, we choose
Pareto distributions with xm = 1 and different shape parameters
α. In all simulations, we use effective sample sizes, defined as
follows: for given values of α and u, the total sample size n was
chosen such that nνu = nP(min{X1, X2} > u) = neff. All
computations have been performed using the statistic program
R (R Core Team 2023).

The results for confidence level 1 − γ = 0.95, neff = 20, u =
2 and varying α are given in Table 1. For this small sample
size, all intervals are anticonservative, that is they have coverage
probability less than 0.95. The jackknife estimator σ̂ 2

J,u performs
slightly better than the competitors for α ≥ 0.5. For α = 0.2, the
coverage probability with σ̂ 2

u is as low as 0.90, while the other two
estimators work well.

Table 2 shows the results for 1 − γ = 0.95, α = 1, u = 2 and
increasing sample sizes. For neff = 40, σ̂ 2

J,u still has the edge over
the competitors. For neff = 80 or larger, all intervals work very
well. Since computing time of σ̂ 2

J,u and of σ̂ 2
B,u, which was com-

puted with 999 bootstrap replications, becomes a problem for
large samples, we recommend to use σ̂ 2

J,u for small to moderate
samples, and to switch to σ̂ 2

u for large samples sizes.

Table 2. Empirical coverage probability of 0.95-confidence intervals for t(u) based
on different estimators for α = 1, u = 2 and increasing effective sample size.

neff σ̂ 2
u σ̂ 2

B,u σ̂ 2
J,u

10.0 87.9 89.4 91.1
20.0 91.8 91.7 93.0
40.0 93.2 93.0 93.7
80.0 94.5 94.5 94.7

160.0 94.9 94.8 95.0

5. Empirical Illustrations

In this section, we describe and analyze three additional datasets:
French marine losses (2006), wildfire suppression costs (1995),
costs of nuclear power accidents (2016). The first two datasets
were also considered in Chen, Embrechts, and Wang (2023).

5.1. French Marine Losses

The marine losses dataset from the insurance data reposi-
tory CASdatasets, available at http://cas.uqam.ca/+, comes
from a French private insurer and includes 1274 marine losses
between January 2003 and June 2006. We consider only the paid
amount of the claims (which have been rescaled to mask the
actual losses) over 3 monetary units. This results in a sample of
size 657. The Pareto tail plot on the original scale is shown in the
left panel of Figure 5; in the right panel, the horizontal axis is log-
scaled for better visualization. For smaller thresholds up to 100,
the function t̂n takes values slightly above 0.4, corresponding to
a shape parameter below 1. For example, for u = 20, 50, 100,
which corresponds to using the 167, 72, 37 largest data points,
the values of t̂n(u) are given by 0.411, 0.418, 0.408, in turn cor-
responding to values of α around 0.91, 0.89, 0.92, respectively.
Then, t̂n decreases to values around 0.35. For example, t̂n(300) =
0.338, which corresponds to α = 1.21. However, in this region,
the confidence intervals indicate a high uncertainty in the esti-
mates, not contradicting the assumption of a Pareto model with
a shape parameter below 1. While plotting the mean excess
function makes no sense for this dataset, Chen, Embrechts, and
Wang (2023) present a Hill plot of this dataset. Using a threshold
around the top 5% of the order statistics of the data yields a
Hill estimate of 0.916 for the parameter α, which is in good
agreement with our analysis.

5.2. Wildfire Suppression Costs

The wildfire dataset contains 10,915 suppression costs (in Cana-
dian dollars) collected in Alberta from 1983 to 1995. We only
consider costs above 1000 dollars and divide them by 1000,
resulting in a dataset of size 6599, with minimum value of 1.
Therefore, the Pareto tail plot in the left panel in Figure 6 shows
the costs in 1000 dollars on the x-axis, while it is log-scaled in
the right panel. Specific values are given in Table 3. For small
and medium thresholds, the shape parameter is estimated to
be less than 1. For u = 25, which is approximately the upper
5% quantile of the complete dataset, the estimate of α is 0.85,
essentially identical to the value given in Chen, Embrechts, and
Wang (2023). This suggests a distribution with infinite mean.
However, for larger thresholds, u = 150 and above, the func-

http://cas.uqam.ca/+
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Figure 5. Plots for dataset on French marine losses, n = 657. Left panel: Graph of t̂n(u); the right scale indicates the corresponding shape parameter α under the assumption
that the data follows a Pareto distribution. Right panel: horizontal axis in log scale.

Figure 6. Plots for Wildfire suppression costs in Section 5.2, n = 6599. Left panel: Graph of t̂n(u); the right scale indicates the corresponding shape parameter α under the
assumption that the tail data follows a Pareto distribution. Right panel: horizontal axis in log scale.

Table 3. Values of t̂n(u) for the wildfire suppression cost data for specific values of
the threshold u and the corresponding shape parameter α under the assumption
that the tail data follow a Pareto model.

Threshold u # observations ≥ u t̂n(u) Corresponding α

5 2197 0.44 0.82
25 571 0.43 0.85
60 293 0.40 0.94
150 142 0.35 1.17
400 50 0.34 1.18

tion t̂n drops well below 0.368 and becomes stable, with values
around 0.34, corresponding to α = 1.20. For u = 150, the
estimate is still based on 142 observations, leading to rather
narrow confidence intervals. This raises doubts about an infinite
mean model and rather supports a model with a finite mean, but
an infinite second moment.

5.3. Costs of Nuclear Power Accidents

A dataset of 216 incidents and accidents occurring at nuclear
power plants, with costs in millions of U.S. dollars, is

available under https://data.world/rebeccaclay/nuclear-power-
accidents. Considering only costs over 10 million dollars results
in a dataset of size 125. The Pareto tail plot on the original
scale is shown in the left panel of Figure 7; in the right panel,
the horizontal axis is logarithmically scaled. The Pareto tail
function t̂n takes values between 0.45 and 0.63, corresponding
to values of α between 0.78 and 0.40. For this dataset, the
graph does not really show stability, even in the tail. On the
other hand, even when considering the full dataset, it is quite
small, so that a Pareto tail is not necessarily excluded. Consider
the specific thresholds u = 75, 500, 1640, which roughly cor-
respond to the 0.5, 0.75, and 0.90 quantiles, using the 64, 31,
and 13 largest data points. The pertaining values of t̂n(u) are
given by 0.58, 0.46, 0.54, corresponding to values of α given by
0.49, 0.76, 0.57, respectively. Taking into account the width of the
confidence intervals in Figure 7 shows that a Pareto distribution
with tail function t ≡ 0.5, corresponding to a shape parameter
around 0.65, is a possible model in the tail. In any case, it is
very likely that the underlying distribution has an infinite mean
value.

https://data.world/rebeccaclay/nuclear-power-accidents
https://data.world/rebeccaclay/nuclear-power-accidents
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Figure 7. Plots for costs of nuclear power accidents in Section 5.3, n = 125. Left panel: Graph of t̂n(u); the right scale indicates the corresponding shape parameter α under
the assumption that the data follows a Pareto distribution. Right panel: horizontal axis in log scale.

6. Concluding Remarks

This article proposes a graphical method for assessing the valid-
ity of a Pareto model, especially with respect to the tails of the
distribution. It is a fully nonparametric approach, applicable to
all continuous loss distributions without any moment restric-
tions. This is in sharp contrast to the mean excess plot, which
plays a fundamental role in many fields, but is of limited value
when dealing with heavy tails, although it is available in virtually
all EVT software (Belzile et al. 2023, Table 4). Furthermore, the
proposed graphical approach can also be used as a threshold
stability plot, where we choose the lowest threshold above which
t̂n is approximately constant, taking into account the uncertainty
quantified by the interval estimates. In this respect, it would we
worthwhile to construct simultaneous confidence bands; for the
mean excess plot, such bands have been derived by Das and
Ghosh (2013). The basic principle underlying the plot can also
be interpreted as the principle of a single huge jump, distinguish-
ing between distributions with moderate and super-heavy tails.
Further research is needed to realize the full potential of this
concept.

Appendix A. Proof of Theorem 1

Proof. For n = 2, Srivastava’s characterization yields that X(1) and
W = X(1)/(X(1)+X(2)) as well as X(1) and 1−W = X(2)/(X(1)+X(2))

are independent if and only if X follows the Pareto distribution. Hence,
the independence condition is equivalent to the condition that X(1) and
1 − 2W = (X(2) − X(1))/(X(1) + X(2)) are independent, which yields
the first assertion.

Now, assume that X, X1, X2 ∼ F(·; α) with density f (·; α). The joint
probability density function of (X(1), X(2)) is given by

f (x1, x2) = 2f (x1; α)f (x2; α) = 2α2x2α
m (x1x2)

−(α+1) ,
xm ≤ x1 ≤ x2.

It follows that Y = (X(2) − X(1))/(X(1) + X(2)) has density function

g(y) = 2α (1 + y)−(α+1)(1 − y)α−1, 0 ≤ y < 1.
Thus, the computation of t̃α boils down to the evaluation of

t̃α = EY =
∫ 1

0
2α (1 + y)−α(1 − y)α−1 dy − 1 = ťα − 1, (A1)

say. First, assume that α ∈ N, α ≥ 2. Using integration by parts, we
obtain

ťα = α

α − 1
(
2 − ťα−1

)
,

and a recursive application results in

ťα = 2α

α−1∑
k=1

(−1)α+1−k

k
+ (−1)α+1 α ť1.

Since ť1 = 2 log 2, the first part of formula (3) holds. Next, assume
α /∈ N. In this case, (3) follows by noting that

ťα
2α

=
∫ 1

0

yα−1

1 + y
dy = β(α),

where β(x) = ∑∞
k=0(−1)k/(x + k) = (�((x + 1)/2) − �(x/2))/2

(Gradshteyn and Ryzhik 2000, pp. 292, 947).

Appendix B. Proof of Theorem 3

With Z = (X(2) − X(1))/(X(1) + X(2)), we obtain

tX(u) = E
[
Z|X(1) ≥ u

] = E
[
Z · 1{X(1) ≥ u}]
P(X(1) ≥ u)

,

and, using the notation of Section 3,

E
[
Z · 1{X(1) ≥ u}] =

∫ ∞
u

E
[
Z|X(1) = s

]
fX(1)

(s) ds

=
∫ ∞

u

∫ 1

0
zg(z|s)dz fX(1)

(s) ds.

In the situation of Example 2c), we have

g(z|s) = g̃α(z)
L̃

(
s(1+z)

1−z

)
L(s)

, 0 < z < 1 .

By assumption, for ε > 0 there exists s0 > xm such that∣∣∣L̃(
s(1 + z)/(1 − z)

)
/L(s) − 1

∣∣∣ ≤ ε ∀s > s0,
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independently of z. It follows that∣∣∣∣∫ 1

0
zg(z|s)dz −

∫ 1

0
zg̃α(z)dz

∣∣∣∣ ≤ ε

∫ 1

0
zg̃α(z)dz ∀s > s0.

Thus, for u > s0,

∣∣tX(u) − t̃α
∣∣ =

∣∣∣∣∣
∫ ∞

u
∫ 1

0 zg(z|s)dz fX(1)
(s) ds

P(X(1) ≥ u)
−

∫ 1

0
zg̃α(z)dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

u
∫ 1

0 z
(
g(z|s) − g̃α(z)

)
dz fX(1)

(s) ds
P(X(1) ≥ u)

∣∣∣∣∣
≤ ε

∫ 1

0
zg̃α(z)dz,

which proves the claim.

Appendix C. Unbiased Estimator for the Variance of a
U-statistic

In this section, we discuss the estimation of var(U(l)
n (d))(l = 1, 2) and

cov(U(1)
n (d), U(2)

n (d)) by estimators σ 2
U(l) and σ 2

U(1,2) , respectively.
Let Un = 2/(n(n − 1))

∑
i<j h(Xi, Xj) be a general U-statistic of

degree 2, estimating θ = Eh(X1, X2). Defining h1(x1) = Eh(x1, X2)
and

ζ0 = θ2, ζ1 = E

[
h2

1(X1)
]

, ζ2 = E

[
h2(X1, X2)

]
,

the finite sample variance of Un is given by var(Un) =
2

n(n−1)
{2(n − 2)ζ1 + ζ2 − (2n − 3)ζ0} . One can estimate

ζc, c = 0, 1, 2, by

ζ̂0 = 1
n4

∑
d(i,j,k,l)

h(Xi, Xj)h(Xk, Xl),

ζ̂1 = 1
n3

∑
d(i,j,k)

h(Xi, Xj)h(Xi, Xk), ζ̂2 =
(

n
2

)−1 ∑
i<j

h2(Xi, Xj),

where d(i1, . . . , im) denotes a set of distinct indices 1 ≤ i1, . . . , im ≤ n,
and nm = n(n − 1) · · · (n − m + 1). Then, the minimum variance
unbiased estimator of var(Un) is given by (Shirahata and Sakamoto
1992)

σ̂ 2
U = 2

n(n − 1)

{
2(n − 2)ζ̂1 + ζ̂2 − (2n − 3)ζ̂0

}
= U2

n − ζ̂0. (C1)

The degree of the U-statistics in (C1) is 4, but it is possible to rewrite it
as

σ̂ 2
U = 4C2

1 − 2C2
2

n4 − 4n − 6
(n − 2)(n − 3)

U2
n , (C2)

where

C2
1 =

n∑
i=1

(∑
j �=i

h(Xi, Xj)
)2

, C2
2 =

∑
i �=j

h2(Xi, Xj)

(Shirahata and Sakamoto 1992, p. 2972). To obtain a multivariate
version of (C2), write hhT and UnUT

n instead of h2 and U2
n , and define

C2
1 =

n∑
i=1

SiST
i , where Si =

∑
j �=i

h(Xi, Xj).
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