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A B S T R A C T

Today, manufacturers and suppliers are challenged to deliver customized products at the lowest possible cost
and in increasingly shorter time frames, due to the increasing number of variants. Achieving this demands
efficient production system planning. However, current planning in the manufacturing industry is heavily
reliant on manual processes and individual expertise. Prior research tackles this issue by aiming to develop a
comprehensive approach for assisted, model-based rough planning of production systems. This article focuses
the optimization of variant-specific production systems. The basis for this is a process precedence graph that
restricts the optimization of the assignment of process steps to stations. In the mathematical modeling of the
Assembly Line Balancing Problem (ALBP), this work addresses complex constraints, including the selection of
station equipment, the utilization of multiple robots per station and a non-discrete assignment of tasks. The
approach developed is applied to the example of a Tier 1 automotive supplier, where the multi-criteria solution
of the ALBP allows an evaluation of the planning result. To this end, this work compares the algorithmically
generated solution both qualitatively and quantitatively with an example of manual expert planning. Thereby
it demonstrates the broad, industrial applicability of the approach. Consequently, this research contributes to
enhancing efficiency in production system planning, leading to sustainable reductions in both costs and time.
1. Introduction

Nowadays, production companies face several challenges in launch-
ing innovative products quickly and cost-effectively in the global mar-
ket [1]. In the automotive and automotive supplier industry three
trends can be observed:

In recent years, there has been strong growth in the automotive
industry worldwide. At the same time, the overall systems developed
are becoming increasingly complex [2] e.g. with Industrial Internet
of Things [3], leading to the emergence of extensive, personalized
knowledge [4].

A second complexity driver is the constantly increasing number
of variants for companies to meet customer demands for individual
products [6]. In response to this, the automotive supplier industry
has to adapt to this diversity of variants from original equipment
manufacturers (OEMs) and produces a complex variety of customer
variants under high cost pressure.

Lastly, 39% of all vehicles are being produced in China. Not only
this cost pressure from the Chinese automotive industry on the rest of
the world, but the overall rapid development in China is influencing
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the average car life cycle, which has fallen from eight to less than six
years [7].

As a result, manufacturing companies are confronted with high-
frequency and ever shorter development and planning cycles.
From the perspective of production system planning, these develop-
ments ultimately result in the need for efficient planning processes
in order to meet the high demand for customer-specific variants with
the shortest possible time to market (TTM). [8]

1.1. Problem description

This study focuses on variant-specific production system planning
as it occurs at Tier 1 suppliers in the automotive industry. They mostly
produce specifically requested customer variants from a very broad
product portfolio. To initiate an order, the supplier first carries out
an initial evaluation of the manufacturability of the desired customer
variant and the manufacturing costs of an ideal production system by
means of rough planning. This process can be characterized as follows:
Due to high quantities of the requested variant, the task considers
the customer-specific rough planning of new production systems rather
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Fig. 1. Method of assisted production system planning according to Schäfer et al. [5].
than scheduling orders in existing systems. Regarding its scope, the
planning focuses on variant-specific sections, where highly automated
lines for the production and assembly of individual customer variants
are planned, procured and put into operation. Lastly, the planning is
based on product and order information available at the time of rough
planning [9].

Within this industry process several problems arise, that need to be
addressed with a novel research approach: In the first step of product
analysis, the available product information for the requested variant is
often limited and subject to future changes. The variants produced are
functionally similar, but the differences in design and structure have
a huge impact on process and production system planning. Secondly,
process planning from product characteristics to production processes
is based on experience and is often dependent on personal knowledge.
Most importantly, the current document-based optimization of the pro-
duction system (e.g. in Excel) is time-consuming, manual, user-bound
and does not consider multiple target criteria. Lastly, planning results
are not integrated into digital (simulation) models for further use in
detailed planning.

1.2. Prior research

A holistic approach was developed to address these four problems
(see Fig. 1). In the first step, a product analysis identifies features
and connecting elements through similarity analyses according to the
principle that similar products are produced similarly [10]. The second
step models relationships between product, process and production sys-
tem including metadata and empirical knowledge to derive the process
precedence graph [11]. In the third step, the process steps need to be
assigned to stations considering their precedence relationships [12].
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In the last step, the optimized production system is visualized as
a digital (simulation) model, integrating the solution into a holistic
digital planning process. This paper only focuses on the third step by
means of Assembly Line Balancing (ALB).

1.3. Goal

This article proposes an approach for using multi-criteria opti-
mization in rough planning of variant-specific production systems. In
the literature, this problem is referred to as Assembly Line Balancing
Problem (ALBP) and maps the real problem in mathematical detail to
allocate process steps to stations whilst optimizing specific objective
functions [13]. In reference to a real-world industrial use case, the
mathematical modeling should be as realistic as possible and should
guarantee that solvers can find an optimal solution.

1.4. Structure of work

Section 2 contains the relevant foundations for this work and evalu-
ates the current state of research regarding ALB. Section 3 presents the
own approach. Subsequently, in Section 4 the approach is applied using
the example of an automotive supplier. A discussion of the developed
methodology and the findings obtained, as well as a summary and
possible extensions are provided in Sections 5 and 6 respectively.

2. Literature review

This chapter summarizes the basic knowledge of the optimization
in production system planning. This is followed by the state of the art
and a final conclusion.
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Fig. 2. Top: Assumptions of Simple ALBP according to Boysen & Fliedner et al. [14]. Bottom: Assumptions of Robotic ALBP according to Chutima [15].
2.1. Basic knowledge

In production system planning, planning tasks can be structured
according to the levels of production: Production network, location,
production system and workstation [16], whereby the focus of this
work is the ALB on production system level. Here, Hagemann [9]
divides planning processes into concept planning, rough planning and
detailed planning phases. Starting from rough to detailed, the phases
deal with the comparison of different production concepts during prod-
uct planning, the creation of an optimal production system design
and the detailed planning of the layout as well as the individual sta-
tions [17]. Due to a lack of data in an early phase, the rough planning
follows from the ideal to the real production system, which differ
in the consideration of boundary conditions. This paper deals with
the ideal rough planning of a new production system. Here, planning
tasks differ depending on the DIN 8580 processes [18]. While in part
manufacturing (e.g. groups 1–3), product features are extracted and
their process steps put into order, in assembly (group 4) an optimal
production sequence has to be derived from the bill of materials.
This sequence must fulfill all precedence relationships between process
steps. Optimization algorithms can be used for this purpose.

Mathematical optimization models describe real-world problem
with the aim of making good decisions using mathematical meth-
ods. Depending on the characteristics of the objective function and
the constraints as well as the decision variables, optimization models
are classified as Integer (linear) Programming or Mixed-Integer Linear
Programming (MILP) [19]. MILP – as the problem considered in this
paper – is 𝑁 𝑃 -hard [20,21] and thus belongs to the mathematically
most difficult problems to solve [22]. Solution algorithms for solving
optimization models can be classified into exact and heuristic methods.
This work uses a default solver, which decides on the exact solution
algorithm to be used when solving the mathematical problem. In the
case of multiple objective criteria, the presented approach applies the
scalarization method, which combines the objective functions with
weights to form a single substitute objective function [23].

When modeling mathematical models, simplifying assumptions are
often made. This also applies to the Simple ALBP (SALBP), which was
first formulated by Salveson in 1955 [24] (see Fig. 2 top).
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Table 1
Classification scheme for ALBP according to Boysen
et al. [14].
Precedence graph (𝛼)

𝛼1 product-specific precedence graph
𝛼2 structure of precedence graph
𝛼3 characteristics of processing time
𝛼4 sequence-based processing times
𝛼5 restrictions on task assignment
𝛼6 process alternatives

Stations & assembly line (𝛽)

𝛽1 transportation of products
𝛽2 layout of assembly line
𝛽3 parallelization
𝛽4 allocation of equipment
𝛽5 station-based processing times
𝛽6 further configuration possibilities

Objective function (𝛾)

Since assumption 9 (all stations are the same) does not adequately
represent reality in production system planning, Rubinovitz et al. [25]
expand the ALBP to the so-called Robotic ALBP (RALBP). This ex-
tends the initial problem to include a selection of possible equipment
(e.g. robots) that can be used at the stations and have an effect on
e.g. processing times of individual tasks [26]. Chutima [15] summarizes
common assumptions of literature on RALBP in Fig. 2 bottom. The
following section summarizes the relevant state of the art in this
context.

2.2. Literature review

In order to compare application-specific formulations of the ALBP,
Boysen et al. [14] propose a scheme for classifying existing ALB ap-
proaches. The classification scheme shown in Table 1 is based on the
properties of the precedence graph (𝛼), the properties of stations and
the Assembly Line (AL) (𝛽) as well as the objective function (𝛾).

Further approaches extend this classification scheme [14] including
the industrial context of the use case [27] and the selection of exact
and heuristic solution methods [28]. Based on this analysis, this results
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in five criteria for the evaluation and characterization of approaches
from the literature and enable a comparison between these:
C1 compares the scope of application and the assumptions made with

it and distinguishes between real (R), fictitious (F) and benchmark
(B) data sets.

C2 specifies the criteria of the selected objective function.
C3 compares the AL design and deals with the properties of the sta-

tions (multi-manned, parallel stations, selection of station type).

C4 evaluates the properties of the process steps, focusing on prece-
dence relationships and the divisibility of tasks.

C5 compares the selected optimal (O) or heuristic (H) solution meth-
ods.

The literature on (R)ALB is wide-ranging, as shown by Battaïa
& Dolgui, which includes more than 300 papers up to 2013 [27].
This current state of research focuses on more recent developments
and refers to Ghosh & Gagnon for the beginnings of ALBP in earlier
work [29]. This paper considers similar or relevant articles that treat
a single-product line with fixed cycle time as MILP without stochastic
components.

For a better understanding of the modeling assumptions, a look
at the application area [C1] is crucial. Most studies use fictitious
benchmark data sets instead of real use cases. An investigation of ALB
on real-world problems is conducted in manual assembly lines [30], au-
tomotive assembly lines [31], automotive engine manufacturing [32],
car body manufacturing [33] and battery production [34].

Although realistic production system planning considers multiple
objectives [C2], several approaches involve a single-objective optimiza-
tion problems. In this work, the cycle time is given by the customer,
which necessitate the minimization of the number of stations. Most of
the analyzed literature evaluates the cost of opening a station as well
as additional station equipment and minimize a total cost function. A
single objective function can be formed based on the number of sta-
tions or employees (see [31,34–39]). Abdous & Delorme et al. depicts
ergonomics both as a fatigue and recovery model and as ergonomic
investment costs [40]. Another factor to be considered is the sustain-
ability, e.g. through energy consumption [35] or CO2-emission [32].
Lopes & Pastre et al. optimize the AL length by an abstract objective
function [41]. Job Shop Scheduling (JSS) as a related problem takes fur-
ther optimization criteria into account such as capacity utilization [42]
and specific energy consumption [43] due to the higher availability of
information in production operations.

The AL design [C3] is varied by, for example, allocating mul-
tiple robots or workers to a station and station-internal scheduling
to maintain precedence relationships within the station. Yuan & Xu
et al. consider station-internal scheduling in two-sided ALBP, where
the work piece is processed from both sides and the worker can
assume different positions on each side [39]. Michels & Lopes et al.
present parallel stations as the only approach using a parallelism factor,
whereby the processing time can be halved due to the asynchronously
loaded, parallel stations [33]. More than half of the models make
decisions about the station equipment, either through free combina-
tion [30] or predefined station types [40]. The equipment influences
task processing through the specifically required equipment [44] or
equipment-dependent processing times [45].

For the mathematical modeling of ALBP, the characteristics of pro-
cess steps [C4] are relevant. In addition to the precedence relationships
at station level, a fundamental property of ALBP, the station-internal
scheduling considers the precedence relationships within a station. All
multi-manned approaches consider a station-internal scheduling, with
one exception [33]. The scheduling is usually modeled with start and
end times for each task. Michels & Lopes do without because their
application focuses on spot welding in car body construction, where
station-internal precedence relationships between individual welding
points do not exist [33]. In the literature, process steps generally
cannot be divided across several stations, so that a task must always be
processed completely at one station. With welding operations, however,
a division of tasks must be possible. From the analyzed approaches,
112 
Fig. 3. Overview of the current state of research on ALB.

only a cross-station design enables the task to be distributed across two
adjacent stations [32,35].

Depending on the complexity of the considered problems, which
is determined by the type and number of variables as well as the
size of the problem, the analyzed studies use solution approaches with
heuristic and exact solution algorithms [C5]. Heuristic methods are a
proven alternative for finding a good solution within a short time when
exact methods such as Branch-&-Bound- or Branch-&-Cut-algorithm
require long computing times [46]. Fattahi & Roshani et al. applies a
Branch-&-Cut-algorithm to reach an optimal solution [36].

2.3. Summary of the state of the art

In literature, various optimization approaches exist. Objective func-
tions [C2] and constraints, that are heavily influenced by the AL-Design
[C3] and the modeled attributes of process steps, characterize the ALBP.
Several papers optimize one cost objective function or apply their
multi-criteria optimization mostly to fictional or benchmark datasets.
Only Chen & Cheng et al. optimize a real use case by multiple crite-
ria [31]. With regard to the AL design [C3], Michels & Lopes et al.
enable several robots to work on the work piece at the same time [33].
The stations have equipment-dependent processing and handling times,
but a station-internal scheduling regarding the precedence relationships
is not used in spot welding. No paper considers a divisibility of pro-
cess steps [C4] (e.g. weld seams) with a non-discrete task to station
assignment. The analyzed approaches use exact and heuristic solution
methods [C5] (see Fig. 3).
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Table 2
Definition of a Complex ALBP (CALBP).

Characteristics S R

1 This is the mass production of a homogeneous product. ✓ ✓

2 Tasks can be processed in more than one predetermined way. X ✓

3 The line is timed with a fixed cycle time across all stations. ✓ X
4 The assembly line can consist of parallel stations. X ✓

5 The processing sequence of tasks depends on precedence relationships. ✓ ✓

6 The processing times of the tasks are deterministic but equipment-dependent. X ✓

7 Not only the precedence relationships restrict the task allocation. X ✓

8 Tasks can be divided between two or more stations. X X
9 All stations do not have the same equipment. X ✓

10 The ability of a station determines whether the task can be allocated to the station. X ✓

11 Stations can have more than one robot (multi-manned ALB). X X
12 All stations are continuously operational. X ✓

13 Unproductive times (positioning and tool change) and setup times are not negligible. X X
14 Load and unload as well as transportation times are not negligible. X X
15 The costs of robots are to be considered. X X
i
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o

According to the analysis above, none of the identified approaches
an adequately depict the given real-world problem with a combi-
ation of multi-criteria objective function, multi-manned equipment-
ependent stations and a non-discrete assignment of tasks.

3. Own approach

This chapter describes the characterization of the problem and the
applied methodology. Subsequently, the mathematical model of the
problem is formulated and explained.

3.1. Problem characterization

The analyzed real-world problem in this paper involves allocating
asks to stations within a given cycle time whilst optimizing several
riteria. It therefore falls into category I of the classification scheme
roposed by Boysen & Fliedner et al. [14]. More precisely due to an
quipment-dependent modeling of the stations, it can be described as

a RALBP. Therefore, following the simplifications of general RALBP ac-
cording to Chutima [15] (see Fig. 2), Table 2 defines a Complex ALBP
(CALBP) by means of its characteristics. A comparison to simplifying
ssumptions of Simple (S) and Robotic (R) ALBP by Boysen et al. [14]
nd Chutima [15] respectively indicates the complexity of the problem

at hand. A check mark (✓) indicates common assumptions of the
complex ALBP taken from literature (1–7, 9, 10, 12). For example, both
SALBP and RALBP as well as the complex ALBP at hand all consider
the mass production of a homogeneous product (1) but while SALBP
requires all stations to have the same equipment, with RALBP and
CALBP stations can differ regarding their equipment (e.g. robots) (9).

Assumptions taken from S- and RALBP generally depict a simplifica-
tion of real-world optimization problems. However, many assumptions
of Boysen & Fliedner et al. [14] and Chutima [15] as seen in Table 2 are
not applicable to the problem at hand to model the real-world use case
sufficiently. New characteristics, that are contributed for the first time,
include the division of tasks across two or more stations (8), considering
more than one robot per station (11), their costs (15) as well as a
consideration of unproductive (13) and handling times (14). None of
these represent simplifying assumptions, but rather a more detailed
modeling of the real problem. Especially the non-discrete assignment of
tasks to stations (8), that is necessary for balancing long joining tasks
(such as welding) adds to the complexity of the mathematical problem.
Taking these aspects into account is considered the core innovation of
this article. CALBP characteristics can be summarized as follows:

𝜶: The precedence relationships between tasks and the type of task
restrict the allocation of tasks to stations. Some tasks can only be
processed on certain station types (𝛼5 = type). As a result, there are
several possibilities to conduct a task. Furthermore, it is necessary to
divide certain tasks between several stations, especially when joining
by welding.
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𝜷: The AL is timed by a fixed, cross-station cycle time, which
s given by the customer based on the planned sales volume and
he available production time. Parallel stations in a line can halve
he station-internal cycle time through an asynchronous loading. The
rocess ability of stations determines the possible allocation of tasks and
s influenced by the station equipment. Each station has one or two
obots (𝛽3 = 𝑝𝑤𝑜𝑟𝑘2). According to some underlying combination rules,
he equipment is explicitly modeled and not selected from predefined
lternatives (𝛽4 = 𝑟𝑒𝑠◦ ), which influences the costs of the stations.
inally, unproductive times like loading, unloading and positioning of
obots must also be taken into account as a significant portion of the
tation time (𝛽5 = 𝛥𝑡𝑢𝑛𝑝).

𝜸: Production system planning optimizes multiple, partly competing
objective criteria. Therefore, the objective function requires a weight-
ing of criteria (e.g. main objective cost minimization 𝛾 = 𝐶 𝑜).

3.2. Applied methodology

An iterative approach from rough to fine is appropriate for the
evelopment of a complex mathematical model, as described in the
ethod by Schäfer & Kochendörfer et al. [47]. This method follows
ata-driven development according to Bach [48], in which a minimum

executable example is first created and then iteratively expanded. The
result of this iterative development is the model presented in the
following section.

3.3. Formulation and explanation of the model

An optimization model consists of objective functions and con-
straints. First, the objective functions are introduced, followed by the
constraints. To consider multiple objective criteria, a substitute objec-
tive function (see equality (28) in appendix) is introduced by means
of scalarization using a weighting vector 𝜆 with 𝜆𝑐 for cost, 𝜆𝑎 for
area, 𝜆𝑓 for flexibility and 𝜆𝑑 for tolerance deviations as well as the
single-criteria objective functions (24)–(27). To ensure comparability
of the different objective values (costs 𝐺𝑐 , area 𝐺𝑎, flexibility 𝐺𝑓
and tolerance deviations 𝐺𝑑), they are each normalized. Thereby, the
ptimal values of the single-criteria optimization (𝐺∗

𝑐 , 𝐺∗
𝑎 , 𝐺∗

𝑓 and 𝐺∗
𝑑

respectively) are used as normalization coefficients in the multi-criteria
optimization 𝐺𝑚. The overall objective function 𝐺𝑚 aims to maximize
the degree of objective achievement. For this purpose, objectives orig-
inally formulated as minimization problems (costs, area requirement,
tolerance deviation) are each multiplied by a factor of −1. In the
following, cost minimization, maximization of flexibility and quality as
well as optimization of ergonomics are examined.

The prioritized cost function in (24) relies on the number of stations
and includes labor and capital costs [49]. Labor costs for manual han-
dling 𝑐ℎ𝑎𝑛𝑑 𝑙 𝐻 are incurred not only during the active time of the worker,
but during the entire cycle time. Capital costs include interest and
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depreciation for the stations. Each station is based on basic equipment
for basic cost 𝑐𝑏𝑎𝑠𝑒 and additional equipment for further costs like
𝑐𝑎𝑑 𝑑 𝑅𝑜𝑏𝑜𝑡 for a second processing robot, 𝑐ℎ𝑎𝑛𝑑 𝑙 𝑅 for a handling robot and
𝑎𝑑 𝑑 𝑇 𝐶 for a turntable cell. Besides the investment costs, the operating
osts of the line are also included. To maintain the linearity of the

model, a known operating period is assumed, whereby time-related cost
rate can be converted into time-independent costs and the objective
function can be linearized.

Two objective functions regard the flexibility by minimization of
used area as factory or variant flexibility and maximization of cycle
time reserve as volume flexibility. Minimization of used area is simi-
larly structured as the cost function, where all cost coefficients 𝑐 can
be replaced through equipment-based area coefficients 𝑎 (see equality
(25) in appendix). Maximizing the cycle time reserve competes with

inimizing costs, especially the number of stations (see equality (26)
n appendix). A high cycle time reserve enables demand peaks to be
overed, for example. Due to its gradient, which shows optimal values
ith a maximum number of stations, this target criterion is introduced
xclusively as part of the multi-criteria optimization.

A distinction between tolerance-critical and normal tasks enables to
odel the quality as the degree of fulfillment of tolerance requirements.

The time at which a task is completed in relation to the position of a
tation in the line is seen as an indicator of the degree of fulfillment,
ince tolerance-critical tasks should ideally be finished at the end of
he line. This avoids, for example, deformation due to subsequent heat

and tolerance deviations that occurred earlier can be compensated by
his. Therefore, the binary variable 𝑓𝑖𝑗 takes the value 1 if the task 𝑖 is

completed on station 𝑗 and depict the tolerance deviations through the
difference between the last station 𝑛 and the completing station 𝑗 ∗ 𝑓𝑖𝑗
see equality (27) in appendix).

In the literature, the ergonomic is usually considered as exhaustion
f workers depending on their workload or as minimum requirement

for the workplace [14]. Because of the early phases of production
ystem planning, a detailed assessment of work processes is unrealistic.
ince human activity within the RALBP is limited to handling processes,
rgonomics is introduced here as a constraint regarding the maximum

handling weight.
The model is characterized by these constraints, hence the con-

traints are presented below.
Constraint (1) ensures that the allocated tasks 𝑖 ∈ 𝐼 can only be

rocessed on stations 𝑗 ∈ 𝐽 with the required abilities 𝑘 ∈ 𝐾 and
must be completed over all stations. For this purpose, the entries of
he matrix 𝐹𝑖𝑘 assume the value 1 if the task 𝑖 must be processed on
tation type 𝑘. The variable 𝑥𝑖𝑗 𝑘 takes a value between 0 and 1, which
epresents the allocated non-discrete proportion of tasks.
∑

∈𝐽
𝑥𝑖𝑗 𝑘 = 𝐹𝑖𝑘 ∀𝑖 ∈ 𝐼 ,∀𝑘 ∈ 𝐾 (1)

Tasks can only be allocated to opened stations and opening a station
s only possible with at least one allocated task, which guarantee
onstraint (2) and (3). Also, each station only has one station type (see
onstraint (4)). The variable 𝑣𝑗 𝑘 assumes the value 1 if the station 𝑗

is open. While, 𝑥𝑖𝑗 𝑘 describes the assigned proportion, 𝑤𝑖𝑗 𝑘 indicates
whether a task is being processed on a station at all. M represents a
large number for the Big-M-Constraint.
∑

𝑖∈𝐼
𝑥𝑖𝑗 𝑘 ≤ 𝑣𝑗 𝑘 ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (2)

𝑣𝑗 𝑘 ≤
∑

𝑖∈𝐼
𝑤𝑖𝑗 𝑘 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (3)

∑

𝑘∈𝐾
𝑣𝑗 𝑘 ≤ 1 ∀𝑗 ∈ 𝐽 (4)

Precedence graphs define technical or organizational sequence re-
trictions between tasks [14]. This work assumes, based on existing
iterature, that tasks with a precedence relationship must be completed
t separate, sequential stations. The constraints (5)–(9) realize the
 S
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compliance of precedence relationships. If a task 𝑖 is already being
rocessed between station ℎ and station 𝑗, then 𝑦𝑖𝑗 = 1 applies to 𝑗
nd all subsequent stations as noted by the lower bound constraint (5)

and the upper bound constraint (6). Similarly, the variable 𝑧𝑖𝑗 indicates,
hether the task is already finished at station by constraints (7) and (8).
he precedence relationship is finally implemented in constraint (9): If

task 𝑚 has to be completed before task 𝑛, then the precedence matrix
𝑃𝑚𝑛 takes the value 1. Task 𝑛 can only be started, respectively 𝑦𝑛𝑗 can
only assume the value 1 if 𝑧𝑚𝑗 = 1.
𝑗
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘 ≤ 𝑦𝑖𝑗 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (5)

𝑦𝑖𝑗 ≤ 𝑀 ⋅
𝑗
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (6)

𝑧𝑖𝑗 ≤
𝑗−1
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (7)

1 − 𝑧𝑖𝑗 ≤ 𝑀 ⋅ (1 −
𝑗−1
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘) ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (8)

𝑦𝑛𝑗 ⋅ 𝑃𝑚𝑛 ≤ 𝑧𝑚𝑗 ∀𝑚, 𝑛 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (9)

A special feature of the model is the implementation of the divisibil-
ity of tasks, which has not yet been considered in the state of the art (see
ection 2.2), but is relevant for joining tasks such as welding. The non-

discrete assignment takes place with the variable 𝑥𝑖𝑗 𝑘, which is assigned
a value in the range of [0,1] for proportional processing of a task at a
station of type. For a realistic modeling of continuous assignment, the
divisibility is limited by a share minimum 𝑥𝑚𝑖𝑛𝑖 (see constraint (10)) and
the overall processing time is extended overall stations (see constraint
11)–(14)). For example, if a weld seam is split, an overlap must be
elded.

Constraint (10) ensures that all allocated tasks exceed the share
minimum. To represent an overlap of task 𝑖 on station 𝑗 and the
esulting extend of the overall processing time, the model introduces
he variable 𝑜𝑖𝑗 . constraint (11) sets 𝑜𝑖𝑗 = 1 when station 𝑗 processes
ask 𝑖 but not yet completed. Similarly, constraints (12) and (13) set
𝑜𝑖𝑗 = 0 if the task 𝑖 is either not processed on station 𝑗 or has been fully
completed. Constraint (12) forces 𝑜𝑖𝑗 = 0 for all task types that do not
allow splitting.

𝑥𝑖𝑗 𝑘 ≥ 𝑥min
𝑖 ⋅𝑤𝑖𝑗 𝑘 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (10)

𝑜𝑖𝑗 ≥ 𝑤𝑖𝑗1 −
𝑗
∑

ℎ=1
𝑥𝑖ℎ1 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (11)

𝑜𝑖𝑗 ≤ 𝑥𝑖𝑗1 ⋅𝑀 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (12)

𝑜𝑖𝑗 ≤ (1 −
𝑗
∑

ℎ=1
𝑥𝑖ℎ1) ⋅𝑀 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 (13)

𝑜𝑖𝑗 ≤ 1 −𝑤𝑖𝑗 𝑘 ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ⧵ {1} (14)

The resulting cycle time of a station depends on its equipment. The
model presented focuses on the three exemplary station types (welding,
laser cutting, testing) with robots, but can be extended as required.
ither one (𝛼𝑗 = 0) or two (𝛼𝑗 = 1) robots are used at each station.

A turntable enables parallel processing of the tasks on the back of the
able with simultaneous loading and unloading on the front. Despite the

rotation time of the turntable, more processing time can be allocated
to it. The algorithm assigns either a Turntable Cell (TC) with turntable
(𝛿𝑗 = 1) or an Orbit Cell (OC) without turntable (𝛿𝑗 = 0) to a station.

Although the literature mostly does not consider unproductive times
(see Section 2.2), the selected equipment influences the productive
processing time and the unproductive time of stations. Since in reality
handling processes on highly automated, synchronized robotic lines are
crucial, this model examines handling processes in three aspects: First,
each station can be loaded by human (𝛽𝐻𝑗 = 1) or by robots (𝛽𝑅𝑗 = 1).
imilarly, the unloading and transfer to the next station can be carried
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out by human (𝛾𝐻𝑗 = 1) or by robots (𝛾𝑅𝑗 = 1). Finally, during joining
processes (𝑘 = 1), additional parts that have not yet been joined with
other parts are loaded in addition to the transfer from the previous
station, modeled in constraints (15)–(17).

Constraint (15) guarantees the loading of parts to the first station
(𝑙𝑝1 = 1), if part 𝑝 ∈ 𝑃 (𝑁𝑖𝑝 = 1) is required for the allocated task 𝑤𝑖11.
The loading of parts to the subsequence stations is realized in constraint
(16) by considering loading of the same part on previous stations.

𝑙𝑝1 ≥ 𝑤𝑖11 ⋅𝑁𝑖𝑝∀𝑖 ∈ 𝐼 ,∀𝑝 ∈ 𝑃 (15)

𝑙𝑝𝑗 ≥ 𝑤𝑖𝑗1 ⋅𝑁𝑖𝑝 −
𝑗−1
∑

ℎ=1
𝑙𝑝ℎ

𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ⧵ {1},∀𝑝 ∈ 𝑃 (16)

𝑝𝑗 ≤
∑

𝑖∈𝐼
(𝑤𝑖𝑗1 ⋅𝑁𝑖𝑝)∀𝑝 ∈ 𝑃 ,∀𝑗 ∈ 𝐽 (17)

A more general approach of constraint (15) represents constraint
18), which checks the necessity of the loaded parts for the allocated
asks on each station and avoids a loading of all parts on the first
tation. If the algorithm decides for a station with automatic loading

(𝛽𝑅𝑗 = 1), automatic transfer of the semi-finished products to the next
station (𝛾𝑅𝑗 = 1), a turntable (𝛿𝑗 = 1) and a processing robot (𝛼𝑗 = 0),
then both constraints apply and the handling time in constraint (18)
nd the processing time in constraint (19) are limited by the cycle time

𝑐𝑡. Other options of a station are manual loading (𝛽𝐻𝑗 = 1) and manual
transfer of the semi-finished products to the next station (𝛾𝐻𝑗 = 1). The
handling time in constraint (18) consists of the time for removing the
parts from the previous cycle 𝑡𝑜𝑢𝑡,𝑅 by robot or 𝑡𝑜𝑢𝑡,𝐻 by human, the
time for loading the parts (per robot t𝑖𝑛,𝑅𝑝 or human 𝑡𝑖𝑛,𝐻𝑝 across all
parts 𝑝) and the time for turning the table 𝑡𝑡𝑢𝑟𝑛. In the processing time
n constraint (19), the total processing time 𝑡𝑖 of a task 𝑖 is multiplied

by the proportion 𝑥𝑖𝑗 𝑘 processed at station 𝑗 in addition to the non-
productive time for positioning the robots 𝑡𝑝𝑜𝑠 for tasks 𝑖 processed on
tation 𝑗 with type 𝑞. A penalty term for overlaps is optionally taken

into account by time for overlap the welded seam 𝑡o multiply with 𝑜𝑖𝑗 . It
is assumed that a second robot halves the processing time. Analog to the
andling side, 𝑡𝑡𝑢𝑟𝑛 and 𝑡𝑟𝑒𝑠 are added. The variable 𝑡𝑟𝑒𝑠 determines the

cycle time reserve for optimizing volume flexibility. Stations without
turntables only have one constraint for maintaining the cycle time,
which combines the handling time and processing time according to
the same pattern (see constraint (20)). A challenge in modeling is the
transfer between the stations. It is assumed that the transfer of the semi-
finished products takes place synchronously at the end of a cycle. To
avoid collisions between humans and robots, the same transfer time is
assumed for both.

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 + 𝑡turn + 𝑡res ≤

𝑡 + (3 − 𝛽𝑅𝑗 − 𝛾𝑅𝑗 − 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 (18)
∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 1

2
⋅ 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡turn

+ 𝑡res ≤ 𝑐𝑡 + (2 − 𝛼𝑗 − 𝛿𝑗 ) ⋅𝑀∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (19)

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞)+

𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗
)

+ 𝑡res ≤ 𝑐𝑡+

(2 + 𝛼𝑗 − 𝛽𝑅𝑗 − 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (20)

The consideration of an ergonomic handling of parts and assem-
lies is modeled as constraints (21)–(23). Constraint (21) restricts the

weights of the loaded parts on a station, unless the station uses a robot
for loading (𝛽𝑅𝑗 = 1). Since the maximum weight 𝑚limit also applies
to the transfer between stations, the weight of subassemblies 𝑚product

𝑗
is calculated by the sum of product weight 𝑚 used at the station 𝑗
𝑝
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(see constraint (22)). Then constraint (23) limits this weight to the
aximum weight limit (except for 𝛾𝑅𝑗 = 1), analog to constraint (21).

𝑚𝑝 ⋅ 𝑙𝑝𝑗 ≤ 𝑚limit +𝑀 ⋅ 𝛽𝑅𝑗 ∀𝑗 ∈ 𝐽 ,∀𝑝 ∈ 𝑃 (21)

product
𝑗 =

𝑗
∑

ℎ=1

∑

𝑝∈𝑃
𝑚𝑝 ⋅ 𝑙𝑝𝑗 ∀𝑗 ∈ 𝐽 (22)

product
𝑗 ≤ 𝑚limit +𝑀 ⋅ (1 + 𝛾𝑅𝑗 − 𝑣𝑗 𝑘)

∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 (23)

4. Application and results

After a presentation of the real-world industrial use case, the an-
alyzed product as well as the production at hand are described (Sec-
tion 4.1). Subsequently, the implementation of the ALBP is explained
(Section 4.2). Followed by the results (Section 4.3) as well as a compar-
ative evaluation and assessment of various solutions (Section 4.4) and
a sensitivity analysis of the key parameters (Section 4.5), the validation
of the solution of multi-criteria optimization by means of a comparison
with manual planning completes this chapter (Section 4.6).

4.1. Use case and initialization

This chapter pursues the goal of applying the previously presented
pproach of the present work. To this end, variant-specific production
ystem planning at a German Tier 1 automotive supplier is consid-
red. The globally active company, headquartered in Germany, has
 turnover of almost 9 billion euros in 2023 with its approximately
3,000 employees worldwide and operates 73 production sites in 26
ountries. In the automotive sector, the supplier is particularly active
n the areas of structural parts, chassis and suspension components.

The product considered in this work is the Rear Twist Beam (RTB).
The supplier in question produces a total of around 8 million axles per
year, with an annual peak volume of approximately 300,000 axles per
ustomer.

The production of the specific RTB customer variants is usually
carried out according to the so-called build-to-print principle. Here, the
ustomer – in this case the Original Equipment Manufacturer (OEM) –

is in charge of the product design. The subsequent planning task of
the supplier includes the analysis of the requested customer variant,
the identification of the necessary process steps and the line balancing
(see Section 1.2 overall approach). In general, the production of an
RTB includes the manufacturing (e.g. pressing) of the sheet metal
parts and the assembly (e.g. welding) as well as the painting and
finishing of the assembly. The former and the latter are carried out
across variants with centrally available resources (e.g. press shop, paint
line, etc.). The focus of the planning task is therefore on optimizing
the variant-specific, highly automated assembly line. This primarily
includes joining (welding), cutting (laser cutting) and testing processes.

The characterization of the optimization problem can be derived
rom the assumptions and simplifications made in Table 2. According

to the classification of Boysen & Fliedner et al. [14], this is an ALBP
f type I. The cross-station cycle time is determined by the required

output quantity and the available production time:

𝑐𝑡 ≤
248 𝑑

𝑦 ⋅ 3 𝑠ℎ𝑖𝑓 𝑡𝑠
𝑑 ⋅ 7,5 ℎ

𝑠ℎ𝑖𝑓 𝑡 ⋅ 3.600
𝑠
ℎ

250.000 𝑜𝑟𝑑 𝑒𝑟𝑠
𝑦

= 80,352 s ≈ 80 s

The scalarization method is used to combine the partially competing
objectives within the multi-criteria optimization using the weighting
vector 𝜆. In the use case of the Tier 1 supplier the weights are chosen
according to the importance of the respective goal and introduced
as follows: costs 𝜆𝑐 = 0.6, area 𝜆𝑎 = 0.15, flexibility 𝜆𝑓 = 0.15 and
tolerance deviations 𝜆 = 0.1. In Section 4.4 however a multi-criteria
𝑑
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Fig. 4. UML diagram with the structure of the albalancer package including method calls through the interface.
Pareto curve (see Fig. 6) is given for 0.1 weight increments in order to
showcase all weight combinations.

Of the three task types 𝑘 at a station, welding tasks can be dis-
tributed non-discretely across multiple stations. Besides the choice
between one or two robots at a station, the decision between TC and OC
also influences the resulting costs, the required area and the behavior of
the station. Handling operations with sub-assemblies or parts weighing
less than 10 kg can be carried out by humans, while those weighing
more than 10 kg can only be handled by robots. This option also
changes the costs, area and handling time required. The customer-
specific product, the twist-beam axle, is defined by its components and
features such as weight and the process precedence graph. Depending
on size, weight and shape, humans and robots require different loading
times. The tolerance-critical tasks 𝑠2 (bearing bush) and 𝑠3 (adapter
plate) for both sides left and right have an influence on the relative
position of the twist-beam axle inside the vehicle.

The divisibility of the tasks is limited to a minimum of 15% (𝑥𝑖𝑗2 ≥
0, 15 ∀ 𝑥𝑖𝑗2 > 0) and an additional process duration of 3 s for
the necessary overlap when splitting a task are set for the processes.
This non-discrete assignment adds to the complexity of the problem
by turning 𝐼 = 29 tasks into a total of 29 ∗ 1∕0.15 ≈ 29 ∗ 6 ≈
174 ‘‘subtasks’’. According to Chutima [15], the computational com-
plexity of ALB problems is computed according to 𝐼!∕2𝑃 where 𝐼 is
the number of tasks (here 174 ‘‘subtasks’’) and 𝑃 is the number of
precedence relationships (here 𝑃 = 54). The real-world problem at hand
therefore has a computational complexity of 174!∕254 ≈ 3.6 ∗ 10299.
In addition, Mukund Nilakantan and Ponnambalam [50] distinguish
between small-sized, medium-sized and large-sized ALB problems using
the number of tasks (here 174 ‘‘subtasks’’) and introduce a WEST ratio,
i.e. the ratio of the number of tasks and stations (here 7 stations —
see Section 4.3). Accordingly, the present real-world problem with
174∕7 ≈ 25 can be classified as a large-scale problem.

4.2. Implementation

For performance reasons, the proprietary solver Gurobi is selected
for the exact solution of the ALBP, which, depending on the problem
formulation and instance, uses a variety of pre-implemented solution
algorithms. For the implementation with Python, the package ‘‘albal-
ancer’’ is developed, including its own interface for calling the model.
The resulting modular code structure is shown in Fig. 4.

It is implemented using the function build_model(), which uses the
standardized structure of the Gurobi model object grb.model. This is
realized by successively adding variables (grb.addVars()), constraints
(grb.addConstr()) and objective functions (grb.setObjective()). To im-
prove the solvability of the model, some adjustments were made. These
116 
include the consideration of numerical instabilities caused by floating-
point operations, the automatic correction of poor conditioning of
the problem using Big-M terms, and the introduction of complexity-
reducing constraints. The last of these arise from the combination of
existing constraints and do not change the permissible set.

4.3. Results

The optimal results of the single-objective optimizations are intro-
duced using individual objective functions in order to evaluate the
quality of the multi-criterial solution by the objective deviation. Table 3
provides an overview of the results.

Except for the optimization of the cycle time reserve, the other
solutions have seven stations and a cycle time reserve of 0 s. The cost
optimum is 11.19 million euros, where the singe-criterion area min-
imization with 0.44 million euros and the multi-criteria optimization
with 0.27 million euros (2.39%) are close to each other.

Similarly, the results for minimizing the space requirement of a
line are comparable, where the single-objective cost-optimal solution is
more space-saving than the multi-criteria optimization, but both have
less than 10% target deviation.

In contrast, the deviation from the optimal value for the other
single-objective results is significantly higher for the quality index, but
the optimum is achieved with multi-criteria optimization. In view of
the conflicting nature of volume flexibility with the other objective
functions, it is not surprising that all solutions have a target deviation
of 48 s regarding the cycle time reserve.

The solutions differ in terms of their goal achievement, the selected
station equipment and the task assignment.

The station equipment for cost minimization is shown in Table 4:
With a total of nine processing robots across all stations, only one of
seven stations uses a turntable, as a particularly large number of parts
are loaded at station 3, which increases the loading time. Loading is
done manually, while the transfer from station 3 is done by robots due
to the weight of the parts (over 10 kg). Since no other tasks are possible
at station 2 (laser cutting) and station 7 (testing), the low utilization is
unavoidable. All other stations are almost fully utilized.

Since neither costs nor space requirements are relevant for single-
objective quality optimization, its resulting line is equipped with four
TC stations, ten processing robots and only robots for transferring the
semi-finished products. As expected, the process allocation shows that
the tolerance-critical weld seams (𝑠2 and 𝑠3, on the right and left) are
completed only at the last possible station 6. The configuration of the
rest of the line (e.g. TC or OC) is irrelevant.

Maximizing the cycle time reserve is not very meaningful as a single-
objective analysis due to its gradient (optimal target achievement
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Table 3
Overview of the results.

Stations Costs Area Quality index Cycle time reserve Computing time
[#] [Mio. e] [m2] [1] [s] [s]

Single-objective

Stations 7 12,2862 87,91 17 0,00 23,46
Costs 7 11,1892 76,13 20 0,00 790,22

Used area 7 11,6314 73,75 18 0,00 593,00
Quality 7 13,0758 93,30 11 0,00 45,87

Cycle time reserve 20 40,6362 256,89 37 48,00 87,87

Optimum 7 11,1892 73,75 11 48,00 –

Multi-criteria Absolute 7 11,4566 80,52 11 2,37 387,24
Objective deviation 0% 2,39% 9,19% 0% −95,06% –
Table 4
Line configuration for single-objective cost minimization.
Station Station-Type OC/TC n Robots Max. parts weight Loading Weight of

semi-finished
product

Transfer

1 Welding OC 1 2,62 kg Human 6,93 kg Human
2 Laser cutting OC 1 0,00 kg – 6,93 kg Human
3 Welding TC 2 0,60 kg Human 9,93 kg Human
4 Welding OC 2 7,93 kg Human 17,86 kg Robot
5 Welding OC 1 1,05 kg Human 19,01 kg Robot
6 Welding OC 2 1,05 kg Human 20,06 kg Robot
7 EOL Testing OC 0 0,00 kg – 20,06 kg Robot
Table 5
Line configuration for multi-criteria optimization.
Station Station-Type OC/TC n Robots Max. parts weight Loading Weight of

semi-finished
product

Transfer

1 Welding OC 1 2,62 Human 6,93 Human
2 Laser cutting OC 1 0,00 – 6,93 Human
3 Welding TC 2 7,93 Human 15,66 Robot
4 Welding OC 1 1,05 Human 16,71 Robot
5 Welding OC 2 1,05 Human 17,76 Robot
6 Welding TC 2 0,60 Human 20,06 Robot
7 EOL testing OC 0 0,00 – 20,06 Robot
s
i
p

s
a
v
e
T
b

with maximum number of stations). The maximum possible cycle time
reserve in the application is 48 s. It is calculated from the specified
ustomer cycle time (80 s) and the longest, indivisible processing time

(30 s) plus transfer time (2 s).
The multi-criteria optimization aims to achieve the best possible

ompromise between the single-criteria solutions. A higher weighting
f the costs (𝜆𝑐 = 0.6) as expected leads to a high similarity to the
olution of the single-criteria cost minimization. However, the number
f TCs increases to two, which results in a cost increase of 2.39% and an
ncrease in the required area of 5.77%. The line configuration is shown
n Table 5 and still includes seven stations, with a cycle time reserve
f 2.37 s being achieved.

The assigned station equipment and its tasks are visualized for the
ulti-criteria optimization problem using a Gantt chart for each opened

tation. The station occupancy in Fig. 5 shows that the tolerance-critical
components are welded on the last possible station, which results in
an optimal quality index. This means that the relatively heavy torsion
eam is loaded at station 3, which requires an additional transfer robot.
verall, the production of the twist-beam axle is very symmetrical,
xcept at stations 4 and 5, although this is not specified as a constraint.

4.4. Comparative evaluation and assessment

The results of the exact optimization illustrate how the design of the
tations depends on the optimization objective. Depending on the labor

and robot costs, the total weight of the semi-finished product is kept
elow 10 kg for a long time in the single-objective minimization of costs
nd area in order to avoid more expensive robot transfers. The compar-

ison of both solutions shows that a cost-effective line configuration uses
 s
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TCs to save a processing robot, while the opposite appears to a space-
aving line configuration. The single-objective quality optimization
dentifies a solution in which, despite the sequence restriction by the
recedence graph, the tolerance critical components are welded late.

The multi-criteria optimization provides a sufficient solution with
the weighting factors defined in the application: There is no or only a
mall deviation from the objective for quality index and costs, and the
rea requirement increases by less than 10% compared to the optimal
alue. However, the maximization of the cycle time reserve is consid-
red a strongly competing objective and is therefore almost ignored.
he result is a Pareto efficient solution where no target criterion can
e improved without worsening another.

Due to the dependence of the solution on weights in the scalariza-
tion of multi-criteria optimization problems, Fig. 6 shows the Pareto
curve of the target achievement with different weightings (in 0.1
weight increments) of the three target criteria costs 𝜆𝑐 , space require-
ment 𝜆𝑎 and tolerance deviation 𝜆𝑑 . The weight of the cycle time
reserve 𝜆𝑓 is set to zero. Since the target values are discrete, some
solutions overlap, which is why fewer than 66 points (all possible
combinations with 0.1 weight increments of the three target criteria)
are shown. The saturation or intensity of a point indicates the number
of partitions that share the same objective function values.

4.5. Sensitivity analysis

The results are based on real parameters regarding the basic equip-
ment costs of a station, as well as the costs of TCs, robots and workers.
To validate the influence of these parameters, we defined various
cenarios to conduct a sensitivity analysis and assess the derived results.
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Fig. 5. Task allocation of the resulting 7 stations with multi-criteria optimization.
Since the basic equipment costs of a station only shift the objective
values without altering the resulting line configuration, no further
analysis of this parameter is required.

A first sensitivity analysis reflects upon labor costs. They affect
the deployment of workers for handling processes. Consequently, the
algorithm chooses to use robots instead of workers at a certain trade-
off point. In this case, only the costs are affected, which is why the cost
function was minimized in the subsequent analysis. Table 6 presents the
results of different solutions for handling and transfer under varying
labor costs, ceteris paribus.

Depending on the labor costs, the algorithm proposes three different
solutions, which vary in the use of robots for handling and transfer.
For labor costs below 50 euros per hour (see first case in Table 6), the
solution deploys as many workers as possible. However, after the third
station, the semi-finished product exceeds a weight over 10 kg, which
is too heavy for manual handling, and requires transfer by a robot.
Table 4 displays this solution. Although robots are more expensive
than workers at a labor cost of 60 euros per hour (see second case in
Table 6), the algorithm prefers robots for transfer across all stations.
This removes the weight constraint imposed on workers, allowing the
first station to be used more efficiently with more processes and heavier
118 
Table 6
Results of handling (H) and transfer (T) for different labor costs with human (h), robot
(r) or no handling (-).

Labor Type Stations

costs 1 2 3 4 5 6 7

≤ 50e/h H h – h h h h –
T h h h r r r r

60e/h H h – h h h h –
T r r r r r r r

≥ 70e/h H r r r – r r –
T r r r r r r r

parts. This process allocation eliminates the need for a turntable at
the third station, reducing costs, as a turntable is more expensive than
using three robots instead of three workers across station 3 to 5. The
process allocation is more balanced and the cycle time reserve increases
to 0.12 s compared to 0 s of the previous solution. When the labor costs
reach or exceed 70 euros per hour (see third case in Table 6), a break-
even point is achieved, making workers more expensive than robots.
As a result, the algorithm selects robots for all transfer and handling
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Fig. 6. Representation of Pareto efficient solutions depending on the target criteria of
cost, area and tolerance deviation.

operations. Due to the shorter handling and transfer times for robots,
more time for processing tasks is available, and the tasks are distributed
more evenly, resulting in a higher cycle time reserve of 0.62 s.

A second sensitivity analysis regards resource costs. Here, robots
are the alternative to human for handling and transfer tasks, and their
usage is influenced by both robot and worker costs. Higher robot costs
lead to increased use of human workers, and vice versa. Therefore,
similar solutions are produced here in reverse order. The robot costs
considered here include the procurement, operation and maintenance
costs over three years. At low robot costs (approx. e162,200), no work-
ers are employed, and all transfer and handling tasks are performed by
robots. At higher machine costs (approx. e202,200), robots are largely
avoided. However, after the third station, transfer by workers is no
longer possible due to the weight of the semi-finished product.

The last sensitivity analysis covers the additional cost of turntables,
that parallelize handling and processing tasks and enhance station
efficiency. The TC at station 3 in Table 4 will be replaced by an OC
with two robots instead of one robot if the additional costs exceeds
e600,000. An additional robot proves to be more economical than
either a turntable or an additional station.

4.6. Validation

4.6.1. Comparison with metaheuristic algorithm
To benchmark the solution against the state of the art, the results

are compared to a metaheuristic algorithm. For this purpose, in prior
research [12] we programmed a genetic algorithm based on the NSGA-
II algorithm according to Verma et al. [51]. In Schäfer et al. [12] the
solution approach and all methods used are described. In summary,
the Python library Distributed Evolutionary Algorithms in Python (DEAP)
according to Fortin et al. [52] has been expanded to include additional
functions such as an initial algorithm to create valid solutions, muta-
tions to explore the solution space and repair mechanisms to repair
invalid individuals. This algorithm is now applied to the present real-
world use case. Results can be taken from Figs. 7–9. Fig. 7 shows that an
increase in the number of generations and the population size generally
leads to improved solutions (purple) and that the developed algorithm
works. Here, Fig. 8 shows the best fitness per generation for a single-
objective optimization. Regarding the three selected objective functions
cost, area and tolerance deviation, convergence can be observed after
about 60 generations. Unsurprisingly, the optimal values (see Table 8,
line 2) of the heuristic optimization are worse than those of the exact
optimization with Gurobi (Grb.) (see Table 8, line 1). Advantages
regarding computing times are neglible since the exact optimization
only takes a few minutes using a standard industry PC (see Table 3).
Nevertheless, to complete the comparison, Fig. 9 shows the Pareto
curve of the multi-criteria optimization with DEAP.
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4.6.2. Comparison with manual planning
This validation compares the results of the multi-criteria optimiza-

tion with the manual planning created by planners. Table 7 represents
the manual planning. The production line consists of 5 stations for
welding, 1 for laser cutting, and 1 for visual inspection. Five workers
are required for loading the stations. Only the first two stations have
handling robots for transportation. Four of the five welding stations are
configured with TC, and all five stations are equipped with two welding
robots each. The manual planning processes the RTB symmetrically.
In comparison with the multi-criteria optimization, the algorithmic
result of the line is quite similar to the symmetrical processing of the
manual planning, without this being defined as an explicit requirement.
Overall, two-thirds of the tasks are performed in parallel on the right
and left sides.

According to the objective criteria of costs, required area, quality,
and cycle time reserve, both solutions are comparable, despite the
manual planning explicitly considering only cost minimization. The
planners implicitly consider the factors of quality and ergonomics
through the late processing of tolerance-critical parts and the maximum
weight limit for humans. There is no consideration of flexibility. The
comparison of the manual planning (line 3) with the algorithmic one
(line 1) in Table 8 shows that Gurobi (Grb.) provides a better solution.
This includes cost savings amounting to 10.6% or 1.3644 Mio e over
the course of three years as well as a reduction of the necessary area
by 43.4% or 61.622 m2. In addition, tolerance deviations were reduced
and the algorithmic solution includes a cycle time reserve of 2.37 s that
represents a maximum possible increase in annual production volumes
of 3.06%.

An even better solution can be obtained when adapting the math-
ematical model regarding the task assignment. In the presented ALB
model, constraints (5)–(9) are used to ensure that the precedence graph
is adhered to, in that two tasks between which a precedence relation
exists cannot be assigned to the same station. Relaxing these constraints
can be achieved by allowing the assignment of a successor tasks to the
station of the predecessor task, provided that the successor task is fully
processed at the station under consideration. This is stated in the newly
introduced constraint (9–II). Constraints (5) and (6) are dropped. In
constraints (7) and (8), only the summation over ℎ needs to be adjusted.

𝑧𝑖𝑗 ≤
𝑗
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (7–II)

1 − 𝑧𝑖𝑗 ≤ 𝑀 ⋅

(

1 −
𝑗
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑖ℎ𝑘

)

∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (8–II)

(1 − 𝑃𝑚𝑛) + 𝑧𝑚𝑗 ≥
𝑗
∑

ℎ=1

∑

𝑘∈𝐾
𝑥𝑛ℎ𝑘 ∀𝑚, 𝑛 ∈ 𝐼 , 𝑗 ∈ 𝐽 (9–II)

These adjustments (ceteris paribus) result in a line configuration
with only six stations, further minimizing costs (10.8944 Mio. e), area
(76.23 m2) and tolerance deviations (quality index 10). The cycle time
reserve increases to 6.65 s which accounts for a maximum possible
increase in annual production volumes of 9.5% (see Table 8 line
4). A discussion of these results with expert planners indicates that
this is partly due to simplifying assumptions. However, another main
advantage of multi-criteria optimization lies in the comparability of the
solutions, as the effects of changes in the line configuration on multiple
objective criteria (e.g. cost savings with a simultaneous decrease in
quality) can be quantified.

5. Discussion & outlook

5.1. Discussion

Even though there are several approaches for multi-criteria opti-
mization of production lines considering the precedence graph (see
Section 2.2), most companies accomplish this task manually, due to
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Fig. 7. Representation of Pareto efficient solutions depending on the target criteria of cost, area and tolerance deviation.
Table 7
Details of the manually planned line configuration.

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7
Station type Welding Laser-Cutting Welding Welding Welding Welding EOL testing
OC/TC TC TC TC TC TC TC OC
n robots 2 1 2 2 2 2 0
Loading Human – Human Human Human Human –
Transfer Robots Human Human Robots Robots Robots Robots
Processing time stationa [s] 15,40 11,48 62,80 160,06 96,63 85,76 30,00
Processing time robotsb [s] 7,70 11,48 31,40 80,03 48,32 42,88 30
Cycle time stationc [s] 12,70 16,48 35,40 85,03 53,32 47,88 30
Overlapping – – – – 2 2 –

a Station processing time = total processing time for all tasks at a station
b Processing time per robot = processing time of the station/n robots

c Cycle time of the station = processing time per robot + time to turn the turntable (for TC) Line cycle time = maximum station cycle time
Fig. 8. Fitness over generations of metaheuristic approach.

Fig. 9. Representation of Pareto efficient solutions (blue) and other individuals (green)
of the last generation. Due to the discrete target values, some of the solutions overlap.
A high saturation i.e. a darker point is an indicator for several points overlapping. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Table 8
Quantitative comparison of planning results.

Stations Costs Area Quality Cycle time
[#] [Mio. e] [𝑚2] index [1] reserve [s]

Grb. 7 11.4566 80.52 11 2.37
NSGA-II 8 17.5200 110.87 48 0.00
Manual 7 12.8210 142.142 17 0.00
Grb.–II 6 10.8944 76.23 10 6.65

the simplification of the real problem and the assumptions of modeling
(see Boysen & Fliedner et al. [14]). In contrast, this approach analyzes
and optimizes an real-world industrial problem [C1] by employing a
mathematical model that is as realistic as possible.

This approach applies the data-driven development [48] by first
defining a runtime minimal model and then iteratively extending
it [47]. A preliminary study with a heuristic solution algorithm demon-
strates the general solvability of the problem [12]. By using the default
solver Gurobi, this method can identify the optimal solution of the
multi-criteria optimization model with the quantified objective criteria
such as cost, quality, time and flexibility. The scalarization method,
which combines multiple objective functions with weights into a sin-
gle substitute objective function, guarantees a weak Pareto efficient
solution in mixed-integer optimization [53]. Therefore, one objective
function can only be improved at the expense of another objective
function. If the Pareto front is non-convex, Pareto efficient points
cannot be found in the non-convex part [54].

A comparison with the characterization by Boysen & Fliedner et al.
[14] and common assumptions in literature (see [15]) shows the com-
plexity of this ALBP. Considering sequence restrictions by precedence
graph, tasks are allocated to specific stations based on their type
and the required processing equipment. Since each station can ac-
commodate up to two robots, it is a multi-manned AL design [C3].
Equipment-dependent, unproductive times are explicitly taken into
account. As the first research work, the present work considers the
divisibility of tasks when assigning them to multiple stations [C4].
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The quality of the solution depends on changes in demand, which
need to be discussed. While the output can be reduced, an increase in
output is limited by the cycle time reserve. The calculated cycle time
reserve of 6.65 s represents a maximum possible increase in annual
production of 9.5%. In general, multi-criteria optimization allows ex-
plicit consideration of multiple objective criteria compared to manual
planning.

5.2. Outlook

Despite the very high degree of fulfillment of the requirements
y the developed approach to assisted production system planning,
he benefits can be increased further through extensions and future
esearch needs, especially with regard to the simplified assumptions in
he current work.

An earlier optimization of the production system requires an in-
reased need for information. Further research can thus, for example,
ntegrate accessibility simulations or robot path planning into the early
hase of production system planning through an extended optimization
odel. Likewise, the extension can be made along the variation of the

vertical integration, where the current focus is on the variant-specific
line balancing. The integration of the associated parts manufacturing
and any make-or-buy decisions leads to a global optimization of the
production system.

Availability and parameter correlations are currently only estimated
tatically and on the basis of empirical values. By combining optimiza-
ion and material flow simulation, an extended approach can consider
he dynamic system behavior and various demand scenarios in line
alancing and enable an integrated dimensioning of buffer capacities
nd positions. Based on the exact geometric position of a component
r feature, the level of detail in the planning can be further increased
y taking into account unproductive times more precisely.

In view of the future obligation for suppliers to carry out Life Cycle
ssessments (LCA), it also makes sense to expand the multi-criteria
ptimization problem to include sustainability and opportunistic main-
enance aspects [55].

6. Conclusion

6.1. Managerial insights

Using mathematical optimization for ALB provides significant ad-
antages in terms of efficiency, cost savings, and resource utilization.
tate of the art optimization algorithms such as Gurobi can quickly
computing times < 10 min on standard industry PCs) identify the
ost effective allocation of tasks across stations, optimizing multiple

bjectives and ensuring a balanced workload. This reduces production
ottlenecks, increases throughput (here up to 9.5%), and optimizes
esource usage. However, it could be investigated whether a subsequent
mprovement of the solutions to Pareto optimality is possible or if their
areto efficiency can be proven. For a balanced consideration of several
bjectives, Goal Programming can be considered as an alternative to
calarization.

Generally, it is crucial to model the real-world problem as realisti-
cally as possible. Inaccurate representations of real-world constraints,
such as resource costs, positioning or handling times, can lead to
suboptimal solutions that are infeasible or inefficient in practice. In-
corporating real-world complexities into the model ensures that the
proposed solutions are practical, scalable, and aligned with the ac-
tual production environment. On one hand, this leads to more robust
decision-making and sustainable operational improvements. On the
other hand, it also means more complexity that needs to be mastered.
In this article, above all the non-discrete assignment of tasks to sta-
tions adds immensely to the complexity of the mathematical problem,

299
resulting in an computational complexity of over 3.6 ∗ 10 .

121 
However, algorithmic optimization is especially necessary because
humans cannot handle such complexity. For Tier 1 suppliers, who must
frequently balance assembly lines for every new product request from
heir customers, the efficiency and speed of mathematical optimization
ecome even more critical. Here, the combination of mathematical
ptimization and realistic modeling is particularly recommended and
elivers significant competitive advantages: It allows them to rapidly
dapt to new customer requests, reduce the time and resources needed
or ALB, and ensure that the production line is optimized for efficiency,
ost-effectiveness and other. By balancing assembly lines faster and
ore accurately, suppliers can not only meet but exceed customer

xpectations, offering faster lead times, more flexibility, and higher
uality, all while maintaining profitability in a demanding market
nvironment.

For a successful industrial introduction, specific recommendations
for companies are briefly discussed: First of all, it is essential for a
ompany to provide the necessary input data in digital form, suffi-
ient data quality and at the right time. Tihlarik [56] shows that

the acceptance of users represents a major hurdle to industrialization.
Although this article aims to provide computer-assistance for humans
and not to replace human planning skills, there is a general mistrust
of algorithmically designed solutions. For this reason, it is advisable
or companies to present the calculation logic of their approach in

a transparent manner, thereby enhancing the clarity and understand-
ing of the solution. Additionally, allowing the planner to influence
the calculation logic is also encouraged. Companies should also offer
n intuitive user interface to help users navigate the often complex

algorithmic planning. From a technical standpoint, it is important to
emphasize the integration of the approach into the current system
landscape. Rather than introducing yet another tool into an already
diverse software environment, the planning assistant should seamlessly
integrate with the existing processes, methods, and tools.

6.2. Summary

Automotive manufacturers and their suppliers are confronted with
more frequent and shorter development and planning cycles. These can
be attributed to three general trends: a growing sales volume of in-
creasingly complex complete systems, the constantly increasing variety
of variants and increasing cost pressure from the Chinese automotive
industry. This leads to the need to maximize the efficiency of repetitive
planning of production systems for the manufacturing of customer-
specific product variants. The current state of research in the field of
ALBP does not adequately model the real-world problem. This study
fills this research gap with a combination of multiple objective func-
tions, multi-manned stations, the option for parallel stations, different
station types and task divisibility.

In consideration of a process precedence graph, a complex ALB
model is developed that adequately represents the given real-world
problem and enables an optimal allocation of the process steps to the
stations. With the help of the default solver Gurobi, the defined model
can solve an optimal solution in an acceptable computing time, taking
into account several objective criteria.

The results of the application and validation based on the exam-
ple of the rough planning of production systems for the production
of customized RTB at an automotive supplier show the general in-
dustrial applicability of the developed methodology. The innovative
approach generates a line configuration that directly reduces manu-
facturing costs, space usage, and tolerance deviations while increasing
the cycle time reserve compared to the manual alternative. As a result,
annual output can rise by as much as 9.5%. Moreover, this planning
method can indirectly reduce personnel costs by decreasing the time
needed for the planning task. The developed approach for assisted,
model-based rough planning of production systems can increase the
efficiency of planning and contribute to the reduction of costs and time

in a future-oriented planning process.
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s.t. 𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 + 𝑡turn + 𝑡res ≤ 𝑐𝑡 + (1 + 𝛽𝑅𝑗 + 𝛾𝑅𝑗 − 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽

𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 + 𝑡turn + 𝑡res ≤ 𝑐𝑡 + (2 − 𝛽𝑅𝑗 + 𝛾𝑅𝑗 − 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 + 𝑡turn + 𝑡res ≤ 𝑐𝑡 + (2 + 𝛽𝑅𝑗 − 𝛾𝑅𝑗 − 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡turn + 𝑡res ≤ 𝑐𝑡 + (1 + 𝛼𝑗 − 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (1 + 𝛼𝑗 − 𝛽𝑅𝑗 + 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 1

2
⋅ 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (3 − 𝛼𝑗 − 𝛽𝑅𝑗 − 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,R
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 1

2
⋅ 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (2 − 𝛼𝑗 − 𝛽𝑅𝑗 + 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (1 + 𝛼𝑗 + 𝛽𝑅𝑗 − 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (𝛼𝑗 + 𝛽𝑅𝑗 + 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,R +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 1

2
⋅ 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (2 − 𝛼𝑗 + 𝛽𝑅𝑗 − 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾

𝑡out,H +
∑

𝑝∈𝑃
𝑙𝑝𝑗 ⋅ 𝑡

in,H
𝑝 +

∑

𝑖∈𝐼

(
∑

𝑞∈{1,2}
(𝑡pos ⋅𝑤𝑖𝑗 𝑞) + 1

2
⋅ 𝑡𝑖 ⋅ 𝑥𝑖𝑗 𝑘 + 𝑡o ⋅ 𝑜𝑖𝑗

)

+ 𝑡res ≤ 𝑐𝑡 + (1 − 𝛼𝑗 + 𝛽𝑅𝑗 + 𝛾𝑅𝑗 + 𝛿𝑗 ) ⋅𝑀 ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾
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Appendix

Eqs. (24)–(27) describe the four single-objective functions, and
Eq. (28) summarizes these into one multi-criteria substitution function.
Box I consists of all equipment-dependant constraints. These inequal-
ities present all the possibilities for calculating the cycle time of a
station based on the productive and unproductive time in relation to
the allocated equipment.
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min cost 𝐺𝑐 =
∑

𝑗∈𝐽

∑

𝑘∈𝐾

(

𝑐base ⋅ 𝑣𝑗 𝑘
)

+
∑

𝑗∈𝐽

(

𝑐addRobot ⋅ 𝛼𝑗 + 𝑐handlR ⋅ (𝛽𝑅𝑗 + 𝛾𝑅𝑗 ) + 𝑐handlH ⋅ (𝛽𝐻𝑗 + 𝛾𝐻𝑗 ) + 𝑐addTC ⋅ 𝛿𝑗
)

(24)
min area 𝐺𝑎 =

∑

𝑗∈𝐽

∑

𝑘∈𝐾

(

𝑎base ⋅ 𝑣𝑗 𝑘
)

+
∑

𝑗∈𝐽

(

𝑎addRobot ⋅ 𝛼𝑗 + 𝑎handlR ⋅ (𝛽𝑅𝑗 + 𝛾𝑅𝑗 ) + 𝑎handlH ⋅ (𝛽𝐻𝑗 + 𝛾𝐻𝑗 ) + 𝑎addTC ⋅ 𝛿𝑗
)

(25)

max flexibility 𝐺𝑓 = 𝑡res (26)

min deviations 𝐺𝑑 = 𝑛 +
∑

𝑖∈𝐼crit

(

𝑛 −
∑

𝑗∈𝐽
𝑗 ⋅ 𝑓𝑖𝑗

)

(27)

max multi-criteria 𝐺𝑚 = −𝜆𝑐 ⋅
𝐺𝑐

𝐺∗
𝑐
− 𝜆𝑎 ⋅

𝐺𝑎

𝐺∗
𝑎
+ 𝜆𝑓 ⋅

𝐺𝑓

𝐺∗
𝑓
− 𝜆𝑑 ⋅

𝐺𝑑

𝐺∗
𝑑

(28)

The following inequalities present all the possibilities for calculating
the cycle time of a station based on the productive and unproductive
time in relation to the allocated equipment (see Box I).
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