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Abstract: A binuclear cobalt–radical complex formed by the reaction of Co(hfac)2·2H2O (hfac =
hexafluoroacetylacetonate) with the 2,2-bis(1-oxyl-3-oxide-4,4,5,5-tetramethylimidazolinyl) biradical
(BR) has been synthesized. The complex {(hfac)CoII(BN)CoII(hfac)} crystallizes in the triclinic space
group P1 : C34H28Co2F24N4O12, a = 11.1513(5) Å, b = 12.8362(7) Å, c = 18.2903(8) Å, α = 103.061(1)◦,
β = 100.898(2)◦, γ = 102.250(1)◦, Z = 2. The compound consists of two non-equivalent pseudo-
octahedral CoII ions, each bearing two hfac ancillary ligands bridged by the tetradentate bis-nitroxide
(BN). The temperature dependence of the magnetic susceptibility indicates a strong antiferromagnetic
exchange between each of the Co2+ ions and the nitroxyl biradical, as well as between the spins within
the bridging ligand, forming a spin-frustrated system. Micro-squid investigations, performed on a
single crystal of {(hfac)CoII(BN)CoII(hfac)}, reveal a peculiarity of the M(H) graph at temperatures
below 0.4 K displaying a step that is a result of ground and first excited levels mixing by the applied
magnetic field due to a small energy gap between them, as inferred from ab initio calculation. The
latter was also carried out for two models of mononuclear Co2+ complexes in order to obtain a set
of initial parameters for fitting the experimental magnetic curves using the Phi program. Moreover,
direct CAS(12,10)/def2-TZVP calculations of the magnetic dependences χT(T) and M(H) were
performed, which satisfactorily reproduced the experimental ones.

Keywords: nitroxyl radical; diradical; cobalt(II) complex; strong magnetic coupling; spin frustration

1. Introduction

Among the various strategies developed to create magnetic systems, the metal–radical
approach has yielded successful results. This approach, proposed by Andrea Caneschi,
Dante Gatteschi, Roberta Sessoli, and Paul Rey [1], aims at obtaining strong direct magnetic
metal–ligand exchange interactions by coordinating paramagnetic metal ions with stable
free radicals. Such a strategy has been employed to obtain magnetic systems with incredibly
strong couplings. In some cases, the interaction can propagate in one, two, or even three
directions [2], giving rise to molecular systems with cooperative magnetic behavior [3–7].
The presence of strong exchange interactions between metal ions and organic radicals
in coordination compounds makes them attractive for the design of molecular magnetic
materials [8,9]. This is especially true for the low-dimensional magnets: single-molecule
magnets (SMMs) [10] and single-chain magnets (SCMs) [11–13] since the stronger the spin
coupling, the lower the under-barrier magnetization tunneling [14,15].

Antiferromagnetically coupled spins in polynuclear complexes of paramagnetic metal
ions [16] and π-conjugated organic radicals [3,17] can be organized in different topological
forms: triangular [18]; butterfly-like [13,19–21]; tetrahedral; or cubane structures. Therefore,
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such materials offer plentiful opportunities to describe competing interactions, where two
adjacent spins are forced to be parallel despite antiferromagnetic coupling. A molecule
with a degenerate ground state is called spin-frustrated. The versatility of molecular
magnetic materials could be greatly improved by the use of heterospin systems consisting of
paramagnetic metal ions in combination with organic free radical bridging ligands [22–26].

Among the 3d metals, coordination compounds of Mn(II) with stable organic radicals
are of most interest due to the presence of five unpaired electrons in the metal cation.
However, the Mn2+ ion is magnetically isotropic, whereas the Co2+ ion is anisotropic in an
idealized octahedral environment due to the partially unquenched orbital moment L [27].
In the family of organic radicals, most of which are unstable in the air [17,28,29], the nitronyl
nitroxide radicals 2-(S)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide (NNS),
where S is a substituent, are the most extensively used due to their outstanding persistence,
ease of chemical modification, and ability to perform a bridging function linking two metal
ions [30–32]. As ligands, NNRs are weak donors owing to their weak Lewis-base nature. In
order to promote coordination, strong electron-withdrawing groups, such as the hfac anion
(hfac = hexafluoroacetylacetonato), are employed to increase the acidity of a metallic ion.

The diradical 2,2′-bis(1-oxyl-3-oxide-4,4,5,5-tetramethyl-imidazolinyl) (BN) (Scheme 1),
which was first described by Ullman et al. [33] and thereafter, fully examined magnetically
by Paul Rey et al. [34]. They found that the spins of the monoradicals in BN are strongly
coupled with an exchange constant 2J1 = –311 cm−1. Further, BN was used to synthesize
a Ni2+ compound [35], representing a mononuclear complex of the bidentate chelating
radical BN [Ni2(hfac)4(BN)(H2O)2] hydrogen-bonded to the [NiII(hfac)2(H2O)2] moiety [35]
(J2 = J3= −236.3 cm−1), as well as a binuclear complex [(hfac)MnII(BN)MnII(hfac)] with
bis-bidentate BN [36]. Since then, no coordination compounds of other transition metals
with BN have been described. Herein, we report the synthesis and characterization of a
new binuclear complex of bridging bischelate diradical BN, representing a spin-frustrated
system consisting of cobalt(II) bis(hexafluoroacetylacetonate) and BN. A butterfly-like spin
arrangement was found in this binuclear system.
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Scheme 1. The diradical 2,2′-bis(1-oxyl-3-oxide-4,4,5,5-tetramethyl-imidazolinyl) (BN).

2. Materials and Methods
2.1. Instrumental and Physical Measurements

Elemental (C,H,N) analysis was performed on a Euro-Vector 3000 analyzer (Eurovec-
tor, Redavalle, Italy). FTIR spectra were registered with a NICOLET spectrophotometer
(Thermo Electron Scientific Instruments LLC, Madison, WI, USA) in the 4000–400 cm−1

range. Powder X-ray diffraction (PXRD) measurements were conducted at room tem-
perature using Cu-Kα radiation (λ = 1.5418 Å) on a Shimadzu XRD-7000 diffractometer
(Shimadzu, Kyoto, Japan). The magnetic properties of the compound were studied using a
Quantum Design MPMS 5XL SQUID magnetometer (Quantum Design, Inc., San Diego,
CA, USA) in the temperature range of 1.8–300 K and under a magnetic field of up to 50 kOe.
The magnetic susceptibility was corrected for the diamagnetic contribution calculated from
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Pascal’s constants [37]. Ultra-low temperature (>1.8 K) magnetization measurements on
single crystals were performed using a µ-SQUID array [38].

Single-crystal XRD experimental details are presented in Table S1 (Supplementary
Materials). Crystallographic data were deposited with the Cambridge Crystallographic
Data Centre (deposit number CCDC 2366221).

2.2. Theoretical Calculations

Quantum chemical study was fulfilled using crystallographic geometry. Magnetic
exchange J integrals calculations by both broken-symmetry [39] DFT (BS-DFT) and ab
initio CAS/NEVPT2 methods with def2-TZVP basis and def2-TZVPP basis set for Co were
performed by means of the ORCA-6.0 software package [40,41]. Fitting of the experimental
χT(T) and M(H) dependences to obtain optimal parameters of employed spin–Hamiltonian
was carried out using the PHI 3.16 package [42].

2.3. Preparations

Solvents of the reagent grade (EKOS-1, Moscow, Russia) were distilled prior to use.
The complex was synthesized under ambient conditions. The diradical 2,2′-bis(1-oxyl-
3-oxide-4,4,5,5-tetramethyl-imidazolinyl) (BN) was synthesized according to a literature
procedure [34].

Synthesis of {(hfac)2CoII(BN)CoII(hfac)2}

A powder of [Co(hfac)2(H2O)2]·2H2O [43] (54.5 mg, 0.05 mmol) was stirred in n-
heptane (30 mL) at boiling until the volume of the solution was reduced by half to remove
H2O by means of azeotrope formation. A diradical (8 mg, 0.025 mmol) solution in methy-
lene chloride (5 mL) was added to the warm heptane solution of [Co(hfac)2]. The dark
brown reaction mixture was stirred at ~40 ◦C to partially remove CH2Cl2 and then filtered
into a vial of a suitable volume. The vial was tightly closed with a white rubber stopper and
placed in a dark place. After a few days, due to the slow pumping of the CH2Cl2 vapors
through a stopper material, most of the complex crystallized, and it was decanted by remov-
ing the slightly colored mother liquor. The dark crystals were rinsed with a small amount
of heptane and air-dried. Visual examination of the crystalline sample under a microscope
revealed its high homogeneity. Yield 31.5 mg (95%) Anal Calcd. for C34H28Co2F24N4O12
(mass. %): C, 32.43; H, 2.24; N, 4.45; found: C, 32.52; H, 2.2; N, 4.5. IR spectrum (KBr, ν,
cm−1): 1260, 1655, 3005.

3. Results and Discussion
3.1. Synthesis and Characterization

It should be noted that for the synthesis of {(hfac)2CoII(BN)CoII(hfac)2}, we applied
a general approach commonly used for complexes of metal hexafluoroacetylacetonates
with nitronyl nitroxides, requiring recrystallization of the final product obtained as powder
from heptane–CH2Cl2 solution. However, we were able to avoid the second step, recrystal-
lization, by finding conditions for a slow evaporation of the mother liquor. A simple tool,
a white rubber stopper, was used to slowly absorb the remaining dichloromethane from
the reaction mixture. This allowed to obtain the substance in the form of nicely faceted
crystals without any admixture of starting products. Such a method of synthesis yields in a
pure complex using small amounts of the precursors. Since our complex turned out to be
isostructural to the previously studied manganese analog [36], its IR spectrum is very close
to the latter.

The composition of the main fraction of the complex was confirmed by elemental
analysis, and its phase purity was proved by powder X-ray diffraction patterns presented
in Figure S1.
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3.2. Crystal and Molecular Structure

The crystal and molecular structure of the complex (Figure 1) was determined by
single-crystal X-ray diffraction (SCXRD). As for the Mn congener, the complex molecular
structure of BN in {(hfac)2CoII(BN)CoII(hfac)2} is very close to that stated for the free di-
radical [34]. The length of the C—C bond between the two five-membered heterocycles
of 1.452(4) Å is almost the same as for the free ligand (1.439(3) Å, considering the tem-
perature difference in the X-ray diffraction experiment). The dihedral angles between the
two nitronyl nitroxide radical planes in the complex are ~53◦, which are slightly smaller
than those in uncoordinated BN [34]. These similarities suggest that the diradical ligand
forms the binuclear complex with little structural variation. This implies that the magnetic
interaction between the two radical centers in BN should be minimally altered by complex-
ation. It should be emphasized that cobalt ions have a non-equivalent pseudo-octahedral
environment, with the equatorial octahedron’s planes being practically perpendicular to
each other, with a plane-to-plane twist angle of 92.35◦.
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(b) side-view demonstrating the twisting of two five-membered heterocycles in a diradical moiety.

3.3. Magnetic Studies
3.3.1. SQUID Magnetometry at 2–300 K

The temperature dependence of susceptibility for a randomly oriented polycrystalline
sample of the complex is presented in Figure 2 as a χT vs. T plot. From room temperature
up to 200 K, the χT value varies slightly around ~3.3 emu K mol−1. This value is much
lower than the value of χT = 4.5 emu K mol−1 for non-interacting spins in the high-spin
octahedral Co(II) complex with averaged g = 2 (2 × 1.875 emu K mol−1 for two Co2+ with
S = 3/2 and 2 × 0.375 for two spins of 1/2 for two noninterected nitronyl nitroxides).
However, assuming that all spins are involved in a strong antiferromagnetic coupling so
that the resulting spin of the complex could be equal to 2, then χT (g = 2) should be equal
to 3.0 emu K mol−1, which is close to the experimental value. Further, the plot decreases,
reaching 1.6 emu K mol−1 at 2 K.

To probe the spin value of the magnetic system ground state, the field dependence of
the magnetization was studied at a temperature of 2 K (see Figure 3). At the field of 5 T, the
magnetization value of 3.05 µB demonstrates that M(H) does not really reach a saturation
value of ~4 µB, as expected for four unpaired electrons. Such a low value at H = 5 T may
indicate both the presence of strong antiferromagnetic interactions and the manifestation
of magnetic anisotropy associated with spin–orbit coupling in Co centers. These results are
in agreement with the literature data for the Co-NIT systems [9,11,20,21,27,44,45].
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3.3.2. Micro-SQUID Magnetic Measurements at Extremely Low Temperatures

By means of an in-house-made µ-SQUID system, additional M versus H data down to
30 mK (Figures 4 and S2) have been collected from single crystals. As shown in Figure 4 for
{(hfac)2CoII(BN)CoII(hfac)2}, the M/Ms (Ms is a saturation field) versus H magnetization
curves have no hysteresis below 1.4 K (Figure S2). An interesting feature of the M(H) plot
at temperatures below 0.4 K (Figures 4 and S2) is the presence of a step, which, according
to the ab initio calculations performed and discussed below, correlates with the energy gap
of 0.69 cm−1 (Table S2) between the main and the first excited singlet levels. Their mixing
by the applied magnetic field determines exactly this shape of the magnetization plot.
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3.4. Magnetic Behavior Modeling and Theoretical Calculations
3.4.1. Theoretical Model and Exhaustive Parameter Set Required for Magnetic Data Simulation

The studied dimeric complex of cobalt is a rather complex system in magnetic terms.
This is due to the fact that the modeling of its magnetic behavior requires a set of numer-
ous parameters that must be varied during the fitting. In addition to the set of magnetic
exchange interactions (J) shown in Scheme 2, other parameters for describing the magnetic
contributions of the metal centers are needed to accurately describe the system consisting
of two high-spin Co2+ ions in a non-equivalent pseudo-octahedral coordination environ-
ment. These include the spin–orbit coupling parameter, λ, two parameters, B2

(0) and B2
(2),

describing the octahedral crystal field, and in the case of non-equivalent Co2+ ions, each of
them requires a double set of these parameters.
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In addition, as mentioned in the description of the molecular structure of
{(hfac)2CoII(BN)CoII(hfac)2}, the local coordinate axes of the two coordination polyhe-
dra are not parallel. Since the bridging biradical is not planar, mirror symmetry is not
realized in this butterfly-like molecule because the equatorial planes of the two octahedrons
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are practically perpendicular to each other. Consequently, in order to bring the coordination
environments for both Co centers to a common molecular coordinate system, it is necessary
to perform the unitary transformation from the molecular coordinate system to the local
ones [46,47]. However, the latter would not be accurate due to the mismatch of bond
lengths and angles between the corresponding bonds for Co1 and Co2. Moreover, the use
of the set of variables consisting of the two crystal field parameters and one spin–orbit
coupling parameter per each cobalt ion will contribute to overparameterization. For the
same purpose, we do not take into account the Co–Co superexchange interaction since it
should be much smaller than JN and JCoN, as it usually does not exceed 10 cm−1 for the
studied cobalt (II) compounds [48–52].

3.4.2. Description of Spin–Hamiltonians Used in Theoretical Calculations

The following spin–Hamiltonian was used to find the magnetic exchange coupling
constant, JN, in the bridging diradical BN.

Ĥ = −2JN ŜN1·ŜN2 (1)

To describe the Co2+ spin system, we used the Griffith Hamiltonian [53,54] HCo, which
takes into account the spin–orbit interaction of S = 3/2 with the fictitious orbital triplet L = 1
and the octahedral crystal field Hamiltonian HCo

CF of the Co2+ ion, containing the orbital
spin operators O0

2 and O2
2:

HCo = λS·σL + HCo
CF (2)

HCo
CF = σ2

(
B(0)

2 O0
2 + B(2)

2 O2
2

)
;O0

2 = 3L2
z − L2; O2

2 = 1/2
(

L2
+ − L2

−

)
(3)

Unlike a true orbital momentum, the fictitious orbital angular momentum L = 1 enters
all expressions in the Griffith Hamiltonians in combination with the orbital reduction factor
σ = −3/2κ, where κ is the so-called covalence parameter (0 < κ < 1), which is assumed
to be equal to 1 for an isolated Co2+ ion. In the literature [55], other designations for the
crystal field parameters are sometimes used: ∆ax = 3B2

(0)σ2—the axial field parameter, and
∆rh = B2

(2)σ2—the rhombic field parameter.
The full spin–Hamiltonian for the complex {(hfac)2CoII(BN)CoII(hfac)2} can then be

represented as

H = HCo1 − 2JCoNSCo1·(SN1 + SN2) + HCo2 − 2JCoNSCo2·(SN1 + SN2)·2JNSN1·SN2 (4)

where HCo1 and HCo2 are the Griffith spin–Hamiltonians (2) of Co ions; JCoN is the exchange
integral of the interaction of Co2+ ions with the total spin of BN; JN is the exchange integral
of the interaction between spins in BN. Strictly speaking, the exchange integrals JCoN
between different pairs of Co2+ and BN may differ, as well as the geometric parameters of
the crystal field of two Co2+ ions. However, this aspect is neglected in this paper.

3.4.3. Estimation of the Exchange Integral JN

To estimate the value of the magnetic exchange interaction (JN) between the spins
in BN, quantum chemical DFT calculations were performed for the biradical fragment,
preserving its geometry from the complex crystal structure. The results of the broken
symmetry (BS) DFT calculations of the exchange integrals using the spin–Hamiltonian (1)
are summarized in Table 1.

Table 1. 2JN value for the BN-fragment calculated with def2-TZVP DFT basis sets.

DFT Level TPSSh B3LYP LC-BLYP wB97m-v cam-B3LYP

JN, cm−1 −334 −419 −727 −732 −790

It is obvious that the obtained JN values are somewhat overestimated in comparison
with those previously found for the free BN [34] (J = −155 cm−1) and the Mn(II) binuclear
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complex (J = −283 cm−1) [36], where the BN performs a bridging function. To refine the JN
values, an ab initio calculation of the lowest singlet–triplet gap G was performed using the
CASSCF/NEVPT2 method on the def2-TZVP basis. According to the spin–Hamiltonian (1)
G = 2JN. The obtained JN values are listed in Table 2.

Table 2. JN values for the BN-fragment obtained by means of CASSCF using def2-TZVP basis sets.

CAS/Multiplets/Roots JCAS, cm−1 JCAS/NEVPT2, cm−1

(10,8)/(3,1)/(10,10) −282 −227
(14,10)/(3,1)/(10,10) −272 −228

3.4.4. Initial Parameters Calculation for Fitting Experimental Magnetic Data Using Model
Molecular Complexes

For the studied binuclear complex with four paramagnetic centers, the spin–Hamiltonian
(4) requires the determination of six parameters: λ; B(0)

2 ; B(2)
2 ; σ; JCoN ; JCo. To obtain a

preliminary estimate of these parameters, a series of CASSCF/NEVPT2 calculations were
performed for model complexes with a smaller number of spins. In the first step, a bischelate
fragment of Co(hfac)2 was excluded from the binuclear complex, and in both coordinated
nitroxyl groups of BN, the nitrogen atom was replaced by a carbon atom while keeping the
geometric parameters. Such a technique was used to obtain a model mononuclear complex
[(hfac)2Co(DD)], where DD is a diamagnetic analog of BN (Figure 5, left).
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For the [(hfac)2Co(DD)] complex, a CAS(7,5)/QDPT-NEVPT2 calculation of 10 quartets
and 40 doublets was performed. In addition, an analysis was performed on the resulting set
of 12 levels corresponding to the splitting of the lowest Co2+ multiplet 4T1g. A simulation
of the relative arrangement of all 12 levels at the fixed value λ = −180 cm−1 yielded two
optimal sets of crystal field parameters in cm−1: B2

(0) = 293, B2
(2) = −173 and B2

(0) = −302,
B2

(2) = −11, with almost the same approximation quality for both sets.
In the second step, for further refinement of the spin–Hamiltonian parameters, a model

complex [(hfac)2Co(DP)] (Figure 5, right) with two paramagnetic centers was used. This
was achieved by replacing a nitrogen atom with a carbon atom in only one uncoordinated
N-O group. This was performed to estimate the exchange interaction between the Co2+ ion
and a monoradical species. For [(hfac)2Co(DP)], the interaction of the lowest Co2+ multiplet
4T1g and a spin doublet of DP results in 24 levels, for which CAS(10,8)/NEVPT2 calculation
was performed, finding a total of 7 quintets, 10 triplets, and 5 singlets. Then, using the
spin–Hamiltonian H = HCo − 2JCoNSCo·SN, where HCo was taken from Equation (2), a fitting
of the obtained 24 levels at a fixed λ = −180 cm−1 was carried out, yielding the following
parameters (in cm−1): B2

(0) = 293, B2
(2) = −173, JCoN = −53 and B2

(0) = −302, B2
(2) = −11,

JCoN = −95. The quality of the approximation for these two sets differs slightly in favor of
the case where B2

(0) > 0.
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The final analytical step of the model complexes was the study of a mononuclear
complex [(hfac)2Co(BN)] involving three paramagnetic centers: Co2+ and two NN radicals
of BN. In this case, the interaction of the Co2+ ion multiplet 4T1g and two spin doublets of
single nitroxyl radicals of BN results in low 48 levels, according to a CASSCF/NEVPT2
calculation. The latter was performed using the CAS(11,8)/NEVPT2 procedure with a
total of 6 sextets, 14 quartets, and 8 doublets found. Then, at λ = −180 cm−1, the fitting
of the obtained 48 levels was carried out using the spin–Hamiltonian, taking into account
the two exchange interactions: H = HCo − 2JCoNSCo(SN1 + SN2) − 2JNSN1·SN2, where HCo

corresponds to Hamiltonian (2), giving the next two sets of parameter values (in cm−1):

Set 1 – B2
(0) = 293, B2

(2) = −173, JCoN = −31, JN = −122;
Set 2 – B2

(0) = −302, B2
(2) = −11, JCoN = −54; JN = −186.

Note that the approximation accuracy for the positions of the obtained levels was
higher for the parameter set with B2

(0) > 0. For greater clarity, all parameters obtained
during the calculation of the model complexes are summarized in Table 3.

Table 3. The sets of Hamiltonian parameters (in cm−1) calculated at a fixed value of λ = −180 cm−1.

Complex Data Set B2
(0) B2

(2) JCoN JN σ 1 zJ

[(hfac)2Co(DD)]
1 293 −173
2 −302 −11

[(hfac)2Co(DP)]
1 293 −173 −53
2 −302 −11 −95

[(hfac)2Co(BN)]
1 293 −173 −31 −122
2 −302 −11 −54 −186

[(hfac)4Co2(BN)]
1 322 −126 −47 −125 0.07 −0.011
2 −380 −13 −68 −203 0.07 −0.019

1 Orbital reduction factor is a dimensionless quantity.

3.4.5. Experimental Magnetic Data Simulations for {(hfac)2CoII(BN)CoII(hfac)2} Using
PHI Program

Simulations of the experimental plots χT(T) and M(H) for the binuclear complex
{(hfac)2CoII(BN)CoII(hfac)2}, comprising four paramagnetic centers, were performed at
a fixed value of λ = −180 cm−1 using both Set 1 and Set 2. However, as can be seen in
Figure S3 (SM), none of the theoretical plots do not reproduce the experimental ones well.
Therefore, an additional variation in the parameters is necessary to solve this problem.

Thus, we added the orbital reduction factor (σ) and zJ (mean field parameter) to a set
of parameters to be varied when fitting the experimental magnetic behavior of the complex
{(hfac)2CoII(BN)CoII(hfac)2}. The obtained extended Set1 and Set2 for the parameters of
the spin–Hamiltonian (4) are presented in the bottom part of Table 3. The graphical results
for fitting χT(T) and simulating M(H) using the extended parameter sets are shown in
Figure 6. It should be noted that the approximation quality of the temperature curve χT(T)
is almost the same for both sets. However, the corresponding simulation M(H) plot is still
far from the experimental one, the obtained value of 0.07 for σ being unrealistically small.
Hence, we took a slightly different approach. Instead of fitting χT(T) data, we performed
the M(H) experimental data approximation by varying the parameters B2

(0), B2
(2), JCoN, JN,

σ, and zJ for a set of λ values (−110, −130, −150 and −170 cm−1). Figure 7 shows the χT(T)
simulation for the optimal parameter set when λ = −130 cm−1 is fixed for the case B2

(0) > 0.
The optimal curves corresponding to the parameter set of B2

(0), B2
(2), JCoN, JN, and σ for

other λ values (Table 3) look very similar and have a comparable approximation quality.
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To more accurately simulate the χT(T) behavior at low temperatures, a small average
molecular field, zJ, was additionally introduced. The optimal values for zJ are given in the
last column of Table 4. Figure 8 shows the final optimal approximation at λ = −130 cm−1
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and zJ = −0.254 cm−1, which most closely reproduces the experimental χT(T) plot while
giving reasonable values for the orbital reduction factor σ. It should also be noted that
the optimal curves for the χT(T) dependence obtained at other values of the spin–orbit
interaction parameter λ look graphically similar.

Table 4. Best parameters (in cm−1) of the Hamiltonians (4), (3), and (2) for the cases when
B2

(0) > 0—upper part, and B2
(0) < 0—lower part.

λ B2
(0) B2

(2) σ 1 JCoN JN zJ

−110 549 –205 –0.98 –93 −171 –0.328
−130 2 817 2 –265 2 –0.55 2 –62 2 −120 2 –0.254 2

−150 1012 –223 −1.14 –52 –77 –0.256
−170 1216 190 −1.4 –81 −156 –0.249

−110 3 −188 3 −11 3 −1.33 3 −121 3 –231 3

−130 –236 −12 −1.38 −146 −192
−150 –288 −12 −1.41 −161 −166
−170 –357 −11 −1.4 −166 −162

1 Orbital reduction factor is a dimensionless quantity. 2,3 Set used for Figures 8 and 9, respectively. The parameter
sets that best simulate the experimental magnetic dependences are highlighted in underlined text.
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An approximation of the field dependence M(H) was also performed for a few possible
values of B2

(0) < 0, resulting in the optimal parameters also shown in Table 4 (lower part).
However, despite the good fitting quality for the M(H) dependence, a typical theoretical
curve for χT(T) obtained with the parameter sets from Table 4 and B2

(0) < 0 is far from
the experimental one (Figure 9b). There is a clear difference between the theoretical and
experimental values of χT(T). This discrepancy cannot be eliminated by adding any mean-
field parameter zJ to the set of varying parameters in the fitting procedure. Thus, based on
the approximation quality of the experimental data for χT(T) and M(H), the choice between
the two values B2

(0) < 0 and B2
(0) > 0 was made in favor of the latter. However, there is still

some uncertainty in the choice of an optimal value of λ. This fact makes it impossible to
select an ideal set of parameters B2

(0), B2
(2), JCoN, JN, σ, zJ for a more accurate description of

the magnetic behavior of the complex {(hfac)2CoII(BN)CoII(hfac)2}.
In summary, an analysis of the totality of experimental and theoretical data, both χT(T) and

M(H), testifies that for the description of the magnetic behavior of {(hfac)2CoII(BN)CoII(hfac)2},
the sets of parameters of the spin–Hamiltonian (4) with positive values of B2

(0) are the most
suitable (Table 4, upper part).
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In particular, depending on the value of the spin–orbit coupling in Co2+, the exchange
interaction JN between the spins in the diradical BN varies from −77 to −171 cm−1, while
the magnetic exchange interaction of Co2+ with a monoradical of BN, JCoN, varies from
−52 to −93 cm−1.

3.4.6. The Direct Ab Initio Calculation of Magnetic Dependences χT(T) and M(H)

The direct ab initio calculation of the magnetic dependences χT(T) and M(H) was
carried out in the CAS(12,10)/def2-TZVP variant with finding 1, 5, 8, 8, and 5 roots for the
multiplicities 9, 7, 5, 3, and 1 correspondingly. Such a choice of the number of roots for the
multiplets (namely, their gradual increase in the preliminary calculations) was determined
by taking into account all possible multiplets filling the energy range from 0 to 2000 cm−1.
As can be seen in Figure 10, the calculated plots χT(T) capture the main trends in the
temperature dependence of the experimental χT(T) and also reproduce the experimental
M(H) curve.
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4. Conclusions

By an improved and simplified procedure, a binuclear complex including high-spin
Co2+ ions and a bridging bis-nitronyl nitroxyl radical, BN, was obtained for the first
time. According to SCXRD, the complex {(hfac)2CoII(BN)CoII(hfac)2} is isostructural to the
previously studied congener {(hfac)2MnII(BN)MnII(hfac)2}.

The magnetic dependences of χT(T) and M(H) for the binuclear cobalt–diradical
complex {(hfac)2CoII(BN)CoII(hfac)2} have been analyzed in the formalism of the Griffith
spin–Hamiltonian. It was clearly shown that for this magnetic system, only the case of
positive values of the parameter B2

(0) takes place. This allowed us to determine the range of
possible values for the magnetic exchange integral JCoN between Co ions and NN radicals,
as well as for the magnetic exchange integral JN between monoradicals in BN. Assuming a
frequently used value for the spin–orbit coupling parameter λ ~ −170 cm−1 [13], the values
JCoN ~ −80 cm−1 and JN ~ −160 cm−1 could be obtained.

Supplementary Materials: The following supporting information can be downloaded at
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