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Abstract: We perform a global statistical analysis of the two-Higgs-doublet model with
generic sources of flavour violation using GAMBIT. This is particularly interesting in light
of deviations from the Standard Model predictions observed in b → cτ ν̄ and b → sℓ+ℓ−

transitions as well as the indications for a charged Higgs with a mass of 130 GeV in top quark
decays. Including all relevant constraints from precision, flavour and collider observables,
we find that it is possible to simultaneously explain both the charged and neutral current B
anomalies. We study the impact of using different values for the W mass and the Standard
Model prediction for g − 2 of the muon and provide predictions for observables that can
probe our model in the future such as lepton flavour violation searches at Belle II and Higgs
coupling strength measurements at the high-luminosity LHC.
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1 Introduction

The Standard Model (SM) is extremely successful in describing the interactions of matter
at sub-atomic scales [1]. However, several statistically significant deviations from the SM
predictions, called anomalies, exist [2]. In particular, the long-standing anomalies in semi-
leptonic B meson decays [3], both in b → cτν [4] transitions, i.e. R(D) and R(D∗), (3.3σ)
and in b → sℓ+ℓ− observables (≈ 6σ) persist; see Ref. [5] for an overview. These observables
point towards new physics (NP) and motivate the study of NP models capable of providing
a combined explanation. Furthermore, there is a 3σ excess in the exotic top decay t →
b(H+ → b̄c) [6] which motivates an extension of the scalar sector.

In this article, we investigate the possibility of a NP explanation of these anomalies
within the context of the two-Higgs-doublet model (2HDM) [7, 8] – one of the simplest and
most studied extensions of the SM scalar sector. The most general version with generic
Yukawa couplings (G2HDM)1 can explain b → cτν data at the 1σ level [9–24] and address
the anomalies in b → sℓ+ℓ− transitions [24–28], even though reaching the preferred central
value of the latter is difficult. To evade constraints from collider searches, Bs−B̄s mixing etc,
only quite small regions of the parameter space remain valid and only particular benchmark
points have been examined, while a combined statistical analysis of all available data and an
identification of the allowed parameter space is still missing.2 Furthermore, contributions
to other precision observables such as g − 2 of the muon ((g − 2)µ) and the W mass (mW )
are in general expected in 2HDMs and have to be included in a global statistical analysis,
even though the experimental and theoretical situation is not conclusive in these cases, as
we will discuss in detail later.

Such a global statistical analysis is the aim of this article. For this, we extend the work
of Refs. [18, 24] by including for instance recent measurements of the charged lepton flavour
violating (cLFV) search in t → µτq decays from ATLAS [30] and the latest universality
test update from Belle II on |gµ/ge| [31]. In addition to extending the set of observables
and updating the data, we allow for additional Yukawa couplings to be non-zero which were
previously not studied. For instance, an additional charm quark Yukawa coupling could
enhance the effect in b → sℓ+ℓ− [24]. We perform this global fit using the inference pack-
age GAMBIT, the Global And Modular Beyond-the-Standard-Model Inference Tool [32, 33],
which is an open-source code in C++ to calculate observables and likelihoods for generic be-
yond the Standard Model (BSM) theories utilising different modules and external packages
(see section 4 for more details).

The paper is organised as follows: In section 2 we introduce the G2HDM model and
in section 3 we list the relevant observables, including flavour, collider and precision ob-
servables and afterwards present the results of the global fit and predictions for future
experiments in section 4. Finally, we conclude in section 5 and show the potential impact
of a sizable NP effect in g − 2 of the muon on the fit in the appendix.

1Sometimes this is also referred to as the type III 2HDM in the literature.
2Efforts in this direction have been presented in the quark [29] and lepton sectors [18], separately.
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2 The General Two Higgs Doublet Model

The most general renormalisable scalar potential respecting gauge invariance is [7, 8]

V (Φ1,Φ2) =m2
11(Φ

†
1Φ1) +m2

22(Φ
†
2Φ2)−m2

12(Φ
†
1Φ2 +Φ†

2Φ1)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

(
1

2
λ5(Φ

†
1Φ2)

2 +
(
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

)
(Φ†

1Φ2) + h.c.

)
, (2.1)

where the parameters m2
11, m

2
22 and λ1−4 are real numbers (from hermiticity), whereas the

λ5,6,7 and m2
12 can in general be complex. For a CP-conserving potential, which we assume

in the following, all parameters in Eq. (2.1) are real and the total number of free parameters
will be reduced from 14 to 10. Note that in our discussion of the flavour observables, only
the resulting mixing angles among the scalars and their masses are relevant. We will come
back to this point at the beginning of section 2.1.

Once the two scalars develop non-zero vacuum expectation values (VEVs) υ1 and υ2, the
electroweak symmetry of the SM is spontaneously broken and the doublets are decomposed
into components as

Φi =

(
ϕ+
i

1√
2
(υi + ρi + iηi)

)
, i = 1, 2. (2.2)

Linear combinations of the fields ρi, ηi and ϕ±
i form mass eigenstates(

GZ

A

)
= Rβ

(
η1
η2

)
,

(
GW±

H±

)
= Rβ

(
ϕ±
1

ϕ±
2

)
,

(
H

h

)
= Rα

(
ρ1
ρ2

)
, (2.3)

where ϕ+
i are electrically charged complex scalars and ηi and ρi neutral real scalars. GW±

and GZ correspond to longitudinal components of the W and Z bosons, while h (the SM-
like Higgs) and H are physical CP-even states, A a CP-odd state and H± is a charged
Higgs boson. The rotation matrices are defined as

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
, (2.4)

where θ is either α or β. The angle α is the mixing angle of the CP-even states, whereas
the rotation angle β is determined by

tanβ ≡ tβ =
sβ
cβ

=
υ2
υ1

, (2.5)

with {sβ, cβ} = {sinβ, cosβ} and υ22 + υ21 = υ2 with υ = 246 GeV being the SM VEV. The
angle defined by β − α is the mixing angle between the CP-even Higgs mass eigenstates
relative to the Higgs basis and the limit sin(β − α) ≡ sβα → 1 is known as the alignment
limit in which h has the same properties as the SM Higgs.

The most general Yukawa Lagrangian in the basis {Φ1,Φ2} reads [8]

−LY ukawa = Q̄0 (Y 1
u Φ̃1 + Y 2

u Φ̃2)u
0
R + Q̄0 (Y 1

d Φ1 + Y 2
d Φ2)d

0
R + L̄0 (Y 1

l Φ1 + Y 2
l Φ2)l

0
R + h.c. ,

(2.6)
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where the superscript “0” notation refers to the flavour eigenstates, and Φ̃j = iσ2Φ
∗
j . The

fermion mass matrices are determined by

Mf =
1√
2
(v1Y

1
f + v2Y

2
f ), f = u, d, l , (2.7)

and are in general non-diagonal. Via a bi-unitary transformation

M̄f = V †
fLMfVfR, (2.8)

the mass eigenstates for the fermions are given by

u = V †
uu

0, d = V †
d d

0, l = V †
l l

0, (2.9)

with

M̄f =
1√
2
(v1Ỹ

1
f + v2Ỹ

2
f ), (2.10)

where Ỹ i
f = V †

fLY
i
fVfR. We shall drop the tilde from now on. Solving for Y 1

f we have

Y 1,ba
f =

√
2

v cosβ
M̄ ba

f − tanβY 2,ba
f , (2.11)

and can write the Yukawa Lagrangian in the mass basis as

−LY ukawa =ūb

(
Vbcρ

ca
d PR − Vcaρ

cb∗
u PL

)
daH

+ + ν̄bρ
ba
ℓ PRlaH

+ + h.c.

+
∑

f=u,d,ℓ

∑
ϕ=h,H,A

f̄bΓ
ϕba
f PRfaϕ+ h.c.,

(2.12)

where a, b = 1, 2, 3,

ρbaf ≡
Y 2,ba
f

cosβ
−

√
2 tanβM̄ ba

f

v
, (2.13)

Γhba
f ≡

M̄ ba
f

v
sβα +

1√
2
ρbaf cβα, (2.14)

ΓHba
f ≡

M̄ ba
f

v
cβα − 1√

2
ρbaf sβα, (2.15)

ΓAba
f ≡


− i√

2
ρbaf if f = u,

i√
2
ρbaf if f = d, ℓ ,

(2.16)

and sβα ≡ sin(β − α), cβα ≡ cos(β − α).
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2.1 Model parameters

Note that the B anomalies are related to second and third generation quarks and lep-
tons. Therefore, we do not consider Yukawa couplings involving the first generation. More
specifically, we parametrise the Yukawa matrices as

ρu =

 0 0 0

0 ρccu 0

0 ρtcu ρttu

 , ρd =

 0 0 0

0 0 0

0 0 ρbbd

 , ρℓ =

 0 0 ρeτℓ
0 ρµµℓ ρµτℓ
0 0 ρττℓ

 , (2.17)

where we have extended the pattern of Ref. [24] to include the second generation diagonal
Yukawas for both the lepton and up-type matrices, ρµµℓ and ρccu as well as third generation
down-type quark coupling ρbbd . The diagonal down-type Yukawa coupling ρssd (ρctu ) is however
ignored because of strong constraints from the LHC (b → sγ), and we choose to consider
ρµτ,eτℓ but not ρτµ,τeℓ because the simultaneous effect would lead to chirally enhanced effects
in µ → eγ and τ → µγ, eγ [10, 34].3

Concerning the scalar potential, we substitute the parameters λ1−λ5 by the heavy Higgs
masses. Furthermore, the effect of λ6 and λ7 of EW precision data and flavour observables
is automatically included (at the one-loop level). Therefore, the only parameters of the
scalar sector are mH , mA, mH± , m12, tanβ and sβα.

We used the following ranges for the parameters, based on the findings of Ref. [10]

m12 ∈ [−200, 200]GeV, mH± ∈ [120, 140]GeV, mA, mH ∈ [150, 350]GeV,

sβα ∈ [0.98, 1.0], tanβ ∈ [0.01, 10], Y 2,tt
u ∈ [−1.0, 1.0], Y 2,tc

u ∈ [−0.6, 0.6],

Re, Im(Y 2,ττ
ℓ ) ∈ [−0.1, 0.1], Y 2,eτ

ℓ , Y 2,µτ
ℓ ∈ [−0.01, 0.01],

Y 2,cc
u ∈ [−0.15, 0.15], Y 2,bb

d ∈ [−0.2, 0.2], Y 2,µµ
ℓ ∈ [−0.1, 0.1]. (2.18)

Note that we allow for a complex ρττℓ to explain the b → cτν anomaly while other
couplings are taken to be real. We work close to the alignment limit, i.e. sβα ∈ [0.98, 1.0]

such that the bounds from SM Higgs signal strength are satisfied.4

3 Observables

The flavour-violating couplings of the G2HDM enter into many different processes. Here
we present the observables relevant to our analysis and give the corresponding NP contri-
butions.

3.1 Top decays

The ATLAS collaboration reported an excess in t → bH+ → bb̄c [6]

BR(t → bH+ → bb̄c) = (0.16± 0.06)% (3.1)
3The (effective) Yukawa couplings ρbaf are derived from the Yukawa couplings Y 2,ba

f via Eq. (2.13), with
an explicit dependence on tanβ. Hence, to avoid this explicit dependence on tanβ on the model parameters,
we will use as fundamental scan parameters the Yukawas Y 2,ba

f , i.e. we will be working in the Higgs basis.
4We consider here only the bounds from fermionic decays of the Higgs since the di-photon signal strength

and always be brought into agreement with the measurement by choosing an appropriate value of λ7 [35].

– 5 –



for a charged Higgs mass of mH± = 130 GeV, which corresponds to a global (local) sig-
nificance of 2.5 (3.0)σ. Then the corresponding G2HDM contribution to the decay is given
as

BR(t → bH+ → bb̄c) ≈ mt(|ρttu |2 + |ρbbd |2)
16πΓt

(
1− m2

H±

m2
t

)2
3|ρtcu |2

3|ρtcu |2 + 3|ρccu |2 +∑l,l′ |ρll
′

ℓ |2 ,

(3.2)
where Γt is the total decay width of the top quark.

For the lepton flavour violating decay t → µτq [30] an upper bound of

BR(t → µ+τ−c) < (8.2± 0.5)× 10−7. (3.3)

at the 90% CL is found. In the G2HDM the corresponding width is given by

Γ(t → µ+τ−c) =
m5

t

3072π3

∣∣∣c1(µτct)lequ

∣∣∣2 , (3.4)

with

c
1(µτct)
lequ =

ρtc∗u ρµτℓ
2

(
c2β−α

m2
h

+
s2β−α

m2
H

+
1

m2
A

)
. (3.5)

Note that the quark in the final state is only a charm quark given that we are ignoring
couplings to first generation quarks.5

For the decay of a top quark to a charm quark and the SM Higgs, we have in the
G2HDM [24]

BR(t → hc) =
mtc

2
βα|ρtcu |2

64πΓt

(
1− m2

h

m2
t

)2

≈ 2.4× 10−4

(
ρtcu cβα
0.05

)2

, (3.6)

which can be compared to the current ATLAS [37] (CMS [38]) upper limit BR(t → hc) ≤
4.0× 10−4 (3.5× 10−4).

3.2 Charged current anomalies in b → cℓν̄

The ratios

R(D(∗)) =
BR(B̄ → D(∗)τ ν̄)

BR(B̄ → D(∗)lν̄)
, (3.7)

with l = e, µ, have been measured by LHCb [39–41], Belle [42–45], Belle-II [46] and
BaBar [47, 48]. The combination provided by HFLAV [49] is

R(D)HFLAV = 0.342± 0.026, R(D∗)HFLAV = 0.287± 0.012 . (3.8)

Using the form factors [50, 51] provided in SuperIso 4.1 [52–54], the G2HDM contributions
to R(D) and R(D∗) are given by

R(D) ≈ 1 + 1.73Re(gττS ) + 1.35
∑∣∣glτS ∣∣2

3.27 + 0.57Re(gµµS ) + 4.8
∑ |glµS |2

, R(D∗) ≈ 1 + 0.11Re(gττP ) + 0.04
∑∣∣glτP ∣∣2

4.04 + 0.08Re(gµµP ) + 0.25
∑ |glµP |2

,

(3.9)
5ATLAS [36] recently searched for H+ → cs̄ reporting no significant excess. However, in our current

setup, we have BR(H+ → cs̄) < BR(H+ → cb̄) and the miss-tagging rate of a strange quark as a b quark
is small, such that one can evade this constraint.
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with l = e, µ, τ and R(D)SM = 0.306 and R(D∗)SM = 0.247. The scalar and pseudoscalar
couplings gll

′
S,P are given in the G2HDM as [18],

gll
′

S ≡ Ccb
R + Ccb

L

Ccb
SM

, gll
′

P ≡ Ccb
R − Ccb

L

Ccb
SM

, (3.10)

where Ccb
SM = 4GFVcb/

√
2 and

Ccb
R = −(Vcbρ

bb
d + Vcsρ

sb
d )ρll

′∗
ℓ

m2
H±

, Ccb
L =

(Vtbρ
tc∗
u + Vcbρ

cc∗
u )ρll

′∗
ℓ

m2
H±

, (3.11)

which includes the renormalisation group correction factor of 1.5 [55–58] for the Wilson
coefficients (WCs).

In addition to R(D(∗)), the Belle experiment also measured the lepton flavour univer-
sality (LFU) ratio Re/µ = BR(B̄ → Deν̄)/BR(B̄ → Dµν̄) to be [59]

Re/µ = 1.01± 0.01± 0.03, (3.12)

which can be expressed in the G2HDM as [18]

Re/µ ≈ 1

0.9964 + 0.18Re[gµµS ] + 1.46
∑

l

∣∣∣glµS ∣∣∣2 , (3.13)

where we have obtained the NP leptonic contributions by integrating the heavy quark
effective theory amplitudes of the scalar type operators from Refs. [60, 61].

3.3 Leptonic meson decays

The fully leptonic decays of mesons can receive chirally enhanced effects from (pseudo-)
scalar currents. The total decay width in the G2HDM is [14, 62, 63]

BR(Mij → ℓν) = G2
Fm

2
l f

2
MτM |Vij |2

mM

8π

(
1− m2

ℓ

m2
M

)2 [
|1−∆ℓℓ

ij |2 + |∆ℓ′ℓ
ij |2

]
, (3.14)

where i, j are the valence quarks of the meson M , fM is its decay constant and ∆ll′
ij is the

NP correction given by

∆ℓ′l
ij =

(
mM

mH±

)2

Z∗
ℓ′l

(
Yijmui +Xijmdj

Vij(mui +mdj )

)
, ℓ ̸= ℓ′, ℓ, ℓ′ = 2, 3 , (3.15)

with

Xij =
v√
2mdj

Vik ρ
kj
d , Yij =

v√
2mui

ρki∗u Vkj , Zℓ′ℓ =
v√
2mj

ρℓ
′ℓ
ℓ . (3.16)

In particular, we consider BR(Ds → µν̄) = (5.43 ± 0.15) × 10−3, BR(Ds → τ ν̄) =

(5.32 ± 0.11) × 10−2 and BR(Bc → τ ν̄). Regarding the latter, the theoretical prediction
within the SM is still unclear and upper limits of 60% [64–66] are still possible. To be
conservative, we define a likelihood function allowing values for BR(Bc → τ ν̄) ≤ 70%. The
expression for the SM plus the G2HDM contribution for BR(Bc → τ ν̄) is given at tree level
[67] as,

BR(Bc → τ ν̄) ≈ BR(Bc → τ ν̄)SM

[
|1− 4.35Cττ

L |2 + 4.352
(
|Ceτ

L |2 +
∣∣Cµτ

L

∣∣2)] . (3.17)
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3.4 Neutral current anomalies: b → s transitions

Global fits to b → sℓ+ℓ− observables favour CU
9 ≈ −1 at the 5σ level [3, 5, 68–73]. The most

relevant observables include P ′
5 [74–77]6, the total branching ratio and angular observables

in Bs → ϕµ+µ− [81–83] as well as the BR(B → Kµ+µ−) [84–86], which are fully compatible
with semi-inclusive observables [87]. This inspires lepton flavour universal NP models with
vectorial couplings to leptons and left-handed couplings to bottom and strange quarks that
may relax the tension.

In the G2HDM model, mainly the charm loop contributes to CU
9 via an off-shell photon

penguin [25–28, 88–90] and we obtain [26],

∆CU
9 (µb) ≈− 0.52

( |ρtcu |2 − |ρccu |2
0.52

)
+ 0.50

(
ρtc∗u ρccu
0.01

)
. (3.18)

We see that a sizable coupling ρtcu is necessary if ρccu ≈ 0 is assumed while the product
ρtc∗u ρccu has a CKM enhancement w.r.t. the SM. While in the previous work [24] the value
of ρccu was set to zero, it could play an important role in obtaining values in agreement with
model-independent fits. In addition to the contributions to CU

9 , the closely-related quark
level decay b → cc̄s can noticeably affect the Bs lifetime [88, 91] and potentially constrain
the G2HDM. Since it is not easy to control the exclusive decay b → cc̄s, the lifetime ratio
τBs/τBd

is typically used, which can be calculated with a heavy bottom quark expansion.
Nevertheless, in our scenario thanks to the CKM suppressed b → cc̄d interaction this shift
in the ratio is cancelled, significantly relaxing the constraint and hence we will not consider
it henceforth.

Regarding scalar operators with coefficients CQ1,2 , the most sensitive observable is the
branching ratio BR(Bs → µ+µ−) which also depends on C

(′)
10 = C

(′)SM
10 +∆C

(′)
10 [80]:

BR(Bs → µ+µ−) =
G2

Fα
2

64π3
f2
Bs
τBsm

3
Bs

∣∣VtbV
∗
ts

∣∣2√1−
4m2

µ

m2
Bs

×

(1− 4m2
µ

m2
Bs

)∣∣∣∣∣∣
mBs

(
CQ1 − C

′
Q1

)
(mb +ms)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
mBs

(
CQ2 − C

′
Q2

)
(mb +ms)

− 2
(
C10 − C ′

10

) mµ

mBs

∣∣∣∣∣∣
2
 ,

(3.19)

where fBs is the Bs meson decay constant, τBs is its mean lifetime and the WCs are given in
Refs. [18, 26]. The experimental data for all these observables are taken from the HEPLike
package [92], whereas the theoretical predictions are extracted from SuperIso [52–54].

For the radiative decay B̄ → Xsγ, the contributions from the G2HDM are taken from
Refs. [93–98] as implemented in SuperIso [52–54]. As a function of the C7 and C ′

7 Wilson
coefficients, the b → sγ transition rate can be written as

Γ(b → sγ) =
G2

F

32π4

∣∣VtbV
∗
ts

∣∣2αemm5
b

(
|C7eff (µb)|2 + |C ′

7eff(µb)|2
)
, (3.20)

6Recently, the CMS collaboration [78] made competitive measurements of the angular observables in
good agreement with LHCb data confirming the anomaly. For more details and complete expressions for
the angular observables the reader is referred to Refs. [18, 79, 80].
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where C
(′)
7eff = C

(′)SM
7eff + ∆C

(′)
7eff is the effective Wilson coefficient (see below), and the ex-

perimental measurement is BR(B → Xsγ)× 104 = 3.49± 0.19 [4]. Taking into account the
1/

√
2 factor difference in the notations with respect to Ref. [26], the dominant top quark

contribution for the ∆C7 WC is given by

∆C7
t,H±

= − 1

36

m2
W

m2
H±

V ∗
ksρ

kt
u ρnt∗u Vnb

g22VtbV
∗
ts

f1

(
m2

t

m2
H±

)
, (3.21)

where f1(x) is a loop function one can find in Ref. [26] from where we use all expressions
for computing the WCs. While the charm quark contribution is obtained as,

∆C7
c,H±

(µ) = − 7

36

m2
W

m2
H±

V ∗
ksρ

kc
u ρnc∗u Vnb

g22VtbV
∗
ts

. (3.22)

Numerically with mH± = 130GeV one gets

∆C7eff(µb) ≈ −0.174
(
|ρtcu |

)2 − 0.046
(
|ρttu |

)2
, (3.23)

which can be used for understanding possible explanations of the anomaly in t → bH+ →
bb̄c. We note that C7 of the SM is negative which fixes the convention and hence ∆C7eff

constructively interferes with the SM contribution. Furthermore, we have implemented the
respective RGE effects in GAMBIT including the mixing with the C8 WC. From model
independent fits, we require the NP contribution to be within −0.04 ≤ ∆C7(µb) ≤ 0.04 [5].
Additionally, once we turn on the second generation diagonal quark Yukawas we will have
mixed terms given by the semi-numerical expression

∆Cmix
7eff (µb) ≈ 0.105

(
ρtc∗u ρccu
0.025

)
− 0.028

(
ρccu ρbbd
0.025

)
+ 0.19

(
ρtt∗u ρbbd
0.025

)
. (3.24)

We note that these terms can take both signs depending on the sign of the coupling product
and hence potentially cancel the negative contribution from Eq. (3.23).

Last, the recent measurement of BR(B+ → K+νν̄) by Belle II is yet another exciting
hint of NP [99]. Given its close relation to the b → sℓ+ℓ− decays one could expect both
a Z penguin and box diagram contribution enhancement in the G2HDM. However, the
necessary WCs turn out to be very suppressed by all other flavour constraints at the 2σ

level, implying an SM-like prediction for BR(B+ → K+νν̄).

3.5 Bs −Bs mixing

The mass difference of the Bs and Bs mesons in the presence of NP is

∆MG2HDM
Bs

= ∆MSM
Bs

(
1 +

MNP
12

MSM
12

)
, (3.25)

where ∆MSM
Bs

= (18.2+0.6
−0.8) ps

−1 is the SM prediction from Ref. [90] and

MSM
12 =

G2
F m2

WMBsf
2
Bs
BBsηB

12π2
(VtbV

∗
ts)

2 S0, (3.26)
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where the parameter BBs ≈ 0.841 is the so-called bag factor, ηB = 0.8393 ± 0.0034 is due
to QCD corrections and S0 ≈ 2.35 is an Inami-Lim function [100] including electroweak
corrections.

Using both the theoretical expressions of Refs. [14, 26] and doing an independent cal-
culation with FeynCalc [101] with the model files provided by FeynRules [102] as a cross
check, we compute the G2HDM contribution to the mass difference at one loop level. For
simplicity, we show here the resultant expressions evaluated at the charged Higgs mass
mH± = 130GeV, even though later we use the full expression depending on mH± in the
scans. We find for

∆MG2HDM
Bs

/∆MSM
Bs

≈− 0.0055|ρtcu |2 + 1.73|ρttu |2 − 0.9 ρtc∗u ρttu

+ 87ρtcu ρ
cc
u (|ρccu |2 − |ρtcu |2) + 1046|ρccu |2|ρtcu |2 , (3.27)

where the first and second lines are the quadratic and quartic terms related to the W–H−

and H−–H− box diagrams in Fig. 1, respectively.7

Figure 1: Box diagrams relevant for Bs −Bs mixing.

3.6 Lepton flavour (universality) violation

The ratio(
gµ
ge

)2

=
BR(τ → µν̄ν)

BR(τ → eν̄ν)

f(m2
e/m

2
τ )

f(m2
µ/m

2
τ )

≈ 1 +
∑

i,j=µ,τ

(
0.25 |Rij |2 − 0.11Re(Rij)

)
, (3.28)

where f(x) = 1− 8x+8x3−x4− 12x2 log x and Rij is the BSM scalar contribution for the
test of lepton flavour universality in the tau sector. In the G2HDM at tree level8 we have

Rij =
υ2

2m2
H±

ρτiℓ ρjµ ∗
ℓ . (3.29)

The corresponding experimental measurement is taken from the latest Belle II, |gµ/ge| =
0.9974± 0.0019 [31].

In the G2HDM lepton flavour violating decays of τ and µ leptons are induced by one-
loop diagrams and enhanced 2-loop contributions known as Barr-Zee [105–107]. Here we

7Regarding the width difference ∆Γs of the Bs − Bs system, we corroborated that the contribution of
NP to the CP violating phase ϕ∆

s in Ref. [100] is negligible given that we do not consider complex Yukawa
couplings except for ρττℓ .

8We confirmed that the dominant contributions coming from one-loop diagrams [12, 103, 104] are neg-
ligible for |ρττℓ | < 0.2.
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use the expressions from Ref. [18] for the predictions of τ → µγ, τ → 3µ and µ → eγ.
They are compared to the upper experimental limits from the PDG [1] and the MEG II
collaboration [108].

For the Higgs LFV decays we follow Ref. [24] and use

BR(h → lτ) =
c2βαmh

16π2Γh

(
|ρlτℓ |2 + |ρτlℓ |2

)
, (3.30)

where l = e, µ, with experimental bounds provided by CMS and ATLAS [109, 110]. Note
this data also contains anomalies, but here we do not consider these and instead simply
apply them as the upper limits presented in Refs. [109, 110].

3.7 Higgs searches at colliders

The relative coupling strength κτ for hτ τ̄ is defined as the ratio κ2τ ≡ Γτ/Γ
SM
τ where Γτ

is the partial decay width into a pair of taus, and measured to be κτ = (0.93 ± 0.07) by
ATLAS [111] and κτ = (0.92± 0.08) by CMS [112]. It is affected in the G2HDM as

κτ =

∣∣∣∣sβα +
ρττℓ cβα√

2mτ
v

∣∣∣∣. (3.31)

Concerning direct search for the new Higgs bosons, H, A and H±, we use the exclusion
limits computed by HiggsBounds [113–116] and HiggsSignals [117, 118]. In addition, we add
the limits from searches for heavy Higgses with flavour-violating couplings, not presently
included in HiggsBounds or HiggsSignals. Here, the ATLAS search for the production of a
heavy Higgs decaying via flavour-violating couplings resulting in a pair of same-sign tops
can set a strong lower limit on the masses of heavy Higgses [119]. Nevertheless, this limit
is not very effective in our study since we have no mixing between the first and third
generation, ρtuu = 0, and the off-diagonal Yukawas are small, ρtcu < 0.5. The CMS search
for the production of two heavy Higgses from off-shell Z, decaying to four taus is said to
exclude the possibility of fitting the anomalous magnetic moment of the muon (see below) in
the lepton-specific 2HDM [120].9 The limits provided on the cross sections and branching
ratios can be re-interpreted in a model-agnostic way, and thus applied to our scenario.
However, departing from the limit of the lepton-specific 2HDM, the di-Higgs production
from an off-shell Z is generically small, such that the effect of the constraint is weakened.
Moreover, in our scenario, due to the presence of additional quark Yukawa couplings, the
tauonic branching ratio is diluted.

3.8 Oblique parameters and mW mass

The oblique parameters S, T and U [123, 124] parameterise NP correction to the electroweak
gauge boson propagators. In particular, they are sensitive to the W mass if the EW sector
of the SM is fixed via GF , α and the Z mass. However, the situation for the W mass
measurement is not clear at the moment. While the CDF-II collaboration found a mW

9Moreover, the reinterpretation of neutralino search resulting in multi-taus and missing energy by ATLAS
[121] is said to exclude the scenario too [122].
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value [125] which is 7σ above the SM prediction, the measurements from LEP [126], D0
[127] and the LHC [128, 129] included in the PDG average [1] are in better agreement with
the SM. Furthermore, very recently the CMS collaboration reported a preliminary result of
mW consistent with the EW global fit of the SM [130], with a precision comparable with
the one from CDF-II.

There are significant tensions between the LHC and the CDF-II measurements, re-
sulting in a poor compatibility when all the measurements are combined [131]. Out of all
possible combinations where a single measurement is removed, the best compatibility is
obtained without the CDF-II measurement [131]. Therefore, we consider as the default
option that in which CDF-II is disregarded, leading to

PDG : S = −0.04± 0.10, T = 0.01± 0.12, U = −0.01± 0.09, (3.32)

with correlation matrix ρ given by,

ρPDG =

 1 0.93 −0.70

0.93 1 −0.87

−0.70 −0.87 1

 . (3.33)

However, we also compare our results to the alternative case in which only the CDF-II
measurement is used, resulting in [132]

CDF : S = 0.06± 0.10, T = 0.11± 0.12, U = 0.14± 0.09, (3.34)

with correlations

ρCDF =

 1 0.90 −0.59

0.90 1 −0.85

−0.59 −0.85 1

 . (3.35)

Here we use the 2HDMC 1.8 package [133] to include these constraints where general ex-
pressions for the S, T and U parameters from Refs. [134, 135] are used. Unless otherwise
explicitly stated, we use the PDG values for the S, T and U parameters from Eq. (3.32).

3.9 Anomalous magnetic moment of the muon: (g − 2)µ

While the situation for the direct experimental measurement of (g − 2)µ is clear [136, 137]

aExp
µ = (11659205.9± 2.2)× 10−10 , (3.36)

the SM prediction is puzzling. The SM value of aWP
µ = (11659181.0±4.3)×10−10 computed

by the g−2 Theory Initiative’s White Paper (WP) [138], which is based on work from [139–
158], gives a deviation,

∆aWP
µ = (24.9± 4.8)× 10−10. (3.37)

which is a 5.1σ tension with the direct measurement. However, that prediction does not
include the BMW lattice calculation for the Hadronic Vacuum Polarisation (HVP) contri-
bution [159, 160]. Replacing the HVP contribution from the WP with the latest BMW
calculation results in

∆aBMW
µ = (4.0± 4.4)× 10−10, (3.38)
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The BMW calculation has been confirmed by other lattice groups [161–164] in an interme-
diate Euclidean time window [165]. Note also that the recent CMD-3 [166] measurement of
e+e− →hadrons, gives systematically larger cross-section than BaBar [167] and KLOE [168].
Finally, τ -data driven results are also consistent with the lattice calculations [169, 170].
Therefore, we will use the BMW value for the fit in the main text but show the impact if
a large NP effect from the G2HDM in (g − 2)µ was preferred in the appendices, namely
we show in appendix A the different contributions from the model and in appendix B the
results obtained if using the WP value.

4 Results

We now perform a global fit of the G2HDM to the observables discussed in Sec. 3, using the
GAMBIT [32, 33] framework. For this, we extend the FlavBit [171], PrecisionBit [172] and
ColliderBit [173] modules of GAMBIT to compute the observables and likelihoods for the
G2HDM as described in the previous section. We also make use of various external codes:
SuperIso 4.1 [52–54, 174] for computing flavour observables, 2HDMC 1.8 [133] for precision
electroweak constraints, HEPLike [92] for likelihoods of b → sℓ+ℓ− observables. We employ
the differential evolution sampler Diver 1.0.4 [175] to explore the parameter space10 and the
plotting script pippi [176] to produce all the figures below. To validate the implementation
of the observables, we confirmed that the predictions for them calculated by GAMBIT (see
Table 1) agree with Ref. [24] within the corresponding theoretical and parametric errors
for one of the benchmark scenarios presented there (henceforth called “BM3”). Some small
differences are due to different choices of the SM predictions vs experimental input.

To provide more information on the impact of different observables and parameters we
perform multiple fits. First, we consider only the parameters used in Ref. [24] with a limited
set of observables to examine how the charged-current B anomalies can be explained and
to study the implications for b → sℓ+ℓ− data. We then perform a more comprehensive fit,
including additional observables and increasing the number of Yukawa parameters. In our
main analysis we treat (g − 2)µ and the W mass as constraints on new physics, using the
BMW prediction for HVP contributions [160] for the former, and the oblique parameters [1]
from fits that exclude the CDF-II measurement for the latter. However we also compare
this to another fit showing the impact of using the CDF-II measurement instead. Similarly,
for the purpose of comparison, in the appendices we show how results change if we instead
use the the HVP contributions given in the White Paper, which implies a preference for a
significant BSM contribution.

In our first scan we consider the reduced parameter space of {m12, mH± , mA, mH ,
sβα, tanβ, Y 2,tt

u , Y 2,tc
u , Y 2,ττ

ℓ , Y 2,µτ
ℓ , Y 2,eτ

ℓ } which matches the parameters considered in
Ref. [24]. For this, we exclude b → sℓ+ℓ− from the fit and predict the contribution to the
WCs of the relevant effective operators i.e. ∆C9,7. The resulting profile likelihood ratio
is shown in Fig. 2, where the best-fit point is marked with a white star and the white
contours are the boundaries of the 1σ and 2σ regions. Also the benchmark point 3 (BM3)

10The results of all the scans, ran in the LUMI supercluster in Kajaani, Finland, accumulated a total of
60 million parameter samples from 10 independent scans, using approximately 2400 CPU hours.
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of Ref. [24] is depicted in yellow and the SM prediction in white. The panel on the left
shows that a good fit to R(D∗) can be obtained. The panel on the right illustrates that
despite disregarding b → sℓ+ℓ− data, the fit has a preference for negative values of ∆C9, in
agreement with the model-independent fit (grey contours) [5, 177]. However, the magnitude
of ∆C9 is significantly smaller within this setup compared to the one obtained from the
model-independent fit. Hence, we will consider if extending the set of parameters can resolve
this tension.
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Figure 2: Profile likelihood ratios for R(D) and R(D∗) (left) and ∆C9 and ∆C7 (right).
The white star denotes the best-fit point, the white cross the SM prediction, and the yellow
cross corresponds to BM3 from Ref. [24]. White contours around the best-fit point are the 1σ

and 2σ confidence intervals (calculated with two degrees of freedom). The grey contours on
the right shows the region preferred by the model-independent fit to b → sℓ+ℓ− transitions.

Therefore, we now perform a more comprehensive global fit including the additional
free parameters Y 2,cc

u , Y 2,bb
d and Y 2,µµ

ℓ , with the ranges described in Eq. (2.18). Note that
the Y 2,ba

f couplings are only used in an intermediate step as they are the pre-implemented
scan parameters in GAMBIT. For facilitating comparison with Ref. [24] we show all our
results in the Higgs basis, i.e. in terms of the ρbaf couplings instead, which are derived from
the Y 2,ba

f via Eq. (2.13). In this scan we also include b → sℓ+ℓ− data, Re/µ, the meson
decays BR(Ds → µν̄) and BR(Ds → τ ν̄), the universality test gµ/ge, and the new ATLAS
upper limit on t → µ+τ−c. For (g − 2)µ we use the SM prediction with the value of the
HVP contribution obtained by BMW [160]. Note that this observable serves as a constraint
since it agrees at the 0.9σ level with the measurement. The results of this fit are shown in
Fig. 3. The best-fit point and some predictions of selected observables can be seen in the
third column of Table 1.

From the top-right panel of Fig. 3 it can be seen that it is possible to obtain ∆C9 ≈
−0.9, i.e. the best-fit point of the model-independent fit, while simultaneously explaining
R(D(∗)) at the 1σ level (top-left) with the extended parameter set. This means that the
additional Yukawa couplings, not considered in Ref. [24], are in fact capable of resolving
the tension between b → sℓ+ℓ− data and the rest of the observables within the global fit.
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Figure 3: Profile likelihood ratio for different combinations of model parameters and ob-
servables for the full fit with the extended parameter set. As before the white star denotes
the best-fit point, the white cross the SM prediction, and the yellow cross corresponds to
BM3 from Ref. [24]. White contours around the best fit point are the 1σ and 2σ confidence
intervals.
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The middle-left panel shows the preferred region in the mA–mH plane which is sensitive
to the S, T and U parameters. We can see a mild preference for a light mA and slightly
heavier mH at around 200 GeV, though degenerated masses or inverted hierarchies are also
possible within 2σ of the best-fit point.11

Regarding the additional neutral scalars, ATLAS recently searched for a new particle
decaying bb̄ in top decays [178]. They set an upper limit on BR(t → cbb̄) ≤ O(10−3)

depending on the resonant mass. For the best-fit point we obtain BR(t → cA → cbb̄) ≈
10−4, satisfying the constraint. However, for a lighter A and larger ρtcu , this exotic top decay
channel already probes the model. Note that the correction to oblique parameters involves
all additional Higgs masses and when we set mH± close to 130 GeV, this makes the values
of mH and mA different compared to the case of not having the ATLAS excess.

The disjoint preferred regions in the ρtcu − ρttu , ρbbd − ρccu and Im (ρττℓ )−Re (ρττℓ ) planes
(middle right and bottom panels) can be understood as the overlap of the functions as-
sociated to ∆C7, ∆C9 and R(D(∗)) defined in Eqs. (3.23, 3.24), Eq. (3.18) and Eq.(3.11),
respectively. Even though the sign of ρttu and ρbbd are not fixed by the exotic top decay, the
relative sign can be fixed with flavour observables. As a result, we get two independent
regions (with opposite sign of ρtcu ) which is observed on the middle-right panel. Lastly,
the bottom-right panel shows that a small but non-zero value of the imaginary part of
ρττℓ is necessary to explain R(D∗) while simultaneously satisfying Higgs coupling strength
constraints.
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Figure 4: Profile likelihood ratios for ∆aµ (left) and ∆MBs (right) obtain from the full scan.
As before the white star denotes the best-fit point and the white cross the SM prediction.
White contours around the best fit point are the 1σ and 2σ confidence intervals.

On the left panel of Figure 4, our fit finds a small ρµµℓ and a tiny (O(10−11)) shift in the
muon g − 2. On the other hand, the right-hand panel shows that the G2HDM provides a

11We, however, checked that the fit to all flavour and STU parameters is almost unaffected by the exchange
of mH and mA which suggests there may be an undersampling of the parameter space around mA = 250

GeV. Nevertheless we expect that this does not change our main result i.e. ∆C9 ≈ −0.9 is allowed in the
model.
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worse fit to ∆MBs than the SM, but which is still compatible with it at the 2σ level due to
the large theoretical uncertainty of the SM (dashed orange lines). In the plot, the HFLAV
experimental average is shown which, compared to the theory prediction, has negligible
uncertainties. The fit could be improved by the inclusion of small ρbsd and ρsbd couplings
which give rise to tree-level effects in Bs − B̄s mixing.
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Figure 5: One-dimensional profile likelihood ratios L/Lmax for the Higgs coupling strength
of the bottom quarks, tau lepton, and charm quarks from left to right.

The predictions for the SM Higgs coupling strengths for tau leptons and charm and
bottom quarks, κτ,b,c are shown in Figure 5. We see that the deviation from unity in κτ
and κb can be about 10%, and as high as 30% for κc. Note that the current uncertainty of
κτ and κb is about 10% but the high luminosity (HL)-LHC will shrink those uncertainties
to 4% and 2%, respectively [179]. On the other hand, we would need future lepton colliders
to probe κc at less than 10% [179, 180] in order to test our prediction.

Figure 6 shows the predictions for the LFV decays τ → µγ and τ → 3µ in the G2HDM.
Both of the branching ratios are within 2σ of the future sensitivity limit from Belle II
[181].12 Concerning LFV B decays, we find that the branching ratios of B(+) → K∗(+)µτ

and Bs → µτ (and also for the flavour conserving B(+) → K∗(+)τ+τ− and Bs → τ+τ−)
are two orders of magnitude below the future sensitivity projection from both Belle II and
the HL-LHC and do not display them here. We also note that the resulting Bs → µ+µ−

branching ratio turns out to be the SM-like. Lastly, regarding the branching ratio of the
Ds → τ ν̄ decay we find BR(Ds → τ ν̄) = 5.22 × 10−2 for the best fit point value, which is
within the experimental uncertainty at 1σ level.

Finally, we assess the impact of using the W mass from CDF-II as input in the global fit
instead of the PDG value. For this, we compare the third and fourth columns in Table 1 the
best-fit values using the mW from the PDG to the one using CDF-II result. We see that the
NP effect in both the neutral and charged current B anomalies becomes more constrained
when using the CDF-II measurement compared to the PDG value. We also show in the last
row of Table 1 the values for the Wilks theorem ratio test ∆χ2 = χ2

SM − χ2
G2HDM, showing

that a much better fit to the data is obtained for the scan using the PDG values. Notably,

12However, this is not the best possible scenario, and an even more promising projection could be obtained
when using the LFV measurement obtained by the ATLAS collaboration [110] deviating 2.5σ from the SM
rather than the upper limits, which we use here as a conservative approach.
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Figure 6: Profile likelihood ratios for LFV decays and projected limit from Belle-II (red
solid curve). The white star denotes the best-fit point and the white contours around it are
the 1σ and 2σ confidence intervals.

the CDF-II fit predicts a much smaller branching ratio for the Bc → τ ν̄ decay compared to
others due to |Im

(
Ccb
L

)
| ≫ |Re

(
Ccb
L

)
| which needs Tera-Z factories [182–184].

5 Conclusions

Explaining the anomalies in semi-leptonic B decays remains a challenge for model building.
In fact, after the disappearance of deviations from unity in the ratios R(K(∗)) testing lepton
flavour phenomenology, this has become even more difficult and fewer NP models remain
valid [3]. One of them is the 2HDM with a generic flavour structure. We show that it
is possible to describe both the charged and neutral current anomalies in semi-leptonic B

decays at the 1σ level within the G2HDM, while satisfying the experimental constraints.
We do this by performing a global fit via GAMBIT that includes the constraints from all
other flavour observables, top decays and electroweak precision observables. For the latter,
we used the W mass from the PDG (which does not include the CDF-II measurement)
and the SM prediction for (g − 2)µ with the HVP contribution calculated by the BMW
collaboration, which both imply good agreement between SM and experiment so that these
observables act as constraints on new physics.

We stress that the value used for the HVP contributions to (g − 2)µ plays a crucial
role here. Specifically, using the BMW calculation, which implies a SM prediction close to
the measured (g − 2)µ value, allows a simultaneous explanation of R(D(∗)) and b → sℓ+ℓ−

data. If instead the SM (g − 2)µ value of the White Paper is used without updating
the HVP contributions, the combined fit can no longer describe both B anomalies while
generating a larger ∆aµ of about 1 × 10−9 (which is still significantly smaller than the
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BM3 Scan 1 PDG 2024 CDF-II

mH+ 130GeV 133.7GeV 126.2GeV 133GeV

mH,A 200GeV 181.7, 184.2GeV 205, 158GeV 227, 201GeV

cβα 0.1 0.019 0.007 0.03

ρttu 0.06 0.06 −0.06 −0.06

ρtcu 0.47 0.23 0.14 −0.15

ρccu - - −0.1 0.1

ρbbd - - −0.07 0.1

ρττℓ −0.01(1± 1.8i) −0.03(1± 1.5 i) −0.05(1± 1.6 i) −0.002(1± 25 i)

ρµµℓ - - −0.0015 0.002

ρµτℓ 0.01 5× 10−4 0.003 −0.001

ρeτℓ 0.006 0.008 3× 10−4 0.007

BR(t → bb̄c) 0.163% 0.157% 0.156% 0.157%

BR(h → µτ) 0.077% 6.7× 10−8 3.5× 10−7 6.8× 10−7

BR(h → eτ) 0.028%, 2.1× 10−5 3.6× 10−9 2.8× 10−5

R(D) 0.357 0.350 0.346 0.371

R(D∗) 0.271 0.276 0.277 0.258

BR(µ → eγ) 2.2× 10−13 1.7× 10−15 7.6× 10−17 3.1× 10−15

RBs 0.002 −0.005 0.075 0.062

BR(Bc → τ ν̄) 30% 39% 40% 8%

BR(t → ch) 3.1× 10−4 2.4× 10−6 1.4× 10−7 2.2× 10−6

∆C9 −0.47 −0.072 −0.83 −0.76

∆C7 −0.035 −0.015 −0.016 −0.011

κτ 0.91 0.95 0.97 1.00

∆aBMW
µ - - −0.8× 10−11 1.2× 10−11

STU (∆χ2) −2.5 0.014 −0.06 −11.5

Total ∆χ2 2.20 23.83 81.07 64.30

Table 1: The value of the parameters for BM3 (first column), the best-fit point of the
first scan (second column), the best-fit point of the second scan with using the PDG value
(third column) or the CDF-II value (fourth column) for the value of mW . The corresponding
predictions for various observables are shown, where relevant. Here we define ∆χ2 = χ2

SM−
χ2
G2HDM.

White Paper prediction). Similarly, if the PDG value for the W mass is replaced by the
CDF-II measurement, the model could not fit the oblique parameters while at the same
time improving the fit to the semi-leptonic B anomalies as much as before.

Interestingly, we found that if we do not include b → sℓ+ℓ− in the fit but predict it
from the other observables within the G2HDM, a negative value of ∆C9, as suggested by
global model-independent fits, is predicted, even though the absolute value is smaller than
what is preferred by data. In all scenarios describing the B anomalies at the 1σ level, we
find that ∆MBs is in worse agreement with data than the SM, even though still compatible
due to the large theoretical uncertainty. Finally, our model can be tested at Belle II in LFV
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searches for τ → 3µ and τ → µγ and measurements of κb and κτ in the future HL-LHC.
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A Barr-Zee diagrams for (g − 2)µ in the G2HDM

We divide the leading contributions to ∆ aµ in the G2HDM into three groups

∆ aBSM
µ = ∆ a1Lµ +∆ aFµ +∆ aBµ , (A.1)

which correspond to the one-loop, two-loop fermionic, and two-loop bosonic contributions,
respectively. These are shown in Figures 7-10 and the corresponding expressions for the
G2HDM are given in Refs. [18, 185].

�
γ

µ

li

ϕ
µ �

γ

µ
νi

H±

µ

Figure 7: One-loop diagrams that contribute to (g−2)µ involving a neutral (charged) scalar
diagram on the left (right). The index i = e, µ, τ and ϕ = h,H,A are defined.

The two-loop fermionic Barr-Zee diagrams are shown in Figure 8 and can be divided
into neutral and charged contributions

∆ aFµ = ∆ aF,neutralµ +∆ aF,chargedµ . (A.2)
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Figure 8: Two-loop fermionic Barr-Zee diagrams that contribute to (g− 2)µ. The internal
photon γ may be replaced by a Z boson, f ′ is the SU(2)L partner of f and ϕ = h,H,A.

The two-loop bosonic contributions can be split up further into three groups

∆ aBµ = ∆ aB, EW add
µ +∆ aB, Yuk

µ +∆ aB, non-Yuk
µ . (A.3)

The first term ∆ aB,EW add
µ represents BSM contributions from two-loop bosonic diagrams

where only SM particles and the SM-like Higgs boson h appear in the loops, i.e. the left
panel of Figure 9 with ϕ = h and H± replaced with W± and the diagrams in Figure 10 with
ϕ = h. BSM effects enter here because in the G2HDM h can have non-SM effects. However
to avoid double counting and get only the BSM contribution we must subtract from this the
SM value of these diagrams. The second term ∆ aB, Yuk

µ includes all diagrams that involve
BSM fields with a Yukawa coupling, e.g. the ϕ ̸= h versions of both the diagram in the
left panel of Figure 9 and the diagrams in Figure 10. The last term ∆ aB, non-Yuk

µ represents
two-loop bosonic diagrams that do not involve Yukawa couplings, such as those in the
middle and right panels in Figure 9. The definitions of the contributions ∆ aB, EW add

µ and
∆ aB, non-Yuk

µ are shown in Eqs. (49) and (71) respectively in Ref. [186], while the Yukawa
contribution ∆ aB, Yuk

µ is shown in Eq. (67) of Ref. [185].

B Fit with (g − 2)µ value from White Paper

Here we present the results of a scan using the WP value [138] for the SM prediction for the
muon g−2 instead of the one where BMW is used for HVP. We find |ρττℓ | ≪ |ρccu | resulting in
BR(ϕ → τ τ̄) ≪ BR(ϕ → cc̄) and hence multi lepton search and chargino-neutralino searches
would be less relevant. In Figure 11 we can see that it is possible to simultaneously fit all
observables only at the 2σ level, with the exception of R(D∗) which is SM-like within this
global fit. This is expected due to the smaller experimental uncertainty for the WP value
(compared to the BMW one), strongly constraining the ρtcu Yukawa coupling, although
requiring a large ρccu ≈ −0.5, in possible conflict with pp → cc̄ → ϕ and pp → cs → H±

searches. Finally, we find that if using the CDF-II value for mW the model is ruled out at
the 2σ level for an explanation of the WP value in the G2HDM.
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