
Estimating the Carbon Dioxide Emissions
of Thessaloniki by Combining

Observations and Simulations Based on an
Inventory Rescaling Approach

Zur Erlangung des akademischen Grades einer

DOKTORIN DER NATURWISSENSCHAFTEN
(Dr. rer. nat.)

von der KIT-Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Lena Feld, M. Sc.
aus Heidelberg

Tag der mündlichen Prüfung: 15. November 2024
Referent: Prof. Dr. Peter Braesicke
Korreferent: Priv.-Doz. Dr. Frank Hase
Betreuer: Dr. Roland Ruhnke



This document is licensed under a Creative Commons Attribution 4.0 International License  
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en



Abstract

Our planet is warming at a rapid pace. The increase in global surface temperature is

driven by the growing concentration of greenhouse gases in our atmosphere, primarily

due to the extensive use of fossil fuels. Currently, the most important greenhouse gas

that is emitted from human activities is carbon dioxide (CO2). Climate change is already

having a dramatic impact on our environment, and the effects are projected to intensify

as emissions continue. To mitigate the worst effects of climate change, targeted action is

needed to achieve a rapid reduction in the emissions of all greenhouse gases, not only

CO2. Precise monitoring methods are needed to improve current emission inventories

for informed decision-making.

However, the currently available emission inventories contain considerable discrepancies.

Especially at smaller scales, such as urban areas, the uncertainties are high. Concurrently,

urban areas are major sources of anthropogenic greenhouse gases. Existing inventories

are constructed using a bottom-up approach based on reported emission activities. Top-

down estimation of emissions is an alternative approach, where emissions are calculated

from atmospheric observations. The method can be used to validate and improve bottom-

up estimates. It has been applied in several cases, mostly covering global to regional

scales. Top-down estimation of urban emissions is challenging because of the dense and

heterogeneous emission structure, and the difficulty to perform accurate simulations of

atmospheric transport at small scales.

In this work, I perform a measurement-based estimation of the CO2 emissions of the

urban area of Thessaloniki, Greece. For Thessaloniki, the discrepancies between the

bottom-up inventories are substantial: For 2019, the EDGAR inventory reports urban

emissions of 3.1Mt, which is significantly higher than the estimates by the CAMS (1.7Mt)

and ODIAC (1.8Mt) inventories.

For the emission estimation, a measurement campaign was conducted in collaboration

with partners from the Aristotle University of Thessaloniki. Two solar Fourier Transform

Infrared spectrometers of the type EM27/SUN were operated over a period of three

months, covering three weeks in October 2021 and ten weeks between May and July 2022.

The EM27/SUN can record time series of the column-averaged dry-air molar fraction
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of CO2 (𝑋CO2) with high precision and temporal resolution. One spectrometer was

positioned centrally within the city. The second spectrometer was equipped with solar

power supply for portability, enabling positioning at various locations. The collected

dataset contains 179 hours of observation, excluding the observations for calibration.

To interpret the recorded dataset, a corresponding simulation of the emission sources

and transport of CO2 is required. The ICON-ART model – an operational model at the

German Weather Service (DWD) – was used for this purpose. The ODIAC inventory was

used as a starting point, and within the city it was separated into different sub-areas to

allow scaling of the emissions during post-processing. An estimate of the net ecosystem

exchange was constructed from different available datasets. The simulations show a

good agreement when compared to wind and pressure observations in the city and water

vapor columns co-observed by the EM27/SUN. However, the agreement is poor for𝑋CO2.

The Pearson correlation coefficient between the simulated and observed time series of

𝑋CO2 was only 0.1.

The agreement is enhanced significantly by rescaling the anthropogenic emissions inside

the city area. To find an optimal scaling, a least-square approach is applied. Two different

methods are compared: Firstly, the whole city is uniformly scaled, leaving just one degree

of freedom. Secondly, the previously separated source regions of the city center are scaled

individually, giving 30 degrees of freedom. Furthermore, two subsamples with good prior

agreement are selected to evaluate the robustness of the results. The optimization leads

to a significantly improved agreement between simulated and observed time series for

both subsamples. The largest improvement is found in the smaller sample, where 5 days

were selected from the full time series. Here, the correlation coefficient improves from

0.34 to 0.77. Still, discrepancies remain in the time series for all configurations. Possible

reasons for this include the inaccurate representation of the biogenic sinks and sources,

imperfect simulation of tracer transport and limitations of the model setup such as short

simulation time and limited spatial resolution.

Despite the remaining discrepancies, the different scaling configurations show robust

results: When looking at the configurations where all source regions are scaled individu-

ally, expected emission hot spots consistently receive higher weights, supporting the

correct attribution of emissions by the optimization approach. For every configuration,

the rescaling results in a distinct increase of Thessaloniki’s total emissions. The estimates

range from 2.9 to 4.4Mt/yr. This indicates an underestimation of the actual emission in

the ODIAC and CAMS inventories and supports the higher estimate from the EDGAR

inventory. The results demonstrate the potential of measurement-based methods to

enhance our knowledge about urban scale emissions.
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1. Introduction

1.1. Anthropogenic Climate Change

We are facing a rapidly warming planet. The global surface temperature has risen

significantly compared to the pre-industrial level (compare Figure 1.1). Last year – 2023

– was the warmest calendar year ever recorded in the global temperature records going

back to 1850 (Copernicus Climate Change Service, 2024). The global mean surface

temperature was 14.98
◦
C, which is 1.48 °C warmer compared to the average of the

pre-industrial reference period from 1850 to 1900.

The global warming is driven by the increase of greenhouse gases (GHGs) in the atmo-

sphere. Carbon dioxide (CO2) is the most important anthropogenic GHG. The increase

of the atmospheric abundance of CO2 is continuously recorded at the Mauna Loa obser-

vatory since 1958. During this period the mixing ratio increased from below 320 ppmv at

Figure 1.1.: Global surface temperature: Increase above pre-industrial level (1850-1900). Global
surface air temperature (ºC) increase above the average for 1850-1900, the designated pre-industrial

reference period, based on several global temperature datasets shown as 5-year averages since 1850 (left)

and as annual averages since 1967 (right). The figure was adapted from Copernicus Climate Change

Service (2024).
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Figure 1.2.: Rapid increase of carbon dioxide in our atmosphere. Figure A shows the recorded

data collected at the Mauna Loa observatory since 1958. Figure B additionally shows an estimate of the

concentration for the last 800 thousand years, that was collected by investigation of ice cores. The figure

was adapted from Monroe (2024), with data sources from Keeling and Keeling (2017), Rubino et al. (2019)

and Lüthi et al. (2008).

the beginning of the recording to over 420 ppmv in 2024 (Keeling and Keeling, 2017), as

displayed in Figure 1.2. This increase exceeds the average mixing ratio over the previous

800,000 years, as determined from measurements made from ice-core measurements

(Rubino et al., 2019; Lüthi et al., 2008).

The mechanism that induces the warming is called greenhouse effect. The basic principle

is that GHGs absorb light in the infrared range while being transparent in the visible

range. This shifts the Earth’s equilibrium of incoming and outgoing radiation, as the

outgoing radiation has a larger proportion of infrared light. Therefore an increase in

GHGs leads to a net warming.
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Figure 1.3.: Annual CO2 emissions by world region. Emissions from fossil fuels and industry are

included, but not land-use change emissions. International aviation and shipping are included as separate

entities, as they are not included in any country’s emissions. The figure is created by ourworldindata.org

(Ritchie and Roser, 2024), with Data from the Global Carbon Budget (Friedlingstein et al., 2023).

The increase of GHGs in the atmosphere is caused by the extensive exploit of fossil

carbon deposits since the industrialization. Figure 1.3 shows the global annual CO2 emis-

sions from fossil fuel burning since 1750, with the rate of increase being approximately

exponential. The continuing emissions of GHGs will lead to a further warming. This has

substantial effects on our environment. Glaciers and polar ocean ice sheet extents are

shrinking significantly. For the period between 1979 and 2019, the Intergovernmental

Panel on Climate Change (IPCC) reported a reduction of the arctic sea ice extent from

6.23 to 3.76 million km
2
for the month of September (IPCC, 2023b, p. 343). The melting

of glaciers affects the human societies by altering water supplies and inducing sea level

rise.

Climate change is leading to an increase in both the intensity and the frequency of

extreme weather events (IPCC, 2023c). The effects are expected to intensify in the future,

but can already be seen today. In recent years, amplified wildfire seasons, prolonged

droughts and flooding events caused damage and death in unprecedented extents. Recent

examples are the record-breaking 2023 wildfire season in Canada (Sottile et al., 2023)

and the Mediterranean cyclone Daniel (Fleming, 2023) that caused thousands of deaths.

Zachariah et al. (2023) found that an event like cyclone Daniel became 50 times more

likely to occur and about 50% more intense over Libya in a 1.2
◦
C hotter climate.
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1. Introduction

Future impacts are projected to become more severe compared to present time. The

extent of the increase depends on the amount of GHG emission reduction we achieve. In

the report of Working Group 2 about the impacts, adaptation and vulnerability, the IPCC

(2023a) stated that projected impacts of a continued warming induce an increased impact

on ecosystems and biodiversity, food and water supply, and coastal communities through

sea level rise. In a high-emission scenario, they project over nine million climate-related

deaths per year by the end of the century. The projected fatalities are caused by an

increase in heat-related mortality and undernutrition, a spread of transmission regions

for vector-borne diseases as Malaria or Dengue fever, and an increase in diseases as

diarrhea and cholera. "Under all global warming levels, some regions that are presently

densely populated will become unsafe or uninhabitable" (IPCC, 2023a, p.64).

To mitigate the hazards caused by climate change, the global community agreed to limit

the global warming to 1.5°C in the Paris Agreement in 2015 (UNFCCC, 2016). Despite 195

parties signed the treaty (United Nations Treaty Collection, 2024), the global emissions

are still increasing. In 2023 a record of 37.55 billion tons of fossil fuels have been emitted

(Tiseo, 2024). A turning point in this increase is urgently needed, as rapid decrease is

mandatory to mitigate climate change.

1.2. Stocktaking of Greenhouse Gas Emissions

Limiting global warming requires a rapid reduction of GHG emissions. A reliable stock-

taking of current GHG emissions and their evolution over time is needed for informed

decision-making and to enforce compliance. Here, the activities to monitor GHG emis-

sions are introduced.

Reported Emissions and Inventories

The parties of the Paris Agreement agreed to establish a global stock take (GST) every

five years, starting in 2023, to monitor the reduction of the emissions. The implications

of the first GST were negotiated in December 2023 at the 28th Conference of the Parties

(COP28), and the parties can submit their updated nationally determined contributions

(NDCs) until December 2025. In the GST, the parties submit their emissions, mitigation

and adaptation efforts to the United Nations Framework Convention on Climate Change

(UNFCCC) (see UNFCCC (2016)). In the outcome of the first GST, it was recognized that

the potential warming could be decreased to a range between 2.1 to 2.8
◦
C if all current

climate action plans are implemented. But there is still a mitigation gap, as the world’s
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1.2. Stocktaking of Greenhouse Gas Emissions

emissions today are not in line with the target to limit the warming to 1.5
◦
C (UNFCCC,

2024). Industrialized countries committed to reporting their annual GHG emissions to

the UNFCCC on a more frequent basis, covering the period from the base year 1990 to

the present. Other countries can submit their reports less often depending on the funds

they receive for their reporting (Granier et al., 2023) and their records do not go back to

1990. The reports to UNFCCC are prepared in written format.

Janssens-Maenhout et al. (2019) state that the data collected by UNFCCC does not provide

a complete, consistent and comparable global dataset. For this reason, other emission

inventories have been created. Many of these inventories use a gridded format to ensure

the emission information more accessible to modeling communities. The following

introduction of these inventories is based on Granier et al. (2023).

The data sources and methodologies of the inventories vary in detail, but all are based

on a bottom-up (BU) concept. It is based on the following two components:

1. Activity data, quantifying the human activity (e.g. the amount of coal burned),

2. Emission factors – a linear factor describing the amount of a pollutant emitted by

the respective activity (e.g. the amount of CO2 emitted per unit mass of burned

coal).

The activity data is combined with the emission factors to yield emission estimates. In

the following, the inventories that are relevant for this work are introduced briefly.

• TheEmissionsDatabase forGlobalAtmosphericResearch (EDGAR) (Janssens-
Maenhout et al., 2019; Crippa et al., 2018) provides global gridded emissions with

a spatial resolution of 0.1° x 0.1° and a monthly temporal resolution. The newest

version, EDGARv8.0 (Crippa et al., 2022), encompasses the period from 1970 until

2022. The emissions are split into different sectors. They combine the data reported

to UNFCCC with various other sources. For example the combustion-related activ-

ity factors are derived from the World Energy Balances of the International Energy

Agency (IEA, 2024).

• The Community Emissions Data System (CEDS) (Hoesly et al., 2018) is an

open-source framework with the goal to provide a sectoral gridded inventory in

support of the Coupled Model Intercomparison Project (CMIP, 2023). For enabling

pre-industrial runs, CEDS provides data since 1750. For this approach, activity

data and emission factors are first collected and calibrated afterward to match

with existing country-level inventories. Among others, CEDS also relies on the

estimates of EDGAR for the default emission estimates. The newest version that is
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1. Introduction

provided in a gridded format is v_2021_04_21. It has a resolution of 0.1 ° x 0.1 ° and

includes data up to 2019 (Ahsan et al., 2022).

• The gridded emission inventory by the Copernicus Atmospheric Monitoring
Service (CAMS) (Granier et al., 2019) is used for their model predictions and

reanalysis products. The CAMS inventory is based on emissions from EDGAR

and CEDS. The anthropogenic emission inventory has a resolution of 0.1 ° x 0.1 °

and ranges from 2000 - 2020 with a monthly temporal resolution. It provides many

different species of pollutants and GHGs.

• The Carbon Dioxide Information and Analysis Center (CDIAC) provides an
independent long-time series of CO2 emissions going back to 1751 (Gilfillan and

Marland, 2021). Other than the CAMS and CDES inventories, CDIAC is a primary

inventory that only relies on emission data and does not depend on data from other

inventories. CDIAC is not provided in a gridded format.

• The Open-Source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda
and Maksyutov, 2011; Oda et al., 2018) only provides CO2 emissions, but it has an

exceptionally high spatial resolution of 1 km. ODIAC relies on the emissions of

CDIAC such that emissions from CDIAC are combined with satellite images of

anthropogenic light emission observed at night as a proxy for spatial disaggregation.

The newest version – ODIAC2022 – encompasses the time period from 2000 to

2021.

The global annual emission estimates have little discrepancies between the different

inventories. Janssens-Maenhout et al. (2019) compares the total CO2 emission from

some of the above-mentioned inventories for the year 2010. They report total emissions

of 30.5 ± 5.3 Pg for the EDGAR inventory with a confidence level of 95 % for fossil

fuel combustion. The inventories ODIAC (33.4 Pg) and CDIAC (32.7 Pg) are within

the uncertainty limit. However, there are large regional differences between all the

above inventories, even though they are partly dependent on each other. While the

carbon dioxide emissions are much better known than many other GHGs and pollutants

(Maksyutov et al., 2022), the uncertainties are still significant, especially when looking at

more localized sources.

Emission Estimates from Atmospheric Observations

A way to improve the knowledge about emissions are top-down (TD) estimates, comple-

menting the discussed BU inventories. In TD estimation, the emissions are calculated
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1.2. Stocktaking of Greenhouse Gas Emissions

from atmospheric measurements, with the advantage that the observations are com-

pletely independent of the reporting. No emission source can be double-counted or

missed.

In recent years the interest in TD approaches has increased. Manning et al. (2011) per-

formed an inventory-independent TD estimation of the methane (CH4) and nitrous oxide

(N2O) emission inventory of the United Kingdom, finding a lower reduction in CH4

emissions than stated in the BU estimation due to the poor agreement in the 1990s.

Switzerland added TD estimates of N2O and CH4 in the appendix to the submission

for UNFCCC (FOEN, 2024). The inversion approach that was applied for the TD es-

timation is described by Henne et al. (2016). The government of the United States of

America formulated the objective to improve the atmosphere-based TD estimates in

a strategy paper, naming concrete fields for improvements (The White House, 2023).

The German government initialized the Integrated Greenhouse Gas Monitoring System

(ITMS, for Integriertes Treibhausgas Monitoring System) to build up an operational

system for TD emission monitoring in Germany (ITMS Germany, 2024). After the Global

Methane Pledge at the COP26, The UN Environment Program (UNEP) implemented

the International Methane Observatory (IMEO), an initiative with the goal to provide

measurement-based emission data to catalyze reduction measures (see United Nations

Environment Programme and International Methane Emissions Observatory (2023) for

their 2023 report).

Many of the above-mentioned TD emission estimates or initiatives focus on non-CO2

GHGs. This has several reasons. The reported emissions often have significantly larger

uncertainties compared to the emissions due to fossil fuel burning. For example, N2O

and CH4 are released from agricultural soils, landfills or wastewater treatment plants,

through microbiological processes. These processes are dependent on environmental

conditions and, therefore, difficult to be quantified in an inventory (Maksyutov et al.,

2022). For this reason, some TD analyses of CO2 targeted the interactions with the

biosphere and the ocean, assuming the fossil fuel emissions to be correct (see Peters et al.

(2007); Friedlingstein et al. (2023)).

Carbon Dioxide Emissions from Urban Areas

While many of the aforementioned activities focus on N2O or CH4 and address global

to regional scales, CO2 emissions in cities are of special interest, as a large fraction

of the anthropogenic CO2 emissions are produced in urban areas. Crippa et al. (2021)

estimated that a third of the global emissions were produced in urban areas in 2015, a

fraction that has increased over the past decades. As mentioned in the previous chapter,
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1. Introduction

the uncertainties of the global emissions are not particularly high. Andres et al. (2014)

estimate an uncertainty of 8.4 % for the global CO2 emissions from fossil fuel based on

the CDIAC inventory. Solazzo et al. (2021) concluded a similar uncertainty of 7 % for the

global estimate based on EDGAR, but when looking at individual pixels of the emission

map, they found uncertainties up to 40 % for a central European domain. Urban areas are

often represented by only one or a few pixels at the common resolution of the inventories,

so these high local uncertainties are expected to apply to them as well.

Coincidently, cities are challenging to monitor because of their heterogeneous structure

and emissions from a variety of sources. One of the major challenges of the TD emission

estimation is that the observations of atmospheric concentrations are connected to the

emissions in a non-trivial dependency. To obtain emission estimates, normally a complex

meteorological model is used to calculate the transport of the emissions to the point of

observation. Often the methods include a BU inventory as a prior, altering it with help of

the observations. This puts challenges for the application to urban-scale studies, as many

of the BU inventories do not have a sufficient resolution and the accurate simulation of

atmospheric transport is also challenging at this scale.

In summary, while the urban emissions are particularly important, their contributions

remain quite uncertain in the BU inventories. Simultaneously, the urban scale is posing

challenges to TD emission estimation due to the heterogenic sources and small-scale

transport. Through the HEPTA Project, a collaborative initiative between the Aristotle

University of Thessaloniki (AUTh) and the Karlsruhe Institute of Technology (KIT), I had

the opportunity to investigate Thessaloniki’s emissions. In this work, I perform a TD

estimate of the emissions of the urban area of Thessaloniki, Greece. The objectives of this

work and a general overview of the text at hand are given in the following section.

1.3. Objective and Research Questions

The emissions of Thessaloniki are an example of the uncertainty of current emission

inventories at the urban scale. For this purpose four of the previously introduced emission

inventories, the CAMS (v4.2), CEDS (v-2021-04-21), ODIAC (ODIAC2022) and EDGAR

(v8.0) inventories, are compared (see Figure 1.4). A reference area around Thessaloniki

(40.5 to 40.8° N and 22.7 to 23.1° E) is defined for comparison. The total emission estimates

of the different inventories in this area deviate significantly from each other. While the

CAMS and ODIAC inventories report lower total emission estimates of 1.7Mt/yr and

1.8Mt/yr, the EDGAR and CEDS inventories report 3.1Mt/yr and 3.2Mt/yr. From these

estimates, the EDGAR inventory reports 82 % more than stated by CAMS. This exceeds
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Figure 1.4.: Comparing different emission inventories for Thessaloniki. The average annual emis-

sions in 2019 for the urban area of Thessaloniki are shown for the ODIAC, EDGAR, CAMS and CEDS

inventories. The EDGAR, CAMS and CEDS inventories are spatially more aggregated than the ODIAC

inventory. The total emissions of the urban area inside the dashed rectangle are displayed in the lower

right corner of each frame.

the uncertainties of the EDGAR inventory for singular pixels of 40 % stated by Solazzo

et al. (2021). No uncertainties are provided for the other inventories.

These reported discrepancies motivate the scientific objective to obtain a measurement-

based emission estimate for the city of Thessaloniki. Furthermore, the deduction of

the location of emission hot-spots from the observational data is tested. With this, the

potential of atmospheric measurements combined with complex atmospheric tracer

simulations for emission estimation at the urban scale is demonstrated.

To achieve this, a measurement campaign in Thessaloniki, Greece, has been performed

using solar Fourier Transform Infrared (FTIR) spectrometers of the type EM27/SUN.

Several studies have used solar FTIR observations for this purpose. In the context

of the Collaborative Carbon Column Observing Network (COCCON), a framework for
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1. Introduction

EM27/SUN operation, several urban measurement campaigns have been conducted in the

past (see Section 2.2.4). COCCON is a measurement framework that defines instrumental

and data analysis standards (refer to Frey et al. (2019); Alberti et al. (2022) for further

details). To estimate emissions from the observation, the recorded data is combined with

corresponding simulations from the numerical weather prediction model ICON-ART.

An introduction to the principles of solar FTIR observations, the concept of emission

estimation based on atmospheric observations, and an introduction to the structure of

the ICON-ART model are given in Chapter 2. Chapter 3 introduces the implementation

of the measurement campaign and gives an overview over the recorded dataset. The

corresponding simulations are presented in Chapter 4, where the simulation setup is

described and the quality of the simulated wind and water vapor are assessed. An

emission estimate is derived from the joint interpretation of the observational dataset

and the corresponding simulations in Chapter 5. The methods and results are summarized

in Chapter 6.
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2. Theoretical and Technical Background

A general understanding of the atmosphere is the basis to follow the methods used in

this work. It is also necessary for explaining the underlying motivation: The problem of

a changing climate due to greenhouse gas (GHG) emissions. A basic description of the

atmosphere’s properties is given in Section 2.1

The concepts of Fourier Transform Infrared (FTIR) spectroscopy will be explained in

Section 2.2, covering the fundamental principles and the specific implementation in the

Collaborative Carbon Column Observing Network (COCCON).

The atmospheric CO2 column abundances that are measured by this method are affected

by emissions (the subject of this work), but also by atmospheric transport. The problem

of inverse emission estimation, the processes of atmospheric transport and how they

can be captured by models is introduced in Section 2.3.

2.1. Properties of the Atmosphere

First, the general structure of the atmosphere will be explained (Section 2.1.1). This is

followed by a description of the radiative properties of the atmosphere in Section 2.1.2,

which are fundamental to both the greenhouse effect and the measurement principle.

2.1.1. Structure and Composition of the Atmosphere

The atmosphere is a thin gaseous layer surrounding the condensed part of the earth.

The total mass of the atmosphere is 5.2·10
18
kg (Möller, 2019, p. 23), which is less than

0.0001% of the solid and liquid parts of earth with a total of 6.0·10
24
kg (Williams, 2024).

Along the vertical, the atmosphere consists of different layers, characterized by their

behavior in transport, constituents, temperature and pressure. A schematic view of the

different layers of the atmosphere can be seen in Figure 2.1.
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2. Theoretical and Technical Background

Figure 2.1.: Layers of the atmosphere. The temperature profile is displayed in dependency of the height.

The corresponding pressure and air density is overlayed. The names of the different layers, the prevalent

mode of transport and the hight of visible atmospheric phenomena are shown as well. The figure is taken

from (Möller, 2019, p. 24).

Starting from the surface, the lowermost layer is called troposphere. It is characterized

by turbulent convection and most cloud formation and precipitation processes happen in

this layer. In the troposphere, the temperature decreases with increasing height. The top

edge of the troposphere is called the tropopause. In the following layer, the stratosphere,

the temperature increases with increasing height. The energy intake is related to the

formation of the ozone layer by absorption of radiation in the ultraviolet range. The

increase in temperature prevents air masses from vertical mixing, making the mass

exchange between troposphere and stratosphere significantly lower than the mixing

inside the troposphere. The upper boundary of the stratosphere, the stratopause, is

characterized by a local maximum in temperature of about 0 °C. The layer above is called

the mesosphere. There the temperature starts to decrease again and starts to rise again in

the thermosphere and exosphere. With the interest of measuring near-surface emissions

of CO2 in mind, the relevant transport and variation of concentration happen in the

troposphere. More distant layers play a minor role. The mechanisms of transport in the

troposphere will be covered in Section 2.3.
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2.1. Properties of the Atmosphere

Table 2.1.: Composition of the atmosphere. The mixing ratios of the most common constituents of

the dry remote atmosphere (global mean concentrations 2015-2016) are shown. The table is adapted from

Möller (2019).

Substance Formula Mixing ratio (ppm)

Nitrogen N2 780,825
𝑎

Constant

Oxygen O2 209,432
𝑎

Constant

Argon Ar 9,339
𝑎

Constant

Carbon dioxide CO2 404 Increasing

Neon Ne 18.18 Constant

Helium He 5.24 Constant

Methane CH4 1.845 Increasing

Krypton Kr 1.14 Constant

Hydrogen H2 0.5 Constant

Dinitrogen monoxide N2O 0.328 Increasing

Carbon monoxide CO 0.12 Increasing

Xenon Xe 0.087 Constant

Ozone O3 0.03 Variable

𝑎
Related to “clean” atmosphere O2 + N2 + Ar + CO2 (= 100 %)

The atmosphere consists of two main components, nitrogen (N2) with 78.1% and oxygen

(O2) with 20.9%. The mixing ratios are given relative to dry air, as the content of water

significantly varies. The concentration of GHGs is significantly lower. The mixing ratios

for the most common atmospheric constituents are given in Table 2.1.

CO2, as was stated in Chapter 1, is steadily increasing. The annual global average rose to

a record of 419.3 ppmv in 2023 (NOAA Climate, 2024). Also, other important GHGs like

methane (CH4) and dinitrogen monoxide (N2O) are increasing significantly. More detail

on how rising GHGs are linked to rising temperatures is provided in Section 2.1.3. Before,

the radiative properties of the atmosphere, which are the foundation of the greenhouse

effect, are introduced.

2.1.2. Radiative Properties of the Atmosphere

The interaction of the atmosphere with electromagnetic radiation is an important pre-

requisite for understanding the atmosphere’s energy balance and thus the change of our

climate. More importantly for this work, it is also the basis for the measurement principle

used here – solar FTIR spectroscopy. For atmospheric remote sensing of CO2 the infrared
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2. Theoretical and Technical Background

Figure 2.2.: Solar spectrum. The solar radiation reaching the top of the atmosphere is depicted with a

black solid line. For comparison, the black body radiation spectrum at a temperature of 5900 K is shown

as a dashed line. The gray area shows the solar radiation at the Earth’s surface; the important areas of

absorption from different atmospheric substances are annotated.

part of the electromagnetic spectrum is used, we will therefore focus on this part of

the spectrum in the following. The interactions between the atmosphere (and matter

in general) can be divided into three categories: emission, absorption and scattering.

Scattering is not relevant for infrared light in the atmosphere and will therefore not be

further considered. This section is based on Salby (2012), Haken and Wolf (2006) and

Mayer-Kuckuk (1997).

Black Body Radiation

Matter emits electromagnetic radiation, depending on its temperature. The intensity

𝐹𝜆 (𝑇 ) d𝜆 in an interval of wavelength [𝜆, 𝜆+d𝜆] can be described by Planck’s law (Roedel

and Wagner, 2017)

𝐹𝜆 (𝑇 ) d𝜆 =
2ℎ 𝑐2

𝜆5
· d𝜆

exp

(
ℎ 𝑐
𝜆 𝑘 𝑇

)
− 1

. (2.1)

Here, 𝑇 is the body’s temperature in Kelvin. The Planck constant ℎ, the Boltzmann

constant 𝑘 and the speed of light 𝑐 are physical constants. This emission behavior is

called black body radiation.
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2.1. Properties of the Atmosphere

Most of the incoming radiation at the top of the atmosphere originates from the Sun.

Figure 2.2 shows that the incoming radiation at the top of the atmosphere is described

well by a black body radiation spectrum with 5900 K, which is centered in the visible

range of the electromagnetic spectrum. The different shape of the spectrum at the Earth’s

surface is caused by the absorption of radiation in the atmosphere and will be discussed

further below. The second source of radiation in the atmosphere is the Earth itself. The

emission spectra of the Earth’s surface and atmosphere are in the infrared range. The

black body spectra for the surface temperatures of the Earth and the Sun are shown in

the top panel of Figure 2.3.

Absorption and Line Shapes

One way that radiation interacts with the atmosphere is by absorption. The decrease

of the intensity 𝐼 along a pencil beam in direction 𝑠 can be described by the differential

equation

d𝐼𝜆

d𝑠
= −𝛽𝑎𝜆𝐼𝜆 , (2.2)

where 𝛽𝑎𝜆 is called the absorption coefficient. Equation (2.2) implies an exponential

decrease of the intensity while passing through the pencil beam.

𝐼𝜆 (𝑠) = 𝐼𝜆 (0)𝑒−
∫ 𝑠

0
𝛽𝑎𝜆𝑑𝑠

′
, (2.3)

where the integral in the exponent is also called the optical depth.

The degree of absorption significantly depends on the wavelength of the incident ra-

diation. The absorption coefficient is high at specific wavelengths that correspond to

transitions between different excitation states of the atmosphere’s molecules. The excited

states are quantized in the infrared, leading to singular absorption lines instead of a

continuous spectrum.

In the infrared region, the relevant excitation states of molecules correspond to rotation

and vibration modes of the molecules. In the atmosphere a variety of different molecules

absorb parts of the electromagnetic radiation. The different species vary in concentration

in the atmosphere. This results in a complex absorption or respectively transmission

pattern. The percentage of absorption at the height of 11 km and at the ground level are

shown in Figure 2.3. This wavelength-dependent absorption leads to the spectral shape

of the solar radiation at the Earth’s surface shown in Figure 2.2.

The excitation energy of a molecule consists of three components

𝐸 = 𝐸𝑒𝑙 + 𝐸𝑣𝑖𝑏 + 𝐸𝑟𝑜𝑡 (2.4)
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2. Theoretical and Technical Background

Figure 2.3.: Absorption of radiation in the atmosphere. (a) Blackbody emission spectra for the Sun’s

and Earth’s surface temperatures. The percentage of absorption in dependency of the wavelength at the

height of 11 km (b) and at the surface (c) (adapted by Salby (2012) from Goody and Yung (1995)).

Actually, the energy levels are defined by their quantum mechanical potentials in

Schrödinger’s equation, where also a coupling between the movement of the electrons

and nuclei exists. In the Born-Oppenheimer approximation, the coupling is neglected.

The motion of the electrons and nuclei have different time scales. This motivates the

assumption to treat them independently. For atmospheric conditions, this approximation

is in good agreement with the observed energy levels. The spectrum consists of the pos-

sible transitions Δ𝐸 between this excitation states. Changes in the states of the electrons

correspond to wavelengths in the visible range and are not considered further here.
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2.1. Properties of the Atmosphere

For the simplified assumption of a rigid rotor with a molecule of two atoms, the molecule

has a parabolic potential. From this the quantized energy of the excitation states can be

found to be

𝐸𝑟𝑜𝑡 =
ℏ2

2Θ
𝐽 (𝐽 + 1) , (2.5)

where Θ is the rotational inertia. The quantum number 𝐽 takes on natural numbers and

corresponds to the state of excitation.

For the vibrational states, we can also make the simplified assumption of a parabolic

potential. Analogue to the rotation this leads to the quantized energy levels

𝐸𝑣𝑖𝑏 = ℏ𝜔

(
𝜈 + 1

2

)
, (2.6)

with the reduced Planck constant ℏ and the oscillation frequency 𝜔 . The quantum

number 𝜈 takes on natural numbers. The derivation of these simplified energy levels can

be found in Haken and Wolf (2006, Ch.9,10).

Actually, the spectrum is more complex due to a number of different reasons. In reality

the vibrational potential is not parabolic, instead the finite dissociation energy is bet-

ter approximated by a Morse potential. The rotational potential also differs from the

assumption of a rigid rotor as the distance of the nuclei and thus the rotational inertia

changes with the electrical excitation. The vibrational and rotational quantum numbers

can change simultaneously and coupled ro-vibrational states exist. The quantum me-

chanical calculation of the transition probabilities gives specific transition rules, not all

transitions occur. The line intensities depend on the probability of occupancy of the

different, states which is temperature dependent. Finally, adding more atoms to the

molecule also changes the spectrum. These effects result in a complex line structure.

The HITRAN database provides the spectral lines for different molecules including also

the above-mentioned effects, to support spectroscopy applications in gaseous media. Ab

initio calculations of the energy levels are combined with various experimental data. It is

widely used, for example by satellite missions and for exoplanetary investigations. Two

segments of the spectrum of CO2 provided by HITRAN can be seen in Figure 2.4.

The absorption lines correspond to state transitions with a singular energy. However,

the lines actually have a finite width due to various effects that broaden the line shape.

The broadening depends on the composition of the atmosphere, as well as pressure and

temperature. The shape of the individual lines is the key to retrieving GHG concentrations

from measured spectra.
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Figure 2.4.: The line intensities for CO2 as provided by HITRAN. The intensity for the three most

important isotopologues is multiplied by the isotopologue abundance and it is evaluated at T = 296 K

(Gordon et al., 2022). The vertical dashed lines indicate the segments of the spectrum that are used for

retrieving the vertical columns by COCCON. The upper panel shows the segment commonly used by

COCCON, the lower panel shows an additional alternative segment that was recently implemented into

the COCCON retrieval software.

The line shape cannot be narrower than the natural line width. It is limited by the

Heisenberg uncertainty principle

Δ𝐸Δ𝑡 >
ℏ

2
, (2.7)

linking a width in energy (and thus in wave number) to the decay time Δ𝑡 of an excited

state. The resulting line width of the natural line shape is very small compared to

other broadening effects (about 10
−8

cm
−1
) and is therefore negligible in the context of

atmospheric spectroscopy (Efremenko and Kokhanovsky, 2021, p. 125f).

For high pressures, the decay time can be significantly larger than the interval between

collisions of molecules. The collisions can trigger state transitions and therefore reduce
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2.1. Properties of the Atmosphere

the lifetime, which results in an increased line width, following Equation (2.7). Pressure

broadening is described by a Lorentzian profile and dominates in low altitudes.

Doppler broadening is induced by the velocity distribution of the molecules, resulting

in a Doppler shift of the emitted photon (Demtröder, 2018). If an atom has a velocity

component 𝑣x in direction of the emitted photon, the energy is shifted by

𝑓 = 𝑓0

(
1 − 𝑣x

𝑐

)−1

. (2.8)

The Maxwell distribution describes the number density 𝑛(𝑣x) of molecules with a velocity

component of 𝑣x within the interval [𝑣x, 𝑣x + d𝑣x] in a group of molecules with the

temperature 𝑇

𝑛(𝑣x)d𝑣x ∝ exp

(
−𝑀𝑣2

x

2𝑅𝑇

)
d𝑣x , (2.9)

where𝑀 is the molecular weight and 𝑅 is the ideal gas constant. This leads to a Gaussian

line shape

𝐼 (𝑓 ) = 𝐼0 exp

(
−𝑀𝑐2

2𝑅𝑇

(𝑓 − 𝑓0)2

𝑓 2

)
. (2.10)

Under the assumption that the Doppler broadening is independent from the pressure

broadening, the resulting combined line shape is a convolution of a Gaussian profile

from the Doppler broadening and Lorentzian profile from the pressure broadening. This

convolution is called Voigt profile. For comparison a Gaussian, a Lorentzian and a Voigt

profile are shown in Figure 2.5.

In conclusion, the intensity of the absorption and the precise line shapes are dependent

on the pressure, temperature and the distribution of GHGs in the atmosphere. How this

absorption behavior is used for measuring the GHG abundances in the atmosphere will

be covered in Section 2.2.

2.1.3. Earth’s Energy Imbalance

The Earth’s energy budget describes the sum of the energy arriving and leaving Earth.

Ideally all components add up to zero – an equilibrium.

The solar radiation is the most relevant source of energy arriving at the Earth. Other

sources as the heat transfer from the core of the Earth or nuclear processes are irrelevant

in comparison. The relatively constant flux of incoming radiation is also referred to as

solar constant with 1360W/m
2
(Roedel andWagner, 2017). The geometrical consideration
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Figure 2.5.: Shape of a Voigt profile. The shapes of a Gaussian profile (Doppler broadening) and a

Lorentzian profile (pressure broadening) are shown. The Voigt profile is a convolution of these profiles.

All curves’ areas are normalized to one.

that the projection of the Earth is illuminated, while the average heating of the whole

surface is investigated, leads to the average incoming energy of

1360
W

m2
·
𝜋𝑅2

E

4𝜋𝑅2

E

= 340
W

m2
(2.11)

The different pathways and transitions of the incoming energy are depicted in Figure 2.6

and will be explained in the following.

The solar radiation peaks at short wavelengths (compare Figure 2.3). Parts of the incoming

radiation are directly reflected from the top of the atmosphere and the Earth’s surface.

The total effective planetary albedo (i.e. the fraction of reflection) is 29.4 % (Roedel and

Wagner, 2017). Most of the remaining radiation is absorbed at the Earth’s surface, while

the atmosphere absorbs only a small fraction of the short wave radiation.

Simultaneously the Earth’s surface and atmosphere emit radiation. The radiation emit-

ted by the Earth’s surface and the atmosphere is within the thermal infrared regime

with wavelengths between 10 to 100 micrometers. While the atmosphere is relatively

transparent for the Sun’s incoming short wave radiation, its absorption is significantly
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2.1. Properties of the Atmosphere

Figure 2.6.: Earth’s energy budget. The incoming and outgoing radiation and the processes that are

relevant for the global energy budget are depicted schematically. Short wave radiation originating from

the sun is depicted with yellow arrows, infrared radiation emitted by the Earth’s surface and atmosphere

is marked by the orange arrows. Other processes that transport heat from the Earth’s surface to the

atmosphere are included with blue arrows. The energy flux that is transported by the different processes

is annotated to the arrows in W/m
2
. The Figure is adapted from NASA (2016).

larger for the long wave radiation (compare Figure 2.3). The optical depth for the emitted

radiation is in the order of 100m. As a result, most of the emitted infrared radiation from

the Earth’s surface is absorbed by the atmosphere. The atmosphere itself emits radiation

into all directions, therefore parts of it are re-emitted back towards the Earth’s surface.

This back radiation heats the Earth’s surface with 340.4W/m
2
, which is about the same

amount as the energy income from solar radiation at the top of the atmosphere. As a con-

sequence, the Earth is significantly warmer than without, or with an infrared-transparent

atmosphere. This is effect is called greenhouse effect.

The absorption behavior of the atmosphere is altered by the increase of GHGs (as e.g. CO2

and CH4) in the atmosphere. As a result the amount of infrared radiation that is absorbed

and re-emitted increases, leading to an effective heating. This effect is partly compensated

by other emitted substance, that absorb radiation in the visible range, e.g. sulfur dioxide

(SO2), which leads to a net cooling effect. The change in the energy budget due to external

drivers is called radiative forcing (unit W/m
2
). The radiative forcing of different species

emitted by anthropogenic activities is depicted in Figure 2.7. It is linked to the estimated

heating or cooling effect in the right panel of the plot.
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2. Theoretical and Technical Background

Figure 2.7.: Radiative forcing and effect on surface temperature for emitted components. The
effective radiative forcing of different species emitted is shown in the left panel. The corresponding change

in global surface temperature in the period between 1750 and 2019 is shown in the right panel. The Figure

is adapted from IPCC (2023c).

The current energy budget is no longer in an equilibrium but in a state of energy

imbalance. Loeb et al. (2021) determine the net energy uptake from satellite observations

and in situ data between mid-2015 to mid-2019. The average energy uptake was 0.77 ±
0.06

W

m2 in this period, with an increasing trend that is consistent in both independent

datasets.

The dramatic effects of the global warming were sketched out already in the introduction,

underlining the need for a quick reduction of GHG emissions. We return now to the task

of measurement-based emission estimation in the following section.

2.2. The Measurement Framework for Greenhouse Gas
Emission Estimation

This section introduces the foundations of the atmospheric measurements performed in

the present work. The basic principles of FTIR spectroscopy are explained in Section 2.2.1.

After that, Section 2.2.2 shows the specific application of this measurement principle

in the COCCON using EM27/SUN spectrometers. The processing of the raw measure-

ment data collected by the EM27/SUN using the PROFFAST algorithms is explained in

Section 2.2.3.

Former EM27/SUN measurement campaigns to estimate local emissions are summarized

in Section 2.2.4. Finally, Section 2.2.5 presents a previous attempt to determine Thes-
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2.2. The Measurement Framework for Greenhouse Gas Emission Estimation

Figure 2.8.: Schematic overview of a Michelson interferometer. The incoming light is parted by a

beam splitter and recombined at a detector. To one of the beams a variable path difference is added by a

movable mirror. The figure is taken from Efremenko and Kokhanovsky (2021).

saloniki’s emissions from the measurement campaign that is investigated also in this

work.

2.2.1. Fourier Transform Infrared Spectroscopy

The main principle of FTIR spectroscopy is to collect a spectrum of infrared light using

an interferometer. The interferometer splits the light to be examined into two beams. A

variable path difference is added to one of the beams. After recombining the two beams,

the so-called interferogram – the measured intensity as a function of the path difference

– is recorded. A simple and illustrative example of an interferometer is the Michelson

interferometer, which is depicted in Figure 2.8.

The interferogram 𝐼 (𝑥), which is a function of the path difference 𝑥 , can be converted

into the spectrum 𝑆 (𝑓 ), where 𝑓 is the frequency (Griffiths and De Haseth, 1986).

𝑆 (𝑓 ) =
∫ +∞

−∞
𝐼 (𝑥)𝑒−𝑖2𝜋 𝑓 d𝑥 . (2.12)

For the case of the actual measurement with a finite number of observation points, the

Fourier transformation is discretized.

This technique finds application in many contexts. For remote sensing of the atmosphere,

it is used in different configurations. In the present work the sun is used as external light

source, and the absorption of the atmosphere is the basis of determining greenhouse

gas abundances from the spectra. How the greenhouse gas abundances are technically

obtained from the recorded interferograms is explained in more detail in Section 2.2.3.
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2. Theoretical and Technical Background

Figure 2.9.: Two EM27/SUN spectrometers operated side-by-side for calibration. The measurements

were taken in Thessaloniki in 2022 for calibration. The spectrometers can be carried by two persons.

Photographed by Lena Feld.

2.2.2. The EM27/SUN Spectrometer and the COCCON Measurement
Network

The EM27/SUN is a portable interferometer to record the atmosphere’s absorption of

sunlight for measurements of GHG abundances (Gisi et al., 2011; Hase et al., 2016). The

EM27/SUN was developed in a cooperation between Bruker and the KIT. Apart from

the interferometer, it is equipped with a solar tracker, that reflects the sunlight into the

spectrometer. The CamTracker software continuously re-orients the mirrors using a

camera imaging the field stop of the spectrometer. This allows automatic tracking of

the Sun’s position (see Gisi et al. (2011)). The interferometer is shielded by a robust box

and the spectrometer has proven to be resilient against transportation. Herkommer et al.

(2024) observed shocks of 16 g during transportation, letting the instrument characteristic

unchanged in the limits of measurement precision. Two EM27/SUN spectrometers in

operation are depicted in Figure 2.9.

An advantage of the EM27/SUN is its portability. It can be carried by two persons and

is easy to transport with a small car. The portability makes inter-calibration between

the different instruments practicable. The COCCON is a framework for the application

of EM27/SUN (Frey et al., 2019). All spectrometers are calibrated against the reference
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Figure 2.10.: Recorded interferogram and derived spectrum. The upper panel shows one interfer-
ogram recorded by the EM27/SUN with the serial number SN96 at Karlsruhe for calibration purposes.

The corresponding spectrum derived from the interferogram is shown in the lower panel. The shown

interferogram and spectrum are recorded with the first channel of the EM27/SUN. In addition, a second

channel is available covering smaller wave numbers down to about 4000 cm
−1
.

instrument at KIT. In addition, important instrumental parameters are recorded and

provided (see Alberti et al. (2022)). The KIT provides a set of processing standards,

including algorithms for the retrieval, which will be summarized in more detail in

Section 2.2.3. These aspects lead to a high consistency of data collected within the

network, that is challenging to achieve with less portable instruments.

In the framework of the COCCON, continuousmeasurements are operationally conducted

at 27 sites (e.g. in Karlsruhe, Sodankylä and Thessaloniki) (Dubravica, 2024). Additionally,

many campaigns have been performed for emission estimation, which will be explained

in Section 2.2.4.
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2. Theoretical and Technical Background

Data with a spectral resolution of 0.5 cm
−1

and a temporal resolution of 1min is com-

monly recorded with the EM27/SUNs (Frey et al., 2019). As an example, one recorded

interferogram and the corresponding spectrum are depicted in Figure 2.10. How the

columnar abundances are derived from the spectra will be explained in the following.

2.2.3. Retrieval of Column-averaged Abundances

In order to obtain columnar abundances of GHGs from the recorded interferograms,

a number of steps must be taken. From the interferogram the spectrum is obtained

by Fourier transformation (see Section 2.2.1). From the absorption lines of CO2, CH4,

CO, H2O and O2 the vertical columns of the different species can be calculated. This

requires a prior distribution of the gas in the atmosphere; the vertical column is derived

by calculating a synthetic spectrum from a given prior, and iteratively scaling of the

prior in order to minimize the difference between the synthetic and the observed spectra.

The targeted column-averaged dry-air volume mixing ratios 𝑋CO2 are derived from the

absolute vertical columns (𝑉𝐶).

𝑋 col. av.

gas =
𝑉𝐶gas

𝑉𝐶dry air

. (2.13)

The vertical column of dry air is calculated from the vertical column of co-observed

oxygen, for which the ratio is well known and constant throughout the atmosphere

𝑋 col. av.

O2
=

𝑉𝐶O2

𝑉𝐶dry air

≈ 0.2095 . (2.14)

For the trace gas this leads to

𝑋 col. av.

gas =
𝑉𝐶gas

𝑉𝐶O2

· 0.2095 . (2.15)

𝑋 col. av.

CO2
is commonly referred to as𝑋CO2. This nomenclature will be used in the following,

if there is no danger of confusing it with the local volume mixing ratio of CO2, which is

called 𝑋CO2
.

Processing Steps of PROFFAST

In general, the inverse calculation of the spectra is based on a forward model. The target

quantity (the spectrum) is simulated by transmission calculation from a prior assumption

for the atmosphere’s composition and pressure. Then the prior is altered to minimize

the residuals between the simulated and observed spectra.
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2.2. The Measurement Framework for Greenhouse Gas Emission Estimation

For the COCCON, the processing steps described above are conducted by a software

package called PROFFAST which is implemented in Fortran.

The following program parts are performed sequentially

• PROFFASTpreprocess

• PROFFASTpcxs

• PROFFFASTinvers

PROFFASTpreprocess executes the Fourier transformation, after applying some correc-

tions to the interferograms and performing quality checks to reject low-quality observa-

tions.

In PROFFAST, the quantitative trace gas analysis is split into two parts. First, PROF-

FASTpcxs (for pre-calculation of cross-sections) is performing a transmission calculation

for selected solar zenith angles (SZAs) for the given prior distribution of gases in the

atmosphere. This prior information originates from an atmospheric model and for each

day, a prior representing the noon in local time is chosen. From the explicitly calcu-

lated cross sections, a dependency of the solar zenith angle is derived as a polynomial

function, to derive the cross sections at any desired SZA. Additionally, the response to a

change in temperature and pressure is evaluated. This way, the forward calculation of

the transmission does not have to be repeated for each SZA which increases the speed of

the calculation significantly. PROFFASTpcxs also calculates a sensitivity of the column

to concentration changes in different heights. The column sensitivities are given for

each model level of the internal grid-spacing used in the forward calculation of the

transmission. With this, the response of the output to a change in concentration can

be constructed. The column sensitivities can be used in combination with the prior to

compare output from another model to the measurements.

In PROFFASTinvers the whole prior (in all heights) is scaled with a single factor. The

results of PROFFASTpcxs can be used for efficiently finding an optimal scaling factor,

that minimizes the residuals between the forward calculated spectrum and the observed

spectrum. The result is an optimally-scaled prior distribution, from which the vertical

column can be obtained. The calculation of the transmission critically depends on a

correct surface pressure. Therefore, a precise pressure observation at the location of

the observation is required as additional input. Tu (2019) found that an increase of

1 hPa resulted in an increase of 0.039 % in 𝑋CO2, which corresponds to 0.16 ppmv at

a concentration of 420 ppmv. This shows the need for including an accurate pressure

observation.
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2. Theoretical and Technical Background

To be consistent with results from the long-established sister network Total Carbon

Column Observing Network (TCCON) (Wunch et al., 2011) empirical correction factors

are applied to the vertical columns. The COCCON is tied to the TCCON network,

that uses the IFS 125HR of Bruker. Therefore, a continuous side-by-side measurement

between the TCCON station at KIT and a reference EM27/SUN (SN37) is recorded. The

above-mentioned empirical correction factors are determined from this simultaneous

time series. Additionally, side-by-side measurements with two EM27/SUN at the TCCON

station in Sodankylä, Finland, are taken into account. Currently, two airmass-dependent

correction factors and one airmass independent correction factor are used to correct the

vertical columns. After correcting the columns, the column-averaged volume mixing

ratios are obtained as described in Equation (2.15).

The column-averaged mole fractions retrieved from the COCCON reference spectrometer

SN37 are assumed to be fully calibrated and in agreement to the Karlsruhe TCCON site.

To correct for the bias between different EM27/SUNs, side-by-side measurements are

performed relative to SN37. The bias originates from instrument specific imperfections

as small differences e.g. in the optical alignment and detectors. The relative correction

factors are applied to 𝑋 col. av.
gas directly. The specific implementation of this relative

calibration for the Thessaloniki campaign is explained in Section 3.1.1.

2.2.4. Urban Emission Estimation from COCCON Campaigns

In the framework of COCCON several measurement campaigns have been performed to

estimate local emissions. Most were targeted on cities, for example, Berlin (Hase et al.,

2016), Paris (Vogel et al., 2019) or Madrid (Tu et al., 2022).

To estimate emissions from campaign observations, a model of the transport of the tracers

is essential to be able to link the observations to the observed time series of column-

averaged molar fractions. Previous campaigns used models of different complexity for

this purpose.

Simplified approaches as a box model (Makarova et al., 2021) or a Gaussian plume model

(Tu et al., 2022) were used in city campaigns in St. Petersburg and Madrid. For the

Berlin campaign, Hase et al. (2015) implemented a Lagrangian dispersion model, with a

simplified wind field for the city. For the emission determination, the city was divided

into five rectangular emission regions.

More complex models were used for the campaigns in Tokyo and Paris. In these cam-

paigns, the observations were predicted by a numerical model, using a prior emission

map and simulating the transport towards the observation sites. For Paris, the model
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2.2. The Measurement Framework for Greenhouse Gas Emission Estimation

Figure 2.11.: Boxmodel with two EM27/SUN. The principles of the box model are depicted schematically.

The columnar observations with two EM27/SUN spectrometers are included in the image. Figure by Schmid

(2023).

CHIMERE was used and the comparison between the observed and simulated time

series of 𝑋CO2 was discussed quantitatively (Vogel et al., 2019). For the Tokyo cam-

paign, Ohyama et al. (2023) simulated trajectories using HYSPLIT. They used a Bayesian

inversion approach to derive emission estimates from the observational data. A comple-

mentary approach was implemented by Viatte et al. (2017), for a campaign targeted at

diaries in Los Angeles. Here, the numerical weather prediction (NWP) model WRF was

used to simulate the emissions and transport of methane. Estimates based on a Bayesian

inversion were derived in this work.

2.2.5. Estimation of Thessaloniki’s Emissions Using a Box Model

A measurement campaign in Thessaloniki, Greece is the topic of this work. In the

campaign a pair of EM27/SUN spectrometers was deployed. I operated one of the

spectrometers with the help of Pablo Schmid, a master’s student I supervised. The details

of the campaign implementation will be the topic of Chapter 3.

This work focuses on the combined interpretation of the campaign results together with

simulations with the NWP model ICON-ART to determine the emissions of the city.

Schmid (2023) estimated the city emissions using the simpler box model approach. The

results of his work will be explained in the following.
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2. Theoretical and Technical Background

In the box model, the emission flux (𝐹 ) is constant over a specific area. Within a box

extending to the planetary boundary layer and horizontally limited by the emission area,

the tracer is assumed to be well mixed. In addition the wind 𝑣 is assumed to be distributed

uniformly over the box. The box model is sketched out schematically in Figure 2.11.

With the above mentioned assumptions the concentration of the tracer inside the box 𝐶

can be described by the following formula (Hanna et al., 1982)

𝐿 𝑧PBL

𝜕𝐶

𝜕𝑡
= 𝐿 𝐹 + 𝑣 𝑧PBL(𝐶b −𝐶) + 𝐿

𝜕𝑧PBL

𝜕𝑡
(𝐶high −𝐶) . (2.16)

Here, the concentration above (next to) the box is 𝐶high (𝐶b). The length of the box is 𝐿,

the height of the planetary boundary layer 𝑧PBL and the quantity of interest, the area

flux of emissions is 𝐹 .

With assumptions of a constant hight of the PBL, and a steady-state scenario (
𝜕𝐶
𝜕𝑡

= 0)

the equation can be simplified to

𝐹 =
𝑣 𝑧PBL (𝐶 −𝐶b)

𝐿
. (2.17)

The difference in concentrations Δ𝐶 = 𝐶 −𝐶b can alternatively be expressed through a

difference in column-averaged volume mixing ratios 𝑋 col. av.
gas with

Δ𝑋 col. av.

𝑔𝑎𝑠 =
𝑁𝐴 𝑧PBL

𝑉𝐶dry air ·𝑀gas

Δ𝐶 . (2.18)

Here,𝑀gas is the molar mass of the respective gas. This implies that the vertical column

of dry air𝑉𝐶dry air can be assumed to be equal for both observation sites. When inserting

Δ𝐶 into Equation (2.17), 𝑧PBL cancels out:

𝐹 =
𝑣 𝑀gas𝑉𝐶dry air

𝐿 𝑁A

Δ𝑋 col. av.

gas . (2.19)

The independence of 𝑧PBL shows that observations of𝑋
col. av.
gas are less sensitive to changes

in 𝑧PBL. This is an advantage of using column-averaged observations, as a correct

prediction or measurement of the height of the PBL is challenging.

With this approach Schmid (2023) estimated the city emissions of CO2 to be 59.9
𝑘𝑡

𝑘𝑚2 𝑦𝑟
,

with an city area of 111 km
2
. This corresponds to total city emissions of 6.6Mt/yr.

However, he argues that the assumptions of the box model are not fulfilled for the

observed dataset. In particular, the complex wind field is in contrast to the assumption

of an evenly distributed wind over the box area. He estimates the uncertainty of the

emission to be in the order of 100 %. Instead of the box model, a model approach that

accounts for the complex wind field in Thessaloniki is required.
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2.3. Modeling Atmospheric Transport of Trace Gases

2.3. Modeling Atmospheric Transport of Trace Gases

This work aims to determine emissions based on atmospheric concentrations. This section

explores the general relationship between atmospheric concentrations and emission

sources and sinks.

In Section 2.3.1 the inverse problem of emission estimation is introduced along with two

fundamental concepts for emission determination. Section 2.3.2 gives an overview about

the dynamical processes in the atmosphere that drive the transport of tracers in the

atmosphere. The Numerical Weather Prediction (NWP) model ICON-ART is introduced

in Section 2.3.3. The Sections 2.3.1 and 2.3.2 are based on Enting (2002) and Roedel and

Wagner (2017).

2.3.1. Inverse Emission Estimation

The atmospheric concentrations are not only determined by the emissions but also by

the constituent transport. In general, the modeled concentration𝑚(r, 𝑡)can be expressed

as
𝜕

𝜕𝑡
𝑚(r, 𝑡) = 𝑠 (r, 𝑡) + T [𝑚(r, 𝑡), 𝑡] , (2.20)

with a source 𝑠 and the transport operator T [., .].

This can be considered in a differential way

𝑠 (r, 𝑡) = 𝜕

𝜕𝑡
�̂�(r, 𝑡) − T [�̂�(r, 𝑡), 𝑡] , (2.21)

with the statistical estimates 𝑠 and �̂�. This approach is often called ’mass-balance’

technique, since the equation (as Equation (2.20)) is based on the assumption of mass

conservation.

Alternatively, Equation (2.20) can be rewritten in an integral form

𝑚(r, 𝑡) =𝑚0(r, 𝑡) +
∫ 𝑡

𝑡0

𝐺 (r, 𝑡, r′, 𝑡 ′) 𝑠 (r′, 𝑡 ′) d
3𝑟 ′d𝑡 ′ (2.22)

where 𝑚0 describes the evolution of the system in the absence of sources and sinks.

Formally 𝐺 is the Green’s function and the problem is also referred to as synthesis

approach. In practice a discretized form of this formula is used

𝑚(𝑥j) =𝑚0(𝑥j) +
∑︁
𝜇

𝐺𝜇 (𝑥j) 𝑠𝜇 , (2.23)
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2. Theoretical and Technical Background

Figure 2.12.: Synthesis approach example. The measured longitudinal CO2 variation in dependency

of the latitude is indicated with black dots. These measured molar fractions can be approximated by

modeled results. The model is a linear combination from the different components. The contribution

from five different terrestrial areas are indicated above the upper dashed line with diagonal hatching. The

ocean’s influence is indicated by three components between the two dashed lines, filled with vertical and

horizontal hatches. For the fossil fuel component (dotted area) only one component is included due to it’s

lower uncertainty. The image is taken from Enting (2002).

where discretized model prediction𝑚 at the location 𝑥j is a sum of the different compo-

nents 𝐺𝜇 (𝑥j) that connect a set of sources 𝑠𝜇 to atmospheric concentrations.

For making this synthesis approach more tangible, Enting (2002) considers the global

variation CO2 in dependency of the latitude as an example (see Figure 2.12). The latitude-

dependent variation of the CO2 molar fraction can be simulated from a set of different

sources and sinks, as the ocean and terrestrial contribution and fossil fuel combustion.

The different components can be added, yielding an estimate for the total CO2 variation.

A regression is performed by fitting a set of observations 𝑐 at the locations 𝑥 𝑗 to the

function

𝑚(𝑥j) =
∑︁
𝜇

𝑠𝜇𝐺𝜇 (𝑥j)
!≈ 𝑐 (𝑥j) . (2.24)

The optimal coefficients 𝑠𝜇 are determined through the fitting procedure, representing

the adapted source strength. The different components 𝐺𝜇 , whose linear combination

represents the total CO2 concentration, are shown schematically in Figure 2.12. In this

work a synthesis approach similar to this example is used and we will come back to it in

Chapter 4.
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2.3. Modeling Atmospheric Transport of Trace Gases

Figure 2.13.: Dynamical processes of the Atmosphere. The processes are ordered by their scale in

space and time. The Figure is taken from Enting (2002) and based on Orlanski (1975)

2.3.2. Dynamical Processes of the Atmosphere

An accurate description of the transport, that links the sources to the atmospheric

concentrations is mandatory for both inversion approaches from Equation (2.21) and

Equation (2.22). Generally, particles can be transported by advection and molecular

diffusion, where advection is a transport proportional to the velocity of the fluid parcel

and molecular diffusion is a mixing resulting from the movement of the individual

particles. For the task of estimating urban emissions, changes in concentrations are

investigated in the troposphere. Here, diffusion can be neglected because the mean free

path is small and advective mixing and transport are the dominant processes.

An accurate calculation of the wind field is important to correctly estimate the transport.

The Eulerian equation of motion describes the movement of an air parcel

𝜌
dv
d𝑡

= −grad𝑝 − 𝜌 · gradΦ + FC + FF . (2.25)

Here, v is the velocity of the air parcel and 𝜌 is the density of air. The acceleration of the

air parcel is determined by the gradient of pressure 𝑝 and the gradient of the geopotential

Φ. In addition the air parcel is accelerated by the Coriolis force FC, a force of inertia

rectangular to the wind direction originating from Earth’s rotation and the non-inertial

frame of reference of the terrestrial observer. Finally, the frictional forces FF affect the

acceleration of the particle.
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In addition, the continuity equation expressing the conservation of mass must be satis-

fied
𝜕𝜌

𝜕𝑡
+ div(𝜌 v) = 0 . (2.26)

From the conservation of energy the equation

d𝑇

d𝑡
= 𝑄W +𝑄I , (2.27)

where 𝑄𝑊 is the temperature change due to aggregation state transitions (most im-

portantly of water) and 𝑄I is the temperature change due to radiation. This equation

resembles the first law of thermodynamics.

Finally, an ideal gas is assumed for the atmosphere, with the ideal gas equation

𝑝 𝑉 = 𝑛 𝑅𝑇 . (2.28)

Here, 𝑅 is the ideal gas constant. The number of moles of air 𝑛 can be expressed as

𝑛 = 𝑁 /𝑁A with the total number of molecules 𝑁 and the Avogadro constant 𝑁A.

In principle, the atmospheric processes can be derived from these equations. In practice,

however, knowledge of the initial conditions is always incomplete. An overview of the

different dynamical processes in the atmosphere on different space and time scales is

shown in Figure 2.13, ranging from large-scale phenomena that are present when looking

at the global scale as seasonal cycles or the El Niño/Southern Oscillation (ENSO), up to

turbulence – a seemingly chaotic movement of air on scales of millimeters to hunderets

of meters.

The mass concentration 𝜌gas of a transported gas and the velocity v of the air parcel can

be separated into the average and fluctuations from that average.

𝜌gas = 𝜌gas + 𝜌′gas (2.29)

and

v = v̄ + v′ . (2.30)

When looking at the average flux density j = 𝜌gasv we find

j̄ = ¯𝜌gas · v̄ + 𝜌gas · v̄′ + 𝜌′gas · v̄ + 𝜌′gas v′ . (2.31)

When integrating over a time span 𝑇 to find the averages, 𝜌gas and v̄ are constants,

therefore the second and third term vanish, as 𝜌′gas = v̄′ = 0 by definition.
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2.3. Modeling Atmospheric Transport of Trace Gases

The continuity equation (2.26) must also hold for the air component 𝜌gas if there are no

chemical reactions destroying or producing the respecive substance. With the decom-

position from above, the continuity equation describing the average transport can be

re-written as
𝜕𝜌gas

𝜕𝑡
= −div(𝜌gasv̄) − div(𝜌′gas v′) . (2.32)

The first term is the advective transport by the average wind motion. The second term

is identified as the concentration change due to turbulent mixing (also referred to as

turbulent diffusion).

For the task of determining urban emissions, transportation times from minutes to days

and distances in the km-scale are relevant. Smaller variations are only relevant for their

effect on the transport, but not the explicit variations at that scale. Numerical modeling

of the wind fields and transport is only feasible up to a finite resolution. Transport due

to processes smaller than the model resolution is typically parametrized by other model

variables (e.g., wind speed) that represent the average at a given grid cell.

2.3.3. The Numerical Weather Prediction Model ICON-ART

The aim of NumericalWeather Prediction (NWP) is to forecast the state of the atmosphere

from a given initial state. Therefore, the fluid dynamic equations are discretized, with

parameterizations for small scale processes such as micro cloud physics or the turbulence

mentioned above. In most cases real measurement data is used to construct an initial

state of the atmosphere that best represents the real state of the atmosphere by data

assimilation.

The Icosahedral Nonhydrostatic (ICON) model is the numerical weather prediction model

that is operationally used by the German Weather Service (DWD). It is developed at

DWD and the Max Planck Institute for Meteorology (MPI-M). Special in comparison to

other models is the implementation of non-hydrostatic equations and the icosahedral

grid structure. This results in a grid without singularities and similar grid sizes over

all latitudes. The grid structure will be explained in more detail below. It is a global

model, that can be operated on various resolutions. The model can be operated globally

or regionally, and with various resolutions

The module for Aerosols and Trace gases (ART) (Schröter et al., 2018) includes the

functionality to transport tracers, simulate their emissions and chemical interactions.

ART is developed at the KIT.
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As a whole, ICON-ART is a highly complex model with a variety of different setup

possibilities. In the following, a few aspects of ICON that are relevant for the current

work will be explained in more detail.

Grid Structure

As mentioned above, ICON-ART uses an icosahedral grid structure, allowing a variety

of different resolutions. The ICON grids are constructed by successive refinement of a

spherical icosahedron, consisting of 20 triangles of equal size. To construct a refined

grid, the circle arcs connecting the edges of a triangle are divided into n parts, that are

additional edge points of the refined grid. All edges of the refined grid, can be found

by connecting the new edges by arcs. This first step is called root division step. In a

second step the triangles are recursively subdivided into 4 smaller triangles 𝑘 times.

These subdivisions are called bisection steps. The so found grid version is named 𝑅𝑛𝐵𝑘 .

The ICON grid structure is described by Zängl et al. (2015).

Online and Offline Nesting

ICON-ART is capable of both, global and regional simulations. For regional simulations,

often a high resolution is desired, but simulations at a high resolution are computationally

costly for a global domain. Therefore, two methods are available for regional refinement

of the grid. The first solution is online nesting. Therefore, in a defined area, grid cells

of the parent grid are separated into four smaller cells with an effective resolution of
1

2

compared to the parent grid. Different configurations are possible. For a configuration

with so-called two-way-nesting, the meteorological variables from the coarser grid are

fed into the simulations of the finer grid and vice-versa. A drawback is, that the resolution

can be only halved in the nested domain, and the simulation is fixed to the same base

grid.

A second possibility is the offline-nesting. This mode is also called limited area mode

(LAM). Here, a coarser simulation is run independently from the fine resolution in

advance. The output of this parent simulation is remapped to a different resolution at

regular time steps. This is determining the borders of the the LAM model. This way the

simulation is linked less closely to the parent simulation, since the borders of the fine

grid are updated less frequently and also no feedback from the calculations in the finer

domain can be given to the coarser simulation. The advantages are, that a enhancement

of spatial resolution is possible, from the parent resolution to the nested resolution, and

also a change in the base-grid is possible.
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2.3. Modeling Atmospheric Transport of Trace Gases

Figure 2.14.: Model levels in ICON. The model levels are depicted schematically. The numbering of the

layers is annotated at the left hand side and the locations of the model variables are indicated in the center.

The black lines show the limits of the model layers. The lowermost levels follow the terrain (indicated as

hashed area). The image is taken from Reinert et al. (2024).

Model Levels

ICON-ART is a non-hydrostatic model. Since the pressure is not fixed in the model,

geometrical heights are more practical than a grid on pressure levels. The geometrically

defined model levels are counted starting from the top level. The height levels, are not

equidistant in height, but are densest near the surface.

The lowermost levels follow the topography. As a results, the height levels differ between

the grid cells. The tracing of the topography fades out toward the top, so that the

upper levels have the same horizontal heights. The horizontal structure is illustrated

in Figure 2.14. The vertical grid can be chosen individually. The number of levels, top

height, minimum layer thickness and how fast the topography fades out towards the top

are adjustable. The operational global Setup of ICON has a model top height of 75 km

(Reinert et al., 2024). For a nested domain a reduced number of model levels is possible

compared to the parent grid.

Transport

The transport module of ICON solves the simplified continuity equation (Reinert et al.

(2024))
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𝜕

𝜕𝑡
𝜌gas + ∇(𝜌gasv) = 0 , (2.33)

with the average mass density of the trace gas 𝜌gas. The equation is simplified as the

velocity v̄ represents the average at a given grid cell. The actual velocities vary over

much smaller scales leading to turbulent mixing (compare Equation (2.32)). The turbulent

component of the transport is not modeled explicitly but parametrized from the average

velocity instead. A second simplification is the absence of a source term. The mass

conservation is not necessarily fulfilled for an individual trace gas. Particles of the

species can be created or destroyed through chemical or biological processes. In addition

they can be released from or absorbed by the ocean or land surface. The emission and

chemistry modules alter the state of the respective grid cells in between the iterative

processing steps.

For the specific implementation in ICON-ART the vertical transport is separated from the

horizontal transport. Different discretization approaches can be chosen in themodel setup.

For simplification, ART defines template sets of predefined parameters for transport.

The transport template used in this work is the hadv52aero template, where for the

horizontal transport a hybrid scheme based on Miura (2007) and Harris et al. (2011) is

used. The vertical transport is following the PPM (piecewise parabolic method) scheme

developed by Colella and Woodward (1984).

Sinks and Sources

ICON-ART provides different modules to include atmospheric chemistry. This work

is focused on CO2 and considers mainly short transportation times. Therefore, CO2

is simulated as a passive tracer, so there is no sink in the atmosphere in this model

configuration. Three emission methods are available, the Online Emission Module (OEM)

developed at EMPA, an area-based emission module byWeimer et al. (2017) and a method

to define point sources.

The OEM is calculating the emissions at the processing step from a static emission grid,

and an overlaid time dependency. For the area-based emission module, gridded emission

maps are read in and interpolated for all time steps at the beginning of the simulation.

The OEM has the option to specify a vertical profile for different emission sectors; the

area emission module only handles surface emissions. For the point source emissions,

the emission source can be selected variably in the volume of the atmosphere.

For all emissions modules the molar fraction in the respective grid cell 𝑖 is altered by

Δ𝑋i =
Δ𝑛i

𝑛wet air
, (2.34)
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where Δ𝑛i is the number moles of the emitted particles and 𝑛wet air is the total number of

moles in the grid cell.

For the OEM and the area emission module, Δ𝑛𝑖 is calculated from the emission flux of

the grid cell 𝐸i,

Δ𝑛𝑖 =
𝐸i𝐴iΔ𝑡

𝑀i

, (2.35)

with the molar mass of the emitted substance𝑀i, the surface area 𝐴i, and the model time

step Δ𝑡 .

ICON D2 Operational Setup

Because being a prototype for the simulations performed in this work, the operational

weather forecast setup of the German weather service will be explained briefly in the

following. The operational setup has 2 steps, at first a global simulation with a resolution

of 13 km on a R3B7 grid is performed with an online-nested domain over Europe (R3B8)

with a resolution of 6.5 km. The global grid has 120 height levels and extends to a height

of 75 km, the EU nest runs on 74 of these layers, extending to a height of 23 km. The

simulated results for Europe are used to feed a LAM run with an offline-nested domain

over Germany, with a higher resolution of 2.1 km and 65 height layers extending to

a height of 22 km. Apart from a deterministic run, several ensemble members with

perturbations in the initial conditions are performed to estimate the uncertainty of the

prediction. For the global forecast 40 members and for the ICON-D2 nest 20 ensemble

members are run, both at a lower resolution than the deterministic run. For the forecast,

meteorological observations are assimilated, pulling the simulation towards the actual

state of the atmosphere. The operational setup is described by Reinert et al. (2021).

The specificmodel setup that was chosen to simulate the emissions and observed trace gas

concentrations corresponding to the Thessaloniki measurement campaign is explained

in Chapter 4.
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This chapter gives an overview how the COCCON measurement campaign in Thessa-

loniki was implemented. The general strategy and positioning of the instruments is

explained in Section 3.1. In this section, also an overview over the collected dataset will

be given. Significant improvements were introduced to the workflow of data processing

during the campaign (see Section 3.2).

3.1. Strategy of the Campaign and Dataset Collection

The Thessaloniki campaign took place in October 2021 and fromMay to July 2022. During

this period two EM27/SUN spectrometers were available, one of which (SN52) has been in

operation in Thessaloniki since 2019 as part of COCCON. Marios Mermigkas continued

to collect a long-term time series during the period of the campaign (Mermigkas et al.,

2021). A second spectrometer (SN96) was brought to Thessaloniki for the campaign.

It was equipped for mobile deployment and the master student Pablo Schmid and I

conducted the measurements.

The inter-calibration of the two instruments is presented in Section 3.1.1. Next, Sec-

tion 3.1.2 explains the mobile operation of one of the spectrometers for the campaign.

This allowed for probing different observation sites during the campaign. The positioning

of the spectrometers is discussed in Section 3.1.3. An important prerequisite for the data

processing is the pressure at the position of the instruments. Section 3.1.4 describes the

methodology used to estimate the surface pressure at the observer’s locations. This is

followed by the results of a sensitivity study to test the local variability over the city

on smaller scales (see Section 3.1.5). In the final part of this section (Section 3.1.6) an

overview over the dataset that was compiled during the campaign period is given.
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Table 3.1.: Calibration factors. The calibration factors derived from the side-by-side observations are

listed for the spectrometers SN52 and SN96 for the respective species.

𝑘52 𝑘96

tracer

XCO2 1.001125 1.000135

XCO 1.009516 1.011334

XCH4 1.000772 1.000329

XH2O 1.000640 1.000224

3.1.1. Calibration

For the calibration of the two EM27/SUN spectrometers, side-by-side measurements

were conducted (compare Alberti et al. (2022)). In a first step, one of the spectrometers

(SN96) was calibrated relative to the COCCON reference spectrometer (see Section 2.2.2).

Afterwards, the two spectrometers that were deployed in the campaign are calibrated

relative to each other.

With instrument SN96 one day of side-by-side measurements relative to the COCCON

reference Instrument SN37 were performed at Karlsruhe before sending it to Thessaloniki.

During the campaign, a total of 7 calibration days were performed, distributed over the

whole campaign period with SN96 and SN52.

For the calibration between two spectrometers A and B, a calibration factor 𝑘 is deter-

mined so that.

1 = mean

(
𝑋𝐶𝑂2

𝑟𝑎𝑤
𝐴

· 𝑘𝐴
𝑋𝐶𝑂2

𝑟𝑎𝑤
𝐵

· 𝑘𝐵

)
(3.1)

The calibration factor of the reference spectrometer SN37 is 1 by definition.

Since the recorded interferograms are not temporally synchronized, the time series of

the two instruments need to be harmonized. For this purpose the data is averaged in

bins of 5 minutes.

Coincident bins divided by each other are shown in Figure 3.1. The calibration factors

are derived from the quotient of both measurements 𝑞A;B = 𝑋CO2
𝐴/𝑋CO2

𝐵
. With

Equation (3.1) we get

𝑞37;96 = 𝑘96, 𝑞96;52 =
𝑘52

𝑘96

(3.2)

The calibration factors for 𝑋CO2, CH4, CO and H2O were determined. All are listed in

Table 3.1. Furthermore, the calibration factors were estimated individually for each day

of the side-by-side observations to estimate the systematic uncertainty due to calibration
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Figure 3.1.: Side-by-Side observations for calibration. The quotient of two coincident measurements

is plotted in dependency of the pair of observations. The mean over all quotients is indicated as line. The

orange triangles represent the measurements from one day of observations in Karlsruhe, where side-by-

side measurements between SN37 (the COCCON reference spectrometer) and SN96 were performed. The

observations from 7 days of side-by-side measurements between SN96 and SN52 are shown as blue dots,

with different hues of blue for the different days of observation. For each individual day the mean of all

quotients is marked a thin solid line, the mean over the whole sample of observations is indicated by a

thicker dashed line.

for the side-by-side observations. These single-day calibration factors are shown together

with the estimate using all observations in Figure 3.1. Here, only the calibration of 𝑋CO2

is shown, as this work is focused on this greenhouse gas. The deviation of the singe-day

calibration factors can be taken as estimate for the measurement uncertainty due to the

calibration. There is a maximum difference between relative calibration factors of 0.05 %

which corresponds to an uncertainty of 0.22 ppmv for the calibration period.

3.1.2. Portable Setup

Jochen Gross designed and constructed a portable setup to allow an autonomous oper-

ation of one of the spectrometers. This setup is shown in Figure 3.2 and the technical

details will be explained in the following.
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Figure 3.2.: Portable setup of SN96. The pictures show the setup that allowed mobile deployment of

SN96 on a daily basis. The first image shows the whole setup, with the solar panels in the front, and the

spectrometer in operation in the back. The spectrometer is shielded from sunlight with foam. The small

box next to the spectrometer is shown in more detail in the second image. It contains the electronic control

of the power supply and the buffer battery. Photography by Pablo Schmid and Lena Feld.
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As the EM27/SUN is operated during sunny conditions, a solar power supply solution

is therefore convenient. To power the spectrometer and the laptop for controlling the

measurements an output of 100W is sufficient. Two foldable solar panels with a peak

output of 100W respectively were selected for this purpose.

For being able to operate the spectrometer also in the morning and evening hours

or during short intervals of shadow, a battery was included in the setup as buffer. A

reasonably priced solution was a lead-gel battery with a voltage of 12 V and a capacity

of 26Ah. Lead-gel batteries are lighter than standard car batteries, making them easier

to transport.

The centerpiece of the setup is the solar charge controller. A commercial solution of the

type MPPT plus 20A with a sufficient input and output voltage, is used for this purpose.

In addition, it enhances the efficiency by identifying the ideal operation of the solar

panels and protects the battery from exhaustive discharge or overcharge.

3.1.3. Measurement Sites

As explained above, two spectrometers were available for the campaign in Thessaloniki:

SN52 (in Thessaloniki since 2019) and SN96 (brought to Thessaloniki for the campaign).

For the campaign, the operation of SN52 was continued on the campus, which is in a

central position of the city (see Figure 3.3). The portable setup for SN96 allowed a mobile

positioning of the spectrometer during the campaign. Different sites were selected before

the campaign; the following criteria were required for the sites:

• Accessible by car

• Open Area without surrounding trees or buildings to allow for all-day operation

• No disturbance of other people (as e.g. on a busy parking lot)

To be sensitive to a large area of the city, a set of observation sites around the border of the

city was selected, covering several directions. This complements the central observation

site. The selected observation sites are shown in Figure 3.3. SN96 was transported to the

positions at the city boundary, while SN52 stayed on the campus for most measurement

days. On some of the days SN52 was brought to Thermi due to safety issues.
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Figure 3.3.: Observation sites for the Thessaloniki campaign. The central observation site on the

campus is shown as a black diamond, and the sites to which the portable spectrometer was transported are

shown as white diamonds. Anticipated emission hot spots are depicted as black circles. The background

satellite image is taken from Google Maps (2022).

3.1.4. Surface Pressure Estimation

As explained in Section 2.2.2, the pressure is an important prerequisite to obtain column

abundances from the recorded interferograms. COCCON’s sister network the TCCON

requires an accuracy of 0.3 hPa (TCCON Wiki, 2021) and COCCON recommends the

same quality. To achieve the recommended pressure data quality, a calibrated Vaisala

PTB330 sensor with an accuracy of 0.15 hPa was positioned on the campus of the Aristotle

University of Thessaloniki (AUTh), at the same height as the observations. Unfortunately

there were gaps in the pressure record during the campaign period, therefore the pressure

record from the AUTh meteorological station was used instead, and calibrated to the

height of the Vaisala pressure sensor using overlapping data. This combined pressure

will be called reference pressure in the following.

To also have a precise pressure at the various deployment sites of SN96, a height-

correction is needed. To obtain these height corrections for the different observation

sites, a portable pressure sensor was transported from the site of the reference pressure

to the various observation sites. This way, a direct measurement of the required height

correction could be performed.
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Figure 3.4.: Pressure sensor transported to different sites in comparison to the reference pressure.
The red line shows the pressure record of the mobile pressure sensor that was transported to the different

observation sites. In comparison the reference pressure is shown as blue line. The transportation events

are clearly visible by sudden changes in the pressure. Note, that the offset between the red and blue curve

changes at the transportation events. The figure is taken from Schmid (2023).

Table 3.2.: Pressure factors determined using a mobile pressure sensor. The pressure values deter-
mined by transporting a pressure sensor to the different sites are listed. Also the GPS heights are given.

The values were calculated by Schmid (2023).

Site Pressure factor GPS height

Galini 0.99272 132.5

Efkarpía 0.99112 138.8

Seych Sou 0.98930 157.1

Diavatá 1.00461 17.2

Thermi 0.99777 84.2

Campus (Meteorology) 1.00123 53

Campus (Physics) 1.00000 62.9

A time series of the portable pressure sensor containing several transportation events

is shown in comparison to the reference pressure in Figure 3.4. For several days a

transportation to a different site (i.e. with a different offset) and a return of the device

to the previous location can be recognized. Short periods with large variations are

visible at the time of transportation. From these time series, scaling factors for the height

correction of the mobile locations were determined. All pressure factors for the campaign

were derived by Schmid (2023) and are listed in Table 3.2.

3.1.5. Small-distance Observations to Investigate Local Variability

Two of the measurement days were dedicated to small-distance observations, to test if

the observed variability originates from sources in the proximity. The two spectrometers
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Figure 3.5.: Comparison of calibration measurements with small-distance observations. Side-by-
side measurements (blue dots) are compared to measurements with a distance of 500m (orange triangles).

The difference between coincident measurements is shown against the mean. The mean of all values is

shown as a line and the standard deviation as a transparent band. The seven days dedicated for side-by-side

measurements are also displayed in Figure 3.1. Two measurement days (2022-07-01 and 2022-07-02) were

dedicated for measurements with 500m distance.

were deployed with a distance of 500m. Both locations were on the campus in the central

part of the city (see Figure 3.3). These measurements were compared to side-by-side

observations. The comparison is depicted in Figure 3.5. The small-distance measurements

have a slightly higher standard deviation (0.19 ppmv) compared to the side-by-side data

(0.15 ppmv). In addition, a small bias of 0.1 ppmv is evident in this observation. This bias

is within the estimated calibration uncertainty. In summary, the comparison indicates

that the 500m observations align with the side-by-side measurements, supporting the

assumption that observed variations are dominated by larger-scale sources rather than

small sources in the vicinity.

3.1.6. Overview over the Dataset

The dataset was published at ESA’s EVDC Data Repository (Feld et al., 2024a). In the

following, a short overview over the recorded dataset is presented.

During the campaign period from October 4 to 22 2021 and from May 12 to July 12,

a total of 30 measurement days were collected with both instruments in parallel. An

overview of the data is visualized in Figure 3.6. In Appendix A all measurement days are

48



3.1. Strategy of the Campaign and Dataset Collection

414 416 418 420
XCO2 in ppmv

21-10-04
21-10-05
21-10-13
21-10-19
21-10-20
21-10-22
22-05-12
22-05-13
22-05-17
22-05-20
22-05-24
22-05-25
22-06-09
22-06-14
22-06-15
22-06-17
22-06-20
22-06-21
22-06-22
22-06-24
22-06-27
22-06-29
22-07-01
22-07-02
22-07-04
22-07-05
22-07-06
22-07-07
22-07-11
22-07-12

m
ea

su
re

m
en

t d
at

e

   PhysicsPhysics
   PhysicsPhysics
   PhysicsThermi
   PhysicsThermi
   PhysicsThermi
   PhysicsThermi
   ThermiThermi
   ThermiThermi
   MeteorologyGalini
   MeteorologyThermi
   MeteorologyGalini
   MeteorologyGalini
   MeteorologyMeteorology
   MeteorologyGalini
   MeteorologyEfkarpia
   MeteorologyEfkarpia
   MeteorologyEfkarpia
   MeteorologyDiavata
   MeteorologyDiavata
   MeteorologyThermi
   MeteorologyThermi
   MeteorologyThermi
   MeteorologyPhysics
   MeteorologyPhysics
   MeteorologySeich-Sou
   MeteorologySeich-Sou
   MeteorologyMeteorology
   MeteorologyDiavata
   MeteorologyThermi
   MeteorologyMeteorology

Calibration
Campaign
Short distance

Figure 3.6.: Overview over the collected dataset. For each day and pair of box and whisker plots is

shown, representing the distributions of 𝑋CO2 observed at the given day. The left of two box plots always

represents SN52 (central spectrometer), the right SN96 (portable spectrometer). Each box ranges from the

25 to the 75 percentile, the whiskers mark the maximum and minimum observed value. The positions of

the instruments during the campaign are color coded, with the legend on the top left. In Addition, the

abbreviations of the observation sites are also attached to the top axis for clarity.

listed. From the 30 days recorded, 7 were used for calibration by performing side-by-side

measurements (see Section 3.1.1).

One of the remaining 23 days was excluded because no initial data was available for

the corresponding simulations, which is explained in Chapter 4. The selected 22 days
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contain a total of 179 hours of observation. As described in Section 3.1.5, 2 of these days

(2022-07-01 and 2022-07-02) were dedicated to test the small scale variability.

While the background level between different days distinctly varies, the diurnal variations

are smaller. The difference between the maximum and minimum observed 𝑋CO2 at

a given date, ranged from 0.56 ppmv to 3.66 ppmv, with a median of 1.3 ppmv. The

maximum observed difference between both spectrometers Δ𝑋CO2 is 2.03 ppmv. The

median of |Δ𝑋CO2| is only 0.17 ppmv. Compared to previous campaigns targeting larger

cities, only small-scale emission signatures are present in the dataset (e.g. Ohyama et al.

(2023) observed gradients up to 9.5 ppmv during the Tokyo campaign).

3.2. Atomization of the Retrieval

Processing the spectra with PROFFAST required considerable manual effort. The PROF-

FAST retrieval workflow is described in Section 2.2.3. For each day of recorded interfero-

grams, several steps were needed.

Together with Benedikt Herkommer, I developed an atomization framework to minimize

the workload of data processing. The Python interface PROFFASTpylot can handle a

variety of different processing scenarios. It is a reimplementation and a comprehensive

expansion of a previous set of Python scripts created by Qiansi Tu and Darko Dubravica

that partly automatized the retrieval workflow.

We published an article about the interface in the Journal of Open Sources Software (JOSS),
see Feld et al. (2024b). The following is based on this article and the indented blocks are

directly quoted from this work.

The manual operation of PROFFAST has the following workflow: For each of

the above described steps, the user has to create input files with the relevant

parameters. A list of interferograms to be processed and specific input pa-

rameters are required for preprocess. Secondly, pcxs requires the specification
of the atmospheric conditions. Finally, for invers the output generated by the

previous steps has to be listed. PROFFAST creates several output files; only

a single day can be processed at a time. The task repetition and file organi-

zation makes the processing of longer measurement series work intensive

and prone to application errors. The following requirements are addressed

by PROFFASTpylot:

• Significant improvement of usability by enabling a single set of input

parameters and the simultaneous processing of many measurement days.
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Figure 3.7.: Schematic overview of the interactions of the PROFFASTpylot interface with PROF-
FAST. The three parts of the PROFFAST algorithm are shown on the left hand side. The PROFFASTpylot

takes over all direct interactions with the PROFFAST Fortran routines and organizes the produced logging

and output files. The figure is taken from Feld et al. (2024b).

• Untangling of raw data, processing files and output.

• Reduction of application errors by introducing various cross-checks and

user warnings.

• Flexibility to allow experimental use cases besides the COCCON stan-

dard.

Already during development we received many comments and questions from

the global COCCON user community indicating the great interest in this tool.

PROFFASTpylot has already been used by Schmid (2023) and Herkommer

(2024).

The interface is widely used in the COCCON community and was also included in a

larger automation framework (Makowski, 2024).

PROFFASTpylot replicates all prior user interactions with PROFFAST. The primary func-

tionalities encompass extracting the parameters from a singular input file, interpolating

supplementary data such as ground pressure records and generating input files for dis-

tinct processing stages of PROFFAST. PROFFASTpylot compiles a comprehensive log

for each execution, gathers the outputs from each segment of PROFFAST and merges

the final data from all processed days into a unified output file. The interactions are

schematically shown in Figure 3.7.
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To ensure a simple user experience and fast error detection several measures

have been taken:

• The empirical instrumental parameters (ILS parameters) (Alberti et al.,

2022) are taken automatically from an internal list.

• For auxiliary data, crosschecks are implemented that generate a warning

or a controlled program stop (e.g. checking the correct location of

atmospheric a-priori files).

• Automatic handling of different time zones in interferograms and auxil-

iary data.

• Correct handling of various pressure records (different sampling inter-

vals or data formats).

• Different levels of logging ("warning", "info", and "debug") help readabil-

ity and troubleshooting.

The program is technically organized as follows: The PROFFASTpylot consists of three

layers that are interconnected, along with an independent fourth class. The initial layer,

prepare is responsible for collecting of all the days to be processed and producing the

necessary input files for PROFFAST. Within this layer, there is a function call to the

independent pressure class, which facilitates the interpolation of the provided pressure

data. The role of the filemover class is to ensure the provision of essential input data to

each segment and to transfer intermediary files to the subsequent phase. The pylot class
is designed to engage with the user, offering methods to initiate individual sections of

PROFFAST or execute them sequentially upon a single command.

We added a comprehensible in-code documentation and also in depth user instructions

(KIT IMK-ASF, 2024) to enable others to use and expand our work for their own projects.

PROFFASTpylot is an open source project, licensed under the GNUGeneral Public License

version 3.
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To interpret the recorded data from the campaign, a corresponding ICON-ART simulation

is performed, predicting high-resolution wind fields and calculating the transported trace

gases starting from an emission inventory.

The simulation setup is explained in Section 4.1. In Section 4.2 observed wind and

pressure data is compared to the simulation. Furthermore, the variability in water vapor

is compared to the water columns co-observed by the EM27/SUn. In Section 4.3 the

simulated increase in 𝑋CO2 is investigated.

4.1. Simulation Setup

In the following, the simulation setup will be presented. It is oriented at the operational

forecast system for Germany that was explained earlier. The initialization of the domain

is first explained (see Section 4.1.1), followed by an explanation of the inclusion of sources

and sinks in the model (Section 4.1.2). Section 4.1.3 provides an overview of the derivation

of observed quantities from available model variables.

4.1.1. Domain and Initialization

As in the operational D2 setup described in Section 2.3, the model setup uses a limited

area mode (LAM) domain that is driven by initial and boundary conditions from the

operational ICON-EU forecast. The ICON-EU domain has a resolution of 6.5 km.

In contrast to the ICON-D2 domain, the grid I generated for Thessaloniki is a R19B7 grid

and has a higher resolution of 1 km. It is centered around Thessaloniki (40.6
◦
N, 23.0

◦
E)

with a half width of 1 degree in longitudinal and 0.8 degree in latitudinal direction. The

number of cells of the two-dimensional grid is 7250. The generated domain is visualized

in Figure 4.1. The domain is simulated with 65 vertical layers covering the altitude range

up to 22 km, analogous to the ICON-D2 setup. The required internal model time step is
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Figure 4.1.: Simulation domain around Thessaloniki. The borders of the 1 km resolution domain

centered around Thessaloniki are shown in blue over a map of northern Greece. The image is generated

by the DWD ICON tools (Prill, 2020).

determined by the resolution. The 1 km resolution used in the present setup requires a

time step of 10 seconds.

For each day of measurements, a separate simulation is generated, starting at 3 UTC.

The initial meteorological data for the domain is generated from the ICON-EU forecast,

which was also used for the 3-hourly boundary condition files that are interpolated to a

boundary region of the LAM grid. The domain and the initial and boundary conditions

are generated with the DWD ICON tools (Prill, 2020).

CO2 is initialized with 0 ppmv. Furthermore, no CO2 is transported into the domain from

the borders. Thereby, only the emissions from sources within the domain are simulated.

The strategy for CO2 background estimation will be explained in Section 5.1.
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Figure 4.2.: The ODIAC inventory remapped to the ICON grid. The remapped inventory is shown as

a map plot. The CO2 emission strength is indicated by color. The black lines show the separation of the

grid into different source areas to allow a scaling of the city emissions during the post-processing.

4.1.2. Sources and Sinks

The CO2 sources and sinks were obtained from different external datasets.

Anthropogenic Source

For the anthropogenic source, different datasets are available. I chose the ODIAC inven-

tory (Oda and Maksyutov, 2011) because of its high resolution. ODIAC is a global dataset

reporting monthly averaged anthropogenic 𝐶𝑂2 emissions with a resolution of approxi-

mately 1 km. The inventory was remapped to the ICON grid using emiproc (C2SM-RCM,

2023). For the simulation the version ODIAC2020b for May 2019 was used.

To enable a post-scaling of the anthropogenic emissions in the city area, the ODIAC

grid was separated over the city area into different source regions – called emission

pixels in the following. For each of the emission pixels a separate tracer was simulated.

Thereby, a combined total CO2 could be derived from a linear combination of all tracers.

This separation is the basis for the emission estimation using a synthesis approach (see

Section 2.3.1). The scaling approach will be described in Section 5.2.

I chose 30 pixels to avoid making the simulations too computationally costly and to limit

the degrees of freedom for a late optimization (Section 5.2). To cover a large area of the

city, four grid cells were combined to one emission pixel. The separation is shown in

Figure 4.2.
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Figure 4.3.: The NEE from three biogenic datasets. The three datasets from which the NEE in the

model is derived are shown in the Figure. The MODIS inventory (a) was used for its lateral resolution. The

timely variation are deduced from two datasets. The daily variations in the SMAP dataset are shown for

each day of observation in panel (b). The monthly averaged diurnal cycles from the FLUXCOM X-BASE

dataset are shown for October (orange) and May (blue) in panel (c).

Biogenic Sources and Sinks

Coupling a biogenic model to the simulation is beyond the scope of this work. As an

alternative approach, different available datasets were combined to construct a product

with a high lateral resolution and a diurnal cycle of the net ecosystem exchange (NEE).

A satellite product derived from the Moderate Resolution Imaging Spectroradiometer

(MODIS) provides the yearly average of NEE with a resolution of 500m. The product

MOD17A3HGF Version 6.1 (Running and Zhao, 2021) is derived from space-borne obser-

vations of the Leaf Area Index and the fraction of photosynthetically active radiation.

Scaling factors to add a timely variation to this dataset were derived from SMAP by

Kimball et al. (2022), which provides daily averages on a 0.1 x 0.1 degree scale. The diurnal

variation was derived from FLUXCOM X-BASE that provides a monthly averaged diurnal

cycle (Weber, 2023). For SMAP and FLUXCOM X-BASE the daily variation was averaged

over the whole domain. The three datasets can be seen in Figure 4.3.

4.1.3. Derived Observation Quantities

The target quantity that is derived from the EM27/SUN observations is the column-

averaged dry-air molar fraction, denoted 𝑋 col. av.
gas (see Equation (2.13)). This quantity will

be expressed though model quantities in the following. The required variables that are

available in ICON are listed in Table 4.1.
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Table 4.1.: Quantities to determine 𝑋 col. av.
gas from the ICON-ART output. The table lists the available

model quantities available in ICON-ART that are used to determine 𝑋CO2 from the model output.

Variable Description

𝑇 Temperature in grid cell

𝑝 Pressure in grid cell

𝑋𝑔𝑎𝑠 Volume mixing ratio with respect to wet air

𝑞𝑣 Specific Humidity

The volume mixing ratio is defined as

𝑋gas =
𝑉gas

𝑉wet air
. (4.1)

Here, the partial volume of the trace gas is 𝑉gas. The total volume of air (including the

water vapor content) is referenced as𝑉wet air. The nomenclature is chosen for clarification,

as the EM27/SUN records column averaged volume mixing ratios with respect to dry air

while ICON-ART tracers are defined relative to wet air as in Equation (4.1).

The specific humidity is the mass maxing ratio of water vapor with respect to wet air.

𝑞𝑣 =
𝑚H2O

𝑚wet air

, (4.2)

with the total mass of the respective substance𝑚X. Since all measurements and simula-

tions were done in clear sky conditions, the other aggregation states of water are not

considered.

Additionally, the ideal gas constant 𝑅, the Avogadro constant 𝑁𝐴 and the molar masses

of dry air, water and the trace gases𝑀𝑥 are known.

Vertical Column of Trace Gases

The vertical column is defined as

𝑉𝐶gas =

∫ ∞

0

𝜌𝑁gas d𝑧 , (4.3)

with the number density 𝜌𝑁 = 𝑁
𝑉wet air

. From the ideal gas equation with partial volumes

𝑝 𝑉gas =
𝑁gas

𝑁A

𝑅𝑇 (4.4)
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the number density can be derived

𝜌𝑁gas =
𝑁A

𝑅

𝑝

𝑇
𝑋gas . (4.5)

With this the vertical column of the gas can be expressed as

𝑉𝐶gas =
𝑁A

𝑅

∫ ∞

0

𝑝

𝑇
𝑋gas d𝑧 . (4.6)

Vertical Column of Water Vapor

To calculate the vertical column of water vapor we need to express 𝜌𝑁
H2O

from model

quantities. Therefore, the specific humidity is rewritten as

𝑞v =
𝑚H2O

𝑚wet air

(4.7)

=
𝑀H2O 𝑛H2O

𝜌wet air𝑉wet air
(4.8)

=
𝑀H2O 𝑁H2O

𝜌𝑉wet air 𝑁A

(4.9)

which leads to

𝜌𝑁
H2O

=
𝑁H2O

𝑉wet air
=
𝑞v 𝑁A 𝜌

𝑀H2O

. (4.10)

With this, the vertical column water vapor can be expressed as

𝑉𝐶H2O =

∫ ∞

0

𝜌𝑁
H2O

d𝑧 (4.11)

=𝑁𝐴

∫ ∞

0

𝑞v𝜌

𝑀H2O

d𝑧 . (4.12)

Vertical Column of Dry Air

With the vertical column of water, the vertical column of dry air can be calculated from

the ground pressure.

𝑝sfc =
𝑔

𝐴
𝑚wet air (4.13)

=
𝑔

𝐴
(𝑚dry air +𝑚H2O) (4.14)

=
𝑔

𝐴
(
𝑁dry air

𝑁A

𝑀dry air +
𝑁H2O

𝑁A

𝑀H2O) (4.15)

=
𝑔

𝑁A

(𝑉𝐶dry air𝑀dry air +𝑉𝐶H2O 𝑀H2O) (4.16)
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Figure 4.4.: Distribution of the solar zenith angle. The left panel shows the distribution of the solar

zenith angle of the observations as histogram. The median, 70th and 90th percentile are indicated as

vertical lines. The respective angles are shown geometrically in the right panel. The extent of the x-axis

represents approximately the average resolution of the simulation. The maximum simulated value of CO2

in the respective height is indicated by color.

using 𝑉𝐶 = 𝑁
𝐴
and𝑀 = 𝑁 /𝑁A ·𝑚. Solving for 𝑉𝐶dry air gives

𝑉𝐶dry air =
𝑝sfc · 𝑁A

𝑔 ·𝑀dry air

−𝑉𝐶H2O

𝑀H2O

𝑀dry air

. (4.17)

Discretization of the Integrals

To calculate the integral as a sum over model levels, the following discretization is used∫
𝑓 (𝑧) d𝑧 ≈

∑︁
level=i

(𝑧i+1 − 𝑧i) ·
𝑓i + 𝑓i+1

2
. (4.18)

Neglecting the Inclination and Height-dependent Column Sensitivity

In the above derivation of the vertical column, the slope of the column is not taken

into account. The simulation only has significant contributions near the surface, and

most of the observation time is recorded at low solar zenith angles (SZA), which limits

the effect of the slant observation angle. Figure 4.4 shows the distribution of the SZAs

as a histogram. 90 % of the observation data is recorded and SZAs smaller than 57.8 °

and the median SZA of the observation is 33.5 °. The right panel of Figure 4.4 shown

the maximum simulated value of CO2 on the campus, which is indicated by color for

the different heights. The extent of the x-axis represents the average resolution of one
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Figure 4.5.: Column sensitivities of the campaign observation. For each observation, the height

dependent sensitivity of the column is shown as a yellow line with the respective axis shown at the top of

the plot. For each height, the maximum simulated value for CO2 is shown in blue, with the values at the

bottom axis.

grid-cell. Even for the relatively shallow observation angle of 57.8 ° (the 90th percentile)

the slant column passes the most relevant layers inside the same grid cell. Therefore, the

observation angle is not considered in the calculation of 𝑋CO2.

A second contribution that is not considered is the effect of the column sensitivities of

the observation. Figure 4.5 shows the height-dependent sensitivity for all data points

of the measurement together with the maximum simulated concentration in the model

in the respective height. It is visible that only the lowermost layers of the simulated

column contribute. Near the surface the column sensitivity is close to 1 for most of the

observations; the median is 1.1 for the lowermost layer. Therefore, the column sensitivity

is not taken into account when evaluating the simulated columns.

4.2. Simulated Meteorological Variables

In this section, the simulated results for wind (Section 4.2.1), pressure (4.2.2) and water

vapor (4.2.3) are compared to observations to assess the model predictions.
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Table 4.2.: Available wind observations. The table lists the three available stations providing wind

observations. If known the instrument is listed. The link to the data is given if publicly available. In

addition, the frequency of the data recording is listed.

Site Instrument Data frequency

Thermi Davis (Vantage Pro2) 10 min

Campus
1

10 min

Airport
2

WMO (Station 16622) 1 h

1 https://meteo.geo.auth.gr/en/data-availablity/

2 https://meteostat.net/de/station/16622
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Observed Simulated

Figure 4.6.: Wind distribution for the three observation sites. The simulated an observed wind

distributions are compared in a windrose plot, including all wind speeds into a single category. The

distribution differs significantly between the sites, but in all cases the simulation (dashed orange line)

matches the observation (solid blue line).

4.2.1. Assessing the Simulated Wind

The simulated wind field was interpolated to three locations where wind observations

were available. The external meteorological measurements that were available are listed

in Table 4.2. Figure 3.3 provides a reference for the site locations.

We will first look at the overall distribution of the wind over the simulated time period.

Windrose plots for all three sites are shown in Figure 4.6. It is clearly visible that the

wind rose at the airport differs significantly from the other two stations. At the airport,

there are two prevailing wind directions (south and west-northwest), while at the Thermi

and campus stations, there is only one prevailing wind direction from west to southwest.

The model predictions reproduce these different distributions.

Next, we will look at the correlations between the measured values and the corresponding

simulated values. The simulated and observed eastward wind 𝑢 and northward wind 𝑣

are depicted in Figure 4.7. The correlation is apparent, although there is a significant
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Figure 4.7.: Comparing simulated and observed wind. For the three available observation datasets, the

comparison between simulated and observed wind is visualized as normalized two-dimensional histogram

for each observation site. The eastward wind is shown in the upper panel and the westward wind is shown

in the lower panel. The 1:1 line is shown in red and the Pearson correlation coefficient is annotated.

scatter of the individual points. Table 4.3 lists all Pearson correlation coefficients. With

correlation coefficients between 0.55 and 0.83 the simulated wind field is clearly cor-

related to the observation at all sites. The large scatter becomes visible from the large

standard deviation. A bias of 0.3m/s exists for the campus and Thermi stations. Both

observation sites are located in a built-up area. This possibly explains the bias in the

wind observations.

4.2.2. Surface Pressure Observation on Campus

Analogous to the comparison between the simulated and observed wind speed, the

reference pressure that was introduced in Section 3.1.4 is compared to the simulation.

The high correlation coefficient of 0.99 is also visible in the two-dimensional histogram in

Figure 4.8. The standard deviation of the difference between the simulated and observed

datasets is also small; with 0.4 hPa it is less than 0.04 % of the average observed pressure
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Table 4.3.: Agreement between the simulated and observed wind. The observed mean value 𝑥OBS,

the Pearson correlation coefficient 𝑟 , the standard deviation of the difference between the observed

and simulated wind 𝜎 (𝑥OBS − 𝑥SIM), and the average bias between the simulated and observed datasets

𝑥OBS − 𝑥SIM are shown for the available observation sites and wind components.

Site Variable 𝑥OBS 𝑟 𝜎 (𝑥OBS − 𝑥SIM) 𝑥OBS − 𝑥SIM

in m/s in m/s in m/s

Thermi u 1.23 0.70 1.46 -0.22

Thermi v 0.59 0.66 1.68 0.31

Campus u 0.75 0.55 1.07 -0.16

Campus v 0.59 0.79 1.23 0.34

Airport u 0.95 0.70 1.40 -0.01

Airport v 0.32 0.83 1.68 0.18
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Figure 4.8.: Comparison between simulated and observed pressure. The reference pressure that is
described in Section 3.1.4 is compared to the simulated surface pressure at the site of the observation. The

correlation is visualized as normalized two-dimensional histogram. The 1:1 line is shown as a red solid

line and the Pearson correlation coefficient is annotated. The red dashed line is scaled by a factor derived

from the barometric formula using the height difference between the simulation and the observation as

determined by GPS.

of 1007.1 hPa. However, a bias of 1.9 hPa is clearly visible. There might be an offset in

height between the observation site and the height of the simulation. The surface at

the interpolated location of the observation site is in a height of 69.8m. The height of

the observation determined by GPS (see Section 3.1.4) is 62.9m. This height difference

would imply a bias of 0.8 hPa. The larger actual bias is might be caused by an inaccuracy

in the determined height difference by GPS, but also a bias in the simulation cannot be

ruled out. Still, the pressure is very well-matched by the simulation.
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Figure 4.9.: Comparison between simulated and observed water vapor. The correlation between the

simulated and observed column of water vapor is visualized as normalized two-dimensional histogram.

The 1:1 line is shown in red and the Pearson correlation coefficient is annotated.

Table 4.4.: Agreement between the simulated and observed XH2O. The observed mean value 𝑥OBS,

the Pearson correlation coefficient 𝑟 , the standard deviation of the difference between the observed

and simulated wind 𝜎 (𝑥OBS − 𝑥SIM), and the average bias between the simulated and observed datasets

𝑥OBS − 𝑥SIM are shown for both spectrometers and the difference between the two.

Site Variable 𝑥OBS 𝑟 𝜎 (𝑥OBS − 𝑥SIM) 𝑥OBS − 𝑥SIM

in %vol in %vol in %vol

SN52 XH2O 3.977 0.96 0.324 -0.045

SN96 XH2O 3.888 0.96 0.339 -0.087

SN52-SN96 XH2O 0.052 0.33 0.167 0.045

4.2.3. Comparison to Co-observed Water Vapor Columns

In addition to the observation of 𝑋 col. av.

CO2
, also the column-averaged molar fraction of

water vapor was observed with the EM27/SUN during the campaign. This quantity can

be derived from the model output, as described in Section 4.1.3.

The comparison between simulated and observed column-averaged water vapor shows

a very clear correlation with correlation coefficient of 0.96 for both, the central and the

movable spectrometer (see Table 4.4). This is also clearly visible in Figure 4.7. But when

looking at the difference between the two observing stations, the correlation is only 0.33,

showing that the representation of small scale variations is not as good as the overall

agreement.

In conclusion, the wind, pressure and water vapor observations are well-matched by

the simulation, but when looking at small scale differences the correlation decreases
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significantly. This implies that a one-to-one agreement is not to be expected, when

looking at the 𝑋CO2 differences between the two stations.

4.3. Simulated Enhancements of XCO2

The simulated increases in 𝑋CO2 at different locations are investigated in this section.

First, the lateral structure is examined (Section 4.3.1). The relative contribution of

different sectors and the influence of the distance to the emission source are discussed

subsequently.

4.3.1. Complex Plume Structure

As we saw in the previous section, the wind has a high spatial variability. The wind

field is influenced by the topography and coastline which also causes a high temporal

variability. This impacts the plume over the city because the emissions are distributed in

a complex structure. The simulation results for July 2, 2022 illustrate this as an example.

The simulated increase in 𝑋CO2 due to the emissions from the ODIAC inventory is

shown as map plots in Figure 4.10 for hourly time steps. In addition, the wind field is

displayed for each time step. When looking at the wind field, the high spatial variability

is obvious, as there is no time step in which the wind is uniformly distributed in the

displayed area. The temporal variability is also visible, as for example the wind directly

over the sea in the southwest corner changes from northwest to southwest to east during

the day. As a result the plume has a highly inhomogeneous structure. At the beginning

of the day the wind speed is lower and the 𝑋CO2 accumulates over the city in the center

of the displayed area. From 7UTC, the accumulation starts to be transported southwest

and deformed. After 11UTC it is not visible in the depicted domain anymore and the

continuing emissions result in a inhomogeneous structure. This highlights the challenge

of deriving emissions from an observed time series at a limited number of sites in complex

terrain.

For one of the time steps, that are displayed in Figure 4.10 the vertical structure of the

plume is visualized in Figure 4.11. Here, parts of the plume have been transported up-

wards, and towards south-western direction, although the surface wind field would have

led to a transportation towards south-eastern direction. This illustrates the complexity

of the wind field also in the vertical dimension. The plot also illustrates the advantage of

observing the column averaged molar fraction in comparison to surface observations,

because also the upper parts of the plume are visible in the observations.
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Figure 4.10.: Anthropogenic XCO2 plume for 2nd July 2022. The lateral distribution of 𝑋CO2 is

shown as a map plot for different time steps. As an example, the data for July 2, 2022 is shown. The wind

field is indicated by white arrows.
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Figure 4.11.: Vertical structure of the plume. For 2022-07-02 8:00 UTC, the vertical structure of the
plume is visualized by a latitudinal (left) and a longitudinal (right) cross section. The structure is shown

up to a height of 2 km. The fixed longitude and latitude for the cross sections are given in the upper left

corner of each plot. The black area represents the topography of the surface.

4.3.2. Influence of the Biogenic Sinks and Sources

To asses the relative influence of the biogenic sinks and sources, the simulated distri-

butions of 𝑋CO2 are investigated. The sectoral distributions of the combined biogenic

component and the the anthropogenic emissions from the ODIAC inventory are shown

in Figure 4.12 together with the sum of the two sectors. The three distributions are

shown for the campus and for Galini – one of the sites at the city boundary. From the

comparison of the three distributions can be seen that both, the biogenic and anthro-

pogenic contribution are relevant contributors to the total enhancements as the sum of

the sectors differs from the individual distributions. For the observation site in Galini,

the influence of the biogenic sector seems to have a larger influence compared to the

anthropogenic sector. In conclusion, the increase in 𝑋CO2 is significantly influenced by

the biogenic sinks and sources in the simulation.

4.3.3. Impact of Emissions Far from the Observer

To investigate the impact of emissions far from the city, the impact of the city emissions far

from the city were reversely investigated. I defined four testing points, the edges of a 0.5 °

square centered around Thessaloniki. The four points have a distance of approximately

70 km from Thessaloniki. The testing points are depicted in Figure 4.13A.

For these points, 𝑋CO2 increases due to emissions from the city are compared to the

emissions from all sources in the ODIAC inventory. This is possible due to the separation

of the emission inventory described in Section 4.1. Although Thessaloniki is the largest
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Figure 4.12.: Increase in XCO2 from different sectors. The distribution of simulated increase in 𝑋CO2

is shown as a histogram. The increase from the biogenic contribution is shown in green. The orange

histogram shows the increase due to the anthropogenic emissions. The sum of both distributions is

indicated by the solid black line.

emission source in the area, the enhancements from local sources are much larger, as can

be seen in Figure 4.13B. In comparison, the emissions from Thessaloniki are negligible

for the majority of the simulation time. This means that the observed temporal variations

are mainly influenced by local effects in the simulation.
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Figure 4.13.: Testing the effect of far-distance emission sources. The simulated increase in 𝑋CO2 is

examined at four points far from Thessaloniki. The points are shown in panel A. In panel B the increase is

shown as box and whisker plots. The boxes extend from the 25th to the 75th percentile and the whiskers

extend from the minimum to the maximum simulated enhancement. The enhancement from all sources in

the ODIAC inventory is shown by the four left boxes. The four right boxes show only the emissions from

the Thessaloniki urban area.
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5. Joint Interpretation of the Observed
and Simulated Data

In this chapter the simulated and the observed datasets are combined and conclusions for

the anthropogenic emissions are derived from the joint interpretation of both datasets.

First, the simulated and observed datasets need to be harmonized (Section 5.1). In

Section 5.2 they are compared and the prior emissions are scaled to improve the agreement

between both datasets. Finally, in Section 5.4, the limitation of the agreement and possible

improvements are discussed. The resulting emission estimates are presented in Section 5.3.

This chapter is based on Feld et al. (2024c).

5.1. Constructing a Harmonized Dataset

This section explains how the simulated and observed datasets were combined for further

investigation. The interpolation step is explained in Section 5.1.1. As the simulation

was initialized with a mixing ratio of 0 ppmv for CO2, a background offset between the

observed and simulated data is present. The procedure for removing this background

from the observations is explained in Section 5.1.2.

5.1.1. Spatial Interpolation and Temporal Resampling

A spatial and temporal mismatch exists between the observed and simulated datasets.

The model output represents the average over a square kilometer, while the observation is

averaged over a cone of 0.3
◦
and can be considered point-like in the horizontal dimension.

The mismatch in the temporal dimension is less sensible. The model output represents a

specific point in time and is not averaged over the output interval of 10 minutes. The

observations are averaged over one minute, which are both relatively short intervals.

To overcome the mismatch in the spatial dimension, I applied temporal averaging to the

observational data, as the lateral wind transport physically averages the concentrations

71



5. Joint Interpretation of the Observed and Simulated Data

in the wind direction by mixing and advecting small fluctuations. In a post-processing

step, the minutely observation data were averaged in 10min bins. For a median wind

speed of 1.54m/s observed at the campus, the wind traveled 924 meters in a period of 10

minutes, approximately matching the resolution of the simulation grid.

To correctly interpret the gradients in the observational dataset, a high precision is

required in the model. Sometimes only a few grid cells separate the two observation sites,

therefore a correct interpolation is needed. After the vertical column is derived from

the datasets as described in Section 4.1.3, the two-dimensional field of vertical columns

is interpolated to the observation sites using the griddata function from the NumPy

python package (Harris et al., 2020).

For better data accessibility the columns interpolated to the measurement sites are stored

in a separate netCDF file accessible at https://doi.org/10.5281/zenodo.12666197.

5.1.2. Background Removal

Previous measurement campaigns used background stations upwind of the city for

removing a background offset between the observed and simulated datasets. No dedicated

background observation is available for the Thessaloniki campaign.

As an alternative approach, the background is defined in the following way: For each

measurement day, the 5th percentile from the joint dataset of both instruments is deter-

mined as background and subtracted, shifting the observation, so that enhancements over

the defined background remain. The same procedure is applied to the simulated dataset,

here the 5th percentile also takes on negative values for days with a strong influence

of the biogenic sink, because the simulation was initialized with 0 ppmv. This way the

distributions are shifted to the same level. The resulting quantity will be referenced as

𝑋CO
′
2
in the following. This strategy implies two assumptions

1. The background concentration is constant over the measurement period of one

day.

2. The background is equal for both stations.

The observation times ranged from 4 to 7 hours a day. In this relatively short time, the

assumption of a constant background is plausible. Regarding the second assumption,

most of the background coming from closer sources is still included in the domain

and therefore contained in the simulation dataset. There might be an effect of longer

transportation times, but for these, the atmosphere is expected to be better mixed. The
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Observation Simulation

pixel1
XCO2XCO2

'
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interpolation
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10 min average,
subtract Q(5%)

subtract 
Q(5%) of sum

weighted sum
over all pixels
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adjust weights 
to optimize agreement

XCO2' XCO2'

Figure 5.1.: Creation of a harmonized dataset. The processing steps to make the observed and simulated

data comparable is illustrated. The left part of chart depicts the steps applied to the observational data,

indicated in green. The right part shows the steps for the simulated data in blue. The loop in the lowermost

part represents the fitting procedure.

approach is similar to the background determination by Ohyama et al. (2023). They used

the 5th percentile of a dedicated background measurement as baseline for a given day.

All processing steps for both, the simulation and the observations are illustrated in

Figure 5.1. With this, two comparable datasets are constructed, that will be investigated

in more detail in the following section.
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Figure 5.2.: The agreement between the simulated and observed time series for the whole sample.
The observed time series is shown together with the simulated time-series. The rose dashed line represents

the model result without further scaling of the emissions. The green dashdottet and the blue solid line

represent the results of the fit using the pixel scaling approach and the city scaling approach. The results

for SN52 are shown in the upper row, for SN96 in the lower row.

5.2. Improvements by Inventory Scaling

In this section, the improvement of the agreement between the simulation and obser-

vation by scaling the anthropogenic inventory is investigated. The previously limited

agreement (Section 5.2.1) can be significantly improved by the scaling, as is shown in

Section 5.2.2. The consistency using different subsets of the whole sample is tested in

Section 5.2.3.

5.2.1. Pre-scaling Agreement of the Time Series

When comparing the observations to the corresponding simulation, without applying

any scaling to the emission, the agreement is very limited. When looking at both sites

simultaneously, the Pearson correlation coefficient is only 0.1. The disagreement is also

clearly visible in Figure 5.2 where the time series are compared for the two observation

sites. A number of reasons might cause this disagreement. One category of reasons is

the representation of transport in the model. As discussed in Section 4.2 the simulated

and observed wind is clearly correlated. Still the simulated values scatter around the
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observations. These mismatches might be a relevant factor, affecting the transport. Also,

the parametrization of the turbulent transport itself might be a source of inaccuracy.

The second possible origin are the sources and sinks. In addition to the uncertainty in

the anthropogenic source, the background contributions that are not considered in the

model and an incorrect dataset for the NEE might be significant contributors. In the

following, the improvement of the agreement by scaling the anthropogenic emissions

will be investigated. The remaining limitations of the model will be discussed in more

depth in Section 5.4.

5.2.2. Improved Time Series by Optimizing the City Emissions

The possibility of post-scaling of individual emissions pixels in the anthropogenic inven-

tory is explained in Section 4.1.2. To find the optimal scaling configuration, a least-squares

approach is used. The two time series corresponding to the two observation sites are

optimized simultaneously.

To find a re-weighting factor 𝑥𝑖 for each pixel, the following cost function is minimized

(implemented in the scipy library in the function optimize.lsq_linear (Virtanen et al.,

2020))

𝑐 =
1

2
· | |

∑︁
𝑖

𝑥𝑖ai − b| | 2 , (5.1)

where b is the observation vector and ai is the corresponding vector originating from
pixel 𝑖 ,

Two different scaling approaches were used. In one, only a single weight was determined,

scaling all 30 pixels of the city. Here, the fit included one degree of freedom, this

configuration will be referenced as city scaling in the following. In the other optimization

approach, called pixel scaling, all pixels were allowed to be scaled with individual weights,
leaving 30 degrees of freedom.

The improvement from the city scaling and pixel scaling are shown in Figure 5.2. Both

show a significant improvement. The correlation factor increases from 0.1 to 0.29 (0.17)

for the pixel (city) scaling.
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Figure 5.3.: The agreement between the simulated and observed time series for the subsamples.
The observed time series is shown next to the simulated time-series. The rose dashed line represents

the model result without further scaling of the emissions. The green dashdottet and the blue solid line

represent the results of the fit using the pixel scaling approach and the city scaling approach. Panel A

shows the results for SN52, Panel B for SN96. In the second and third row of each panel, the results for the

two selected subsamples are shown. In the first row of each panel, the results for the whole sample from

Figure 5.2 are shown for comparison.
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5.2. Improvements by Inventory Scaling

Table 5.1.: The fit results for the three tested configurations. The total emissions of the city area,

the correlation 𝑟 and the cost function 𝑐 (see Equation 5.1) are shown for the original ODIAC emission

inventory, and two rescaled emission inventories. The results for the whole sample are given in the first

part of the Table. The lower part gives the analogue results for two subsamples. Note that the emissions

from version ODIAC2020b for May 2019 were used in the model. There, the urban emissions (1.9Mt/yr)

differ slightly from the annual average for 2019 in the version ODIAC2022 (1.8Mt/yr), that is shown in

Figure 1.4.

emissions r c

(Mt/yr)

whole sample no scaling 1.9 0.10 158.9

city scaling 2.9 0.17 144.8

pixel scaling 2.9 0.29 125.4

loose selection no scaling 1.9 0.36 89.9

city scaling 3.4 0.42 68.1

pixel scaling 3.0 0.53 57.3

strict selection no scaling 1.9 0.34 49.1

city scaling 4.4 0.66 24.5

pixel scaling 3.7 0.77 17.1

5.2.3. Investigation of Subsamples

When looking at individual days, the correlation varies significantly. To test the robust-

ness of the results, I selected two subsamples where the unscaled simulation matched

the observations more successfully. The following two selections with a threshold for

the correlation of a given day, are discussed in the following.

1. loose selection (𝑟 > 0.2)

2. strict selection (𝑟 > 0.6)

For both subsamples the city and the pixel scaling were applied. As to be expected,

the correlation of the unscaled simulated improved in comparison to the whole sample.

However, for both subsamples the city and the pixel scaling were able to further improve

the agreement. This can be seen in Table 5.1, where a comparison for all configurations is

given. It is also visible in the time series. For comparison also the results from Section 5.2

for the whole sample are collected in Figure 5.3.
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Figure 5.4.: Spatial distribution of emissions resulting from the fit. For each sample and each scaling

aproach the resulting scaling factors imply an altered emissionmap, which is depicted in this plot. The

two rows represent the two scaling approaches, the different samples are shown in the different columns.
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Figure 5.5.: Yearly emissions for the city area resulting from the fit. The sum of the city emissions

is shown as bar chart for the different samples and scaling approaches. The estimates from the different

inventories shown in Figure 1.4 are shown in the top for comparison. The three pairs of bars below

represent the different samples. The scaling approaches are indicated by hashes.

5.3. Resulting Emission Inventories

The optimizations from the previous section result in a set of scaling factors for the city

emissions. These scaling factors significantly improved the simulated agreement to the

atmospheric observations, as discussed above. In this section the re-scaled emissions

maps resulting from the fit, are discussed.
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The emission maps from the different configurations are shown in Figure 5.4. The three

upper plots show the city scaling with only one degree of freedom. The city weights

are higher than one for all three samples, which can be seen from comparison with

Figure 4.2. In the lower three plots, the pixel scaling is used. It is visible that some areas

were up-weighted by the optimization while others received lower weights. Interesting

is that, when comparing the three plots, some of the pixels receive high weights in all

configurations, while others vary. When looking at the hot-spots indicated in Figure 4.2,

the consistently high pixels in the center of the city are near to the harbor. The city

is also most densely populated in this area. Also, the westernmost pixel consistently

receives high weights. It is located close to the refinery – one of the expected emission

hot-spots. The small spatial mismatch might be due to a wrong height of the emissions, as

all emissions from the ODIAC inventory are emitted into the surface layer. In conclusion,

a hot-spot detection by the re-weighting seems plausible.

When looking at the total emissions instead of the emission distribution, the fit results

are consistent for all configurations. The total emissions after reweighting are in all

cases significantly higher than those reported in the original ODIAC inventory. The

reweighted emissions for the city area range from 2.9 Mt/yr for the whole sample to

4.3 Mt/yr for the strict selection with city scaling. The estimates for the total annual

emissions of Thessaloniki are illustrated in Figure 5.5. The derived top-down estimates

are considerably higher compared to the emissions in ODIAC of 1.8Mt/yr. This indicates

an underestimation of the actual emissions of the city of Thessaloniki in the ODIAC

inventory. The fit results are in better agreement to the EDGAR and CEDS inventories,

stating an emission estimate of 3.1Mt/yr and 3.2Mt/yr for Thessaloniki.

5.4. Limitations of the Agreement

As discussed above, without any scaling of the anthropogenic emissions, the agreement

between the simulated and observed enhancements is very limited. Although the scaling

of the anthropogenic emissions could distinctly improve it, significant discrepancies

remain. Possible reasons for the remaining mismatch are discussed in the following.

5.4.1. Initialization, Background and Resolution

The systematic limitations of the model as its initialization and its resolution might be

an important contributor the discrepancies. Starting with the resolution, the real-world
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Table 5.2.: Correlation in XH2O for the subsamples. For each sample, the Pearson correlation factor

between observation and simulation is investigated for both instruments individually and for the difference

between the two observation sites. This table and the caption are taken from Feld et al. (2024c).

Instrument SN52 SN96 SN52-SN96

Sample

whole sample 0.962 0.958 0.330

loose selection 0.986 0.987 0.209

strict selection 0.995 0.994 0.664

sub-grid variability can be assumed to not play a major role. This was tested with small-

distance observations (see Section 3.1.5). One factor contributing to uncertainty arises

from the limited simulation time. Longer transportation times, such as the return of the

Thessaloniki plume from a previous day, cannot be simulated in the model setup that

was chosen.

5.4.2. Meteorological Conditions and Transport

In general, the wind and water vapor were well-matched by the simulations, as was

discussed in Section 4.2. The observed absolute 𝑋H2O is very well represented by the

simulation. However, the difference between the observation sites shows a considerably

lower correlation. This suggests that the transport (indirectly from wrong wind and

directly from turbulence parametrization) is a relevant source of uncertainty in the

model.

The correlation of 𝑋H2O improves in the subsample with the strict selection to 0.64 (see

Table 4.4). It is plausible that at days with a better agreement between observed and

simulated 𝑋CO2, the transport was better matched by the simulation, which results in a

better agreement in 𝑋H2O as well.

A more accurate representation of the transport could result in a better simulation of

𝑋CO2 in the future. To assess the accuracy of the transport for future simulations,

measuring the wind field more accurately might be beneficial. For example a wind Lidar

system could be used to discover inaccuracies in the simulated wind field that result

in wrong transport. An improvement in the parametrization of the turbulent transport

could enhance the accuracy of the simulations. Better input data, as for example the

three-dimensional structure of the city are probably also relevant for the distribution.
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5.4.3. Sources and Sinks

An assumption of the inventory scaling methodology was, that a major source of uncer-

tainties comes from the anthropogenic emission inventory. The improved agreement

after applying an optimized scaling makes this assumption plausible.

In the scaling only the lateral distribution and total strength of emissions was adjusted.

Remaining degrees of freedom encompass the temporal change of the emission inventory

and the biogenic source and sink.

The annual temporal variability of the emissions might have an influence as the measure-

ment days cover different seasons of the year. The ODIAC inventory provides monthly

averages, but the emissions fluxes range from 1.7Mt/yr in summer to 1.9Mt/yr in winter

in version ODIAC2022. This variation is small compared to the discrepancies between

the different inventories. The CEDS inventory is also provided as monthly averages, but

the emission flux does not vary at all from month to month. I therefore assume that the

largest uncertainty does not originate from the temporal variations. The impact of the

diurnal variability can not be assessed here, as none of the used datasets contained a

diurnal variability of the emissions.

The representation of the NEE is a large source of inaccuracy. This can be seen from the

fact that many days in June and July show large discrepancies and at the same time there

are only small differences between the time series without scaling and the scaled version

(see Figure 5.3). From this can be seen that the main contribution to the daily variation

of 𝑋CO
′
2
comes from the biogenic contribution, which appears to be not well-matched

for these days. Plants in the Mediterranean are able to close their stomata in hot and

dry conditions to reduce water loss. This leads to a decrease in gas exchange rates and a

decrease in the NEE (Lange et al., 1985). This effect is not present in the averaged diurnal

cycles from the FLUXCOM X-BASE dataset (compare Figure 4.3C). The generally large

influence of the biogenic sinks and sources is also discussed in Section 4.3.2.

In future research this can be improved by coupling a biogenic model to the simulations.

Either an observation based solution like the Vegetation Photosynthesis and Respiration

Model (VPRM) (Mahadevan et al., 2008) or a land process model as the Jena Scheme for

Biosphere-Atmosphere Coupling in Hamburg (JSBACH) (Reick et al., 2021) could be used

for this purpose. The coupling of a biosphere model to the simulation was outside the

scope of this work.
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In this work, I studied the CO2 emissions in the urban area of Thessaloniki. The work

was motivated by the significant discrepancies between different bottom-up inventories

for the urban area of Thessaloniki. Thessaloniki’s emissions from the EDGAR (3.1Mt/yr)

and CEDS (3.2Mt/yr) inventories are significantly higher than the emissions stated by

the CAMS (1.7Mt/yr) and ODIAC (1.8Mt/yr) inventories.

In the light of these discrepancies, the main objective was the measurement-based esti-

mation of the total anthropogenic CO2 emissions of Thessaloniki. In addition, the spatial

distribution of the anthropogenic emissions inside the city area was investigated.

A measurement campaign with two solar Fourier Transform Infrared (FTIR) spectrome-

ters of the type EM27/SUN was implemented for this purpose. Time series of column-

averaged dry-air molar fraction of CO2 (𝑋CO2) were observed with a pair of EM27/SUN

spectrometers. The campaign was performed in two parts: A first shorter visit for

preparatory purposes took place in October 2021. During this period 6 measurement

days were recorded. The second part of the campaign was performed between May

12 and July 12, 2024, with 24 days of measurements. During the second period, there

was the possibility to transport one of the instruments to various locations while the

other stayed at a fixed position in the central part of the city. A total of 30 days of

measurements were recorded. 7 of these were side-by-side measurements for calibration.

22 days were selected for emission estimation, containing a 𝑋CO2 time series with a

total of approximately 179 measurement hours. The median difference between the two

instruments was only 0.17 ppmv, which is below the estimated systematic calibration

uncertainty of 0.22 ppmv. The maximum observed difference was 2.03 ppmv. These

differences are small compared to previous studies. This is in line with the expectations,

since Thessaloniki is smaller than many cities previously investigated. However, the

weaker signal makes it more challenging to estimate the anthropogenic emissions.

Corresponding simulations were conducted with the numerical weather prediction model

ICON-ART in a limited area setup with a resolution of approximately 1 kmx 1 km. For

each day a separate simulationwas initialized, usingmeteorological data from the German

Weather Service (DWD). The anthropogenic emissions were taken from the ODIAC
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inventory, due to its high resolution. The inventory was separated into 30 different

source regions over the urban area of Thessaloniki. Each source region was simulated as

a separate tracer to enable scaling of the emissions during post-processing. Estimates

of the biogenic sources and sinks were constructed from three different datasets to

achieve a sufficient spatial and temporal resolution. I initialized CO2 without background

concentration, simulating only the enhancements from the emission sources within

the domain. To assess the validity of the simulation, I compared the wind data of the

simulation to wind observations from three meteorological stations. The simulation was

clearly correlated to the observations, even though the general wind situation in the city

was quite complex. The Pearson correlation coefficients for longitudinal and latitudinal

wind components range from 0.55 to 0.83. Also the predicted water vapor columns, that

were co-observed during the campaign agree very well, with correlation coefficients of

0.96 for both spectrometers. The highest correlation was found comparing the observed

and simulated pressure, with a correlation coefficient of 0.99.

For comparing the observed𝑋CO2 time series to the model results, the datasets were first

harmonized. This included interpolation of the simulated molar fractions of CO2 to the

observation sites, calculation of column averaged molar fractions from the simulation,

and temporal averaging of the observed data. To remove the background offset between

the modeled and simulated data, the 5th percentile was subtracted from both datasets

for each day. Without scaling of the emissions, the agreement between the simulated

and observed data is poor: The time series have a correlation coefficient of only 0.1.

The agreement could be enhanced significantly by rescaling the anthropogenic emissions.

An optimal scaling was determined through a least-squares approach. Two different

scaling approaches were chosen: In the first approach, all pixels inside the city received

the same weights, leaving just one degree of freedom. This approach is referenced as city

scaling. Alternatively, all source regions (pixels) were allowed to be scaled differently.

This pixel scaling approach had 30 degrees of freedom. The optimization resulted in an

altered time series. The agreement between the rescaled time series and the observation

data improved, which can be seen from the increase of the correlation coefficient to 0.17

for the city scaling and 0.29 for the pixel scaling.

To test the robustness of the fit two subsets were created, selecting days with better

prior agreement. I required the correlation coefficient for a specific day to be greater

than 0.2 for a loose selection, and greater than 0.6 for a strict selection. As expected, the

correlation of the unscaled time series improved. However, in both cases the optimal

scaling also improved the correlation visibly over the unscaled version. The correlation

factor increased up to 0.77 for the pixel scaling when using the strict selection criterion.
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Apparent discrepancies between the simulated and observed time series remains for

all scaling configurations. I identify the following factors as relevant for the limited

agreement: The short simulation time, limitations in the simulation of transport, missing

time dependence of anthropogenic emissions, and large uncertainties in the estimation

of the net ecosystem exchange. In particular, the inaccurate representation of biogenic

interactions seems to significantly affect the agreement during certain periods of the

observation.

The optimal rescaling increased the emissions of the city consistently compared to the

original inventory for every configuration. The estimates range from 2.9 to 4.4 Mt/yr,

which are significantly higher than the emissions reported by the ODIAC and CAMS

inventories, but are better in line with the estimates from EDGAR and CEDS. When

comparing the distribution of the emissions after applying the pixel scaling approach, it is

apparent that some pixels consistently receive high weights. Some of these up-weighted

pixels could be linked to expected emission hot spots, making a hot spot detection by

the fit plausible.

In conclusion, this work shows that a dataset with limited signal strength still has the

potential for emission estimation when combined with accurate transport simulations. It

demonstrates that a simpler approach, such as scaling the inventory with a least-squares

method, is also sufficient to extract insights about the emissions from the dataset.

To further advance top-down emission estimation at the urban scale in the future, the fol-

lowing improvements would be worth considering: First, and most importantly, a better

representation of the biogenic sources and sinks could significantly improve the agree-

ment. It might even be beneficial to target campaigns on urban atmosphere-biosphere

interactions in a place with presumably low uncertainties in the anthropogenic contribu-

tion. When selecting targets for validating anthropogenic emission inventories, it might

be useful to determine spots with high uncertainties. Comparing different inventories

can provide insights for this. A provided inventory uncertainty determined from the

underlying emission factors and activity data would be a very valuable foundation for

identifying potential targets for future campaign observations. The development of

measurement-based emission estimation methods, that are completely independent of

bottom-up emission inventories could further enhance the importance of measurement-

based inventory validation methods. Finally, there is great potential in automating

measurements and improving data accessibility. This could enable scientists to better

incorporate different data sources into the investigations. In particular the combination

of different complementing datasets such as in-situ and remote-sensing measurements,

could provide an essential gain in information, improving ongoing and future top-down

emission estimation.
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Appendix





A. Measurement Notes

During the campaign, the meausurement days, locations, start and stop times and com-

ments were noted. These notes are listed in the following.

Date SN52 SN96 Start Stop Comments

2021-10-04 Physics Physics 08:35:00 18:07:00

2021-10-05 Physics Physics 09:07:00 17:30:00

2021-10-06 Physics Physics 09:40:00 10:30:00 Cloudy, nearly no data

2021-10-13 Physics Thermi 09:00:00 18:00:00

2021-10-19 Physics Thermi 09:05:00 18:00:00

2021-10-20 Physics Thermi 09:50:00 16:40:00 Background not from Sea

2021-10-22 Physics Thermi 09:30:00 15:30:00

2022-05-12 Thermi Thermi 09:15:00 14:50:00 SN52: At 10:45 fixed ra-

dius problem

2022-05-13 Thermi Thermi 09:45:00 15:30:00

2022-05-17 Meteorology Galini 10:00:00 15:20:00

2022-05-20 Meteorology Thermi 09:45:00 15:30:00 SN52: Until 10:40 Cam-

tracker problems

2022-05-24 Meteorology Galini 09:45:00 13:55:00 SN96: Until 11:05 loose ca-

ble, 1/2h data loss

2022-05-25 Meteorology Galini 09:40:00 14:30:00

2022-06-09 Meteorology Meteorology 08:30:00 12:10:00

2022-06-14 Meteorology Galini 09:30:00 13:30:00 SN96: 10:05 sun non cen-

tered, corrected morph

2022-06-15 Meteorology Efkarpia 10:50:00 15:45:00

2022-06-17 Meteorology Efkarpia 08:45:00 15:20:00 SN96: Until 11:20 ca. 1/2h

sun not centered

2022-06-20 Meteorology Efkarpia 09:40:00 15:15:00

2022-06-21 Meteorology Diavata 09:55:00 15:30:00

2022-06-22 Meteorology Diavata 09:00:00 12:50:00

2022-06-24 Meteorology Thermi 13:00:00 15:45:00
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2022-06-27 Meteorology Thermi 09:40:00 13:25:00 SN52: CH2 A x8 Signal

and x4 Background possi-

bly unreliable Data from

9.6 for Channel 2!

2022-06-29 Meteorology Thermi 11:45:00 16:25:00 SN96: 16:00 sun not cen-

tered (not enough Power)

2022-07-01 Meteorology Physics 11:00:00 16:30:00

2022-07-02 Meteorology Physics 11:00:00 14:30:00 SN52: clicking noise in-

creases, end of spectra

with artefacts

2022-07-04 Meteorology Seich-Sou 10:45:00 15:00:00

2022-07-05 Meteorology Seich-Sou 09:30:00 15:00:00 SN52: Blackout at morn-

ing

2022-07-06 Meteorology Meteorology 09:45:00 16:15:00

2022-07-07 Meteorology Diavata 09:50:00 15:00:00 SN96: 12:00 short break

due to a tractor to trim the

gras

2022-07-11 Meteorology Thermi 09:50:00 14:30:00

2022-07-12 Meteorology Meteorology 09:45:00 SN96: 12:00 Sun not Cen-

tered
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