KIT | KIT-Bibliothek | Impressum | Datenschutz

Technical note: A simple feedforward artificial neural network for high-temporal-resolution rain event detection using signal attenuation from commercial microwave links

Øydvin, Erlend; Graf, Maximilian ORCID iD icon 1; Chwala, Christian ORCID iD icon 1; Wolff, Mareile Astrid; Kitterød, Nils-Otto; Nilsen, Vegard
1 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)

Abstract:

Two simple feedforward neural networks (multilayer perceptrons – MLPs) are trained to detect rainfall events using signal attenuation from commercial microwave links (CMLs) as predictors and high-temporal-resolution reference data as the target. MLPGA is trained against nearby rain gauges, and MLPRA is trained against gauge-adjusted weather radar. Both MLPs were trained on 26 CMLs and tested on 843 CMLs, all located within 5 km of a rain gauge. Our results suggest that these MLPs outperform existing methods, effectively capturing the intermittent behaviour of rainfall. This study is the first to use both radar and rain gauges for training and testing CML rainfall detection. While previous studies have mainly focused on hourly reference data, our findings show that it is possible to classify rainy and dry time steps with a higher temporal resolution.


Verlagsausgabe §
DOI: 10.5445/IR/1000177965
Veröffentlicht am 13.01.2025
Originalveröffentlichung
DOI: 10.5194/hess-28-5163-2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1607-7938
KITopen-ID: 1000177965
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 28
Heft 23
Seiten 5163–5171
Vorab online veröffentlicht am 29.11.2024
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page