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We introduce a new parametrization of B → Dπlν form factors using a partial-wave expansion and
derive bounds on the series coefficients using analyticity and unitarity. This is the first generalization of the
model-independent formalism developed by Boyd, Grinstein, and Lebed for B → Dlν to semileptonic
decays with multihadron final states, and enables data-driven form-factor determinations with robust,
systematically improvable uncertainties. Using this formalism, we extract the form-factor parameters for
B → D�

2ð→ DπÞlν decays in a model-independent way from fits of data from the Belle Experiment. We
find that the semileptonic data are compatible with the presence of two poles in the Dπ S-wave channel,
which is the scenario preferred by nonleptonic decays and unitarized chiral perturbation theory.
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Motivation. Experimental measurements of tree-level semi-
leptonic B-meson decays enable theoretically clean deter-
minations of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements jVubj and jVcbj, allowing for sensitive
tests of the Standard Model by overconstraining the CKM
unitarity triangle [1–3]. Further, jVubj and jVcbj are para-
metric inputs to predictions for loop-level flavor-changing
processes that are sensitive to new high-scale physics
beyond the reach directly detectable by the LHC [4,5].
A major challenge for both inclusive and exclusive

determinations of jVubj is suppressing the CKM-favored
B → Xclν background, which exhibits a similar experi-
mental signature and is Oð100Þ times more abundant than
B → Xulν decays. The background subtraction process is
further complicated by the orbitally excited states, collec-
tively referred to as D��, whose kinematic distributions
remain poorly understood and branching fractions exhibit
uncertainties of approximately 20% [6]. In measurements
performed by the Belle and Belle II collaborations, the
remaining “gap” between the sum of all considered
exclusive modes and the inclusive B → Xlν branching
fraction, comprising unmeasured nonresonant B → Xclν
decays, is generally treated in simulation by assuming a
composition of equal parts of B → Dð�Þηlν decays, as

prescribed in Ref. [7]. Because neither experimental evi-
dence nor theoretical predictions exist for B → Dð�Þηlν
decays, a 100%uncertainty is assumed for the corresponding
branching fractions. For these reasons, the Xclν modeling
uncertainty is hard to quantify and becomes dominant for
studies of inclusive B → Xc=ulν decays [7–11].
Exclusive measurements relying on tagged methods, in

which machine learning algorithms are employed to fully
reconstruct the companion B meson through exclusive
decay modes [12,13], do not rely as directly on Xclν
modeling as inclusive analyses. However, significant
differences in these reconstruction algorithms’ perfor-
mances between data and simulation is accounted for by
performing a calibration using a decay with a well known
branching fraction: inclusive B → Xlν [14]. This calibra-
tion, in turn, becomes a leading source of systematic error
for tagged analyses [15–17]. In addition, the limited
knowledge of B → D��l=τν branching fractions and form
factors are large systematic uncertainties in studies of
rare processes or lepton flavor universality tests such as
B → Kνν and RðXτ=lÞ at Belle II [18,19] or RðD�Þ at the
LHCb experiment [20,21].
The most commonly used description of B → D��lν

decays is the Leibovich-Ligeti-Stewart-Wise parametriza-
tion [22,23], extended to include OðαsÞ corrections and
relaxing several assumptions with central values from the
fit given in Refs. [24,25]. This parametrization includes a
single D�

0 resonance. Studies in the context of unitarized
chiral perturbation theory, however, have shown that the
scalar member of the D�� family, the D�

0ð2300Þ, is an
overlap of two states with poles near ð2.1 − i0.1Þ and
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ð2.45 − i0.13Þ GeV [26–28]. Consequently, the S-wave
line shape is not described by a simple Breit-Wigner
distribution, but has a more complex structure. This con-
clusion is supported by lattice quantum chromodynamics
(LQCD) calculations of isospin-1/2 Dπ scattering [29–31]
and a reinterpretation [32] of the partial-wave analysis of
Bþ → D−πþπþ decays by LHCb [33]. Further, in Ref. [34],
Le Yaouanc, Leroy, and Roudeau point out that in the fits to
the Leibovich-Ligeti-Stewart-Wise parametrization tail
effects from theD� resonance are omitted and consequently
overestimates the D�

0 contribution.
To address these and other limitations of existing para-

metrizations, in this Letter we develop the first model-
independent description of resonant and nonresonant
B → Dπlν decays based on analyticity and unitarity. We
then apply our formalism, which accommodates arbitrary
line shapes, to fit experimental spectrum measurements and

draw conclusions about the pole structure of the S-wave
channel.

Form-factor parametrization. Semileptonic B → Dπlν
decays are characterized by five kinematic variables: the
momentum transfer square q2,1 the helicity angle of the
charged lepton cos θl, the helicity angle of the D meson
cos θ, the azimuthal angle between the lν andDπ planes χ,
and the invariant mass of the hadronic system MDπ .
Form-factor decompositions for charged-current semi-

leptonic decays involving two final state hadrons have been
performed for B → ππlν decays [35,36] and involve a
partial-wave decomposition in cos θ to disentangle contri-
butions from different hadronic resonances. Following a
similar strategy, we express the B → Dπlν hadronic matrix
elements as

hDðpDÞπðpπÞjVμjBðpBÞi ¼ iϵμνρσp
ρ
Dπp

σ
B

X
l>0

LðlÞ;νglðq2;M2
DπÞ;

hDðpDÞπðpπÞjAμjBðpBÞi ¼
1

2

X
l>0

�
LðlÞ;μ þ 4

λB
½ðpB · pDπÞqμ − ðpDπ · qÞpμ

B�LðlÞ;νqν

�
flðq2;M2

DπÞ

þMDπðM2
B −M2

DπÞ
λB

�
ðpB þ pDπÞμ −

M2
B −M2

Dπ

q2
qμ
�X
l>0

LðlÞ;νqνF 1;lðq2;M2
DπÞ

þMDπ
qμ

q2
X
l>0

LðlÞ;νqνF 2;lðq2;M2
DπÞ

þ
�
ðpB þ pDπÞμ −

M2
B −M2

Dπ

q2
qμ
�
fþðq2;M2

DπÞ þ
M2

B −M2
Dπ

q2
qμf0ðq2;M2

DπÞ: ð1Þ

The vector LðlÞ is related to the angular momentum of the
final-state hadron system in the B-meson rest frame, and is
uniquely defined via

LðlÞ
μ qμ ¼ MBWlPlðcos θÞ;

LðlÞ
μ pμ

Dπ ¼ 0; ð2Þ

where W ¼ jq⃗jjp⃗Dj=ðMBMDπÞ and Pl are the Legendre
polynomials. The threshold factor λB ¼ M4

B þM4
Dπ þ q4 −

2ðM2
BM

2
Dπ þM2

Dπq
2 þ q2M2

BÞ.
The standard expressions for B → D�lν and B → D�

2lν
decays [37,38] are recovered from the l ¼ 1 and l ¼ 2

terms by replacing MDπ and LðlÞ with the corresponding
masses and polarization vectors.
Using Eqs. (1) and (2), it is straightforward to derive the

B → Dπlν differential decay rate. After performing the
angular integration and dropping terms that are helicity
suppressed, we obtain the double differential decay rate for
massless leptons,

d2Γ
dM2

Dπdq
2
¼ G2

FjVcbj2
ð4πÞ5 MB

�
W

λB
M2

B

4jfþj2
3

þM2
Dπ

X
l>0

4W2lþ1

3ð2lþ 1Þ
�
ðM2

B −M2
DπÞ2

jF 1;lj2
λB

þ ðlþ 1Þ
l

q2
�
jglj2 þ

jflj2
λB

���
; ð3Þ

which will be used later in our analysis. The fully general
fivefold differential decay rate allowing for interference
effects between different partial waves is provided in the
Supplemental Material [39].

Unitarity bounds. Model-independent constraints on the
B → Dπlν form factors arise from analyticity and unitar-
ity. We begin with the two-point functions

1It is sometimes useful to instead consider the dependence on
the recoil parameter w ¼ ðM2

B þM2
Dπ − q2Þ=ð2MBMDπÞ.
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ΠL=T
ðJÞ ðqÞ≡ i

Z
d4x eiq·xh0jJL=TðxÞJL=Tð0Þj0i; ð4Þ

where Jμ denotes a b → c flavor-changing vector or axial-
vector current and L=T denotes the component longitudinal
or transverse to qμ. Susceptibilities χL=TðJÞ are defined from

derivatives of ΠL=T
ðJÞ ðqÞ as

χLðJÞðQ2Þ≡∂ΠL
ðJÞ

∂q2

����
q2¼Q2

¼ 1

π

Z
∞

0

dq2
ImΠL

ðJÞðq2Þ
ðq2−Q2Þ2 ;

χTðJÞðQ2Þ≡1

2

∂
2ΠT

ðJÞ
∂ðq2Þ2

����
q2¼Q2

¼ 1

π

Z
∞

0

dq2
ImΠT

ðJÞðq2Þ
ðq2−Q2Þ3 ; ð5Þ

and are related to integrals over the imaginary part of
ΠL=T

ðJÞ ðqÞ via dispersion relations. The susceptibilities χL=TðV=AÞ
at Q2 ¼ 0 have been computed in perturbation theory to
Oðα2SÞ in Ref. [40] and with nonperturbative lattice QCD in
Refs. [41,42]. Separately, the optical theorem relates
ImΠT

ðJÞðq2Þ to a sum of squared amplitudes for all inter-
mediate states that can appear between the currents in
Eq. (4). This sum includes terms with the matrix element
hBDπjJL=T j0i, which is related to hDπjJL=T jBi by crossing
symmetry and can therefore be parametrized by the form-
factor decomposition in Eq. (1). The contribution of the
B → Dπlν channel to the dispersion relations in Eq. (5) is
then given by evaluating the phase space integrals arising in
the sum over states,

ImΠL
AjDπ ¼

1

64π3
M4

B

q4

Z ð
ffiffiffiffi
q2

p
−MBÞ2

ðMDþmπÞ2
dM2

Dπ

�
M2

Dπ

X
l>0

W2lþ1

2lþ 1
jF 2;lj2 þW

ðM2
B −M2

DπÞ2
M2

B
jf0j2

�
;

ImΠT
AjDπ ¼

1

192π3
M4

B

q2

Z ð
ffiffiffiffi
q2

p
−MBÞ2

ðMDþmπÞ2
dM2

Dπ

�
M2

Dπ

λB

X
l>0

W2lþ1

2lþ 1

�jF 1;lj2
q2

þ lþ 1

l
jflj2

�
þWλB

jfþj2
q2M2

B

�
;

ImΠT
V jDπ ¼

1

192π3
M4

B

q2

Z ð
ffiffiffiffi
q2

p
−MBÞ2

ðMDþmπÞ2
dM2

DπM
2
Dπ

X
l>0

W2lþ1
lþ 1

lð2lþ 1Þ jglj
2: ð6Þ

The positivity of the squared amplitudes in the sum over
states implies ImΠL=T

J jDπ ≤ ImΠL=T
J . Inequalities for the

B → Dπlν form factors can then be derived from this
inequality by inserting Eq. (6) and the perturbative expres-
sion for ImΠL=T

J . These so-called unitarity bounds provide
q2-dependent constraints that should be incorporated in
determinations of the B → Dπlν form factors. Because
each form factor only couples to one polarization state of the
weak current in Eq. (6), the unitarity bounds are diagonal
and apply only to the groups of form factors ff0;F 2;lg and
ffþ; fl;F 1;lg and to the single form factor gl, rather than
more general linear combinations. A parametrization of the
q2-dependence of the form factors is required to concretely
specify how the bounds are imposed; we turn to this next.

z-expansion and scattering constraints. The model-
independent parametrization and bounds presented in
previous sections make no assumptions about the number,
energies, or line shapes of possible resonances. To render
fitting the measured B → Dπlν decay spectra to our
parametrization more tractable, it is helpful to include
additional theoretical information and make some plausible
assumptions.
The semileptonic B-decay form factors can be factorized

into a part describing the short-distance weak decay and a
part encoding the long-ranged final-state interactions
between the hadrons [43,44]:

flðq2;M2
DπÞ ¼ f̂lðq2;M2

DπÞhlðM2
DπÞ: ð7Þ

The weak-interaction contribution to the form factors of
QCD resonances is approximately independent ofMDπ [45]:

f̂lðq2;M2
DπÞ ≈ f̃lðq2Þ þOððM2

R −M2
DπÞ=M2

BÞ; ð8Þ

Indeed, studies of B → ππðKÞ in the context of light cone
sum rules [46] and recent LQCD studies of the B → ρ form
factors [47] point towards the smallness of the neglected
contributions.
The q2-dependent function in Eq. (8) can be expanded as

a power series [48–50]

f̃lðq2Þ ¼
1

ϕðfÞ
l ðq2ÞBfðq2Þ

X∞
i¼0

aðfÞli zi; ð9Þ

where the Blaschke product Bf removes the poles of all
subthreshold Bc resonances for a given channel and the
change of variables

zðq2; q20Þ ¼
q20 − q2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q20

p
Þ2 ð10Þ

with q2þ¼ðMBþMDþmπÞ2 maps the kinematically
allowed q2 range onto jzj < 1. With a suitable choice of
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outer functions ϕðfÞ
l , the unitarity bounds on the z-expansion

coefficients in Eq. (6) take an especially simple form

X
i;l

jaðfÞli j2 < 1; ð11Þ

allowing for an easy integration of the form factors in
a fit, including priors on the coefficients. Further, for
q20 ¼ 0 GeV2, z ranges from 0 to 0.06, such that only a
few terms in the expansion are needed to describe the form
factors with high precision. The truncated set of coefficients

aðfÞli is then determined using fits to experimental data,
fixing both shape and normalization of the form factors.
Recently discussed problems associated to lower-lying

branch cut at q2 ¼ ðMB þMDÞ2 can be incorporated as
outlined in Refs. [51–54]. Additional details on the deriva-
tion and numerical calculation of the outer functions can be
found in the Supplemental Material [39] and Ref. [55].
The semileptonic-decay form factors can also be con-

nected to the S matrix via a dispersion relation [56]

Imf⃗ðq2;M2
Dπ þ iϵÞ

¼ T�ðM2
Dπ þ iϵÞΣðM2

DπÞf⃗ðq2;M2
Dπ þ iϵÞ; ð12Þ

where the form-factor f is a vector in channel space, T is the
T matrix, and Σ contains the relevant phase-space factors
and is defined in Ref. [56]. The solution of Eq. (12) is given
by the Muskhelishvili-Omnès (MO) matrix Ω [56,57]

f⃗ðq2;M2
DπÞ ¼ ΩðM2

DπÞP⃗ðq2;M2
DπÞ;

ImΩðsþ iϵÞ ¼ 1

π

Z
∞

sthr

T�ðs0ÞΣðs0ÞΩðs0Þ
s0 − s − iϵ

ds0; ð13Þ

where P⃗ are boundary functions. A numerical algorithm to
solve the above integral equation is outlined in Ref. [58].
Following the same arguments as for f̃l in Eq. (8), we

can neglect the mild dependence of the boundary functions
P⃗ on MDπ and express them as a power series in z with the
same Blaschke factors as the form factors but different
outer functions.
For the S-wave contribution, we compute the

Muskhelishvili-Omnès matrix Ω from the S matrix
provided in Ref. [26], which was obtained using next-
to-leading order unitarized chiral perturbation theory
interaction potentials for coupled-channel Dπ, Dη, and
DsK scattering from Refs. [59,60]. Consequently, the
S-wave two-pole structure is treated in a parametrization-
independent manner, solely relying on scattering phase
shifts. This allows us to constrain the B → Dηlν
and B → DsKlν decay rates from a fit of the B →
Dπlν invariant-mass spectrum, as further discussed in
the Supplemental Material [39]. A similar procedure
could be used to constrain higher-order partial-wave

contributions—albeit with additional complications due
to contributions from D�π and similar channels. LQCD
calculations of coupled-channel D�π −Dπ scattering
amplitudes could help determine the missing ingredients.

Experimental fits. To test our new B → Dπlν form-factor
description and extract the coefficients of the z expansion
from data, we proceed in two steps. First, we fit the
measured w and cos θ dependence of the B → D�

2lν
differential decay width [61] and B0 → D�−

2 πþ branching

fraction [6] constraining the aðfÞli with Gaussian priors
centered at zero with unit width. We employ the least-
squares fitting package LSQFIT and use the augmented χ2aug
defined in Refs. [62,63] to assess the goodness of fit.
Additional numerical inputs are taken from Refs. [64–67]
as discussed in the Supplemental Material [39]. The loose
constraints help the fit converge more quickly but have little
impact on the final results since the magnitudes of the
resulting z coefficients are all of order a tenth or smaller.
As shown in Fig. 1, we find a harder D�

2 w spectrum
than Refs. [24,25], i.e., enhanced for low values of w or
high values of q2, and also better describe the data.
Possible reasons for this difference are the use of B →
D1π decay data in Refs. [24,25] and the greater flexibility
in the model independent approach employed here in
comparison to the heavy-quark-effective-theory-based
approach of these works.
Next, we fit the B → Dπlν MDπ spectrum measured

recently by Belle [68] using the z-expansion coefficients
from the first fit as priors to constrain the shape theD�

2 form
factors. Following Refs. [34,69], we parametrize the D�
and D�

2 line shapes by a Breit-Wigner distribution and with
Blatt-Weisskopf damping factors [70,71]. In contrast to
Ref. [34] we allow the Blatt-Weisskopf radius to be
determined in the fit. As shown in Fig. 2, our form-factor

FIG. 1. Normalized B → D�
2lν w spectrum. The black data

points are from Ref. [61]. The blue solid curve with error band is
our fit result, while the orange dashed curve and band are from
Refs. [24,25]. The χ2aug=d:o:f: ¼ 6.4=12 and Q ¼ 0.9.
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parametrization provides a good description of the data
over the entire invariant-mass range.
Our fit to the B → Dπlν invariant-mass spectrum can be

used to make predictions for related quantities. Figure 3
shows the predicted partial-wave contributions to the q2

spectrum. After integrating over the momentum transfer, we
obtain for the D-wave channel BrðB→D�

2ð→Dπ�ÞlνÞ¼
ð1.90�0.11Þ×10−3, which is larger than Belle’s determi-
nation in Ref. [68]. This is because the smooth falling
function employed by Belle to describe the seemingly
nonresonant contributions overlaps with the D�

2 resonance,
whereas in our description, the S-wave andD� components
are negligible near the resonance. For the S-wave contri-
bution, we obtain BrðB → ðDπÞSlνÞ ¼ ð1.03� 0.27Þ×
10−3, which agrees with the arguments made in Ref. [34]
but is smaller than the branching fraction usually assigned in
experimental analyses. Finally, the P-wave contribution in
Bþ → D−πþlþνl decays, to which on-shellD� decays can
not contribute, amounts to a branching ratio of ð9.2� 0.9Þ ×
10−4 for MDπ ≤ 2.5 GeV.

Implications and outlook. We present the first model-
independent description of B → Dπlν decays based on
unitarity and analyticity of the relevant form factors and the
factorization of final-state interactions. This constitutes the
first generalization of the BGL parametrization to multi-
hadron final states and provides the first step towards a
model-independent study of semileptonic B-meson decays
into higher resonances and nonresonant final states. Our
framework does not include any assumptions about line
shapes of resonances and is extendable to other decay
processes with charmed mesons in the final state such as
B → D�πlν or Bs → DKlν. Further, it is also valid for
final states with more than two hadrons, and can be

combined with other known b → c form factors in a global
fit to obtain constraints on less well-known form factors
(see, e.g., Ref. [72]). By replacing the D meson by a pion,
the unitarity bounds can be applied to B → ππlν decays,
including the phenomenologically interesting B → ρlν
channel, which is the target of first LQCD calculations
beyond the narrow-width limit [47], as well as non-resonant
backgrounds, which constitute the dominant systematic
uncertainty [73].
Taking into account recent theoretical considerations and

measurements of B → Dπlν decays by Belle, we provide
precise predictions for semileptonic decays into the broad
two-pole structure in the S-wave and determine the form-
factor parameters for B → D�

2lν decays from data. This
marks the first time in which a three-component hypothesis
consisting of S-wave contributions, D� virtual contribu-
tions and D�

2 contributions, is compared to the measured
MDπ-spectrum. Previous works either do not include all
three components simultaneously [24,61,74] or do not
compare to the measured MDπ spectra [34]. We demon-
strate, in contrast to existing literature, that our treatment of
the S-wave is compatible with theMDπ spectrum measured
by Belle and, since it is the clearly favored description of
Bþ → D−πþπþ decays [32], should replace models that
assume a single, broad S-wave state, the D�

0ð2300Þ. While
more careful studies need to be conducted, the change in
the shape for B → D�

2lν decays, as well as the inclusion of
the virtual D� contribution lead to an overall harder q2

spectrum, potentially resolving some of the discrepancies
seen in inclusive analyses at high q2 [7,10,19].
The coupled-channel nature of the S-wave contribution

enables us to obtain predictions for B → Dηlν and
B → DsKlν decays purely based on measurements of
B → Dπlν decays. For the Dη S-wave contribution
we obtain BrðB → ðDηÞSlνÞ ¼ ð1.9� 1.7Þ × 10−5, two
orders of magnitude too small to constitute a sizeable

×

FIG. 3. Predicted partial-wave decomposition of the B →
Dπlν q2 spectrum (dashed and dotted curves with error bands)
and their total (solid curve with error band) from the fit in Fig. 2.

FIG. 2. Fit of the measured MDπ spectrum [68] using the z
expansion to parametrize D�

2 and S-wave form factors. The
χ2aug=d:o:f: ¼ 124.4=133 and Q ¼ 0.69. Only data for the more
precise Bþ mode is shown.
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portion of the semileptonic gap. Since heavy-quark spin
symmetry relates the S-wave scattering matrix to theD�π −
D�η −D�

sK JP ¼ 1þ S-wave scattering matrix, the same
conclusion holds for the B → ðD�ηÞSlν channel.
Consequently, both approaches utilized by the Belle and
Belle II collaborations in recent measurements to fill the
semileptonic gap in terms of B → Dð�Þηlν decays, either
via a broad S-wave resonance or equidistributed in phase
space, are ruled out. While our analysis does not provide
alternative candidates to fill the gap, the harder q2 spectrum
of B → Dπlν decays obtained here shift the gap to lower
values of q2, thus opening up the possibility of heavier
states accounting for it.
Additional theoretical work, such as a more precise

determination of the scattering potentials along the lines of
Ref. [60], LQCD determinations of the form factors and
light cone sum rules computations of the S-wave form
factors [75] would greatly improve the results presented in
this letter.
Future experimental measurements of the q2 and cos θl

spectra of B → D�
2lν decays by Belle II with the already

available data set, as well as updated angular analyses of
B0 → D0π−πþ andB0 → D0π−Kþ decays by LHCb,would
improve the precision of the form factors presented in this

Letter. In the long term, a full partial-wave analysis of B →
Dπlν decays is required to ultimately determine the exact
composition of the Dπ spectrum in semileptonic decays.
Additionally, the final state interactions between D mesons
and light hadrons can be tested by measuring femtoscopic
correlation functions at the ALICE experiment [76]. This
result could provide a direct, orthogonal test of the S-wave
two-pole structure in heavy ion collisions [77].
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