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Abstract Subsurface storage of CO2 is an important means to mitigate climate change, and the North Sea
hosts considerable potential storage resources. To investigate the fate of CO2 over decades in vast reservoirs,
numerical simulation based on realistic models is essential. Faults and other complex geological structures
introduce modeling challenges as their effects on storage operations are subject to high uncertainty. We present
a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula
representation of multivariate distributions for a CO2 storage site model with faults. The Vette fault zone in the
Smeaheia formation in the North Sea is used as a test case. The stochastic upscaling method reduces the number
of stochastic dimensions and the cost of evaluating the reservoir model. Copulas provide representation of
dependent multidimensional random variables and a good fit to data, allow fast sampling and coupling to the
forward propagation method via independent uniform random variables. The non‐stationary correlation within
the upscaled flow functions are accurately captured by a data‐driven transformation model. The uncertainty in
upscaled flow functions and other uncertain parameters are efficiently propagated to leakage estimates using
numerical reservoir simulation of a two‐phase system of CO2 and brine. The expectations of leakage are
estimated by an adaptive stratified sampling technique which effectively allocates samples in stochastic space.
We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler
test cases, and factors 2–8 cost reduction for stochastic multi‐phase flow properties and more complex stochastic
models.

Plain Language Summary To limit global warming, greenhouse gases like CO2 can be injected into
large reservoirs of porous rocks below the bottom of the sea instead of being emitted to the atmosphere. CO2 will
slowly move in the reservoirs and may encounter faults, geological features that have properties that can either
facilitate or stop the CO2 from moving further in the underground. It is important that the CO2 remains in the
underground, and hence it is important to understand how it is affected by the fault, in particular when many
physical rock properties are unknown due to very few or inexact measurements. We present methods to model
the uncertainty in and surrounding the faults and show how more accurate computer simulations can be obtained
by a combination of appropriate statistical models and adapted methods to investigate the effect of the fault
uncertainty on the risk for leakage of CO2.

1. Introduction
CO2 capture and storage (CCS) is anticipated to play a major role in the target reduction of greenhouse gas
emissions described in Krevor et al. (2023). By 2050, estimates indicate that CCS will contribute with 13% of the
total cumulative emissions reduction (Ringrose & Meckel, 2019). The Norwegian part of the North Sea has an
estimated storage potential of 70 gigatons of carbon dioxide (CO2) (Halland et al., 2011). To put the storage
capacity into perspective, the total European Union's CO2 emissions in 2020 were 2.6 Gt (Crippa et al., 2021).
Hence, the North Sea reservoirs are anticipated to be an important means to obtain permanent storage of sub-
stantial amounts of CO2. To fully exploit the potential of the North Sea reservoirs, it is essential to perform
numerical simulations to assess the viability of prospective storage sites. Complex physics and associated un-
certainties should be taken into account, for instance regarding faults and fractures that are present in potential
storage sites.

Faults are complex geological structures with heterogeneous properties that are associated with challenges in data
acquisition. A fault zone consists of a fault core surrounded by a damage zone, where the former typically has
sealing properties, and the latter exhibits conductive properties (Caine et al., 1996). Most of the deformation and
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displacement is localized to the core, which consists of slip surfaces, fault rock, fractures, cements and mineral-
izations, and rocks that have been trapped in the core. The damage zone can contain smaller faults, deformation
bands, folds, and fractures. For further details of the fault architecture and properties, we refer to Torabi
et al. (2020), and references therein. Faults can act as sealing barriers (Pei et al., 2015), but can also be associated
with leakage risk (Wu et al., 2021), and the permeability within a fault can vary by orders of magnitude (Sperrevik
et al., 2002). In particular, permeability can be enhanced during fault reactivation and induce seismic events that
may have an effect on sealing properties, although the integrity of the entire fault may not be compromised (Rinaldi
et al., 2014). In‐situ stress measurements come with uncertainties that should be taken into account for reliable
quantification of seismicity effects (Jeanne et al., 2016). Although direct pore pressure effects tend to dominate
over indirect induced seismic effects, the combination of both is typically required for fault reactivation (Fan
et al., 2019).

The sealing or conducting properties are largely determined by clay smear, that is, complex geological structures
that result when clays from layered beds are entrained along a normal fault. Much effort has been devoted to
describe the processes leading to clay smear as well as concepts to describe the amount of clay along the fault,
including clay smear potential (Fulljames et al., 1997), shale gouge ratio (SGR) (Yielding et al., 1997), and shale
smear factor (Lindsay et al., 1992). Within the current work, the probabilistic shale smear factor (Childs
et al., 2007) is also relevant as it is based on probabilistic models to determine the clay distribution that will define
the effective fault permeability. The structural properties, for example, fault thickness, are typically highly
varying (Childs et al., 1990). Petrophysical properties are often not directly measured but estimated via other
properties, for example, permeability as a function of SGR, estimated from well logs (Yielding et al., 1997).

The local fault properties are known only to a limited extent. Seismic imaging cannot resolve the smallest scales,
and measurements typically come with uncertainty. In addition to these objective uncertainties, there are sub-
jective uncertainties due to interpretation of data, as demonstrated in Faleide et al. (2021), where a test‐panel of 20
geoscientists interpreted the same data with varying results. A framework for uncertainty quantification of
seismic imaging, providing detailed maps with confidence indices measuring normalized standard deviations,
was introduced in Barbosa et al. (2020). Recently, uncertainty quantification of the fault structure inferred from
seismic data was performed by means of convolutional neural networks, providing probability distributions of the
faults and demonstrating the partial irreducibility of the uncertainty (Feng et al., 2021). Such purely data‐driven
approaches that avoid assumptions about certain distributions and independence leads to general probabilistic
model descriptions, amenable to the data‐driven framework for dependent uncertainties to be presented here.
Even if increased seismic resolution were possible, it may still not be possible to represent all small‐scale features
within the scale of the grid discretization possible to achieve in numerical simulation. An important source of
uncertainty that is often not taken into account is the frequency of throw variability along a fault, leading to
underestimated uncertainty effects (Manzocchi et al., 2008).

The Vette Fault Zone in the North Sea is a first‐order fault zone, hard‐linked with two distinct basement struc-
tures, and considered a suitable test case in this paper. Structural analysis indicates favorable juxtaposition
properties for sealing under CO2 injection (Mulrooney et al., 2020), and the sealing properties have been further
investigated using seismic interpretation (Michie et al., 2021). A probabilistic fault system stability investigation
with four clay smearing scenarios resulted in estimates for system failure probability between 10− 4 and 10− 3

(Rahman et al., 2021). A comparison between a stochastic geocellular model and a fault smear model for the Vette
Fault Zone demonstrated limited potential for fluid flow (Bjørnarå et al., 2022). Fault seal analysis results based
on real SGR data derived from local shale values that in turn were estimated from gamma ray well logs were
presented in Michie and Braathen (2024), where it was emphasized that SGR values come with uncertainties
stemming from the gamma ray logs.

Comprehensive uncertainty quantification of fault properties is paramount; deterministic base‐case simulations
often come with order(s) of magnitude errors, and improved measurements of a single source of uncertainty have
a limited effect on the accuracy of predictions (Freeman et al., 2008). While a stochastic fault model in itself does
not reduce the uncertainty, it provides a quantitative measure and a means to improve predictions. Stochastic
modeling of faults amounts to characterization and representation of both the fault core and the surrounding
damage zone. First, a structural model needs to be established, for instance using a fault facies model where the
fault is divided into discrete geometric objects, each with its own petrophysical properties and different domi-
nating features (Braathen et al., 2009). The properties of the damage zone of the fault structure is typically

Water Resources Research 10.1029/2024WR038073

PETTERSSON ET AL. 2 of 28

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038073 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



dominated by the spatial distribution of deformation bands, and any model of those should honor empirical data
(Berge et al., 2022; Schueller et al., 2013). Simulation methods for the spatial distribution of lenses in the fault
core and deformation bands in the damage zone are described in Kolyukhin and Tveranger (2015).

Unknown subsurface properties, large spatial and temporal scales, in combination with complex physics has
motivated uncertainty quantification in simulation of underground CO2 storage. A concept for data‐driven
polynomial chaos expansions to represent uncertainties in reservoir properties was demonstrated to outperform
Monte Carlo simulation (Oladyshkin et al., 2011), but did not consider dependencies between input parameters.
Correlation between homogeneous reservoir permeability and porosity was accounted for using the Nataf
transformation to two independent Gaussian random variables, allowing for application of the classical poly-
nomial chaos expansion combined with systematic basis selection, resulting in accurate CO2 plume migration at
competitive computational speed (Y. Zhang & Sahinidis, 2013). A vertical‐equilibrium CO2 migration model
with discontinuous coefficients was combined with polynomial chaos and adaptive integration and showed
consistent results, but is limited to a small number of input random variables due to the computational cost
(Pettersson, 2016). A similar spectral expansion method in random variables with known and independent dis-
tributions was used together with Bayesian methods for uncertainty quantification in CO2 storage (Jia
et al., 2018). Polynomial chaos expansions in general are confined to a relatively small number of random
variables, and it is not straightforward to accurately take dependencies between variables into account within this
framework. In addition, in cases where the flow is affected by the presence of faults, the uncertainties in fault
properties cannot easily be quantified in terms of a moderately sized set of independent random variables.
Methods based on Monte Carlo sampling are, in general, less sensitive to the number of input random variables, as
demonstrated for faults (Rahman et al., 2021) and long‐term fate of CO2 trapping (Alcalde et al., 2018). However,
the statistical errors of these methods converge slowly in the number of samples unless techniques for acceleration
are employed, for example, adaptivity or variance reduction.

The goal of this work is to provide a competitive uncertainty quantification framework that can handle and
accurately represent dependent physical data from faults and reservoirs, honoring statistical and physical prop-
erties. This framework relies on stochastic adaptivity to improve significantly on standard Monte Carlo (SMC)
sampling, while being less sensitive to the number of random dimensions than, for example, spectral expansions
or grid‐based stochastic methods. We aim to demonstrate the importance of stochastic models that honor the
underlying physics, and provide geophysicists and geologists with tools to gain further physical insights, for
example, by replacing the fault model with their own data. We consider uncertainty of fault properties with regard
to pressure communication, fluid flow, and leakage. Geomechanical aspects will not be considered, although we
recognize that fault mechanics is an equally important area of uncertainty to quantify.

2. Conceptual Approach
In the context of large‐scale CO2 storage simulation, we are faced by a large number of possibly dependent
uncertainties interacting with significant physical complexity. We present a framework for handling this situation,
illustrated in Figure 1 and explained below. To fix notation, we aim to perform uncertainty propagation (UP) for a
physical model, denoted by M, subject to uncertainties. Specifically, the considered physical model M is a dy-
namic simulation model that depends on physical parameters η = (η1, …, ηd) , for example, permeability and
relative permeabilities. Furthermore, M will also depend on stochastic variables Y = (Y1, …, Yn) to account for
the uncertainties affecting the physical problem. These stochastic and physical parameters' dependency is
highlighted by the notation M(Y, η). This distinction indicates whether the current focus is on physical or sto-
chastic models. However, the two are clearly intertwined in that a physical parameter ηi can be uncertain (say, a
fault permeability is a function of unknown fault properties), which we write as ηi = ηi(Y). For a particular
realization of Y and η, the model M(Y, η) is used to compute a prediction (e.g., leakage rates) of the physical
system. Such an output quantity, denoted Q, also depends on Y and η. Our UP approach in this work focuses on
computing statistical properties μQ, in particular the expected value, of Q ≡ Q(Y, η), in short

μQ = UP(M(Y, η)). (1)

While dynamic simulation models for fluid flow through faults in theory can be coupled with reservoir flow
simulation, there are three main reasons to refrain from this path. First, resolving the complex geometry of the
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fault will lead to a prohibitively high computational cost of the dynamic model M. Second, instead of randomly
sampling existing data as input to the dynamic modelM, it is often more efficient to first assign or fit a stochastic
model for the input distributions. Third, for scarce data, as will often be the case for geological uncertainty, it may
be desirable to add further stochastic modeling assumptions that also need to enter the model, for example, an
assumed but unobserved upper bound on data. Therefore, in this work we have chosen to treat uncertainty in fault
parameters separately from those of the reservoir, as is indicated in Figure 1, where the two are represented
through random variables Yfault and Yformation, respectively.

As will be explained in detail in Section 3, we express fault‐related uncertainty through upscaled random variables
Yfault as illustrated in the left panel in Figure 1. While the upscaling itself follows a standard approach (Rabinovich
et al., 2016), which is described in Section 3.2, the coarse‐scale flow functions are represented by a stochastic
model employing copulas, see Section 3.4 for details. Copulas comprise a statistical modeling framework that is
suitable for representation and analysis of multivariate (in particular dependent) data. Since the seminal work in
Joe (1996), building upon the results in Sklar (1959), copulas have been used in a wide range of applications, see
Bhatti and Do (2019) for a list of examples. Copulas have gained popularity within the water resources com-
munity for analysis of, for example, rainfall data and flood forecasting, as demonstrated by entire monographs
devoted to these topics (Chen & Guo, 2019; L. Zhang & Singh, 2019). To our knowledge, however, copulas have
not yet been employed to parameterize uncertainties in fault properties to be used for forward propagation of
subsurface flow properties. There are different parametric families of copulas, each with their own tail depen-
dence, that is, modeling to what extent an extreme event in one variable is correctly paired with an extreme event
in another variable. This is an important feature in the context of CO2 storage where extreme behavior, for
example, leakage, is of particular interest (Elsheikh et al., 2014; Pettersson et al., 2022).

The copula representation of Yfault together with a model for Yformation, which we will represent by simple ap-
proaches as detailed in Section 6, form the input to the uncertainty propagation (see Figure 1). One can distinguish
between random sampling methods or statistical methods on the one hand, and deterministic uncertainty prop-
agation methods on the other hand. The former includes variants of Monte Carlo methods, for example, Latin
hypercube sampling (McKay et al., 1979), multilevel Monte Carlo (Giles, 2015), and importance sampling
(Kloek & van Dijk, 1978), while the latter family of methods includes Quasi‐Monte Carlo (L'Ecuyer &
Lemieux, 2002) and generalized polynomial chaos via projection (Xiu & Karniadakis, 2002) or stochastic
collocation (Babuška et al., 2007). Whether statistical or deterministic, there is typically a trade‐off between
robustness and theoretical accuracy. The computational complexity of the different groups of methods grows

Figure 1. Overview of methodological framework. A stochastic geocellular fault model is upscaled (left panel) and a stochastic model is fitted to the upscaled samples
(upper center panel). Together with models for other sources of uncertainty, the uncertainties are adaptively propagated through a physical model via random‐space
stratification (lower middle panel). Expectations of quantities of interest are anticipated to have lower variance compared to standard Monte Carlo estimates (lower right
panel).
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more or less with the number of random dimensions and, to some extent, the dependencies between random
inputs. For the current work, non‐intrusive random sampling methods are attractive as they do not require
modifications of existing physical solvers, and they typically scale well with the number of random dimensions.
In addition, the UP method selected should not impose regularity requirements on the quantity to be
approximated.

For uncertainty propagation from random inputs to the quantities of interest, that is, μQ introduced in Equation 1,
we will use the adaptive stratified sampling method presented in Pettersson and Krumscheid (2022), where
samples are adaptively concentrated to regions in input random space that has a large impact on the quantity of
interest. The method is sampling‐based and does not assume apriori knowledge about what inputs have the
greatest impact. It performs best when the variability is localized to a small subset of random variables, or the
variance is localized to a subdomain that may not have smaller dimension than the full stochastic space. Related
methods that build upon adaptive sampling and stratification include (Étoré et al., 2011; Krumscheid & Pet-
tersson, 2023; Shields, 2016; Shields et al., 2015). The adaptive stratified sampling method employed here is
further described in Section 4.

For the dynamic model M in Equation 1, we utilize existing simulation tools that model large‐scale CO2 storage
and thus treat the simulator as a black‐box model. Commercial simulators like Eclipse and Intersect from SLB,
and GEM from the CMG group, have dedicated CO2 modules, as have open‐source simulators like DuMuX
(Flemisch et al., 2011), GEOX (Gross & Mazuyer, 2021), MRST (Lie, 2019), TOUGH2 (Pruess, 1991) and OPM‐
Flow (Alvestad et al., 2021). Developing simulation tools is not the focus of this study and we use the OPM‐Flow
simulator, which has a dedicated CO2 module, supports standard industry input/output formats, and is fast and
free to use (Sandve et al., 2021, 2022). The latter points are critical for uncertainty quantification, as we will need
to run a large number of simulations with varying inputs η and Y. It is noteworthy that OPM‐Flow can account for
all relevant fluid flow processes involved in field‐scale CO2 storage in faulted reservoirs, and connected aquifers:
CO2 injection, migration and trapping within the storage formation, along and cross‐fault pressure communi-
cation and fluid flow.

We test our methodology consisting of stochastic upscaling together with copula representation and further
stochastic modeling, and adaptive stratified sampling, on the Smeaheia formation in the North Sea, where the
framework will be applied to quantify leakage from the Vette fault zone. We base the physical model on the
reservoir data set openly available from CO2Share (https://co2datashare.org/), but extend it to include aquifers
that are connected to the reservoir through vertical and horizontal flow in the Vette fault zone. The upscaled
stochastic two‐phase flow functions specific to the Vette fault are constructed in Section 3. These functions
depend on Yfault, that is, they reflect uncertainty in the fine‐scale distribution of facies within the fault based on
available data and a standard fault facies model. Uncertainty in the formation parameters, Yformation, is introduced
in Section 6, where we also present simulations probing the performance of the stochastic framework. The ob-
jectives of this work include demonstration of how the upscaled stochastic flow functions can be included in a
reservoir model, and that our sampling strategy gives substantial improvements compared to SMC methods. The
methodological components are not limited to the models selected, and hence more widely applicable.

3. Stochastic Fault Model
Here we describe a stochastic modeling framework for the fault properties on the fine‐scale and how these
quantities can be upscaled for use as stochastic input for the reservoir simulator. This amounts both to derive
parameters for a physically coarser scale, and simultaneously reduce the stochastic complexity by reducing the
number of random parameters. While the derivation uses advanced stochastic modeling, the goal is effective
stochastic flow functions where each realization is compatible with and has a format similar to what would have
been expected in a deterministic model.

We split the stochastic fault modeling into three stages: First, the fine‐scale geology within the fault is described in
terms of a geocellular fault facies model with a stochastic description of the distribution of facies, as well as of
their flow properties as we describe in Section 3.1. Next, we generate realizations of the fine‐scale geometry and
compute upscaled permeabilities, and capillary and relative permeability functions valid for the entire fault, see
Sections 3.1 and 3.2, respectively. The final stage entails the representation of the upscaled quantities in a format
suited for the stochastic sampling of the field‐scale model described in Section 4. In practice, this means the
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coarse‐scale models should be expressed in terms of independent stochastic variables with known distributions,
which is the assumed format for most uncertainty propagation methods.

The coarse‐scale absolute permeability can relatively simply be brought into a suitable form, again see Sec-
tion 3.1. For the two‐phase flow functions the situation is more challenging, partly reflecting the additional
complexity of stochastic functions compared to that of constants (e.g., absolute permeability): Upscaling from
fine‐scale realizations produces point clouds of possible two‐phase flow properties, which can be represented by
equivalent probability distributions that consider only coarse‐scale properties, as shown in Section 3.3. This
removes the link to the fine‐scale model, however, the variables in the stochastic model are statistically
dependent. These dependencies can be incorporated into the modeling framework by using so‐called copulas, as
is done in Sections 3.4 and 3.5.

While arguably complicated, the presented approach has two main advantages compared to applying a more
direct coupling between the stochastic fine‐scale geology and the field‐scale simulations: First, properties such as
dimension, variability, and heterogeneity of the stochastic fault facies model will not be seen directly by the field‐
scale reservoir model. Thus, advanced stochastic descriptions of fault facies can be applied and the added
computational effort will only be seen in an offline stage, which is often cheap compared to field‐scale simu-
lations. Second, the modularization allows for applying different level of sophistication for the individual
components. For instance, the analytical upscaling described in Sections 3.1 and 3.2 could have been replaced by
numerical upscaling. Although this may also necessitate modifying the coarse‐scale stochastic modeling to avoid
incurring modeling errors in that step (a more complex stochastic model may be needed), there is still further
significant flexibility in how our framework is implemented. For instance, a different fine‐scale model can be
used as long as it is possible to produce independent samples, and the coarse‐scale parameters are not assumed to
be independent or belong to any specific class of distributions. Indeed, we expect this flexibility to be particularly
useful in the stochastic modeling, since the coarse‐scale properties to be represented may vary significantly with
the fine‐scale model.

3.1. Stochastic Modeling of Fault Facies Distribution

As a simple non‐trivial example of a stochastic fault‐facies geocellular model, we consider a model based on the
work presented and validated against a reference model (with less than 8% error using a 95% confidence interval)
in Bjørnarå et al. (2021). The model consists of facies, or geocells, that are stacked on top of each other. The
geological properties are assumed constant within each cell, and can vary discontinuously between cells. The
geometric distribution of facies is assumed to only vary in the vertical direction, while the facies flow properties
can be expressed in terms of the SGR, which is constant within each facies. SGR is a function of fault throw and
local clay volume fraction Vc, j in the jth reservoir zone with thickness Δzj, that is,

SGR =
∑jVc, jΔzj

throw
× 100%,

as defined in the seminal work in Yielding et al. (1997). For the Vette Fault Zone, SGR can be obtained from data
as follows. The Vette fault throw and juxtaposition can be obtained from seismic interpretation (Michie
et al., 2021; Mulrooney et al., 2020). A gamma ray log from a well located in the relative proximity of the hanging
wall of the fault is then converted to clay contents values, as described in Bjørnarå et al. (2023). The SGR values
can then be obtained from the expression above. For details on how to obtain SGR data for the Vette Fault Zone,
we refer to Michie and Braathen (2024). The range of SGR values is confined to the interval [0, 100], where the
endpoints correspond to pure sandstone (SGR= 0) and shale (SGR= 100). The model assumes that the total fault
height H and the number of facies Nfacies is known. The interior boundaries between the facies are assumed to be
uniformly distributed around expected locations that are equidistant on [0, H]. The assumption of no variation in
the horizontal direction means that a realization of the fault geometry can be expressed in terms of a one‐
dimensional model. The SGR distribution of a given facies is assumed to be independent of the other facies
and to follow a Gaussian distribution with mean given by interpolation of the depth‐dependent synthetic data
shown in Figure 2, and an assumed standard deviation of 14 percentage points (Bjørnarå et al., 2021; Freeman
et al., 2008). Due to data protection policy, we do not have direct access to SGR data, but use the synthetic data
shown in Figure 2 that are assumed to approximate those in Figure 5 (center) in Bjørnarå et al. (2021) and obtained
from real data as described in detail in Michie and Braathen (2024). We note that the distributions can be non‐
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Gaussian and obey different distributions across the geocells without affecting the upscaling method. The
probability of this model yielding results outside the interval [0, 100] is assumed to be negligible. In total, the
model has 2Nfacies − 1 random variables as inputs.

For each facies j ( j = 1, …, Nfacies) , there are various functional relationships to obtain permeability kj from the
corresponding SGR, denoted SGRj. For instance, in Bjørnarå et al. (2021), where the permeability within facies j
is assumed constant, the relationship

log(kj) = 0.01 ⋅ SGRj ⋅ log(kc/ks) + log(ks), (2)

was given, where kc is the permeability of clay‐rich shale, and ks is the permeability of sandstone. Other functional
relationships between SGR and permeability are summarized in Jolley et al. (2007), and a general discussion of
methods for approximating the effect of clay content on fault permeability is provided in Fisher and Jolley (2007).
In this work, we make the modeling decision to consider kc = 1 mD as in Bjørnarå et al. (2021), as well as
kc = 0.001 mD and kc = 0.0001 mD based on the observation that many SGR‐permeability models in the
literature yield substantially lower output values than Equation 2 with kc = 1 mD. For other SGR models that have
been tested, the results aligned well with the stochastic modeling framework to be presented in this work, in the
sense that the models themselves were different but of similar complexity and similar goodness‐of‐fit.

The upscaled uncertain permeability K is computed from the weighted harmonic mean,

K =
∑Nfacies

j=1 hj
∑Nfacies

j=1
hj
kj

, (3)

where hj, kj are the random height and permeability of facies j for j = 1, …, Nfacies. In the case of single‐phase
flow, the permeability can be represented by a single random variable that does not depend on any other
random variable. To enable conditional sampling of the permeability (e.g., random sampling restricted to a
subrange of the random variable), an empirical or parametric distribution (e.g., beta or lognormal) can be fitted to
a large set of permeability samples. Conditional samples are then obtained from F− 1

fit.dist.(u), where F− 1
fit.dist. denotes

the inverse cumulative distribution function (CDF) of the fitted distribution, and u is drawn uniformly from a
subset of [0, 1].

Empirical histograms, approximating the probability density functions (PDFs) for the permeability obtained from
Equation 3 and the three SGR‐permeability models are shown in Figures 2b–2d. An alternative to deterministic
and fixed values of kc and ks is to account for the uncertainties in the composition by modeling them as random
variables, but this approach will not be further investigated here.

Figure 2. (a) Mean shale gouge ratio (SGR) based on synthetic data modeling the Vette fault. Upscaled permeability distributions from Equations 2 and 3, and different
clay permeabilities: (b) kc = 10− 4 mD; (c) kc = 10− 3 mD, and (d) kc = 1 mD. SGR assumed to follow a Gaussian distribution with a standard deviation of 14% for all
cases.
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3.2. Upscaling of Two‐Phase Flow Functions

Similar to the absolute permeability, the fault relative permeability and capillary pressure functions will be
stochastic due to their dependency on the stochastic fine‐scale facies. However, since the modeling of the
upscaled quantities must capture stochastic functions rather than just a number, as was the case for the absolute
permeability, the task is more involved.

For the computations presented herein, the fine‐scale capillary pressure function is computed from a Brooks‐
Corey function (Brooks, 1965). Assuming that the entry‐pressure scales with the square root of permeability
(Leverett, 1941) the entry‐pressure in a geocell can be computed from the permeability in the geocell kcell and the
entry‐pressure ps,entry and permeability ks in the sand as

pcell, entry = ps,entry ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅
ks/kcell

√
. (4)

Thus, as for the absolute permeability, the fine‐scale capillary pressure is a stochastic function of the SGR. The
relative permeabilities are not stochastic on the fine scale, but will be so on the coarse scale due to the dependency
of the fine‐scale geometry and permeability distribution. For the fine‐scale simulations herein, we use
ps, entry = 2.5 kPa and Brooks‐Corey exponent of 0.67. These are values computed to fit the capillary‐pressure
values in the Smeaheia data set (see Section 5.2).

To compute upscaled two‐phase flow functions for a given facies distribution, here we assume that the phases are
in capillary equilibrium. While this is a strong assumption that may be of questionable validity, for example, in
cases where viscous forces have significant impact on the flow, it allows for analytical upscaling of relative
permeabilities and capillary pressure. Specifically, we follow the approach described in Rabinovich et al. (2016),
which for completeness is summarized in a form tailored to the setting considered here in Appendix A. The result
is a set of discrete values for the flow functions, in the sense of point values for permeabilities, and the corre-
sponding values for capillary pressures, saturations, and relative permeabilities parametrized via the deterministic
parameter sd. This is related, but not equivalent, to a fine‐scale saturation at which the flow functions are sampled;
see the appendix for an explanation.

3.3. Reduced Multivariate Stochastic Model for Flow Functions

We apply the upscaling described in Section 3.2 to a set of realizations of the fine‐scale fault geometry, using the
same realizations as those used to upscale permeability. Five coarse‐scale flow functions are needed as input to
the model M for the case of two‐phase flow: permeability K, capillary pressure Pc, saturation S, wetting relative
permeability Kw

r , and non‐wetting relative permeability Knw
r . A large number of random samples of the coarse‐

scale flow functions evaluated at various deterministic fine‐scale saturation values sd can be generated at
negligible computational cost. The random flow functions are so far parameterized via the 2Nfacies − 1 random
variables, but the upscaling implies that the stochastic dimensionality may be reduced to obtain a more succinct
representation which is anyhow the format effectively accepted by the coarse‐scale simulator.

The stochastic representation of coarse‐scale properties deviates from what would be expected of two‐phase flow
functions in a traditional deterministic modeling framework. First, the model expresses the coarse saturation as a
function of sd on the same level as the capillary pressure and relative permeabilities. This is contrary to deter-
ministic modeling, where the saturation is considered an independent variable, and the capillary pressure and
relative permeability are functions of this saturation. This is simply a consequence of the combination of the fine‐
scale stochastic description and the upscaling procedure; as will be seen, the coarse‐scale flow functions have the
expected dependency of saturation, albeit in a stochastic sense, but deriving this relation is not straightforward.
Second, although the absolute permeability is not a deterministic function of saturation, nor of the two‐phase flow
functions, there is a clear random dependence between these parameters, as will be shown below.

Without any further conditions, the appropriate a priori model of the parameter quintuple K, Pc, S, Kw
r , Knw

r
would be a five‐dimensional stochastic process in sd, for instance, parameterized by a vector‐valued Karhunen‐
Loeve expansion with suitable covariance structure (Perrin et al., 2013). Such a representation would, however,
still be complex and with a substantial computational cost and may not guarantee physically relevant output.
These considerations therefore motivate us to search for a different method. As we will demonstrate below, the
data are indeed well represented by a multivariate random variable model with five distinct but dependent random
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variables, whose distributions are to be determined to match data at some user‐defined value of sd, henceforth
denoted s0d. We then seek functional relationships to make sure the model matches the data for all relevant values
of sd. Ultimately, such a model is fully and sufficiently motivated by presenting an acceptable goodness‐of‐fit and
showing that it cannot be further simplified. Nevertheless, we find it instructive to illustrate the model choice via
the data we seek to fit as follows. To that end, we generate Nref = 10,000 samples of the coarse‐scale flow
functions evaluated on each of 21 values of sd on the unit interval. Note that we have adapted the discretization to
the scale of the sd‐axis, but in all numerical experiments we stick to the logaritmically spaced discretization that is
denser for small values of sd. The computation is done for three different values of kc, and the results are shown in
Figure 3.

The upscaled permeability is not a function of sd, but so are the remaining four coarse‐scale functions. We first
seek to characterize the dependence on the deterministic parameter sd, and subsequently the residual is param-
eterized by random variables. As can be seen from Figure 3, for all values of kc there is a very good log‐linear fit of
the mean of the capillary pressure with respect to sd. We note that the values taken by the capillary pressure at any
two different values of sd are perfectly correlated, that is, the same single random parameter models all
randomness in the capillary pressure.

The upscaled saturation and wetting relative permeability share some characteristics that make the stochastic
modeling challenging. The randomness in each of them exhibits positive but not perfect two‐point correlation
(where perfect correlation means that the random outcome at any given value of sd completely determines the
value at any other value of sd). This lack of perfect correlation is due to crossing of sample paths, where a sample
path here is to be understood as the flow function traced out by keeping the random variable it is dependent upon
at a fixed value, and varying sd only. To be more specific, saturation sample path crossing means that there are two

Figure 3. Visualization of random data (black dots) as support for stochastic modeling choices. Red curves indicate the means of the data. For ease of visualization,
equidistant discretization of sd is used for capillary pressure and non‐wetting relative permeability, and a log‐scale discretization of sd for saturation and wetting
permeability. (a) kc = 0.0001 mD (upper row), (b) kc = 0.001 mD (middle row), and (c) kc = 1 mD (lower row).
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different values of sd, say sd = s′ and sd = s′′ (i.e., with s′ ≠ s′′), and two distinct random samples Y(m) ≠ Y(n), for
which we have for the saturation S that S( s′, Y(n))> S( s′, Y(m)) and S( s′′, Y(n))< S( s′′, Y(m)) . A suitable para-
metric stochastic model should reflect the correlation while ensuring that the output is monotone in sd to be
compatible with the physical interpretation, and within physically relevant bounds, for example, the unit interval
for saturation and relative permeabilities. Finally, the mean of the upscaled non‐wetting relative permeability Knw

r
can be approximated by a piecewise linear function in sd. There is nearly perfect correlation in the randomness of
this function, and it can be parameterized with a single random variable and a small correction for unphysical
values that occur with small probability. These properties would become more clear by plotting Knw

r as a function
of sd, but we have chosen to plot Knw

r as a function of log(sd) in Figure 3 for visibility of the full range of sd.

Based on the above considerations and the observed data, an appropriate stochastic model for the upscaled pa-
rameters is given by

K = exp(Y1), (5)

log(Pc (sd)) = aPc
+ bPc

log(sd) + Y2, (6)

log(S(sd)) = F− 1
Y3, sd

(TSsd FY3(Y3)), (7)

log(Knw
r (sd)) = F− 1

Y4, sd
(TK

yw
r

sd FY4(Y4)), (8)

Knw
r (sd) =

⎧⎨

⎩

1 + (aKnw
r
+ bKnw

r
Y(sd)5 ) sd if sd ≤ s0d

0 if sd > s0d
(9)

with

Y(sd)5 = {
Y5 if Y5 ≥ − (1 + aKnw

r
sd)/(bKnw

r
sd)

− (1 + aKnw
r
sd)/(bKnw

r
sd) if Y5 < − (1 + aKnw

r
sd)/(bKnw

r
sd)

where {Yj}5j=1 is a set of five dependent random variables, to be estimated from data. Due to the orders‐of‐
magnitude variability of permeability an exponential relationship has been employed, although this is not
necessary in a conceptual setting. In addition, we note that the log transformations in Equations 7 and 8 are not
necessary, but they do make sure that the output values are positive.

Here, FY3
(and FY4

) denotes the CDF of a given random variable Y3 (and Y4), where the dependence on sd = s0d has

been suppressed for brevity of notation. The notation TSsd (and TK
w
r

sd ) denotes a mapping from the unit interval to the
unit interval, to account for correlation between data of S (and Kw

r ) at s0d and other values of sd. The purpose of the
latter is to account for the fact that sample paths of S or Kw

r (as functions of sd) can cross each other (i.e., a sample
path of S crosses another path of S). The mapping TSsd is constructed as follows, aiming to reflect the underlying
stochastic dependencies. Recall that we have chosen a fixed sd = s0d as reference for the parameterization of the
random variables {Yj}5j=1, that is, we will use data for this particular value s0d only to define and estimate the joint

distributions of {Yj}5j=1. Any value of sd can be chosen for this purpose, but it is natural to choose the smallest

considered sd as a starting point for a random process. The upscaled data at s0d are then sorted to be used as a
reference order. For any target sd > s0d, the data are sorted locally with respect to the reference data at s0d. If no
crossing of sample paths has occurred, the reference and target indices will be identically ordered, and TSsd would
be the identity operator. In general, the order of indices will differ, and a one‐to‐one mapping between them is
given by pairing entry by entry in the order of appearance. The range and domain of the mapping can both be
normalized to the unit interval to reflect the fact that we want to map between the ranges of cumulative distri-
bution functions. It is however practical to consider an integer‐index discretization as follows. Let I be the indices
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permuting the reference data to the target data, and I− 1 the indices that define the inverse mapping. We then
introduce the approximation

TSsd FY3(Y3) ≈ N− 1
refI− 1 [Nref FY3(Y3)],

where double brackets denote integer rounding. Thus, the model TSsd approximates the two‐point correlation
present in the data, which is not stationary, that is, the correlation depends on the actual values of sd, and not just
the difference between any two points.

The mapping F− 1
Y3, sd

is given by the inverse of the empirical CDF at any given value of sd, and ensures that the

pointwise distribution approximates that of the underlying data. Hence, the accuracy of both the mappings TSsd and
F− 1
Y3, sd

grows with the number of reference samples Nref . The discretization of the model for Kw
r is completely

analogous to that of S.

To summarize the above considerations, the stochastic facies description and upscaling method applied here,
results in an upscaled stochastic model that can be described by relatively simple functional forms. We emphasize
that changing either the facies description or the upscaling procedure may necessitate a new analysis of the
upscaled model, and the stochastic model may take a different form, but the basic modeling paradigm and steps in
the calculation remain the same.

3.4. Copula Models and Transformations for Multivariate Distributions

The stochastic upscaled model Equations 5–9 provides a probabilistic description of the fault flow function in
terms of coarse‐scale parameters. However, the random variables {Yj}5j=1 do not follow known distributions, nor
are they independent. Both conditions are necessary for the model to be amenable to the computational uncer-
tainty propagation method applied below. We therefore parameterize and transform our stochastic model, using a
combination of two techniques: First, copulas are employed to derive a stochastic model which honors the data,
and have the attractive features of separation of dependency structure and marginal distributions, and a param-
eterization of (albeit dependent) uniform distributions on the unit interval. Second, dependencies between the
uniform variables are handled by transforming them to independent uniform variables using the inverse Rose-
nblatt transform (Rosenblatt, 1952). Thus, the model provides an accurate mapping between standard and in-
dependent uniform random variables suitable for uncertainty propagation methods, and physically accurate
random flow functions in the correct format for input to a reservoir simulator. The application of both copulas and
Rosenblatt transformations are described in some detail below, starting with an outline of copula construction of
multivariate distributions.

According to Sklar's theorem (Sklar, 1959), any multivariate CDF FY ( y1, …, yn) of the random vector
Y = (Y1, …, Yn) with marginal CDFs FY1( y1), …, FYn( yn) can be expressed as

FY ( y1, …, yn) = CY (FY1( y1), …, FYn(yn)), (10)

where CY is a so‐called n‐copula. Differentiating the above expression and using the notation
cY (u1, …, un) ≡ ∂u1

…∂unCY (u1, …, un) , the joint PDF can be written,

fY ( y1, …, yn) = cY (FY1( y1), …, FYn( yn))∏
n

j=1
fYj( yj),

where cY is the copula density function, and fYj( yj) denote the marginal PDFs of the individual random variables
Y1, …, Yn. The copula framework separates the multivariate dependence properties described by the copula from
the modeling of the marginal distributions. There are several commonly used families of copulas with different
properties suitable for different kinds of data. Having chosen a suitable copula family, one can use data to estimate
its parameters, and then use the fitted copula model to generate new samples from a multivariate distribution that
approximates the distribution of the original data.
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Vine copulas offer a framework for multidimensional dependence modeling, relying on the use of repeated
conditioning of up to two variables on subsets of all the remaining random variables. This leads to replacement of
a multivariate function by a factorization into members of families of standard bivariate copulas (Bedford &
Cooke, 2002). The literature on high‐dimensional copulas is more limited than that on bivariate copulas, and
existing high‐dimensional copulas can fail to correctly capture tail dependence, that is, extreme behavior in
several variables simultaneously. Conditioning on bivariate copulas also adds flexibility in the sense that different
families of copulas can be used for different subsets of variables, allowing for a more accurate fit (Aas &
Berg, 2009). For more details and an illustrative example of exact copula factorizations for three random vari-
ables, we refer to Czado and Nagler (2022). Note that the copula factorizations are exact, but in practice each
bivariate distribution is estimated from data, introducing an approximation error. Using data, both an appropriate
vine copula factorization, bivariate copulas, and marginal distributions can be estimated. Pair‐copula modeling, to
which the class of vine copulas belong, are suitable for relatively high‐dimensional modeling with the number of
pair‐copulas to be estimated being equal to n(n + 1)/2 (Aas & Berg, 2009). However, this can become
computationally prohibitive if the number of degrees of freedom from a large number of candidate models
become very large (Brechmann & Schepsmeier, 2013). To remedy the computational cost and avoiding over-
fitting in the absence of large sets of data for those cases, sparse copulas partially relying on the use of the
parameter‐free independence copula have been proposed (Nagler et al., 2019).

Once the copula model has been fitted to data, it can be sampled to provide inputs for uncertainty propagation
through a physical model. The random variables Ûj = FYj(Yj) are uniformly distributed on the unit interval (0,1),
but they are, in general, not independent. For efficient coupling with many uncertainty propagation methods, a
mapping between {Ûj}

n
j=1 and a set of independent uniformly distributed random variables {Uj}

n
j=1 is required.

Such a mapping is offered by the inverse of the Rosenblatt transformation (Rosenblatt, 1952), from the condi-
tional variables {Uj} to the marginals {Ûj} which are the arguments of the copula Equation 10. Specifically, we
have the two sets of random variables:

Û1 = FY1(Y1), U1 = FY1(Y1),

Û2 = FY2(Y2), U2 = FY2|Y1(Y2|Y1),

⋮ ⋮

Ûn = FYn(Yn), Un = FYn |Y1, …, Yn− 1(Yn|Y1, …, Yn− 1).

The output from the inverse Rosenblatt transformation then gives a means to express the target random variables
{Yj}nj=1 as a function of the parametric input distributions:

Y1 = F− 1
Y1
(U1),

Y2 = F− 1
Y2|Y1

(U2|Y1),

⋮

Yn = F− 1
Yn|Y1, …, Yn− 1

(Un|Y1, …,Yn− 1).

3.5. Results: Copula Fit for Upscaled Flow Functions

The upscaling model described in previous sections is used to generate Nref = 10,000 samples of the dependent
random variables {Yj}5j=1 given by Equations 5–9, and also as shown in Figure 3. These samples are treated as data
to which a copula model is fitted to allow targeted sampling and application of various uncertainty propagation
methods. The Python interface pyvinecopulib to the C++ vinecopulib package (Czado & Nagler, 2022; Nagler
et al., 2022) is employed for this objective, resulting in copula models defined by the tree structures illustrated in
Figure B1 in Appendix B. The tree structures provide efficient representations for storage and further sampling
and show which pairs of random variables exhibit the strongest dependencies. For all three values of clay
permeability, the dependence structure is the same, that is, the nodes and edges are identical. This particular tree
structure is referred to as a D‐vine (Direct vine) in the literature. The bivariate copulas describing the kind of
dependence between the pairs of variables differ between the cases. For the majority of them, there are no suitable
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parametric copulas and instead a nonparametric transformation local likelihood (TLL) copula that uses a dis-
cretization based on data has been assigned. More details are provided in Appendix B.

It is of interest to illustrate the effect of representing the upscaled model in the form of copulas, and also to show
the final stochastic flow functions in a form that is comparable with traditional deterministic modeling. Figure 4
plots the capillary pressure and relative permeability as functions of the saturation. The figure shows both data
upscaled from fine‐scale realizations and data sampled from the copula model, using different values of clay
permeability kc in Equation 2. We emphasize that since the samples are drawn independently from the two
distributions (upscaled data vs. copula model), they will not exhibit a one‐to‐one relation. However, for a suf-
ficiently large sample size, the generated point clouds should have a similar shape. We observe that, although
there are some discrepancies, there is a good agreement between the results from the fine‐scale and the copula
model. The plots indicate that the stochastic flow functions take forms that are reminiscent of what would be
expected from a deterministic model.

As a second illustration and as a measure of similarity between the underlying and the modeled distributions, we
show estimated PDFs for the capillary pressure and wetting relative permeability, both as functions of saturation,
for the three values of kc. Contour plots of kernel density estimates of the PDFs of the upscaled data and equally
many samples from the estimated copula and inverse Rosenblatt transformation of independent uniform samples
are shown in Figure 5. The figure axes are scaled to include the whole range of observed data, which can be sparse
in certain regions, leading to a localization of the estimated PDFs to a small subregion of the figure. Since the PDF
is a point value, we consider a fixed value of sd = 0.5, and note that a different value would imply a different PDF.
For this value, the non‐wetting relative permeability is zero, and PDFs are shown only for capillary pressure and
wetting relative permeability as functions of saturation. Again, we observe a good agreement between the data
generated from the fine‐scale and the copula model. Moreover, a comparison of the results for the three kc values
shows that, both the capillary pressure and wetting relative permeability versus saturation functions have PDFs
with relatively similar shape for the two smaller values of kc. For kc = 1 mD there are significant differences in the

Figure 4. Upscaled and copula models of capillary pressure and relative permeabilities as function of saturation. The coloring of the data runs from low deterministic
entry pressure (light blue/red) to high entry pressure (dark blue/red). The mean values of the data are shown in black. (a) kc = 0.0001 mD (upper row), (b) kc = 0.001
mD (middle row), and (c) kc = 1 mD (lower row).
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shape of the PDFs and in their expected values (marked with red crosses in Figure 5). In particular, the wetting
relative permeability versus saturation exhibits marked differences in the shape of the PDF for the different fine‐
scale facies properties, in particular due to the proximity to the upper bound Kw

r ≤ 1 for kc = 0.001, 0.0001 mD.

Figures 3–5 indicate good fits with respect to data of the copula model. Many UP methods take independent (and
often uniform) random variables as inputs, and the properties of the output as a function of those inputs will
typically determine the performance of the selected UP method. Before presenting the UP method, it is therefore
instructive to visualize the five upscaled model outputs as functions of Uj, j = 1, …, 5. Figure 6 depicts all
upscaled flow functions of all combinations of pairs of the first three independent uniforms {Uj}

3
j=1, where the

remaining random variables are kept fixed at 0.5. The remaining seven combinations of all pairs of {Uj}
5
j=1 are

exhibiting similar patterns, and are therefore not included. The results are shown for kc = 0.0001 mD and sd = 0.5
only. Other values of sd would give different plots, but some general observations will be useful. The upscaled
non‐wetting relative permeability is identically zero for this value of sd and hence displays no variance at all,
whereas upscaled capillary pressure varies in all input variables. The wiggles in upscaled saturation are not
spurious oscillations but a consequence of the nonlinear mapping TSsd in Equation 7. Although these qualitative
observations do not make it apriori clear what an optimal UP method would be, they do indicate that a method that
is insensitive to irregular features and that can exploit localization in random space may be a suitable choice for
the problems of interest. Figure 6 indicates that there will be large regions of the input parameter space where the
flow functions do not vary, and hence there would be no variation in an output quantity of interest. This can be
exploited by adaptive sampling, placing fewer points in low‐variability regions in favor of denser sampling in
regions with large variability. Adaptive stratified sampling, to be described next, does not rely on regularity
assumptions and is tailored to problems where adaptivity in stochastic space is possible, that is, with localization
of variance. Hence, we believe it is an appropriate choice of method for the problems considered in the current
work.

Figure 5. Estimated probability density functions (PDFs) for sd = 0.5 for the joint marginal distribution of upscaled capillary
pressure and saturation, and upscaled wetting relative permeability and saturation, respectively. The PDFs are estimated
using kernel density estimation from 10,000 samples. Expected values are marked with red crosses. (a) kc = 0.0001 mD
(upper row), (b) kc = 0.001 mD (middle row), and (c) kc = 1 mD (lower row).
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4. Adaptive Stratified Sampling for Uncertainty Propagation
We now briefly outline adaptive stratified sampling and refer the reader to Pettersson and Krumscheid (2022) for
more details. Recalling Equation 1 and suppressing the dependence on physical deterministic parameters η for
ease of notation, letQ = M(Y(U)) ≡ M̃(U) denote the quantity of interest as a function of random input variables
U∈ [0, 1]n where we have assumed that all inputs have been transformed to the unit hypercube, for instance by
means of the Rosenblatt transformation. In SMC sampling, the estimator of the expectation of a quantity of
interest is approximated as

μQ ≡ E(Q) = E(M̃(U)) ≈ Q̂MC ≡
1
N
∑
N

j=1
M̃(u( j)), (11)

where {u( j)}Nj=1 denotes a sample set of size N of standard pseudo‐random samples in [0, 1]n. The variance of the
estimator Equation 11 can be reduced by partitioning the stochastic domain into disjoint strata, and sampling each
stratum independently according to a suitable allocation rule to determine how the sample budget will be
distributed between strata. Common allocation rules include proportional allocation, where the number of
samples per stratum is proportional to the size of the stratum, and optimal allocation, that minimizes variance if
the intra‐stratum variances are known. A hybrid between proportional and optimal allocation provides a good
compromise between robustness and optimality, and will be employed here.

Let S denote the stratification (partition) of the stochastic domain [0, 1]n, with disjoint strata of probability
measure pS for all S∈S. The probability measure or size is allowed to vary between strata. Then, if Nprop

S and Nopt
S

denote respectively the number of samples allocated to stratum S with proportional and optimal sampling, hybrid
allocation corresponds to the allocation rule

Nα
S ≔ (1 − α)Nprop

S + αNopt
S , (12)

for some choice of α∈ [0, 1]. The hybrid stratified sampling estimator is given by

Figure 6. Upscaled flow functions displayed as functions of pairs from the set U1, U2, U3 for sd = 0.5, kc = 0.0001 mD.
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Q̂α ≔ ∑
S∈S

pS
Nα
S
∑

Nα
S

j=1
Q( j)S , (13)

for all 1 ≤ j ≤ Nα
S and S∈S.

The relative performance of two UP methods is measured by comparing their variances, assuming both methods
are unbiased. The variance of the estimator Q̂α is given by

V( Q̂α) =
1
N
∑
S∈S

pSσ2
S

1 + α(σS − 1)
, (14)

where σS ≡ σS/∑T∈SpTσT . As a quantitative measure of the performance of adaptive stratified sampling relative
to SMC, we define

Speedup ≡
V( Q̂MC)

V( Q̂α)
. (15)

The variance Equation 14 is only exact if the prescribed sampling rates Equation 12 are maintained, which may be
difficult in practice. If that is not the case, for instance as a consequence of too few samples to compensate for
previous non‐ideal allocation, the resulting estimates may be inaccurate. As a remedy, the denominator in
Equation 15 can be computed by simply computing the sample variance over repeated independent evaluations of
the stratified sampling estimator. This procedure is robust but also expensive and is only motivated for
demonstration purposes and cases where the model of interest is relatively cheap to sample from. In this work, we
use the Python implementation of the adaptive stratified sampling method available at Krumscheid et al. (2023).

5. Physical Model
5.1. Numerical Reservoir Simulation Model

A simulator is used to compute the quantity of interest from a set of physical parameters and stochastic variables.
The simulator solves a set of discretized equations for mass conservation for CO2 and brine in a two‐phase system
of gas(g) and liquid(l) using a blackoil formulation

∂ϕ(blSl)
∂t

+ ∇ ⋅ (blvb) = 0,

∂ϕ(bgSg + rsblSl)
∂t

+∇ ⋅ (bgvg + rsblvl) = 0,

where ϕ is the rock porosity, rs the dissolved gas‐liquid ratio, and bg,l the inverse formation‐volume factor
(measuring the ratio between the bulk volumes of the phases occupied at surface and reservoir conditions). The
saturation sum is Sg + Sl = 1 and the volumetric flux for phase α = g, l is given by the Darcy equation;

vα = − K
Kα
r
μα
(∇pα − ραg),

where ρα is the fluid density, pα is phase pressure, g the gravity, μα the fluid viscosity. The phase pressures are
related through the capillary pressure Pc (Sl) = pg − pl.

These equations are discretized on a grid using a two‐point‐flux approximation with upwinding for the spatial
discretization, and backward Euler for the time discretization. We refer to Aziz and Settari (1979), Rasmussen
et al. (2021) for details. The flux between two grid cells (a and b) can then be formulated in terms of a trans-
missibility Ta− b;

uα, a− b = − Ta− bλup
α (pα, a − pα, b − ρavg

α g). (16)
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Here the mobility λup
α = krα/μα is evaluated in the upstream cell while the pressure is evaluated in the cell centers

and an average value of the cells is used for the density ρα. The transmissibility between cell a and b is given by
the harmonic mean of the one‐sided transmissibilities such that

Ta− b =
TaTb
Ta + Tb

, Ta, b = Ka, bA/Da− b, (17)

where Ka, b is the permeability in cell a and b, respectively, andDa− b is the distance from cell a to the center of the
interface between the cells and from cell b to the center of the interface, respectively. The discretized equations
are solved to an appropriate tolerance using a Newton‐Raphson type method with iterative linear solvers. For
further details on solvers and discretization, we refer to Rasmussen et al. (2021) and the OPM manual (Alvestad
et al., 2021).

We need a set of boundary conditions and sink/source terms for the reservoir models, representing wells. For
details on how wells are modeled in OPM Flow, we refer to the OPM manual (Alvestad et al., 2021). The default
setup assumes no‐flow boundaries, but flow through the boundaries can be included using various aquifer models,
both based on simplified numerical models and analytical approximations. In our setup, we will use numerical
aquifers to model the flow to aquifers connected through faults.

In the simulation model, dynamics within the numerical aquifers are simplified, and the aquifers are represented
with only a few grid cells in the model that can be connected to any number of cells in the reservoir model using
non‐neighbor connections (NNC). Note that the framework itself allows for adding wells and more cells to the
numerical aquifers if needed. Properties of the numerical aquifers like porosity, volume, permeability and con-
nectivity can be set independently of the physical grid, which gives significant flexibility in usage. A very large
porosity value can for instance be assigned to increase the pore volume of the aquifers, effectively disallowing
pressure build‐up in the aquifer.

The transmissibility used for the NNCs from the reservoir to the aquifer is given by the harmonic mean of the half
transmissibility computed from the reservoir side, Tr and the transmissibility computed from the aquifer side,
Taq, as

Tr− aq =
TrTaq

Tr + Taq
, Taq = 2K fAf /Lf . (18)

The fault area, Af , represents the area available for flow between the reservoir cell and the aquifer, and Lf ,
represents the length between the reservoir and the aquifer, whileKf is the effective permeability of the fault. Note
that we here assume that the transmissibility computed for the aquifer side is given by the properties of the fault,
which is valid as long as KfAf/Lf ≪KaqAaq/Laq. For along‐fault flow, this assumption is true for most range of
permeability as Af ≪Aaq. For cross‐fault flow Af = Aaq and the assumption depends on Kf ≪Kaq.

Since the fault is modeled implicitly by the aquifer connections, we use the saturation function computed for the
fault in the aquifer setup. As the relative permeability is evaluated in the upwind direction (Aziz & Settari, 1979),
a second cell is added to the aquifer to assure the effect of the upscaled fault relative permeability is modeled in the
setup. The aquifer thus consists of two cells, the first with pore volumes representing the fault core, and the second
with a pore volume representing the aquifer itself.

5.2. Description of the Smeaheia Data Set

The starting point for the data set used in the simulation is the Smeaheia data set available at CO2Share (https://
co2datashare.org/). To reduce the computational cost, we define a sector model representing a part of the reservoir
by removing grid cells far from the injection point and the fault. This reduces the number of cells from 250,000 to
44,000, and leads to a simulation time of less than a minute for a single model realization ofM. A typical grid cell
in the model is 400 m times 400 m in the x and y direction, respectively, and between 1 and 20 m in the z direction.
While this is very coarse, it is also typical for field‐scale simulations. Using a coarse grid near the fault may
introduce modeling error due to inaccurate representation of pressure gradients and upconing effects near the
fault. Analytically derived model corrections or local grid refinement could remedy the modeling error (Kang

Water Resources Research 10.1029/2024WR038073

PETTERSSON ET AL. 17 of 28

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038073 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://co2datashare.org/
https://co2datashare.org/


et al., 2014), but will not be considered in our approach. The reservoir consists of six horizontal layers with
constant permeabilities. Three highly permeable sand layers with horizontal permeability 1,000 mD, 1,000 mD
and 850 mD, respectively that are separated by two less permeable shale layers with horizontal permeability 50
mD and a less permeable bottom layer with horizontal permeability 25 mD. The vertical permeability is 1/10 of
the horizontal permeability.

To include connections to nearby aquifers, the reservoir model is extended with two numerical aquifers, as
illustrated in Figure 7. The first one, denoted Top aquifer (shown in orange in Figure 7), represents an aquifer
above the Smeaheia model potentially connected vertically along the Vette fault, while the second (shown in red
in Figure 7) represents the Troll field connected through Vette in the lower parts of the fault and is denoted Troll
aquifer. To represent the highly complex dynamics of the Troll field with only one cell is clearly a crude
approximation, which nevertheless should suffice to investigate the impact of Troll on the Smeaheia formation
through uncertain fault parameters. An extra cell is added for the Top aquifer representing the fault in order to
model the effect of having a different saturation function in the fault. For the Troll aquifer this is not needed as the
connection is in the water zone and no two‐phase effects are present.

There are two sets of saturation functions, that is, relative permeability and capillary pressure, one for the
reservoir and one for the fault. Each is discretized and provided to the model as input tables. The reservoir
saturation functions are computed using a standard Brooks‐Corey function. For the fault, the tabulated values are
obtained from realizations of the stochastic upscaled functions as computed in Sections 3.2 and 3.3, sampled with
the adaptive stratified sampling approach described in Section 4.

The parameter set of the numerical aquifers are given in Table 1 and for details we refer to AQUNUM in Alvestad
et al. (2021). CO2 is injected with a constant rate of 1.6 million tons per year for 59 years. The injection rate is the
rate given in the Smeaheia data set. For simplicity, we do not consider CO2 to dissolve into the brine phase. For the
injection rate and timescale, this simplification is not expected to alter the results qualitatively.

6. Numerical Results
Numerical results will be presented using the stochastic model described in Section 3 with the following setup. A
geocellular fine‐scale model comprised of 20 geocells is employed for the Vette fault from 700 to 1,200 m depth.
This model is represented by a total of 39 independent random parameters; 19 uniformly distributed uncertain

Figure 7. The section of the Smeaheia simulation model used in the study and the setup with non‐neighbor connections to hydraulically connected zones. (a) Smeaheia
section model with injector (red arrow). Orange shows the part of the Vette fault connected to the top aquifer, while red shows the connection to Troll. (b) Hydraulically
connected zones are represented as numerical aquifers and coupled to the storage simulation via non‐neighbor connections (NNC).

Table 1
Input Numerical Aquifers

Name Area (m2) (Af) Length [m] (2Lf) Depth (m) Poro (− ) Pres (bars)

Top Aquifer 40 2 ⋅ 250 * 1e12 *

Troll Aquifer 40 2 ⋅ 250 1,100 1e12 110

Note. The ∗ indicates that the values are defaulted and thus computed internally in the simulator.
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geocell boundary locations, and 20 uncertain SGR values. Using the presented physical‐stochastic upscaling
framework results in coarse‐scale two‐phase flow parameters described by five dependent variables.

6.1. Test Cases

We consider six stochastic test cases, where we use the Smeaheia discretization described in Section 5.2. The test
cases are presented in order of increasing complexity, but it should be noted that the simpler cases are really
special cases of the more complex models, where certain parameters are kept fixed to the mean values. This
allows us both to study the fault upscaling in detail, and then to introduce the interaction between fault and
formation uncertainty.

In Case I and II, the permeability in the Vette fault is assumed uncertain and follows the distributions
depicted in Figure 2. For practical sampling, lognormal distributions are fitted to the data for the different
settings of kc. In Case I all other parameters including the two‐phase flow functions are assumed deterministic
and set to their respective expected values (red curves in Figure 3), that is, nominal reference values. In Case
II we assume that each of the six layers of the reservoir model has lognormal homogeneous permeability,
given by ki ∼ Lognormal(μki, σki) for i = 1, …, 6. The distribution parameters μki,σki are chosen so that the
expectations of the layer permeabilities are, respectively, 1000, 50, 1000,50, 850, 25 mD with the standard
deviations for simplicity set to 100 mD for all layers. In total, this model has seven independent random input
parameters.

For the remaining Cases III‐VI, we assume stochastic two‐phase flow functions (permeability, capillary pressure,
saturation and wetting/non‐wetting relative permeabilities) as represented by the copula model. Case III assumes
all other parameters to be deterministic, while Case IV is supplemented by an upscaled model for the uncertain
permeability in the connection with Troll. This permeability is assumed to be independent of the Vette fault
parameters, and computed using the same SGR‐permeability mapping Equation 2. The mean SGR values used to
populate the geocellular model are given by the synthetic data in the depth range from 1,500 to 1,600 m shown in
Figure 2, and the standard deviations are assumed to be 14% as for the Vette fault. Arithmetic averaging over the
facies is performed to accommodate for flow across the fault.

In Case V we consider the upscaled flow functions with the copula model in combination with the six reservoir
layers following the distributions described in connection with Case II. Finally, in Case VI, we combine the
random models from Case V (upscaled flow functions and reservoir layers) with uncertainty in the Troll

Table 2
Summary of the Test Cases

Case Stochastic model n

I Fault permeability K from lognormal data fit 1

II Fault permeability K as in Case I 7

Layer permeabilities ki (i = 1, …, 6) lognormal with parameters s.t.

E(ki) = {1000,50,1000,50,850,25} mD, Std(ki) = 100 mD.

III K, Pc (sd), S(sd), Kw
r (sd), Knw

r (sd) from copula + Equations 5–9 5

IV K, Pc (sd), S(sd), Kw
r (sd), Knw

r (sd) as in Case III 6

KTroll Lognormal data fit

V Layer permeabilities as in Case II 11

K, Pc (sd), S(sd), Kw
r (sd), Knw

r (sd) as in Case III

VI Layer permeabilities as in Case II 12

K, Pc (sd), S(sd), Kw
r (sd), Knw

r (sd) as in Case III

KTroll as in Case IV

Note. Only the stochastic parameters and functions are stated. All other quantities are assumed fixed at their deterministic
reference values. The number of stochastic dimensions denoted by n.
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connection permeability with the model described in Case IV. The setups of the test cases are summarized in
Table 2.

6.2. Monte Carlo Simulation

The leakage distributions for the six test cases estimated from 5000 SMC samples and visualized as histograms
are shown in Figure 8 for kc = 0.0001 mD, kc = 0.001 mD and kc = 1 mD, respectively. As expected, the lower
shale permeability leads to less amount of CO2 leaked. The probability that there is no leakage at all is below 0.01
for the case kc = 0.0001 mD, and identically zero for larger values of kc. For all clay permeability cases, the setup
Case I differs from Cases II‐VI in capturing the upper tail of the probability distributions. As a quantitative
characterization of the leakage distribution, each figure includes the percentiles P10, P50 (median), and P90.
More extreme percentiles (e.g., P99) are not included, as they would not be accurately estimated with the current
number of samples. The variability of the distributions is larger between the results for different kc than between
the six cases of different stochastic models. This suggests that improved SGR models, or modeling kc as a random
variable, may yield more accurate predictions of the leakage distributions. The limited variability between the six
cases of different stochastic models indicate that the simpler models are sufficient to obtain the statistics
investigated for the current problem setup. However, a physically more refined model, or some other choice of
statistics (e.g., rare events), may benefit from the more complex models involving the uncertainty in two‐phase
flow functions.

Figure 8. Histograms of leaked CO2 for Case I–VI. The three vertical dashed lines in each subfigure indicate the 10th percentile (left), median (middle), and 90th
percentile (right). (a) kc = 0.0001 mD, (b) kc = 0.001 mD, and (c) kc = 1 mD.
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To put the results into perspective, the emissions can be compared to the CO2 emissions of a dairy cow. For a
single dairy cow, we assume an average of 6 m3 daily emissions of CO2, based on the measured average 6.137 m3

presented in Kinsman et al. (1995). The most extreme leakages observed in Figure 8 are around 1,000,000 m3 at
standard surface conditions and correspond to a total leakage of 0.002% of the injected mass, or the emissions of
less than 8 dairy cows for the same period of time, that is, 59 years.

6.3. Adaptive Stratified Sampling Results

Next we apply the ADSS method described in Section 4 to the six test cases to compute the expected leakage
using Equation 13 with the hybrid sampling parameter α = 0.5, and allocation of 50 samples per iteration.
These design parameter settings were found to be suitable for different test problems in Pettersson and
Krumscheid (2022), but have not been tailored to the test problems in the current paper. The speedups of the
ADSS method compared to SMC as given by Equation 15 for all test cases and varying number of sampling
budgets are shown in Figure 9. For the simplest Case I, we observe two orders of magnitude speedup. For Case
II with seven independent random variables, the speedup is one order of magnitude for the SGR models with
kc = 0.0001, 0.001 mD, but significantly lower for kc = 1 mD. For all other cases, the speedups vary from 2 to
4 for the smallest sample sizes, to 2–8 for the largest sample sizes. The lower speedups are observed for the
Cases III‐VI where the relatively complex two‐phase model Equations 5–9 is employed, with its sample path
crossings of S and Kw

r , and random variable dependence described by the vine copula model as discussed in
Section 3.5. For kc = 1 mD, we observe higher speedups for Cases III‐IV than V‐VI, which is to be expected
given the difference in the number of random dimensions. Any localization of variance is more difficult to
resolve for ADSS in high‐dimensional spaces. Taken together, the speedup results indicate that the increased
complexity of ADSS is motivated by the reduction in sample sizes possible while maintaining similar accuracy
as SMC.

6.4. Discussion

We present a framework for uncertainty quantification for complex physical systems, for example, subsurface
CO2 storage, where the focus is on accurate and efficient representation of uncertainty from available data,
and a subsequent uncertainty propagation through the physical model via adaptive sampling. If some input
parameters to the physical model are considered uncertain but lacking in data, they should nevertheless be
included as random variables, for example, uniform random variables on an interval including possible
physical variation. The proposed uncertainty modeling and propagation framework has been applied to a test
case from the Smeaheia formation in the North Sea, but should be applicable to a wider class of problems.
Uncertainty in the physical model itself (in the current case the reservoir model) has not been considered in
this work.

A geocellular fault model with uncertain properties modeled as random variables has been upscaled, resulting
in stochastic effective flow functions. Faults acting as conduits or as barriers can equally well be represented

Figure 9. Estimated speedup of ADSS with respect to standard Monte Carlo.
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via the proposed upscaling approach. A conduit (barrier) fault will result from populating the fine‐scale facies
by samples from an SGR distribution in a higher (lower) regime, preferably fitted to empirical data. We
emphasize that the assumed random distributions of the fine‐scale fault model, that is, uniformly distributed
sizes of geocells and Gaussian SGR values of each geocell, could and should be substituted with real data when
possible, without requiring any further changes of the proposed algorithmic framework. The permeability of the
clay‐rich shale kc should also be based on measurements to result in realistic upscaled fault permeability. Since
the geocellular model can consist of several layers parallel to the fault, it is possible to explicitly model a low‐
permeability fault core surrounded by high‐permeability damage zones. If data are available, a high degree of
space‐dependent variability can be incorporated into the model. However, such a model would require
modification of the upscaling method to account for both vertical and horizontal flow. There are indeed limits
on the performance of any semi‐analytical upscaling method when it comes to accurately estimate effective
properties.

All upscaled flow functions except fault permeability are functions of a deterministic parameter and need to be
modeled as random fields, in addition to the copula model used to represent the dependencies at some fixed value
of the deterministic parameter. Karhunen‐Loeve expansions, commonly used for this purpose, fail to capture
physical features such as monotonic sample paths. Instead, we use data to fit an empirical correlation model that
does not assume stochastic stationarity, that is, the two‐point correlation is allowed to change with the deter-
ministic model parameter. The proposed model does not rely on any smoothness assumptions about the under-
lying random fields we seek to model. Indeed, it is data‐driven and returns discrete values at user‐selected points,
whether these come from a smooth process or one with jumps. Hence, it is applicable to a wider class of data. All
observed realizations of the resulting model are physically meaningful, although we cannot prove that the model
excludes unphysical results.

Dependencies between the random variables in the models are due to physical relations between the underlying
quantities, many of which can not easily be described by closed‐form functional relationships. Correctly modeling
dependencies is hence crucial to accurately capture the physics, and copulas can do exactly that. Capturing the
dependencies present in the multivariate distributions representing the upscaled model flow functions relies on
existing methodology (and, practically speaking, software) for multidimensional copula fitting, effectively
decomposing the problem into separate treatment of marginal distributions and dependence structure. The
considered copula approach offers flexibility, providing a good number of distinct pair copulas that can be fitted
to high accuracy. In particular, PDFs concentrated in the vicinity of the physical boundary of a parameter range
(relative permeabilities and saturation are all confined to the unit interval) are well represented without any visible
spurious boundary effects. Indeed, the fitted copula models (for three different values of clay permeability) share
the same tree structures, but the bivariate copula functions connecting the nodes differ somewhat, reflecting the
differences in pairwise PDFs that have been observed. There are no intuitive and standardized measures for
assessing proximity between multivariate distributions, but examining the 1D and 2D projections of the data and
the model at least gives an idea of the model fit, and they do agree well. Data‐availability may be a limitation for
real‐world copula models with significantly larger number of random variables than those considered here for the
upscaled flow functions. Sparse copula models could be an option to tackle both the high numerical cost of fitting
a large number of pair copulas, and avoid overfitting.

In addition to accurately representing empirical distributions of data, the upscaled model allows targeted model
evaluation, that is, directed sampling within a given region of random space. In SMC sampling, it is sufficient to
be able to draw any random samples as long as they follow prescribed distributions honoring data. The adaptivity
of the adaptive stratified sampling method employed here, in addition requires that the stochastic input domain
can be sampled from a given subdomain. Such subdomain sampling in a reduced and uniform space is made
possible by the copula model and inverse Rosenblatt transformation. Many other groups of uncertainty propa-
gation methods, including Quasi‐Monte Carlo, Multi‐Level Monte Carlo, and spectral expansions (generalized
polynomial chaos) would either require or greatly benefit from these properties. Hence, the proposed stochastic
model with copulas is a contribution to uncertainty quantification by being amenable to adaptivity, employing a
low‐dimensional stochastic representation, and capturing dependencies while providing the user the option to
only use standard independent random variables as inputs. Such a model offers practitioners more accurate
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uncertainty estimates of geological properties than a model that just assumes standard distributions instead of
purely empirical distributions whenever possible.

Adaptive stratified sampling requires significantly fewer samples than SMC to reach a given error threshold and is
relatively insensitive to the number of stochastic dimensions, in particular if the number of effective dimensions is
small (i.e., the total variance is dominated by a small subset of random dimensions). The design parameters set by
the user, that is, the number of samples allocated in every iteration and the proportion of samples optimally
allocated (as opposed to the more robust proportional allocation), will affect the observed speedups. In this work,
a relatively conservative approach has been used, with as many as on average 50 samples per stratum allocated
every iteration, and only a fraction α = 0.5 of samples optimally allocated. While any exact recommendation for
these design parameters is hard to motivate, the chosen numbers appear suitable given the complex features of the
Cases III‐VI, which are illustrated in Figure 6. The QoI, that is, the expected leakage of CO2, was chosen as a
natural starting point for investigation of leakage risk. Other QoI could have been selected instead, for instance the
probability of exceeding some predefined leakage threshold. The observed speedups are specific to the particular
QoI, and one would need to rerun the algorithm for different QoIs, which is a common feature shared by most
accelerated methods. In addition to providing a relative computational cost estimate compared to SMC, the
speedup estimates can also be used to estimate the accuracy of the results. The mean‐squared error of SMC decays
linearly in the number of samples with an error constant given by the variance of the QoI, and since the effective
number of samples of the ADSS method compared to SMC is the speedup multiplied with the actual number of
samples, it provides a very direct error control.

Accelerated methods including adaptive stratified sampling provide improvement over SMC with respect to
some user‐defined metric, for example, a mean value. SMC is hence more amenable to general analysis of
quantities of interest, and was chosen to produce estimates of the distributions of CO2 leakage. The histograms
of leaked CO2 obtained by SMC indicate the possibility of long upper tails, that is, small but nonzero prob-
ability for relatively large leakage. If these probabilities are of interest, a rare‐event simulation framework may
replace the current method for UP. The number of samples required is otherwise inversely proportional to the
probability of the outcome of interest, so very unlikely scenarios are correspondingly difficult to correctly
estimate.

The numerical results show that, with overwhelmingly large probability, the leakage of CO2 is less than 0.002% of
the injected volume. This negligible amount of CO2 (corresponding to less than the emissions of 8 dairy cows
(Kinsman et al., 1995)) obtained for all 18 test cases, indicate that refined models are not crucial due to the low
risks involved. Surely, other prospective storage formations with increased risk for leakage may require more
elaborate models.

The fault‐related uncertainties have a higher impact than the reservoir uncertainties, as demonstrated by the fact
that the empirical distributions do not change much when the stochastic reservoir model is added to the fault
model. The high variability in distributions across the different values of clay permeability strengthens the
conclusion that the fault uncertainties dominate the total leakage distribution. This suggests that a first sto-
chastic and physical model improvement would be to base the value of clay permeability on actual data,
preferably modeled as an empirical stochastic distribution to account for uncertainties due to limited seismic
resolution.

Accurate uncertainty quantification relies on a similar level of accuracy of the physical model describing the
complex system of interest. In the current work, this includes both the fault model and the model for the sur-
rounding reservoir. The fault model considered in Section 3 assumed a 1D description of the fine‐scale geometry
of the fault. In reality, there can be significant horizontal variations both along and across the fault, thus in the
general case it could be necessary to represent the fine‐scale geometry as truly 3D. In such a setting, the fault core
and damage zones could be explicitly represented. While we expect that the overall stochastic modeling
framework to be still applicable, ingredients of the workflow will need to change: The upscaling must be based on
numerical rather than analytical methods and since the upscaled stochastic ensembles may take different forms,
the stochastic modeling approach could also need adaptations. The effect of the capillary equilibrium assumption
needs to be quantified by taking into account the relative effect of viscous forces on the flow compared to the
effect of capillary forces. Also, the effect of neglecting potential fault reactivation due to induced stress should be
investigated quantitatively for the fault zone under consideration. Otherwise, the CO2 leakage may be system-
atically underestimated.

Water Resources Research 10.1029/2024WR038073

PETTERSSON ET AL. 23 of 28

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038073 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The simulation framework successfully produced meaningful estimates of expected fault‐related leakage for a
prospective storage site in the Norwegian North Sea with relatively little computational overhead. It should thus
be feasible to implement this approach in fault de‐risking workflows used in an industrial context, that is, it is not
simply a theoretical exercise. One notable observation is that the leakage estimates obtained in the 18 simulated
cases of the Smeaheia test case range from 80 to 1,500 tons cumulative leaked CO2 over 60 years. This amounts to
very tiny amounts of CO2 leakage that would be below the detection limits of modern subsea sensing equipment.
We expect that these leakage estimates along the Vette fault are indeed representative given that the underlying
SGR map, reservoir model, and other parameters are based on actual data. However, more work needs to be done
to ensure that the simplifying approximation in the dynamic simulations (i.e., NNC connections and grid reso-
lution) gives a reasonable first‐order approximation of the fluid flow in the fault. Refining the fault model by
adding more virtual (aquifer) cells and connections (NNCs) is possible, but needs to be balanced by the avail-
ability of the underlying geological data. In addition, the results may be sensitive to the simplicity of the fault
model (already discussed above) or require other stochastic simulation tools to capture the upper tails of the
leakage distributions. A final point to consider is the relative coarseness of the grid in the used Smeaheia reservoir
model. Refining the grid close to the fault and the well is expected to improve the accuracy of the solution, but at
the cost of higher simulation time. In summary, the exact histograms and mean values derived in this study are for
demonstration purposes and should not be taken out of context.

7. Summary and Conclusions
We have presented a numerical framework for upscaling of uncertain fault properties, uncertainty modeling
including complexity reduction, and adaptive uncertainty propagation, and demonstrated numerical results
for a real‐world CO2 storage test case. The combined physical and stochastic upscaling leads to decreased
deterministic model evaluation times and smaller number of random dimensions. To exploit the stochastic
model reduction, the reduced set of random variables are parameterized using an accurate copula model that
captures both their dependence and their marginal distributions. The copula model is then combined with an
empirical (data driven) model for the non‐stationary correlation in deterministic parameter space, where
standard methods such as Karhunen‐Loeve expansions fail to produce physically relevant flow function
models.

The numerical results show that the leakage of CO2 is negligible in all cases investigated. The most significant
uncertainties with respect to expected leakage are those related to the Vette fault properties, which dominate
over those related to reservoir properties and the connection to Troll. In particular, the large effect from the
value of the clay permeability suggests that a natural first improvement of the suggested model is to include a
data‐driven distribution for the clay permeability. This, and the same for other variables for which data become
available, should be done within the copula framework to properly account for dependencies and marginal
distributions.

To reduce the number of physical model evaluations to obtain mean values of leaked CO2, ADSS has been
used instead of direct SMC. Compared to SMC, for the sample size ranges that have been investigated, the
computational budget for ADSS can be reduced with up to a factor of, respectively, 10 and 100 for the
simpler stochastic cases, and 2–8 times for the copula models with nonlinear transformations. The speedups
are sufficient to motivate ADSS instead of SMC. In summary, the successful demonstration of the meth-
odology is promising for future implementation of the framework in a real setting with more site‐specific
data available.

Appendix A: Two‐Phase Upscaling
The two‐phase upscaling applied in Section 3.2 following Rabinovich et al. (2016) can be summarized as follows:

1. Calculate the upscaled absolute permeability K from Equation 3.
2. Define a set of capillary pressure values, to be used to calculate the fluid distribution under capillary equi-

librium, see comments below for how to choose this set.
3. Pick a value from the set of capillary pressure values, assign this to all fine‐scale facies (this is the assumption

of capillary equilibrium).
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4. Use an inverted fine‐scale capillary pressure function to calculate a fine‐scale saturation. If the fine‐scale
capillary pressure function is equal in all facies, the fine‐scale saturation will be uniform.

5. Calculate an upscaled saturation using arithmetic averaging.
6. From the fine‐scale saturation distribution, compute the upscaled effective phase‐wise permeabilities, Kα,

α∈ {w, nw}, as the harmonic average of the product of the fine‐scale absolute and relative permeability
(respectively ks and kαr ) using Equation 3.

7. Obtain the upscaled relative permeability as Kα
r = Kα/K, α∈ {w, nw}.

Points 3–7 are repeated over the full set of capillary pressure values defined in point 2; we see that points 3 and 5
together give an upscaled capillary pressure curve, while points 4 and 6 produce upscaled relative permeabilities.
In practice, point number 2 is a bit tricky since, first, the Brooks‐Corey capillary pressure is not bounded at zero
saturation, and second, the fine‐scale capillary function is stochastic through its entry pressure, see Equation 4,
and varies between the fine‐scale facies. To achieve a robust implementation, the equilibrium values for capillary
pressure are chosen as follows: We sample a set of saturation values, denoted sd ∈ [1 × 10− 6,1] where the cut‐off
is set slightly above 0 to avoid sampling an unbounded capillary pressure. The sampling is done in logarithmic
space to achieve good coverage in the steep region of the Brooks‐Corey curve. The equilibrium capillary pres-
sures in the set defined in point number 2 is calculated from these values of sd, using the minimal entry pressure of
the facies in the current realization, thereby ensuring that the equilibrium pressure can be reached in all facies.

Appendix B: Copula Modeling
B1. Copula Tree Fit

The tree structures defining the fitted copulas are shown in Figure B1. The nodes in the trees denote random
variables, where the random variables are represented by their indices (e.g., 1,2 is short for Y1, Y2). The edge
connecting two adjacent nodes denotes the joint distribution conditioned on the subset of repeated variables of
the two nodes. The edges of Tree t are the nodes of Tree t + 1, so in this sense the structure of all subsequent
trees can be inferred from Tree 1. The choice of copula function, among a suitable candidate set of copula
families, for any pairs of variables is inferred by data. The PDF of the five‐dimensional distribution is the
product of all Equation 10 bivariate distributions represented by the edges of the trees in Figure B1 and the
(five) marginal distributions. The bivariate copulas that appear in Figure B1 are the nonparametric TLL copula
(Geenens et al., 2017), and common parametric function copulas (BB1 (Joe, 1997), Gumbel, Student‐t, and
Gaussian) that may in some cases be rotated by 90°, 180°, or 270° for best fit with data. The copula model of
the case kc = 0.0001 mD has the same tree structure as shown in Figure B1, but with bivariate copulas (from
left to right) as follows. Tree 1: TLL, BB7 180, Gaussian, TLL; Tree 2: TLL, TLL, TLL; Tree 3: TLL, BB8;
Tree 4: BB7 270°.

Figure B1. Tree structure of the fitted copulas. This tree structure is known as a D‐vine copula. (a) kc = 1 mD, and (b) kc =
0.001 mD.
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Data Availability Statement
The software used to generate the data, numerical methods, and figures are available from Zenodo (Pettersson
et al., 2023). This includes scripts for stochastic upscaling using synthetic data, copula fits, random field pa-
rameterizations, and forward uncertainty propagation through OPM Flow using SMC and ADSS. Python scripts
using Matplotlib are available to generate Figures 2–5 and 8, and 9, and a Matlab script to generate Figure 6
(tested with Matlab R2021a).
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