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Abstract

The first formulation of the geometrically exact beam was published in 1985 by Simo. Despite its long
history, the correct implementation of the model in the Finite Element Method (FEM) and Isogeometric
Analysis (IGA) remains a challenging task. The kinematics of the geometrically exact beam require
describing the orientation of each of its cross-sections using finite rotations. Finite rotations in three
dimensions form the complex mathematical structure of a non-linear manifold. To obtain a path-
independent and frame-indifferent model as well as optimal convergence behavior in FEM and IGA,
great attention must be paid when discretizing variables lying on a manifold.

This work discusses various discretizations of finite rotations for FEM and IGA, focusing on two
possible parametrizations of finite rotations: directors and unit quaternions. Besides a classical, additive
discretization, geodesic, and projection-based finite elements are introduced and discussed in detail for
both parametrizations. As an additional option for the FEM, elements with shape functions based on
Gauss-Lobatto points are introduced.

The numerical behavior of the classical discretization is analyzed alongside a director formulation of the
geometrically exact beam using the classical discretization approach for both FEM and IGA. Even though
this approach results in a frame-indifferent and path-independent model, the convergence is not optimal
for higher-order shape functions for either FEM or IGA. In contrast to this, shape functions based on
Gauss-Lobatto points yield the expected convergence order. Additionally, the director formulation is
tested on dynamic examples using a structure-conserving time integrator that conserves energy, linear
momentum, and angular momentum, yielding excellent results.

In a second application, the geometrically exact beam is formulated within a unit quaternion framework.
To achieve optimal convergence behavior, a projection-based approach is employed for both FEM and
IGA. Again this formulation is shown to be frame-indifferent and path-independent. The projection-
based approach leads to optimal convergence behavior even for higher-order shape functions, unlike
the classical discretization approach, which again fails to produce optimal results for higher-order
elements. Due to the relatively simple projection-based approach possible with unit quaternions, unit
quaternions prove to be an excellent choice in static applications for FEM and IGA.
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Kurzfassung

Die erste Formulierung des geometrisch exakten Balkens wurde 1985 von Simo veröffentlicht. Trotz
seiner langen Geschichte ist die korrekte Implementierung dieses Modells in der Finite Element Methode
(FEM) und der Isogeometrischen Analyse (IGA) immer noch eine Herausforderung. Die Kinematik des
geometrisch exakten Balkens erfordert es die Orientierung jedes Querschnittes mittels finiter Rotationen
zu beschreiben. Dabei bilden finite Rotationen im dreidimensionalen Raum die komplexe mathematische
Struktur einer nichtlinearen Mannigfaltigkeit. Um ein Modell zu erhalten, welches unabhängig vom
Bezugssystem und Belastungspfad ist, sowie ein optimales Konvergenzverhalten in FEM und IGA
erreicht, muss bei der Diskretisierung von Variablen auf solchen nichtlinearen Mannigfaltigkeiten mit
großer Sorgfalt vorgegangen werden.

Diese Arbeit behandelt verschiedene Diskretisierungen finiter Rotationen im Rahmen der FEM und
IGA, wobei der Fokus auf zwei mögliche Parametrisierungen finiter Rotationen liegt: Direktoren
und Einheitsquaternionen. Neben einer klassischen, additiven Diskretisierung werden ’geodesic’ und
’projection-based’ finite Elemente eingeführt und für beide Parametrisierungen im Detail diskutiert.
Als zusätzliche Möglichkeit für die FEM werden Elemente mit Formfunktionen basierend auf den
Gauss-Lobatto Punkten eingeführt.

Das numerische Verhalten der klassischen Diskretisierung wird zusammen mit einer Direktoren-
formulierung des geometrisch exakten Balkens für FEM als auch IGA betrachtet. Zwar führt diese
Formulierung auf ein Modell, welches unabhängig vom Bezugssystem und Belastungspfad ist, jedoch
zeigt eine Analyse des Konvergenzverhaltens, dass die klassische Diskretisierung nicht zu einer opti-
malen Konvergenzordnung bei höheren Ansatzordnungen führt, weder in der FEM noch in der IGA.
Im Gegensatz dazu ergeben Formfunktionen basierend auf den Gauss-Lobatto Punkten die erwartete
Konvergenzordnung. Zusätzlich wird das Verhalten der Direktorformulierung mit dynamischen Bei-
spielen untersucht, wobei ein strukturerhaltender Integrator verwendet wird, welcher Energie, Impuls
und Drehimpuls erhält. Dabei erzielt das Modell hervorragende Ergebnisse.

In einer zweiten Anwendung wird der geometrisch exakte Balken mittels Einheitsquaternionen for-
muliert. Um ein optimales Konvergenzverhalten zu erreichen, werden hierbei ’projection-based’ finite
Elemente sowohl für FEM als auch für IGA verwendet. Es wird gezeigt, dass dieser Ansatz wiederum
auf eine Formulierung führt, welche System- und Pfadunabhängig ist. Dabei führt der ’projection-based’
Elementansatz zu einem optimalen Konvergenzverhalten, auch bei Formfunktionen höherer Ordnung.
Im Gegensatz dazu führt der klassische Diskretisierungsansatz, nicht zu optimalen Konvergenzordnun-
gen für Elemente höherer Ordnung. Aufgrund des relativ einfachen ’projection-based’ Ansatzes, der
mit Einheitsquaternionen möglich ist, erweisen sich Einheitsquaternionen als ausgezeichnete Wahl für
Anwendungen der FEM und IGA in der Statik.
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1. Introduction

"’Ageometretos medeis eisito’: let nobody enter who does not understand geometry.
These were the words written at the entrance to Plato’s Temple of the Muses.

Are numerical analysts welcome in Plato’s temple?" [82]

Nowadays ’geometry’ has a very broad meaning depending on the field of research and people in ancient
Greece most certainly had different concepts in mind when using the word compared to scientists in
applied mathematics and mechanics today. Nevertheless, the question remains valid.

1.1. Motivation and methods

Over the last decades, the power of computers has risen exponentially. Due to this increase in compu-
tational power, computer simulations no longer need to be performed on large mainframes but can
be carried out even on an average laptop. This makes the application of simulation tools much more
feasible for many users. Therefore, simulations have become progressively more important in science
and engineering, as they allow users to gain insight into the physical behavior of complex systems
without the need to plan and perform time-consuming and expensive experiments, while, of course,
not replacing them completely. Thus, simulations are a crucial element in the design process of new
products but also in research, where they can be used to investigate complex phenomena. Even though
the computational power has skyrocketed, it is still important to design simulation methods with the
aim of keeping the computational time to a minimum. This can be achieved by either improving the
numerical algorithms and their implementation or by using computationally efficient models. Highly
efficient simulation methods enable engineers to simulate models in more detail and, thus, perfect their
product, while they allow researchers to tackle problems of higher complexity.

One of the most versatile numerical simulation methods is the Finite Element Method (FEM). While
the FEM is a well-established method in the industry with a broad range of applications and a solid
mathematical foundation, there is still room for improvement. For example, the transition from a design
model in Computer Aided Design (CAD) software to a finite element model in finite element analysis
software is still a very time-consuming task [32, 78]. A possible approach, which may in the near future
help to resolve this issue, was proposed in 2005 by Hughes et al. [78] with the introduction of the
Isogeometric Analysis (IGA). The isogeometric concept combines the exact representation of geometries
as achieved by CAD software with the versatility and reliability of the FEM in the analysis steps. The
IGA is closely related to the FEM as both methods rely on the Galerkin method [32, Chapter 2].
The publication by Hughes et al. [78] sparked huge interest in the mechanic and numeric community.
Due to the relevance of the topic, a plethora of research concerning the IGA has been conducted and
even though a relatively small amount of time passed since its publication, it can be considered a
well-established method in the scientific community today. However, a realization in commercial tools
is so far not available.
Furthermore, in the course of this research it became evident that in many aspects, the IGA offers

1



1. Introduction

many advantages over the FEM [31, 32]. For example, the IGA leads to a higher accuracy per degree of
freedom [47]. Nevertheless, it is still important to discuss options to minimize computational time.

Utilizing an appropriate physical model, which reduces the dimension of the problem, can help in this
regard. Such models can be obtained through keen physical reasoning, which allows to neglect insignif-
icant physical effects and, thus, reduce the dimension of the problem. For example, one-dimensional
models can be used to describe slender three-dimensional geometries. Such one-dimensional models
are described by the well-known beam theories.

Beam theories have a long history and date back to the beginning of mechanics at the end of the 17th
century, where Jacob I. Bernoulli laid the foundations of the theory [4, Chapter VIII]. Since then most
of the beam theories were concerned with only small deformations. Compared to their long history, the
history of beam models, which can describe large deformations is relatively short. At the beginning of
the 1970’s, Reissner [112, 113] made the first advancements to one of the most important beam models
for large deformations, the so-called geometrically exact beam. Subsequently, the geometrically exact
beam model used today was derived from the three-dimensional theory by Simo in 1985 [126].
Due to the physical restrictions used in the design of the model, it becomes necessary to describe
the orientation of the cross-section of the beam with finite or large rotations [126]. Even though the
geometrically exact beam model reduces the physical dimension, its mathematical structure is rich as
the finite rotations lie on a nonlinear manifold [72].
A basic knowledge of the underlying mathematical structure, which describes finite rotations, is very
helpful when dealing with them. The theory that forms their basis is called Lie group theory. The
structure of Lie theory does not just cover rotations but many aspects in classical mechanics [72, 73].
Nevertheless, "..., Lie theory is poorly known in comparison to its importance" [74]. Even though this quote
is already more than 40 years old, the statement still holds, especially for engineers. The knowledge of
Lie theory allows us to perform many computations in a linear vector space, instead of the complex,
curved geometry of the non-linear manifold [74]. This can be exploited in numerical methods, such as
the FEM and IGA.

At the heart of each Galerkin method lies the approximation of the solution with a finite number of
basis functions. For models, where the variables lie in a flat linear space the approximation approach is
straightforward. However, the complex geometry of finite rotations makes their optimal treatment in
Galerkin methods a challenging task. Even though the difficulties accompanied by finite rotations in the
FEM were recognized by Simo and Qu-Voc [127, 128] in the very first publication concerning the topic,
it took researchers more than a decade to propose the first path-independent and frame-indifferent
discretization approach in the context of the geometrically exact beam [33, 83].
Even though subsequent publications discussed the treatment of finite rotations in a finite element
framework further (e.g. [11, 21, 51, 62, 114, 117, 135]), only in very recent years the topic was covered
by mathematicians for general nonlinear manifolds accompanied by corresponding proofs.
To date, the proposed methods in the literature can be categorized into two major concepts. The first
concept is known as geodesic finite elements [120–122]. It is based on the intrinsic distance measure of
the underlying manifold on which the approximated field lies. On arbitrary manifolds the geodesic
element formulation can only be obtained with the help of implicit algorithms [120].
The second concept relies on a classical, additive approximation approach with a subsequent closest-
point or orthogonal projection onto the geometry of the manifold [49, 59]. Elements based on this
concept are, therefore, called projection-based elements [59].

Even though both element concepts allow for an arbitrary approximation order, the literature is still
very limited, when it comes to higher-order approximation approaches in the FEM to problems on
nonlinear manifolds [122]. Accordingly, even less literature exists for approximations of such problems
in the context of the IGA. Even though some publications concern with the topic of the beam and IGA,
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1.2. Outline

they mostly cover the topic based on collocation methods (e.g. [93, 94, 149]). For the IGA as a Galerkin
method, only very little literature regarding the geometrically exact beam formulation exists. Also the
discretization approaches for variables describing finite rotations, such as quaternions, are only covered
sparsely by the literature. As stated by Tasora [143] "In fact, the spline interpolation of quaternions is still
a debated problem...". We can generalize this statement by saying the spline interpolation of rotations is,
in fact, still a debated problem.

Therefore, in this work, we aim to close this gap and investigate and discuss possible discretization
approaches in the FEM and IGA for different types of representations of finite rotations. Subsequently,
they are applied in the context of the geometrically exact beam for both approaches. Elements of higher
order for both, FEM and IGA, and their behavior are discussed in detail.
For this purpose, we recapture the fundamentals of the IGA and, further, briefly introduce the most
important aspects of the Lie group theory, which allows us to discuss finite rotations. Subsequently,
we choose two representations of rotational tensors and discuss possible approaches to approximate
them in a finite element and isogeometric framework, respectively. Both approaches are applied to
the description of the geometrically exact beam. The influence of the chosen discretization for both
approaches is investigated in detail.

1.2. Outline

In the beginning of this work, we introduce the isogeometric analysis in detail in Chapter 2, where
we begin with an elaborated motivation of the topic. Since the IGA relies on B-Splines and NURBS to
represent the geometry, these functions are discussed comprehensively. Subsequently, the key aspects
of the IGA are discussed, focusing on the topics needed for this work. We cover the possible mesh
refinement strategies and present an algorithm from the literature for the computation of the initial
configuration. Furthermore, the aspect of the numerical integration in the IGA is discussed. Finally,
various advantages of the IGA over the FEM are highlighted.

Chapter 3 reviews the topic of rotations and their discretization. It introduces key aspects of the Lie
group theory, which helps to understand the topic in a more general setting. Subsequently, rotations in
three dimensions are discussed. Three possible representations of rotations are introduced, where a
focus lies on unit quaternions. Afterward, the knowledge of Lie groups and rotations is used to construct
finite element discretization approaches for two of the representations introduced beforehand. Four
different options for their discretization are discussed: a classical additive discretization, a discretization
using the concept of geodesic elements, projection-based elements, and shape functions computed
based on the Gauss-Lobatto points as a novel approach.

The model of the geometrically exact beam is introduced in Chapter 4, where in the beginning
theoretical aspects are discussed alongside a literature survey, which further gives insight into recent
developments and employments of the model. Next, the most relevant assumptions of the beam theory
are used to derive its kinematic relations in detail. Furthermore, the equations of motion are derived
through the balance equations of linear and angular momentum. Subsequently, its kinetic energy
and stored-energy function are introduced alongside the employed constitutive. In addition, a brief
discussion on the topic of shear constrained Kichhoff-Love beam formulations is presented.

Chapter 5 covers the geometrically exact beam in a director framework. It provides the associated
continuous equations, followed by a finite element discretization approach, where two possible options
are introduced to enforce the orthonormality constraints needed in this framework. A classical, purely
additive discretization is employed for all approximated fields and two options are discussed to enforce
the orthonormality constraints are presented. It is proven that this discretization approach leads
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indeed to a frame-indifferent formulation. Furthermore, a short introduction of the applied structure-
conserving time integration scheme is given. The model and its implementation are validated alongside
several numerical examples. The convergence behavior for Lagrange and NURBS functions is discussed
in detail. Additionally, the results of Gauss-Lobatto-based shape functions are presented. The path-
independence of the discretization approach is investigated in a numerical example. Furthermore,
Lagrange and NURBS shape functions are used in dynamic examples.

A geometrically exact beam formulation using unit quaternions to parametrize the rotational tensors is
introduced in Chapter 6. Again the corresponding equations are derived in detail for the continuous
case, where it is proven that such an approach indeed leads to frame-indifferent strain measures. A
projection-based approach introduced in Chapter 3 is used to discretize the unit quaternions. It is
proven that the approach leads to frame-indifferent discretized strain measures. The convergence
behavior is investigated in numerical examples for both Lagrange and NURBS shape functions. Again
the path-independence is shown alongside a numerical example.

Chapter 7 gives, at last, a summary of the most important findings presented in this work and draws a
conclusion. Furthermore, an outlook on possible further research topics is given, where the findings of
this work could be applied.
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Abstract: At the beginning of this work, the fundamentals of the Isogeometric Analysis (IGA) are
recollected. At first, the topic is motivated by briefly discussing the shortcomings of the classical
Finite Element Method (FEM) with regard to the mesh generation. Subsequently, B-Splines and NURBS
are discussed in Section 2.2 and Section 2.3. In Section 2.4 the IGA is briefly introduced, where the
different refinement strategies, the computation of initial control point values as well as the numerical
integration are discussed in more detail. At last, the advantages of the Isogeometric Analysis over the
classical FEM are discussed.

2.1. Motivation

The physical behavior of continua, such as the deformation of solid bodies, the dispersion of heat,
or the propagation of electromagnetic waves, to name just a few, is described by partial differential
equations (PDEs). However, only for special cases, a closed-form analytical solution is known. It is
thus of utmost importance to have an efficient and reliable solution method at hand to approximate the
solutions of PDEs when dealing with many problems in engineering and science. This can be achieved
with numerical approximation methods which are indispensable in modern engineering sciences.
A very versatile and reliable numerical method for this task is the FEM. The FEM is a well-established
method with an abundance of mathematical proofs verifying the accuracy of the approximated results.
It is therefore a widespread tool in industry and science when analyzing physical systems in all fields
of engineering and science.
Yet, until today, a bottleneck persists in the overall analysis process, stemming from the challenging
and time-consuming transition between CAD and FEM models [32, 78]. The transition often demands
a simplification of the CAD model, involving the removal of detailed features, such as small drill holes,
grooves, or complex contours, that are assumed to have negligible impact on the overall solution of the
problem. This process already demands a resourceful and experienced user. Subsequently, the CAD
model has to be transferred to a FEM program, where the geometry is partitioned such that it can be
more easily divided into small subdomains, so-called finite elements. This process is known as meshing.
Achieving a mesh of reasonable quality is no trivial task. Especially for complicated, curved geometries,
deriving a high-quality mesh is challenging, yet necessary for reliable and accurate results. According
to Cottrell et al. [32, Chapter 1] the preparation of the FEM models takes up to approximately 80%
of time of the whole analysis process, while the actual computational time to solve the PDEs only
constitutes about 4%. Therefore, it still is a challenging task to obtain simulation results of the current
state of design models in a sensible amount of time due to the excessive effort required for model
preparation. Moreover, daily changes in the design common to modern design processes increase the
issue even further. This limits accurate predictions of the behavior of the real physical system at hand
and therefore the relevance of the analysis process.

Hughes et al. [78] proposed the concept of the Isogeometric Analysis (IGA) as a possible solution
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2. Fundamentals of the Isogeometric Analysis

to overcome the mentioned challenges. The FEM and IGA have many things in common since they
are both Galerkin methods [Cotrtrell2009]. Galerkin methods use a finite set of basis functions to
approximate the solutions of differential equations. In the classical FEM, the basis functions are chosen
in such a way that the degrees of freedom are directly interpretable and the resulting matrices are
sparsely populated. These basis functions are also used to approximate the geometry, which is known
as the isoparametric concept. This approach only allows the exact representation of geometries that
can be represented by the FEM basis functions. Many formulations of different basis functions exist,
however, in general, low-order Lagrange polynomials are used. Regrettably, Lagrange polynomials can
precisely represent only a very limited number of geometries.

On the other hand, in the IGA mostly Non-Uniform-Rational-B-Splines (NURBS) are employed. NURBS
are usually used as the basis to represent the geometry in CAD programs. Since NURBS are rational
functions, they can represent even conic sections exactly. The key idea of the IGA is to use the same
NURBS functions representing the geometry as the basis for the approximation of the solution. There-
fore, the IGA holds the potential to greatly simplify the transition between a CAD model and the model
used for the analysis.

This chapter introduces the fundamentals of NURBS before introducing the concept of the IGA. Com-
puter graphics as well as the IGA are each vast fields of research in themselves; therefore, only a very
brief introduction of the most important aspects crucial to the rest of this work can be provided here
and we, thus, limit the discussion to one-dimensional domains.

As the name "Non-Uniform-Rational-B-Splines" already suggests, NURBS are based on B-Splines. So
before introducing the concept of NURBS, the computation of B-Splines and their various properties as
well as B-Spline geometries are discussed in Section 2.2. Using the introduced concept of the B-Splines,
a brief introduction of NURBS follows in Section 2.3. Section 2.4 gives more details on the IGA and
focuses on important differences to the classical FEM as well as presents additional advantages of the
IGA over the FEM.

2.2. B-Splines

Section 2.1 to Section 2.3 closely follow Chapter 2, Section 2.1 and Section 2.2 of Cottrell et al. [32].
Further, information is taken from Piegl and Tiller [110, Chapter 1 - 4]. As the given information relies
on these two source, they are not cited explicitly.

2.2.1. Knot vector

B-Splines play a key role in NURBS functions and their construction is covered in this section. So at
the beginning of this chapter, we start by introducing B-Splines.
Unlike classical finite elements, where the basis functions are constructed on a reference element,
B-Splines are constructed using a knot vector. A knot vector is a set

Ξ = {𝜉1, 𝜉2, ..., 𝜉𝑛+𝑝+1} (2.1)

of 𝑛 + 𝑝 + 1 ordered knot entries 𝜉𝑖 ∈ R. Therein, 𝑝 ∈ N is the polynomial order of the basis, and 𝑛 ∈ N+

denotes the number of basis functions. In general, the knot entries can be chosen arbitrarily, however,
for convenience, we choose 𝜉1 = 0 and 𝜉𝑛+𝑝+1 = 1, so that 𝜉𝑖 ∈ [0, 1], in the remainder of this work.
The entries of the knot vector are sorted in an ascending order such that 𝜉𝑖−1 ≤ 𝜉𝑖 ≤ 𝜉𝑖+1. Note that
the entries of the knot vector do not have to be unique but can be repeated. A repeated entry in the
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interior reduces the continuity of the resulting basis locally. This phenomenon will be discussed in
more detail in Section 2.2.2.
For geometries of higher dimensions multiple knot vectors, one for each dimension, must be defined.
Together, the knot vectors form the parameter space. Many already complex geometries can be repre-
sented by using only a single parameter space, to which we refer also as patch. A patch can be thought
of as a super element encompassing large parts of the geometry. As geometries become more complex,
multiple patches are needed to represent the geometry.
A knot vector is said to be uniform if the knots are spaced equidistant and non-uniform otherwise. The
half-open interval [𝜉𝑖 , 𝜉𝑖+1) between two knots defines a knot span. Since the knot entries do not need
to be unique, this interval may have zero length. In the context of the analysis, we refer to a knot span
with a length greater than zero as a finite element. The knot vector, thus, partitions the geometry and
the parameter space into finite elements and, thus, defines the mesh.
If the very first 𝜉1 and the last 𝜉𝑛+𝑝+1 entry of the knot vector are repeated with a multiplicity of 𝑝 + 1
the knot vector is called an open knot vector. Usually, open knot vectors are employed in combination
with the IGA since they are also standard in CAD technology. In the one-dimensional case, the resulting
basis of an open knot vector is interpolatory at both ends. This simplifies the connection of various
patches as well as the application of boundary conditions for the one-dimensional case.
Even though it is not outright obvious, a knot vector determines many of the properties of the corre-
sponding B-Spline basis. We discuss these properties alongside an example below (see Fig. 2.2).

2.2.2. B-Spline basis

After a knot vector is defined, the associated B-Spline basis functions can be computed using the Cox-de
Boor formula. The formula is recursive and must be evaluated multiple times for higher orders. The
basis functions of order 𝑝 = 0 are given by

𝑁𝑖,0(𝜉) =
{

1 for 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1 ,

0 otherwise .
(2.2)

The higher order basis functions of order 𝑝 ∈ N are computed via1

𝑁𝑖,𝑝 (𝜉) = 𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖 𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝑁𝑖+1,𝑝−1(𝜉) (2.3)

for 𝑖 = 1, ..., 𝑛.

Exemplary B-Spline bases for orders 𝑝 = 0, 1, 2 are shown in Fig. 2.1. An open knot vector Ξ =
{0, ..., 0.25, 0.5, 0.75, ..., 1} is used as basis for the computation for each order 𝑝 , where the first and
last entry are repeated 𝑝 + 1-times.
The basic properties of the corresponding bases resulting from Eq. (2.2) and Eq. (2.3) are discussed in
the following. As can be deduced by examining Eq. (2.2) for order 𝑝 = 0, the basis results in a piecewise
constant function, where only one basis function is equal to one in each knot span (𝑁𝑖,0 = 1 for [𝜉𝑖 , 𝜉𝑖+1))
while all other basis functions are equal to zero, as displayed in Fig. 2.1a.
When the polynomial order increases, the B-Spline basis becomes a piecewise polynomial, as can be
derived from Eq. (2.3). A first-order B-Spline basis results in piecewise linear functions, as shown in
Fig. 2.1b. The basis looks very familiar to someone with a basic knowledge of the FEM, and indeed, a
first-order B-Spline basis is identical to a first-order discretization approach with classical Lagrange

1 where the following is defined (•)
0 B 0
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(a) B-Spline basis functions of order 𝑝 = 0
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(b) B-Spline basis functions of order 𝑝 = 1

0 0.25 0.5 0.75 1
0

0.5

1

𝜉

𝑁𝑖,2

0 0.25 0.5 0.75 1
0

0.5

1

𝜉

0 0.25 0.5 0.75 1
0

0.5

1

𝜉

(c) B-Spline basis functions of order 𝑝 = 2

Figure 2.1.: Results for an exemplary B-Spline basis of different orders for the first three basis functions. The associated open
knot vector is given by Ξ = {0, ..., 0.25, 0.5, 0.75, ..., 1}, where the first and last entry are repeated 𝑝 + 1-times.

finite elements. Two linear basis functions are nonzero over every knot span, and they are equal to one
at each knot, which leads to an interpolatory behavior at the knots.
In Fig. 2.1c the first three basis functions of a second-order B-Spline basis are shown. Examining Eq. (2.3)
it is evident that the bases are piecewise polynomials of order 𝑝 composed of a linear combination of
two 𝑝 − 1-degree basis functions. Keeping in mind that a knot span might have zero length (𝜉𝑖 = 𝜉𝑖+1),
it can be seen that the basis functions span multiple knot spans. By inspecting the different basis
functions 𝑁1,2, 𝑁2,2 and 𝑁3,2, we can observe that a basis function of order 𝑝 is greater than zero over
𝑝 + 1 knot spans. This is due to the so-called local support property of the B-Spline basis functions,
which can be expressed by

𝑁𝑖,𝑝 (𝜉)
{
≠ 0 for

[
𝜉𝑖 , 𝜉𝑖+𝑝+1

)
,

= 0 otherwise .
(2.4)

From the local support property, we can derive that on each knot span a maximum of 𝑝 + 1 shape
functions 𝑁𝑖,𝑝 are nonzero. This property can be exploited to design efficient algorithms, meaning that
not all basis functions need to be evaluated at every point 𝜉 of the knot vector. Pseudocode can be
found in the literature e.g. [110, Chapter 2].
Fig. 2.1 further shows that none of the plotted functions is less than zero. Having a closer look at
Eq. (2.2) and Eq. (2.3) we see that this indeed holds for all basis functions. The nonnegativity of each
shape function

𝑁𝑖 (𝜉) ≥ 0 ∀ 𝜉 ∈ [
𝜉1, 𝜉𝑛+𝑝+1

]
(2.5)
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is another important property of the B-Spline basis functions.
Futhermore, the B-Spline basis fulfills the partition of unity

𝑛∑︁
𝑖=1

𝑁𝑖,𝑝 (𝜉) = 1 ∀ 𝜉 ∈ [
𝜉1, 𝜉𝑛+𝑝+1

]
. (2.6)

This is a fundamental requirement, when combining the B-Spline basis with the Finite Element Method
as it allows to correctly represent rigid body movements and constant strains in classical continuum
bodies [77].
Furthermore, we can see that the plotted B-Spline basis functions for 𝑝 > 0 have only one global
maximum. This is indeed true for all B-Spline basis functions of order 𝑝 ≥ 1.

0 0.1 0.2 0.5 0.75 1
0

0.5

1

𝜉

Figure 2.2.: Example of a B-Spline basis of order 𝑝 = 3 in the parameter space, with the knot vector Ξ =
{0, 0, 0, 0, 0.1, 0.2, 0.2, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}.

We want to discuss some of the properties mentioned above and the influence of a higher mul-
tiplicity of knot vectors on a specific example. For this purpose a knot vector is chosen as Ξ =
{0, 0, 0, 0, 0.1, 0.2, 0.2, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1} for which the resulting B-Spline basis of order
𝑝 = 3 is shown in Fig. 2.2.
The chosen knot vector is an open knot vector, as can be seen from the multiplicity of 𝑝 + 1 of the
first and last entries. This results in the interpolatory behavior of the first basis function at 𝜉 = 0 and
respectively of the last basis function at 𝜉 = 1. Furthermore, there exist two more knot values with
a multiplicity greater than one. 𝜉6 = 𝜉7 = 0.2 with a multiplicity𝑚 = 2, and 𝜉9 = 𝜉10 = 𝜉11 = 0.75
with a multiplicity𝑚 = 3. The influence of the triple entry 0.75 is directly apparent. It reduces the
continuity of the basis to 𝐶0 at 𝜉 = 0.75, which leads to a single function being equal to one at this
point. The influence of the double entry at 𝜉 = 0.2 is not as easily visible. The continuity of the basis is
here reduced to 𝐶1. This reduction becomes obvious in the derivative displayed in Fig. 2.3. We can
deduce that the continuity of the basis is reduced by each knot multiplicity by one due to Eq. (2.2). In a
formal manner, if the multiplicity of a knot entry is given by𝑚, the continuity over a knot is given by
𝐶𝑝−𝑚 , which is another noteworthy property shown of the B-Spline basis. It allows the construction of
curves with interpolatory behavior as shown in Section 2.2.4.
Furthermore, we can see the local support property of the B-Splines in Fig. 2.2 since every basis function
𝑁𝑖 is only nonzero in [𝜉𝑖 , 𝜉𝑖+4). As mentioned above each basis function is equal to or greater than zero
and has exactly one global maximum.
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2.2.3. Derivatives of B-Splines

Besides the basis, the derivates of it are needed for various applications in a CAD tool, as well as for
the application in an analysis step. The first derivative of the basis functions is given by

𝜕

𝜕𝜉
𝑁𝑖,𝑝 (𝜉) = 𝑝

𝜉𝑖+𝑝 − 𝜉𝑖 𝑁𝑖,𝑝−1(𝜉) − 𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) . (2.7)

Further differentiating Eq. (2.7) leads to an equation for the 𝑘−th derivative of 𝑁𝑖,𝑝 (𝜉), which can be
calculated by

𝜕𝑘

𝜕𝜉𝑘
𝑁𝑖,𝑝 =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
𝜕𝑘

𝜕𝜉𝑘
𝑁𝑖,𝑝−1 − 𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝜕𝑘

𝜕𝜉𝑘
𝑁𝑖+1,𝑝−1

=
𝑝!

(𝑝 − 𝑘)!
𝑘∑︁
𝑗=0

𝑎𝑘,𝑗𝑁𝑖+𝑗,𝑝−𝑘

(2.8)

with 2

𝑎0,0 = 1 , (2.9)

𝑎𝑘,0 =
𝑎𝑘−1,0

𝜉𝑖+𝑝−𝑘+1 − 𝜉𝑖
, (2.10)

𝑎𝑘,𝑗 =
𝑎𝑘−1, 𝑗 − 𝑎𝑘−1, 𝑗−1

𝜉𝑖+𝑝+𝑗−𝑘+1 − 𝜉𝑖+𝑗
for 𝑗 = 1, ..., 𝑘 − 1 , (2.11)

𝑎𝑘,𝑘 =
−𝑎𝑘−1,𝑘−1
𝜉𝑖+𝑝+1 − 𝜉𝑖+𝑘

. (2.12)

In Fig. 2.3 the first derivative of the exemplary basis from Fig. 2.2 is shown. In contrast to the basis,

0 0.1 0.2 0.5 0.75 1
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Figure 2.3.: First derivate of the exemplary B-Spline basis of order 𝑝 = 3 from Fig. 2.2 in the parameter space with the knot
vector Ξ = {0, 0, 0, 0, 0.1, 0.2, 0.2, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}

the derivative can take on negative values. Due to the partition of unity of the basis, the sum of all
derivatives is equal to zero.
As before, the influence of the multiplicity of the knot vector entries is visible. At 𝜉 = 0.2, where a
double entry exists, the derivative of the basis is 𝐶0-continues and at 𝜉 = 0.75 a discontinuity of 𝑁7 to
𝑁9 occurs.
Equivalent to the algorithm for the Cox-de Boor formula, efficient algorithms for the evaluation of the
derivatives exist in the literature exploiting the local support property (see e.g. [110, Chapter 2]).

2 where we define (•)
0 B 0
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2.2.4. B-Spline geometries

A B-Spline basis can be used to represent many geometric objects by introducing so-called control
points B𝑖 ∈ Rd, where 2 ≤ d ∈ N is the dimension in which the geometry is represented. The number of
control points is equivalent to the number of basis functions. The B-Spline curve is represented via

C(𝜉) =
𝑛∑︁
𝑖=1

𝑁𝑖,𝑝 (𝜉)B𝑖 . (2.13)

The curve C(𝜉) does not interpolate the control points B𝑖 for arbitrary basis orders 𝑝 ≥ 2.

0 2 4 6 8

0

2

4

6

8

Figure 2.4.: Example of a B-Spline curve in two dimensions with the basis from Fig 2.2

We discuss the properties of the resulting B-Spline curve alongside an example (see Fig. 2.4). The
same B-Spline basis as in Fig. 2.2 is used. The corresponding eleven control points are collected in the
columns of the following matrix

B =

[
0 1 2 2 4 8 6 5 3 2 1
0 −1 −1 4 3 6 7 6 8 7 5

]
.

In Fig. 2.4 the control points are connected with a black line. The resulting interpolation is called the
control polygon, which forms a linear approximation of the B-Spline curve. The B-Spline curve in
Fig. 2.4 lies inside the convex hull of the control points. This is a general property of B-Spline curves
resulting from the properties of the basis.
Since the basis is computed with an open knot vector, the first and last control points are interpolated,
whereas all interior control points except the eighth control point (B8 =

[
5 6

]⊤) are not. The
interpolary nature of the curve at the eighth control point results from the chosen knot vector, where
the knot 𝜉 = 0.75 has a multiplicity of𝑚 = 3. It is directly related to the fact that at 𝜉 = 0.75 only the
basis function 𝑁8 is non-zero while all other functions are zero (see Fig. 2.2). Thus, C(𝜉) is interpolatory
at B8.
Geometries of higher dimensions are constructed by applying the tensor product. Surfaces described
with B-Splines are thus given by

S(𝜉, 𝜂) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑁𝑖,𝑝 (𝜉)𝑀 𝑗,𝑞 (𝜂)B𝑖, 𝑗 (2.14)

and volumes by

S(𝜉, 𝜂, 𝜁 ) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑁𝑖,𝑝 (𝜉)𝑀 𝑗,𝑞 (𝜂)𝐿𝑘,𝑟 (𝜁 )B𝑖, 𝑗,𝑘 , (2.15)
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where𝑀 𝑗,𝑞 and 𝐿𝑘,𝑟 (𝜁 ) are the 𝑗-th and 𝑘-th basis function of a basis of order 𝑞 and 𝑟 respectively. A
geometry defined with only a single set of basis functions over one knot vector for each dimension
can already describe complex geometries. However, the complexity of the geometries is limited.
More complex geometries can be represented by using multiple patches and combining the resulting
geometries.

Affine transformations, such as rotations, translations, scalings, or, shears, of a B-Spline curve are
performed by applying the affine transformation to the control net. This is an essential property used
in the proof of objectivity in the IGA as well as for the fulfillment of the patch-test [78]. It is known as
affine covariance.
Algorithms for the computation of the coordinates of the control points as well as many tools for the
manipulation of the curves can be found in the literature, e.g. [110].

2.3. Non-uniform rational B-Splines

As mentioned above, B-Splines are still piecewise polynomials and even though many geometries can
be represented with them, they cannot represent all geometries exactly. Conic sections, for example,
cannot be exactly described using polynomials. However, rational functions can fill this gap. Thus, the
concept of B-Splines was expanded towards so-called Non-Uniform Rational B-Splines (NURBS).

The basis for NURBS are B-Splines. Additionally so-called weights 𝑤𝑖 ∈ R+ are introduced for the
definition of a NURBS basis 3. The 𝑖-th NURBS basis function of order 𝑝 is computed from

𝑅𝑖,𝑝 (𝜉) =
𝑁𝑖,𝑝 (𝜉)𝑤𝑖

𝑊 (𝜉) =
𝑁𝑖,𝑝 (𝜉)𝑤𝑖∑𝑛
𝑖=1 𝑁𝑖,𝑝 (𝜉)𝑤𝑖

(2.16)

with 𝑖 = 1, ..., 𝑛 and where 𝑁𝑖,𝑝 is the 𝑖-th B-Spline basis functions of order 𝑝 as introduced in Section
2.2.2. If all weights are set equal to one (𝑤𝑖 = 1∀ 𝑖), the NURBS basis reduces to the corresponding
B-Spline basis. Due to the computation from a B-Spline basis the properties illustrated for B-Splines in
Section 2.2.2 carry over to the NURBS basis. Therefore, they are not repeated here again.

0 0.1 0.2 0.5 0.75 1
0

0.5

1

𝜉

Figure 2.5.: Example of a NURBS basis in the parameter space.

Fig. 2.5 shows a NURBS basis based on the B-Spline basis from Fig. 2.2. The following arbitrary weights
have been chosen for the NURBS basis

w =
[
1 5 1 1 10 10 1 1 0.1 4 1

]
.

3 𝑤𝑖 > 0 is an often made assumption, but other choices are possible [110].
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When comparing Fig. 2.2 with Fig. 2.5, it can be seen, that the NURBS basis is a modified version of the
B-Spline basis. However, all the relevant properties mentioned in Section 2.2 still hold.
Equivalent to a B-Spline curve, a NURBS curve C(𝜉) is described by

C(𝜉) =
𝑛∑︁
𝑖=1

𝑅𝑖,𝑝 (𝜉)Bi . (2.17)

In the following, we briefly discuss the influence of the weights on the resulting geometry. Again we
demonstrate this on an example. The influence of a change of the weights is illustrated in Fig. 2.6,
where the same basis as in Fig. 2.5 is employed and only weight𝑤5 changes. The same control points
as in Fig. 2.4 are used. The original B-Spline curve from this example is plotted for comparison in a
dashed light blue line.
A large value of a weight corresponds to a stronger influence of the associated control point. An
increase pulls the NUBRS curve towards the corresponding control point. If on the other hand, the
weight is decreased the influence of the control point on the overall geometry is reduced since the
curve does not run as closely by it.
The weight of the fifth control point𝑤5 is varied for each NURBS curve in Fig 2.6. For better visibility,
the position of the associated control point B5 is shown in red. In Fig. 2.6a the weight is set to𝑤5 = 0.01,
thus the influence of the fifth control point on the curve is low. The curve runs very close by the fourth
and sixth control points while running in a nearly straight line between both. When the weight is
increased to one (𝑤5 = 1) the influence of the control point increases, and the curve is drawn a little
closer to the control point as can be seen in Fig. 2.6b. Due to the relatively high weight of𝑤6, it does
not run as closely by as the original B-Spline curve. For a weight𝑤5 = 10 the curve bends very closely
towards the corresponding control point thus increasing its influence on the surrounding geometry,
which is shown in Fig. 2.6c. It shows, that the influence of the fourth control point B4 is reduced
alongside the increase of the influence of control point B5. Similar effects can be examined for B6.
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(a) NURBS curve with 𝑤5 = 0.01
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(b) NURBS curve with 𝑤5 = 1
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(c) NURBS spaces curve with 𝑤5 = 10

Figure 2.6.: NURBS curve with variation of the fifth weight𝑤5. The fifth control point B5 is highlighted in red. The original
B-Spline curve from Fig. 2.4 is plotted for comparison dashed in light blue.

Surfaces and volumes can be constructed in the same manner, by applying the tensor product as
shown for B-Splines in Section 2.2.4. As affine transformations are applied to the control net, the affine
covariance holds the same as for B-Spline curves.

2.4. The Isogeometric Analysis

Using the concepts from the last two sections, we can now turn our attention again to the Isogeometric
Analysis. Like the classical FEM, the IGA is a method to approximate the solution of PDEs. The
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2. Fundamentals of the Isogeometric Analysis

underlying mathematical approach is equivalent to the FEM because both are Galerkin methods.
Galerkin methods rely on the approximation of the solution space with a finite set of functions. The
classical FEM approach uses approximation functions, which are only locally nonzero. Shape functions,
which fulfill the collocation properties on the finite element nodes are chosen for the approximation,
which enables a conforming discretization over element boundaries. The most common approach uses
Lagrange polynomials, which are constructed using the nodal values on a reference element. Lagrange
polynomials result in a 𝐶0-continues discretization over the element boundaries, however, there are
methods to achieve higher continuity in one dimension (e.g. Hermite shape functions [77]).
In the classical FEM, the basis functions are used to describe the geometry via the isoparametric concept.
So the FEM basis functions are used to approximate the solution and are also used to represent the
geometry. It follows directly that only geometries, which can be described through the piecewise
continuous basis functions, are represented exactly.
In the case of the IGA, this idea is reversed. Instead of using the approximation functions from the
Galerkin approach for the representation of the geometry, the functions used to display the geometry
are also used to approximate the solution space. In general, these are B-Splines, NURBS, or some of
their further advancements. As introduced above they are not defined using elements and nodes but
through knot vectors in the parameter space.
Both, the FEM and the IGA, are Galerkin methods as mentioned above. Thus, the approximation in
general is given by an additive approach4

uexact ≈ uℎ =
𝑛∑︁
𝑖=1

𝑁𝑖u𝑖 , (2.18)

where uexact is the exact solution, uℎ is the approximated field, and u𝑖 are the values of the weights
corresponding to the approximation function 𝑁𝑖 . In the case of the FEM, u𝑖 corresponds to the nodal
value at node 𝑖 , and for the IGA u𝑖 corresponds to the value at the control point 𝑖 . 𝑁𝑖 are either FEM
basis functions, like Lagrange polynomials, or in the case of IGA B-Spline or NURBS functions. For
convenience, we denote a shape function from here on always with 𝑁𝑖 for either Lagrange, B-Spline, or
NURBS functions.
However, in contrast to a FEM basis function, which interpolates the nodes, a B-Spline or NURBS curve
does not interpolate the control points. It follows that the degrees of freedom u𝑖 , which lie on the
control points, cannot be interpreted as the approximated solution. Instead the discretization approach
of Eq. (2.18) has to be employed. This is in contrast to FEM, where due to the interpolatory nature of
the basis functions the nodal values u𝑖 coincide with the approximated solution at the nodes.
In Fig. 2.7 the most important spaces needed for the IGA are shown. Besides the physical space, which
is described with the isoparametric concept through a linear combination of the basis function with the
control points, the parameter space and a reference element are displayed. As explained in Section 2.2,
the bases are constructed in the parameter space, which is defined through knot vectors. The knot
vectors also separate the parameter space, as well as the physical space into finite elements, through
interior knot entries as mentioned in Section 2.2.2. One of the finite elements is highlighted in blue in
Fig. 2.7 in the parameters space as well as in the physical space. The element is defined through the knot
spans [𝜉𝑝+1 = 0, 𝜉𝑝+2 = 0.5) and [𝜂𝑝+1 = 0, 𝜂𝑝+2 = 0.25) with 𝑝 = 3. This is in contrast to the classical
finite element basis functions, where finite elements are obtained by subdividing the geometry in the
physical domain. Furthermore, the B-Spline or NURBS basis is constructed in the parameter space,
whereas classical finite elements are usually constructed on a reference element. Even though the basis
is constructed in the parameter space, still a reference element is needed. It is used for the numerical
integration process. A discussion on the numerical integration in the IGA follows in Section 2.4.3.

4 In Chapter 3 we are going to introduce discretization approaches, which do not rely purely on an additive approach.
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Figure 2.7.: Spaces for the application of the IGA.

Due to the very similar structure of the mathematical approach, only small adjustments to an existing
FEM code are necessary to adapt it to the IGA. Besides a loop over the finite elements, an additional
loop over different patches, which form complex geometries is needed. Furthermore, the shape function
on each element can differ, which leads to the necessity to select different functions for each element.
Details on the issues of implementation are given in [32, Appendix A].
Even though the basis functions are now defined on a patch level and not on the local level of finite
elements the local support property of B-Spline and NURBS ensures that the bandwidth of the resulting
matrices still does not increase compared to the FEM [32, Chapter 2]. However, numerical experiments
indicate that the computational time increases nevertheless [109].
Like the FEM the IGA has a solid foundation through mathematical proofs, which show the convergence
of the approximated result towards the exact solution with mesh refinement (see e.g. [13, 35]).

2.4.1. Refinement strategies

Mesh refinement strategies in the context of the IGA deserve a closer look. The IGA offers more
possibilities compared to the classical FEM. This allows for an overall greater flexibility of the method.
We use here the definitions of the refinement strategies as introduced by Hughes [78].
Besides the classical ℎ-refinement, the refinement in space, and the classical 𝑝-refinement, where the
order of the shape functions is increased while keeping the overall continuity of the shape functions
over the boundaries constant, the IGA offers a third option. This third option is named 𝑘-refinement.
The 𝑘-refinement increases the order of the shape functions together with the overall continuity of the
discretization over the whole patch. In the following, we are going to discuss the three options in more
detail.

2.4.1.1. ℎ-refinement

Equivalent to the FEM, the possibility to choose a finer mesh reducing the size of the finite elements
exists. For this purpose, additional unique knots are inserted into the knot vector without changing the
basis order.
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(c) Four finite elements

Figure 2.8.: An example of the ℎ-refinement strategy. The B-Spline basis of order 𝑝 = 2 is 𝐶1-continues over the whole
domain. The continuity is kept constant, while a smaller length of the elements (or knot spans) leads to an increase in the
number of finite elements.

The ℎ-refinement is illustrated in Fig. 2.8. In Fig. 2.8a a second-order B-Spline basis with two finite
elements is shown. We now subdivide the domain into three elements, where we chose equidistant
knots. This leads to Fig. 2.8b with three finite elements. If we further divide the domain into four
elements, we obtain the basis displayed in Fig. 2.8c. The order of the basis is kept constant and so is
the continuity inside each element (𝐶2) and over element boundaries (𝐶1) since only unique knots are
introduced. With each additional knot, the number of basis functions increases by one and consequently,
the number of control points increases accordingly.
In the FEM additional elements can be added by subdividing the geometry into smaller pieces. In
the FEM the meshing process in one-dimensional problems is straightforward. In contrast to this,
the ℎ-refinement in the IGA is already difficult for one-dimensional domains, if the exact geometrical
representation is to be preserved. It makes the use of algorithms necessary to compute the position
of the newly introduced control points and weights. Corresponding algorithms can be found e.g.
in [78, 110].

2.4.1.2. 𝑝-refinement

In the standard FEM, 𝑝-refinement refers to an increase in the polynomial order of the shape function
on each element. Due to the element-wise construction process, the increase in the polynomial order
does not lead to an increase in the continuity of the basis over element boundaries. Using classical ap-
proaches, the continuity between elements remains𝐶0. This the definition of 𝑝-refinement is employed
by Hughes [78].

The described behavior can be mimicked by the IGA by introducing additional knot entries inside
the interior of a knot span when increasing the element order. To achieve this the multiplicity of the
interior knots is increased alongside the order of the basis functions to keep the continuity constant.
An example of the 𝑝-refinement strategy is shown in Fig. 2.9. In Fig. 2.9a, a B-Spline basis of order
𝑝 = 2 is plotted. At 𝜉 = 0.5 it is𝐶0-continues due to a knot entry of multiplicity of𝑚 = 2 (𝜉4 = 𝜉5 = 0.5).
An increase of the basis order to 𝑝 = 3 is shown in Fig. 2.10b. Additionally, a knot is introduced,
increasing the knot multiplicity to𝑚 = 3 (𝜉5 = 𝜉6 = 𝜉7 = 0.5). A further 𝑝-refinement as defined in [78]
results in Fig. 2.10c, where a basis of order 𝑝 = 4 is drawn. To ensure the same continuity over element
boundaries the multiplicity is increased to𝑚 = 4 (𝜉6 = 𝜉7 = 𝜉8 = 𝜉9 = 0.5).
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(c) 𝐶0-continues B-Spline basis of order
𝑝 = 4

Figure 2.9.: An example of the 𝑝-refinement strategy of a B-Spline basis. The basis is 𝐶0-continues over element boundaries.
The continuity is kept constant, while the order of basis is increased.

2.4.1.3. 𝑘-refinement

While ℎ- and 𝑝-refinement strategies exist in a similar fashion in FEM and IGA, the later offers an addi-
tional possibility for another new refinement approach. Hughes et al. [78] named this new refinement
strategy 𝑘-refinement. A direct comparison of the effects of 𝑘-refinement versus 𝑝-refinement can be
found for example in [31, 80, 111].
Instead of just increasing the order on each element individually, 𝑘-refinement increases the continuity
of the basis functions over the whole patch. While, in general, this is not possible in the FEM, in the
IGA it can be done by elevating the basis order. In contrast to the ℎ- or 𝑝-refinement no additional
interior knots are introduced. A classical finite element formulation has no equivalent counterpart.
An illustration of the 𝑘-refinement strategy is shown in Fig. 2.10. We begin with a second-order B-Spline
basis, as shown in Fig. 2.10a, which is 𝐶1-continues over the element boundary at the single knot entry
at 𝜉4 = 0.5. By increasing the order of the basis the overall continuity is increased. Fig. 2.10b displays
an increase of the basis to order three. Since no further internal knots are introduced the basis over the
element border at 𝜉 = 0.5 also increases to 𝐶2. A further increase of the order leads to Fig. 2.10c, where
the order is 𝑝 = 4. Thus, at 𝜉 = 0.5 a 𝐶3-continuity is given.
We discuss some advantages of this approach below in Section 2.4.4. Higher order finite elements with
B-Spline or NURBS basis functions in this work are constructed using 𝑘-refinement.
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(c) 𝐶3-continues B-Spline basis of order
𝑝 = 4

Figure 2.10.: An example for the 𝑘-refinement strategy of a B-Spline basis over two elements. Continuity over element
boundaries and basis order are increased simultaneously.

2.4.2. Computation of initial control point values

In the IGA the control points, which correspond to the degrees of freedom, generally may not correspond
to the approximated solution directly. Due to the non-interpolatory nature, the approximated solution
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is given through the linear combination of the values on the control points multiplied by the shape
functions (Eq. (2.18)). This has to be taken into account in the computation of the initial configuration
in a preprocessing step.
The position of the control points and the corresponding weights to represent complex geometry
exactly can be obtained through the use of CAD software. However, simple geometries such as circles,
conics, or, cylinders can be constructed with the aid of simple algorithms given e.g. in [110].

In addition to the control point values required for the positions, the values for the other fields, e.g.,
initial rotational parameters, the initial velocity distribution, or initial temperature, have to be computed
in a separate step. An algorithm for the computation of the initial director values in the context of
shells at the control points is proposed in [41]. It can be generalized from directors to arbitrary fields
and is briefly repeated here. We assume that all relevant fields are known in the initial configuration,
such that the values at the Gauss points uℎ (𝜉GP) can be determined in every element. A value of an
arbitrary approximated field uℎ inside a one-dimensional domain is approximated at the Gauss points
by

uℎ (𝜉GP) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝜉GP)u𝑖 , (2.19)

where uℎ (𝜉GP) are the approximated values, evaluated at the Gauss point level, and 𝜉GP are the position
of the Gauss points at the level of the parameter space. The unknowns u𝑖 are the values on the control
points. Moreover, 𝑁𝑖 are either B-Splines or NURBS functions. Eq. (2.19) can be written in matrix
notation as

uGP = N · uCP , (2.20)

where the matrix N has the dimension (𝑛GP · (𝑛𝑒𝑙 × 𝑛CP)). The number of Gauss points per element is
given by 𝑛GP and 𝑛𝑒𝑙 is the number of finite elements. The vector uGP contains all the values on the
Gauss points and uCP all values on the control points, respectively. By multiplying Eq. (2.20) from the
left with N⊤ we obtain the following equation

N⊤ · uGP = N⊤ · N · uCP . (2.21)

The values of the approximated field u on the control points are obtained by an inversion of the form

uCP = (N⊤ · N)−1 · N⊤ · uGP . (2.22)

where the matrices N and N⊤ · N can be assembled elementwise. Note that a sufficiently high number
of Gauss points needs to be chosen, since otherwise, the system might be ill-conditioned [41].

The presented algorithm will be used in Chapter 5 and Chapter 6 to compute the initial field of directors
and quaternions for an application in the geometrically exact beam formulation.

2.4.3. Numerical integration

In every finite element routine, it is necessary to evaluate integrals. For special cases, the integration can
be performed analytically, but, in general, numerical approaches are needed. The standard algorithm
for the numerical integration is the Gaussian quadrature. It is an optimal integration scheme for
polynomials in one-dimensional problems since it uses a minimal number of integration points to
achieve an exact solution [77].
However, in the case of the FEM or IGA, this optimality only holds for a singular element. Even for a
finite element discretization approach with interpolatory shape functions fewer integration points are
needed for an exact integration [79]. Thus, the globally optimal integration scheme for a finite element
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patch has to be defined over element boundaries.
Due to the higher continuity of B-Splines and NURBS, the efficiency gain of new integration rules
could be even higher than for the classical 𝐶0-continues elements [79]. This fact, in itself, calls for the
search for new, more efficient quadrature rules. Furthermore, the employed functions in the IGA are,
in general, rational functions as shown in Section 2.3. This implies, that even on an element level in
one dimension the classical Gauss integration is not optimal since it is not exact, but only gives an
approximated value.

This sparks the search for new, more efficient integration schemes for splines, as well as for the exact
quadrature rules of rational functions [70]. An exact quadrature rule for rational functions can be
achieved through an expansion of the concept of the Gaussian quadrature. Such an expansion is called
a generalized Gaussian quadrature, which is again a quadrature rule, that integrates functions, exactly,
while no other rule exists, that integrates those functions with fewer integration points. It is shown in
[85] that such an integration rule exists for a large class of functions including rational functions like
NURBS.
However, the more efficient quadrature rules existing in the literature have some severe drawbacks.
In contrast to quadrature rules on reference elements, which can be applied to arbitrary meshes, the
corresponding weights and integration points have to be computed for each mesh anew. Further, they
often have very strict requirements on the underlying mesh in order to compute the necessary tools
for integration accurately see e.g. [7, 9, 84]. The integration points and weights of these quadrature
rules must be computed numerically. The non-linear systems, which need to be solved, are numerically
ill-posed and, thus, hard to solve [70, 79]. The mentioned shortcomings greatly limit the applicability
of the newly developed rules.

Due to the limited success in finding a generalized Gaussian quadrature rule for arbitrary meshes, to
the best knowledge of the author, the Gaussian quadrature is still employed in the IGA as standard
approach. Nevertheless, the excellent results of the IGA in every field, show that the error of the
numerical integration can be neglected. Furthermore, the Gaussian quadrature is not always the
optimal rule for higher dimensional Lagrange finite elements [77]. Also, the standard FEM approach
may not integrate polynomials depending on the underlying problem. This might for example occur,
for distorted meshes, where the Jacobian is rational. Likewise, non-polynomial functions need to be
evaluated when complex non-linear material behavior like elastic-plastic material is investigated [14].

For the reasons mentioned above, the classical Gauss integration scheme is applied in this work for the
integration of NURBS and B-Spline functions alike.

2.4.4. Advantages of the Isogeometric Analysis

The main motivation for the IGA especially from the viewpoint of the industry, is the optimization of
the workflow (see Section 2.1). Due to different representations in CAD programs, where solids are
represented through their surface, and FE analysis tools, where a volumetric representation is needed,
this is still an open topic of research. Besides the described optimization of the workflow, the IGA offers
other advantages, that might be of greater interest to the scientific community.

The IGA could not only enable a faster transition between CAD model and analysis but also allows
an exact representation of the geometry. This is especially of interest for the solution of non-linear
differential equations. It is well-known, that the solutions for non-linear problems may strongly vary
for a slight variation of the initial conditions. It directly follows that the solution can highly depend on
the representation of the initial geometry [3].
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2.4.4.1. Higher continuity of shape functions

As mentioned before, the IGA also allows for additional possibilities in the design process of the basis
functions. In the classical Finite Element Method, the construction of bases is performed element-wise.
It is, therefore, a very challenging task to design a basis with high continuity over elements. On the
other hand, NURBS shape functions are formulated in a more global context. Their construction process
allows for a straightforward computation of a basis with arbitrary continuity on the level of patches.
This is especially of interest in higher dimensions, where it is not possible to construct such a basis in
the classical FEM.

As presented in the previous section, the construction of a discretization, which is smooth over element
boundaries is naturally embedded in the IGA in the form of 𝑘-refinement. This allows for a broader
application of the method compared to the standard FEM. Weak forms of PDEs, which result in a
variational index greater than one, require a discretization of a continuity higher than 𝐶0. Differential
equations, which lead to such a requirement, are for example the Cahn-Hilliard equation [32, 69], equa-
tions describing materials with gradient elasticity [48] or the Navier-Stokes-Korteweg equation [52].
But more familiar for engineers are problems from structural analysis such as shear stiff beams [50, 99]
and shells [42, 86] with the requirement of a 𝐶1-continues basis.
Apart from such applications, contact mechanics is a field where the application of the IGA is promising.
Problems involving contact still remain a challenging task. Besides many other difficulties, one issue is
a discretization with low smoothness over element boundaries [37]. The low smoothness may lead to a
sudden switch of the direction of the contact forces, leading to difficulties in the convergence of the
non-linear solution [37]. The advantages of a smooth discretization are, for example, shown in [103]
for the simulation of contact with B-Splines.

2.4.4.2. Error bounds

Another advantage of the IGA is its overall lower error bounds compared to the FEM, which is
shown numerically on various examples in e.g. [47]. The IGA in combination with 𝑘-refinement
leads to a higher accuracy per degree of freedom when compared to the classical FEM. We show
the higher accuracy with data taken from an example, where the results are presented in Section
6.5.1 5. The convergence plot of FEM with Lagrange elements and IGA with NURBS are presented in
Fig. 2.11. The example is solved for orders 𝑝 = 1, 2, 3 for both methods. For linear elements 𝑝 = 1 both
methods coincide, thus the lead to the same result. An increase in the element order leads to different
approximations. While the order of convergence is the same for both methods, an overall lower error
bound can be found for the IGA with the same number of degrees of freedom. It can be concluded that
the IGA is more efficient per degree of freedom.

5 Results presented here are obtained with the NPS(•) and LPS(•) elements introduced in Section 6.5.

20



2.4. The Isogeometric Analysis

102 103
10−12

10−9

10−6

10−3

100

degrees of freedom

er
ro
r

FEM/IGA: 𝑝 = 1
FEM: 𝑝 = 2
FEM: 𝑝 = 3
IGA: 𝑝 = 2
IGA: 𝑝 = 3

Figure 2.11.: Exemplary convergence behavior of FEM vs IGA for approximation order of 𝑝 = 1, 2, 3. The FEM approach is
discretized with Lagrange shape function, whereas for the IGA approximation B-Splines are used. For 𝑝 = 1 both approaches
coincide.

2.4.4.3. Simulation of wave propagation

In addition to the already mentioned advantages, the IGA is beneficial, when dealing with dynamic
problems. The basis functions used in the IGA do not exhibit the so-called Runge’s phenomenon. The
Runge’s phenomenon describes the behavior found for Lagrange basis functions of higher order, where
shape functions show strong oscillations, especially, towards the element boundaries. This might lead
to ill-conditioned matrices depending on the discretization approach [133].
In contrast to this even B-Spline bases of very high order show a smooth behavior [32, Chapter 2].
Thus, basis functions of arbitrary order can be chosen. This is of great advantage when dealing with
dynamic problems, where higher order elements can approximate wave propagation phenomena much
more efficiently than lower orders [150].
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Figure 2.12.: Relative error of the approximated eigenfrequencies of a linear rod over the normalized number of degrees of
freedom. The FEM computation is performed using 𝐶0-continues Lagrange shape functions, while in the IGA computation
𝐶𝑝−1-continues B-Spline shape functions are used.
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2. Fundamentals of the Isogeometric Analysis

The higher continuity of B-Splines and NURBS has another advantage. Dynamic simulations with finite
elements using Lagrange shape functions show an unfavorable behavior. The eigenfrequencies show a
switch between so-called acoustic and optical modes 6.
This can be seen when investigating the approximated eigenfrequencies. For this purpose, we reproduce
results found in [31, 32]. The oscillatory behavior of a linear elastic rod fixed at both ends is investigated.
In Fig. 2.12 the relative error 𝑒 = 𝜔num/𝜔ana − 1 of the numerical eigenfrequencies 𝜔num is plotted over
the normalized number of eigenfrequencies 𝑁 . 𝜔ana are the eigenfrequencies of the analytical solution.
The total number of degrees of freedom of the systems is held constant at 999 for all element orders.
Both methods coincide for 𝑝 = 1. The resulting curve displays an increase of the error up to approxi-
mately 𝑁 = 0.8, with an already significant error at around 𝑁 = 0.4. Nevertheless, the curve is smooth
over the whole spectrum.
Higher-order elements lead to a much better approximation for 𝑁 < 0.5. The FEM solution results in
slightly larger errors than the IGA. At approximately 𝑁 = 0.5, however, the FEM solutions exhibit a sud-
den increase in frequency. Higher order approximations lead to an additional jump at around 𝑁 = 0.65
for 𝑝 = 3 and at approximately 𝑁 = 0.75 for 𝑝 = 4. These solutions can be regarded as spurious. In
a spline-based approximation, such a jump does not occur. The solution displays an overall smooth
behavior with a much smaller error over the whole spectrum.
The jump found in the FEM solution can be explained due to a switch from acoustic to optical modes.
While the acoustic modes are modes, where the nodes oscillate in phase over element boundaries,
the optical branch comes from out-of-phase oscillations of the internal element nodes. Since only
the boundary nodes of each element are in contact, this can lead to localized vibration patterns. In a
spline-based approach, the influence of each node spans multiple elements. Thus, the behavior of the
individual elements is closely connected to its neighbors, which circumvents the localized patterns. An
exception from this is the highest frequency at 𝑁 = 1, where a jump in the relative error occurs. This
can be explained by the usage of an open knot vector, where the most outer control points can exhibit
a localized vibration pattern as well.

2.4.5. Conclusion

Overall the IGA has many benefits over the classical FEM. In general, it enables more choices for the
analysis. However, this comes at a cost. The IGA approach is much more complex, especially when it
comes to the initialization and refinement of the mesh. The mesh refinement is especially complicated
in higher dimensions (see e.g. [69]). However, many of those challenges might be addressed, when the
IGA becomes incorporated into commercial tools.

6 The terms acoustic/optical modes are borrowed from crystallography, where these modes describe the oscillation of crystals
of sodium and chlorine ions, which resonate in very different frequencies. The acoustic frequencies are of lower frequency
near the audible range, whereas the optical frequencies oscillate with very high frequencies [32, Chapter 5].
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3. Rotations in three dimensions

Abstract: In this chapter, we give a short introduction to the topic of rotations and their treatment in
the FEM and IGA. For this purpose, a very brief summary of the most relevant aspects of the Lie group
theory needed for this work is given. Further, the special orthogonal group is discussed in detail as
well as some of its parametrizations. The focus lies hereby on unit quaternions. Finally, the treatment
of rotations in the context of the FEM and IGA is examined, where four discretization approaches are
discussed. The first approach is a classical, additive discretization, the second approach is based on the
concept of geodesic finite elements and the third uses projection-based finite elements. Additionally,
we briefly present Gauss-Lobatto-based shape functions as an option for the FEM.

At first glance, rotations1 might seem like a trivial subject since we deal with them in daily life, where
we instinctively know how to handle them. However, their treatment in a mathematical framework is
complex and involves many aspects of advanced mathematics.
Rotations play a key role in many engineering tasks as they are needed to describe the movement of
rigid bodies. Consequently, they are one of the key topics in the field of multibody dynamics (cf. [10]).
Furthermore, rotational fields are needed in infinite dimensional problems. Examples range from
structural mechanics, where rotations are used to describe the deformation behavior of beams and
shells [41, 102], to some special cases of continuum problems, such as Cosserat continua [146].

Even though it is a key feature of many engineering tasks, the topic is in general not covered in great
detail in the education of engineers. In this chapter, we thus want to introduce the basics of rotations in
three dimensions. For this purpose, we want to give the reader a very brief insight into the underlying
mathematical concept of the Lie group theory. A basic knowledge of this concept, even though it is
often very abstract and not trivial, simplifies the treatment of rotations, as it unites various aspects of
the topic.
Furthermore, we give an insight into different approaches, which can be used for the treatment of
rotational fields in the framework of the FEM and IGA. To the best knowledge of the author, a discussion
for a general treatment of rotational fields in the Isogometric Analysis is so far not given in the literature.
This gives us the mathematical foundations we need in Chapter 5 and Chapter 6, where we have a
detailed look at the geometrically exact beam formulation and its discretization in a finite element
framework for two different formulations of the geometrically exact beam.

This chapter is structured as follows. At first, the fundamental concept of Lie groups is introduced in
Section 3.1. These basics are further used to have a more detailed look at rotations in three dimensions
in Section 3.2, where subsequently, three possible ways to represent rotations are briefly discussed.
At last, we approach the discretization with the FEM and IGA for two of these representations in
Section 3.4, where we discuss the classical, additive discretization, geodesic, and projection-based finite

1 In the literature, it is often emphasized, that large or finite rotations are treated in comparison to small or infinitesimal
rotations. Infinitesimal rotations lie in a vector space. Thus, the topic is much simpler in itself. This work focuses on large
or finite rotations. The amendment "large" or "finite" is thus dropped for convenience, and if rotations are mentioned they
are assumed to be large or finite if not explicitly stated otherwise.
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3. Rotations in three dimensions

elements. Additionally, as an option for the FEM, we introduce Gauss-Lobatto-based shape functions.
Their use has so far not been discussed in the literature in connection with this topic.

3.1. Lie groups

The origin of the concept of Lie groups dates back to the work of the Norwegian mathematician Sophius
Lie (1842-1899) [82]. They form a very useful but abstract concept when working with rotations and
motions. The underlying mathematics, however, goes far beyond the curriculum of mathematical
classes of engineers, and even though there exists numerous literature (e.g. [61, 71, 74, 89, 141]) on the
topic, it is usually not addressed at engineers or even applied mathematicians. This makes the transfer
of the knowledge to numerical applications difficult.
Motivation to engage in the Lie group theory can be found in the literature, where the theory is applied
to enhance numerical methods. For example in [26, 28, 82, 96] the concept of Lie groups is applied for
the development of time integration schemes and allows the conservation of the underlying geometry.
An application to variational integrators in combination with the geometrically exact beam formulation
is given in e.g. [39, 91], where highly efficient methods are obtained. Sonenville et al. [134–136] use
the knowledge of Lie groups to develop a locking-free finite element formulation of the geometrically
exact beam.

It is far beyond the scope of the present work to give an in-depth and extensive introduction to the
topic, but it is merely the goal to give the reader a first insight into the concept. The focus hereby
lies on the aspects, which are useful to understand rotations and their treatment in the FEM and IGA,
which are subsequently required to solve the problem of the geometrically exact beam in the context of
these methods. At the beginning of this section, the definition of Lie groups is given, while the rest of
the section gives a short introduction to the most important aspect of the theory needed in this work.

We begin with the definition of a Lie group: A Lie group is defined as a smooth manifold, with a group
structure, where the group action and the group inversion are smooth [141, Chapter 1].
We describe each aspect in detail in this section and begin with a descriptive explanation of a manifold.
For a mathematical precise definition, see e.g. [95, Chapter 4]. A manifoldM of dimension𝑚 can be
viewed as an abstract, smooth hypersurface. Locally, at point x ∈ M a manifold is flat and forms a
linear vectors space R𝑚 , which we call the tangent space 𝑇xM at x. The admissible derivatives and
variations lie in the corresponding tangent space 𝑇xM. In this work, we focus on embedded manifolds,
which are defined through a constraint function. For more details see e.g. [72, Chapter 2].
To help the reader understand each concept presented in this section different examples are given. A
very simple Lie group and, thus, a useful example for this purpose, is the unit sphere 𝑆1 [141, Chapter 1],
which will be used on each new concept as an example throughout this section.

Example 3.1.1 (Unit sphere 𝑆1). A Lie group, which every engineer knows well, even though not as Lie
group, is the unit sphere 𝑆1 (see Fig. 3.1). The unit sphere 𝑆1 is a circle with a radius equal to one in the
complex plane. A parametrization of the unit sphere is given by the complex numbers of unit length

𝑆1 B {𝑟 ∈ C | ∥𝑟 ∥ = 1} ,

where ∥𝑟 ∥ = 1 is the constraint defining the group. The geometry of the unit sphere is curved, however,
locally it resembles a flat space. This is the tangent space 𝑇r𝑆

1 at 𝑟 . The sphere itself is described through a
one-dimensional curve in a two-dimensional embedding space.
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Figure 3.1.: Sketch of the unit sphere 𝑆1 in the complex plane.

Example 3.1.2 (Unit sphere 𝑆2). Another example of a manifold, which can easily be visualized, is the
unit sphere 𝑆2 in R3 as shown in Fig. 3.2. It forms a smooth surface in the R3, the embedding space, defined
by the constraint ∥x∥ = 1 with x ∈ R3

𝑆2 B {x ∈ R3 | ∥x∥ = 1} .

We can associate at any point x of 𝑆2 a tangent space 𝑇x𝑀 , which is flat (cf. Fig. 3.2). In contrast to 𝑆1,
however, the unit sphere 𝑆2 has no group structure and, thus, is of course no Lie group.
The two-dimensional geometry can be described using e.g. two angles coordinates. Unfortunately, such a
description with two parameters always has singularities [102]. As stated by the Hairy Ball theorem [43,
101] there exists no continuous non-vanishing tangential vector field on the sphere so it is not smooth. This
complicates working on the sphere 𝑆2 as can be seen in the context of the Kirchhoff-Love beam [50, 118] or
Reissner-Mindlin shells [102].

𝑆2

𝑇x𝑆
2

Figure 3.2.: Sketch of the unit sphere 𝑆2.

3.1.1. Group structure

As given in the definition, each Lie group forms a group with its associated action. A group (G, ◦)
is a set of elements (X,Y,Z ∈ G) in combination with an action (◦), which fulfill the following
properties [72, Chapter 2]:

1. The group is closed under its group action (◦): X ◦ Y ∈ G.
2. There exist an identity element 𝜖 ∈ G, such that 𝜖 ◦ X = X ◦ 𝜖 = X.
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3. Rotations in three dimensions

3. Every element X of G has an inverse in X−1 ∈ G satisfying X ◦ X−1 = X−1 ◦ X = 𝜖 .

4. The group’s action is associative. Thus, (X◦Y) ◦Z = X◦ (Y◦Z) holds for all elements X,Y,Z ∈ G.
The concept of groups can be further split into subcategories. One such subcategory are abelian groups,
where a group G is called an abelian or commutative group if X ◦ Y = Y ◦ X holds for all X,Y ∈ G [72].
Abelian groups have a very familiar structure since most mathematics in school fall into this category.
The already familiar group of the unit sphere 𝑆1 is an abelian group.

Example 3.1.3 (Unit sphere 𝑆1). The unit sphere 𝑆1 has a group structure. Its group action is the
multiplication of complex numbers denoted by (∗), which makes it an abelian group since 𝑟 ∗ 𝑧 = 𝑧 ∗ 𝑟
for 𝑟, 𝑐 ∈ C. The associated identity element is given by 𝜖 = 1 + 𝑖0, and the inverse of a complex number
𝑟 = 𝑎 + 𝑖𝑏 ∈ C of unit length is given by its complex conjugate 𝑟−1 = 𝑟 = 𝑎 − 𝑖𝑏.

Another very familiar abelian group is the group of real numbers R.

Example 3.1.4 (Real numbers R). A simple example of a group is the group of real numbers R, where the
group action is given by the addition (+). For every 𝑋,𝑌 ∈ R the group operation is closed: 𝑋 + 𝑌 ∈ R.
The identity element 𝜖 is 0 as 𝑋 + 0 = 0 + 𝑋 = 𝑋 for every 𝑋 ∈ R. The inverse of every 𝑋 ∈ R is
given by its negative value 𝑋 −1 = −𝑋 so that 𝑋 + 𝑋 −1 = 𝑋 − 𝑋 = 0. At last, the addition is associative
(𝑋 + 𝑌 ) + 𝑍 = 𝑋 + (𝑌 + 𝑍 ) holds for all 𝑋,𝑌, 𝑍 ∈ R. Since, furthermore, the addition is commutative
𝑋 + 𝑌 = 𝑌 + 𝑋 the real numbers are an abelian group under addition.

Another Lie group, which is of interest to the topic at hand, is the general linear group𝐺𝐿 [72, Chapter
2]. Tensors describing rotations are a subset of this group.

Example 3.1.5 (General linear group𝐺𝐿(𝑛, R)). The general linear group𝐺𝐿(𝑛, R) consists of invertible,
matrices in R𝑛×𝑛 under the operation of matrix multiplication (·). The group’s identity is the 𝑛 ×𝑛 identity
matrix and the inverse of a group element A ∈ 𝐺𝐿(𝑛, R) is given by the matrix inverse A−1 ∈ 𝐺𝐿(𝑛, R).
The general linear group, however, is a non-abelian group since the matrix multiplication is not commutative
A · B ≠ B · A for all A,B, ∈ 𝐺𝐿(𝑛, R).

3.1.2. Lie algebra

Since a Lie group is a smooth manifold, we know we can define a tangent space at every point of the
group. Of special interest is the tangent space 𝑇𝜖G at the Lie groups identity element 𝜖 . Even though,
Lie groups are, in general, curved, the flat tangent space 𝑇𝜖G almost describes its corresponding Lie
group combined with the exponential and logarithmic map completely [95, Chapter 9]. These maps
will be introduced in the next section.

The tangent space 𝑇𝜖G is called Lie algebra of the Lie group G and is denoted by 𝔤 [95, Chapter 9]. The
structure of Lie algebra is revealed when taking the derivative with respect to time of the constraint
function defining the Lie group 2. For the multiplicative Lie groups treated in this work, the derivative
with respect to time of the group constraint yields a new constraint of the form

¤X−1 ◦ X + X−1 ◦ ¤X = 0 , (3.1)

2 We omit a definition using the commutator.
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where we denote the partial differential with respect to time by 𝜕 (•)
𝜕𝑡 = ¤(•). When evaluating the

constraint in Eq. (3.1) at the identity X = 𝜖 , we obtain

¤X−1 + ¤X = 0 , (3.2)

which reveals the structure of the Lie algebra. Objects, which fulfill Eq. (3.2), lie on the Lie algebra 𝔤.
We denote the elements of the Lie algebra of group G with the tilde operator, i.e. ṽ ∈ 𝔤.
Again the idea of the Lie algebra is demonstrated using the unit sphere 𝑆1.

Example 3.1.6 (Unit sphere 𝑆1). The unit sphere 𝑆1 can be parametrized with a complex number 𝑟 ∈ C
of unit length ∥𝑟 ∥ = 𝑟 ∗ 𝑟 = 1. By differentiating the group constraint with respect to time one obtains

¤̄𝑟 ∗ 𝑟 + 𝑟 ∗ ¤𝑟 = 0 .

Evaluating the previous equation at the identity element by setting 𝑟 = 𝜖 = 1 reveals the structure of the
Lie algebra 𝔰1

¤𝑟 + ¤̄𝑟 = 0 .

Therefore, the derivative ¤𝑟 is equal to its negative conjugate. Thus, ¤𝑟 lies in the space of purely imaginary
numbers, and the Lie algebra is given by (see Fig. 3.1)

𝑇𝜖𝑆
1 = 𝔰1 B {𝑧 ∈ C

�� Re(𝑧) = 0} . (3.3)

The Lie algebra 𝔰1 is isomorph to the linear space of real numbers R. Computation on the Lie algebra can,
thus, be performed in the space of real numbers.

For all matrix Lie groups, which are the ones relevant for mechanics, the Lie algebra is a useful concept,
since there exists a vector space isomorph to it [74]. The corresponding proof for finite-dimensional
Lie algebras is given by Ado’s theorem [89]. In combination with the exponential and logarithmic
map, it gives us the necessary utensils to deal with Lie groups in numerical methods. A quote from
Howe [74] underlines the importance of the concept: "Since G is a complicated nonlinear object and 𝔤 is
just a vector space, it is usually vastly simpler to work with 𝔤. Otherwise intractable computations may
become straightforward linear algebra. This is one source of power of Lie theory."
More examples of Lie algebras follow in Section 3.2 and Section 3.3.3.

3.1.3. Exponential and logarithmic map

Lie groups are especially convenient since we know the mapping from the flat Lie algebra back onto the
curved geometry of the Lie group. We can derive it by evaluating the following differential equation

¤X(𝑡) = X(𝑡) ◦ ṽ , (3.4)

where X ∈ G and, where ṽ ∈ 𝔤 is taken to be constant [132]. Therein, G is a Lie group and 𝔤 its
associated Lie algebra. Eq. (3.4) is an ordinary differential equation, which can be solved using an
exponential ansatz [74, 132]. The solution of Eq. (3.4) is, thus, given by

X(𝑡) = X(0) ◦ expG (ṽ(𝑡)) . (3.5)

By taking into account the group structure, one can deduce that expG (ṽ(𝑡)) must be an element of the
group G, since X(𝑡) and X(0) are group elements. We call expG : 𝔤 ↦→ G the exponential map of the
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3. Rotations in three dimensions

corresponding Lie group G. In the case of matrix Lie groups, which we use in this work, the exponential
map can be written as [61]

expG (v) =
∞∑︁
𝑗=1

ṽ𝑗

𝑗 ! .

This is a very useful concept since a group’s manifold is nearly fully described by the group’s Lie algebra
and the exponential map [95, Chapter 9]. It becomes even more useful since a map from the manifold
onto the Lie algebra is also known. It is the inverse of the exponential map known as the logarithmic
map logG : G ↦→ 𝔤

logG (X) = ṽ , (3.6)

where X ∈ G and ṽ ∈ 𝔤. For a matrix Lie group, the logarithmic map can be written as [61]

logG (X) =
∞∑︁
𝑗=1

(−1) 𝑗+1 (X − I) 𝑗
𝑗

. (3.7)

The exponential and logarithmic map can be written explicitly in a closed form for some groups by
using a Taylor expansion. This is not in general possible for arbitrary matrix Lie groups of higher
dimensions [82].
Again the concept is demonstrated for the unit sphere 𝑆1.

Example 3.1.7 (Unit sphere 𝑆1). The exponential map of the unit sphere 𝑆1 is given by the exponential of
purely imaginary numbers

𝑟 = exp𝑆1 (𝑖𝜑)
with 𝜑 ∈ R. Expanding the exponential map into a Taylor series exp𝑆1 (𝑥) = 1 + 𝑥

1! + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! + ... and
inserting a complex number into the series leads to

exp𝑆1 (𝑖𝜑) = 1 + 𝑖𝜑 − 𝜑

2! + 𝑖
𝜑

3! −
𝜑

4! + ... .

Comparing the previous equation to the Taylor expansions of the trigonometric functions given by

cos(𝜑) = 1 − 𝜑2

2! + 𝜑

1! +
𝜑4

4! − ... and sin(𝜑) = 𝜑

1! −
𝜑3

3! + 𝜑
5

5! − ... .

reveals the following closed-form of the exponential map

𝑟 = exp𝑆1 (𝑖𝜑) = cos(𝜑) + 𝑖 sin(𝜑) .

The logarithmic map is given by the logarithm of complex numbers. For a complex number 𝑟 = 𝑎 + 𝑖𝑏 ∈ 𝑆1

it is given by

log𝑆1 (𝑟 ) = 𝑖 arctan
(
𝑏

𝑎

)
= 𝑖𝜑 ,

where log𝑆1 (𝑟 ) is uniquely defined for −𝜋 < 𝜑 ≤ 𝜋 . Both maps are visualized in Fig. 3.3.

A more abstract Lie group, which gained greater interest in recent years for the description of the
geometrically exact beam, is the special Euclidean group SE(3) [66, 120, 134–136, 145].
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Figure 3.3.: Sketch of the unit sphere 𝑆1 with Lie algebra.

Example 3.1.8 (Special Euclidean group 𝑆𝐸 (3)). Motions of rigid bodies are usually expressed by position
vector φ ∈ R3 and a rotational tensor R ∈ 𝑆𝑂 (3). The solution is then sought in the direct product of both
groups R3 × 𝑆𝑂 (3), which leaves the groups decoupled. An alternative way to express the motion is the
special Euclidean group 𝑆𝐸 (3). It is a semidirect product3 given by 𝑆𝐸 (3) = R3 ⋊ 𝑆𝑂 (3), which leads to a
direct coupling of rotations and displacements. The group can be represented by tensors E(R,φ) [66, 72,
136]

𝑆𝐸 (3) B
{

E =

[
R φ

01×3 1

]
∈ R4×4 �� R ∈ R3×3, R⊤ · R = I, det(R) = 1, φ ∈ R3

}
.

The corresponding group action is the matrix multiplication (·). The identity element is the identity tensor
𝜖 = 14×4 and its inverse is given by E−1(R,φ) = E(R⊤,−R ·φ). The associated Lie algebra 𝔰𝔢(3) is the
space of (4 × 4)-tensors defined by [66, 72, 136]

𝑇𝜖𝑆𝐸 (3) = 𝔰𝔢(3) B
{

ẽ =

[
v̂ w

01×3 0

] ��v̂ + v̂⊤ = 0, w ∈ R3

}
,

where v̂ is a skew-symmetric tensor4. It, thus, can be deduced that the Lie algebra is six dimensional. The
associate exponential map is given by [66, 136]

exp𝑆𝐸 (3) (ê) =
[
exp𝑆𝑂 (3) (v̂) T⊤

𝑆𝑂 (3) (v̂) · w
01×3 1

]
,

where exp𝑆𝑂 (3) is the exponential map of the special orthogonal group, which is given below (see Section 3.2).
T𝑆𝑂 (3) (v̂) is the so-called tangent application of the special orthogonal group 𝑆𝑂 (3) [66, 136], which is
given by

T𝑆𝑂 (3) (v̂) = I + 1 − cos(∥v∥)
∥v∥2 v̂ + ∥v∥ − sin(v̂)

∥v∥3 v̂2 ,

where v is the associated vector of v̂. The corresponding logarithmic map is given by [66]

log𝑆𝐸 (3) (E) =
[
log𝑆𝑂 (3) (R) T−⊤

𝑆𝑂 (3) (log𝑆𝑂 (3) (R)) ·φ
01×3 1

]
,

3 A direct product groupA = B×C is a group, where the group action is defined through, (𝑏1, 𝑐1) ◦ (𝑏2, 𝑐2) = (𝑏1 ◦𝑏2, 𝑐1 ◦𝑐2)
where 𝑏1, 𝑏2 ∈ B and 𝑐1, 𝑐2 ∈ C. A semidirect product group D = E ⋊ F is a group, where the group action is given by
(𝑒1, 𝑓1) ◦ (𝑒2, 𝑓2) = (𝑒1 ◦ 𝑓1 ◦ 𝑒2, 𝑓1 ◦ 𝑓2) with 𝑒1, 𝑒2 ∈ E and 𝑓1, 𝑓2 ∈ F . [147, Chapter 10].

4 Compare to the Lie algebra of the special orthogonal group 𝑆𝑂 (3) in Section 3.2.
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3. Rotations in three dimensions

where log𝑆𝑂 (3) (R) is the logarithmic map of the special orthogonal group 𝑆𝑂 (3), which is given in Section
3.2.

In the subsequent sections Section 3.2 and Section 3.3.3 the exponential and logarithm maps of the
special orthogonal group and quaternions are introduced.

3.2. The special orthogonal group

It is well-known that the rotation in three-dimensional space is defined by a second-order tensor R,
which can be used to compute any rotation of an arbitrary vector v ∈ R3 by

v′ = R · v , (3.8)

where v′ is the rotated vector. A pure rotation does not change the length of the vector v, which leads
to conditions for R. The following equation has to hold for R to conserve the length of v

v · v = v′ · v′ = (R · v) · (R · v) = v · R⊤ · R · v . (3.9)

The equation is fulfilled if
R⊤ · R = I . (3.10)

Thus, the inverse of the rotational tensor R−1 is given by its transpose R⊤. Tensors fulfilling Eq. (3.10)
are called orthogonal tensors. The group of orthogonal tensors is denoted by𝑂 (3) and is a subgroup of
the general linear group 𝐺𝐿(3) and thus a Lie group itself [72, Chapter 2]. To further ensure, that R
defines a pure rotation and preserves the orientation we also need to ensure that

det (R) = 1 (3.11)

holds. Both conditions, Eq. (3.10) and Eq. (3.11), give the equations defining the embedded nonlinear
manifold

𝑆𝑂 (3) B {R ∈ R3×3 �� R⊤ · R = I, det (R) = 1} , (3.12)

which defines the so-called special orthogonal tensors R ∈ 𝑆𝑂 (3). Often the term proper orthogonal
tensor is used synonymously.

The special orthogonal group does not admit an abelian group structure. This can be illustrated by
examining an object from daily life as shown in Fig 3.4. Two different rotation sequences of a dice
with the same initial position are displayed. The first sequence, in Fig. 3.4a, is given as follows. First,
a rotation with an angle of 90◦ is performed around the spatially fixed e2-axis. In the second step
a rotation by −90◦ around the axis e3 is executed. Below, in Fig. 3.4b the rotation order is reversed.
Clearly, both rotation sequences lead to different outcomes. Thus, the conclusion can be drawn that
rotations in three dimensions are neither additive nor commutative.
Indeed the group’s action is the scalar product between tensors (·), which is not commutative. As
mentioned before, it is a subgroup of the general linear group, thus, the unit tensor I ∈ R3×3 is the
group’s identity element 𝜖 = I, and the inverse given by the transpose R−1 = R⊤ as shown in Eq. (3.10).
The corresponding Lie algebra 𝔰𝔬(3) can be found by differentiating the group constraints in Eq. (3.10)
with respect to time

¤R⊤ · R + R⊤ · ¤R = 0 (3.13)

and evaluating the derivatives at the identity R = 𝜖 , which reveals

¤R⊤ + ¤R = 0 . (3.14)
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(a) Rotation sequence: 90◦ around e2 and −90◦ around e3.
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(b) Rotation sequence: −90◦ around e3 and 90◦ around e2.

Figure 3.4.: Two different rotations sequences of a dice.

It follows from Eq. (3.14) that tensors on the Lie algebra have to be skew-symmetric. Therefore, the Lie
algebra is given by

𝑇𝜖𝑆𝑂 (3) = 𝔰𝔬(3) B {ω̂ ∈ R3×3 | ω̂ + ω̂⊤ = 0} , (3.15)

where a mapping ˆ(•) : R3 ↦→ 𝔰𝔬(3) is introduced. The Lie algebra is isomorph to R3. The components
of the corresponding vector of the skew-symmetric tensor ω̂ can be computed from [95, Chapter 15]

ω𝑖 =
1
2𝜖𝑖 𝑗𝑘ω̂𝑘 𝑗 (3.16)

The vector ω is referred to as the axial vector of ω̂. Note that in this work we apply the Einstein
notation for double indices, where Greek letters 𝛼, 𝛽 ∈ 1, 2 and lower Roman letter indices 𝑖, 𝑗, 𝑘 range
from 1 to 3.
As introduced above, Lie groups have a mapping, which maps elements from the Lie algebra to the
manifold. For 𝑆𝑂 (3) the mapping exp𝑆𝑂 (3) : 𝔰𝔬(3) ↦→ 𝑆𝑂 (3) is given by

R = exp𝑆𝑂 (3) (ω̂) = I + sin(∥ω∥)
∥ω∥ ω̂ + 1 − cos(∥ω∥)

∥ω∥2 ω̂2 , (3.17)

where R ∈ 𝑆𝑂 (3) and ω̂ ∈ 𝔰𝔬(3). The exponential map of the special orthogonal group is also often
referred to as the Rodrigues’ rotation formula. A derivation of Eq. (3.17) is given in [95, Chapter 9].
The logarithmic map log𝑆𝑂 (3) : 𝑆𝑂 (3) ↦→ 𝔰𝔬(3) is given by [66]

log𝑆𝑂 (3) (R) =
𝜃

2 sin(𝜃 )
(
R − R⊤)

, where 𝜃 = arccos
(
1
2 tr(R) − 1

)
. (3.18)

An object from the Lie algebra Ω̂ ∈ 𝔰𝔬(3) can be mapped onto the tangent space 𝑇R𝑆𝑂 (3) by
¤R = R · Ω̂ ∈ 𝑇R𝑆𝑂 (3) , (3.19)
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3. Rotations in three dimensions

which reveals the time derivative of a special orthogonal tensor. The tensor ¤R is skew-symmetric due to
the mutual orthogonality of symmetric and skew-symmetric tensors [16, Chapter 1]. The corresponding
vectorΩ from

Ω̂ = R⊤ · ¤R (3.20)

is the convective angular velocity [95, Chapter 15]. Through a rotation of Ω̂ by R the spatial angular
velocity is obtained. It is the axial vectorω of [95, Chapter 15]

ω̂ = ¤R · R⊤ . (3.21)

3.3. Parametrizations of the special orthogonal group

Various options exist to represent tensors of 𝑆𝑂 (3), which all have advantages and drawbacks when it
comes to their application in a numerical method. In this section, we want to give a short overview
of three possible approaches, without the claim to cover the topic in its entirety. A very theoretical
discussion of different parametrizations is given by Stuelpnagel in [142].

3.3.1. Euler angles

Global rotational angles, such as Euler or Tait angles, are the parametrization engineers are usually
most accustomed to. We focus here on the description of Euler angles. The basic idea of Euler angles is
to compute the rotational tensor from a sequence of rotations. The total rotational tensor is obtained
from

R = R3 · R2 · R1 , (3.22)

where each tensor R𝑖 , 𝑖 = 1, ..., 3, is a rotational tensor around a predefined axis. The rotation around
only a single axis can be constructed with relative ease from geometrical considerations. There exist six
possible combinations in which the rotation order can be defined. We use the definition given in [6, 95].
The total rotation given by R rotates the basis e𝑖 onto a new basis d𝑖 . The first step of the rotation
sequence is a rotation by an angle 𝛼1 around axis e3 with the tensor R1

e′𝑖 = R1 · e𝑖 =


cos(𝛼1) sin(𝛼1) 0
− sin(𝛼1) cos(𝛼1) 0

0 0 1

 · e𝑖 , (3.23)

which results in the new basis e′𝑖 . In the second step, we rotate the basis e′𝑖 by an angle 𝛼2 with R2
around the axis e′1

e′′𝑖 = R2 · e′𝑖 =

1 0 0
0 cos(𝛼2) sin(𝛼2)
0 − sin(𝛼2) cos(𝛼2)

 · e′𝑖 , (3.24)

from which the basis e′′𝑖 is obtained. With the last rotation by the angle 𝛼3 around the axis e′′3 using
tensor R3, we obtain the final basis d𝑖

d𝑖 = R3 · e′′𝑖 =


cos(𝛼3) sin(𝛼3) 0
− sin(𝛼3) cos(𝛼3) 0

0 0 1

 · e′′𝑖 . (3.25)

The set of unknowns is hereby given by the triple of rotational angles [95, Chapter 15]

𝑄𝛼 = {(𝛼1 𝛼2 𝛼3)
��𝛼1, 𝛼2 ∈ [0, 2𝜋) ;𝛼3 ∈ [0, 𝜋)} . (3.26)
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3.3. Parametrizations of the special orthogonal group

The computation of the rotational tensor is seemingly evident, however, the approach becomes difficult,
by closer inspection. Even though, it is often spoken of as a rotational vector, the triple 𝛼𝑖 does not
lie in a vector space. Thus, many computations are complicated to perform. For example, due to their
non-additive nature, the triple can in general not be discretized [11].
Furthermore, there exists no parametrization with three unknowns, which covers 𝑆𝑂 (3) completely. A
proof using topological arguments is given in [142]. Therefore, every parametrization of the special
orthogonal group with three global coordinates exhibits singularities. In the case of Euler angles, this is
known as Gimbal lock [95, Chapter 15]. It occurs if two of the axes of the bases e𝑖 to e′′𝑗 for 𝑖, 𝑗 = 1, 2, 3
coincide.

With only three degrees of freedom, Euler angles represent a minimal set of coordinates to describe
the special orthogonal group. Thus, the use of global rotational vectors does not lead to a saddle
point structure, which is favorable from a numerical viewpoint. But, as shown in the computation of
the rotation tensor above many trigonometric functions have to be evaluated, which are numerically
costly [30] and lead to lengthy expressions in the analytical analysis.

3.3.2. Directors

Besides parametrizations of the special orthogonal group, it is possible to use the components of a
tensor R ∈ 𝑆𝑂 (3) directly as degrees of freedom in the design of a numerical method.
Betsch and Steinmann [21, 22] introduce this concept as the director formulation, where the orientation
of a body is described by an orthonormal body-fixed frame d𝑖 ∈ R3, where the vectors

d𝑖 = R · e𝑖 . (3.27)

are referred to as directors. Thus, the resulting set of coordinates describing the rotation is given by

𝑄d = { [d1 d2 d3
] ∈ 𝑆𝑂 (3)} . (3.28)

The constraints of 𝑆𝑂 (3) can be rewritten into a condition for the directors

d𝑖 · d𝑗 = δ𝑖 𝑗 , (3.29)

which ensures the normality and mutual orthogonality of the directors and consequently, in view of
Eq. (3.27), R ∈ 𝑆𝑂 (3). Choosing the appropriate boundary conditions eliminates the necessity to enforce
Eq. (3.11) in boundary values problems.

Similarly to Euler angels, the directors are also an intuitive and easily interpretable approach. Com-
pared to the former, however, they have the advantage that no trigonometric functions, which are
computationally costly, have to be evaluated in the numeric evaluation. Furthermore, the director
formulation often simplifies the constructions of constraints 5. Unfortunately, the number of coordinates
is increased by factor three to a total of nine in comparison to the three minimally required coordinates.
Furthermore, in a numerical framework, it becomes necessary to enforce the group constraints of 𝑆𝑂 (3)
(Eq. (3.29)). When enforcing the group constraint with Lagrange multipliers, this leads to a saddle point
structure of the numerical formulation, which can lead to challenges in the numerical solution [15].

5 Many different formulations of joints for multibody kinematics in a director formulation are given in [124].
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3. Rotations in three dimensions

3.3.3. Unit quaternions

Another possibility to represent rotations is the use of quaternions, which are at first a rather abstract
concept. The discovery of quaternions is mostly attributed to Sir William Hamilton, who first published
his results in 1843, however, Olinde Rodrigues made the same discovery already three years earlier [64,
Chapter 1]. Nevertheless, the space of quaternions is denoted by H in honor of Hamilton, who famously
campaigned for their use. The campaign of Hamilton was not successful at first. During the 19th
century, the concept of quaternions was met with a lot of skepticism as becomes, for example, obvious
by a quote from Heaviside from 1983 [68, Chapter 3], which states: "...the quaternion was not only not
required, but was a positive evil of no inconsiderable magnitude...". Several statements with a similar
message can be found in the same source. Nevertheless, the need to efficiently represent rotations in
many fields, from quantum mechanics up to computer graphics, led to the fact that quaternions are a
well-established concept today [64, Chapter 1].
In the present work, we also consider quaternions and briefly introduce them in this section based
on [20, 34, 36, 64] and use the notation proposed in [20].

3.3.3.1. Fundamentals of quaternions

Quaternions are often introduced as an extension of the complex numbers. Similar to complex numbers
they consist of a scalar real part 𝑞0 ∈ R and an imaginary or vector part q

q = 𝑞0 + 𝑞1i + 𝑞2j + 𝑞3k = (𝑞0, q) (3.30)

Quaternions can be multiplied by a scalar, added, subtracted, or multiplied with a scalar product in the
same manner as vectors from R4. However, a new operation between two quaternions is defined by

q ◦ p = (𝑞0𝑝0 − q · p, 𝑞0p + 𝑝0q + q × p) . (3.31)

The operator (·) denotes the scalar product and (×) is the cross product between vectors of R3. We
call the operator (◦) the quaternion product or quaternion multiplication. In contrast to the scalar
product between vectors the quaternion product of two quaternions q,p ∈ H is closed6 as it results in a
quaternion q ◦ p = v ∈ H. Due to the last term in Eq. (3.31) the quaternion product is not commutative.
Similar to imaginary numbers a conjugate of a quaternion is defined by the negative of the imaginary
or vector part

q̄ = (𝑞0,−q) . (3.32)

The 2-norm of a quaternion is defined by

∥q∥ = √
q · q =

√︃
𝑞2

0 + 𝑞2
1 + 𝑞2

2 + 𝑞2
3 , (3.33)

equivalent to vectors from R4. Note that the 2-norm is also referred to as length. Using Eq. (3.32) and
Eq. (3.33) the inverse of a quaternion q−1 can be computed by

q−1 =
1

∥q∥2 q̄ , (3.34)

where the inverse is defined by
q ◦ q−1 = (1, 0) . (3.35)

6 A proof that a triple is insufficient and indeed a quadruple is needed to define a rule, which is closed under multiplication
is for example given in [34, Chapter 1].
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3.3. Parametrizations of the special orthogonal group

As mentioned above, quaternions are closed under the quaternion product. Thus, they form a group
with quaternion product as group operation, the identity element 𝜖 = (1, 0), and the inverse as defined
in Eq. (3.35). Furhter, the quaternion product is associative (q ◦ p) ◦ v = q ◦ (p)◦)v.

3.3.3.2. Fundamentals of unit quaternions

Quaternions of unit length are of special interest for applications in engineering problems since they
can be used to parametrize rotations in three dimensions. Unit quaternions form a parametrization of
the unit sphere 𝑆3 in R4

𝑆3 B {q ∈ H | q · q = 1} , (3.36)

which is a smooth manifold. Thus, they exhibit a Lie group structure, with the group properties
introduced above. The unit constraint can be rewritten as

q · q̄ = 1 . (3.37)

By taking the time derivative of the unit constraint in Eq. (3.37) we obtain

¤q · q̄ + q · ¤̄q = 0 . (3.38)

When evaluating Eq. (3.38) at the group’s identity q = 𝜖

¤q + ¤̄q = (0, 0) (3.39)

we obtain the admissible velocities at 𝑇𝜖𝑆3 as pure quaternions. Pure quaternions have a scalar part
equal to zero. The associated Lie algebra 𝔰3 of the unit sphere 𝑆3 is, thus, given by

𝑇𝜖𝑆
3 = 𝔰3 B {v ∈ H | Re(v) = 𝑣0 = 0} . (3.40)

and is isomorph to R3. An object from the Lie algebra v can be mapped to the tangent space 𝑇q𝑆
3 at q

by applying the quaternion product
¤q = q ◦ v ∈ 𝑇q𝑆

3 , (3.41)

where v = (0, 1
2Ω). Hereby, the convective angular velocity Ω is used. In terms of the spatial angular

velocityω the admissible velocities can also be written as

¤q = w ◦ q ∈ 𝑇q𝑆
3 , (3.42)

where w = (0, 1
2ω). The factor of 1/2 in both velocities is related to the quadratic terms of q in Eq. (3.46),

which come into play, when taking the derivative. Elements from the Lie algebra can be mapped onto
the manifold 𝑆3 using the exponential map exp𝑆3 : 𝔰3 ↦→ 𝑆3

exp𝑆3 ((0, q)) = cos(∥q∥)(1, 0) + sin(∥q∥)
∥q∥ (0, q) . (3.43)

The inverse of the exponential map is given by the logarithm log𝑆3 : 𝑆3 ↦→ 𝔰3, which can also be given
in a closed form [91]

log𝑆3 (q) = 2
(
0, arccos

(
𝑞0
∥q∥

)
q
∥q∥

)
. (3.44)
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3. Rotations in three dimensions

3.3.3.3. Parametrization of the special orthogonal group

Any rotation of a vector v ∈ R3 can be expressed with the help of a unit quaternion q ∈ 𝑆3 via

q ◦ (0, v) ◦ q̄ = (0, v′) , (3.45)

where v′ ∈ R3 is the rotated vector. Even though the rotation of an element v of R3 can be written in
terms of quaternion algebra it is more convenient to apply the mapping R : 𝑆3 ↦→ 𝑆𝑂 (3) given by the
Euler-Rodrigues parametrization [95, Chapter 9]

R(q) = (𝑞2
0 − q · q)I + 2q ⊗ q + 2𝑞0q̂ (3.46)

and apply the resulting rotational tensor in a standard fashion

R(q) · v = v′ . (3.47)

Note that the mapping from the unit sphere 𝑆3 onto 𝑆𝑂 (3) is not unique. The same rotation tensor is
described by q and −q, which can be established from Eq. (3.46). Thus, there exists no explicit inverse
mapping from 𝑆𝑂 (3) to 𝑆3. Numerical algorithms, such as Spurrier’s algorithm [138], have to be used
instead.

In contrast to other parametrization with rotational vectors, such as Euler angles, there are no com-
putationally expensive trigonometric functions involved in Eq. (3.46). Furthermore, compared to the
director approach the increase in the number of unknowns is moderate. Thus, a parametrization of the
𝑆𝑂 (3) with quaternions is very efficient [30]. Additionally, there exist no singularities for a quaternion
representation of the special orthogonal group. However, due to the unit length constraints, the use
of quaternions results in a saddle point structure, when the constraint in Eq. (3.37) is enforced with a
Lagrange multiplier.

3.4. Treatment of rotations in a finite element framework

When a problem is described using a suitable representation of rotations, the corresponding equations
still need to be solved analytically or approximated using a numerical tool such as the FEM or IGA. At
the heart of both methods, lies the discretization with a finite set of basis functions. Thus, we discuss
here the treatment of rotations in the context of the FEM and IGA with appropriate discretization
approaches.

Even though, the FEM and IGA are very well understood in most regards, dealing with complex
nonlinear manifolds is a relatively new topic. Finding a suitable discretization approach for rotational
fields on manifolds is one major issue. The discretization has to be frame-indifferent (or objective) and
path-independent. Moreover, an optimal approach has to result in an optimal convergence behavior for
ℎ-refinement as well as 𝑝- and 𝑘-refinement.
In the case of the special orthogonal group, the problem was recognized early on [127, 128] yet a
suitable approach was not found straight away. A first attempt was made by Simo and Qu-Voc [127,
128] to interpolate the incremental update of the rotation angle, while other authors used global ro-
tation approaches e.g. [27, 81]. However, as shown by Crisfield and Jelenić [33] all these previously
published approaches for the treatment of rotations in the context of the geometrically exact beam
led to spurious results, because they were either path-dependent, not frame-indifferent, or both. They
proposed an alternative, which fulfills the requirements of frame-indifference and path-independence.
More discussions on discretization approaches for rotations and motions are given in e.g. [11, 62, 114],
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3.4. Treatment of rotations in a finite element framework

where not all concepts lead to appropriate approaches.

Despite all the research effort put into the topic, it is still covered rather poorly in many regards. In
particular, there are not many publications, which concern higher-order shape functions for the dis-
cretization of manifolds [122]. Publications, covering discretization approaches with higher continuity
over elements in the context of the IGA, are especially rare.
Two approaches found in the literature for the general discretization of nonlinear manifolds are geodesic
finite elements [120–122] and projection-based finite elements [49, 59, 102]. These two options and a
classical, additive discretization approach are discussed in more detail. As a fourth option, we propose
Gauss-Lobatto-based shape functions, which can only be applied to the classical FEM and not to the
IGA.
The discretization approaches are discussed in detail for the discretization of directors and unit quater-
nions. As mentioned before, the discretization of global rotational angles, such as Euler angles, is not
feasible [11] and, thus, not discussed here. Since a beam is a one-dimensional object, we limit the
discussion here to a one-dimensional, single element with the coordinate 𝑠 ∈ [0, 1] = Ω.

3.4.1. Classical finite elements

As introduced in every textbook on the topic of finite elements, e.g. [77], the classical approach for
an arbitrary discretized field uℎ is a multiplication of the nodal or control point values with their
corresponding shape function followed by a summation

uℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)u𝑖 . (3.48)

The shape functions are denoted by 𝑁𝑖 (𝑠) for a FEM as well as an IGA approach. The weights u𝑖 are
either the values of the nodes or control points. In the sequel, we shall refer to the 𝑖-th point of the
discretization as the 𝑖-th control/nodal point.
In this work, we call these elements classical finite elements since it is the standard approach used
by the FEM as well as the IGA to approximate continuous fields, which lie in a flat space. When this
approach is used without care for variables lying on a curved manifold, even higher-order elements
cannot represent the curved manifold exactly.
In the case of a discretization approach, which fulfills the collocation properties at the nodal points,
such as Lagrangian elements, the underlying geometry of the manifold can be preserved on these
collocation points e.g. with the use of Lagrange multipliers. However, elsewhere in the domain, the
geometry of the manifold is violated. This is especially relevant for the values at the integration points
since the discretized field uℎ is evaluated there in the numerical integration process.

3.4.1.1. Director approach

Neglecting the curvature of the underlying space of the special orthogonal group the discretization of
the directors can be written as

dℎ𝑖 (𝑠) =
𝑛∑︁
𝑗=1

𝑁 𝑗 (𝑠)d𝑗
𝑖 , (3.49)

where d𝑗
𝑖 are the control/nodal point values of the directors. However, even if the orthonormality

constraints are enforced in a strong sense on the nodes for the FEM, this does not lead to an orthonormal

37
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frame on the integration points. Thus, the underlying geometry of 𝑆𝑂 (3) is not conserved by the
discretization, i.e.

dℎ𝑖 (𝑠) · dℎ𝑗 (𝑠) ≠ 𝛿𝑖 𝑗 . (3.50)

Consequently, the discretization no longer exactly represents a rotational tensor on the level of the
integration points. For higher orders this leads to a reduction of the convergence order as demonstrated
in Chapter 5.

3.4.1.2. Unit Quaternions

A classical discretization approach for quaternions results in

qℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)q𝑖 , (3.51)

where q𝑖 are the control/nodal point values of the quaternions. It is obvious that a classical discretization
approach does not conserve the length of unit quaternions


qℎ (𝑠)


 ≠ 1 . (3.52)

Even if the control/nodal point values lie on the unit sphere 𝑆3 itself the discretized approach does not
represent the geometry of 𝑆3 in the entire domain.
A sketch of the discretization approach in Fig. 3.5 elucidates the problem. The unit sphere 𝑆3 is
a four-dimensional object so it cannot be drawn. Thus, the sketch is reduced to two dimensions,
and for simplicity, a linear interpolation is used. The control/nodal point values in blue lie on 𝑆3.
The discretization in between given by qℎ (𝑠) is clearly not on the unit sphere. Even higher-order
approximation approaches are not able to approximate the curvature exactly. Even though the sketch
exaggerates the error, and the use of a finer mesh leads to a better approximation, examples from in
the subsequent Chapter 6 show, that the optimal convergence order is reduced by this approach for
higher-order elements.

𝑆3

q1 (0)
q2 (1)

qℎ (𝑠)

Figure 3.5.: Sketch of a classical finite element discretization of unit quaternions on the sphere 𝑆3.

3.4.2. Geodesic finite elements

A generalized concept to interpolate manifolds is the use of geodesic finite elements. In the field
of computational mechanics Crisfield and Jelenić [33, 83] were the first to propose an approach for
rotational tensors, which falls into this broader concept of geodesic elements. However, in computer
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animations equivalent approaches were already proposed much earlier. In 1985 such an approach
for unit quaternions was published by Shoemake [125]. In computational graphics, this approach is
well-known and referred to as spherical linear interpolation (SLERP). A very similar approach can also
be found in [87, 88] for B-Splines approximations of higher continuity 7.
However, the generalized interpolation approach under the name geodesic finite elements for arbitrary
Riemannian manifolds was only introduced at the beginning of the last decade by Sander [120]. In [120]
these elements were proposed as an equivalent of linear elements and only for one-dimensional domains.
Geodesic elements were further advanced to higher dimensional elements [121] and for higher order
Lagrange shape functions [122]. The corresponding mathematical proofs showing the optimality of the
error bounds for the proposed element formulation were given in [58, 120]. Furthermore, an equivalent
approach was used in combination with B-Spline shape functions in [60]. Geodesic elements were used
in numerical examples, where in [120] they were applied to a formulation of the geometrically exact
beam, and in [123] discussed in the context of Cosserat shells. Müller and Bischoff [102] apply the
approach in combination with higher-order NURBS functions to the simulation of the Reissner-Mindlin
shell model.
Geodesic elements on a manifold 𝑀 are in general obtained by solving the following minimization
problem

uℎ (𝑠) = arg min
u∈𝑀

𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠) dist(u𝑖 , u)2 . (3.53)

where dist(•, •) is the intrinsic distance measure of the manifold𝑀 [59]. They, thus, follow from the
minimization of the weighted distance, where the weights at 𝑠 are given through the shape functions
𝑁𝑖 . Using the intrinsic distance measure has many advantages. The geodesic elements are by design
objective [59, 122] and due to the intrinsic construction derivatives and variations lie in the tangent
space of the discretized manifold [59]. For arbitrary manifolds, the element formulation cannot be given
in a closed form but has to be evaluated numerically [120]. Therefore, the geodesic finite elements are
computationally expensive (cf. [102]), which especially limits their usability in dynamic simulations.
Using the knowledge of Lie groups from above, allows us to construct geodesic elements in a closed-form
for matrix Lie groups. The discretization approach is given as

Xℎ (𝑠) = X1 ◦ expG

(
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)ṽ𝑖
)
, (3.54)

where Xℎ,X1,X𝑖 ∈ G and ṽ𝑖 ∈ 𝔤. Eq. (3.54) is a generalization of the approach given in [33], where the
approach is limited to proper orthogonal tensors. Applications to Lie groups besides 𝑆𝑂 (3) can already
be found in the literature. In [143] the formulation is used for unit quaternions, and in [136] for the
special Euclidean group. These elements are geodesic elements in the sense that the relative difference
between the control/nodal points is computed with the intrinsic difference measure on the Lie group,
which also minimizes the geodesic distance.
The control/nodal point values are X1 and X𝑖 . The element ṽ𝑖 describes the relative intrinsic difference
between both control/nodal point values on the Lie algebra. It can be computed using the logarithmic
map via

ṽ𝑖 = logG (X−1
1 ◦ X𝑖) , (3.55)

where the index 𝑖 ranges from 1 to 𝑛, which is the number of control/nodal points. Therein, ṽ𝑖 is
computed between the 𝑖-th control/nodal point value X𝑖 and the first control/nodal point value X1.

7 The SLERP interpolation is constructed along the geodesic, thus, they result in a constant norm of the velocity, which is of
great advantage for animation [64].
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Thus, for 𝑖 = 1 there is no difference and, thus, ṽ1 = 0. Different positions on the element can be used as
reference instead of the value of the first control/nodal point X1, where various options are discussed
in [33]. For simplicity, we choose here X1.
As shown in [33], the use of the relative difference is necessary to achieve frame-indifference.

This approach discretizes the relative distance of the control/nodal point values on the Lie algebra,
which is isomorph to a vector space. Thus, here a classical discretization can be applied.
Limitations on the element length are given through the interval, on which the logarithmic map is
uniquely defined. If the relative distance between the control/nodal points is outside the interval a finer
mesh needs to be chosen [33].
For the IGA this leads, in general, to a requirement of 𝑝-refinement with 𝐶0-continuity over element
boundaries, where Eq. (3.54) is applied on each individual element. This is due to the fact, that on the
reference point X1 the shape functions need to fulfill the collocation, since otherwise a coupling of
the degrees of freedom over the entirety of the patch can occur. This is the case for the closed-form
expression presented in [87, 88].
Implicit algorithms, as applied in [102], which minimizes the weighted distance in Eq. (3.53), can be
used to achieve a discretization approach with higher continuity over a whole patch. Due to the local
support property of the NURBS functions the distance in Eq. (3.53) only needs to be evaluated locally on
the patch and not for all shape functions and control points simultaneously. Thus, a classical element-
wise structure is obtained. To apply such an approach, a distance measure, intrinsic to the individual
Lie group, is necessary. Derivatives of the shape functions can be obtained from the minimization
problem [102, 122].

3.4.2.1. Director approach

Since the director approach is equivalent to a direct use of the rotational tensor, a geodesic approach
for their discretization is given in [33]. On one single element, the discretization is given as

Rℎ (𝑠) = R1 · exp𝑆𝑂 (3)

(
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)ω̂𝑖

)
, (3.56)

where R1 is the control/nodal point value at 𝑠 = 0. The skew-symmetric tensor ω̂𝑖 is an element of the
Lie algebra. It defines the relative rotation from R𝑖 to R1. The rotation in between the control/nodal
point values can be computed by applying the logarithmic map

log𝑆𝑂 (3) (R⊤
1 · R𝑖) = ω̂𝑖 . (3.57)

Due to the limits of the logarithmic map, the largest relative rotational angle cannot be bigger than 𝜋
since otherwise ω̂𝑖 is not uniquely defined [33].
The geodesic approach ensures, that the discretization results in a rotational tensor at every point in
the finite element, i.e.

Rℎ (𝑠) ∈ 𝑆𝑂 (3) ∀ 𝑠 ∈ Ω . (3.58)

The discretized directors can be computed from

dℎ𝑖 (𝑠) = Rℎ (𝑠) · e𝑖 . (3.59)

As a result, the geodesic approach ensures that the orthonormality constraint in Eq. (3.29) is fulfilled on
every point of the domain

dℎ𝑖 (𝑠) · dℎ𝑗 (𝑠) = 𝛿𝑖 𝑗 ∀𝑠 ∈ Ω . (3.60)
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For the application of Eq. (3.53) in an implicit approach the minimal or geodesic distance measure of
𝑆𝑂 (3) is needed. It is given by

dist(Ra,Rb) =


log(R⊤

a · Rb)



𝐹
, (3.61)

where Ra,Rb ∈ 𝑆𝑂 (3) [137]. The subscript 𝐹 , hereby, indicates the use of the Frobenius norm given
by

∥A∥𝐹 =
√︁

tr(A⊤ · A) (3.62)

for a tensor A ∈ R3×3.

3.4.2.2. Unit Quaternions

As mentioned above, in the computer graphics community the SLERP interpolation for unit quaternions
was already proposed by Shoemaker [125] in 1985. To the best knowledge of the author, Ghosh and
Roy [51] were the first to use this approach in combination with unit quaternions in computational
mechanics for the beam, where they use an explicit formulation. In the context of the IGA it is employed
by Tasora et al. [143], where, however, no detailed discussion concerning the discretization is given.

Equivalent to elements on 𝑆𝑂 (3) the quaternion elements can be constructed by using the exponential
map

qℎ (𝑠) = q1 ◦ exp𝑆3

(
(0,

𝑛∑︁
𝑖=1

𝑁 (𝑠)v𝑖)
)
, (3.63)

where q1 is the control/nodal point value at 𝑠 = 0. As before, v𝑖 is given by the rotation between control
point/nodal values q𝑖 and q1. Thus, it can be computed by applying the logarithmic map

log𝑆3 (q̄1 ◦ q𝑖) = (0, v𝑖) . (3.64)

Through the construction of the elements using the geometry of the manifold, the discretization qℎ (𝑠)
lies directly on the manifold 𝑆3 at all points. The unit constraints are, therefore, fulfilled on the entire
domain, i.e. 


qℎ (𝑠)


 = 1 ∀ 𝑠 ∈ Ω . (3.65)

In a very similar manner to the geodesic distance measure of 𝑆𝑂 (3), the geodesic distance for unit
quaternions follows from

dist(qa, qb) =


log𝑆3 (q̄a ◦ qb)



 (3.66)

with qa, qb ∈ 𝑆3.

An illustration of the approach is depicted in Fig. 3.6 for one single geodesic element. Similar to
Section 3.4.1.2 we display only a first-order element with two control/nodal points. Due to the approach
with the geodesic elements, the geodesic, the shortest distance on the curved manifold, connects both
nodes. This is equivalent to a linear element in a flat space [120]. As a consequence of the intrinsic
nature of the approach, the discretization always lies on the manifold.
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𝑆3

q1 (0)
q2 (1)

qℎ (𝑠)

Figure 3.6.: Sketch of a geodesic finite element discretization of the unit sphere 𝑆3

3.4.3. Projection-based finite elements

The third approach for the discretization of nonlinear manifolds discussed in this work is the employ-
ment of so-called projections-based finite elements. Various finite element formulations, which can
be summarized under this concept, can be found in the literature. Romero [114] uses a discretization
approach with the normalization of unit quaternions for the beam. Bauchau and Han [11, 62] discuss
discretization approaches for different parametrizations of rotations and motions, which fall into this
category. However, mathematical proofs are not given. In [102] projection-based finite elements are
applied to the discretization of shells with NURBS basis functions.
In a more general approach, the concept was very recently proposed by Gawlik and Leok [49] and used
for the special orthogonal group and unit quaternions. Grohs et al. [59] provides a further generalization
to arbitrary manifolds as well as an analytical proof for the optimal error bounds.

Again, the goal of projection-based elements is to discretize quantities, which lie on a manifold M.
As given in [59], the element construction can be divided into two steps. First, an additive, classical
discretization is performed

vℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)v𝑖 , (3.67)

where v𝑖 ∈ M are the control/nodal point values and 𝑁𝑖 the employed shape functions, respectively. As
discussed before, the discretized values do not lie on the manifold vℎ (𝑠) ∉ M. Therefore, an orthogonal
projection onto the manifoldM

uℎ (𝑠) = arg min
u∈M






u −
𝑛∑︁
𝑖=1

𝑁𝑖v𝑖






2

R𝑛

= PM(vℎ) (3.68)

is performed in a second step, where ∥•∥R𝑛 denotes the norm of the embedding space R𝑛 and PM is
the closest-point or orthogonal projection onto the manifoldM. The projection is well-defined close
to the manifold [59]. The formulation is objective under rigid body motions if the shape functions form
a partition of unity [59]. Thus, the projection-based approach can be applied to either the FEM or IGA
without any further adaptations.

Since the projection-based elements are not constructed on the manifold itself, greater care has to be
taken, when evaluating the derivatives and variations, respectively. Taking the derivative with respect
to time of Eq. (3.68) results in [59]

¤uℎ (𝑠) = P′
M(vℎ) ·

𝑛∑︁
𝑖=1

𝑁𝑖 ¤v𝑖 (3.69)
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The derivative of the projector results in an orthogonal projector onto the tangent space 𝑇uM up to a
Lipschitz constant [59], so that

P′
𝑀 (vℎ) → P𝑇uM(vℎ) for






u −
𝑛∑︁
𝑖=1

𝑁𝑖v𝑖






2

R𝑛

→ 0 . (3.70)

Therein, P𝑇uM is the orthogonal projector onto the tangent space 𝑇uM. Such a projection onto the
tangent space can be used to obtain derivatives on a manifold. The application of such projectors
is covered in depth in [2] and many projectors for various manifolds are given in [1]. Additional
information on projectors is given in the Appendix A.

3.4.3.1. Director approach

Again we discuss the director approach in detail. We begin with a classical discretization approach

tℎ𝑖 (𝑠) =
𝑛∑︁
𝑗=1

𝑁 𝑗 (𝑠) t𝑗𝑖 , (3.71)

where t𝑗𝑖 ∈ R3 are the control/nodal point values of the director frame. By assembling the discretized
directors we obtain a tensor

Tℎ (𝑠) = tℎ𝑖 (𝑠) ⊗ e𝑖 (3.72)

Therein, Tℎ (𝑠) is not a proper orthogonal tensor for all 𝑠 ∈ Ω. Thus, following the idea of the projection-
based elements, an orthogonal projection onto the special orthogonal group is necessary. As shown
in [108], the orthogonal projection onto 𝑆𝑂 (3) is given by the polar decomposition

Tℎ = Rℎ · Uℎ , (3.73)

where Rℎ is a proper orthogonal tensor and Uℎ accounts for the stretch of the discretization from the
exact geometry of 𝑆𝑂 (3). The polar decomposition can be computed numerically, which was done
in [59]. Since it leads to very lengthy expressions, it is not practical to compute in a closed analytical
form. From Eq. (3.73) the special orthogonal tensor follows from

Rℎ = Tℎ ·
(
Uℎ

)−1
= P𝑆𝑂 (3) (Tℎ) , (3.74)

where P𝑆𝑂 (3) is the orthogonal projector onto 𝑆𝑂 (3). After Rℎ is computed the individual directors are
obtained from

dℎ𝑖 = Rℎ · e𝑖 . (3.75)

SinceRℎ is a proper orthogonal tensor, the orthonormality conditions are fulfilled in the whole domain

dℎ𝑖 (𝑠) · dℎ𝑗 (𝑠) = 𝛿𝑖 𝑗 ∀ 𝑠 ∈ Ω . (3.76)

When taking the derivative of Eq. (3.74) with respect to time the polar decomposition has to be taken
into account, which leads to [29]

¤Rℎ (𝑠) = P′
𝑆𝑂 (3) : ¤Tℎ

=
1

det (Z)Rℎ · Z ·
((

Rℎ
)⊤

· ¤Tℎ −
(
¤Tℎ

)⊤
· Rℎ

)
· Z ,

(3.77)
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where
Z = tr

(
Uℎ

)
I − Uℎ , (3.78)

and the derivative of Tℎ with respect to time is given by

¤Tℎ
=

𝑛∑︁
𝑗=1

𝑁 𝑗 ¤t𝑗𝑖 ⊗ e𝑖 . (3.79)

In Eq. (3.77) the projector onto the tangent space 𝑇𝑅𝑆𝑂 (3) is contained, which is given by [2]

P𝑇𝑆𝑂 (3) (Rℎ, ¤Tℎ) = 1
2Rℎ ·

((
Rℎ

)⊤
· ¤Tℎ −

(
¤Tℎ

)⊤
· Rℎ

)
. (3.80)

For Uℎ → I the derivative in Eq. (3.77) converges towards the projection given in Eq. (3.80).
In [11] other possibilities than the polar decomposition as projection method are discussed. However, as
the polar decomposition is the orthogonal projection the other approaches do not fall into the category
of the projection-based approach.
Since the polar decomposition needs to be evaluated at every integration point in each iteration, the
numerical cost for this approach is high because it involves a computationally expensive eigenvalue
problem. Grohs et al. [59] report approximately the same computational time as for geodesic finite
elements.

3.4.3.2. Unit Quaternions

In a finite element context, a projection-based discretization approach for unit quaternions in 𝑆3 is
given in [11, 114]. At first, the control/nodal values p𝑖 of the quaternions are discretized in an additive
manner

pℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)p𝑖 . (3.81)

Since pℎ (𝑠) does not have a unit length for every 𝑠 , in a second step a closest-point projection to
the manifold 𝑆3 is applied. The closest-point projection is given by a normalization, resulting in the
following discretized unit quaternion

qℎ (𝑠) = pℎ (𝑠)

pℎ (𝑠)


 = P𝑆3 (ph(𝑠)) , (3.82)

where P𝑆3 is the closest-point or orthogonal projector onto 𝑆3. This approach ensures that the unit
length is fulfilled at every point 


qℎ (𝑠)


 = 1 ∀ 𝑠 ∈ Ω . (3.83)

As above, the projection operator P𝑆3 has to be taken into account when taking the partial derivative of
Eq. (3.82) with respect to time. It is given by

¤qℎ = P′
𝑆3 (pℎ) · ¤pℎ , (3.84)

where the gradient of the projector is given by

P′
𝑆3 (pℎ) = 1

pℎ



 (
I4 − qℎ ⊗ qℎ

)
. (3.85)
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The gradient of the projector can be recast in

P′
𝑆3 (pℎ) = 1

pℎ



P𝑇𝑆3 (qℎ) , (3.86)

where we introduced a new projector P𝑇𝑆3 , which is a projector onto the tangent space 𝑇q𝑆
3 [2]. The

gradient P′
𝑆3 convergence towards the projector P𝑇𝑆3 , if



pℎ


 → 1 . Thus, the derivatives lie in the

correct space and we fulfill the orthogonality requirement given in [11]

qℎ · ¤qℎ = 0 , (3.87)

if the projection-based element approach is applied.

𝑆3

p1 (0)
p2 (1)

qℎ (𝑠)

Figure 3.7.: Sketch of a projection-based finite element discretization of the unit sphere 𝑆3.

A sketch of the projection-based approach for unit quaternions is drawn in Fig. 3.7. At first, the classical
discretization is applied to obtain pℎ (𝑠), shown in gray. The subsequent normalization in Eq. (3.82)
leads to a projection onto the unit sphere, such that qℎ (𝑠) is of unit length for all points in Ω.
The projection-based approach for unit quaternions is used in Chapter 6, where results are shown and
discussed in detail.

3.4.4. Elements with Gauss-Lobatto-based shape functions

An approach that can only be applied for interpolatory approaches like the FEM and not the IGA is the
use of Gauss-Lobatto-based shape functions. Even though, this approach relies on the additive approach,
which was introduced as ’classical finite elements’, we discuss it separately to avoid confusion. Similar
to many topics in science, the naming of this approach is ambiguous. We use the name Gauss-Lobatto-
based shape functions in accordance with [100]. To the best knowledge of the author, the utilization of
Gauss-Lobatto-based shape functions has so far not been discussed in the context of interpolation on
manifolds.
Like most standard approaches in the FEM, the Gauss-Lobatto-based shape functions use Lagrange
basis functions, which are computed from [77]

𝑁𝑖 (𝜉) =
𝑝+1∏

𝑗=1,𝑖≠𝑗

𝜉 − 𝜉 𝑗
𝜉𝑖 − 𝜉 𝑗 (3.88)

for an interpolation of order 𝑝 . However, they differ in the placement of the nodes 𝜉𝑖 on the reference
element. The outer nodes are placed at

𝜉1 = −1 and 𝜉𝑝+1 = 1 , (3.89)
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equivalent to the standard Lagrange shape functions. While the standard approach chooses equidistant
nodes in the interior, for the Gauss-Lobatto-based shape functions the 𝑝 − 1 inner nodes are placed at
the roots of the first derivative of the Legendre polynomial 𝑃𝑝 of order 𝑝 [133, Chapter 1]

𝜕

𝜕𝜉
𝑃𝑝 (𝜉𝑖) = 0 for 𝑖 = 2, ..., 𝑝 . (3.90)

Even though the Gauss integration is the standard quadrature scheme in FEM other quadrature schemes
can be employed, such as the Lobatto quadrature. The Lobatto quadrature uses the Gauss-Lobatto
points as integration points. Compared to the Gauss integration, however, the Lobatto integration is not
optimal, since it only integrates polynomials of order 𝑝 = 2𝑛GL − 3 exactly, where 𝑛GL are the number of
integration points. A detailed description of the Lobatto integration scheme is given in [133, Chapter 4].

If now the Gauss-Lobatto-based shape functions are combined with the Lobatto integration, the
integration points are identical to the nodal positions. Therefore, using an enforcement of the group
constraints in a pointwise or strong sense with Lagrange multipliers on the nodes leads to a satisfaction
of the constraints at the integration points. Thus, when discretizing a nonlinear manifold using strong
enforcement on the nodes in combination with the Gauss-Lobatto-based shape functions and the
Lobatto quadrature, the discretized field is evaluated on the manifold’s geometry. However, this leads to
a strict coupling of the number of integration points and element order. Therefore, reduced integration
approaches cannot be applied.

Fig. 3.8 highlights the differences between Lagrange and Gauss-Lobatto-based shape functions, where
both approaches are displayed over a reference element. The displayed shape functions are cubic. Small
differences between the shape functions themselves are visible, however, for elements of higher order
𝑝 > 4, the differences become more apparent (cf. [55]).
However, the nodal positions in Fig. 3.8a and Fig. 3.8b differ, where in Fig. 3.8 the blue dots indicate the
position of the finite element nodes. The interior nodes using a standard approach with equidistant
nodes are 𝜉𝑖 = ∓ 1

3 for 𝑖 = 2, 3, while the Gauss-Lobatto points are placed at 𝜉GL 𝑖 = ∓0.4472.
The standard Lagrange element is shown with four Gauss integration points. Their position is given
by 𝜉GP 𝑖 = ∓0.8611 for 𝑖 = 1, 4 and 𝜉GP 𝑖 = ∓0.3400 for 𝑖 = 2, 3 and indicated in Fig. 3.8a with red
crosshairs. Even though the difference to the equidistant nodes in the interior is small, none of the
Gauss integration points coincide with any of the equidistant nodal positions.
The Gauss-Lobatto-based shape functions, on the other hand, are combined with the Lobatto quadrature
scheme, which also uses Gauss-Lobatto points for the integration. The integration points are, therefore,
identical to the nodal positions. This is indicated in Fig. 3.8b, where the red crosshairs again show
the position of the integration points, now on top of the nodes. Therefore, a strong enforcement of
constraints at the nodes leads to a fulfillment of constraints at the integration points. This can be
exploited when discretizing a nonlinear manifold as shown in Chapter 5.

Apart from the discretization of manifolds, elements with Gauss-Lobatto-based shape functions are of
interest, when using higher-order elements since they do not exhibit Runge’s phenomenon [55, 133].
They can, of course, also be combined with other integration rules, however, together with the Lobatto
integration they lead to a diagonal mass matrix, which can improve efficiency. More details on the
elements with Gauss-Lobatto-based shape functions are given in [133, Chapter 4].
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(a) Cubic Lagrange shape functions with equally space nodes and Gauss integration points.
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(b) Cubic Gauss-Lobatto-based shape functions with nodes on the Gauss-Lobatto points and Lobatto
integration.

Figure 3.8.: Comparison between Lagrange and Gauss-Lobatto-based shape functions. The blue dots indicate the position of
the nodes and the red cross-hairs display the positions of the integration points.

3.4.5. Conclusion

The fundamental basics of rotations were discussed in this chapter and four approaches for a dis-
cretization with finite elements were presented. Not all introduced formulations are used in this work.
Due to the complexity of some approaches and their consequently high computational cost, they are
not feasible options for practical applications. Geodesic finite elements are of limited use in dynamic
simulations due to their high computational cost. Also, the projection-based approach for the directors
leads to high computational costs and is, thus, limited in practical applications.
Therefore, in Chapter 5 the classical finite element approach and the Gauss-Lobatto-based shape func-
tions are applied to a formulation of the geometrically exact beam using directors. Chapter 6 introduces
a formulation of the same beam model in unit quaternions, where the classical finite elements are used
as well as the projection-based approach. Additionally, further results for the quaternion formulation
with Gauss-Lobatto-based shape functions are given in Appendix C.
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Abstract: This chapter covers the theory of the geometrically exact beam formulation. In the first
section, we begin with an introduction based on a literature survey, where we discuss the most important
aspects of the beam theory and present some applications of the model. The following section discusses
the kinematics of the geometrically exact beam in detail. Subsequently, the balance of linear and angular
momentum is used to obtain the equations of motion. Furthermore, the kinetic energy is derived and
the employed constitutive law is discussed. At the end, a short discussion of the Kirchhoff-Love beam
theory is given.

Slender structures play a key role in many mechanical systems from civil and mechanical engineering
up to biomechanics and molecular physics [99]. Therefore, there is a high demand for efficient numerical
simulations of such slender structures. Mechanical theories describing the behavior of slender structures
are referred to as beam or rod theories. The main idea of beam theories is to reduce or limit the physical
problem to a one-dimensional theory. Two main goals lie behind the concept of beam theories: In the
early days of mechanics, the motivation lay in the possibility to determine general analytic solutions,
while today the main motivation is the design of significantly more efficient numerical methods
compared to full three-dimensional models to investigate slender geometries.

Depending on the underlying physical problems, beam theories can be classified into either intrinsic,
induced, or semi-induced theories [44, 99]. Intrinsic beam theories are directly postulated as one-
dimensional theories without derivation from continuum mechanics. However, they still adhere to the
essential mechanical principles, such as the balance equations [99]. In contrast to the intrinsic beam
formulation, induced beam models are derived from the three-dimensional continuum theory. They
describe the motion of the beam under external loads in a three-dimensional setting, using constraints
to restrict the movement of the three-dimensional continuum. The kinematic and kinetic relations,
as well as stress resultants, can be derived from the three-dimensional theory. Furthermore, even
the constitutive relations are related to the continuum theory [99]. In between both approaches lie
the semi-induced theories, which obtain the kinematic relations as well as the stress relations from
three-dimensional theories, while the material model is postulated [44, 99].

In the non-linear regime, one of the most important beam models is the semi-induced theory of
the geometrically exact beam [99]. The naming of that beam model is, unfortunately, ambiguous,
which complicates an overview of the topic. In the literature, the same model can be found under
various names: (non-linear) Timoshenko beam [46, 65, 67], (special) Cosserat rod [4, 90], Simo-Reissner
beam [99] or geometrically exact beam [21, 143]. In this work, we employ the term geometrically exact
beam. Equivalently, to the well-known linear theory of the Timoshenko beam, the geometrically exact
beam theory, which is utilized in this work, accounts for shear deformations. However, it is not limited
to small deformations.

The first approach to a non-linear beam formulation can be attributed to Reissner [112, 113]. A detailed
discussion of many aspects of the beam followed shortly after by Antmann [5]. Finally, a full extension
of the approach by Reissner to three dimensions was given by Simo in 1985 [126] with numerical
examples following in [127–129]. Within the theory proposed by Simo [126] the beam’s kinematic and
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kinetic relation are derived consistently from the continuum theory, which gives reason to the naming
of the geometrically exact beam theory. However, the constitutive relations are postulated and are not
directly derived from the continuum theory making it a semi-induced theory.

The geometrically exact beam model assumes that each cross-section of the beam remains rigid during
deformation. Due to this assumption, which restricts the beam’s deformation, the configuration of the
beam can be expressed by a position vector and a rotational field. The rotation is expressed through
tensors from the special orthogonal group 𝑆𝑂 (3). The resulting equations are non-linear PDEs, for
which an analytical solution can only be obtained in special cases. Thus, to solve problems with arbitrary
boundary conditions and for arbitrary geometries, it is usually necessary to employ numerical methods
such as the FEM. As discussed in the previous chapter (Section 3.4), a correct discretization approach for
the special orthogonal group is not straightforward and cannot be achieved using a classical approach.
Therefore, great care has to be taken when discretizing the equation of the beam. The beam formulations
found in the literature, thus, mostly differ in the parametrization and discretization of the rotations.

Simo et al. [127, 128] proposed a discretization of the incremental rotations. Other approaches,
published shortly after, were based on global rotations (e.g. [27, 81]). However, as shown by Crisfield
and Jelenić [33] all previously published discretization approaches were neither objective nor path-
independent due to their discretization approach of the orthogonal group. To overcome this shortcoming
they proposed an objective and path-independent approach based on the underlying structure of the
orthogonal group [33], as discussed in Section 3.4.2. Independently, Betsch and Steinmann [21] as
well as Romero and Armero [117] proposed an approach, based on the use of directors, which results
in an objective and path-independent discretization. Different options for the parametrization and
subsequent discretization of the geometrically exact beam are discussed by Romero in [114]. A recent
overview over many publications is given by Meier et al. in [99].
More recent works deal with the geometrically beam formulation using motion approaches. Sonneville
et al. [134–136] proposed a new approach, formulating the beam’s equation with the help of the special
Euclidean group 𝑆𝐸 (3). This highly sophisticated formulation enables the design of a locking-free
discretized model. A combination of the 𝑆𝐸 (3) model with warping effects is presented in [119] and in
[66] it is used with a Petrov-Galerkin discretization approach. A near-energy conserving integrator for
the 𝑆𝐸 (3) formulation is proposed in [145]. Further, a formulation using dual quaternions is used in
[63] to describe the beam’s movement in the context of a sliding contact formulation.

Possible application of the geometrically exact beam can be found in the simulation of sliding contacts
such as aerial runways [104–107], and for the simulation of twisting wires, for which a general contact
condition is discussed in [25]. An embedding of individual beams into a continuum is proposed
in [139, 140], where the embedding of a beam in a continuum is used to simulate fiber-reinforced
materials. The influence of gravity on the highly nonlinear oscillations of the beammodel is investigated
in [38]. Till et al. [144] use the geometrically exact beam in the context of soft robot models. The beam
model is also further extended to incorporate different physical fields. e.g. in [75] the description of the
beam is extended to represent electro-mechanical phenomena, which is used in [76] in a context of
optimal control.

However, in the present thesis, we focus on a purely mechanical description. This chapter covers the
derivation of the mechanical beam model without going into detail about the discretization approach.
The theory introduced in this chapter is used in the subsequent chapters, Chapter 5 and Chapter 6, for
two different representations of rotations.

As main sources for this chapter, the following sources are used [4, 44, 99, 126]. The chapter is structured
as follows. First, we introduce the assumptions of the beam in more detail and describe its kinematics
in Section 4.1. We then derive the balance equations in Section 4.2 and the kinetic energy of the beam
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4.1. Kinematics

in Section 4.3. In the next section, Section 4.4, we shortly introduce the postulated constitutive model.
Finally, Section 4.5 gives a short discussion of the constrained Kirchhoff-Love beam model.

4.1. Kinematics

We define a beam as a three-dimensional slender continuous body, that extends in one direction far
longer than in the other two. The term slender is not defined in a rigorous mathematical manner [4].
A sketch of such a slender geometry is shown in Fig. 4.1. The beam is drawn with a rectangular
cross-section. However, the geometry of the body’s cross-section can be arbitrary. In the continuum
theory, the cross-section deforms, when a physical load is applied. Nevertheless, in the classical beam
theory, we assume that the cross-section is rigid and stays plane during the deformation process [4].
Furthermore, during the deformation, the cross-sections do not penetrate each other, which limits the
possible bending radius. It cannot be smaller than the radius of the cross-section area [44, Chapter 5].

e1

e2

e3

𝑠

d1
d2

d3

φ(𝑠, 𝑡)

Figure 4.1.: Sketch of a slender body [148].

Along the principle direction of the slender body, a curve is chosen, following the body’s largest
extension. The curve is parametrized with the arc-length 𝑠 ∈ [0, 𝐿], where 𝐿 ∈ R > 0 is the length of
the beam in the undeformed state. The curve can be described by a position vector

φ(𝑠, 𝑡) ∈ R3 . (4.1)

At every point of 𝑠 a cross-section plane is defined, spanned by two vectors d1(𝑠, 𝑡) ∈ R3 and d2(𝑠, 𝑡) ∈ R3

of unit length. The vectors d1(𝑠, 𝑡) and d2(𝑠, 𝑡) are orthogonal vectors describing the average orientation
of the cross-section at every point of 𝑠 . As mentioned before, the cross-section itself is assumed to
remain rigid. Every point on the cross-section can be described relative to the curve φ(𝑠, 𝑡) by a
vector θ(𝑠, 𝑡) ∈ R3 with the basis d1(𝑠, 𝑡) and d2(𝑠, 𝑡)

θ(𝑠, 𝑡) = θ𝛼 (𝑠) d𝛼 (𝑠, 𝑡) . (4.2)

As before, Einstein’s summation convention applies, and Greek indices 𝛼, 𝛽 take values 1 and 2, while
Roman indices 𝑖, 𝑗, 𝑘 range from 1 to 3. From here on we omit the arguments (𝑠, 𝑡), unless it benefits
readability. Together with a third vector d3 ∈ R3

d3 = d1 × d2 (4.3)

the vectors d𝑖 form an orthonormal frame, often referred to as directors or director frame (see Sec-
tion 3.3.2). The third director d3 is normal to the cross-section plane. Note that the numbering of the
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4. The geometrically exact beam

directors is not uniquely defined in the literature and indeed it may be chosen arbitrarily, as long as the
resulting director frame forms a right-handed coordinate system. The notation used in this work is
taken from [21]. Since the directors form an orthogonal frame the director frame can be calculated
from

d𝑖 = R · e𝑖 , (4.4)

where R(𝑠, 𝑡) = d𝑖 ⊗ e𝑖 is a tensor from the special orthogonal group 𝑆𝑂 (3) describing the orientation
of the cross-section. Summarizing the information above, any point of the body shown in Fig. 4.1 can
be described by adding the position along the center curveφ to the position within the cross-section θ.
Therefore, the position vector in the current configuration of every point of the beam results in

x(𝑠, 𝑡) = φ(𝑠, 𝑡) + θ(𝑠, 𝑡) = φ(𝑠, 𝑡) + θ𝛼 (𝑠) d𝛼 (𝑠, 𝑡) = φ(𝑠, 𝑡) + θ𝛼 (𝑠) R(𝑠, 𝑡) · e𝛼 . (4.5)

It follows that the possible configurations of the beam are given by

Q = {(φ,R) : [0, 𝐿] × [0,𝑇 ] ↦→ R3 × 𝑆𝑂 (3)} . (4.6)

In Fig. 4.2 an arbitrary initial configuration of a beam structure is shown, which is assumed to be stress
free. The position of each point on the geometry is given by

X(𝑠) = φ0(𝑠) + θ𝛼d0𝛼 (𝑠) . (4.7)

The initial director frame can be computed from

d0𝑖 (𝑠) = R0(𝑠) · e𝑖 , (4.8)

where the orthogonal tensor R0(𝑠) defines the initial rotation of the director frame. However, it is
usually assumed that in the initial configuration d03(𝑠) and the normalized tangent vector

t0 =
φ0,𝑠 (𝑠)

φ0,𝑠 (𝑠)



 (4.9)

coincide. In the current configuration, also shown in Fig. 4.2, the direction of the director d3(𝑠, 𝑡) and
the tangent do, in general, no longer coincide due to shear deformation.
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e1

e2

e3

𝑠

d01 (𝑠)

d03 (𝑠)d02 (𝑠)

φ0 (𝑠)

𝑠 d1 (𝑠, 𝑡)

d2 (𝑠, 𝑡)
d3 (𝑠, 𝑡)

φ(𝑠, 𝑡)

Figure 4.2.: Initial and current configuration of an initially curved beam.

4.1.1. Strain measures

To obtain the first strain measure, the curvature of the beam is examined. The change of rate of the
moving director basis d𝑖 with respect to the parameter 𝑠 reveals

d𝑖,𝑠 = (R · e𝑖),𝑠 = R,𝑠 · e𝑖 = R,𝑠 · R⊤ · d𝑖 , (4.10)

where the abbreviation of the derivative with respect to the parameter 𝑠 is introduced as 𝜕 (•)
𝜕𝑠 = (•),𝑠 .

The curvature R,𝑠 · R⊤ is a skew-symmetric tensor and it describes the change of rate of the rotation
in the body fixed frame d𝑖 . The corresponding strain measure can be computed from the curvature
through

k̂ = R,𝑠 · R⊤ − R · R⊤
0 · R0,𝑠 · R⊤ , (4.11)

where R · R⊤
0 · R0,𝑠 · R⊤ accounts for the curvature of the initial configuration of the beam. The

corresponding material description can be obtained by a rotation with R and is given by [33, 128]

K̂ = R⊤ · R,𝑠 − R⊤
0 · R0,𝑠 . (4.12)

The skew-symmetric tensor K̂ ∈ R3×3 has three independent entries, which can be rewritten into the
vector K with the components

𝐾𝑖 =
1
2𝜀𝑖 𝑗𝑘𝐾̂𝑘 𝑗 . (4.13)

In the same manner, the spatial axial vector k can be obtained from the tensor k̂. In the following, we
use the vector K to describe strain measure due to the curvature of the beam. An interpretation of the
individual entries can be found in e.g. [4, Chapter VIII]. The two entries 𝐾1 and 𝐾2 account for the
bending of the beam, while entry 𝐾3 describes the twist due to torsion.
The shear and dilatation are described through the spatial strain measure [127]

γ = φ,𝑠 − d3 , (4.14)

where the entries γ1 and γ2 describe the shearing and γ3 the dilatation of the beam [4, Chapter VIII].
The material measure follows as

Γ = R⊤ ·φ,𝑠 − e3 . (4.15)

53



4. The geometrically exact beam

Since the model includes shear deformation it is equivalent to a non-linear formulation of the linear
Timoshenko beam. Enforcing Γ𝛼 = 0 leads to shear stiff beam formulation often referred to as the
Kirchhoff-Love beam (cf. Section 4.5).

The three-dimensional strain measures were originally introduced by Simo [126]. They are the work-
conjugate strains to the material stress resultants. A detailed discussion of the relations of the strain
measures to the theory of deformation of the three-dimensional continuum is given in [8, 27].

4.1.2. Velocity

The velocity vector ¤x is given by the time derivative of the position vector x in Eq. (4.5) and results in

¤x = ¤φ + θ𝛼 ¤d𝛼 . (4.16)

As before, 𝜕 (•)
𝜕𝑡 = ¤(•) denotes the partial derivative with respect to time. The vector components θ𝛼

do not depend on the time since we assume the cross-sections to be rigid. The change of rate of the
directors with respect to time 𝑡 is computed via

¤d𝑖 = ¤R · e𝑖 = ¤R · R⊤ · d𝑖 = ω̂ · d𝑖 = ω × d𝑖 , (4.17)

where ω̂ is a skew-symmetric tensor (cf. Section 3.2). The vector

ω =
1
2𝜀𝑖 𝑗𝑘ω̂𝑘 𝑗d𝑖 (4.18)

is the spatial angular velocity as introduced in Section 3.2. The skew-symmetric tensor

R⊤ · ¤R = Ω̂ (4.19)

incorporates the components of the convective angular velocity vectorΩ by

Ω𝑖 =
1
2𝜀𝑖 𝑗𝑘Ω̂𝑘 𝑗 . (4.20)

4.2. Balance equations

The balance equations of linear and angular momentum are used to derive the equations of motion.
For this purpose, we take a segment of the beam [𝑎, 𝑠), 0 < 𝑎 < 𝑠 < 𝐿, as shown in Fig. 4.3, and apply
the respective forces and torques.

𝑎
n(𝑎)

m(𝑎)

𝑠

n(𝑠)

m(𝑠)

n̄

m̄

Figure 4.3.: Segment of a beam with applied contact forces and external loads.
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4.2. Balance equations

The balance equation of linear momentum results in

n(𝑠, 𝑡) − n(𝑎, 𝑡) +
∫ 𝑠

𝑎
n̄(𝜉, 𝑡)d𝜉 = ¤P(𝑠, 𝑡) , (4.21)

where n(𝑎, 𝑡) and n(𝑠, 𝑡) are the resultant contact force at 𝑎 and 𝑠 respectively. The distributed external
force acting on the curve is denoted by n̄(𝜉, 𝑡). The vector P is the linear momentum. It is given by

P =
∫
V
𝜌0 ¤xd𝑉 =

∫ 𝑠

𝑎

∫
A
𝜌0

(
¤φ + θ𝛼 ¤d𝛼

)
d𝐴 d𝜉

=
∫ 𝑠

𝑎
𝐴𝜌 ¤φ + 𝑆𝛼𝜌 · ¤d𝛼 d𝜉 .

(4.22)

where 𝜌0 is the density in the initial configuration. Eq. (4.22) introduces the two inertia terms𝐴𝜌 and 𝑆𝛼𝜌 .
The mass density per unit reference length

𝐴𝜌 (𝑠) =
∫
A(𝑠 )

𝜌0 d𝐴 (4.23)

is computed by integration of the mass density over the cross-section area A(𝑠) at 𝑠 . The static moment
is obtained from

𝑆𝛼𝜌 (𝑠) =
∫
A(𝑠 )

𝜌0θ
𝛼d𝐴 (4.24)

for 𝛼 = 1, 2. If the corresponding vector S𝜌 is equal to zero, S𝜌 = 0, the curve φ coincided with the
centerline connecting the centers of gravity of each cross-section [21]. By taking the spatial derivative
of Eq. (4.21) we obtain the local form as

n,𝑠 + n̄ = ¤p , (4.25)

where the linear momentum per unit reference length and its derivative with respect to time are given
by

p = 𝐴𝜌 ¤φ + 𝑆𝛼𝜌 ¤d𝛼 (4.26)

and
¤p = 𝐴𝜌 ¥φ + 𝑆𝛼𝜌 ¥d𝛼 . (4.27)

Analogously, the balance of angular momentum can be derived. In view of Fig. 4.3, the balance of
angular momentum at a beam segment can be derived as

m(𝑠, 𝑡) − m(𝑎, 𝑡) + (φ(𝑠, 𝑡) × n(𝑠, 𝑡)) − (φ(𝑎, 𝑡) × n(𝑎, 𝑡))

+
∫ 𝑠

𝑎
φ(𝑠, 𝑡) × n̄(𝑠, 𝑡)d𝑠 +

∫ 𝑠

𝑎
m̄(𝜉, 𝑡)d𝜉 = ¤L(𝑠, 𝑡) , (4.28)

where m(𝑠, 𝑡) and m(𝑎, 𝑡) are the contact moments at 𝑎 and 𝑠 . The external distributed torque m̄ acts
on the curve. The angular momentum is given through [4, 95]

L =
∫
V
𝜌0 x × ¤x d𝑉

=
∫
V
𝜌0 (φ + θ𝛼d𝛼 ) ×

(
¤φ + θ𝛽 ¤d𝛽

)
d𝑉

=
∫ 𝑠

𝑎

∫
A
𝜌0(φ × ¤φ) + (θ𝛼d𝛼 × ¤φ) + (θ𝛽φ × ¤d𝛽 ) + θ𝛼θ𝛽d𝛼 × ¤d𝛽 d𝐴 d𝜉 .

(4.29)
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4. The geometrically exact beam

Using Eq. (4.18) the cross-product in the final term of the integral in Eq. (4.29) can be rewritten as

d𝛼 × ¤d𝛽 = d𝛼 × (
ω × d𝛽

)
=

(
d𝛼 · d𝛽

)
ω − (

d𝛽 ⊗ d𝛼
) ·ω ,

(4.30)

where the vector identity u × (v × w) = (u · w) v − (u · v) w has been employed. By aid of Eq. (4.30) it
is possible to recast Eq. (4.29) as

L =
∫ 𝑠

𝑎
𝐴𝜌φ × ¤φ + 𝑆𝛼 (d𝛼 × ¤φ +φ × (ω × d𝛼 )) + 𝐽𝛼𝛽𝜌 (d𝛼 ⊗ d𝛽 ) ·ω d𝜉 . (4.31)

Therein, 𝐽𝛼𝛽𝜌 are the components of the spatial inertia tensor per unit reference length, which is given
by [126]

J𝜌 (𝑠) =
∫
A(𝑠 )

𝜌0 (θ𝛼θ𝛼 I − θ ⊗ θ) d𝐴 . (4.32)

The angular momentum per unit reference length follows from the derivative of Eq. (4.31) as

l = 𝐴𝜌φ × ¤φ + 𝑆𝛼 (d𝛼 × ¤φ +φ × (ω × d𝛼 )) + J𝜌 ·ω . (4.33)

With the help of Eq. (4.33), the local form of the balance of angular momentum can be written as

m,𝑠 + (φ × n),𝑠 +φ × n̄ + m̄ = ¤l , (4.34)

where the time derivative of the angular momentum per unit reference length is given by

¤l = 𝐴𝜌φ × ¥φ + 𝑆𝛼𝜌 (φ × ( ¤ω × d𝛼 ) + d𝛼 × ¥φ)
+ J𝜌 · ¤ω +ω × J𝜌 ·ω .

(4.35)

In Eq. (4.35) the following time derivative is used

𝜕

𝜕𝑡

(
J𝜌 ·ω

)
= 𝐽𝛼𝛽𝜌 ¤ω𝛽d𝛼 + 𝐽𝛼𝛽𝜌 ω𝛽

¤d𝛼
= 𝐽𝛼𝛽𝜌 ¤ω𝛽d𝛼 +ω × 𝐽𝛼𝛽𝜌 ω𝛽d𝛼
= J𝜌 · ¤ω +ω × J𝜌 ·ω .

(4.36)

Inserting Eq. (4.25) into Eq. (4.34) and using Eq. (4.35) results in

m,𝑠 +φ,𝑠 × n + m̄(𝑠, 𝑡) = 𝑆𝛼𝜌 d𝛼 × ¥φ + J𝜌 · ¤ω +ω × J𝜌 ·ω . (4.37)

The two equations, Eq. (4.25) and Eq. (4.37), constitute the equations of motion of the geometrically
exact beam [4, Chapter VIII].

4.3. Kinetic energy

The kinetic energy of a continuum body is given by

𝐸kin =
1
2

∫
V
𝜌0(X) ¤x(X, 𝑡) · ¤x(X, 𝑡) d𝑉 . (4.38)
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With the help of the inertia terms defined in Section 4.2 in Eq. (4.23), Eq. (4.24) and Eq. (4.32) and the
spatial angular velocity from Eq. (4.18) we can write the kinetic energy of the beam as

𝐸kin =
1
2

∫
V
𝜌0(X) ¤x(X, 𝑡) · ¤x(X, 𝑡) d𝑉

=
1
2

∫ 𝐿

0
𝐴𝜌 ¤φ · ¤φ + 2 ¤φ · (ω × d𝛼 ) 𝑆𝛼 +ω · J𝜌 ·ω d𝑠 .

(4.39)

In the literature, e.g. in [21, 65, 117, 120], it is often assumed that the curveφ coincides with the line of
centroids connecting the centers of gravity of each cross-section. Frequently, this is not mentioned
explicitly. When both lines fall together S𝜌 is equal to zero [21] as mentioned above. The assumption,
that both curves coincide, holds for all examples in this work and we therefore omit the first moment
of area S𝜌 from here on.

4.4. Constitutive law

In the following, we discuss the constitutive relation of the geometrically exact beam. In most works
covering the geometrically exact beam the beam’s behavior is assumed to be hyperelastic, which we
also assume. The corresponding stored energy density function per unit length is given by 𝑤 (Γ,K).
Taking the partial derivatives of𝑤 with respect to the strain measures we obtain the stress resultants

𝜕𝑤 (Γ,K)
𝜕Γ

= N(𝑠, 𝑡) and 𝜕𝑤 (Γ,K)
𝜕K

= M(𝑠, 𝑡) , (4.40)

where N(𝑠, 𝑡) and M(𝑠, 𝑡) are the resultant force and moment per unit length. The vectors in spatial
form can be computed by multiplication from the left with the orthogonal tensor R

n = R · N and m = R · M . (4.41)

Most often a hyperelastic Saint-Vernant-like material is chosen in the literature e.g. in [21, 45, 65, 99,
114, 117, 124, 127, 128] and is employed in this work as well. For a Saint-Vernant-like material, the
strain energy function is given by

𝑊 (Γ,K) = 1
2

∫ 𝐿

0
(Γ · D1 · Γ + K · D2 · K) d𝑠 , (4.42)

where the tenors D𝛼 contain the stiffness parameters of the beam

D1 =


𝐺𝐴1 0 0

0 𝐺𝐴2 0
0 0 𝐸𝐴

 and D2 =


𝐸𝐼1 0 0
0 𝐸𝐼2 0
0 0 𝐺𝐼p

 . (4.43)

Therein𝐺𝐴𝛼 denotes the shear stiffness along axis d𝛼 and 𝐸𝐴 is the axial stiffness. The bending stiffness
is given by 𝐸𝐼𝛼 with regard to axis d𝛼 and 𝐺𝐼p is the torsional stiffness of the beam. The directors d1
and d2 are, hereby, chosen such that they coincide with the principle axes of the cross-section.
The assumption of rigidity of the cross-sections leads to the necessity that no transversal contraction
occurs. In reality, this is only true for materials with a Poisson ratio of 𝜈 = 0. However, this effect is
usually neglected [99].
Remark 4.1 (Finite strains). Simo [126] introduced the beam formulation as "a finite strain beam
formulation". However, as argued in e.g. [8, 33] the constitutive model, which is applied in the literature
(e.g. [45, 65, 99, 114, 117, 124, 127, 128]) is not consistent with finite strains. A detailed discussion is given
in [99]. The constitutive relation is indeed only valid for small strains Γ𝑖 << 1 and 𝑟𝐾𝑖 << 1, where 𝑟 is
the radius of the cross-section area [99]. The constitutive model can, however, handle finite deformations as
long as the strains remain small.

57



4. The geometrically exact beam

4.5. The Kirchhoff-Love beam

Apart from beam models with shear deformation, there exist other beam models in the literature with
further restrictions on the kinematics e.g. the (inextensible) Kirchhoff-Love beam model [99]. Such
models can be viewed as a constrained version of the geometrically exact beam with shear deformations.
Similar to the geometrically exact beam, the names for the different constrained formulations are not
unique [46, 99].

A Kirchhoff-Love beam model is obtained by introducing additional constraints on the shear strains

ΦS𝛼 = Γ𝛼 = 0 , (4.44)

where the index S indicates constrains on the shear strains. These constraints ensure that d3(𝑠, 𝑡) does
always coincide with the normalized tangent of the centerline

t(𝑠, 𝑡) = φ,𝑠 (𝑠, 𝑡)

φ,𝑠 (𝑠, 𝑡)


 ≡ d3(𝑠, 𝑡) . (4.45)

Consequently, the cross-section is always perpendicular to the centerline. Therefore, the model can be
viewed as an extension of the linear Bernoulli beam theory.

The shear constraints reduce the configuration manifold from Q (Eq. (4.6)) to a new set of minimal
coordinates

QK = {(φ,𝜓 ) : [0, 𝐿] × [0,𝑇 ] ↦→ R3 × 𝑆1} . (4.46)

Again φ(𝑠, 𝑡) is the position vector describing the location of the centerline, while𝜓 (𝑠, 𝑡) is an angle
describing the torsional movement.

While developing a numerical method for the Kirchhoff-Love beam, it comes naturally to assume, that
it is convenient to use the minimal set QK. However, the available literature using the minimal set is
relatively limited even though many applications exist in various areas (see e.g. [99, 118]). Reasons for
this might lie in the complex mathematical framework, which is indeed more complicated than for a
beam model with shear deformations.

As mentioned, the director d3 coincides with the tangent t in the case of the Kirchhoff-Love model.
Thus, without going too much into details, one could assume that the director frame can be determined
through the position vectorφ without problems. Even though d3 can easily be computed, this does not
hold for the other two directors d1 and d2, which are needed to describe the configuration of the beam
in the entirety. The computation of the directors d1 and d2 is equivalent to the computation of vectors,
which lie in the tangent space of the unit sphere 𝑆2 spanned by the director d3. From the Hairy Ball
theorem follows that there always exists at least one d3 ∈ 𝑆2 for which, the tangent vectors, here d1
and d2, in 𝑇d3𝑆

2 are equal to zero [97, 118].
Equivalently, the problem can be comprehended as computing a frame alongside a curve. Multiple
options are available for this task. The simplest option is the Serret-Frenet frame [118]. However, it has
multiple severe drawbacks, such as it is not defined for a vanishing curvature and can lead to jumps in
the frame, when the curve changes its concavity [97, 118]. So it is not a feasible option, as it would
result in unphysical behavior. Another option, the natural or Bishop frame [24], can also not be applied
as it is not given explicitly [118].

Thus, usually, an approach using composite rotations is applied (cf. [12, 56, 57, 97, 98]). To the
best knowledge of the author, the first objective and path-independent formulation is presented by
Meier et al. [97] for statics in three dimensions.
In the case of dynamic problems, even less literature exists. In [99] the formulation from [97] is also
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4.5. The Kirchhoff-Love beam

employed for dynamic examples, but key information about the inertia terms is not presented. An
extensive theoretical discussion of the topic can be found in [118] with a detailed FEM model and
numerical examples in a subsequent publication [50]. As shown in [118], it is not possible to derive an
exact theory for an approach with composite rotations for dynamic problems. Thus, in general, a shear
deformable beam formulation as introduced above with additional shear constraints might be more
convenient compared to a formulation with minimal coordinates [50, 118].

Additionally, a further constraint can be added, which hinders the elongation of the beam. The
inextensibility constrain is given by

ΦL = Γ3 = 0 . (4.47)

Numerical examples using a constrained formulation for the (inextensible) Kirchhoff-Love beam can be
found in e.g. [65].
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5. The geometrically exact beam in a director
formulation

Abstract: In this chapter, a geometrically exact beam formulation using directors is discussed. In
the beginning, a very brief survey of the available literature is given and subsequently, the beam
kinematics in this framework are introduced. Furthermore, the kinetic energy is presented with the
associated inertia terms. In the following, the continuous weak formulation is given. Subsequently,
the approximation approach with finite elements is discussed. It is shown, that the formulation leads
to frame-indifferent strain measures. Afterward, the contribution of the inertia terms, the internal
forces, and external forces to the weak form is given. Furthermore, orthonormality constraints are
introduced, where a weak and a strong enforcement on the control/nodal points are discussed. In the
next section the employed time integration scheme, based on the discrete gradient is given. The model’s
performance and the discretization approach are investigated in static and dynamic examples.

As indicated in the previous chapter, there exists a plethora of publications dealingwith the geometrically
exact beam. Most of them differ in the way they treat rotations, which often leads to very complex
formulations. In this chapter, we investigate a formulation of the geometrically exact beam using a
director formulation. As mentioned in the last chapter, the formulation was first proposed by Betsch and
Steinmann [21, 22] as well as by Romero and Armero [117] as a frame-indifferent and path-independent
alternative to earlier formulations. In [45] this formulation was further advanced to minimize the
discretization error introduced by a classical discretization of the director frame. Harsch et al. [65] used
the formulation in combination with the IGA.

As mentioned in Chapter 2 the Isogeometric Analysis offers many advantages compared to the standard
Finite Element Method with Lagrange shape functions. To illustrate some of the benefits we compare
both methods in this chapter.
Due to the use of directors, the formulation is relatively simple in its mathematical structure and has
only quadratic nonlinearities, which is of great advantage, when constructing energy-momentum
conserving time integrators as shown in [22]. Since such conserving integrators have many advantages,
especially in regard to numerical stability, we employ such a scheme for the time discretization in this
chapter.

We investigate the behavior of standard Lagrange and NURBS shape functions. Additionally, Lagrange
shape functions computed based on the Gauss-Lobatto points for the examples in statics are employed.
The former two are further used in dynamic examples.
The presented approach is not new, but so far to the best knowledge of the author the model was never
investigated for higher-order Lagrange elements and elements utilizing the Gauss-Lobatto-based shape
functions. Furthermore, a direct comparison of both the FEM and the IGA for this model is so far not
presented in the literature. Our aim is to fill this gap here.

The theory of this chapter is based on publications [21, 22, 124], if not mentioned otherwise.
The rest of the chapter is structured as follows. In Section 5.1 we introduce the kinematics and strain
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5. The geometrically exact beam in a director formulation

measures of the geometrically exact beam in the director formulation. The kinetic energy and respective
inertia terms are introduced in Section 5.2. The results are used to formulate the weak form of the
problem in Section 5.3. Subsequently, Section 5.4, covers the discretization of the weak form, where two
options are introduced to ensure the orthonormality of the director frame in the discretized equations.
The time integration scheme, which is employed in this chapter, is introduced in Section 5.5. The
influence of different discretization approaches and their convergence behavior is investigated in
Section 5.6 with several numerical examples.

5.1. Beam kinematics of the director formulation

As shown in the previous chapter, the position of every point on the body of the beam can be described
by Eq. (4.5). Most beam formulations parametrize the rotational tensor needed to represent the director
frame d𝑖 . But instead of such a parametrization, one can use the directors directly as unknowns as
described in Section 3.3.2.
They form a moving frame attached to each cross-section of the beam. Thus, the position vector of
each point on the beam can be written without any further parametrization as

x(𝑠, 𝑡) = φ(𝑠, 𝑡) + θ𝛼 (𝑠)d𝛼 (𝑠, 𝑡) , (5.1)

which leads to the following configuration describing the beam’s movement

Qd = {(φ, d𝑖) : [0, 𝐿] × [0,𝑇 ] ↦→ R3 × 𝑆𝑂 (3)} . (5.2)

The configuration manifold is the same as given in Eq. (4.6). Since each director forms the respective
column of a rotational tensor, the directors lie in the special orthogonal group 𝑆𝑂 (3) in the continuous
setting. Therefore, the directors are normal and mutual orthogonal in the continuous equations.

5.1.1. Strain measures using directors

As introduced in Chapter 4, the beam is described by two strain measures Γ and K. In the director
framework they are given by [21]

Γ = Γ𝑖e𝑖 , with Γ𝑖 = d𝑖 ·φ,𝑠 − 𝛿𝑖3 , (5.3)

K = 𝐾𝑖e𝑖 , with 𝐾𝑖 =
1
2𝜀𝑖 𝑗𝑘

[
d𝑘 · d𝑗,𝑠 − d0𝑘 · d0𝑗,𝑠

]
. (5.4)

5.1.1.1. Frame-indifference of the strain measures

To show that the continuous strain measures are indeed frame-indifferent (or objective) we introduce an
arbitrary vector c# ∈ R3 describing a finite displacement and an arbitrary rotational tensor R# ∈ 𝑆𝑂 (3).
Together they describe an arbitrary rigid body movement. With the superimposed rigid body movement,
the beam position vector and the director frame are given by

φ# = R ·φ + c and d#
𝑖 = R · d𝑖 . (5.5)
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To show the frame-indifference of the strain measure Γ, Eq. (5.5) is inserted into Eq. (5.3) leading to

Γ #
𝑖 = d#

𝑖 ·φ#
,𝑠 − 𝛿𝑖3

= d𝑖 · R⊤ · R ·φ,𝑠 − 𝛿𝑖3
= d𝑖 ·φ,𝑠 − 𝛿𝑖3
= Γ𝑖 .

(5.6)

The continuous strain measure Γ is, thus, frame-indifferent. In the same manner, the frame-indifference
can be shown for the strain measure K describing the curvature and torsional strain. Inserting Eq. (5.5)
into Eq. (5.4) yields

𝐾#
𝑖 =

1
2𝜀𝑖 𝑗𝑘

[
d#
𝑘 · d#

𝑗,𝑠 − d#
0𝑘 · d#

0𝑗,𝑠
]

=
1
2𝜀𝑖 𝑗𝑘

[
d𝑘 · R⊤ · R · d0𝑗,𝑠 − d0𝑘 · R⊤ · R · d0𝑗,𝑠

]
=

1
2𝜀𝑖 𝑗𝑘

[
d𝑘 · d𝑗,𝑠 − d0𝑘 · d0𝑗,𝑠

]
= 𝐾𝑖 .

(5.7)

Therefore, it can be concluded that both continuous strain measures fulfill the requirement to be
invariant under superimposed rigid body motions.

5.2. The kinetic energy of the director formulation

We can write the kinetic energy of the geometrically exact beam as

𝐸kin =
1
2

∫ 𝐿

0

∫
A(𝑠 )

𝜌0
(
¤φ + θ𝛼 ¤d𝛼

)
·
(
¤φ + θ𝛽 ¤d𝛽

)
d𝐴 d𝑠 . (5.8)

as derived in Section 4.3. The mass density per unit reference length 𝐴𝜌 , which is the inertia term
related to the translational displacements, is not influenced by the choice of the representation of the
rotations. It has, therefore, the same form as introduced in Eq. (4.23).
As mentioned in Section 4.3, we assume that φ(𝑠, 𝑡) is the centerline, connecting the centers of gravity
of the cross-sections. From this follows that the coupling terms in the kinetic energy between ¤φ and ¤d𝑖
are zero (S𝜌 = 0).
In contrast to the mass density, the inertia terms with respect to the rotational movement can differ
depending on the parametrization. In the case of the director formulation, the Euler tensor describes
the inertia of the cross-section with respect to rotational movement [22]. It is given by

M𝜌 (𝑠) =
∫
𝐴(𝑠 )

𝜌0θ
𝛼θ𝛽 d𝛼 ⊗ d𝛽 d𝐴 . (5.9)

This is in contrast to the inertia tensor (cf. Eq. (4.32)), which is commonly used to represent inertia
with respect to rotational movement. The Euler tensor is related to the spatial inertia tensor by

J = 𝑀𝛼𝛼
𝜌 I −𝑀𝛼𝛽

𝜌 d𝛼 ⊗ d𝛽 . (5.10)

Using the Euler tensor in the director formulation the kinetic energy can be written as

𝐸kin =
1
2

∫ 𝐿

0

[
𝐴𝜌 ¤φ · ¤φ +𝑀𝛼𝛽

𝜌
¤d𝛼 · ¤d𝛽

]
d𝑠 . (5.11)
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In contrast to the previous chapter ¤d𝑖 are now the velocities of the directors without any further
parametrization. Thus, the spatial angular velocity vector ω in Eq. (4.18) is not used for their computa-
tion.
Further, note that the inertia terms do not depend on the configuration but are constant, which is of
great advantage for the numerical computation.

5.3. Weak form of the director formulation

The continuous weak form describing the beam’s behavior can be written as

𝐺kin(φ, d𝑖 ; δφ, δd𝑖) +𝐺int(φ, d𝑖 ; δφ, δd𝑖) = 𝐺ext(φ, d𝑖 ; δφ, δd𝑖) , (5.12)

where the arbitrary admissible variations (δφ, δd𝑖) ∈ 𝑇(φ,d𝑖 )Qd lie in the tangent space

𝑇(φ,d𝑖 )Qd = {(δφ, δd𝑖) : [0, 𝐿] × [0,𝑇 ] ↦→ R3 ×𝑇d𝑆𝑂 (3)} , (5.13)

where here 𝑇d𝑆𝑂 (3) denotes the tangent space at the rotational tensor R composed of the directors
(R = d𝑖 ⊗ e𝑖 ).

The contribution of the inertia force can be obtained through a variation of the kinetic energy Eq. (5.11),
which is given by

𝐺kin(x, δx) =
∫ 𝐿

0
𝐴𝜌δφ · ¥φ +𝑀𝛼𝛽

𝜌 δd𝛼 · ¥d𝛽 d𝑠 . (5.14)

Variation of the strain energy function given in Eq. (4.42) reveals the contribution of the internal forces
as

𝐺int(φ, d𝑖 ; δφ, δd𝑖) =
∫ 𝐿

0
δΓ · N + δK · M d𝑠 . (5.15)

As introduced in the last chapter, we use a Saint-Vernant-like material. It follows that the stress
resultants N and M are given by N = D1 · Γ and M = D2 · K, where the tensors D1 and D2 contain the
stiffness parameters as given in Section 4.4 by D1 = diag(𝐺𝐴1,𝐺𝐴2, 𝐸𝐴) and D2 = diag(𝐸𝐼1, 𝐸𝐼2,𝐺𝐼p).
The variations of the strain measures in Eq. (5.15) result in

δΓ = δΓ𝑖 e𝑖 with δΓ𝑖 = δd𝑖 ·φ,𝑠 + d𝑖 · δφ,𝑠 , (5.16)

δK = δ𝐾𝑖 e𝑖 with δ𝐾𝑖 =
1
2𝜀𝑖 𝑗𝑘

[
δd𝑘 · d𝑗,𝑠 + d𝑘 · δd𝑗,𝑠

]
. (5.17)

Inserting Eq. (5.16) and Eq. (5.17) into Eq. (5.15) leads to

𝐺int(φ, d𝑖 ; δφ, δd𝑖) =
∫ 𝐿

0

(
δd𝑖 ·φ,𝑠 + d𝑖 · δφ,𝑠

)
𝑁𝑖

+ 1
2𝜀𝑖 𝑗𝑘

(
δd𝑘 · d𝑗,𝑠 + d𝑘 · δd𝑗,𝑠

)
𝑀𝑖 d𝑠 .

(5.18)

The external forces n̄ and torques m̄ lead to the following contribution to the weak form

𝐺ext(φ, d𝑖 ; δφ, δd𝑖) =
∫ 𝐿

0
δφ · n̄ + 1

2δd𝑖 · ˆ̄𝒎 · d𝑖 d𝑠 , (5.19)

where we neglect boundary terms for simplicity. A derivation of the contribution to the weak form of
external torques in a director framework in Eq. (5.19) is given in e.g. [17, 124]. The hat operator (•̂)
denotes again a mapping from the corresponding axial vector to a skew-symmetric tensor.
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5.4. Finite element formulation of the director formulation

The approximated solution of the weak form in Eq. (5.12) is obtained using the Finite Element Method
or Isogeometric Analysis, respectively. We chose a Bubnov-Galerkin discretization approach. So the
approximated displacements and directors as well as their corresponding variations are given by

φℎ =
𝑛∑︁

𝐴=1
𝑁𝐴φ

𝐴 and δφℎ =
𝑛∑︁

𝐴=1
𝑁𝐴δφ

𝐴 , (5.20)

dℎ𝑖 =
𝑛∑︁

𝐴=1
𝑁𝐴d𝐴𝑖 and δdℎ𝑖 =

𝑛∑︁
𝐴=1

𝑁𝐴δd𝐴𝑖 , (5.21)

where 𝑁𝐴 are Lagrange, standard or Gauss-Lobatto-based, or NURBS shape functions and φ𝐴, d𝐴𝑖
are the weights of the displacement and directors associated with the 𝐴-th node or control point,
respectively. The total number of nodes or control points is given by 𝑛. As in Chapter 3, we re-
fer from here on to the 𝐴-th node or control point as 𝐴-th control/nodal point. As mentioned in the
introduction, both variables are discretized with a classical finite element approach for the FEM and IGA.

As discussed in detail in Chapter 3 the solution space of the director vectors d𝑖 is not a linear flat space
but the special orthogonal group 𝑆𝑂 (3). It follows that to achieve optimal convergence behavior for
elements of higher-order, a finite element approach should be chosen which conserves the underlying
geometry of 𝑆𝑂 (3). Two options, geodesic and projection-based finite elements, to construct such a
conforming finite element space for optimal convergence are discussed in Chapter 3. However, due
to their complexity and their high computational costs, an application is not feasible, especially in
dynamic problems.
As a possible solution to overcome this shortcoming, we use in this chapter, Gauss-Lobatto-based shape
functions beside the standard Lagrange functions.

5.4.1. Discrete strain measures

Employing the discretizations Eq. (5.20) and Eq. (5.21) in Eq. (5.3) and Eq. (5.4) gives the discrete
components of the strain measurements

Γℎ𝑖 = dℎ𝑖 ·φℎ
,𝑠 − 𝛿𝑖3 , (5.22)

𝐾ℎ
𝑖 =

1
2𝜀𝑖 𝑗𝑘

[
dℎ𝑘 · dℎ𝑗,𝑠 − dℎ0𝑘 · dℎ0𝑗,𝑠

]
. (5.23)

5.4.1.1. Frame-indifference of the discrete strain measures

As mentioned in Chapter 3 and Chapter 4, all of the early discrete beam formulations suffered from a
lack of frame-indifference due to spurious discretization of the rotational variables. Here, it is shown
that the discretized director formulation at hand does indeed lead to a frame-indifferent (or objective)
formulation when discretized. For this purpose a rigid body motion, described by the vector c# ∈ R3 and
a rotational tensor R# ∈ 𝑆𝑂 (3), is applied to the control/nodal points analogously to the continuous case
in Section 5.1.1.1. The rigid body motion can be applied to the control points due to the affine covariance
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of NURBS as mentioned in Section 2.3. The values of control/nodal point 𝐴 under a superimposed rigid
body motion are given by (

φ𝐴
)#

= R ·φ𝐴 + c and
(
d𝐴𝑖

)#
= R · d𝐴𝑖 . (5.24)

Inserting Eq. (5.24) into Eq. (5.22) leads to(
Γℎ𝑖

)#
=

(
dℎ𝑖

)#
·
(
φℎ

)#

,𝑠
− 𝛿𝑖3

=
𝑛∑︁

𝐴=1

𝑛∑︁
𝐵=1

𝑁𝐴𝑁𝐵,𝑠

(
d𝐴𝑖

)#
·
(
φ𝐵

)#
− 𝛿𝑖3

=
𝑛∑︁

𝐴=1

𝑛∑︁
𝐵=1

𝑁𝐴𝑁𝐵,𝑠

(
d𝐴𝑖 · R⊤ · R ·φ𝐵 + R⊤ · d𝐴𝑖 · c

)
− 𝛿𝑖3

= dℎ𝑖 ·φℎ
,𝑠 − 𝛿𝑖3

= Γℎ𝑖 ,

(5.25)

where relation
∑𝑛

𝐵=1 𝑁𝐵,𝑠 = 0, has been used, which follows from the partition of unity of the shape
functions. Thus, the discretized strain measure Γℎ is frame-indifferent under superimposed rigid body
motions. In the same manner, the frame-indifference can be shown for the discrete strain measure Kℎ

describing the curvature. Inserting Eq. (5.24) into Eq. (5.23) yields(
𝐾ℎ
𝑖

)#
=

1
2𝜀𝑖 𝑗𝑘

[(
dℎ𝑘

)#
· d#

𝑗,𝑠 −
(
dℎ0𝑘

)#
·
(
dℎ0𝑗,𝑠

)#
]

=
1
2𝜀𝑖 𝑗𝑘

[
dℎ𝑘 · R⊤ · R · dℎ𝑗,𝑠 − dℎ0𝑘 · R⊤ · R · dℎ0𝑗,𝑠

]
=

1
2𝜀𝑖 𝑗𝑘

[
dℎ𝑘 · dℎ𝑗,𝑠 − dℎ0𝑘 · dℎ0𝑗,𝑠

]
= 𝐾ℎ

𝑖 .

(5.26)

Therefore, both discrete strain measures fulfill the requirement to be frame-indifferent under rigid body
motions.

5.4.2. Discrete weak form

Inserting the discretized variables Eq. (5.20) and Eq. (5.21) into the continuous weak form (Eq. (5.12))
reveals the weak form in a finite element framework. However, the discretized directors do not represent
the set of minimal coordinates, dim(𝑆𝑂 (3)) = 3, but belong to the 9-dimensional space R3×3 and are
thus redundant. Furthermore, in the discretized equation, we can no longer assume the directors
to form an orthonormal frame without enforcing the group constraint of 𝑆𝑂 (3). Thus, additional
Lagrange multipliers are introduced ensuring the normality and mutual orthogonality of the directors
and circumventing a redundant formulation. Accordingly, we introduce the discretized weak form

𝐺kin(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) +𝐺int(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) +𝐺𝜆 (dℎ𝑖 ,λℎ ; δdℎ𝑖 ) = 𝐺ext(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) , (5.27)

where 𝐺kin, 𝐺int and 𝐺ext are given by Eq. (5.14), Eq. (5.15) and Eq. (5.19), respectively. The discretized
Lagrange multipliers λℎ ensure the orthonormality of the director frame dℎ𝑖 . They contribute with 𝐺𝜆

to the weak form. Depending on the employed shape functions, two different formulations of𝐺𝜆 will
be used. They are introduced in Section 5.4.2.4.
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5.4.2.1. Contribution of the inertia forces

The contribution of the inertia to the discrete weak form can be obtained by inserting Eq. (5.20) and
Eq. (5.21) into Eq. (5.14) leading to

𝐺kin(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) =
∫ 𝐿

0
𝐴𝜌δφ

ℎ · ¥φℎ +𝑀𝛼𝛽
𝜌 δdℎ𝛼 · ¥dℎ𝛽d𝑠 . (5.28)

Excluding the control/nodal point values the first part of the integral reveals the inertia term associated
with the displacements as

Mφ
𝐴𝐵 =

∫ 𝐿

0
𝑁𝐴𝑁𝐵𝐴𝜌 I d𝑠 , (5.29)

and in the same manner from the second term of the integral, the following inertia term associated
with the directors is obtained

Md
𝐴𝐵 =

∫ 𝐿

0
𝑁𝐴𝑁𝐵


𝑀11

𝜌 I 𝑀12
𝜌 I 0

𝑀21
𝜌 I 𝑀22

𝜌 I 0
0 0 0

 d𝑠 , (5.30)

where 𝐴, 𝐵 = 1, ..., 𝑛. No inertia is associated with the director d3. The inertia tensor Md
𝐴𝐵 is therefore

singular. Using the inertia matrices we can rewrite the contribution to the weak form as

𝐺kin(φ𝐴, d𝐴; δφ𝐴, δd𝐴) =
𝑛∑︁

𝐴=1

𝑛∑︁
𝐵=1

[
δφ𝐴

δd𝐴

]⊤
·
[
Mφ

𝐴𝐵 0
0 Md

𝐴𝐵

]
·
[
¥φ𝐵

¥d𝐵

]
, (5.31)

where the vector d𝐴 ∈ R9 contains the control/nodal point values of all three directors d𝐴𝑖 of the 𝐴-th
control/nodal point in an ordered manner

d𝐴 =
[
d𝐴1 d𝐴2 d𝐴3

]⊤
. (5.32)

5.4.2.2. Contribution of the internal forces

The internal forces contribute to the weak form with

𝐺int(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) =
∫ 𝐿

0
δΓℎ · Nℎ + δKℎ · Mℎd𝑠 , (5.33)

where Nℎ = D1 · Γℎ and Mℎ = D2 · Kℎ are the discretized stress resultants. Using the discrete strain
measures Eq. (5.22) and Eq. (5.23) allows to recast Eq. (5.33) as

𝐺int(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) =
∫ 𝐿

0

(
δdℎ𝑖 ·φℎ

,𝑠 + dℎ𝑖 · δφℎ
,𝑠

)
𝑁ℎ
𝑖

+ 1
2𝜀𝑖 𝑗𝑘

(
δdℎ𝑘 · dℎ𝑗,𝑠 + dℎ𝑘 · δdℎ𝑗,𝑠

)
𝑀ℎ

𝑖 d𝑠 ,
(5.34)

which we rewrite into

𝐺int(φ𝐴, d𝐴; δφ𝐴, δd𝐴) =
𝑛∑︁

𝐴=1

[
δφ𝐴

δd𝐴

]⊤
·
∫ 𝐿

0

[
B𝐴
φφ 0

B𝐴
dφ B𝐴

dd

]
·
[
Nℎ

Mℎ

]
d𝑠 . (5.35)
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The nodal operator matrices are given by

B𝐴
φφ = 𝑁𝐴,𝑠

[
dℎ1 dℎ2 dℎ3

]
,

B𝐴
dφ = 𝑁𝐴


φℎ

,𝑠 0 0
0 φℎ

,𝑠 0
0 0 φℎ

,𝑠

 ,
B𝐴

dd =
1
2𝑁𝐴


0 −dℎ3,𝑠 dℎ2,𝑠

dℎ3,𝑠 0 −dℎ1,𝑠
−dℎ2,𝑠 dℎ1,𝑠 0

 +
1
2𝑁𝐴,𝑠


0 dℎ3 −dℎ2

−dℎ3 0 dℎ1
dℎ2 −dℎ1 0

 .
(5.36)

Alternatively Eq. (5.35) can be written as

𝐺int(φ𝐴, d𝐴; δφ𝐴, δd𝐴) =
𝑛∑︁

𝐴=1
δφ𝐴 · fφ,𝐴int + δd𝐴 · fd,𝐴

int , (5.37)

where the following internal nodal forces are used

fφ,𝐴int =
∫ 𝐿

0
B𝐴
φφ · Nℎd𝑠 ,

fd,𝐴
int =

∫ 𝐿

0
B𝐴

dφ · Nℎ + B𝐴
dd · Mℎd𝑠 .

(5.38)

5.4.2.3. Contribution of external loading

Using Eq. (5.19) together with Eq. (5.20) and Eq. (5.21) the contribution of the external loads towards
the the discretized weak form is given by

𝐺ext(φℎ, dℎ𝑖 ; δφℎ, δdℎ𝑖 ) =
∫ 𝐿

0
δφℎ · n̄ + 1

2δdℎ𝑖 · ˆ̄𝒎 · dℎ𝑖 d𝑠 , (5.39)

which can be recast as

𝐺ext(φ𝐴, d𝐴𝑖 ; δφ𝐴, δd𝐴𝑖 ) =
𝑛∑︁

𝐴=1
δφ𝐴 · fφ,𝐴ext + δd𝐴𝑖 · fd,𝐴

ext d𝑠 (5.40)

using the control/nodal point forces given by

fφ,𝐴ext =
∫ 𝐿

0
𝑁𝐴n̄d𝑠 ,

fd,𝐴
ext =

∫ 𝐿

0

1
2𝑁𝐴 ˆ̄𝒎 · dℎ𝑖 d𝑠 .

(5.41)

5.4.2.4. Contribution of the orthonormality constraints

As mentioned in Section 5.4.2, the redundancy of the discrete director formulation can be reduced using
Lagrange multipliers, where the normality and mutual orthogonality of the directors are enforced using
the following constraint equation

𝑔𝑖 𝑗 (d𝑖) = 1
2

(
d𝑖 · d𝑗 − 𝛿𝑖 𝑗

)
= 0 , (5.42)
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which results in six independent constraints due to the symmetry of 𝛿𝑖 𝑗 . In the following, it is more
convenient to write the constraints in a vector format

g(d𝑖) = 1
2



d1 · d1 − 1
d2 · d2 − 1
d3 · d3 − 1

d1 · d2
d1 · d3
d2 · d3


= 0 , (5.43)

where the first three entries ensure the normality and the last three entries the mutual orthogonality.
In the following, we discuss two options to enforce the constraints.

Weak enforcement First, we introduce a weak enforcement, which is used in [65] with NURBS
shape functions and the director formulation. For this purpose, the Lagrange multipliers are discretized
using a Bubnov-Galerkin approach

λℎ =
𝑛∑︁

𝐴=1
𝑁 λ
𝐴λ

𝐴 and δλℎ =
𝑛∑︁

𝐴=1
𝑁 λ
𝐴δλ

𝐴 , (5.44)

where λ𝐴 ∈ R6 are the control/nodal point values of the Lagrange multipliers. This leads to an integral
or weak enforcement of the orthonormality constraints, which results in the following contribution to
the weak form

𝐺𝜆 (dℎ𝑖 ,λℎ ; δdℎ𝑗 ) =
∫ 𝐿

0
δg(dℎ𝑖 ) · λℎd𝑠 =

∫ 𝐿

0
δdℎ𝑗 · G(dℎ𝑖 )⊤ · λℎd𝑠 , (5.45)

where
G(d𝑖) = ∇dg(d𝑖) (5.46)

is the gradient of the constraints (Eq. (5.43)) with respect to the directors symbolized with the nabla
operator ∇. Additionally, the orthonormality of the directors is ensured by∫ 𝐿

0
δλℎ · g(dℎ𝑖 )d𝑠 = 0 . (5.47)

Using Eq. (5.44) the discrete constraint functions are given by

g𝐴 =
∫ 𝐿

0
𝑁 λ
𝐴g(dℎ𝑖 )d𝑠 (5.48)

with 𝐴 = 1, ..., 𝑛. Rewriting the contribution towards the weak form in terms of the discrete constraint
forces leads to

𝐺𝜆 (d𝐴𝑖 ,λ𝑛 ; δd𝐴𝑗 ) =
𝐴∑︁
𝑖=1

δd𝐴𝑗 · f𝐴λ , (5.49)

where the control/nodal point forces are given by

f𝐴λ =
∫ 𝐿

0
𝑁 λ
𝐴G(dℎ𝑖 )⊤ · 𝝀ℎd𝑠 . (5.50)
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Strong enforcement As the second option to enforce the orthonormality constraints, a point-wise
or strong enforcement is introduced. A point-wise enforcement on the control/nodal points leads to

g𝐴 = g(d𝐴) = 1
2



d𝐴1 · d𝐴1 − 1
d𝐴2 · d𝐴2 − 1
d𝐴3 · d𝐴3 − 1

d𝐴1 · d𝐴2
d𝐴1 · d𝐴3
d𝐴2 · d𝐴3


= 0 (5.51)

for the 𝐴-th control/nodal point as discrete constraint functions. The control/nodal point forces due to
the constraints, employed in Eq. (5.49) in the contribution to the weak form, follow from

f𝐴λ = G(d𝐴𝑖 )⊤ · 𝝀𝐴 . (5.52)

for the strong enforcement. The strong enforcement is chosen in combination with a discretization of
the other variables with linear Lagrange shape functions in many publications e.g. in [21, 22, 45, 117,
124].

5.4.3. Differential-algebraic system of equations

The discretization of the weak form with the Finite Element Method leads to the following semi-discrete
system of differential-algebraic equations (DAEs)

𝑛∑︁
𝐴=1


δφ𝐴

δd𝐴

δλ𝐴


⊤

·
©­­«

𝑛∑︁
𝐵=1


Mφ

𝐴𝐵
¥φ𝐵

Md
𝐴𝐵

¥d𝐵

0

 +

fφ,𝐴int
fd,𝐴

int
0

 +


0
fd,𝐴
λ
g𝐴

 −

fφ,𝐴ext
fd,𝐴

ext
0


ª®®¬ = 0 (5.53)

as the variations of the control/nodal points (δφ𝐴, δd𝐴, δλ𝐴) ∈ R3 × R9 × R6 are arbitrary for all
𝐴 ∈ 1, ..., 𝑛. One can choose between a weak or strong enforcement of the constraints by choosing fd,𝐴

λ
and g𝐴 accordingly.
The system of DAEs can be rewritten into a more convenient format exploiting the arbitrariness of the
variational control/nodal point values (δφ𝐴, δd𝐴, δλ𝐴). For this purpose, all the control/nodal point
values for displacements and the directors are assembled in a vector q ∈ R12𝑛 and the control/nodal
point values of the Lagrange multipliers are gathered in 𝝀 ∈ R6𝑛 . We obtain the following assembled
time-continuous system of DAEs

M · ¥q(𝑡) + f int(𝑡) + Gg(𝑡)⊤ · 𝝀(𝑡) = fext(𝑡) ,
Φ (q(𝑡)) = 0 ,

(5.54)

where M contains the assembled inertia matrices, f int(𝑡) all the control/nodal point forces due to the
internal work, Gg the assembled gradients of the constraints and Φ the constraint functions.

Remark 5.1 (Strong enforcement of constraints in the IGA). Various approaches were investigated in
the course of this work to enforce the orthonormality constraints point-wise in combination with B-Splines
and NURBS: An enforcement at points computed via a closest-point projection, equally spaced points in the
physical domain, as well as in the parameter space, and the enforcement on the control points, themselves
were explored. Our numerical experiments show that all these approaches for strong enforcement do not
result in a reliable method and do not lead to convergence of the employed Newton’s method for arbitrary
meshes.
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5.5. Discretization in time

Even though the topic of time integration schemes has a long history, it is still part of ongoing research.
Especially, efficient and robust integrators for nonlinear differential-algebraic equations are still a
challenging task. Conserving integrators, which preserve as much as possible of the underlying
structure, are of advantage here, as described in many publications (e.g. [22, 23, 130, 131]). We use
an energy-momentum scheme based on the discrete gradient, which conserves the energy, the linear
and angular momentum of the fully discretized system. The discrete gradient was first proposed by
Gonzalez in [53] and expanded to systems with holonomic constraints in [54].

For the integration in time we divide the time domain I of interest into 𝑘 ∈ N subintervals

I = [0,𝑇 ] =
𝑘−1⋃
𝑛=0

[𝑡𝑛, 𝑡𝑛+1] . (5.55)

The length of the 𝑛-th time interval is given by Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 . Using the energy-momentum scheme
based on the discrete gradient the fully discretized equations for the geometrically exact beam are given
by

M · a𝑛+ 1
2
+ f̄ int

(
q𝑛, q𝑛+1

) + Gg
(
q𝑛+ 1

2

)⊤
· 𝝀𝑛+1 = fext(𝑡𝑛+ 1

2
) ,

Φ(q𝑛+1) = 0
(5.56)

with

q𝑛+ 1
2
=

1
2

(
q𝑛 + q𝑛+1

)
, (5.57)

v𝑛 =
2
Δ𝑡𝑛

(q𝑛 − q𝑛−1) − v𝑛−1 , (5.58)

a𝑛+ 1
2
=

2
Δ𝑡2

𝑛

(
q𝑛+1 − q𝑛

) − 2
Δ𝑡𝑛

v𝑛 . (5.59)

The control/nodal point values evaluated at time 𝑡𝑛 are q𝑛 , and respectively, q𝑛+1 are the control/nodal
point values at time 𝑡𝑛+1, analogous for 𝝀𝑛+1and v𝑛 , where v are the nodal velocities.
The conservation properties of the integration scheme in Eq. (5.56) is, of course, only given if no external
loads are applied (fext = 0).

The operator (•̄) used for f̄ int indicates the use of the discrete gradient ∇̄ to derive the internal forces
from the internal potential. The discrete gradient ∇̄𝑉 of a function 𝑉 introduced in [53] is given by

∇̄𝑉 (q𝑛, q𝑛+1) = ∇𝑉 (q𝑛+ 1
2
) +

𝑉 (q𝑛+1) +𝑉 (q𝑛) − ∇𝑉 (q𝑛+ 1
2
) · (q𝑛+1 − q𝑛)

(q𝑛+1 − q𝑛)



2 · (q𝑛+1 − q𝑛) . (5.60)

According to Gonzalez [53] the discrete gradient has to fulfill the following two properties: the
directionality condition

∇̄𝑉
(
q𝑛, q𝑛+1

) · (q𝑛+1 − q𝑛
)
= 𝑉 (q𝑛+1) −𝑉

(
q𝑛

)
, (5.61)

and the consistency condition

∇̄𝑉
(
q𝑛, q𝑛+1

)
= ∇̄𝑉

(q𝑛 + q𝑛+1
2

)
+O (∥q𝑛+1 − q𝑛 ∥

)
. (5.62)
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For a quadratic function, the discrete gradient coincides with the mid-point evaluation [23], which is
used in Eq. (5.56) to evaluate the gradient of the constraints. In the case of an energy function 𝑉 given
by a Saint-Vernant material and a strain measure E, which depends quadratically on the control/nodal
points, the discrete gradient coincides with the use of the average of the strains

E𝑛+ 1
2
(q𝑛, q𝑛+1) =

1
2

(
E(q𝑛) + E(q𝑛+1)

)
(5.63)

such that
∇̄𝑉

(
q𝑛, q𝑛+1

)
= ∇𝑉

(
E𝑛+ 1

2

)
. (5.64)

Simo and Tarnow [130] discovered the structure-conserving properties of the average of the strains in
Eq. (5.63) for systems with a Saint-Vernant material and quadratic strain measures.
In the case of the director formulation, all strain measures are quadratic and we use a Saint-Vernant-type
material behavior. So f̄𝑖𝑛𝑡 is evaluated using the average of the strain measures Γ𝑛+ 1

2
and K𝑛+ 1

2
, which

are computed according to Eq. (5.63).
A detailed discussion on the topic of the discrete gradient, its uniqueness, and physical interpretation is
given in [116].

The nonlinear equation Eq. (5.56) is solved using the Newton method. The update in the Netwon
algorithm is performed additively. Due to the application of the discrete gradient, total energy as well
as linear and angular momentum, are conserved within the accuracy range of the tolerance of the
Newton method.

5.5.1. Elimination of the Lagrange multipliers and constraints

The strong enforcement of the orthonormality constraints allows the application of an algorithm to
eliminate the discrete Lagrange multipliers as well as the constraint equations. This approach, which is
referred to as the discrete null space method, is discussed in detail [18, 19] including time integration
with the discrete gradient. In the context of the geometrically exact beam formulation based on directors
the null-space method is covered in [92].
To achieve the elimination of the Lagrange multipliers, the control/nodal point velocities are expressed
by ¤q𝐴 = P𝐴 · t𝐴, where t𝐴 ∈ R6 are the generalized velocities t𝐴 =

[ ¤φ𝐴 ω𝐴
]⊤ of control/nodal point

𝐴. The null space matrix P𝐴 for the 𝐴-th control/nodal point is given by

P𝐴 =

[
I 0 0 0
0 −d̂

𝐴
1 −d̂

𝐴
2 −d̂

𝐴
3

]⊤
. (5.65)

The null space matrices P𝐴 of each control/nodal point are assembled in a global null space matrix P.
By premultiplying Eq. (5.56)1 from the left with the global discrete null space matrix P(q𝑛+ 1

2
) we obtain

the size-reduced system

P(q𝑛+ 1
2
)⊤ ·

(
Ma𝑛+ 1

2
+ f̄ int

(
q𝑛, q𝑛+1

) )
= P(q𝑛+ 1

2
)⊤ · fext(𝑡𝑛+ 1

2
) . (5.66)

By construction P(q𝑛+ 1
2
) lies in the null space of the gradient of the constrains Gg(q𝑛+ 1

2
), thus, they are

orthogonal (Gg · P = 0). The constraints in Eq. (5.56)2 still need to be fulfilled, which can be achieved
through an appropriate update procedure for the directors, which conserves the unit length and their
mutual orthogonality. Such an update procedure is given by(

d𝐴𝑖
)
𝑛+1

= R(θ𝐴) ·
(
d𝐴𝑖

)
𝑛
, (5.67)
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where θ𝐴 ∈ R3 are incremental rotations, which rotate the director frame in between the individual
load or time increments. These incremental rotations are the new unknowns. The rotational tensor in
Eq. (5.67) can be computed using the exponential map of 𝑆𝑂 (3) via

R(θ𝐴) = exp𝑆𝑂 (3) (θ𝐴) = I +
sin

(

θ𝐴


)

θ𝐴



 θ̂
𝐴 + 1

2
©­­«

sin
(

1
2


θ𝐴



)
1
2


θ𝐴



 ª®®¬
2 (

θ̂
𝐴
)2
, (5.68)

where ˆ(•) denotes again a mapping from R3 ↦→ 𝔰𝔬(3). The update given by Eq. (5.67) ensures the
orthonormality of the directors at every control/nodal point. During each time or load step the
incremental rotations θ𝐴 are updated additively.

5.6. Numerical validation of the director formulation

Abbreviations for the different elements used in this chapter are given in Tab. 5.1. The Lagrange shape
functions are combined with a strong enforcement of the orthonormality constraints, while when
using NURBS shape functions the constraints are enforced in an integral or weak sense. For example,
the abbreviation NCW3 describes an element with NURBS shape functions of order 3 with weak
enforcement of the orthonormality constraints. LCS2 implies an element using the standard Lagrange
basis of order 2 with strong enforcement of the constraints. An element using the Gauss-Lobatto-based
shape functions with a strong enforcement is abbreviated by GCS1.

Table 5.1.: Abbreviations for the employed elements.
shape functions constraints order abbreviation

1 NCW1
NURBS weak 2 NCW2

3 NCW3
1 LCS1

Lagrange strong 2 LCS2
3 LCS3
1 GCS1

Gauss-Lobatto-based strong 2 GCS2
3 GCS3

Due to the complexity of the geodesic and projection-based discretization approaches for directors as
well as their high computational cost, discussed in the previous chapter (see Section 3.4), we restrict
ourselves to a classical discretization approach. The letter "C" in the abbreviations points to the classical
approach, which is frequently used in the literature in combination with the director formulation. It
was used with linear shape functions in e.g. [21, 22, 45, 114, 117, 124] and for higher order NURBS
elements in [65].

In the case of the Lagrange shape functions, the directors are given at the nodal level in the initialization
step. For NURBS they are first computed on the Gauss point and subsequently, the control point values
are computed with the algorithm introduced in Section 2.4.2.

To minimize transverse shear locking in combination with NCW𝑝 and LCS𝑝 elements, for 𝑝 = 1, ..., 3
selective reduced integration is applied. The Gauss integration is employed for these types of elements.
The number of integration points for the internal forces as well as for the integration of the weak
constraints for these elements is chosen equal to the element order 𝑝 . The inertia matrix is fully
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5. The geometrically exact beam in a director formulation

integrated with 𝑝 + 2 Gauss integration points.
In the case of elements with the Gauss-Lobatto-based shape functions, the Lobatto integration is applied.
The number of integration points is set to the number of element nodes 𝑝+1. Through this approach, the
integration is performed at the element nodes. As discussed in Section 3.4.4, this leads, in combination
with a strong enforcement of the constraints, to fulfillment of the orthonormality of the directors at the
integration points.

The algorithm proposed in [78] was used for mesh refinement in combination with the NURBS-based
elements. The order elevation was performed using the definition of 𝑘-refinement as introduced in
Section 2.4.1. Mesh refinement for elements with Lagrange and Gauss-Lobatto-based functions was
performed with equidistant elements over the domain.

The description of the examples in statics in Section 5.6.1 to Section 5.6.4 is taken from Wasmer and
Betsch [148]. Adaptations were made to fit into the framework of this work.

5.6.1. Cantilever beam under end moment

The first example deals with the well-known benchmark problem of an initially straight cantilever
beam, which is deformed into a circle by an end moment, while being fixed on the other end. A sketch
of the problem is shown in Fig. 5.1. The beam has length 𝐿 and m̄ is an external torque applied at the
right end of the beam given by m̄ = 𝑀e3. For𝑀 = 2𝜋 𝐸𝐼

𝐿 the beam forms a complete circle, where 𝐸𝐼 is
the bending stiffness of the beam. The beam has an initial length of 𝐿 = 1 and the following stiffness
parameters 𝐺𝐴 = 1/270, 𝐸𝐴 = 1/100, 𝐸𝐼 = 1/12 1 × 10−4 and 𝐺𝐼p = 1/6 1 × 10−4.

𝐿

m̄e1

e2

e3

Figure 5.1.: Sketch of the cantilever beam under end moment [148].

The total load is applied in 10 equally spaced incremental steps. As convergence criteria of the Newton
solver ∥R∥ = 1 × 10−12 is used, where ∥R∥ is the 2-norm of the residual vector. The error measure is
defined as 𝑒 = ∥φnum(𝑠 = 𝐿)∥, where φnum(𝑠 = 𝐿) is the placement of the tip of the numerical model.

The convergence behavior with respect to ℎ-refinement is shown in Fig. 5.2 for the three types of
elements under investigation. All investigated formulations exhibit a very similar behavior for the first
two orders. First-order elements display a convergence order of O(ℎ2). An increase to second-order
shape functions leads to an increase of the convergence order to approximately O(ℎ4).
Using third-order elements, however, does not lead to a further increase in the convergence order
for the NCW3 and LCS3 elements, as would be expected. NCW3 and LCS3 elements also converge
with an order of O(ℎ4). This can be explained by the classical finite element discretization. It does
not represent the underlying nonlinear manifold 𝑆𝑂 (3) with sufficient accuracy to achieve optimal
convergence behavior. Even for the interpolatory finite elements with Lagrange shape functions and
strong enforcement of the orthonormality constraints, the orthonormality is violated at the level of the
integration points. This leads to the drop of the convergence order for higher order elements as already
discussed in Section 3.4 (cf. [102]).
However, the results obtained with the NURBS shape functions for the first two orders (NCW𝑝 ,
𝑝 = 1, 2), which are used with weak enforcement of the orthonormality constraints, exhibit a lower
error compared to the Lagrange functions and Gauss-Lobatto-based functions for each individual order.
Fig. 5.2 reveals for the first-order approach, where both Lagrange and NURBS shape functions coincide,
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Figure 5.2.: Convergence behavior of the director beam formulation for the roll-up into a circle.

that the weak enforcement of the constraints shows an overall lower error bound. Compared to the
other formulations the Gauss-Lobatto-based shape functions, GCW1 and GCW2, lead to the largest
error. The larger error can be explained through the limited accuracy of the numerical integration, as a
Lobatto integration scheme is chosen in combination with the GCS𝑝 elements.

As already mentioned, the GCS𝑝 elements show the same order of convergence for order 𝑝 = 1, 2 as
the other two approaches, while leading to an overall larger error for each individual element order.
Nevertheless, if the element order is increased to 𝑝 = 3 the convergence order of the Gauss-Lobatto-
based shape functions increases to approximately O(ℎ6).
This increase in the convergence order for the GSC3 elements verifies the correct implementation of
the director beam model in the FEM code.

5.6.2. 3D bending and twist

This example is taken from [65]. It consists of an initially straight beam clamped at one end and loaded
at the other end with a torque, which is applied in 250 load steps. The torque is applied in such a way
that the beam forms a helix with two complete coils. The helix has a radius of 𝑅0 = 10 and a height of
ℎ = 50. The applied torque is given by

m̄ =
(
𝑚1d1 +𝑚3d3

)
where 𝑚1 = −4𝑅0

𝜋3𝑟 4

𝐿2 and 𝑚3 = 𝜋2ℎ𝑟 4

𝐿2 . The initial length of the beam is given by 𝐿 =
√

1 + 𝑐2𝑅04𝜋 ,
where 𝑐 = ℎ

4𝑅0𝜋
. A slenderness ration 𝜁 is used to define the radius of the beam 𝑟 = 𝐿

2𝜁 . The beam
stiffness parameters are given by 𝐺𝐴 = 1

2𝜋𝑟
2, 𝐸𝐴 = 𝜋𝑟 2, 𝐸𝐼 = 𝜋

4 𝑟
4 and 𝐺𝐼p = 𝜋

2 𝑟
4. The straight initial

configuration is defined through
φ(𝑠) = −𝑅0e2 + 𝑠d0

3

where 𝑠 ∈ [0, 𝐿], and the initial director frame is given by

d0
1 = 𝑅0𝛼 (𝑐e1 − e3) d0

2 = e2 d0
3 = 𝑅0𝛼 (e1 + 𝑐e3) ,
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5. The geometrically exact beam in a director formulation

where 𝛼 = 4𝜋
𝐿 . The results shown here are computed with a slenderness ratio of 𝜁 = 10. A higher

slenderness ratio results in locking effects in the director formulation. In Fig. 5.3 the convergence
behavior is presented. The relative error measure is given by

𝑒 =
∥φnum(𝑠 = 𝐿) −φana(𝑠 = 𝐿)∥

∥φana(𝑠 = 𝐿)∥ ,

where φana(𝑠 = 𝐿) is the analytic solution for the displacement as given in [65].

The convergence results with respect to mesh refinement are presented in Fig. 5.3. No solution at all
could be obtained for first-order Lagrange elements (LCS1) due to strong locking effects. Even choosing
a high number of elements does not decrease the locking. This is in accordance with [65]. Furthermore,
it is also not possible to find a solution with 16 NCW1 elements due to the divergence of the Newton
solver. In contrast to this, a solution for the GCS1 elements can be obtained for all the investigated
numbers of elements.
Apart from the issues with the first-order elements, the convergence behavior is in accordance with the
previous example. Again we see a convergence order of O(ℎ2) for the NCW1 and GCS1 elements and
O(ℎ4) for all quadratic element types in Fig. 5.3. As before, the GSC3 elements exhibit a convergence
order of O(ℎ6), while the convergence order of the NCW3 and LCS3 does not increase.
As in the last example, the NURBS-based elements result in a slightly smaller error compared to the
Lagrange elements, while for the orders 𝑝 = 1, 2 the Gauss-Lobatto shape functions result in the overall
largest error.
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Figure 5.3.: Convergence behavior of the director beam formulation for the roll-up into a helix.

5.6.3. Numerical path-independence test

As mentioned in Chapter 3 and Chapter 4, early discretization approaches of the geometrically exact
beammodel were neither frame-indifferent nor path-independent. The frame-indifference of the present
formulation was shown in Section 5.4.1.1. With this example we verify that the director formulation is
also path-independent. As shown in Fig. 5.4, the initial configuration corresponds to a curved beam
forming 1/8-th of a circle in the e1-e3 plane. The circle has a radius of 100. An external force F = 𝐹𝑖e𝑖 is
applied in a loading cycle at the tip of the beam. Specific values of the loading cycle are shown in Tab.
5.2. The cycle begins with a force of F = 0. The load level is than varied with ∥F∥ = 25 in each load
step. This results in a total of 144 load steps. In the last load step the force is removed so that the initial
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𝑅 = 100

𝜋
4

F
e1

e2

e3

Figure 5.4.: Initial configuration of the curved beam for the path-independence test [148].

configuration should be obtained again. The beam’s stiffness parameters are given by𝐺𝐴 = 5 × 106,
𝐸𝐴 = 1 × 107 and 𝐸𝐼 = 𝐺𝐼p = 1/121 × 107. The convergence criteria 𝜀 for the Newton method is set to
∥R∥ = 1 × 10−6.
The NURBS elements for 𝑝 = 2, 3 are initialized, to represent the 1/8-th circle exactly, for which the
algorithm given in Chapter 7.5 in [110] is used. The order elevation or 𝑘-refinement is performed with a
the algorithm given in Chapter 5.5. in [110], while the ℎ-refinement was performed using the algorithm
proposed in [78] as mentioned in Chapter 2.

Table 5.2.: Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels.

load level tip displacement in 2-direction
Lagrange (LCS2) NURBS (NCW2) Gauss-Lobatto (GCS2)[

𝐹1, 𝐹2, 𝐹3
]

32 el. 𝑝 = 2 32 el. 𝑝 = 2 32 el. 𝑝 = 2[
0 0 0

]
0 0 0[−600 0 0

]
0 0 0[−600 600 0

]
59.8338 59.8755 59.8105[−600 600 600

]
38.6974 38.7375 38.6740[

0 600 600
]

37.5364 37.5810 37.5062[
0 0 600

]
2.9694 × 10−17 1.2546 × 10−17 3.0172 × 10−17[

0 0 0
] ≪ 𝜀 ≪ 𝜀 ≪ 𝜀

The displacement of the tip in the direction of e2 is shown in Tab. 5.2 for the various load steps. The
presented results are obtained for 32 LCS2, NCW2, and GCW2 elements. Additional results with
different number of elements ([8, 16, 32]) and element orders 𝑝 = 1, ..., 3 are presented in the Appendix
B. The Gauss-Lobatto shape functions of first-order lead to severe locking. Therefore, the results
presented in the Appendix are limited to the computations from the GCS2 and GCS3 elements.

After the whole load cycle is completed the configuration has to coincide with the initial configuration
to be path-independent. The results are overall in accordance with the results shown in [21] and the
results presented in Chapter 6. It can be observed that the displacement in the direction of e2 is within a
numerical round-off error at the end of the load cycle and, thus, coincides with the initial configuration
as expected. The numerical round-off error is by several magnitudes smaller than the convergence
criteria 𝜀 for the Newton solver. This verifies the path-independence of the director formulation for the
investigated element types.
In Tab. 6.4, the convergence behavior of the Newton method for eight quadratic elements is shown
for the last loading step. The Newton solver exhibits a very similar convergence behavior for all three
element types, which results in an error below the tolerance of the solver in the eighth iteration.
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5. The geometrically exact beam in a director formulation

Table 5.3.: Residual of Newton solver for last time step discretized with 8 quadratic elements.

Iteration LCS2 NCW2 GCS2
number 2-norm of residual 2-norm of residual 2-norm of residual

1 2.50 × 101 2.50 × 101 2.50 × 101

2 7.05 × 105 8.73 × 105 4.82 × 105

3 2.35 × 103 2.84 × 103 1.15 × 103

4 4.09 × 102 5.18 × 102 1.02 × 103

5 2.25 × 102 2.72 × 102 7.42 × 101

6 4.22 × 100 5.34 × 100 7.11 × 100

7 2.80 × 10−2 3.42 × 10−2 3.85 × 10−3

8 1.75 × 10−7 1.01 × 10−8 9.56 × 10−8

5.6.4. Beam patches with slope discontinuity

In this example, we investigate the capability of the present formulation to deal with discontinuities of
the reference curve of the beam. This example has been treated previously in [45, 65, 115]. The initial
geometry is shown in Fig. 5.5a. It consists of three beam segments with the length 𝐿 = 1, which are
connected rigidly at a 90◦ angle.
The rigid intersection of the beam segments can be either formulated by means of quadratic constraints
[124] or, alternatively, without constraints in the framework of the null space matrix [19, 92]. Here, we
use the formulation in quadratic constraints.
One end of the beam structure is fixed, while at the other end, a dead load of F = −10e1 − 10e3 is applied
in 30 equally spaced load steps. The beam stiffness parameters are given by 𝐸𝐴 = 1 × 104,𝐺𝐴 = 5 × 103

and 𝐸𝐼 = 𝐺𝐼𝑝 = 100/12. The stopping criteria for Newton’s method is set to ∥R∥ = 1 × 10−10. Each beam
segment is discretized with 3 finite elements of order 𝑝 = 3.

The results of the deflection of the tip are plotted over the load level in Fig. 5.5b. All investigated
elements are in very good agreement regardless of the employed discretization. No difference can be
observed between the three approaches. Moreover, the results are in excellent agreement with the
results shown in [45, 65, 115] and the results presented in Chapter 6.

𝐿

𝐿

𝐿

F
F

e2

e3

e1

(a) Sketch of the initial configurations of the beam
with slope discontinuities [148].
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(b) Tip deflection over force for the different element formulations.

Figure 5.5.: Beam patches with slope discontinuity.
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5.6.5. Beam with concentrated masses

The first dynamic problem is taken from [22, 124]. In Fig. 5.6 the initial configuration of a beam with
concentrated masses is shown. The beam has a total length of 2𝐿, where 𝐿 = 1. The concentrated
masses at the ends are given with 𝑀 = 10 and the mass in the middle with𝑚 = 1. The beam itself
has a mass density per unit length of 𝐴𝜌 = 0.27 and a mass moment of inertia of the cross-section of
𝑀𝜌 = 9 × 10−8. The beam stiffness parameters are given by 𝐸𝐼 = 2.43, 𝐺𝐼p = 586, 𝐺𝐴 = 2.43 × 106 and
𝐸𝐴 = 7.3 × 106.

e1

e3

e2

𝐿 𝐿

𝑀 𝑚 𝑀

F2 F1

Figure 5.6.: The initial configuration of the beam with concentrated masses.

The system is excited by two time-dependent external dead loads F1 and F2

F𝛼 = P𝛼 𝑓 (𝑡) , where 𝑓 (𝑡) =
{

1
2
(
1 − cos

( 2
3𝜋𝑡

) )
for 𝑡 ≤ 3

0 for 𝑡 ≥ 3 .

The force vectors P1 and P2 are defined to be

P1 = −1 e1 − 3 e3 and P2 = 2 e1 + 4 e3 .

A constant time steps size of Δ𝑡 = 1 × 10−2 is used and the beam is discretized with 22 linear elements
for both the Lagrange and NURBS shape functions. As mentioned in the introduction of this chapter,
Gauss-Lobatto-based shape functions are not considered.

The simulation results are presented in Fig. 5.7. Results of the LCS1 elements are plotted in gray, while
the results obtained with the NURBS shape functions are plotted in colored dashed lines. In Fig. 5.7a
the displacement of the mid-span φℎ (𝑠 = 𝐿) is shown. The results of both investigated element types
are in very good agreement. No significant differences can be observed.
Fig. 5.7b depicts the total angular momentum of the beam structure over time. Due to the nature of the
problem being two-dimensional only the component 𝐿2 can deviate from zero. It can be seen that the
angular momentum increases until the load is removed at 𝑡 = 3. In fact, since the energy-momentum
time integration scheme, described in Section 5.5, is employed, the angular momentum is constant
within the Newton tolerance for 𝑡 > 3. Again, this observation is true regardless of the type of shape
function used for the spatial discretization.
The kinetic and potential as well as the total energy of the system over time are shown in Fig. 5.7c. The
total energy changes due to the external loading until 𝑡 = 3. For 𝑡 > 3 it is constant up to the Newton
tolerance due to the use of the discrete gradient. Even though slight variations between the LCS1 and
NCW1 elements can be observed for the kinetic and potential energy, the total energy is in very good
agreement for both types of elements. The NCW1 elements result in a slightly smaller total energy.
However, the difference (0.4 %) is negligible.
The three stress resultants, relevant for the two-dimensional problem, at 𝑠 = 𝐿

2 are presented in Fig.
5.7d. Again both types of elements are in line with each other with only minor deviations.
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Figure 5.7.: Results of the example beam with point masses; in grey are the results obtained from the FEM, the dashed,
colored lines are the results obtained from the IGA.

Furthermore, all the presented results are in excellent agreement with the results presented in [22,
124].

5.6.6. Flying Spaghetti

An example often found in the literature is the "Flying Spaghetti", first published by Simo and Vu-Quoc
[127]. The initial configuration is a straight beam in the e1-e2-plane. The global geometry is defined
through the lengths 𝐿1 = 8 and 𝐿2 = 6. The initial configuration is shown in Fig. 5.8. On one end
time-dependent loads, a force F(𝑡) and a torque M(𝑡), are applied, which are given by

F(𝑡) =
{

8 e1 for 𝑡 ≤ 2.5
0 else

and M(𝑡) =
{
−80 e3 for 𝑡 ≤ 2.5
0 else .

The structure is chosen to be highly flexible, by setting the beam’s stiffness to𝐺𝐴 = 1×104, 𝐸𝐴 = 1×104,
𝐸𝐼 = 100 and 𝐺𝐼p = 200. The mass density per unit length is given as 𝐴𝜌 = 1, and the mass moment of
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e1

e2

e3

𝐿1

𝐿2

F(𝑡) M(𝑡)

Figure 5.8.: The initial configuration of the flying spaghetti.

inertia as𝑀𝜌 = 10. A time step of Δ𝑡 = 0.1 is used in combination with a convergence criterion of the
Newton solver of ∥R∥ = 1 × 10−8. Again elements with Gauss-Lobatto-based shape functions are not
considered.
Snapshots of the Flying Spaghetti’s configuration up to 𝑡 = 10 in increments of Δ𝑡 = 0.5 are shown in
Fig. 5.9, where 10 LCS3 elements are used. The motion is in very good agreement with the frames of
motion shown in [127].

Figure 5.9.: Snapshots of the flight motion of the flying spaghetti (10 LCS3 elements) in increments of Δ𝑡 = 0.5 from 𝑡 = 0 to
𝑡 = 10.

The results presented in Fig. 5.10 are obtained for a discretization with 20 LCS3 and NCW3 elements.
As in the previous example, the results obtained with the Lagrange elements are shown in gray, while
the results of the NURBS elements are plotted with colored dashed lines.
The energy history over time is shown in Fig. 5.10a, where the kinetic, potential, and total energies of
the beam are plotted. The total energy of the system increases up to 𝑡 = 2.5 when the loads are set
equal to zero. For 𝑡 > 2.5 the total energy is constant for both approaches within the Newton tolerance,
as expected. The potential and kinetic energy, however, vary over time. Both investigated types of
elements are overall in good agreement with only slight variations. As in the previous example, the
NCW3 elements result in a slightly smaller total energy. Again the difference (0.75 %) is insignificant.
The total linear momentum of the system is depicted in Fig. 5.10b. The linear momentum 𝑃1 in e1-
direction increases as long as the load is applied. After the load is removed it is conserved. The other
two components of the linear momentum, 𝑃2 and 𝑃3, are equal to zero over the whole time domain.
In Fig. 5.10c the total angular momentum of the beam structure is shown. The components 𝐿1 and 𝐿2
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(c) Angular momentum of the Flying Spaghetti over time.

Figure 5.10.: Results for the Flying Spaghetti using 20 cubic elements. The results from the FEM are shown in gray, while the
results obtained with NURBS functions are depicted with dashed, colored lines.

of the angular momentum are equal to zero over the total considered time. The angular momentum 𝐿3
decreases until the loads are removed and is constant afterward.

5.6.7. Conclusion

The numerical results show that the director formulation does not result in optimal convergence behav-
ior for higher-order elements when a classical discretization approach without additional precautions
is taken. Such precautions can be the use of Gauss-Lobatto-based shape functions when the FEM is
applied. An equivalent remedy is not apparent for non-interpolatory shape functions such as NURBS.
Nevertheless, employing NURBS has shown to be advantageous concerning the accuracy per degree
of freedom for lower orders (𝑝 = 1, 𝑝 = 2). Furthermore, the director formulation with a classical
discretization results in a frame- and path-independent formulation.
Even though there are shortcomings in the convergence rate with a classical discretization, the director
formulation can still be employed for dynamic simulations in combination with higher-order elements.
However, while the results are still in good agreement with the literature, there might be limited benefit
in choosing higher orders (𝑝 ≥ 3) due to the limited convergence rate.
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6. The geometrically exact beam in an unit
quaternion framework for statics

Abstract: The following chapter covers a formulation of the geometrically exact beam in unit quater-
nions. At the beginning, a mapping for the unit quaternions into a linear algebra representation is
given. In the following, it is used to formulate the geometrically exact beam in quaternions and it is
shown a unit quaternion formulation indeed results in frame-indifferent continuous strain measures.
Furthermore, the weak formulation of the beam is derived, and the discretization with finite elements
is discussed, where a projection-based approach, as introduced in Chapter 3, is employed for the unit
quaternion field. It is shown, that such an approach leads to frame-indifference of the discretized
strain measures. Furthermore, the discretized contribution of the internal forces, external loading,
and the contribution from the unit length constraint is discussed. Two options for the enforcement of
the constraints are given. At last, the model is verified by examining the convergence behavior and
path-independence using numerical examples.
The following chapter is mainly based on Wasmer and Betsch [148]. Section 6.1 to Section 6.5 are taken
from this publication. Adaptations were made to fit into the framework of this work.

As discussed in Chapter 3 rotations can be handled using different concepts, all with advantages
and challenges. One very convenient approach is the use of unit quaternions, where details on unit
quaternions are given in Section 3.3.3. The most significant advantage of unit quaternions is that they
do not result in any singularities when used to parametrize rotations. Furthermore, compared to the
minimal set of parameters to describe rotations the use of unit quaternions leads to a moderate increase
in the number of unknowns. Thus, quaternions are often used in the context of the geometrically exact
beam to represent the orientation of the cross-section area.

Dichmann [40] investigated the geometrically beam in a unit quaternion formulation. A normalization
of the quaternions ensures their unit length, to correctly represent the rotational tensor. However, the
work does not deal with a finite element formulation.
In the context of beam finite elements, the interpolation of quaternions along with a subsequent
normalization is addressed by Romero [114]. However, a detailed treatment of the resulting finite
element formulation is missing. Ghosh and Roy [51] discuss a quaternion-based formulation of the
beam in combination with a geodesic element approach for the discretization of the quaternions. An
interpolation of the unit quaternions with Lagrangian shape functions and a weak enforcement of the
unit constraints is given by Cottanceau et al. [30].
Collocation methods based on a quaternion description of the geometrically exact beam can be found in
[151, 152]. Weeger et al. [149] employ an isogeometric collocation method, whereas Tasora et al. [143]
use a geodesic elements with unit quaternion in the IGA as a Galerkin method. However, again a
detailed discussion of the discretization approach is not given.

In this chapter, we introduce the beams equation in a unit quaternion description. In detail, the
geometrically exact beam formulation in a unit quaternion formulation is presented. In contrast to
most mentioned publications, which use Lagrange elements, we employ the isogeometric concept
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6. The geometrically exact beam in an unit quaternion framework for statics

with NURBS in this chapter. A detailed application of the projection-based approach for Lagrange and
NURBS shape functions is given. We focus in this chapter on a purely quasi-static approach.
To eliminate the redundancy introduced by the use of unit quaternions, two different approaches are
investigated. Both methods rely on Lagrange multipliers, however, one of the methods is well suited
to be used in a size reduction approach allowing the equations to be solved on the minimal set of
coordinates.
A formulation of the geometrically exact beam model in unit quaternions is, of course, no new approach.
However, to the best knowledge of the author, a projection-based approach for unit quaternions was
never investigated in combination with the Isogeometric Analysis. Furthermore, no in-depth discussion
of such an approach for Lagrange elements with a presentation of the convergence behavior is given in
the literature. The goal of this chapter is to fill this gap.

This chapter is structured as follows. At the beginning, a linear algebra representation of the quaternion
product is introduced in Section 6.1. In Section 6.2 we present the kinematics of the geometrically exact
beam in terms of the unit quaternions. The subsequent Section 6.4 deals with the application of the
Finite Element Method to the resulting weak form. A projection-based approach is employed, where
we show the frame-indifference of the proposed discretization. In Section 6.5 we show the results
for both approaches alongside examples from Chapter 5. The convergence behavior of the proposed
discretization approaches as well as their path-independence are shown. Besides the projection-based
approach, we discuss the results of the classical discretization approach.

6.1. Quaternions in a linear algebra representation

For what follows it is useful to rewrite the quaternion product as a tensor multiplication. In this work
we use the notation as introduced in [20]. The quaternion product of two quaternions

v = q ◦ p (6.1)

can be rewritten as
v = Q𝑙 (q) · p = Q𝑟 (p) · q . (6.2)

The mappings Q𝑙 (q) and Q𝑟 (q) from H ↦→ R4×4 are given by

Q𝑙 (q) =
[
q G(q)⊤]

, Q𝑟 (q) =
[
q E(q)⊤]

. (6.3)

Above we introduced two mappings E(q),G(q) : H ↦→ R3×4

G(q) = [−q 𝑞0I3 − q̂
]
, E(q) = [−q 𝑞0I3 + q̂

]
. (6.4)

A rotational tensor Eq. (3.46) can now be written in the alternative form

R(q) = E(q) · G(q)⊤ (6.5)

for any q ∈ 𝑆3. Further useful algebraic relationships involving the matrices E(p) and G(p) for any
p ∈ H can be summarized as follows:

E(p) · p = G(p) · p = 0 ,

E(p) · E(p)⊤ = G(p) · G(p)⊤ = ∥p∥2 I3 ,

E(p)⊤ · E(p) = G(p)⊤ · G(p) = ∥p∥2 I4 − p ⊗ p .

(6.6)
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Moreover, for p, u ∈ H

E(p) · u = −E(u) · p ,

G(p) · u = −G(u) · p ,

E(p) · G(u)⊤ = E(u) · G(p)⊤ .
(6.7)

We further define the skew-symmetric matrix +
v ∈ R4×4 mapping any vector v : R3 → R4×4 such that

the relationship

E(p)⊤ · v =
+
v · p where +

v =

[
0 −v⊤

v v̂

]
(6.8)

holds for any p ∈ H and v ∈ R3.

6.2. Beam kinematics of the unit quaternion formulation

As shown in Chapter 4 the three directors are assumed to be mutually orthonormal so that the director
frame can be expressed in terms of a rotation tensor R(𝑠) ∈ 𝑆𝑂 (3) via

d𝑖 (𝑠) = R(𝑠) · e𝑖 (6.9)

for 𝑖 = 1, . . . , 3, where the Cartesian base vectors e𝑖 ∈ R3 form an inertial reference frame. The
configuration space of the geometrically exact beam model can be written as

Q̃ = {(φ,R) : [0, 𝐿] → R3 × 𝑆𝑂 (3)} . (6.10)

In the chapter, we employ unit quaternions to represent the rotation tensor. Accordingly, instead of
Eq.(6.9), the directors are expressed in terms of the unit quaternion q(𝑠) ∈ 𝑆3 through the relationship

(0, d𝑖 (𝑠)) = q(𝑠) ◦ (0, e𝑖) ◦ q̄(𝑠) . (6.11)

Alternatively, we may write d𝑖 = R(q) · e𝑖 , where the rotation tensor R : 𝑆3 ↦→ 𝑆𝑂 (3) assumes the form
Eq. (3.46). Correspondingly, the configuration space of the beam is now given by

Qq = {(φ, q) : [0, 𝐿] → R3 × 𝑆3} . (6.12)

Since q ∈ 𝑆3 implies the unit-length condition q · q = 1, the derivative of this condition with respect to
the arc-length yields q,𝑠 · q = 0, so that q,𝑠 ∈ 𝑇q𝑆

3, the tangent space of 𝑆3 at q ∈ 𝑆3 given by

𝑇q𝑆
3 = {v ∈ H | q · v = 0} . (6.13)

6.2.1. Strain measures using quaternions

In this section we provide the strain measures of the geometrically exact beam model based on the
parametrization (φ, q) ∈ Qq. We start with the strains associated with bending and twist which can
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6. The geometrically exact beam in an unit quaternion framework for statics

be arranged in vector K ∈ R3. Vector K is defined as axial vector associated with the skew-symmetric
tensor1

K̂ = R⊤ · R,𝑠 . (6.14)

Since
R,𝑠 =

(
E(q) · G(q)⊤)

,𝑠 = 2E(q) · G(q,𝑠)⊤ (6.15)

Eq. (6.14) yields
K̂ = 2G(q) · G(q,𝑠)⊤ , (6.16)

where Eq. (6.7)3 and Eq. (6.6)1 have been used. It can be shown that the axial vector corresponding to
Eq. (6.16) is given by

K = 2G(q) · q,𝑠 . (6.17)

For completeness this is shown in Appendix C. Note that strain measure Eq. (6.17) can also be written
as

(0,K) = 2Q𝑙 (q)⊤ · q,𝑠 = 2q̄ ◦ q,𝑠 . (6.18)

The second strain measure of the geometrically exact beam model is defined by Γ = R⊤ ·φ,𝑠 − e3 and
accounts for transverse shear and normal strain. The representation of the rotation group by means of
unit quaternions leads to

Γ = R(q)⊤ ·φ,𝑠 − e3 , (6.19)

where the rotation tensor has been introduced in Eq. (6.5). Alternatively, the strain measure Γ in
Eq. (6.19) can be written as

(0, Γ) = q̄ ◦ (0,φ,𝑠) ◦ q − (0, e3) . (6.20)

6.2.1.1. Frame-indifference of the strain measures

The strain measures of the beam theory at hand are invariant under rigid motions. The so-called
frame-indifference (or objectivity) of the strains can be shown by considering a superposed rigid motion
of the beam defined by

(0,φ#) = r ◦ (0,φ) ◦ r̄ + (0, c) ,
q# = r ◦ q .

(6.21)

Here, r ∈ 𝑆3 represents an arbitrary rotation while c ∈ R3 represents an arbitrary translation. Inserting
Eq. (6.21)1 into Eq. (6.18) yields

(0,K#) = 2q̄# ◦ q#
,𝑠

= 2q̄ ◦ r̄ ◦ r ◦ q,𝑠
= 2q̄ ◦ q,𝑠
= (0,K) ,

(6.22)

1 For simplicity, we content ourselves here with initially straight beams. The extension to initially curved beams is
straightforward, see, for example, Chapter 4 or [21, 65].
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which shows the invariance of K under rigid motions. Similarly, substituting from Eq. (6.21) into
Eq. (6.20) yields

(0, Γ#) = q̄# ◦ (0,φ#
,𝑠) ◦ q# − (0, e3)

= q̄ ◦ r̄ ◦ r ◦ (0,φ,𝑠) ◦ r̄ ◦ r ◦ q − (0, e3)
= q̄ ◦ (0,φ,𝑠) ◦ q − (0, e3)
= (0, Γ) .

(6.23)

In the present work we aim at a beam finite element formulation that inherits the frame-indifference of
the strain measures from the underlying continuous formulation, cf. Chapter 4 and [21, 33].

6.3. Weak form of the unit quaternion formulation

The weak form of the equilibrium problem pertaining to the present beam formulation can be written
in the standard form

𝐺int(φ, q; δφ, δq) = 𝐺ext(φ, q; δφ, δq) (6.24)

for (φ, q) ∈ Q and arbitrary admissible variations (δφ, δq) ∈ 𝑇(φ,q)Q lying in the tangent space

𝑇(φ,q)Q = {(δφ, δq) : [0, 𝐿] → R3 ×𝑇q𝑆
3} . (6.25)

The virtual work contribution of the internal forces results from

𝐺int(φ, q; δφ, δq) =
∫ 𝐿

0
δΓ · N + δK · M d𝑠 . (6.26)

For the stress resultantsN andM Saint-Vernant type constitutive laws of the formN = D1 ·Γ andM = D2 ·
K are assumed. The stiffness tensors are given by D1 = diag(𝐺𝐴1,𝐺𝐴2, 𝐸𝐴) and D2 = diag(𝐸𝐼1, 𝐸𝐼2,𝐺𝐼p),
respectively. Starting from the strain measures Eq. (6.17) and Eq. (6.19), a straightforward calculation
taking into account Eq. (6.7) yields

𝐺int(φ, q; δφ, δq) =
∫ 𝐿

0

(
δφ,𝑠 · E(q) + 2φ,𝑠 · E(δq)) · G(q)⊤ · N

+ 2
(
δq,𝑠 · G(q)⊤ − δq · G(q,𝑠)⊤

) · M d𝑠 .
(6.27)

The virtual work contribution of the external loading is given by

𝐺ext(φ, q; δφ, δq) =
∫ 𝐿

0
δφ · n̄ + δq · 2E(q)⊤ · m̄ d𝑠 , (6.28)

where n̄ ∈ R3 and m̄ ∈ R3 are prescribed external forces and torques, respectively, acting along the
centerline of the beam. Note that, for simplicity, boundary terms have been neglected in the above
description.

6.4. Finite element formulation of the unit quaternion formulation

We aim at a finite element formulation of the present beam model that both inherits the objectivity of
the strain measures and preserves the unit-length of the quaternion field governing the rotation of the
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6. The geometrically exact beam in an unit quaternion framework for statics

director frame throughout the discrete beam formulation. For that purpose the unit quaternion field is
approximated by

qℎ (𝑠) = pℎ (𝑠)

pℎ (𝑠)


 , where pℎ (𝑠) =

𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)p𝑖 , (6.29)

which is the projection-based approach introduced in Section 3.4.3. As basis functions 𝑁𝑖 (𝑠) we employ
either NURBS shape functions (see Section 2.3 for further details) or standard Lagrange shape functions.
Correspondingly, p𝑖 ∈ H are either the values at the control points or the nodal values of the discretized
quaternions, respectively.

Note that the normalization of the discretized quaternion field Eq. (6.29) ensures that the discrete
quaternions belong pointwise to the set of unit quaternions which are employed to parametrize the
rotation manifold. That is, qℎ ∈ 𝑆3 holds throughout the discrete beam formulation.

Taking the derivative of Eq. (6.29) with respect to the arc-length yields

qℎ,𝑠 =
pℎ
,𝑠

pℎ


 − 1

pℎ



3 pℎ ·
(
pℎ · pℎ

,𝑠

)
=

1

pℎ


P𝑇𝑆3 (qℎ) · pℎ

,𝑠 , (6.30)

where relation Eq. (3.33) has been taken into account. Moreover, P𝑇𝑆3 (qℎ) is a projector onto the tangent
space of the unit sphere given by [2]

P𝑇𝑆3 (qℎ) = I4 − qℎ ⊗ qℎ (6.31)

as discussed in Section 3.4.3. Thus Eq. (6.30) ensures that qℎ,𝑠 ∈ 𝑇qℎ𝑆
3. Similarly, variations of qℎ ∈ 𝑆3

can be written in the form
δqℎ =

1

pℎ


P𝑇𝑆3 (qℎ) · δpℎ (6.32)

ensuring that δqℎ ∈ 𝑇qℎ𝑆
3 for any

δpℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)δp𝑖 . (6.33)

Concerning the finite element approximation of the center line of the beam we apply the standard
discretization

φℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)φ𝑖 (6.34)

along with

δφℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)δφ𝑖 (6.35)

for the corresponding test function. Again, φ𝑖 , δφ𝑖 ∈ R3 play the role of either the respective values at
the control points, or the nodal values. In the sequel, we shall refer to the 𝑖-th point of the discretization
as control/nodal point.

We emphasize that the present discretization approach respects the configuration space of the geomet-
rically exact beam model in the sense that (φℎ, qℎ) ∈ Qq and (δφℎ, δqℎ) ∈ 𝑇(φℎ,qℎ )Qq, respectively.
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6.4. Finite element formulation of the unit quaternion formulation

6.4.1. Discrete strain measures

The discretized strain measures result from inserting the approximations Eq. (6.29) and Eq. (6.34) into
the strain measures Eq. (6.17) and Eq. (6.19). Accordingly, strain measure Eq. (6.17) leads to the discrete
counterpart

Kℎ = 2G(qℎ) · qℎ,𝑠 . (6.36)

Inserting expression Eq. (6.30) for qℎ,𝑠 into Eq. (6.36) and taking into account Eq. (6.6)1 eventually leads
to the discretized strain measure

Kℎ =
2

pℎ


2 G(pℎ) · pℎ

,𝑠 . (6.37)

Similarly, the discretized version of strain measure Eq. (6.19) can be written in the form

Γℎ =
1

pℎ


2 R(pℎ)⊤ ·φℎ

,𝑠 − e3 . (6.38)

The discrete strain measures Kℎ and Γℎ inherit the frame-indifference of the underlying continuous
strain measures, as will be shown below.

6.4.1.1. Frame-indifference of the discrete strain measures

Similar to the continuous case, frame-indifference of the discrete strain measures can be shown by
considering a superposed rigid motion of the discrete model of the beam. Despite the non-interpolatory
nature of the NURBS basis, affine transformations of NURBS curves can be achieved by applying these
transformations directly to the control points [32], which is in complete analogy to the use of standard
Lagrange shape functions. Correspondingly, a rigid motion of the control/nodal points is characterized
by

φ#
𝑖 = R(r) ·φ𝑖 + c

p#
𝑖 = r ◦ p𝑖 = Q𝑙 (r) · p𝑖 .

(6.39)

As before, r ∈ 𝑆3 represents an arbitrary rotation with associated rotation tensor R(r) = E(r) · G(r)⊤.
It can be easily verified that Eq. (6.39)2 implies

pℎ#
= r ◦ pℎ = Q𝑙 (r) · pℎ (6.40)

and 


pℎ#



2

= pℎ# · pℎ#
= pℎ · Q𝑙 (r)⊤ · Q𝑙 (r) · pℎ = pℎ · pℎ =




pℎ



2
, (6.41)

where Q𝑙 (r)⊤ · Q𝑙 (r) = I4 has been used. Now Eq. (6.37) gives rise to

Kℎ#
=

2

pℎ#

2 G(pℎ#) · pℎ#
,𝑠

=
2

pℎ


2 G(r ◦ pℎ) · Q𝑙 (r) · pℎ

,𝑠 .
(6.42)

It can be verified by a straightforward calculation that the identity

G(r ◦ pℎ) = G(pℎ) · Q𝑙 (r)⊤ (6.43)
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holds. Using the last equation along with the orthogonality of Q𝑙 (r) leads to the result Kℎ#
= Kℎ , which

confirms the invariance of the discrete strain measure Kℎ under rigid motions. Similarly, we consider

Γℎ
#
=

1

pℎ#

2 R(pℎ#)⊤ ·φℎ#
,𝑠 − e3 , (6.44)

where Eq. (6.34) together with Eq. (6.39)1 implies

φℎ#
,𝑠 = R(r) ·

𝑛∑︁
𝑖=1

𝑁𝑖,𝑠φ𝑖 + c
𝑛∑︁
𝑖=1

𝑁𝑖,𝑠 = R(r) ·φℎ
,𝑠 . (6.45)

Here, the partition of unity property
∑𝑛

𝑖=1 𝑁𝑖 = 1 has been used which holds for both the NURBS and
the Lagrange shape functions. We thus obtain

Γℎ
#
=

1

pℎ


2 · R(r ◦ pℎ)⊤ · R(r) ·φℎ

,𝑠 . (6.46)

Since the identity
R(r ◦ p) = R(r) · R(p) (6.47)

holds for any p ∈ H, we eventually obtain

Γℎ
#
=

1

pℎ


2 R(pℎ)⊤ · R(r)⊤ · R(r) ·φℎ

,𝑠

=
1

pℎ


2 R(pℎ)⊤ ·φℎ

,𝑠

= Γℎ ,

(6.48)

which corroborates the frame-indifference of the discrete strain measure Γℎ .

6.4.2. Discrete weak form

The finite element formulation essentially follows from inserting the finite element approximations
described above into weak form Eq. (6.24). Although we ensure that (qℎ, δqℎ) ∈ 𝑇𝑆3 for all 𝑠 ∈ [0, 𝐿]
from the outset, we still have to take care of the redundancy of (p𝑖 , δp𝑖) ∈ H × H. In essence, this
redundancy occurs due to the fact that the quaternion variables in the control/nodal points belong to a
4-dimensional space, whereas dim(𝑆3) = 3. To account for the redundancy, we impose the unit-length
constraint on the quaternion field pℎ ∈ H by applying the method of Lagrange multipliers. Accordingly,
we introduce the discretized weak form

𝐺int(φℎ, qℎ ; δφℎ, δqℎ) +𝐺𝜆 (pℎ, 𝜆ℎ ; δpℎ) = 𝐺ext(φℎ, qℎ ; δφℎ, δqℎ) , (6.49)

where 𝐺int and𝐺ext are given by Eq. (6.27) and Eq. (6.28), respectively. Furthermore, 𝐺𝜆 accounts for
the unit-length constraint on pℎ ∈ H. In this connection, 𝜆ℎ represent the contribution of the Lagrange
multipliers. Two alternative versions of 𝐺𝜆 will be introduced in Section 6.4.2.2.
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6.4. Finite element formulation of the unit quaternion formulation

The contribution of the internal forces to the weak form, 𝐺int in Eq. (6.49), can be obtained by starting
from the continuous expression for𝐺int, Eq. (6.27), and making use of Eq. (6.29), Eq. (6.30) and Eq. (6.32).
Accordingly, a straightforward calculation yields

𝐺ℎ
int(φℎ,pℎ ; δφℎ, δpℎ) =

∫ 𝐿

0

(
δφℎ

,𝑠 · E(qℎ) + 2

pℎ


φℎ

,𝑠 · E(δpℎ)) · G(qℎ)⊤ · Nℎ

− δpℎ · 2

pℎ


2

[ (
pℎ ⊗ R(qℎ)⊤ ·φℎ

,𝑠

)
Nℎ + 2

(
qℎ ⊗ G(qℎ) · pℎ

,𝑠

) · Mℎ
]

+ 2

pℎ


2

(
δpℎ

,𝑠 · G(pℎ)⊤ − δpℎ · G(pℎ
,𝑠)⊤

)
· Mℎ d𝑠 .

(6.50)

Here, Nℎ = D1 · Γℎ and Mℎ = D2 · Kℎ , where the discrete strain measures are given by Eq. (6.37) and
Eq. (6.38). The last equation can also be written in the form

𝐺ℎ
int(φ𝑖 ,p𝑖 ; δφ𝑖 , δp𝑖) =

𝑛∑︁
𝑖=1

[
δφ𝑖

δp𝑖

]⊤ ∫ 𝐿

0

[
B𝑖⊤
φφ 0

B𝑖⊤
pφ B𝑖⊤

pp

] [
Nℎ

Mℎ

]
d𝑠 , (6.51)

where the nodal operator matrices are given by

B𝑖
φφ = 𝑁𝑖,𝑠R(qℎ)⊤ ,

B𝑖
pφ =

2𝑁𝑖

pℎ


2

(
G(pℎ)⊤ · +

φ
ℎ

,𝑠 − R(qℎ)⊤ ·φℎ
,𝑠 ⊗ pℎ

)
,

B𝑖
pp =

2

pℎ


2

[
𝑁𝑖,𝑠G(pℎ) − 𝑁𝑖

(
G(pℎ

,𝑠) + 2G(qℎ) · pℎ
,𝑠 ⊗ qℎ

)]
.

(6.52)

Note that in Eq. (6.52)2 use has been made of the notation introduced in Eq. (6.8). An alternative form
of Eq. (6.51) is given by

𝐺ℎ
int(φ𝑖 ,p𝑖 ; δφ𝑖 , δp𝑖) =

𝑛∑︁
𝑖=1

(
δφ𝑖 · fφ,𝑖int + δp𝑖 · fp,𝑖

int

)
, (6.53)

where

fφ,𝑖int =
∫ 𝐿

0
B𝑖⊤
φφ · Nℎ d𝑠 ,

fp,𝑖
int =

∫ 𝐿

0
B𝑖⊤

pφ · Nℎ + B𝑖⊤
pp · Mℎ d𝑠 .

(6.54)

denote the internal forces corresponding to the control/nodal points.

Remark 6.1. Expression 𝐺ℎ
int in Eq. (6.50) can also be obtained by starting from

𝐺ℎ
int(φℎ,pℎ ; δφℎ, δpℎ) =

∫ 𝐿

0
δΓℎ · Nℎ + δKℎ · Mℎ d𝑠 , (6.55)

and taking into account the discrete strain measures Eq. (6.37) and Eq. (6.38).
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6.4.2.1. Contribution of the external loading

The contribution of the external loading to the weak form follows from Eq. (6.28) by taking into account
Eq. (6.32) and Eq. (6.35). Accordingly, we obtain

𝐺ℎ
ext(φℎ,pℎ ; δφℎ, δpℎ) =

∫ 𝐿

0
δφℎ · n̄ + δpℎ · 2

pℎ



E(qℎ)⊤ · m̄ d𝑠 (6.56)

leading to

𝐺ℎ
ext(φ𝑖 ,p𝑖 ; δφ𝑖 , δp𝑖) =

𝑛∑︁
𝑖=1

(
δφ𝑖 · fφ,𝑖ext + δp𝑖 · fp,𝑖

ext

)
, (6.57)

where

fφ,𝑖ext =
∫ 𝐿

0
𝑁𝑖 n̄ d𝑠

fp,𝑖
ext =

∫ 𝐿

0

2𝑁𝑖

pℎ


E(qℎ)⊤ · m̄ d𝑠

(6.58)

denote the discrete external forces corresponding to the control/nodal points.

6.4.2.2. Contribution of the unit-length constraints

As outlined above we impose the unit-length constraint on the quaternions to resolve the redundancy
of the quaternions at the control/nodal points. To this end we investigate two alternative procedures
for imposing the unit-length constraint

𝑔(p) = 1
2 (p · p − 1) = 0 (6.59)

on the quaternion field. While the first option imposes the unit-length constraint in weak form, the
second option is based on a strong (or point-wise) imposition at the control/nodal points.

Weak enforcement The weak imposition of the constraint Eq.(6.59) yields the following contribution
of the conjugate constraint forces to the weak form

𝐺ℎ
𝜆 (pℎ,𝝀ℎ ; δpℎ) =

∫ 𝐿

0
δ𝑔(pℎ)𝜆ℎd𝑠

=
∫ 𝐿

0
δpℎ · pℎ𝜆ℎd𝑠 .

(6.60)

In addition to that, the weak enforcement of the unit-length constraint is based on the condition∫ 𝐿

0
δ𝜆ℎ𝑔(pℎ)d𝑠 = 0 . (6.61)

Concerning the discretization of the Lagrange multiplier field we apply a Bubnov-Galerkin approach
which applies the same NURBS/Lagrangian shape functions as before. Accordingly,

𝜆ℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)𝜆𝑖 and δ𝜆ℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)δ𝜆𝑖 . (6.62)
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Making use of these ansatz functions in Eq.(6.61) and Eq.(6.60) yields the discrete constraint functions

𝑔𝑖 =
∫ 𝐿

0
𝑁𝑖𝑔(pℎ)d𝑠 = 0 (6.63)

for 𝑖 = 1, . . . , 𝑛, together with the contribution to the weak form of the discrete constraint forces

𝐺ℎ
𝜆 (p𝑖 ,𝝀𝑖 ; δp𝑖) =

𝑛∑︁
𝑖=1

δp𝑖 · f𝑖𝜆 , (6.64)

where the discrete constraint forces corresponding to the control/nodal points are given by

fp,𝑖
𝜆

=
∫ 𝐿

0
𝑁𝑖p

ℎ𝜆ℎ d𝑠 . (6.65)

Strong enforcement To account for the redundancy of the quaternions p𝑖 ∈ H4, the unit-length
constraint can also be enforced directly at the control/nodal points. In this case, the discrete constraints
are given by

𝑔𝑖 = 𝑔(p𝑖) = 1
2 (p𝑖 · p𝑖 − 1) = 0 (6.66)

for 𝑖 = 1, . . . , 𝑛. The contribution of the conjugate constraint forces to the weak form can again be
written in the form Eq. (6.64), where

fp,𝑖
𝜆

= p𝑖𝜆𝑖 (6.67)

denote the constraint forces corresponding to the control/nodal points.

6.4.3. Algebraic system of equations

To summarize the discretization procedure described above, weak form Eq. (6.49) eventually yields

𝑛∑︁
𝑖=1


δφ𝑖

δp𝑖

δ𝜆𝑖


⊤ ©­«


fφ,𝑖int
fp,𝑖

int
0

 +


0
fp,𝑖
𝜆
𝑔𝑖

 −

fφ,𝑖ext
fp,𝑖

ext
0

ª®¬ = 0 , (6.68)

which has to hold for arbitrary (δφ𝑖 , δp𝑖 , δ𝜆𝑖) ∈ R3 × H × R (𝑖 = 1, . . . , 𝑛). One may either apply the
strong or the weak enforcement of the constraints described in Section 6.4.2.2. To solve the algebraic
system of nonlinear equations we apply Newton’s method. Accordingly, in each Newton iteration
a saddle point system has to be solved in order to eventually determine (φ𝑖 ,p𝑖 , 𝜆𝑖) ∈ R3 × H × R
(𝑖 = 1, . . . , 𝑛). In this connection a standard additive update procedure is applied in each Newton
iteration.

6.4.3.1. Elimination of the Lagrange multipliers and the constraints

The strong enforcement of the constraints makes possible to apply a simple procedure for the elimination
of the discrete constraint forces along with the constraints. This approach is referred to as the discrete
null space method [18, 19, 92]. The discrete null space method essentially relies on two steps. Starting
from the algebraic constraint Eq. (6.66), the corresponding consistency condition δ𝑔𝑖 = p𝑖 · δp𝑖 = 0 can
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be identically fulfilled by choosing δp𝑖 = G(p𝑖)⊤δθ𝑖 for any δθ𝑖 ∈ R3. The last relationship for δp𝑖

can be inserted into Eq. (6.68) to annihilate the constraint forces since(
G(p𝑖)⊤ · δθ𝑖

) · fp,𝑖
𝜆

= δθ𝑖 · G(p𝑖) · fp,𝑖
𝜆

= δθ𝑖 · G(p𝑖) · p𝑖𝜆𝑖 = 0

for arbitrary δθ𝑖 ∈ R3 due to Eq. (6.6)1. Accordingly, Eq. (6.68) can be recast in the size-reduced form

𝑛∑︁
𝑖=1

[
δφ𝑖

δθ𝑖

]⊤ ( [
fφ,𝑖int

G(p𝑖) · fp,𝑖
int

]
−

[
fφ,𝑖ext

G(p𝑖) · fp,𝑖
ext

] )
= 0 , (6.69)

which has to hold for arbitrary (δφ𝑖 , δθ𝑖) ∈ R3 × R3 (𝑖 = 1, . . . , 𝑛). Of course, the constraints Eq. (6.66),
i.e. 𝑔𝑖 = 0, still have to be satisfied. However, in a second step we make these constraints obsolete by
replacing the redundant unknowns p𝑖 ∈ H with new unknowns θ𝑖 ∈ R3 such that

p𝑖 = exp𝑆3 ((0, 1
2Θ𝑖)) ◦ p0

𝑖 , (6.70)

where exp𝑆3 : 𝑇p0
𝑖
𝑆3 ↦→ 𝑆3 denotes the exponential map on 𝑆3. Provided that the reference value p0

𝑖 ∈ 𝑆3,
the update formula ensures p𝑖 ∈ 𝑆3 so that the unit-length constraint is automatically satisfied. In
equilibrium problems, p0

𝑖 ∈ 𝑆3 may be chosen to coincide with the last equilibrium configuration. Then,
the application of a new load increment yields a new equilibrium configuration which is characterized
by the rotation increments θ𝑖 ∈ R3. During a load step the incremental rotations θ𝑖 are updated
additively. Further details of the discrete null space method in the context of unit quaternions can be
found in [20].

6.5. Numerical validation of the unit quaternion formulation

In this section we present several numerical examples to examine the numerical performance of
alternative element formulations. In particular, we investigate to what extend the quaternion projection
Eq. (6.29) does improve the performance when compared to the classical quaternion discretization, as
discussed in Section 3.4.1.2, based on

pℎ (𝑠) =
𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠)p𝑖 . (6.71)

Furthermore, we impose the unit-length condition on the quaternions either in weak or in strong form,
as described in Section 6.4.2.2. Last but not least we compare the NURBS-based formulation with that
based on Lagrange shape functions.

To distinguish between the alternative formulations we introduce the abbreviations summarized in
Tables 6.1 and 6.2. For example, NPS3 means the NURBS-based formulation of order three relying on
the projection Eq. (6.29) and the strong enforcement of the unit-length constraint Eq. (6.66). Similarly,
LCS2 means the Lagrange element of order two based on the classical approximation Eq. (6.71) and the
strong enforcement of the unit-length constraint Eq. (6.66).

Concerning the initialization of the quaternions in the control points of the NURBS-based elements,
we first compute auxiliary director frames at the Gauss points from which unit-quaternions can be
extracted by applying Spurrier’s algorithm [138]. The computation of the director frame is described in
Section 5.6. Subsequently, the unit quaternions values of the control points are calculated by applying
the procedure originally described in Section 2.4.2. Due to the interpolatory nature of the Lagrange
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Table 6.1.: Abbreviations for elements based on NURBS shape functions [148].
shape functions projection constraints order abbreviation

1 NPS1
NURBS yes strong 2 NPS2

3 NPS3
1 NPW1

NURBS yes weak 2 NPW2
3 NPW3
1 NCS1

NURBS no strong 2 NCS2
3 NCS3
1 NCW1

NURBS no weak 2 NCW2
3 NCW3

Table 6.2.: Abbreviations for elements based on Lagrange shape functions [148].
shape functions projection constraints order abbreviation

1 LPS1
Lagrange yes strong 2 LPS2

3 LPS3
1 LCS1

Lagrange no strong 2 LCS2
3 LCS3

shape functions, the initial director frames can be directly set up at the nodes. Application of Spurrier’s
algorithm directly yields the nodal unit quaternions.

To eliminate transverse shear locking we apply selectively reduced numerical integration. In particular,
we choose the number of Gauss points equal to the element order.

The mesh refinement for the NURBS-based elements was performed with the algorithm proposed
in [78], to keep the Jacobian of the isoparametric transformation constant over the domain. The mesh
refinement for the Lagrange elements was performed by using an equidistant distribution of the finite
element nodes.

The examples investigated in this chapter are the same as in the previous chapter (cf. Section 5.6).
Therefore, we do not describe each problem itself anymore but focus on the discussion of the results.
A direct comparison of the convergence behavior to the results of the previous chapter is of limited
use. Due to the classical discretization approach used in Chapter 5, the convergence behavior cannot
be considered as optimal. Furthermore, as discussed in Section 6.5 the Gauss-Lobatto-based approach
leads to a larger error for the first-order classical discretization approaches, which limits the relevance
of a comparisons to the approaches presented in this chapter.
Thus, no such discussion is presented.

6.5.1. Cantilever beam under end moment

All details to the investigated problem, like geometrical and stiffness parameters as well as loading are
given in Section 5.6.1.

95



6. The geometrically exact beam in an unit quaternion framework for statics

8 16 32 64 12810−12

10−9

10−6

10−3

100 1
2

1
4

1

6

number of finite elements

er
ro
r𝑒

100 250 500 100010−12

10−9

10−6

10−3

100 1
2

1
4

1

6

number of degrees of freedom

er
ro
r𝑒

NPS1
NPS2
NPS3
NPW1
NPW2
NPW3
NCS1
NCS2
NCS3
NCW1
NCW2
NCW3

(a) Convergence behavior for the Isogeometric Analysis [148].
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(b) Convergence behavior for the classical Lagrange elements.

Figure 6.1.: Convergence behavior of the quaternion beam formulation for the cantilever beam under end moment [148].

Convergence plots for the cantilever beam under an end moment are displayed in Fig. 6.1. As in Sec-
tion 5.6.1 the position of the tip of the beam structure is used as an error measure 𝑒 = ∥φnum(𝑠 = 𝐿)∥,
where φnum(𝑠 = 𝐿) is the position vector of the tip of the numerical model. As in the previous chapter
the load was applied in 10 equally spaced incremental steps. The convergence criteria of the Newton
solver ∥R∥ = 1 × 10−12, where ∥R∥ is the 2-norm of the residual vector.

The convergence behavior is shown in Fig. 6.1 for various element formulations under consideration.
In particular, Fig. 6.1a shows the results for NURBS shape functions of order 𝑝 = 1, . . . , 3. Accordingly,
the projection-based approach shows the best convergence behavior for both the strong enforcement
of the unit-length constraint (NPS𝑝 , 𝑝 = 1, . . . , 3) and the weak enforcement (NPW𝑝 , 𝑝 = 1, . . . , 3). In
both cases the rate of convergence turns out to be O(ℎ2𝑝).
However, if the projection is skipped the results worsen significantly if the strong enforcement of the
unit-length constraint is used (Fig. 6.1a, NCS𝑝 , 𝑝 = 1, . . . , 3). In particular, the order of convergence
does not improve with increased order of the NURBS shape functions but stays at a level of O(ℎ2).
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6.5. Numerical validation of the unit quaternion formulation

This can be explained by the non-interpolatory nature of NURBS shape functions. Thus, enforcing the
unit-length constraint at the control points in general does not imply unit-length of the quaternion
discretization inside the computational domain. Still considering the classical interpolation (without
projection) but choosing the weak enforcement instead of the strong enforcement of the unit-length
constraint improves the convergence results (see NCW𝑝 , 𝑝 = 1, . . . , 3, Fig. 6.1a).

It is also worth mentioning that the projection-based formulation in general exhibits a superior conver-
gence behavior in the iterative solution procedure, in the sense that coarser meshes still reach a solution.
In particular, while the projection-based formulation reaches a solution for the coarse discretization
with 8 elements, this is not the case for the classical formulation which requires more than 8 elements
to reach converged results (cf. Fig. 6.1a).

We now turn to the convergence results of the elements based on the Lagrange shape functions (Fig.
6.1b) where we focus our attention to the strong nodal enforcement of the unit-length constraint.
Accordingly, the projection-based formulation (LPS𝑝 , 𝑝 = 1, . . . , 3) again shows superior convergence of
orderO(ℎ2𝑝), in analogy to the NURBS-based case. The classical formulation (LCS𝑝 , 𝑝 = 1, . . . , 3) again
shows an order reduction, which, however, is not as pronounced as in the case of NURBS shape function.
Specifically, for Lagrange elements the order reduction is deferred to 𝑝 ≥ 3. This slightly improved
convergence behavior presumably is caused by the interpolatory nature of Lagrange polynomials.

As already shown in Chapter 2 in Fig. 2.11 the error bound per degree of freedom is lower for the
NURBS basis function, when compared with the Lagrange approximation for the projection-based
approach. This hold for all orders 𝑝 = 1, ..., 3.

The deformed configurations of the beam corresponding to five different load levels are shown in Fig.
6.2. As expected, a complete roll-up takes place for𝑀 = 2𝜋 𝐸𝐼

𝐿 .

Fig. 6.2 displays the beam’s configuration under different load levels during the roll-up process.

Figure 6.2.: Snapshots of the roll-up movement of the cantilever beam (32 NPS3 elements) for the load levels 𝑀 = 0,
1
5𝑀 , 25𝑀 , 35𝑀 , 4

5𝑀 ,𝑀 = 2𝜋 𝐸𝐼
𝐿 .

Additional results of the convergence behavior of Gauss-Lobatto spectrals elements are given in the
Appendix C .
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6.5.2. 3D bending and twist

A detailed description of the problem at hand can be found in the previous chapter (see Section 5.6.2)).
The corresponding formulation to apply an external moment in the body-fixed frame is given in the
Appendix C
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(a) Convergence behavior for the Isogeometric Analysis [148].
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(b) Convergence behavior for the classical Lagrange elements.

Figure 6.3.: Convergence behavior of the quaternion beam formulation [148].

Fig. 6.4 shows three deformed configurations of the beam corresponding to three different load levels.
In Fig. 6.3 the convergence behavior of the alternative beam elements under consideration is shown for
a slenderness ratio of 𝜁 = 25. The error measure plotted is given by 𝑒 = ∥φnum (𝑠=𝐿)−φana (𝑠=𝐿) ∥

∥φnum (𝑠=𝐿) ∥ , where
φana(𝑠 = 𝐿) is the analytical solution for the displacement of the tip under the final external torque
m̄.

The convergence behavior is in complete analogy to that of the previous example. Accordingly, the
projection-based approach yields superior convergence rates of O(ℎ2𝑝), together with a more robust
solution behavior, in the sense that already 16 elements suffice to yield convergence of the iterative
solution procedure. In contrast to that, the classical formulation (without projection) requires more
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6.5. Numerical validation of the unit quaternion formulation

elements to yield converged results. In addition to that, the classical formulation again exhibits order
reduction for 𝑝 ≥ 2, which is especially pronounced for NCS2 and NCS3.

(a) Load level: 8
25 m̄ - 80 loads steps. (b) Load level: 16

25 m̄ - 160 load steps. (c) Load level: m̄ - 250 load steps.

Figure 6.4.: Configurations of the deformed beam corresponding to different numbers of load steps. Eventually, a helix with
two complete coils is reached [148].

Gauss-Lobatto spectral elements additional results showing the convergence behavior are given in the
Appendix C.

6.5.3. Numerical path-independence test

In the previous chapter (Section 5.6.3) all details, such as loading and geometrical parameters, to this
example are given.
The cantilever bend is discretized with 32 linear elements. The convergence criteria for the Netwon
solver is set to ∥R∥ = 1 × 10−6. In Tab. 6.3 the displacement of the tip in the direction of e2 is presented.
At the end of the cycle the load is removed, so that the end configuration has to coincide with the initial
configuration.
All presented results are in good agreement with the results presented in [21]. The end configuration
coincides again with the initial configuration up to an error due to the Newton method for the presented
quaternion formulation. In contrast the path-dependent ’Δθ’ proposed in [127, 128] does not return to
the initial configuration.
Additional results for different numbers of elements ([8, 16, 32]) and orders 𝑝 = 1, ..., 3 are given in the
Appendix C.

In Tab. 6.4 the convergence behavior of the Newton solver for eight linear elements are shown for the
last loading step. In comparison to the director formulation (see. Tab. 5.3) the quaternion formulation
leads to a convergence in less steps. It can be observed that in general the quaternion formulation
shows a much more robust convergence behavior of the Newton solver than the director formulation.
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Table 6.3.: Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels [148].

load level tip displacement in 2-direction
Δθ formulation [21] Lagrange (LPS1) NURBS (NPS1)[

𝐹1, 𝐹2, 𝐹3
]

32 el. 𝑝 = 1 32 el. 𝑝 = 1 32 el. 𝑝 = 1[
0 0 0

]
0 0 0[−600 0 0

]
0 −8.8844 × 10−20 −2.3202 × 10−14[−600 600 0

]
59.7884 59.8262 59.8796[−600 600 600

]
38.6655 38.6875 38.6952[

0 600 600
]

37.5087 37.5269 37.5247[
0 0 600

]
0.0190 −1.6362 × 10−11 −1.6369 × 10−11[

0 0 0
]

0.0374 1.2632 × 10−23 −7.8410 × 10−16

Table 6.4.: Residual of Newton solver for last time step with 8 linear elements.

Iteration LPS1 NPS1
number 2-norm of residual 2-norm of residual

1 2.50 × 101 2.50 × 101

2 3.14 × 104 8.93 × 104

3 4.11 × 101 3.86 × 101

4 5.81 × 101 1.35 × 102

5 2.76 × 10−5 1.40 × 10−3

6 2.60 × 10−8 7.00 × 10−7

6.5.4. Beam patches with slope discontinuity

In Section 5.6.4 all details to the problem can be found. We limit ourselves here to presenting the
obtained results.
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Figure 6.5.: Deflection of the tip versus force [148].

In Fig. 6.5 the components of the tip deflection are plotted over the load level. Both NURBS (NPS3)
and Lagrange (LPS3) elements are used with a strong enforcement of the unit-length constraint. It
can be seen that the results of the NURBS and Lagrange elements agree very well. In particular, no
difference can be observed in Fig. 6.5. Furthermore, the results are in very good agreement with those
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in [45, 65, 115].

The configuration for different load levels is shown in Fig. 6.6. As in the previous chapter the load is
applied in 30 equally space steps. In Fig. 6.6a the configuration is shown after 10 load steps, in Fig. 6.6b
after 20 load steps and in Fig. 6.6c the whole load of F =

[−10 0 − 10
]⊤ is applied.

(a) Load level: 1
3 F - 10 load steps. (b) Load level: 2

3 F - 20 load steps. (c) Load level: F - 30 load steps.

Figure 6.6.: Configuration of the beam patches for different load levels [148].

The formulation of a rigid joint in a quaternion setting is given in the Appendix C.

6.5.5. Conclusion

A quaternion formulation represents a very good alternative to the director formulation. The continuous
formulation is not convoluted, while it allows for a simple discretization based on the projection-based
elements. Due to its simplicity the projection-based approach is efficient. It leads to a path-independent
and frame-indifferent formulation, which can be utilized with Lagrange or NURBS functions without
any further adaptations and results in an optimal convergence behavior for all orders. Furthermore,
it allows for an arbitrary continuity of the underlying discretization over element boundaries in the
IGA.
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7.1. Summary

The work investigates possible parametrization of rotations and their appropriate treatment within
the discretization in the FEM and IGA, where the focus lies on an application in the context of the
geometrically exact beam.

For this purpose, at the beginning, the fundamentals for the Isogeometric Analysis are recaptured.
Various aspects of the method, such as refinement strategies, and numerical integration are discussed
in detail. Furthermore, several advantages over the FEM, are presented.
In a subsequent chapter, rotations in three dimensions and possible parametrization of them are
discussed. For a broader understanding selected topics of the underlying Lie group theory are presented.
Furthermore, a discussion of possible discretization approaches for rotational variables is given. Hereby,
lies the focus on the applicability in the context of FEM and IGA as well as the feasibility of the
approaches in applications.
The geometrically exact beam is introduced beginning with a literature survey of the topic in the next
chapter. The beam kinematics are presented and the equations of motions are derived by employing
the balance equations. Furthermore, the kinetic and inner potential together with the constitutive law
are presented. A very brief overview of the challenges of the shear constrained Kirchhoff-Love beam is
given.
Chapter 5 presents in detail the geometrically exact beam in a director formulation. First, the continuous
weak form is derived and in a subsequent step, the finite element formulation with an additive approach
is presented. Two approaches to enforce the orthonormality constraints, necessary in this formulation,
are introduced. Furthermore, the applied energy-momentum conserving time integration scheme based
on the discrete gradient is presented. The convergence behavior with respect to mesh-refinement
and order elevation is discussed for Lagrange, NURBS, and Gauss-Lobatto-based shape functions.
Furthermore, the path-independence of the formulation is shown in a numerical simulation. At last,
dynamic examples are presented for a discretization with Lagrange and NURBS elements.
A formulation of the geometrically exact beam using unit quaternions is presented in Chapter 6. At the
beginning of the chapter, the continuous beam equations are presented in a unit quaternion setting. The
frame-indifference of the corresponding continuous strain measures is demonstrated and the associated
weak form of the quaternion formulation is derived. In the following, the resulting equations are
discretized using a projection-based discretization approach, which conserves the underlying geometry
of 𝑆3. To handle the redundancy of the discretized equations, two approaches to eliminate it and enforce
the unit constraints are discussed, which can be applied to NURBS and Lagrange shape functions.
Excellent results for IGA and FEM are obtained for static examples, where the convergence behavior
is presented and discussed in detail. Furthermore, an example shows, that the formulation leads to a
path-independent formulation.
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7.2. Conclusion

Nowadays the IGA can be considered a well-established simulation method in the scientific community.
As discussed in Section 2.4.4, the IGA offers many advantages over the standard FEM. It is, thus,
desirable to be able to use the method for all kinds of problems. However, so far the existing literature
is very limited with respect to the treatment of the geometrically exact beam model in an isogeometric
framework. This work aims to close this gap.

The main difficulty, when dealing with a beam model in a Galerkin method, such as the FEM and IGA,
is the correct treatment of rotations. As many examples from the literature show, a frame-indifferent
and path-independent discretized model is not always given. A basic knowledge of the underlying
mathematical structure, the Lie group theory, is useful to construct appropriate discretization ap-
proaches. Furthermore, a discretization approach needs to represent the underlying geometry of the
rotational variable sufficiently to achieve convergence behavior for order elevation. As examples from
this work show, this is only given if the discretization is performed with great care. Groundbreaking
in this regard are the concepts of the geodesic and projection-based finite elements, as they show a
structured approach to constructing conforming elements of arbitrary order for the FEM and IGA.
Furthermore, they are proven to result in optimal error bounds [58, 59, 120] and result by construction
in path-independent and frame-indifferent formulations [59].
We discussed the discretization for a director framework and unit quaternions to represent rotations.
Hereby, it clearly shows, that an appropriate choice to represent rotations is essential since it simplifies
the discretization approach greatly.
While the director approach leads to mathematical simple expressions in the continuous case, the
correct discretization is sophisticated and computationally expensive. This holds for geodesic as well
as projection-based elements.

The far better choice to parametrize rotations is the use of unit quaternions. While quaternions
themselves, are an advanced concept with a new algebra, their discretization approach in a geodesic
formulation has the same level of complexity as for directors. However, the projection-based approach
introduced in Chapter 3 leads to a discretization of unit quaternions with a relatively simple approach,
which is computationally efficient. The projection-based approach leads not just to the correct preser-
vation of the unit sphere, but it also results in a model, where the derivatives and variations lie in
the correct tangent space. Furthermore, the increase in the dimension compared to the minimal set is
moderate.
In addition, in the context of the beam, it is possible to perform a strong enforcement of the unit length
constraints in the isogeometric framework. As discussed in Section 6.4.3.1, this allows the elimination
of constraints and a formulation on the minimal set of coordinates. Research needs to be conducted, if
this can be generalized for all projection-based element formulations in combination with the IGA.
Furthermore, in the boundary value problems investigated in this work, the two-to-one representation
of 𝑆𝑂 (3) given by quaternions does not cause any issues. Compared to the investigated director
formulation, the quaternion formulation results in a more robust model, which is less prone to locking.
However, due to the projection-based approach and its introduced nonlinearities, the design of a
time integration scheme, which conserves energy, as well as linear and angular momentum, is not
straightforward and could pose a challenging task.

Also, for the FEM the use of Gauss-Lobatto-based shape functions in combination with the Lobatto
integration is an interesting approach due to its simplicity. The implementation is straightforward and
no further adaptations of the finite element code are needed. Even though this approach is greatly
limited due to the fixed combination of integration points and nodes, it could pose a simple solution
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for individual problems or to verify implementations of complex models, before implementing more
convoluted discretization approaches.

7.3. Outlook

This work gives an extensive overview of the treatment of rotations in a finite element and isogeometric
framework. Of course, this does not imply that research in this regard is completed, as many more
aspects still are to be investigated.
While the geodesic and projection-based discretization approaches for the directors are presented in
theory in Chapter 3, they are not applied in this work. Even though these approaches are not very
well suited for a practical application due to the associated high computational cost, it still would be of
interest to compare the results of the element formulations for the FEM as well as the IGA in detail.
A detailed discussion of higher order geodesic elements, even though they were already presented in
1999 [33] is not given in the literature for the IGA to the best knowledge of the author. One focus of
interest for both element formulations is hereby the enforcement of the orthogonality constraints in
the case of NURBS functions. Advantageous would be a strong enforcement as it would allow for the
elimination of the constraints using the null space method (cf. Section 5.5.1).

As mentioned above, the best-suited parametrization in the FEM and IGA for rotations seems to be the
use of unit quaternions due to the simplicity of the projection-based formulation. The projection-based
elements offer a relatively simple formulation for unit quaternions and the formulation can be applied
to either FEM or IGA without any further adaptations. Due to their simplicity, they are computationally
efficient. However, the literature reports a lower error bound for the geodesic elements [59, 102], so a
direct comparison of both approaches would be of interest. To the best knowledge of the other, such a
discussion has so far not been presented in the literature.
Furthermore, the unit quaternion formulation could be investigated in connection with time integration
methods. Investigations in combination with structure-preserving time integrator schemes are so
far missing in the literature. In the first step, it might be promising to design a structure-preserving
integrator without the projection-based approach to simplify the problem. In the second step, the
projection could be integrated into the scheme.
The obtained knowledge could, further, be utilized to design structure-preserving integrators for the
geometrically exact beam formulated in dual quaternions. Dual quaternions seem to be a promising
parametrization for the beam, since like an 𝑆𝐸 (3) formulation, a finite element beam formulation in
dual quaternions is free of locking [91].
Another interesting utilization of the projection-based approach of unit quaternions could be in a
𝑆𝐸 (3) beam formulation. Here the quaternions could be used to parametrize the tensors of 𝑆𝑂 (3).
A projection-based approach for the special Euclidean group itself might lead to a very complicated
approach as already the projection-based approach for the 𝑆𝑂 (3) is convoluted. Due to its high compu-
tational cost, a geodesic approach for the 𝑆𝐸 (3) formulation is limited for practical applications.

Furthermore, the projection-based approach for unit quaternions could be used in Galerkin-based time
integration schemes, for the geometrically exact beam but likewise for rigid body mechanics. A similar
approach could also be applied for Galerkin-based integrators, to problems such as the Reissner-Mindlin
shell.
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A.1. Projector onto the tangent space

The orthogonal mappings onto the tangent space P𝑇M : R𝑛 ↦→ 𝑇xM presented in Section 3.4.3 are
projectors [2]. Thus, they fulfill the requirement of idempotency

P𝑇M = P𝑇M · P𝑇M . (A.1)

Their counterpart, the orthogonal projector onto the normal space ofM can be simply be derived from
the completeness condition, such that the projector onto the normal space follows from

P⊥
𝑇M = I − P𝑇M . (A.2)

Both projectors are orthogonal
P𝑇M · P⊥

𝑇M = 0 . (A.3)

The orthogonal projector onto the normal space ofM is also idempotent

P⊥
𝑇M = P⊥

𝑇M · P⊥
𝑇M . (A.4)
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B.1. Numerical path-independence test

Additional results for the approximation with 8, 16 and 32 finite elements of element orders 𝑝 = 1, ..., 3
are presented as mentioned in 5.6.3. The number of elements is based on the results given in [21],
where only results for first-order elements given. Gauss-Lobatto-based shape functions with a Lobatto
integration leading to very strong locking effects for first order elements, thus, for these elements only
results from higher-order elements are presented as discussed in 5.6.3.
The presented values are evaluated at the same load levels as in Tab. 5.2.

Table B.1.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and linear elements (𝑝 = 1).

tip displacement φ · e2
Lagrange elements (LCS1)

8 el. 16 el. 32 el.

0 0 0
0 0 0

61.3302 60.1164 59.9022
40.0323 38.9324 38.7539
38.3769 37.7249 37.5829

1.8201 × 10−17 2.6430 × 10−17 2.8962 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀

Table B.2.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and linear elements (𝑝 = 1).

tip displacement φ · e2
NURBS elements (NCW1)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.6563 59.915 59.8467
38.4339 38.7477 38.7036
37.2041 37.5625 37.5391

1.2323 × 10−17 1.2275 × 10−17 1.2474 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀
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Table B.3.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and quadratic elements (𝑝 = 2).

tip displacement φ · e2
Lagrange elements (LCS2)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.8482 59.8346 59.8338
38.7106 38.6982 38.6974
37.5427 37.5368 37.5364

2.9282 × 10−17 2.9407 × 10−17 2.9694 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀

Table B.4.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and quadratic elements (𝑝 = 2).

tip displacement φ · e2
NURBS elements (NCW2)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.7388 59.8718 59.8755
38.5969 38.7335 38.7375
37.4546 37.5782 37.5810

1.2557 × 10−17 1.2814 × 10−17 1.2546 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀

Table B.5.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and quadratic elements (𝑝 = 2).

tip displacement φ · e2
Gauss-Lobatto-based elements (GCS2)

8 el. 16 el. 32 el.

0 0 0
0 0 0

57.2126 59.5662 59.8105
37.0237 38.4395 38.6740
34.4074 37.1419 37.5062

2.5813 × 10−17 3.0828 × 10−17 3.0172 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀
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Table B.6.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and cubic elements (𝑝 = 3).

tip displacement φ · e2
Lagrange elements (LCS3)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.8359 59.8339 59.8338
38.6993 38.6975 38.6974
37.5374 37.5364 37.5364

2.9687 × 10−17 2.8628 × 10−17 3.1478 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀

Table B.7.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and cubic elements (𝑝 = 3).

tip displacement φ · e2
NURBS elements (NCW3)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.7962 59.8736 59.8755
38.6689 38.7358 38.7375
37.5397 37.5801 37.5810

1.2796 × 10−17 1.2731 × 10−17 1.2596 × 10−17

≪ 𝜀 ≪ 𝜀 ≪ 𝜀

Table B.8.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and cubic elements (𝑝 = 3).

tip displacement φ · e2
Gauss-Lobatto-based elements (GCS3)

8 el. 16 el. 32 el.

0 0 0
0 0 0

59.7891 59.8326 59.8338
38.6562 38.6962 38.6974
37.5070 37.5357 37.5364

2.9427 × 10−17 3.0390 × 10−17 3.7597 × 10−26

≪ 𝜀 ≪ 𝜀 ≪ 𝜀
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Appendix C.1 to Appendix C.3 and Appendix C.4.2 are taken from [148]. Minor adaptations were made
to fit into the framework of this work.

C.1. Strain measure for bending and twist

We verify that strain measure Eq. (6.17) corresponds to the axial vector of the skew-symmetric matrix
Eq. (6.16). Accordingly, one has to show that K = 2G(q) · q,𝑠 is the axial vector of matrix 2G(q) ·G(q,𝑠)⊤.
To see this, consider the identity

G(q)q,𝑠 = −𝑞0,𝑠 q + 𝑞0q,𝑠 − q × q,𝑠 . (C.1)

The skew-symmetric matrix associated with the above vector is given by

S = −𝑞0,𝑠 q̂ + 𝑞0q̂,𝑠 − �q × q,𝑠

= −𝑞0,𝑠 q̂ + 𝑞0q̂,𝑠 −
(
q,𝑠 ⊗ q − q ⊗ q,𝑠

)
.

(C.2)

Since â̂b = b ⊗ a − (a · b) · I3 for any a, b ∈ R3,

q,𝑠 ⊗ q = q̂ · q̂,𝑠 + (q,𝑠 · q) · I3 . (C.3)

Moreover, since q ∈ 𝑆3 implies q,𝑠 · q = 0 or q,𝑠 · q = −𝑞0,𝑠𝑞0, we eventually obtain

S = −𝑞0,𝑠 q̂ + 𝑞0q̂,𝑠 + q ⊗ q,𝑠 − q̂ · q̂,𝑠 + 𝑞0𝑞0,𝑠 I3 . (C.4)

A direct calculation yields the result G(q) · G(q,𝑠)⊤ = S.

C.2. Application of external torques

In the examples dealt with in Sections 6.5.1 and 6.5.2 an external torque m̄ ∈ R3 is applied at one end of
the beam. Since the collocation property holds at the end-points of both finite element formulations
under consideration, the contribution to the weak form is given by

𝐺𝑒
ext = δq𝑒 · 2E(q𝑒)⊤ · m̄

= δp𝑒 · 1
∥p𝑒 ∥ (I4 − q𝑒 ⊗ q𝑒) · 2E(q𝑒)⊤ · m̄

= δp𝑒 · 2
∥p𝑒 ∥2 E(p𝑒)⊤ · m̄ ,

(C.5)

where the quaternion normalization procedure has been accounted for. Furthermore, index 𝑒 refers to
the control/nodal point at the end of the beam. While in Section 6.5.1 the external torque m̄ = 𝑀e3
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can be directly inserted into the above formula, the external torque in Section 6.5.2 is a follower load
defined by m̄ = 𝑚̄𝑖d𝑒𝑖 = E(q𝑒) · G(q𝑒)⊤ · 𝑚̄𝑖e𝑖 . Inserting this expression into the above formula yields

𝐺𝑒
ext = δp𝑒 · 2

∥p𝑒 ∥2 G(p𝑒)⊤ · 𝑚̄𝑖e𝑖 . (C.6)

Here, the normalization procedure along with the properties summarized in Eq. (6.6) have been taken
into account.

C.3. Rigid intersection between two beams for the quaternion
formulation

(φ𝐴,p𝐴)A

B

(φ𝐵,p𝐵)
Figure C.1.: Sketch of two rigidly connected beams A and B.

In this Appendix we address the rigid connection of two beams as required in the numerical example in
Section 6.5.4. In particular, we consider a rigid intersection between the end-points of two beams (Fig.
C.1). Accordingly, the two end-points, say A and B, experience the same rotation r ∈ 𝑆3 with respect
to some previous cross-sectional orientations q0

A ∈ 𝑆3 and q0
B ∈ 𝑆3. That is, the new cross-sectional

orientations are given by pA = r ◦ q0
A and pB = r ◦ q0

B. These two equations can be rewritten as
r = pA ◦ q̄0

A and r = pB ◦ q̄0
B, respectively. Since r ◦ r̄ = (1, 0), we obtain

pA ◦ q̄0
A ◦ q0

B ◦ p̄B = (1, 0) . (C.7)

We take the vector part of the above condition to obtain three equations of constraint to impose the
rigid intersection between the two beams. Three more conditions arise from the additional constraint
φA −φB = 0. Accordingly, the rigid coupling of two beams can be realized by appending a total of six
algebraic constraints to the beam formulation in Section 6.4.3.

Alternatively, algebraic constraints can be circumvented by applying the discrete null space method
outlined in Section 6.4.3.1. Accordingly, starting with the constrained formulation in Section 6.4.3, the
quantities (φB,pB) and (δφB, δpB) related to control/nodal point B can be expressed in terms of the
corresponding quantities in point A via

φB = φA , (C.8)
pB = pA ◦ q̄0

A ◦ q0
B , (C.9)

and

δφB = δφA , (C.10)
δpB = δpA ◦ q̄0

A ◦ q0
B . (C.11)
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A further size-reduction of the algebraic system to be solved can be achieved by applying the procedure
described in Section 6.4.3.1.

C.4. Additional numerical results

We present here additional results accommodating the results presented in Chapter 6. Tab. C.1
introduces the abbreviations used in the following in combination with the quaternion formulation
introduced in Section 6.5.

Table C.1.: Abbreviations for elements based on Gauss-Lobatto-based shape functions.
shape functions projection constraints order abbreviation

1 GCS1
Gauss-Lobatto-based no strong 2 GCS2

3 GCS3

C.4.1. Cantilever under end moment

The results presented here are obtained from the problem described in Section 5.6.1. We present here
the convergence behavior of the GCS𝑝 elements alongside results form Section 6.5.1 obtained with
the LPS𝑝 elements for direct comparison. Fig. C.2 depicts the convergence behavior for both type of
elements. It can be seen that the GCS𝑝 elements show the same order of convergence of O(ℎ2𝑝) as the
LPS𝑝 elements. However, for all orders the GCS𝑝 elements show a larger error, which is in accordance
to the results presented in Chapter 5.
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Figure C.2.: Convergence behavior of the quaternion beam formulation for the roll-up into a circle.

C.4.2. 3D bending and twist

The problem, for which the results are shown here, is described in detail in Section 5.6.2. As before
the results of the GSC𝑝 elements are presented together with the results from the LPS𝑝 elements from
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Figure C.3.: Convergence behavior of the quaternion beam formulation for the roll-up into a helix.

Section 6.5.2 in Fig. C.3. The GSC𝑝 elements for 𝑝 = 1, 2 show the same convergence order of O(ℎ2𝑝)
as the LPS𝑝 elements. However, the results for the GSC3 elements show a very larger error, with
approximately the same convergence order ofO(ℎ2) as the GSC1 or LPS1 elements. The obtained error
is even slightly bigger per degree of freedom compared to the GSC1 elements.
It is not obvious, why this phenomena does not occur for the previous example presented in Fig. C.2.

C.4.3. Numerical path-independence test

As mentioned in Section 6.5.3 we here show the results for other discretizations with 8, 16 and 32
elements and element order p = 1, ..., 3. The number of elements is analogous to the results found in
[21], where only results for a first order discretization are shown. As we use NURBS basis functions we
are able to conserve the geometry of the 1/8-circle exactly for the order p = 2, 3. For this purpose the
initial control points of the NURBS formulation and their weights were computed with an algorithm
from Chapter 7.5 in [110] to define a section of a circle in combination with the refinement strategy for
k-refinement in Chapter 5.5 in [110] and for h-refinement in [78] as mentionend in Section 6.5.
All values are evaluated for the same loads as in Tab. 6.3.

Table C.2.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and linear elements (𝑝 = 1).

tip displacement φ · e2
Lagrange elements (LPS1)

8 el. 16 el. 32 el.

0 0 0
−8.9232 × 10−20 −8.6515 × 10−20 −8.844 × 10−20

59.7206 59.8038 59.8262
38.5488 38.6585 38.6875
37.3891 37.4987 37.5269

−1.5671 × 10−11 −1.6225 × 10−11 −1.6362 × 10−11

4.1576 × 10−22 −4.9593 × 10−23 1.2632 × 10−23
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Table C.3.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and linear elements (𝑝 = 1).

tip displacement φ · e2
NURBS elements (NPS1)

8 el. 16 el. 32 el.

0 0 0
1.2277 × 10−14 −1.1828 × 10−15 −2.3202 × 10−14

59.7132 59.8029 59.8261
38.5469 38.6584 38.6875
37.3916 37.4491 37.5270

−1.5783 × 10−11 −1.6246 × 10−11 −1.6369 × 10−11

−1.1852 × 10−15 9.2804 × 10−16 −7.8410 × 10−16

Table C.4.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and quadratic elements (𝑝 = 2).

tip displacement φ · e2
Lagrange elements (LPS2)

8 el. 16 el. 32 el.

0 0 0
1.8588 × 10−17 6.4369 × 10−18 9.3133 × 10−21

58.6129 59.7042 59.8232
37.7556 38.5692 38.6869
35.7855 37.3584 37.5233

−1.1916 × 10−11 −1.6153 × 10−11 −1.6386 × 10−11

−7.4184 × 10−20 −1.002 × 10−21 8.9024 × 10−22

Table C.5.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and quadratic elements (𝑝 = 2).

tip displacement φ · e2
NURBS elements (NPS2)

8 el. 16 el. 32 el.

0 0 0
−4.9258 × 10−14 −1.1828 × 10−15 −2.3202 × 10−14

57.6927 59.5842 59.8542
37.1466 38.4948 38.7195
35.1708 37.3045 37.5619

−8.6269 × 10−12 −1.5806 × 10−11 −1.6403 × 10−11

5.0916 × 10−14 6.6981 × 10−15 −1.4206 × 10−14
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Table C.6.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and cubic elements (𝑝 = 3).

tip displacement φ · e2
Lagrange elements (LPS3)

8 el. 16 el. 32 el.

0 0 0
−2.7663 × 10−16 5.9239 × 10−20 −1.275 × 10−19

59.8085 59.8332 59.8338
38.6732 38.6969 38.6974
37.5207 37.5361 37.5364

−1.6403 × 10−11 −1.6408 × 10−11 −1.6407 × 10−11

−1.9518 × 10−21 −2.0485 × 10−23 −2.2070 × 10−12

Table C.7.: Numerical path-independence test: tip displacement φ · e2 corresponding to specific load levels - additional
results for different number of elements and cubic elements (𝑝 = 3).

tip displacement φ · e2
NURBS elements (NPS3)

8 el. 16 el. 32 el.

0 0 0
−2.8256 × 10−14 −1.0551 × 10−14 −8.5072 × 10−15

59.7312 59.8724 59.8754
38.6098 38.7347 38.7374
37.5061 37.5795 37.5809

−1.6504 × 10−11 −1.6453 × 10−11 −1.6448 × 10−11

4.3234 × 10−16 2.6724 × 10−15 −2.5779 × 10−15
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