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ABSTRACT
Antibody‐drug conjugates (ADC) constitute a groundbreaking advancement in the field of targeted therapy. In the widely

utilized cysteine conjugation, the cytotoxic payload is attached to reduced interchain disulfides which involves a reduction of

the native monoclonal antibody (mAb). This reaction needs to be thoroughly understood and controlled as it influences the

critical quality attributes (CQAs) of the final ADC product, such as the drug‐to‐antibody ratio (DAR) and the drug load

distribution (DLD). However, existing methodologies lack a mechanistic description of the relationship between process

parameters and CQAs. In this context, kinetic modeling provides comprehensive reaction understanding, facilitating the model‐
based optimization of reduction reaction parameters and potentially reduces the experimental effort needed to develop a robust

process. With this study, we introduce an integrated modeling framework consisting of a reduction kinetic model for the species

formed during the mAb reduction reaction in combination with a regression model to quantify the number of conjugated drugs

by DAR and DLD. The species formed during reduction will be measured by analytical capillary gel electrophoresis (CGE), and

the DAR and DLD will be derived from reversed‐phase (RP) chromatography. First, we present the development of a reduction

kinetic model to describe the impact of reducing agent excess and reaction temperature on the kinetic, by careful investigation

of different reaction networks and sets of kinetic rates. Second, we introduce a cross‐analytical approach based on multiple

linear regression (MLR), wherein CGE data is converted into the RP‐derived DAR/DLD. By coupling this with the newly

developed reduction kinetic model, an integrated model encompassing the two consecutive reaction steps, reduction and

conjugation, is created to predict the final DAR/DLD from initial reduction reaction conditions. The integrated model is finally

utilized for an in silico screening to analyze the effect of the reduction conditions, TCEP excess, temperature and reaction time,

directly on the final ADC product.

1 | Introduction

Antibody‐drug conjugates (ADCs) are a class of innovative
therapeutics engineered to deliver potent cytotoxic drugs
directly to cancer cells while minimizing damage to healthy

tissues (Chau, Steeg, and Figg 2019; Fu et al. 2022; Khongorzul
et al. 2020). Consisting of monoclonal antibody (mAb), cyto-
toxic payload, and linker, ADCs offer precise targeting, en-
hancing efficacy and reducing systemic toxicity compared to
traditional chemotherapy. ADCs constitute one of the fastest‐
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growing classes of anticancer drugs, with fourteen ADCs
approved by the FDA as of 2023 and hundreds progressing in
clinical trials (Metrangolo and Engelholm 2024). Driven by
persistent research efforts in ADC design, such as more stable
linkers, novel payloads and new conjugation strategies, the
challenge to develop robust and scalable processes increases
(Prashad et al. 2017; Sasso et al. 2023).

The potency of ADCs largely depends on the type of payload
and the number of payload molecules attached, known as the
drug‐to‐antibody ratio (DAR). Controlling the DAR and the
drug load distribution (DLD) is crucial for optimizing the ADC
therapeutic index, as every species within the DLD exhibits
distinct pharmacokinetics and efficacy (Behrens and Liu 2014;
Kamath and Iyer 2015). A central consideration in this context
is the conjugation strategy, which facilitates the connection of
the mAb and linker‐payload (Gordon et al. 2015). Payload
conjugation to cysteine residues that are engaged in the four
native interchain disulfide bonds is a common conjugation
strategy. While this approach is widely used, it can minimally
alter the mAb structure and negatively impacts stability, par-
ticularly for higher DAR species (Adem et al. 2014; Guo
et al. 2016). With regard to the conjugation process, this
approach involves a two‐step reaction workflow: an initial mild
reduction of the disulfide bonds of the mAb, followed by con-
jugation of the cytotoxic payload to the reactive cysteine resi-
dues. The final DAR for cysteine‐linked ADCs ranges from 2 to
8. The reduction reaction is the key step for determining the
DAR, as it generates a specific number of binding sites for the
payload (Metrangolo and Engelholm 2024; You et al. 2021). The
reaction's outcome, including the formation of positional iso-
mers, depends on the choice of reducing agents and various
process parameters such as reducing agent concentration,
reaction time, temperature and pH (Matsuda and
Mendelsohn 2021; Sun et al. 2005). However, comprehensive
understanding of the cysteine‐based reaction process is limited
(Matsuda et al. 2020; Nadkarni et al. 2018; Song et al. 2022). An
additional research focus is on improving DAR homogeneity by
cross‐linking payloads (Behrens et al. 2015) or addition of metal
ions (You et al. 2021).

Initiated by the FDA (ICH 2008), the concept of quality by
design (QbD) promotes the utilization of modeling techniques
to deepen process understanding of unit operations, forecast
product behavior, and optimize processes. Consequently,
process models have recently gained popularity for a variety of
purposes for biopharmaceuticals and allow process developers
to identify optimal reaction conditions based on fundamental
knowledge of the reaction mechanisms during manufacturing
(Narayanan et al. 2020; Smiatek, Jung, and Bluhmki 2020). To
model biochemical reactions, kinetic studies are usually per-
formed to gain knowledge about complex biochemical reaction
mechanisms (Taylor et al. 2022). To construct mathematical
process models for these reactions, the most challenging as-
pects are simultaneously identifying the reaction stoichiome-
try, inferring the structure of the reaction network, and
estimating model parameters (Chou and Voit 2009). Various
solutions have been proposed in the literature to address these
challenges, for example, S‐systems (Forster et al. 2023), target
factor analysis (Fromer, Georgakis, and Mustakis 2023),
automated reaction network generation and identification

(Taylor et al. 2021), and chemical reaction neural networks (Ji
and Deng 2021).

With regard to modeling of the ADC conjugation process,
recent studies focused on the conjugation kinetic (Andris,
Seidel, and Hubbuch 2019) for site‐specific ADCs, or the
reduction reaction for cysteine‐conjugated ADCs (Nayak and
Richter 2023). The latter provides quantitative insights into the
reduction mechanisms of interchain disulfide bonds and the use
of the kinetic model for process optimization, relying on a
complex mathematical approach to resolve positional isomers
by hydrophobic interaction chromatography (HIC) and
reversed‐phase ultrahigh‐performance liquid chromatography
(RP‐UHPLC).

In this study, we introduce the combination of reduction kinetic
model and linear regression to model the reduction reaction
with directly determining the DAR/DLD at the conjugation
endpoint. For the development of these models, we performed
reduction kinetic studies with varying initial conditions, namely
the mAb concentration, reducing agent concentrations, as well
as the reaction temperatures, while the subsequent conjugation
reactions were conducted under the same reaction conditions.
Samples were analyzed by both non‐reducing capillary gel
electrophoresis‐sodium dodecyl sulfate (CGE‐SDS, or herein
shortly CGE) to quantify the reduced species, and RP‐UHPLC
to determine the DAR/DLD. Based on species formed during
reduction, a mechanistic kinetic model for the interchain
disulfide bond reduction reaction is developed, providing in-
sights into the complex reduction mechanism. Here, various
chemical reaction networks (CRNs) with different sets of
kinetic rates are proposed and the most suitable CRN was
selected. Then, multiple linear regression (MLR) models are
employed to predict the final DAR and the percentages of the
drug load distribution (DLD‐%) from the species formed during
the reduction reaction. Finally, the reduction kinetic model and
the MLR models are combined, creating an integrated modeling
tool enabling in silico screening of process parameters in the
cysteine‐based reaction workflow.

2 | Material and Methods

2.1 | Experiments

The experiments involved two sequential reaction steps:
reduction and conjugation. The reduction conditions were
varied to investigate their influence on the partial reduction
kinetics of the interchain disulfide bonds. Tris(2‐carboxyethyl)
phosphine hydrochloride (TCEP) was used as reducing agent,
as this reduces both the two disulfide bonds between the two
heavy chains (inter HH) and the bonds between each heavy and
light chain (inter HL). The reduction of intrachain disulfides
was excluded, given that they are known to remain intact under
TCEP treatment (You et al. 2021). In the subsequent conjuga-
tion reaction, maleimide‐functionalized payload is conjugated
to these reduced disulfide bonds under constant reaction con-
ditions. Non‐reducing CGE was used to track the kinetics of the
intact mAb and the generated fragments (L (light chain), H
(heavy chain), HL, HH, HHL) over time, which are generated as
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disulfide bonds are reduced. This provided a quantitative
measurement of the reduction kinetics. Two IgG1 mAbs, which
will be referred to as mAb1 and mAb2, were employed in the
scope of the experiments.

2.1.1 | Chemicals and Buffers

The chemicals used in this study were obtained from EMD
Millipore, unless otherwise stated. Standard conjugation buffer
was 20mM NaH2PO4 (J.T. Baker), 1 mM EDTA in ultrapure
water at pH of 7.0. TCEP‐HCl (VWR) was used to reduce the
mAb. For conjugation, a maleimide‐functionalized payload
(proprietary topoisomerase inhibitor, molecular weight of ap-
prox. 1200 Da) was dissolved in dimethyl sulfoxide (DMSO,
Sigma‐Aldrich). For sample treatment for DAR analysis, sam-
ples were diluted in denaturing buffer containing guanidine
HCL (Thermo Scientific), Tris (Thermo Scientific), EDTA and
dithiothreitol (Thermo Scientific) at pH 7.6. RP‐UHPLC was
performed using acetonitrile (VWR) and HPLC water (VWR),
both with 0.1% (v/v) trifluoroacetic acid (Thermo Scientific).
For sample treatment for CGE analysis, samples were diluted in
1M Tris, pH 7.0.

2.1.2 | Reduction Kinetic Procedure

Initially, the mAb was thawed and diluted to the desired
starting mAb concentration in conjugation buffer. A 50mM
TCEP solution was prepared in conjugation buffer and
pH adjusted to 7 using NaOH (J.T. Baker). The reduction
reaction was started by adding a predetermined volume of the
50mM TCEP solution to the diluted mAb to reach a desired
molar excess of TCEP over mAb. The reaction was allowed to
shake on an orbital shaker (Eppendorf) at the specified tem-
perature. Seven kinetic samples were taken at 5, 10, 20, 30, 60,
120, and 240min. The reduction reaction was quenched by
addition of a 12‐fold molar excess of payload (25mM solution in
DMSO) to conjugate all available cysteines, thus preventing
reduced disulfides from reforming. DMSO was spiked into the
conjugation reaction to reach 10% (v/v) DMSO to improve
payload solubility during conjugation. The conjugation reaction
was allowed to proceed on a tube rotator at room temperature
for 30min. In 17 runs using mAb1, the reduction temperature,
the initial mAb concentration, and the TCEP excess were varied
(n= 119 samples). Three additional runs with mAb2 were
performed (n= 21 samples). The reduction reaction conditions
are summarized in Table 1. Since each experimental condition
was performed only once, the potential variability of the ex-
perimental procedure was assessed independently, indicating
good robustness (see Supporting Information).

2.1.3 | Sample Analytics

2.1.3.1 | Non‐Reducing Capillary Gel Electrophoresis.
To quantify the partial reduction of the mAb, samples were
analyzed with non‐reducing CGE‐SDS on a PA800+ capillary
electrophoresis instrument (AB Sciex) using the assay
protocol as published in Cao et al. (2019). Samples were

electrokinetically injected into the capillary and separated in
reverse polarity. Each sample was analyzed once, as the CGE
method demonstrated robustness with a relative standard
deviation (RSD) ranging from 1% to 3% (data not shown). The
resulting exported data contained the fractions, denoted as pi, of
intact mAb monomer and its reduced fragments within the
reaction mixture. The molar concentrations of each species cĩ
was converted using the respective mAb concentration of the
sample cmAb and the molar mass of the respective species M̃i

according to

⋅c p
c

M
̃ =

̃
.i i

i

mAb
(1)

2.1.3.2 | Reducing Reversed‐Phase Ultra‐High Per-
formance Liquid Chromatography. To determine the DAR
and the DLD, each sample was analyzed using RP‐UHPLC.
Details about sample treatment procedure and the analytical
workflow can be found in Cao et al. (2019). The data for each
sample contained the peak areas A of un‐ and mono‐conjugated
light chain, L0 and L1, and of un‐, mono‐, bi‐ and tri‐conjugated
heavy chain, H0, H1, H2 and H3, respectively. The percentages
of the two light chain species and four heavy chain species were
calculated by dividing the peak area through the total peak area
of all light chain species, AL,tot, or heavy chain species, AH,tot.
The DLD of each sample thus consisted of the percentages of all
six species [%L0 %L1 %H0 %H1 %H2 %H3]. The respective DAR
was calculated according to







A

A

A A A

A
DAR = 2 +

+ 2 + 3
.L1

Ltot

H1 H2 H3

Htot

(2)

The raw data from both analytics are provided as Supporting
Information S2.

2.2 | Data Organization

In this study, two model types were developed and the data
were organized differently: (1) For development of the reduc-
tion kinetic model, the full reduction kinetic data set from CGE
for mAb1 was manually split based on the reduction tempera-
ture into a training subset (4°C, 20°C and 37°C) with 15 runs
and an independent test subset (12°C) with two runs. The
training subset was used for model development and selection,
and the test set for independent validation of the reduction
kinetic model. The mAb2 CGE data set was excluded from the
reduction modeling process, as the two mAbs exhibited differ-
ences in their reduction behavior. (2) For the development of
the MLR models the full data set comprising both CGE (119
time samples as rows, 6 CGE species as columns) and RP‐
UHPLC (119 time samples as rows, DAR+ 6 DLD‐% as col-
umns) for mAb1 was used. The data set for mAb2 was then
applied for external evaluation.

2.3 | Mechanistic Reduction Kinetic Modeling

The reduction of the interchain disulfide bonds by TCEP results
in the occurrence of reduced fragments, HHL, HH, and HL, and

3 of 15

 10970290, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/bit.28899 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



single chains, L and H, as measured by CGE. To understand the
reaction, mechanistic modeling was chosen over statistical
modeling for its ability to capture the underlying reaction
mechanisms, unlike statistical models that rely solely on data
correlations. Based on kinetic rate laws, mechanistic models
allow for extrapolation outside the experimental data, whereas
statistical models are limited to predictions within the range of
their training data. This reduces experimental workload and
accelerates process development by enabling the efficient
screening of process conditions such as mAb concentration,
TCEP excess, and reduction time. The development of the
mechanistic reduction kinetic model involved the iterative
selection of a suitable CRN and a set of kinetic rates accounting
for the temperature‐dependency of the reaction via the Ar-
rhenius approach. For the first task, different CRNs were pro-
posed and evaluated using the same assumption for kinetic rate
discrimination. After selecting the most suitable CRN, the set of
kinetic rates was further investigated in more detail to improve
model performance.

2.3.1 | Chemical Reaction Network Construction and
Kinetic Rate Discrimination

For the construction of the CRN, special focus was on the two inter
HH disulfide bonds localized in the IgG hinge region. As the CGE
is unable to differentiate between fragments with two or one intact
inter HH disulfide bonds, it was not possible to determine whether

the reduction of these bonds occurred stepwise. To assess the
impact of the reduced form of these intermediate on the reaction
kinetics, two CRN types were constructed: In the NoInt CRN, the
reduction of the two hinge bonds is considered as single reaction
step yielding seven reaction species (= seven CGE species) and six
reactions. Conversely, in the WithInt CRN, a two‐step reduction in
the hinge region is included to account for the three non‐
observable intermediates, IntactR, HHLR and HHR (R = reduced
form), resulting in a more complex CRN with ten species and
eleven reactions. Additionally, a reforming of the reduced species
was observed in the data, which coincides with a decreasing DAR
value. Therefore, a reoxidation of the reduced disulfide bonds was
assumed in the model assigning a backwards reoxidation reaction
for each forward reduction step, leading to two additional variants
of each CRN type, WithInt+ReOx (graphically summarized in
Figure 1A) and NoInt+ReOx (given in the Supporting Informa-
tion). To parametrize these CRNs, kinetic rates needed to be
assigned to each individual reaction step. As suggested by Chen
et al. (2024) that TCEP reduction kinetically favors the inter HL
over the inter HH bonds, all individual rates belonging to either
inter HH or inter HL reduction/reoxidation were lumped. As HH
reoxidation rates were observed to be substantially slower in
comparison to the other kinetic rates, the respective reaction steps
were removed in all CRNs that account for the reoxidation. Con-
sequently, this resulted in the simple models with two (for CRNs
without ReOx) or three kinetic distinct kinetic rates (for CRNs with
ReOx, “3k‐model”), which were used as baseline rate discrimina-
tion to independently analyze the CRN performance.

TABLE 1 | List of conducted reduction experiments using different mAbs, reduction reaction temperatures, initial mAb concentration and

initial TCEP excess. Additionally, the corresponding subset for each run is given.

RunID mAb Temperature (°C) c  (g/L)mAb Molar TCEP excess/‐ Subset

1 mAb1 20 15 2 Training

2 mAb1 20 15 3 Training

3 mAb1 20 15 4 Training

4 mAb1 20 15 6 Training

5 mAb1 20 15 8 Training

6 mAb1 20 3.75 4 Training

7 mAb1 20 7.5 4 Training

8 mAb1 20 10 4 Training

9 mAb1 37 15 2 Training

10 mAb1 37 15 4 Training

11 mAb1 37 15 6 Training

12 mAb1 37 15 8 Training

13 mAb1 4 15 2 Training

14 mAb1 4 15 4 Training

15 mAb1 4 15 8 Training

16 mAb1 12 15 4 Test

17 mAb1 12 15 6 Test

18 mAb2 20 15 4 External

19 mAb2 20 20 8 External

20 mAb2 20 20 10 External
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Additionally, two other sets of kinetic rates with more advanced
kinetic rate discriminations were evaluated. A second, refined
model was defined that specifically discriminates the reduction/
reoxidation belonging to each CGE‐observed fragment (e.g.
three different rates for the three inter HL reduction of Intact,
HHL and HL). Based on the 3k‐model, this assumption tripled
the number of rates resulting in nine kinetic rates (“9k‐model”).
Nayak and Richter (2023) presented a reduction kinetic model,
that indicated a considerable difference between the first
and second reduction steps for the inter HH reduction. This
finding motivated the design of a third discrimination, which
uses a similar approach as the 9k‐model, but instead only dis-
tinguishes the stepwise inter HH reduction step with two rates,
leading in total to eight kinetic rates (“8k‐model”). Table 2
summarizes the investigated reduction models. A list of the
reactions and the corresponding rates is given in Supporting
Information.

2.3.2 | Temperature Modeling

The Arrhenius equation was applied to model the temperature
effect of the kinetic rates. This led to double the amount of
necessary model parameters in each model, as each rate was
split into two Arrhenius parameters. To avoid optimization
problems due to high correlation between the Arrhenius
parameters, activation energy, Ea, and pre‐exponential factor,
k0, it is common to use a reparametrized expression of the
Arrhenius equation (Schwaab and Pinto 2007). The herein used
expression is

( )k T k e( ) = ,T

E
R T T

− 1 − 1a

ref
ref

(3)

where R denotes the ideal gas constant, Tref is the reference
temperature and kTref presents the kinetic rate at the reference
temperature. T = 293.15 Kref was chosen adequately to mini-
mize the parameter correlation.

2.3.3 | Parameter Estimation

All tested models were implemented as ordinary differential
equations (ODE) in MATLAB (The MathWorks Inc.) and
numerically solved using the ode15s solver. The kinetic rates
were estimated based on the nonlinear least squares approach.
A custom loss function was utilized that computed the error
between the CGE‐derived experimental and the model‐
predicted concentrations. In case of the models with inter-
mediates, the concentrations of the reduced intermediates and
the respective non‐reduced intermediates were summed up to
align with the CGE‐derived molar concentrations of the species.
To ensure an equal weighting of the six reaction species, the
species errors were normalized to the maximum species con-
centration within the full data set. A constant variance for all
data points is assumed, as the CGE measurement error was
found to be uniform across all species. As initial parameter
values, all Ea were set to 20 kJ/mol, and all kTref to 1 × 10−4

L(µmol s)−1. The model parameters were optimized using
lsqnonlin. The uncertainty of the estimated parameters was
assessed via 95% confidence intervals (CI) computed using
nlparci.

FIGURE 1 | (A) Proposed structure of a CRN with intermediates and reoxidation reaction. Black and gray arrows indicate reactions between

inter heavy‐heavy (HH) or inter heavy‐light (HL) chains. Heavy chains are colored in blue and light chain are colored in red. (B) Schematic

representation of the integrated modeling architecture for the sequential combination of the newly developed reduction kinetic modeling with the

MLR models predicting the DAR and DLD percentages (DLD‐%).
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2.3.4 | Model Error, Selection and Validation

The resulting model performance was quantified by the nor-
malized root mean square error (nRMSE) for each run and for
each species computed as

 c c

c
nRMSE =

( − ˆ )

¯
,i

N i
N

i i

i

1
=1

2

(4)

where N is the number of samples, and ci, ĉi and ci̅ denote
the measured, model predicted, and mean measured con-
centration of the ith species, respectively. For model selec-
tion, the prediction error of the model was assessed based on
both cross‐validation of the 15 training runs (nRMSECV) and
on the two test runs (nRMSEP). A leave‐one‐run‐out scheme
was used for the cross‐validation, wherein each run was
systematically excluded one time and the resulting
nRMSECV values for all rotations were averaged. Addition-
ally, the corrected Akaike's information criterion (AICc)
was employed as a balanced measure between the goodness
of fit and the model complexity. The AICc is calculated
using

⋅

⋅

( )N δ

N π N

AICc = ln + 2 +

+ ln(2 ) + ,

N

δ δ

N δ

SSE 2 ( + 1)

− − 2 (5)

where SSE is the sum of squared error between measured and
predicted concentration and δ represents the number of model
parameters.

2.4 | Integrated Reduction Kinetic Modeling

As the reduction reaction is the governing step due to its
higher reaction time compared to the conjugation reaction
(Nayak and Richter 2023), a subsequent model was incor-
porated to directly estimate the final DAR and the DLD‐%
from each state in the reduction kinetic without explicit
consideration of the conjugation kinetic. This sequential
combination with the newly developed mechanistic reduc-
tion kinetic model allowed then to perform an integrated
kinetic modeling of the DAR and the DLD‐% with regard to
the initial reduction reaction conditions, that is, cmAb,0,
TCEP excess, and the temperature. A schematic illustration
of this model framework is shown in Figure 1B.

2.4.1 | Final DAR and DLD‐% Estimation From CGE or
Reduction Model Prediction

Multiple linear regression (MLR) models were employed to
establish cross‐analytical, functional mappings from the
reduction state to the final conjugation outcome at each
time point. The choice of a linear model was motivated by
the robust linear correlation observed between the two
analytical data sets (see Supporting Information S1:
Figure S4). For one sample, the regression problem can
be formulated as shown in Equation (6), where the
concentrations of the six reduction species
c c c c c c( , , , , , )intact HHL HH HL H L serve as the independent vari-
ables to predict the dependent variable, y, being either the
RP‐derived DAR or one of the six DLD‐% (L0, L1, H0, H1,
H2, and H3):

y β β c β c β c β c β c β c= + + + + + + + ϵ,0 1 intact 2 HHL 3 HH 4 HL 5 H 6 L

(6)

where βn represents the regression coefficients and ϵ the
error term. To fit the regression coefficients, the indepen-
dent variables were structured as matrix with the six
reduction species as columns and the time samples stacked
as rows, while the different dependent variables were rep-
resented as arrays, each containing single values corre-
sponding to each time sample. To ensure uniform
consideration of the entire concentration range, the input
concentrations were normalized by the respective mAb
concentration. The function fitlm in Matlab was used for
calibrating the MLR models. In a first step, this approach
was evaluated utilizing the experimental CGE data as model
input. Here, the mAb1 data set was randomly split into
training and test set with a ratio of 75%/25%. Training and
test error between the MLR‐predicted and experimental
DAR/DLD‐% were quantified by the R2. Subsequently, the
MLR models were independently tested on the external data
set of mAb2 to evaluate the potential generalizability of this
approach. In a second step, the kinetic model predictions of
the newly developed at each experimental time point were
employed as model input. A recalibration of the MLR
models was required due to the differences between ex-
perimental CGE and model‐predicted reduction concentra-
tions. For consistency, the same random training and test
split was used in both instances. It is worth noting that this
approach is applicable only when a sufficiently high payload
excess is utilized to conjugate all reduced disulfide bonds.

TABLE 2 | Summary of the tested CRNs and parameter assignments.

No Intermediates (Int) Reoxidation (Re‐Ox) Rates (k) Rate discrimination

1 No No 2 Groups inter HL/HH reduction

2 No Yes 3 Groups inter HL and HH reduction/reoxidation

3 Yes Yes 3 Groups inter HL and HH reduction/reoxidation

4 Yes Yes 9 Individual rates for each fragment

5 Yes Yes 8 Same as 9k, but for inter HH two rates for the stepwise
reduction
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2.4.2 | Integrated In Silico Screening and Process
Optimization

To demonstrate the utility of the developed integrated frame-
work in assisting ADC process development, an in silico
screening of the reduction reaction conditions was performed.
Two case scenarios were considered, wherein two out of the
four possible process parameters (temperature, TCEP excess,
mAb concentration and reduction time) were varied: In the first
scenario, both reduction temperature and TCEP excess were
varied within intervals of [4, 37]°C and [2, 8], respectively,
while the reduction time was fixed to 120min. In the second
scenario, both reaction time and TCEP excess were varied
within intervals of [0, 240] in and [2, 8], respectively, with the
temperature set at 20°C. The initial mAb concentration was set
to 15 g/L for both scenarios. Utilizing the calibrated reduction
kinetic model, the resulting reduction species concentrations
were systematically screened for varying initial conditions.
These concentrations were then used to predict the DAR and
DLD‐% using the previously calibrated MLR models.

In the last part, a theoretical study was conducted to highlight
the usability of the framework for identifying the appropriate
reaction conditions for an exemplary target DAR of 3. Since
reducing the amount of high‐loaded species is often a require-
ment (Prashad et al. 2017), an additional objective was included
to ensure that the percentage of H2 remained below 12%.
Similar to the in silico screening, individual DAR kinetics were
simulated under varying temperature and TCEP excess to esti-
mate the optimal reaction times for achieving the desired DAR.

3 | Results and Discussion

3.1 | Kinetic Modeling of Interchain Disulfide
Bond Reduction Reaction

3.1.1 | Model Development: Selection of CRN and
Parameter Set

Five candidate reduction models were evaluated by their model
error. Figure 2 illustrates the cross‐validation and test nRMSE
values, respectively, for each model with regard to the indi-
vidual reduction species, along with the average nRMSE. The
first three models represent different CRN variants under the
same kinetic rate assumption. When comparing the first two
models, the addition of the reoxidation reactions consistently
improves the prediction of each species all species, except for H,
resulting in an average nRMSE reduction of 24% and 22% for
the CV and the test set, respectively. A particularly strong
reduction was found for the intermediates HH and HL as well
as for the species L. It is known that reoxidation can be pro-
voked by the presence of dissolved oxygen (Hutterer et al. 2013;
Wang et al. 2015). While Tang et al. (2020) found that the
oxidation of reduced inter HH disulfide bonds tends to be
generally more pronounced compared to inter HL, our results
instead indicated that inter HH reoxidation is negligible. This
discrepancy suggests either a structural difference among the
studied mAbs affecting the reactivity of certain cysteines or
other mechanisms, such as preferred de‐conjugation of drug
molecules bound in the inter HL region, that cause the

reforming of these bonds and herein being considered as
reoxidation.

A further consistent improvement, except for the prediction
of intact mAb, was achieved when including the inter-
mediates with an average nRMSE reduction of 16% and 8%
compared to the NoInt + ReOx model. The consideration of
the reduced intermediates agrees with the structure of the
aforementioned reduction kinetic model by Nayak and
Richter (2023). Although these intermediates are not
directly distinguishable by the CGE method, their consid-
eration in the CRN contributes to improving the model,
particularly concerning the intermediates HH and HL,
which can be attributed to higher model flexibility due to
the increased number of possible reactions.

Therefore, the WithInt + ReOx CRN was subsequently cho-
sen for further model finetuning using two additional
kinetic rate discriminations, 8k‐ and 9k‐model. In compar-
ison to the WithInt + ReOx with three ks, both sets of kinetic
rates demonstrated similar error reductions of approxi-
mately 27% and 40% for cross‐validation and test
set, respectively. It was observed that this improvement
primarily originates from an enhanced prediction accuracy
for Intact, HHL and HH. The lowest AICc value was
achieved for the 8k‐model with 24.96 in comparison to the
9k‐model with 35.84 suggesting a reasonable accurate model
fit while minimizing the model complexity. The final use of
the 8k‐model for the further modeling purpose was justified
by its lowest AICc value.

3.1.2 | Mechanistic Insights

Insights into the kinetic mechanisms can be derived from the
estimated kinetic rates. Figure 3 displays the estimated rates
ki,20°C for the 8k‐model (estimated EA values are given in Sup-
porting Information). The kinetic rates are grouped according to
the three superordinated reaction steps. The three rates asso-
ciated with the inter HL disulfide reduction for the three spe-
cies, Intact (including IntactR), HHL (including HHLR), and
HL, showed a decreasing trend from 6.98 × 10−4 to
6.81 × 10 L (μmol s)−5 −1. These differences might be explained
by the different amount of available disulfide bonds (two in case
of Intact, one for HHL and HL) and that each reduced disulfide
bond might affect the conformational structure of the antibody
resulting in a different susceptibility for TCEP reduction. Fur-
thermore, it can be observed that the first inter HL reduction is
faster compared to the first inter HH reduction. This is in
agreement with Chen et al. (2024) who found that the inter HL
reduction is kinetically favored over the HH reduction. A rea-
son for this could be the higher solvent accessible surface area,
as demonstrated with MD simulations (Song et al. 2022). With
regard to the inter HH reduction, the kinetic rate of the second
disulfide reduction, k5, increases 18‐fold compared to the first
disulfide reduction k4. This agrees with findings by both Liu
et al. (2010), who suggest a conformational change in the hinge
region once one inter HH bond is reduced resulting in greater
exposure, and Nayak and Richter (2023), who hypothesize a
“zipper”‐like effect due to the increased flexibility in the CH2
domain.
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An observation of the CIs of the estimated parameters (given in
Supporting Information S1: Table S4), showed that CIs for most
of the parameters range between 25% and 60% which indicates
an acceptable parameter quality (Sin and Gernaey 2016). Con-
siderable wider CIs, especially for the Ea parameters associated
with the reoxidation reactions, were observed suggesting that
the data is not informative enough to precisely estimate these
parameters. This could have multiple root causes such as the
consideration of non‐observable intermediates or the analytical
error of the CGE method, which tends to increase for lower
concentrations (Sänger–van de Griend 2019). The CIs of the Ea
parameters are expected to decrease when more temperatures
are added.

3.1.3 | Kinetic Model Predictions

A major advantage of a kinetic model is the ability to describe
the reacting species' time‐course for varying process parameters.

To thoroughly assess the model's performance on each run, the
experimental versus predicted kinetics (cross‐validation) using
the 8k‐model are plotted in Figure 4A. According to the CGE
data, an increasing TCEP excess generally led to faster gener-
ation and higher ratios of H and L in the reduction reaction,
while an increase in temperature caused faster kinetics and
more pronounced reoxidation reactions. This dynamic occurred
mainly for the species L at lower TCEP excesses. Interestingly,
the species HH is generated at higher concentrations with
decreasing temperatures, while at the same time the species HL
appears to be inversely affected by the temperature. This con-
tradictory influence of the temperature reflects the impact of
the varying temperature‐dependencies on the individual
reaction pathways. A similar behavior for HH/HL was observed
in a related process characterization study (Nadkarni
et al. 2018).

In general, the model represents the observed trends in the CGE
data accurately. To better illustrate the model error concerning
temperature, TCEP excess, and species, the resulting species
nRMSE for each cross‐validated run is depicted in Figure 4B.
The model demonstrates higher accuracy at the 4°C and 20°C
kinetics, particularly at low TCEP excess and low mAb con-
centration. In contrast, the model accuracy decreases for the
reduction at 37°C and at high TCEP excess, particularly for the
species HL and L, as indicated by their higher nRMSE values at
20°C and 37°C. This corresponds to the larger error bars for
these species in the cross‐validation (cf. Figure 2). Overall,
certain species, namely, H, HHL, and Intact are more precisely
captured by the model. The decreased performance on the 37°C
kinetics might be caused by non‐parametrized effects increas-
ingly occurring at higher temperatures, such as de‐conjugation
(Chen et al. 2016) or side reactions between TCEP and

FIGURE 2 | Comparison of the five evaluated reduction models with regard to the species‐resolved and the mean nRMSE for the cross‐validation
(A) and the test runs (B). For the cross‐validation, the bar represents the average nRMSE and the error bars indicate the standard deviation over all

CV rotations.

FIGURE 3 | Estimated kinetic rates at the reference temperature of

20°C for the 8k‐model.
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maleimide‐payloads (Kantner, Alkhawaja, and Watts 2017).
Additionally, a positional switching of reduced disulfides
between the inter HL and HH was recently found to occur
during the moderate TCEP reduction due an intramolecular
thiol‐disulfide exchange (van den Berg et al. 2023). These phe-
nomena may also contribute to the generally higher inaccuracy
for the species HL and L.

3.2 | End‐Point DAR and DLD Prediction Using
MLR Models

To predict the DAR and the six DLD‐% of the conjugation
endpoint, MLR models were developed using either experi-
mental CGE data or the reduction model‐predicted concen-
trations as input. Table 3 presents the resulting R2 values for

each MLR model concerning the subsets and the model
input. It has to be noted, that when using the model pre-
dictions as input, mAb2 was not further evaluated due the
observed discrepancy in their reduction kinetics. With regard
to the experimental values, the MLR model exhibited accu-
rate prediction of the DAR, with R2 values close to 1 for both
the training and test set. The models for DLD‐% similarly
achieved good performance with an average R2 of 0.973 and
0.961 for the training and test set, respectively. Generally, the
prediction accuracy was highest for %H0 and %H3, while the
lowest R2 value was observed for %H2, with an R2 of 0.893 for
the test set. The lower performance with respect to H2 is
likely to be caused by either a weaker linearity for this species
or an increased analytical error due to relatively low %H2
peak levels (see Supporting Information S1: Figure S5 for an
analysis of the model residuals). In total, these findings

A

B

FIGURE 4 | (A) Model predictions (lines) versus experimental CGE data (markers) for the concentrations of the six reduction species for all

cross‐validation runs. (B) Heatmap of the cross‐validation nRMSE resolved for each individual cross‐validation run in each run. Lighter colors

represent a lower nRMSE value indicating smaller error, while darker colors represent higher nRMSE values or larger error.
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highlight the capability of the MLR models to accurately
predict the DAR/DLD‐% directly from the CGE data. Support
vector machine regression was initially tested as alternative,
but it did not notably enhance the predictions compared to
the MLR models. To the best of our knowledge, no compa-
rable method to link CGE and RP data for ADCs has been
presented in literature. A strong correlation between CGE
and UHPLC was also shown for other applications (Altria
and Filbey 1993; Mahan et al. 2015). Additionally, good
transferability of the proposed method is shown when
applying the MLR models to another mAb. Only minor losses
in accuracy across all models, except H2, were observed,
which is likely to be caused by slight differences in the
molecule structure of the mAbs affecting the relationship
between CGE and RP. Higher accuracy is expected when

training the models on data sets with a larger portion of
mAb2 and/or using more advanced regression techniques
that conduct an internal mAb‐classification. In summary, our
model approach presents a novel method to precisely forecast
the RP results from CGE data with minimal practical effort.

When the MLR models were trained using the model‐predicted
concentrations, the accuracy is slightly reduced compared to the
models using the experimental data. Still, the DAR value as well
as %H0 and %H3 are precisely predicted with R2 values above
0.95. The R2 values for the other DLD‐% species is slightly
decreased, with %H2 exhibiting the lowest R2. To further
investigate the model's predictability uniquely for each run, the
observed versus predicted plots for the DAR and the DLD‐%
models are shown in Figure 5. In general, these plots confirm

TABLE 3 | Summary of R2 values for the seven MLR models using either experimental CGE data (training, test and external data (mAb2)) or

reduction model‐predicted data (train and test) as input. The mean DLD corresponds to the mean of the six DLD species (L0, L1, H0, H1, H2

and H3).

Input Experimental CGE data Reduction model‐predicted data

Output R2
train R2

test R2
external R2

train R2
test

DAR 0.996 0.995 0.981 0.976 0.972

%L0 0.987 0.981 0.940 0.905 0.951

%L1 0.987 0.981 0.940 0.905 0.951

%H0 0.993 0.990 0.922 0.954 0.950

%H1 0.976 0.932 0.961 0.938 0.891

%H2 0.901 0.893 0.937 0.703 0.703

%H3 0.994 0.991 0.947 0.971 0.970

Mean DLD 0.973 0.961 0.941 0.896 0.903

FIGURE 5 | Observed versus predicted DAR values and DLD percentages of the MLR models using the normalized model‐predicted concen-

trations as input. The markers are grouped according to the four temperatures (circles: 20°C, diamonds: 37°C, crosses: 4°C and squares: 12°C).
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that for DAR the approach exhibits relatively higher precision
compared to the DLD‐%, with the lowest performance for %H2.
Moreover, it becomes clear that specific runs, such as Run5, 11
and 12 contribute mainly to the larger error as indicated by
their systematic offset from the regression line. This could be
attributed to their larger error in the reduction kinetic model
concerning certain species being propagated with the MLR
model.

In total, these results highlight the capability of the MLR models to
accurately predict the DAR/DLD‐% also from the newly developed
reduction model. For both model inputs, the models achieved better
performance on the prediction of DAR compared to DLD‐% which
can be explained by the fact that the DAR value is calculated from
all DLD‐%, so that individual errors are compensated making it a
more robust feature. A comparison of the model coefficients for
both cases, demonstrated that the inputs species are assembled
differently in the twomodel types (data not shown). Combined with
the finding that the MLRmodel had to be trained independently for
each instance, this suggests that the model adapts to the kinetic
model error and, thus, acts as an internal model correction
mechanism.

3.3 | Integrated In Silico Reduction Screening

Kinetic models are particularly beneficial for understanding, pre-
dicting, and evaluating the effects of reaction parameters due to

their ability to represent complex biochemical behavior. The com-
bination of the newly developed reduction model with the different
MLR models allows for the comprehensive evaluation of the effect
of the reduction parameters on the resulting DAR and DLD‐%, also
for conditions that were not used in the model training. The
resulting predictions for the DAR and two exemplary DLD‐%, %L1
and %H2, based on the reduction parameter screening for the two
case scenarios is provided in Figure 6 (predictions for all DLD‐%
and both scenarios are given in Supporting Information S1: Fig-
ures S6 and S7). For constant reaction times (Figure 6A), DAR is
shown to increase with both increasing TCEP excess and temper-
ature, reaching a plateau at the highest TCEP excess and temper-
ature. With regard to %L1, a similar behavior compared to the DAR
is observed with a slightly different influence of the temperature at
lower TCEP excesses. In contrast, %H2 exhibits an inverse rela-
tionship to both parameters with a maximum around 3.5x TCEP
and 37°C. The root cause for this behavior is the different
temperature‐dependency of the kinetic rates of inter HL and HH
reduction enabling to direct conjugation to heavy or light chain.
These results showcase the benefits of the proposed screening
approach. While the temperature appears to have minor impact on
the DAR, it seems to have a larger impact on the ratio of conju-
gation to light and heavy chain, especially for lower target DAR
values. Knowledge of this trend is especially useful when the goal is
to decrease the ratio of certain undesired species in the DLD.

Furthermore, the conjugation results for a constant temperature
but for varying TCEP excess and reaction time are given in

FIGURE 6 | Integrated in silico screening for two scenarios comparing to the actual experimental data (red dots) and simulated reduction

kinetics (surface plot): (A) Varying temperature and TCEP excess for constant c = 15 g/LmAb and t = 120 min, and (B) varying reaction time and

TCEP excess for constant c = 15 g/LmAb and T = 20°C. The surface plots represent the model predictions for DAR (left panel), %L1 (middle panel)

and %H2 (right panel). Blue colors indicate lower values and yellow indicate higher values.
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Figure 6B. For both DAR and %L1, the values rapidly increase
for longer reaction times to a maximum and then decreases at
lower TCEP excesses. This is due to the reoxidation reaction,
which is particularly important for low TCEP excesses. On the
contrary, %H2 has a distinct profile with a maximum at high
TCEP and low reaction times, and a plateau at a TCEP excess of
4x. For longer reaction times, %H2 is only slightly affected, as
the reoxidation is not occurring at the inter HH bonds. These
results indicate that, in addition to the temperature and the
TCEP excess, the reduction time also needs to be carefully
chosen for a desired DAR value.

Overall, the in silico modeled surfaces capture the dynamic in
the experimental data (red spheres) across the design space,
with a comparably higher scattering for %H2. The comparably
higher inaccuracy for %H2 might be due to the lack‐of‐fit of the
reduction model and the lower accuracy of the MLR model for
%H2. Additional experimental conditions (including replicates)
following principles of Design of Experiment would need to be
added, to enhance the robustness and accuracy of the model
while minimizing possible bias. This would then allow for a
more systematic validation of the overall screening perform-
ance. In total, these results showcase the benefit of the dual
modeling approach for gaining complementary process under-
standing. Once this approach is validated, it can be quickly
calibrated for new molecules with less kinetic data.

3.4 | Simulation‐Based Optimization for
Desired DAR

To test the model for process optimization, the model was used
to find the optimal reaction time over the whole design space of
temperature and TCEP excess to achieve a DAR of 3 while
minimizing the %H2. Figure 7A shows the estimated reaction
times as contour plot over the temperature‐TCEP range. It can
be seen that in the region of higher temperature and TCEP
excess reaction times are short (around 5min), while the
reaction times are longer towards lower temperature and TCEP
excesses. This decreasing trend in the reaction times is mainly

driven by the slower reaction rates at lower temperatures and
for less reducing agent. The region for which the required level
of H2 is below 12% is mainly below a temperature of approxi-
mately 12°C. To demonstrate the successful adjustment of the
final DLD for the same DAR value with changing only the
reduction temperature, two scenarios were considered.
Figure 7B shows the predicted DLD of the two scenarios. While
for condition 1, the DLD is wider containing higher levels of L0
and H2, the DLD for the improved condition 2 is narrower with
lower levels of L0 and H2. This behavior results from the
observed effect of the temperature on the level of H2. These two
scenarios highlight that the integrated model is theoretically
capable of effectively simulating alternative reaction conditions
to fine‐tune the DLD for the same DAR value.

4 | Conclusion and Outlook

This study presents the development of a reduction kinetic
model for the partial reduction of the mAb interchain disulfide
bonds, along with MLR modeling to directly forecast the
resulting conjugation outcome at each reduction state. The data
set included reduction kinetic studies under various reaction
conditions, analyzed by both CGE and RP‐UHPLC for quanti-
fication of the reduced species and DAR/DLD.

We first developed a reduction kinetic model by considering the
CRN structure and the set of kinetic rates. Evaluating different
possible CRNs revealed that the reduction reaction is driven by
intermediates and reoxidation pathways, necessitating their
incorporation to accurately project the reaction dynamics.
Further improvements were achieved by isolating kinetic rates.
This is particularly important in the sequential inter HH
reduction pathway, where an acceleration of the kinetic rate for
the reduction of the second inter HH bond was observed upon
the reduction of the first inter HH bond, which is in accordance
with recent literature findings. Adopting this method to other
reducing agents would be highly interesting, as it is known that
reducing agents differ in their reduction preference of certain
disulfide bonds (Sun et al. 2005). Additionally, more

A B

1

2

FIGURE 7 | Contour plot of the in silico determined reaction times for a target DAR of 3 over the whole design space (A) and the resulting

predicted DLD for two scenarios (B). The shaded area in (A) depicts the temperature‐TCEP region for which the percentage of H2 is below 12%. The

scenarios “1” and “2” depict two exemplary reduction conditions for the determined reaction time: Condition 1: T= 20°C and 4x TCEP, condition 2:

T= 4°C and 4x TCEP.
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sophisticated analytical approaches offering higher resolution
regarding the species mass could be utilized to resolve the non‐
observable intermediates by CGE and validate our mechanistic
findings. The temperature dependency modeled by the Ar-
rhenius equation was unable to capture biochemical effects at
higher temperatures. Further detailed experimental investiga-
tion in this temperature range or the exploration of empirical
approaches to capture the temperature dependency should be
considered. Comparing the reduction kinetics of different
classes of mAbs for developing multi‐class models would be
interesting for future research.

We second established MLR‐models to predict the RP‐derived
final DAR and DLD‐% from the experimental CGE data, ex-
hibiting remarkable performance across all outputs and the
entire experimental range. Using the kinetic predictions from
the newly developed kinetic model as input for the MLR models
enabled direct prediction of the DAR and the DLD‐% obtained
after the two‐step ADC reduction‐conjugation workflow.
However, a slight decrease in performance was attributed to the
incorporation of the lack‐of‐fit of the reduction model, sug-
gesting potential improvement with a more accurate reduction
model.

The hereby created integrated kinetic model provided a detailed
mechanistic understanding of the complex DAR/DLD‐%
behavior along with the reduction kinetics, as demonstrated
through an in silico screening of various reduction conditions.
Furthermore, this framework enabled the determination of
multidimensional reaction conditions to achieve a target DAR
and minimize undesired species in the DLD.

In summary, our presented methodology presents an innovative
approach to capture the temperature‐dependent disulfide bond
reduction kinetic with a simultaneously evaluation of the pos-
sible conjugation outcome. Although the conjugation reaction
conditions were set constant throughout this study, they could
also be varied requiring the integration of the reduction model
with a conjugation kinetic model (Weggen et al. 2024). To
further enhance the utility of the reduction model, additional
effects, such as pH‐sensitivity of the reaction rates could be
parametrized.
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