KIT | KIT-Bibliothek | Impressum | Datenschutz

The Disc-structure space

Krannich, Manuel 1; Kupers, Alexander
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the 𝒟isc-structure space 𝑆$^{𝒟isc}_{𝜕}$ (𝑀) of a compact smooth manifold M. Informally speaking, this space measures the difference between M, together with its diffeomorphisms, and the diagram of ordered framed configuration spaces of M with point-forgetting and point-splitting maps between them, together with its derived automorphisms. As the main results, we show that in high dimensions, the 𝒟isc-structure space a) only depends on the tangential 2-type of M, b) is an infinite loop space, and c) is nontrivial as long as M is spin. The proofs involve intermediate results that may be of independent interest, including an enhancement of embedding calculus to the level of bordism categories, results on the behaviour of derived mapping spaces between operads under rationalisation, and an answer to a question of Dwyer and Hess in that we show that the map BTop(𝑑) → BAut(𝐸𝑑 ) is an equivalence if and only if d is at most 2.


Verlagsausgabe §
DOI: 10.5445/IR/1000178021
Veröffentlicht am 14.01.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2050-5086
KITopen-ID: 1000178021
Erschienen in Forum of Mathematics, Pi
Verlag Cambridge University Press (CUP)
Band 12
Seiten Art.-Nr.: e26
Vorab online veröffentlicht am 13.12.2024
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page