KIT | KIT-Bibliothek | Impressum | Datenschutz

Unsupervised learning of nanoindentation data to infer microstructural details of complex materials

Zhang, Chen; Bos, Clémence 1; Sandfeld, Stefan ; Schwaiger, Ruth
1 Karlsruher Institut für Technologie (KIT)

Abstract:

In this study, Cu-Cr composites were studied by nanoindentation. Arrays of indents were placed over large areas of the samples resulting in datasets consisting of several hundred measurements of Young's modulus and hardness at varying indentation depths. The unsupervised learning technique, Gaussian mixture model, was employed to analyze the data, which helped to determine the number of "mechanical phases" and the respective mechanical properties. Additionally, a cross-validation approach was introduced to infer whether the data quantity was adequate and to suggest the amount of data required for reliable predictions-one of the often encountered but difficult to resolve issues in machine learning of materials science problems.


Verlagsausgabe §
DOI: 10.5445/IR/1000178033
Veröffentlicht am 14.01.2025
Originalveröffentlichung
DOI: 10.3389/fmats.2024.1440608
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien (IAM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 04.12.2024
Sprache Englisch
Identifikator ISSN: 2296-8016
KITopen-ID: 1000178033
Erschienen in Frontiers in Materials
Verlag Frontiers Media SA
Band 11
Seiten Art.-Nr.: 1440608
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page