KIT | KIT-Bibliothek | Impressum | Datenschutz

ADAPT-pNC: Mitigating Device Variability and Sensor Noise in Printed Neuromorphic Circuits with SO Adaptive Learnable Filters

Gheshlaghi, Tara ORCID iD icon 1,2,3; Pal, Priyanjana ORCID iD icon 1,2,3; Zhao, Haibin ORCID iD icon 1,3,4; Hefenbrock, Michael 4; Beigl, Michael ORCID iD icon 1,3,4; Tahoori, Mehdi B. 1,2,3
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)
4 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

The rise of the Internet of Things demands flexible, biocompatible, and cost-effective devices. Printed electronics provide a solution through low-cost and on-demand additive manufacturing on flexible substrates, making them ideal for IoT applications. However, variations in additive manufacturing processes pose challenges for reliable circuit fabrication. Adapting neuromorphic computing to printed electronics could address these issues. Printed neuromorphic circuits offer robust computational capabilities for near-sensor processing in IoT. One limitation of existing printed neuromorphic circuits is their inability to process temporal sensory inputs. To address this, integrating temporal components in printed neuromorphic circuit architectures enables the effective processing of time-series sensory data.

Printed neuromorphic circuits face challenges from manufacturing variations such as ink dispersion, sensor noise, and temporal fluctuations, especially when processing temporal data and using time-dependent components like capacitors. To mitigate these challenges, we propose robustness-aware temporal processing neuromorphic circuits with low-pass second-order learnable filters (SO-LF). ... mehr

Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 31.03.2025
Sprache Englisch
Identifikator KITopen-ID: 1000178050
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Vorab online veröffentlicht am 14.01.2025
Schlagwörter machine-learning, time-series, neuromorphic-computing, printed-electronics, variation-aware

Volltext §
DOI: 10.5445/IR/1000178050
Veröffentlicht am 03.04.2025
Seitenaufrufe: 88
seit 15.01.2025
Downloads: 5
seit 04.04.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page