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Abstract
A parametrised diffusion operator on the regular domain� of a p-adic Schottky group
is constructed. It is defined as an integral operator on the complex-valued functions
on � which are invariant under the Schottky group �, where integration is against
the measure defined by an invariant regular differential 1-form ω. It is proven that
the space of Schottky invariant L2-functions on � outside the zeros of ω has an
orthonormal basis consisting of �-invariant extensions of Kozyrev wavelets which are
eigenfunctions of the operator. The eigenvalues are calculated, and it is shown that
the heat equation for this operator provides a unique solution for its Cauchy problem
with Schottky-invariant continuous initial conditions supported outside the zero set of
ω, and gives rise to a strong Markov process on the corresponding orbit space for the
Schottky group whose paths are càdlàg.

Keywords Schottky group · Mumford curves · p-adic numbers · Heat equation ·
Diffusion

1 Introduction

The first diffusion operators on p-adic domains are Vladimirov–Taibleson opera-
tors [15, 18]. These are convolution operators on non-archimedean local fields, and
hence diagonalisable by the Fourier transform. From this as a starting point, they
were extended to the adèles, and their connection to integration on path spaces via
Feynman-Kac formulas was explored, including proofs that such types of diffusion
are scaling limits, cf. e.g. [17, 20, 21]. As a p-adic ball is itself a compact abelian
group, the Fourier transform method can be adapted to that case in the study of the
heat equation [9].

Of importance is also their representation as a Laplacian integral operator. This
allows the extension to compact p-adic subdomainswhich are not necessarily endowed
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with a group structure, and where Turing patterns can be observed [24, 25]. Also,
certain compact p-adic manifolds known as Mumford curves became amenable to
their own diffusion operators in integral form [2].

The spectrum of such Laplacian operators can be studied via Kozyrev wavelets,
introduced in order to find an orthonormal basis of the Hilbert space L2(Qp) con-
sisting of eigenfunctions of the Vladimirov operator [10, 11]. These turned out to be
extendable to Mumford curves, [2]. And in recent work, efforts were made in order
to rid the constructions on Mumford curves from their dependence on a fundamental
domain. Whereas in [2], the construction is exclusively on a compact fundamental
domain, in the case of genus one, theta functions are used in order to construct an
invariant meromorphic function [3], and this method was also extended to higher
genus [4], allowing to hear the genus of a Mumford curve from the spectrum of a
diffusion operator.

The main goal of this article is to not require the removal of an essential part of a
given Mumford curve by resorting to a meromorphic function as previously done in
[4], where it was necessary to exclude the pre-image of the limit set of the Schottky
group under taking differences x − y of two variables x, y in the regular domain of
the Schottky group action. And this is in general a set of positive measure. In the new
approach here, only the zeros of a regular differential 1-form need to be removed, and
these form a zero set, thus obtaining a diffusion on a given Mumford curve almost
everywhere through a Schottky invariant diffusion operator almost everywhere on the
domain of regularity of the Schottky group. This is obtained by simply taking the kernel
function locally as a positive power of the p-adic absolute difference |βx − γ y|α , with
β, γ taken from the Schottky group, appropriately weighted by a function of the length
�(β−1γ ) of the word β−1γ in a given set of g generators of the Schottky group, and
their inverses as a reference alphabet. The only set now which needs to be excluded
are the zeros of the invariant regular differential 1-form ω giving rise to the measure
|ω| on the regular domain �(K ) of the Schottky group �. The main results of this
article can be stated as follows:

Theorem 1 The space of �-invariant L2-functions on � outside the zeros of ω has an
orthonormal basis consisting of�-invariant extensions of Kozyrev wavelets supported
on discs outside the zero set of ω. These are eigenfunctions of the self-adjoint diffusion

operator −	
1
2
α on that Hilbert space. The eigenvalue corresponding to such a wavelet

ψB, j , where B is a disc, and j an element of the residue field of the non-Archimedean
local field K , is

λB = μ�(F)−1
∑

γ∈�

|π |αg�(γ )

(∫

F\B
|x − γ y|−α |ω(y)| + μ�(B)1−α

)

with α > 0, and depending on B and a good fundamental domain F, and for any
γ ∈ �, and where

μ�(C) =
∫

C
|ω|
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for any |ω|-measurable set C. The eigenvalues have finitemultiplicities, and are invari-
ant under shifting from a given fundamental domain F to γ F with γ ∈ �. Here, x ∈ B,
and λB does not depend on x ∈ B.

The technical notion of “good fundamental domain” is introduced in [6, I.4.1.3],
whose existence is guaranteed for any Mumford curve. Also, a straightforward tran-
sition formula for the eigenvalues under the replacement F → γ F with γ ∈ � is
given in Lemma 4.11 below, because there could be a possible effect of the actual
arrangement the “holes” cut out of a disc in order to form a good fundamental domain.

The next theorem deals with the Cauchy problem for the heat equation

(
∂

∂t
+ 	

1
2
α

)
h(t, x) = 0

having initial condition h(0, x) = h0(x) which is a continuous �-invariant function
defined on �(K ) \ V (ω), where V (ω) is the zero set of the differential form ω, and
the solution space is assumed to be

C1((0,∞),�(K ) \ V (ω))�

where the superscript � denotes that the functions are assumed invariant under the
action of �.

Theorem 2 The heat equation for operator −	
1
2
α provides a unique solution for its

Cauchy problemwith�-invariant continuous initial condition h0(x) supported outside
the zero set V (ω) of ω, and is given as

h(t, x) =
∫

�(K )\V (ω)

h0(y)pt (x, |ω(y)|)

given by a probability measure pt (x, ·) on the Borel σ -algebra on �(K ) \ V (ω),
which is also the transition function of a strong Markov process on the orbit space
(�(K ) \ V (ω))/� whose paths are càdlàg.

2 Notation and Concepts Used

Assume that K is a p-adic number field, i.e. a finite extension of the fieldQp of p-adic
numbers. Denote the Haar measure on K as μK , or as |dx | if the dependence on a
variable x is to be emphasised. It is normalised such that μK (OK ) = 1, where OK

is the ring of integers of K . The absolute value on K is denoted as |·|, and is chosen
such that

|π | = p− f

where π is a uniformiser of OK , and f is the degree of the residue field OK /πOK as
an extension of the finite field Fp with p elements. Indicator functions will often be



    8 Page 4 of 20 Journal of Fourier Analysis and Applications             (2025) 31:8 

written as

�(x ∈ B) =
{
1, x ∈ B

0, x /∈ B

where B is a Borel measurable subset of K .
Any n-dimensional K -analytic manifold X with a regular differential n-form ω has

a measure |ω| on X outside the vanishing set V (ω) in X , which locally onU ⊂ X has
the form

|ω| |U = | f | |μK |

with f : U → K an analytic function, cf. [19, Ch. II.2.2], or [7, Ch. 7.4]. Unlike in
[4], the measure |ω| will not be extended to V (ω), here. This exceptional set is a zero
set according to [22, Lem. 3.1]. More about K -analytic manifolds can be learned in
[14] or [13], if the reader wishes so.

A Mumford curve can be viewed as a 1-dimensional compact K -analytic manifold
X having an atlas consisting of pieces bi-analytically isomorphic to holed discs in
K . They are explained in depth e.g. in [6]. What is needed for this article is that
they have a universal covering space which is open in the projective line P1(K ), and
the topological fundamental group � of X is a free group generated by g hyperbolic
Möbius transformations in PGL2(K ), where g is the genus of X . The group � is also
known as a so-called Schottky group. A Mumford curve is also a projective algebraic
curve defined over K , and posseses regular differential 1-forms which are in fact
algebraic. Namely, according to [6, Prop. VI.4.2], the space of regular differential
1-forms on a Mumford curve of genus g has dimension g over the ground field K . A
regular algebraic differential 1-form on the K -rational points X(K ) of X is given by a
�-invariant holomorphic differential 1-form on�(K ), where� ⊂ P1

K is the universal
covering space of X which exists as an open analytic domain, cf. [6, Ch. IV.3].

Assumption 1 It is assumed that the differential 1-form ω ∈ �1
X/K has all its zeros in

X(K ), the set of K -rational points of the Mumford curve X .

This assumption can be fulfilled for a given algebraic differential 1-form after
a finite extension of the field K , if necessary. The �-invariant differential 1-form
corresponding to ω of Assumption 1 is also denoted as ω. This should not be a cause
for confusion, as the points of the Mumford curve X themselves are �-orbits.

Let L2(�(K ), |ω|) be the Hilbert space of L2-functions on �(K ), on which the
inner product

〈 f , g〉ω =
∫

�(K )

f (x)g(x) |ω(x)|

is used. The space of continuous functions on �(K ) is denoted as C(�(K ), ‖·‖∞),
and is a Banach space w.r.t. the supremum norm ‖·‖∞.
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Let F (�(K )) be a space of functions �(K ) → C and define

F (�(K ))� = {u ∈ F | ∀γ ∈ � ∀x ∈ �(K ) : u(γ x) = u(x)}

as the corresponding subspace of �-invariant functions.
Similarly, a corresponding notation will be used for function spaces on �(K ) \

V (ω), where V (ω) \ �(K ) denotes the vanishing set of ω. Since the differential
1-form is algebraic as a differential form on X , this vanishing set is countable. An
example is the space L2(�(K ) \ V (ω))� .

3 Kernel Function for 0-Invariant Functions

Let � = 〈γ1, . . . , γg〉 ⊂ PGL2(K ) be a Schottky group on g ≥ 1 generators with K a
non-archimedean local field. As an abstract group, � is isomorphic to the free group
Fg with g generators. Each element of Fg can be uniquely represented as a reduced

word over the alphabet
{
γ ±1
1 , . . . , γ ±1

g

}
, i.e. by deleting all expressions of the form

γiγ
−1
i = 1 or γ −1

i γi = 1

for i = 1, . . . , g. The length of a reduced wordw over a finite alphabetA is defined as
the sum of the occurrence counts of each letter from A in w, and is denoted as �(w).

The following result is well-known:

Lemma 3.1 Fix β ∈ �. The number of elements γ ∈ � such that β−1γ has length �

is at most

2g(2g − 1)�(β)+�

for any natural number � > 0.

Proof Assume first that β = 1. Then any of the 2g letters in γ ±1
1 , . . . , γ ±1

g can
be appended by any letter from this alphabet, except the inverse of that letter. So,
initially, there are 2g choices, after which there are 2g−1 choices in each further step
in constructing a reduced word in �.

For any β ∈ �, observe that

�(β−1γ ) ≤ �(β) + �(γ )

which yields the desired upper bound by using the previous case and taking care of
possible cancelling with suffixes of β−1. �


Gerritzen and van der Put in [6, I.4.1.3] introduce the notion of good fundamental
domain for a p-adic Schottky group�, which is needed below. This is the complement
in the projective line P1(K ) of 2g open discs B1,C1, . . . , Bg,Cg whose “closures”
B+
i , C

+
i (i.e. where in the defining inequalities “<” is replaced with “≤”, and radii
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are assumed to be in the valuation group of K ) are mutually disjoint, and there are g
generators γ1, . . . , γg such that

γi (P
1(K ) \ Bi ) = C+

i , γi (P
1(K ) \ B+

i ) = Ci

for i = 1, . . . , g.
Let �(K ) ⊂ P1(K ) be defined as the complement of the setL ⊂ P1(K ) of limit

points of the action of �, assuming that ∞ ∈ L . Let F = F(K ) ⊂ �(K ) be a good
fundamental domain for �. Now, let αg > 0 such that

p f αg > 2g (1)

and define

Hα(βx, γ y) = μ�(F)−1 |π |αg�(β
−1γ ) |βx − γ y|−α (2)

for x, y ∈ F , β, γ ∈ �, and α > 0, and where the �-invariant Borel measure on
�(K ) \ V (ω) evaluated on sets is as

μ�(B) =
∫

B
|ω|

for any |ω|-measurable set B ⊂ �(K ) \ V (ω).
Now, define the operator

Hαu(βx) =
∑

γ∈�

∫

F
Hα(βx, γ y)(u(y) − u(x)) |ω(y)|

where ω ∈ �1(�(K ))� is a �-invariant holomorphic differential 1-form on �(K ),
and u ∈ C (�(K ), |·|∞)� or u ∈ L2(�(K ), |ω|), and x ∈ F . Observe that Hα is an
operator of the following:

Hα : L2(�(K ), |ω|)� → L2(�(K ), |ω|)
Hα : C(�(K ), ‖·‖∞)� → C(�(K ), ‖·‖∞)

for α > 0. Further, there is a bilinear Dirichlet form

Eα(u, v) = 〈Hαu,Hαv〉ω
=

∑

β,γ∈�

∫

F

∫

F
Hα(βx, γ y)(u(y) − u(x))

(
v(y) − v(x)

)
|ω(y)| |ω(x)|

and a quadratic Dirichlet form

Eα(u) = 〈Hαu,Hαu〉ω
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for u, v ∈ L2(�(K ), |ω|)� .
Lemma 3.2 The operator Hα is densely defined for α > 0.

Denote the space of �-invariant locally constant functions on�(K ) asD(�(K ))� .

Proof Let u ∈ D(�(K ))� . Then

Hα
γ u(βx) :=

∫

F
Hα(βx, γ y)(u(y) − u(x)) |ω(y)|

= μ�(F)−1 |π |αg�(β
−1γ )

∫

F
|βx − γ y|−α (u(y) − u(x)) |ω(y)|

for x ∈ F . Now, the distance between x and γ y can be arbitrarily large for fixed
x, y ∈ F . It takes as values natural powers of |π |α . Since u is locally constant, it
now follows that the integral term in Hα

γ u(βx) converges for all γ ∈ � to a value
bounded from above by a positive constant times a power of |π |. By assumption (1),
the number of γ ∈ � \ β for which the values Hα

γ u(x) are fixed, is bounded from

above by (2g)�(β)+� with � = �(γ ) > 0 fixed, cf. Lemma 3.1, meaning that the infinite
sum

Hαu(βx) =
∑

γ∈�

Hα
γ u(βx)

is bounded from above by a constant times a geometric series in a power of

2g |π |αg |π |α < 1

and hence converges for any β ∈ �, x ∈ F , and α > 0. �

Lemma 3.3 The quadratic Dirichlet form u �→ Eα(u) is densely defined.

Proof Let u ∈ D(�(K ))� . The value of Eα(u) is

Eα(u) = 〈Hαu,Hαu〉ω
= μ�(F)−2

∑

β,γ∈�

|π |2αg�(β
−1γ )

×
∫∫

F2
|βx − γ y|−α |u(y) − u(x)|2 |ω(y)| |ω(x)|

whose convergence is shown similarly as in the proof of Lemma 3.2. �

Let A = L2(�(K ), |ω|) andH∗

α : A → A� the adjoint operator ofHα : A� → A.
Now, define

	α := H∗
α ◦ Hα : A� → A�
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as an operator on �-invariant functions on �(K ), or on functions on the Mumford
curve X(K ), which is the same thing. There is also an operator

	†
α := Hα ◦ H∗

α : A → A

for α > 0.

Lemma 3.4 The operators Hα , H∗
α are closed, the operators 	α and 	†

α are self-
adjoint, and the operators I + 	α , I + 	†

α have bounded inverses for α > 0.

Proof In order to see that Hα is closed, assume un ∈ dom(Hα) such that un → u ∈
L2(�(K ), |ω|)� , and Hαun → v ∈ L2(�(K ), |ω|). Then

‖Hαu − v‖ω ≤ ‖Hαu − Hαun‖ω + ‖Hαun − v‖ω

and the second summand tends to zero by assumption. The square of the first summand
is

‖Hαu − Hαun‖2ω = Eα(u − un) → 0

because

∫

F
|βx − γ y|−α (un(y) − u(y) + un(x) − u(x)) |ω(y)|

tends to zero for n → ∞ for all β, γ ∈ �, as u − un tends to the constant zero
function. It follows that Hαu = v ∈ L2(�(K ), |ω|), i.e. u ∈ dom(Hα) for α > 0.
The closedness of the adjoint is now a standard fact, and the remaining assertions
follow from von Neumann’s Theorem on the adjoint [23, p. 200]. �


A consequence is that it is also possible to write

Eα(u) = 〈Hαu,Hαu〉ω = 〈	αu, u〉ω

for u ∈ dom(Eα) using the self-adjoint operator 	α on L2(�(K ), |ω|)� .

4 Spectrum

A Kozrev wavelet is a function

ψB, j (x) = μK (B)−
1
2 χ(πd−1τ( j) x)�(x ∈ B)

where B ⊂ K is a disc of radius |π |−d , d ∈ Z, j ∈ (OK /πOK )×, and
τ : OK /πOK → K a lift. They were introduced by S. Kozyrev as an eigenbasis
in L2(Qp, |dx |) for the p-adic Vladimirov operator [10].
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Lemma 4.1 It holds true that

∫

|x |=|π |k
χ(ax) |x |m |dx | =

⎧
⎪⎨

⎪⎩

|π |k(m+1) (1 − |π |), |a| ≤ |π |−k

− |π |k(m+1)+1 , |a| = |π |−k−1

0, otherwise

for k,m ∈ Z.

Proof It holds true that
∫

|x |=|π |k
χ(ax) |x |m |dx | = |π |km

∫

|x |=|π |k
χ(ax) |dx |

which shows how the assertion follows from the case m = 0. That case is shown
e.g. in [12, Lem. 3.6] in the case K = Qp. His proof carries over to general K in a
straightforward manner. �

Lemma 4.2 Let a ∈ K with |a| = |π |d−1 for d ∈ Z, and let m ∈ N. Then it holds
true that

∫

|x |≤|π |�
χ(ax) |x |m |dx | =

⎧
⎪⎨

⎪⎩

C(m) |π |�(m+1) , � ≥ 1 − d

C(m) |π |(1−d)(m+1) − |π |1−d(m+1) , � = −d

0 otherwise

with

C(m) = 1 − |π |
1 − |π |m+1

In particular, the integral vanishes, if and only if m = 0 and � ≤ −d.

Proof It holds true that

∫

|x |=|π |�
χ(ax) |x |m |dx | =

∞∑

k=�

∫

|x |=|π |k
χ(ax) |x |m |dx |

and according to Lemma 4.1, the right hand side vanishes, if and only if d < −�, as
asserted. If d > −�, then the right hand side equals

∞∑

k=�

|π |k(m+1) (1 − |π |) = C(m) |π |�(m+1)

as asserted. In the remaining case that d = −�, it holds true that the right hand side
equals

− |π |1−d(m+1) +
∑

k=1−d

|π |k(m+1) = C(m) |π |(1−d)(m+1) − |π |1−d(m+1)
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again asserted. �

Lemma 4.3 Let B = B�(a) ⊂ K be a disc not containing the r points a1, . . . , ar ∈ K.
then the polynomial

h(x) =
r∏

i=1

(x − ai )

restricted to B has the constant absolute value

|h|B(x)| =
r∏

i=1

|a − ai |

for x ∈ B.

Proof Since a1, . . . , ar are not in B, it follows that

|a − ai | > |π |�

for all i = 1, . . . , r . Hence, for all x ∈ B, it holds true that

|x − ai | = |x − a + a − ai | = |a − ai |

for i = 1, . . . , r . This proves the assertion. �

Corollary 4.4 Let ψB, j be a Kozyrev wavelet on �(K ). Then

∫

B
ψB, j (x) |ω(x)|

vanishes if B does not contain any zero of ω.

Proof This follows immediately from Lemma 4.3 and the well-known result by
Kozyrev, cf. [8, Thm. 3.29] or [1, Thm. 9.4.2]. �


Let ω be a �-invariant regular 1-form on �(K ). Then, according to Lemma 4.3,

|ω(x)| = CB |dx | (3)

where

CB = C ·
r∏

i=1

|x − ai |

for some C > 0 and a1, . . . , ar ∈ F are the zeros of ω in F .
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Corollary 4.5 It holds true that

CB = CβB and
∣∣β ′(x)

∣∣ = 1

for all β ∈ � and x ∈ �(K ) \ V (ω), where B ⊂ �(K ) \ V (ω) is a disc.

Proof Assumew.l.o.g. that B ⊂ F . The first statement now follows immediately from

CB |dx | = |ω(x)| = |ω(βx)| = CβB |dx |

for β ∈ �, because, since ω is �-invariant, βB also does not contain any zeros of ω,
and a similar reasoning as in the proof of Lemma 4.3 can be used. This also explains
why the constant factor CβB exists in the first place.

Now, β ′ does not have any zeros or poles in B, because the zeros and poles of β ′ are
zeros or poles of ω. But B is away from the zeros of ω, and ω is a regular differential
form, i.e. has no poles. Hence,

∣∣β ′∣∣ is readily seen to be locally constant on B. From
the �-invariance of ω, it follows that this is actually constant equalling to one, because

CB̃ μK = |ω| =
∣∣∣ω ◦ β−1

∣∣∣ = CB̃

∣∣β ′∣∣−1
μK

as measures on B. This implies that
∣∣β ′(z)

∣∣ = 1 for z ∈ B. But since �(K ) \ V (�)

can be covered by discs, it follows that
∣∣β ′(x)

∣∣ = 1 for all x ∈ �(K ) \ V (ω). �

Remark 4.6 If B contains a zero of ω, then it does happen that the |ω|-mean of a
Kozyrevwavelet supported in B does not vanish, as can be seen in the case of 0 ∈ V (ω)

and B a small disc containing 0, by using Lemma 4.2. However, it is not clear to the
author whether this holds true in all cases, i.e. the converse implication in Corollary
4.4 might possibly not hold true.

Lemma 4.7 Let γ ∈ �. Then

γ (x) − γ (y) = γ ′(x)
1
2 γ ′(y)

1
2 (x − y)

for a suitable choice of square root in K .

Proof Assume that γ ∈ � is represented by a matrix

A =
(
a b
c d

)
∈ SL2(K )

Then

γ ′(z) = 1

(cz + d)2
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and

γ (x) − γ (y) = ax + b

cx + d
− ay + b

cy + d
= (ax + b)(cy + d) − (ay + b)(cx + d)

(cx + d)(cy + d)

= (ad − bc)(x − y)

(cx + d)(cy + d)
= γ ′(x)

1
2 γ ′(y)

1
2 (x − y)

for a suitable choice of square roots in K , as asserted. �

Lemma 4.8 Let x, y ∈ �(K ) \ V (ω). Then

|βx − γ y| =
∣∣∣x − β−1γ y

∣∣∣

for β, γ ∈ �.

Proof Let x, y ∈ �(K ) \ V (ω). Then

∣∣∣x − β−1γ y
∣∣∣ =

∣∣∣β−1βx − β−1γ y
∣∣∣ = |βx − γ y| ∣∣β ′(βx)

∣∣− 1
2
∣∣β ′(γ y)

∣∣− 1
2

for β, γ ∈ �. Hence, the assertion follows from Corollary 4.5. �

Lemma 4.9 It holds true that

∫

F
|x − y|−α (ψB, j (y) − ψB, j (x)) |ω(y)|

= −
(∫

F\B
|x − y|−α |ω(y)| + μ�(B)1−α

)
ψB, j (x)

for x ∈ K, B ⊂ �(K ) \ V (ω) a disc, and j ∈ OK /πOK .

Proof This follows from [11, Thm. 3], as the conditions for that theorem to be valid
are satisfied. �


A Kozyrev wavelet ψB, j (x) supported on a disc B ⊂ F can be extended to a
�-invariant function

ψ�
B, j (γ x) := ψB, j (x)

for all γ ∈ �. Call this function a �-invariant Kozyrev wavelet.

Define the number

NF (B) :=
∣∣∣
{
discs B̃ ⊂ F | μ�(B̃) = μ�(B) ∧ ∀γ ∈ � : IF (γ B̃) = IF (γ B)

}∣∣∣

for a given disc B ⊂ F and

IF (γ B) :=
∫

F\B
|x − γ y|−α |ω(y)|
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for γ ∈ �, α > 0.

Theorem 4.10 The space L2(�(K ) \ V (ω), |ω|)� of �-invariant L2-functions on
�(K ) \ V (ω) has an orthonormal basis consisting of the �-periodic wavelets ψ�

B, j

supported in �(K ) \ V (ω), and these are eigenfunctions of 	
1
2
α for α > 0. The

eigenvalue corresponding to ψ�
B, j is

λB = μ�(F)−1
∑

γ∈�

|π |αg�(γ )

(∫

F\B
|x − γ y|−α |ω(y)| + μ�(B)1−α

)

for j ∈ OK /πOK \ {0}, B ⊂ F \ V (ω) a disc whose �-translates form the support
of ψB, j , and F a good fundamental domain for the action of �. Here, x ∈ B, and λB

does not depend on x ∈ B. The multiplicity of eigenvalue λB is NF (B) · (p f − 1).
Both, λB and its multiplicity, are invariant under replacing F with γ F for any γ ∈ �.

The restriction of 	
1
2
α to L2(�(K ) \ V (ω), |ω|)� coincides with −Hα for α > 0.

This is Theorem 1.

Proof The �-invariant function ψ�
B, j (x) is an element of L2(�(K ) \ V (ω), |ω|)� ,

because
∫

�(K )

ψ�
B, j (x) |ω(x)| =

∑

γ∈�

∫

B
ψ�

B, j (γ x) |ω(x)| =
∑

γ∈�

∫

B
ψB, j (x) |ω(x)| = 0

where the last equation holds true by Corollary 4.4. Since any �-periodic L2-function
on �(K ) \ V (ω) has to have mean zero, it now follows that the space of �-periodic
L2-functions on that space is spanned by the �-invariant Kozyrev wavelets supported
in�(K )\V (ω), as these are in 1−1-correspondencewith theKozyrevwavelets which
are an orthonormal basis of L2(F \ V (ω), μK ). Notice that the measure |ω| differs
from μK on the support of any Kozyrev wavelet only by a constant factor according
to (3). Therefore, the different choices of measures for those Hilbert spaces are not an
issue.

Now, let β, γ ∈ �. Then

μ�(F) |π |−αg�(β
−1γ ) Hα

γ ψ�
B, j (βx)

Lem. 4.8=
∫

F

∣∣∣x − β−1γ y
∣∣∣
−α (

ψ�
B, j (y) − ψ�

B, j (x)
)

|ω(y)|

= −
(∫

F\B

∣∣∣x − β−1γ y
∣∣∣
−α |ω(y)| + μ�(B)1−α

)
ψ�

B, j (x)

for x ∈ F , where the last equality uses [11, Thm. 3.1] in a similar manner as Lemma
4.9.

What has been established so far, is that ψ�
B, j ∈ L2(�(K ) \ V (ω), |ω|)� is an

eigenfunction of Hα
γ for any γ ∈ � and α > 0. This means that Hα takes the closed
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subspace L2(�(K )\V (ω), |ω|)� to itself. Hence,	α equals the square of the restric-
tion of Hα to that space, since the �-invariant Kozyrev eigenvalues of Hα are real
numbers.

Now, it follows that

Hαψ�
B, j (βx)

= −μ�(F)−1
∑

γ∈�

|π |αg�(β−1γ )

(∫

F\B

∣∣∣x − β−1γ y
∣∣∣
−α |ω(y)| + μ�(B)1−α

)
ψ�
B, j (x)

= −μ�(F)−1
∑

γ∈�

|π |αg�(γ )

(∫

F\B
|x − γ y|−α |ω(y)| + μ�(B)1−α

)
ψ�
B, j (x)

where the last equality follows from the fact that summation over γ ∈ � is the same
as summation over β−1γ ∈ �. Hence, the expression does not depend on the choice

of β ∈ �. Hence, the ψ�
B, j is an eigenfunction of 	

1
2
α for α > 0 with eigenvalue λB as

stated. Indeed, it can be checked that the infinite sum does converge, because γ y never
falls into B, implying that |x − �y| does not become arbitrarily small. This proves

the value of eigenvalue −λB ofHα , or, equivalently, that of eigenvalue λB of 	
1
2
α , and

that λB does not depend on x ∈ B. Hence,

	
1
2
α = −Hα

for α > 0, as asserted.

As to themultiplicities, clearly, λB does not depend on the choice of j ∈ OK /πOK .
This accounts for the factor (p f − 1) in its multiplicity. The other factor is obtained
by observing that λB only depends on the �-invariant volume of disc B ⊂ F and a
summation of IF (γ B) terms, which is invariant by Lemma 4.8. This again yields a
finite contribution to the multiplicity, as F is compact, and it also follows that both, λB

and its multiplicity, are invariant under replacing F with γ F for γ ∈ �. This proves
the theorem. �


The eigenvalue of ψB, j is invariant under the action of �, but there is a dependence
on the choice of a good fundamental domainmodulo�-equivalence, which likely leads
to different spectra for different such choices. Anyway, if φ : F → F̃ is a bianalytic
map between two fundamental domains, then

Hα(βφ(x), γ φ(y)) = μ�(F̃)−1 |π |αg�(β
−1γ ) |βφ(x) − γφ(y)|−α

and

|ω(φ(y))| = | f (φ(y))| ∣∣φ′(y)
∣∣ |dy|
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where ω on F̃ takes the form:

ω(z) = f (z) dz

for some holomorphic function f : F → K . This leads to

Hαu(βφ(x))

= μ�(F̃)−1
∑

γ∈�

|π |αg�(β
−1γ )

∫

F
|βφ(x) − γφ(y)|−α | f (φ(y))| ∣∣φ′(y)

∣∣ |dy| (4)

for functions u : F̃ → C, and β ∈ �.

Lemma 4.11 The quantity λB corresponding to ψB, j (x) transforms under φ to λφ(B)

with

λφ(B) = μ�(φ(F))−1

×
∑

γ∈�

|π |αg�(γ )

(∫

F\B
|x − γφ(z)|−α

∣∣φ′(z)
∣∣ |ω(z)| − μ�(φ(B))

)

where B ⊂ �(K ) \ V (ω) is a disc.

Proof Since the bi-analytic pre-image of a p-adic disc is a p-adic disc, the expression
λφ(B) is awell-defined eigenvalueof awell-defined�-periodicwavelet. The expression
for λφ(B) follows in a straightforward manner. �

Remark 4.12 Both, the genus and the geometry of aMumford curve are encoded in the

spectrum of−	
1
2
α , as can be seen in Theorem 4.10. Firstly, via the number of elements

of � of a given length, leading to a given coefficient in the infinite sum making up
λB . This coefficient thus depends on the number g of free generators of �, i.e. the
genus of X . Secondly, via the integral

∫
F\B which is determined by the geometry of

a Mumford curve via the holes in a good fundamental domain.

5 Feller Property

Lemma 5.1 The linear operator Hα = −	
1
2
α generates a Feller semigroup

exp

(
−t	

1
2
α

)
with t ≥ 0 on C(�(K ), ‖·‖∞)� for α > 0.

Proof The criteria given by the Hille–Yosida–Ray Theorem are verified, cf. [5, Ch. 4,
Lem. 2.1].

1. The domain of −	
1
2
α is dense in C(�(K ),R)� . This follows from Lemma 3.2.

2. −	
1
2
α satisfies the positive maximum principle. For this, let h ∈ D(�(K ))� , and

x0 ∈ �(K ) such that h(x0) = sup
x∈�(K )

h(x). This exists, because h is �-periodic, and
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the fundamental domain F is compact. Then

−	
1
2
α h(x0) ≤

∫

�(K )

Hα(x0, y)(h(x0) − h(x0)) |ω(y)| ≤ 0

which implies the positive maximum principle.

3. Ran(ηI +	α) is dense inC(�(K ),R)� for some η > 0. Since−	
1
2
α is unbounded,

an approach different the proof of [24, Lem. 4.1] is required. Let h ∈ C(�(K ),R),
η > 0. The task is to find a solution of the equation

(
ηI + 	

1
2
α

)
u = h (5)

for some η > 0 and h in some dense subspace ofC(�(K ),R)� . The equation formally
can be rewritten as

u(z) −
∫
Hα(z, y)u(y) |ω(y)|

η + deg(z)
= h(z)

η + deg(z)
(6)

with

deg(z) =
∫

�(K )

Hα(z, y) |ω(y)|

which does not converge, as the operator 	
1
2
α is unbounded. That is why the operator

Tku(z) =
∫
�z,k

Hα(z, y)u(y) |ω(y)|
η + degk(z)

with

�z,k =
⊔

γ∈�

γ Fz,k

and

Fz,k = F \ Bk(z)

for k � 0 is now being studied. Let

degk(z) =
∫

�z,k

Hα(z, y) |ω(y)|

which is finite for k � 0, and

|Tku(z)| ≤ degk(z)

η + degk(z)
‖u‖∞
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where the supremum norm of u is finite, as u is �-invariant and F is compact. Hence,

‖Tk‖ ≤ 1

η/ degk(z) + 1
< 1

for any η > 0, and k � 0, and in this case it follows that I +Tk has a bounded inverse
as an operator on C(�(K ),R)� . This proves the denseness of its range for k � 0.

Now, let h ∈ D(�(K ))� , and uk, u� ∈ C(�(K ),R)� be solutions of

(I + Tk)uk = h

η + degk
, (I + T�)u� = h

η + deg�

for k, � � 0. Then

uk − u� = (I + T�)(η + deg�) − (I + Tk)(η + degk)

(I + Tk)(I + T�)(η + degk)(η + deg�)
h (7)

shows that uk is a Cauchy sequence w.r.t. ‖·‖∞. The reason is that, firstly,

‖Tk‖ = sup
z∈F

degk(z)

η + degk(z)

clearly holds true, and this is a (strictly increasing) sequence convergent to 1, and this
implies the convergence of the sequence of operators Tk to a bounded linear operator
T on C(�(K ),R)� . Secondly, the numerator of the right hand side of (7) is

η(T� − Tk) + (deg� − degk) + (T� deg � − Tk degk)

whose first and second terms become arbitrarily small in norm as � ≥ k → ∞. The
third term is

T� deg� −Tk degk = (T� deg� −Tk deg�) + (Tk deg� −Tk degk)

both of whose terms in norm become arbitrarily small as � ≥ k → ∞. Hence, uk
converges to some u ∈ C(�(K ),R)� which is seen to be a solution of (5) by using
the limit operator T as follows: Namely,

(η + degk)Tk → (η + deg)T (k → ∞)

where the limit operator coincides with the unbounded integral operator

u �→ Au =
∫

�(K )

Hα(·, y)u(y) |ω(y)|



    8 Page 18 of 20 Journal of Fourier Analysis and Applications             (2025) 31:8 

which shows that the operator

A

η + deg
= T

appearing in (6) is bounded. Now, uk is a solution of

(ηI − Hk)uk = h

with

Hk = (η + degk)Tk − degk

which for k → ∞ converges to −	
1
2
α . As uk → u, it follows that

(ηI + 	
1
2
α )u = (ηI − Hk)u + (Hk + 	

1
2
α )u

where

(ηI − Hk)u = (ηI − Hk)uk + Hk(uk − u) = h + Hk(uk − u) → h

and

(Hk + 	
1
2
α )u → 0

for k → ∞. Hence, u is a solution of (5). This proves that the range of ηI + 	
1
2
α

contains the real-valued functions in D(�(K ))� which is dense in C(�,R)� .
Now, by Hille–Yosida–Ray, the assertion follows. �


Theorem 5.2 There exists a probability measure pt (x, ·)with t ≥ 0, x ∈ �(K )\V (ω)

on the Borel σ -algebra of �(K ) \ V (ω) such that the Cauchy problem for the heat
equation

(
∂

∂t
+ 	

1
2
α

)
h(t, x) = 0

having initial condition h(0, x) = h0(x) ∈ C(�(K ) \ V (ω), ‖·‖∞)� has a unique
solution in C1 ((0,∞),�(K ) \ V (ω))� of the form

h(t, x) =
∫

�(K )\V (ω)

h0(y)pt (x, |ω(y)|

Additionally, pt (x, ·) is the transition function of a strongMarkov process on (�(K )\
V (ω))/� whose paths are càdlàg.
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This is Theorem 2. The notation C1 ((0,∞),�(K ) \ V (ω))� indicates that for
each t > 0, any such function h(t, x) is �-invariant.

Proof According to Lemma 5.1, −	α generates a Feller semigroup on the Banach
space C(�(K ), ‖·‖∞)� . Using [2, Prop. 15] allows to restrict to the the closed sub-

space C(�(K )\V (ω), ‖·‖∞)� invariant under−	
1
2
α . Hence,−	

1
2
α generates a Feller

semigroup also on that space. Now, it can be argued as in the proof of [24, Thm. 4.2],
namely that there exists a uniformly stochastically continuous C0-transition function
pt (x, |ω(y)|) satisfying condition (L) of [16, Thm. 2.10] such that

e−t	
1
2
α h0(x) =

∫

�(K )\V (ω)

h0(y)pt (x, |ω(y)|)

cf. [16, Thm. 2.15]. From the correspondence between transition functions andMarkov
processes, there now exists a strong Markov process on the quotient space (�(K ) \
V (ω))/�, which consists of X(K ) minus finitely many points, and whose paths are
càdlàg, cf. [16, Thm. 2.12]. �
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