KIT | KIT-Bibliothek | Impressum | Datenschutz

Existence of monostable fronts for a KPP infinite-difference numerical scheme

Garénaux, Louis ORCID iD icon 1; Hupkes, Hermen Jan
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the existence of traveling wave solutions for a numerical counterpart of the KPP equation. We obtain the existence of monostable fronts for all super-critical speeds in the regime where the spatial step size is small. The key strategy is to transfer the invertibility of certain linear operators related to the front solutions from the continuous setting to the discrete case we are interested in. We rely on resolvent bounds which are uniform with respect to the step size, a procedure which is also known as spectral convergence. The approach is also able to handle infinite range discretizations with geometrically decaying coefficients that are allowed to have both signs, which prevents the use of the comparison principle.

Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000178186
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 18 S.
Serie CRC 1173 Preprint ; 2025/1
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter finite difference numerical scheme, monostable front, infinite range diffusion, spectral convergence, far-field decomposition, singular limit

Volltext §
DOI: 10.5445/IR/1000178186
Veröffentlicht am 17.01.2025
Seitenaufrufe: 29
seit 17.01.2025
Downloads: 12
seit 24.01.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page