KIT | KIT-Bibliothek | Impressum | Datenschutz

Low-rank variance reduction for uncertain radiative transfer with control variates

Patwardhan, Chinmay ORCID iD icon 1; Stammer, Pia ORCID iD icon; Løvbak, Emil 2; Kusch, Jonas; Krumscheid, Sebastian ORCID iD icon 2
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

The radiative transfer equation models various physica lprocesses ranging from plasma simulations to radiation therapy. In practice, these phenomena are often subject to uncertainties. Modeling and propagating these uncertainties requires accurate and efficient solvers for the radiative transfer equations. Due to the equation’s high-dimensional phase space, fine-grid solutions of the radiative transfer equation are computationally expensive and memory-intensive. In recent years, dynamical low-rank approximation has become a popular method for solving kinetic equations due to the development of computationally inexpensive, memory-efficient and robust algorithms like the augmented basis update & Galerkin integrator. In this work, we propose a low-rank Monte Carlo estimator and combine it with a control variate strategy based on multi-fidelity low-rank approximations for variance reduction. We investigate the error analytically and numerically and find that a joint approach to balance rank and grid size is necessary. Numerical experiments further show that the efficiency of estimators can be improved using dynamical low-rank approximation, especially in the context of control variates.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Scientific Computing Center (SCC)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000178192
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 18 S.
Serie CRC 1173 Preprint ; 2025/2
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter dynamical low-rank approximation, reduced-order modeling, Monte Carlo estimation, control variates, uncertainty quantification

Volltext §
DOI: 10.5445/IR/1000178192
Veröffentlicht am 17.01.2025
Seitenaufrufe: 46
seit 17.01.2025
Downloads: 36
seit 24.01.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page