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A B S T R A C T

The steady and unsteady aerodynamics of a slightly rough square-section prism with rounded edges of
𝑟∕𝐷 = 0.16 is studied experimentally for a wide range of Reynolds numbers and incidence angles. Surface
pressures, time-averaged and fluctuating lift, drag, and pitch moment coefficients, as well as eddy shedding
frequencies are measured simultaneously for Reynolds numbers between 100,000 and 8 million. Analysis of
the data reveals drastic changes in the cross-sectional surface pressure distribution with increasing Reynolds
number for all incidence angles between −45◦ and 3.25◦, caused by the promotion of the separated-shear-layer
reattachment on the side faces owing to the rounded edges. At 𝛼 = 0◦, an unbounded supercritical flow regime
exists, while at larger absolute incidence angles the upper transition and transcritical flow regimes appear
and gradually spread over an increasing range of Reynolds numbers. The transitions from the critical to the
supercritical flow regime and further to the upper transition are accompanied by sign reversals of the lift and
pitch moment. Thereupon, the classical quasi-steady galloping models are applied to determine the stability
boundaries of transverse and torsional galloping depending on the incidence angle and Reynolds number.
Moreover, at specific combinations of both governing parameters the eddy shedding is fully suppressed.
1. Introduction

Investigations on flow phenomena around rigid prismatic bluff bod-
ies with square cross-sections and longitudinal sharp edges have re-
ceived considerable attention, motivated by applications in many dif-
ferent fields related to civil and mechanical engineering, as well as
in marine sciences and on- and offshore wind engineering. The flow
over such prisms is characterised by many complex phenomena that all
occur simultaneously, such as boundary-layer transition and separation,
shear-layer instability and reattachment, regular and irregular eddy
formation and shedding, and a strong three-dimensional wake flow.

For Reynolds numbers beyond 104, two-dimensional, i.e. ‘‘infinite’’,
square-section prisms – positioned at 0◦ angle of incidence in a steady
and uniform cross-flow – possess a constant high drag coefficient of
𝐶𝐷 = 2.15–2.2, constant lift and drag fluctuations of about 1.0 and
0.1–0.15, respectively, and Strouhal numbers of 0.11 to 0.13 (Bai and
Alam, 2018; van Hinsberg, 2021b). The Reynolds number 𝑅𝑒𝐷 is hereby
defined as

𝑅𝑒𝐷 =
𝜌𝑈∞𝐷

𝜇
(1)
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where 𝜌 equals the density of the fluid, 𝑈∞ the free stream velocity,
𝐷 the width of each face of the prism, and 𝜇 the dynamic viscosity of
the fluid. The independency of their fluid dynamics on the Reynolds
number as governing parameter results from the fixed location of the
boundary-layer separation at the sharp leading edges of the prism, as
has been demonstrated by many experimental and numerical studies,
e.g. Delany and Sorensen (1953), Vickery (1966), Bearman (1972),
Lee (1975), Okajima (1982), Norberg (1993), Luo et al. (1994), Lyn
et al. (1995), Tamura and Miyagi (1999), van Oudheusden et al. (2005,
2007), Huang et al. (2010), Huang and Lin (2011), Carassale et al.
(2014), Bai and Alam (2018), van Hinsberg (2021b).

In contrast, both the flow topology and the resultant aerodynamic
loading show a significant dependency on the angle of incidence. With
increasing incidence angle from 𝛼 = 0◦ to 45◦, three different ‘‘angle-
based’’ flow regimes are passed one after another (Igarashi, 1984): the
perfect separated flow regime for 𝛼 ≤ 𝛼𝑐 𝑟 = 12◦–15◦, the reattachment
or separation flow regime (𝛼 = 12◦–15◦ up to 35◦), and the wedge or
attached flow regime for 𝛼 > 35◦. The boundary between the first two
flow regimes is marked by the critical incidence angle 𝛼𝑐 𝑟, at which
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both the base pressure and the drag reach their minimum values, while
he time-averaged lift and Strouhal number obtain their highest values
e.g. Lee (1975), Rockwell (1977), Obasaju (1983), Knisely (1990),

Chen and Liu (1999), Dutta et al. (2003), van Oudheusden et al. (2005,
2007), Huang et al. (2010), Huang and Lin (2011), Yen and Yang
(2011), Carassale et al. (2014)). These phenomena are related to the
reattachment of the free shear layer on the downstream portion of the
face that has been turned into the flow at 𝛼𝑐 𝑟 ≤ 𝛼 ≤ 35◦. A separation
bubble is formed on that side face of the square-section prism, which
gradually decreases in size with increasing incidence angle within the
separation flow regime and has disappeared completely once the wedge
flow regime is entered (Huang et al., 2010; Huang and Lin, 2011). De-
pending on its exact value in combination with the Reynolds number,
the incidence angle behaves either as a pure influencing parameter, as
an additional governing parameter besides the Reynolds number, or as
the sole governing parameter in the case the Reynolds number exceeds

(104).

1.1. Flow-induced vibrations: transverse and rotational galloping

When mounted elastically to allow a degree of freedom in ro-
tation round the longitudinal axis and/or a translation in flow and
ross-flow direction, a rigid square-section prism can undergo flow-
nduced vibrations in a uniform, oscillating, or unsteady incoming flow
Naudascher and Rockwell, 1994; Moe and Henriksen, 1999; Blevins,

2006; Païdoussis et al., 2011). The development of a (harmonically)
hanging pressure distribution over the cross-sectional surface of the
rism, induced either by the (periodic) shedding of eddies in its wake
r by the motion of the prism itself, leads to alternatingly fluctuat-
ng fluid-dynamic loads both in flow and in cross-flow direction, as
ell as in time-dependent torsional moments. Their magnitudes can

each such considerable values that the prism may experience one
f the different types of flow-induced excitations, like vortex-induced
ibrations (VIV ) both in flow and cross-flow direction and motion-
nduced vibrations such as one-degree-of-freedom plunge (i.e. transverse)
or torsional galloping.

VIV is an instability-induced excitation that comprises oscillations
with high frequencies and limited amplitudes within a small range of
reduced flow velocities. Galloping, on the other hand, is a self-excited
imit cycle oscillation (LCO) that arises from the motion of the vibrating
rism itself. Depending on the value of the reduced flow velocity and
he cross-sectional dimensions of the prism, a distinction can be made
etween low-speed and high-speed galloping. In the case of transverse

galloping, the low-speed variant is – based on the value of the total
damping – situated below or at the lower boundary of vortex-shedding
lock-in, i.e. for reduced velocities 𝑈⋆ = 𝑈∞/(𝑓𝑦ℎ) ≤ 𝑈⋆

𝑉 𝐼 𝑉 , where 𝑓𝑦
equals the frequency of the transverse motion and ℎ the height of
the prism’s cross-section perpendicular to the oncoming undisturbed
flow. Low-speed galloping is related to the waviness of the separated
shear layers and their flapping motion, as well as to the possible
appearance of motion-induced eddies in the near wake behind the
prism (Païdoussis et al., 2011). Moreover and similar to VIV, this
galloping variant not only occurs within a limited range of reduced
low velocities, but the obtained maximum oscillation amplitudes of
he resultant LCO is bounded as well. Nakamura and Matsukawa (1987)
nd Nakamura and Hirata (1989, 1991, 1994) showed that for prisms
ith sharp-edged rectangular cross-sections only those having cross-

ectional shapes below the critical value of (𝑑∕ℎ)𝑐 𝑟 ≈ 0.6 (hence, ‘‘short’’
to ‘‘shallow’’ prisms whereby 𝑑 equals the length of the prism’s cross-
section in flow direction) are prone to low-speed galloping. High-speed
galloping, then again, takes place at 𝑈⋆ ≥ 𝑈⋆

𝑉 𝐼 𝑉 , its exact value once
again depending on the overall damping. It is furthermore marked by
an oscillation amplitude that grows with increasing reduced velocity.
In the current study, we have focused only on the high-speed transverse

and torsional galloping variants. d

2 
For galloping to occur, the prism has to experience at its initial
rest position small oscillations in translational or torsional direction
around its static equilibrium position, induced by the fluctuating lift
and drag forces or pitch moment, respectively. Since in this rest position
the free shear layers do not reattach to any of the faces of the prism,
the resultant of the lift and drag force or the torsional moment can
act in the same direction of the translational or angular velocity. This
leads to a dynamically instable situation, as the periodic motion itself
induces a negative dynamic damping, i.e. the fluctuating fluid force or
orsional moment tends to increase the motion of the prism (Parkinson,

1989; Nakamura and Hirata, 1994; Luo et al., 2003). The vibration
amplitude thus steadily increases over each vibration cycle. At a fixed
educed velocity above the onset velocity of galloping, the maximum
ossible vibration amplitude is self-limited though, which results in

the appearance of the LCO. This self-limitation of the amplitude is
voked by the alternating reattachment of both free shear layers to

the side faces around the critical angle of incidence. Dependent on the
combination of reduced velocity, Reynolds number, and the turbulence
intensity of the oncoming flow, the transverse or angular vibration
amplitude of square-section prisms can reach very large values. It is
therefore not surprising that galloping ends not seldom in a failure of
vibrating parts or a total collapse of a structure (Gupta et al., 1994;
Valentín et al., 2022).

For the modelling of both transverse and rotational galloping oscil-
ations, a linearised quasi-steady fluid-dynamic approach is commonly
dopted. For this theory to be applicable to both galloping modes,
he frequencies of the limit cycle oscillations must lie below certain
alues with respect to the frequencies of the natural eddy shedding.
therwise, disturbances that have been introduced into the flow by

he motion of the prism at a certain phase of the oscillation, i.e. at
 specific incidence angle of the body to the oncoming flow, have
ot been carried far enough downstream with the flow in the wake
ehind the prism. In those cases, they are therefore still able to directly
nfluence the flow around the prism at exactly the same vibration phase
ne oscillation period later. Provided that the eddy shedding and the
ibration of the prism are not mutually influenced, a prediction of the
alloping response can be made by using the characteristics of the
ean, i.e. time-averaged fluid-dynamic force and the pitch moment

btained under static conditions at the appropriate effective incidence
ngle for transverse and rotational galloping, respectively (Slater, 1969;

Nakamura and Mizota, 1975; Parkinson, 1989). However, it should be
emphasised that the quasi-steady theory can only be used to obtain
a preliminary verification of the possible proneness of the prism to
galloping in quite a fast way with relatively little effort. For a more
precise and reliable confirmation, the non-linear fluid-dynamic theory
has to be used, since the latter also takes into account the unsteady
effects that appear as a result of a phase lag between the motion of the
prism and the surrounding viscous flow (Nakamura and Mizota, 1975;
Nakamura, 1979).

1.2. Lateral edge rounding of two-dimensional square-section prisms

Two-dimensional sharp-edged square-section prisms experience not
nly a large mean drag and strong fluctuations of the transverse com-

ponent of the overall fluid-dynamic force, but they are in addition
also highly prone to the self-excited transverse galloping motion. A
rounding of their sharp lateral edges is nowadays a well-established
countermeasure to significantly reduce all three negative fluid-dynamic
properties. The edge roundness provokes a more complex boundary
ayer behaviour over the surface of the prism, as it allows for a
eandering of the transition points, the boundary-layer separation

ocations, and the free-shear-layer reattachment positions along the
artially rounded cross-section in up- and downstream direction with
oth varying incidence angle and Reynolds number. Hence, a depen-

ency on the Reynolds number of both the fluid dynamics of the
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Fig. 1. Simplified sketches of the instantaneous two-dimensional flow fields that are typical for the individual Reynolds-number flow regimes around a static two-dimensional
square-section prism with rounded edges positioned at 𝛼 = 0◦ in a steady and uniform cross-flow. The key role is played by the location of the laminar-to-turbulent transition that
radually wanders upstream with increasing Reynolds number.
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prism and the flow structures in its wake is thereby re-introduced for
Reynolds numbers above 104.

Similar to circular cylinder flows, the trends of the aerodynamic co-
fficients as function of increasing Reynolds number of two-dimensional
ounded square-section prisms in a steady and uniform cross-flow can
enerally be split up into four regimes, namely subcritical, critical,
upercritical (including the upper transition), and transcritical (e.g. van
insberg et al. (2017, 2018), van Hinsberg (2021b)). In the first of

hese four regimes, the boundary layer remains laminar along the
surface of the prism up to separation and the transition to turbulence
takes place on both free shear layers in the near wake, as shown in the
upper left image of Fig. 1. The two free shear layers remain separated
from the prism’s surface before rolling up into distinct vortices in the
base region, which leads to a constant high drag coefficient and low
trouhal number, i.e. a low shedding frequency of the eddies. At sub-
ritical Reynolds numbers, both aerodynamic parameters depend only
ery weakly on the Reynolds number. The following critical Reynolds-
umber flow regime is mainly characterised by a gradual, continuous
pstream motion of the laminar/turbulent transition location along
ach of the two free shear layers with increasing Reynolds number. This
pstream shift in transition induces a reduction of their lateral spread,
wing to which each free shear layer gradually approaches a side face
f the prism. Consequently, a moderate to strong decrease and increase
f, respectively, the mean drag coefficient (i.e. the appearance of the
haracteristic ‘‘drag crisis’’) and the Strouhal number can be observed.
nce the transition location is situated above a prism’s side face, shear

ayer reattachment can occur, thereby forming a separation bubble on
his side face (upper right image in Fig. 1). The attached turbulent
oundary layer separates over the downstream-directed rounded edge
nd induces in this way not only a further decrease of the suction
orce at the base face of the prism, but also a smaller wake width. The
ombination of both occurrences results in an even stronger reduction
f the mean drag force and a significant increase of the Strouhal
umber. Because the shear-layer reattachment does generally not occur
t both side faces at exact equal Reynolds number, there exists a small
eynolds-number range within the critical flow regime that is char-
cterised by a one-sided separation bubble, the ‘‘asymmetric (bistable)
low state’’. It is defined by a steady mean lift force on and a clear three-
imensionality of the flow around the prism, as well as by a hysteresis
n the flow phenomena between increasing and decreasing Reynolds
umbers (van Hinsberg et al., 2017). At the end of this regime, the

critical Reynolds number with the lowest mean drag force and the
highest Strouhal number is reached, which marks the transition of the
critical to the supercritical flow regime. This latter regime is defined
 b

3 
by a symmetric flow field around the prism due to the presence of a
separation bubble on each of the two side faces of the prism, as shown
in the lower left image of Fig. 1. It leads to a low and relatively constant
alue of the mean drag coefficient and a high Strouhal number. The
assage from the supercritical to the transcritical Reynolds-number
egime occurs over the upper transition and is accompanied by a
idening of the wake that leads not only to a decrease of the mean base
ressure and thus an increase in the mean drag coefficient, but also to

a reduction of the Strouhal number. All of these changes result from
the steady shrinkage of the two separation bubbles, their subsequent
nsteady bursting and gradual disappearance. This highly unsteady
ehaviour of the separation bubbles is caused by the continuation
f the upstream wandering of the transition location along the outer

surface of the separation bubbles and its subsequent overtaking of the
boundary-layer separation location for larger Reynolds numbers within
the upper transition. In the last Reynolds-number flow regime, i.e. the
transcritical regime, the transition to turbulence occurs is positioned at
a fixed location – most probably in the vicinity of the stagnation point
– and thus well upstream of the boundary layer separation locations,
as shown in the lower right image of Fig. 1. The flow around the prism
nd in its wake is to a very large extend independent of the Reynolds

number, which therefore also counts for the values of the mean base
pressure, the mean and fluctuating aerodynamic force coefficients, and
the Strouhal number.

The separated and combined effect of edge roundness and angle
of incidence on the fluid-dynamic loading, the flow topology, and on
he heat transfer of square-section prisms has been subject of extensive
esearch for Reynolds numbers up to (103), see for example Alam et al.

(2020) and the many references therein. In contrast, only few stud-
ies have actually focussed on the aerodynamic behaviour of rounded
square-section prisms at higher Reynolds numbers. So were Delany and
Sorensen (1953) and Polhamus (1958) one of the first who studied the
effect of edge roundness on the aerodynamic loading on 2D rounded
square-section prisms at 𝛼 = 0◦ in a cross-flow up to Reynolds numbers
of 𝑅𝑒𝐷 = 2 × 106. For this angle of incidence, they reported that
an increase in r/D – where r equals the dimensional cross-sectional
edge radius of the prism – resulted in the appearance of the critical
Reynolds-number flow regime and in lower drag forces in the following
supercritical Reynolds-number flow regime. In addition, they observed
a shift of the critical flow regime towards lower Reynolds numbers
for larger values of r/D. The experimental and numerical results for
square-section prisms with r/D = 0 and 0.167 at 𝑅𝑒𝐷 = 104 and 106

y Tamura et al. (1998) proved that a decrease as large as 60% in
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drag could be obtained by applying an edge roundness. In a follow-
p experimental study at a fixed Reynolds number of 3 × 104 they

observed that the rounded square-section prism experienced not only
lower drag coefficients and higher Strouhal numbers at all angles of
incidence between −5◦ and 30◦, but that the lift fluctuations could also
be reduced by about 50% compared to the values for the sharp-edged
square-section prism at small angles of incidence (Tamura and Miyagi,
1999). The critical angle at which both the slope of the 𝐶𝐿(𝛼) curve
changed from negative to positive and the Strouhal number reached
its maximum value, shifted from 12◦ for prisms with r/D = 0 to 5◦

for those with r/D = 1/6 and was related to an earlier reattachment
of the separated shear layer on the side face exposed to the wind.
Similar conclusions were drawn in Carassale et al. (2013, 2014) for
wo-dimensional square-section prisms with edge roundness values of
r/D = 0, 1/15, and 2/15 in the Reynolds-number range of 1.7 × 104–
2.3 × 105. Their surface pressure data at the prism’s mid-section
demonstrated that around 𝛼 = 𝛼𝑐 𝑟, being 12◦, 7◦, and 5◦ for r/D = 0,
1/15, and 2/15, respectively, an increase in the suction near the leading
edge of the side face exposed to the wind and a decrease close to its
railing edge occurred. Hence, this proved the formation of a separation
ubble through reattachment of the free shear layer on this surface. A
urther increase in angle of incidence led to a shrinkage of the length of
his separation bubble towards the windward edge, in agreement with
he observations by Huang et al. (2010) for a square-section prism with
harp edges. The latter authors subscribed this behaviour to the steady
ovement of the reattachment point towards the leading edge of this

side face with increasing 𝛼 up to an angle of 𝛼 = 45◦.

1.3. Objective of the present study

The smaller mean drag forces, higher Strouhal numbers, and lower
lift fluctuations of 2D rounded square-section prisms at moderate
Reynolds numbers compared to their sharp-edged counterpart, as well
as a distinct dependency of their values on the Reynolds number are all
induced by the relief of the fixed primary (and secondary, in the case
of a free shear layer reattachment) boundary layer separation points.
Their meandering along the partially rounded edges gives rise to a
smaller lateral spread of the free shear layers above both side faces
of the prism. The free shear layer that is present above the side face
which is turned into the oncoming flow with increasing incidence angle
is in that way enabled to reattach close to trailing edge of that side
face already at relatively small angles of incidence (Carassale et al.,
2014). The larger the value of the edge roundness, the more the critical
ncidence angle shifts to a lower value. This is also the main cause of

the distinct reduction of the maximum possible transverse or rotational
galloping amplitude of rounded square-section prisms in comparison
to their sharp-edged counterpart at a certain common reduced velocity
e.g. Carassale et al. (2013)). In addition, the combination of a weaker
ateral spread of the two free shear layers and the occurrence of a flow
eattachment at smaller incidence angles leads to a reduction in the

effective aerodynamic blockage ratio, and a decrease of the width of
he wake. The latter induces then again a weaker interaction of the
ree shear layers in the region directly adjacent to (i.e. downstream of)
he prism’s base and thus a lowering of the mean suction force on the
ase face(s) of the prism (Tamura et al., 1998; Carassale et al., 2014).

Even to this date, little is known about the influence of the angle of
incidence on the time-averaged and fluctuating loading on 2D rounded
square-section prisms in a steady and uniform cross-flow at very-high
Reynolds numbers of (106) – (107). The same applies to the suscepti-
ility of such prisms to transverse or rotational galloping for this range
f Reynolds numbers. This obvious lack of experimental and numerical
ata is actually quite surprising, as it can lead to serious problems for
lexible or flexibly-mounted prismatic structures in various engineering
ields at those full-scale Reynolds numbers.

To address those open points, the present experimental wind tun-
nel study focuses on the systematic analysis of the (un)steady forces
4 
and pitch moment that act on a slightly rough square-section prism
ith rounded edges of r/D = 0.16 for cross-flow Reynolds numbers

between 1 × 105 and 8.0 × 106. Emphasis is furthermore put on the
characteristics, i.e. strength and frequency, of the shed eddies. For that
purpose, the time-averaged surface pressure distribution at the mid-
section of the prism, the experienced mean base pressure coefficient
𝑝𝑏, the sectional mean pitch moment coefficient 𝐶𝑚, the spanwise-

ntegrated time-averaged and fluctuating fluid loads (𝐶𝐷, 𝐶𝐿, 𝐶 ′
𝐷,

′
𝐿), and the Strouhal number 𝑆 𝑡𝐿 were all measured simultaneously.
hile the mean sectional pitch moment was calculated using the mean

urface pressure distribution, all other aerodynamic coefficients and
the Strouhal number were measured using two piezoelectric platform
ynamometers. In addition to the Reynolds number, which covered
he Reynolds-number flow regimes from subcritical to transcritical, the
ngle of incidence 𝛼 of the prism was selected as the second govern-
ng parameter. The latter was varied between 𝛼 = −45◦ and 3.25◦

ith increments of 3.25◦ and 6.5◦. The time-averaged fluid-dynamic
orces and pitch moment were thereupon substituted into the classical

linearised quasi-steady transverse and rotational galloping models to
analyse not only the susceptibility of the prism to both motion-induced
vibrations, but also the range(s) of Reynolds numbers in which those
two aeroelastic instabilities could potentially occur.

2. Experimental approach

The experiments were performed in the closed-circuit High-Pressure
ind Tunnel, a unique test facility in which the air can be pressurised

p to 𝑝0 = 10 MPa to achieve maximum Reynolds numbers of 107

based on the width 𝐷 of the square-section prism) at model scale in a
ow subsonic free-stream of 𝑈∞ ≤ 35 m/s (𝑀∞ ≤ 0.1). The test section
as a square cross-section of 0.6 × 0.6 m2 and measures 1 m in length.

Free stream turbulence intensities (𝑇 .𝐼 .) in the test section and the
relative dynamic pressure variation across the working section at the
prism’s position were below 0.8% and 0.3%, respectively.

The ‘‘infinite’’ square-section prism has a span of 𝐿 = 0.6 m and
ommon side lengths of 𝐷 = 0.06 m, resulting in an aspect ratio of
R = L/D = 10, see Fig. 2. The prism was fabricated through the
ssemblage of two partially hollow stainless steel half models. Both
alf models were joined together with multiple screws and the four

spanwise edges were thereupon rounded to obtain non-dimensional
edge curvatures of r/D = 0.16 (Fig. 2). After a thorough polishment
of all four lateral faces to eliminate possible geometrical imperfections,
they were covered with a plasmatic metal coating to obtain a Gaussian
distributed non-dimensional equivalent sand-grain surface roughness
– based on the algorithm by Adams et al. (2012) – of 𝑘𝑠∕𝐷 =
4.5 × 10−4± 2 × 10−5. The purpose of the applied surface roughness was
to a simulate a light colonisation of the outer surfaces of foundation
elements of offshore constructions, such as floating and bottom-fixed
renewables and oil and gas production platforms, by hard marine
fouling (e.g. oysters, tubeworms, and mussels) after a certain residence
time in the ocean (Forteath et al., 1982; Langhamer et al., 2009;
Kerckhof et al., 2010; Fitridge et al., 2012; Theophanatos, 1988). In a
previous experimental study by van Hinsberg et al. (2017), performed
n the same wind tunnel and at equal flow conditions, unique flow
henomena could be observed on smooth (i.e. k𝑠/D = 4.5 × 10−6)
quare-section prisms with various edge roundness values for 𝛼 = 0◦,
22.5◦, and −45◦. In an experimental follow-up study on the effect of

he roughness height on a square-section prism with rounded edges
f 𝑟∕𝐷 = 0.16 it was proven that an increase in this value by a

factor of 100 to k𝑠/D = 4.5 × 10−4 (hence, from smooth to slightly
ough) has only a marginal effect on the fluid-dynamic characteristics
f the prism, such as the experienced time-averaged and fluctuating
oads, the eddy shedding frequency, and the mean wake profile, in
he sub- to supercritical Reynolds-number flow regimes (van Hinsberg,

2021a). The additional turbulence generated by the surface roughness
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Fig. 2. Wind tunnel model and definition of the positive spanwise-integrated aerodynamic force vectors, sectional pitch moment coefficient, incidence angle, and surface coordinate
, as well as the numeration of the side faces of the prism (I -IV ) and the locations of the 36 pressure taps (green short lines) at the prism’s mid-section at 𝐿∕𝐷 = 5.
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of 𝑘𝑠∕𝐷 = 0.045% is thus still ineffective in triggering the laminar-
turbulent transition at those Reynolds numbers. This demonstrates that
the laminar boundary layer is stable in these flow regimes and its
thickness is such that the tops of the roughness elements do not yet
extend into regions of higher velocity within the boundary layer or even
pierce the boundary layer. Similar conclusions were drawn by Fage
nd Warsap (1929) and Achenbach and Heinecke (1981) based on
he measured mean drag coefficient and Strouhal number of smooth
nd roughened circular cylinders with mean relative surface roughness
alues as high as 𝑘∕𝐷 = 2%–3%.

Thirty-six static pressure taps, each with a diameter of 0.3 mm
were arranged in a staggered and equally spaced configuration along
he model’s mid-span cross-section at 𝑦∕𝐷 = 5. They were connected
hrough small stainless steel and plastic polyester tubes to a
emperature-compensated electronic differential pressure measurement
nit, having a range of ±100 kPa and a 0.15% uncertainty in the
ull scale. Their positions on the prism surface are given by the non-

dimensional circumferential coordinate 𝑠∕𝐷 with 𝑠 = 0 at the middle
of the rounded edge between the faces I and IV (Fig. 2). The staggering
of the pressure tap holes was achieved by shifting each pressure
tap hole in spanwise direction by a relative amount of ±1.65 mm
(𝛥𝑦∕𝐷 = ±0.0275) with respect to its closest neighbours. In that way,
an interference of the local flow over a tap hole by the wakes generated
by the pressure holes located upstream was avoided. Based on the mean
surface pressure distribution, obtained with an uncertainty below ±150
Pa (= 0.15% FS), the mean sectional pitch moment coefficient 𝐶𝑚 could
be calculated:

𝐶𝑚 = 1
𝐷2 ∫𝑠

𝐶𝑝𝑛𝑋𝑟𝑑 𝑠 = 1
𝐷2

36
∑

𝑖=1
𝐶𝑝,𝑖𝑛𝑋 ,𝑖𝑟𝑖𝑑 𝑠𝑖 (2)

where 𝑑 𝑠𝑖 = (𝑠𝑖+1 − 𝑠𝑖−1)∕2 with 𝑠𝑖 the circumferential position of
ressure tap i measured along the peripheral of the prism according
o Fig. 2, 𝑛 the local normal vector on the surface of the prism at the

position of pressure tap i, 𝑋 the downstream directed axis with respect
o the centre of the prism, 𝑟𝑖 the distance from the longitudinal centre
xis up to the position of pressure tap i, and C𝑝,𝑖 the pressure coefficient
t the pressure tap i, defined as 𝐶𝑝,𝑖 = (𝑝𝑖 − 𝑝∞)∕𝑞∞ with 𝑝𝑖 the measured

static pressure at pressure tap i, 𝑝∞ the static pressure of the free-stream
flow, and 𝑞∞ the free-stream dynamic pressure. The mean base pressure
coefficient 𝐶𝑝𝑏 was determined by taking the average of the pressure
coefficient values of multiple surface pressure taps as listed in Table 1.
The dynamic calibration of the static pressure taps showed an upper
cut-off frequency of about 860 Hz.

The prism was mounted horizontally in the test section and spanned
the complete test-section width between both vertical side walls.
Labyrinth seals were used to minimise the amount of flow leakage
through the small ring gaps between the model and the side walls. Both
model ends were connected to rigid piezoelectric platform dynamome-
ters to obtain the time-dependent global, i.e. spanwise integrated lift
𝐿(𝑡) and drag 𝐷(𝑡) forces on the model with an uncertainty below

2%. The calculated global time-averaged lift and drag coefficients are t

5 
Table 1
Range of surface pressure taps per angle of incidence used for the calculation of the

ean sectional base pressure coefficient 𝐶𝑝𝑏.

Incidence Total number Position (𝑠∕𝐷) Position (𝑠∕𝐷)
angle (𝛼)/◦ of used pressure taps of first tap of last tap

3.25 18 1.81 3.57
0 9 1.91 2.74
−3.25 18 1.09 2.85
−6.5 18 1.09 2.85
−9.75 17 1.09 2.74
−13 17 1.09 2.74
−19.5 17 1.09 2.74
−25.5 18 0.98 2.74
−32 18 0.98 2.74
−38.5 18 0.98 2.74
−45 16 2.02 3.57

defined as 𝐶𝐿 = 𝐿(𝑡)∕(𝑞∞𝐷 𝐿) and 𝐶𝐷 = 𝐷(𝑡)∕(𝑞∞𝐷 𝐿) with 𝐿(𝑡) and 𝐷(𝑡)
the mean values of, respectively, the recorded time series of the lift
nd drag forces. The power spectral densities (PSD) of the fluctuations
f the lift force were used to determine both the main peaks that
re associated with the eddy shedding process, and the corresponding

shedding frequencies 𝑓𝐿. The resulting Strouhal numbers are defined
as St𝐿 = 𝑓𝐿𝐷∕𝑈∞.

In a previous wind tunnel study by van Hinsberg et al. (2018) the ef-
fect of the limited aspect ratio of L/D = 10 on the two-dimensionality of
the flow over the prism, and thus on the measured global aerodynamic
loads was examined through surface-oil visualisations. It was proven
that only in a small region from each wind tunnel sidewall up to about
y/D = 0.6–0.9 in cross-flow direction a three-dimensional flow over the
prism is present. Because in the current test setup the surface pressure
aps are located at the mid-span cross-section of the prism (Fig. 2), the

pressure data – and the sectional pitch moment derived therefrom – are
obtained in a strictly two-dimensional flow.

Eleven angles of incidence between 𝛼 = −45◦ and +3.25◦, with in-
crements of 3.25◦ and 6.5◦ at an accuracy of 𝛥𝛼 = ±0.03◦, were selected
and investigated. Since the prism was rotated in counter-clockwise
direction along its centre axis, the majority of the investigated angles
of incidence are designated hereafter as ‘‘negative’’, in accordance
with the aerodynamic angle convention. The geometric wind tunnel
blockage ratio varied between 0.10 (𝛼 = 0◦) and 0.13 (𝛼 = −45◦).
The formulas by Allen and Vincenti (1944) and Roshko (1961) were
pplied to the measured free-stream velocity, the drag, and the pres-
ure coefficients to correct for wall interference effects, resulting in
aximum corrections in the order of 10%. This relatively high ge-

metric blockage ratio may raise the question to what extend this
parameter influences the incidence-angle-dependent aerodynamics of
the current prism. In van Hinsberg (2021b) the experimentally obtained

ean drag and lift coefficients and the Strouhal number of a sharp-
dged square-section prism in cross-flow at equal boundary conditions
i.e. wind tunnel, measurement technique, and model aspect ratio) as
he currently investigated rounded square-section prism were compared
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to those values obtained by others through wind tunnel experiments
nd numerical simulations. When focussing in particular on the data

published by Carassale et al. (2014), as those values were also acquired
ith piezoelectric platform dynamometers, it was shown that only

marginal differences of less than 3% exist between their blockage-
uncorrected values for 𝐶𝐷, 𝐶𝐿, and 𝑆 𝑡𝐿 at 𝛼 = 0◦, 22.5◦ (interpolated
between 𝛼 = 20◦ and 25◦), and 45◦ and the ones obtained in the
High-Pressure Wind Tunnel facility, the latter having been corrected
for the geometric wind tunnel blockage. Note, that the difference in
Reynolds number, hence, 𝑅𝑒𝐷 = 3.7 × 104 (Carassale et al., 2014)
ompared to 105 ≤ 𝑅𝑒𝐷 ≤ 107 (van Hinsberg, 2021b), can be ignored,
s for 𝑅𝑒𝐷 ≥ 104 the flow around the sharp-edged square-section prisms

is situated in the shear layer transition II regime and is thus highly
Reynolds-number independent (Bai and Alam, 2018). A correction of
he data of Carassale et al. (2014) for their geometric wind tunnel
lockage ratio of only 2.5% at 𝑅𝑒𝐷 = 3.7 × 104 reduces this difference
o values below 1%. This high degree of equality in the values of
he aerodynamic coefficients for completely different geometric wind
unnel blockage ratios clearly implies the absence of a coupling be-
ween the geometric blockage effect and the angle of incidence on the

aerodynamics of this prism in the High-Pressure Wind Tunnel facility.
oreover, for square-section prisms the flow field around the sharp-

edged model is characterised by the largest lateral spread of the free
shear layers along both side faces and thus induces the highest possible
aerodynamic blockage. On the basis of these points, it can be argued
that for the current rounded square-section prism, a coupled influence
on the aerodynamics by both the geometric blockage and angle of
incidence is therefore also not to be expected.

Per measurement point a constant integration time of 𝑇 = 30 s was
hosen for all recorded signals, as it was demonstrated in a previous
tudy by van Hinsberg et al. (2018) that this time span was sufficient
o obtain well-converged time-averaged and fluctuating aerodynamic
oefficients. The spanwise-integrated aerodynamic forces were thereby
canned with a sampling frequency of 𝑓𝑠𝑐 𝑎𝑛 = 5 kHz at a resolution of
6 bit.

3. Experimental results

3.1. Time-averaged global and sectional aerodynamic coefficients

Fig. 3 shows the variations of 𝐶𝐷, 𝐶𝐿, 𝐶𝑚, and 𝐶𝑝𝑏 with re-
spect to the angle of incidence for twenty Reynolds numbers between
𝑅𝑒𝐷 = 2.0 × 105 and 𝑅𝑒𝐷 = 6.0 × 106, hence spanning the subcritical to
transcritical Reynolds-number flow regimes. Focussing first of all on the
dependency of the time-averaged global drag coefficient on the angle
of incidence at constant Reynolds number, it can be observed in Fig. 3a
hat for a Reynolds number up to 𝑅𝑒𝐷 = 3.0 × 105, i.e. up to the end
f the subcritical Reynolds-number flow regime, a decrease in 𝐶𝐷 takes
lace as the incidence angle goes from 𝛼 = 0◦ to the more negative
alue of 𝛼 = −6.5◦. At the latter of those two bounding incidence
ngles, a sign inversion of the slope of the 𝐶𝐷(𝛼) curve from positive
o negative occurs, which is followed by a steady increase of 𝐶𝐷 while
ontinuing to more negative angles of incidence and a flattening of

the 𝐶𝐷(𝛼) curve for 𝛼 → −45◦. It can thus be stated that the model
angle of 𝛼 = −6.5◦ either corresponds or lies close to the critical angle
of incidence at which the upper free shear layer steadily reattaches
to the side face IV in the vicinity of its downstream-directed rounded
edge and the flow state thus switches from the perfect separated flow
regime to the reattachment or separation flow regime. This value for
𝛼𝑐 𝑟 at (low) subcritical Reynolds numbers is only slightly higher than
𝛼𝑐 𝑟 = 5◦ measured by Carassale et al. (2014) for a 2D rounded square-
section prism with r/D = 2/15 at a subcritical Reynolds number of
𝑒𝐷 = 2.7 × 104 in a smooth cross-flow with a free stream turbulence

intensity of 𝑇 .𝐼 . = 0.2%. Although they used a square-section prism
with r/D = 0.167 – hence, with a near equal edge roundness value as
in the current experiment – (Tamura and Miyagi, 1999) also obtained a
 i

6 
somewhat lower critical incidence angle of 𝛼𝑐 𝑟 = 4◦–5◦ in laminar free
stream flow conditions (𝑇 .𝐼 . < 0.3% and 𝑅𝑒𝐷 = 3.0 × 104).

Interestingly, Fig. 3a and 3b show that for Reynolds numbers larger
than 3.5 × 105 two distinct developments of the mean global drag
coefficient with incidence angle can be distinguished. In the one case,
the steady increase in 𝐶𝐷 starts straight away from 𝛼 = 0◦, before
levelling off at more negative incidence angles and finally reaching
a relatively constant upper plateau around 𝛼 = −32◦. In the other
case, this increase of 𝐶𝐷 with angle of incidence is preceded by a
plateau with low constant values of 𝐶𝐷 that is limited to 𝛼 = −3.25◦

or 𝛼 = −6.5◦, dependent on the specific Reynolds number. Because
f the lack of a singular point of the corresponding 𝐶𝐷(𝛼) curve at
ach of those Reynolds numbers, no exact appointment of the critical
ngle of incidence can be derived from their trends. The curve at
𝑒𝐷 = 3.5 × 105 in Fig. 3a is special in that it can be interpreted

as a transition between the two main trends at low negative angles of
ncidence: between 𝛼 = 0◦ and −3.25◦ the drag slope is negative and
hus consistent with the curves for 𝑅𝑒𝐷 ≥ 4 × 105, while 𝑑 𝐶𝐷/𝑑 𝛼 > 0

in the range of 𝛼 = −3.25◦ to −6.5◦ and thus follows the trend of the
curves for Reynolds numbers below 3.5 × 105.

Although the behaviour of the mean sectional base pressure coef-
ficient 𝐶𝑝𝑏 is generally directly coupled to the mean global drag coef-
ficient, the two exact opposite trends of 𝐶𝐷 with increasing Reynolds
number in the range of 𝛼 = −6.5◦–0◦ cannot be seen in the behaviour
of 𝐶𝑝𝑏 in the Figs. 3g and 3h. In comparison to 𝐶𝐷, a somewhat wider
spreading of the values of the mean sectional base pressure coefficient
an furthermore be observed for 𝑅𝑒𝐷 = 4 × 105–8 × 105 at those angles
f incidence. This spreading is caused by the relatively deep and bright
ip in the corresponding 𝐶𝑝𝑏(𝑅𝑒𝐷) curves for 𝛼 = −3.25◦ to −13◦. The
eviation of the trends of the 𝐶𝑝𝑏(𝛼) curves for 𝑅𝑒𝐷 = 5.5 × 105 and
.0 × 105 at |𝛼| ≥ 38.5◦ from those at all other Reynolds numbers is
hen again in close agreement with the results obtained for 𝐶𝐷.

The curves of the time-averaged global lift and sectional pitch
moment coefficients as function of the incidence angle, presented in
the Figs. 3c and 3d and in the Figs. 3e and 3f, respectively, possess two

ain trends that appear alternately and are divided at each crossover
y a transition curve at a certain Reynolds number. For relatively low

Reynolds numbers up to about 4.0 × 105, 𝐶𝐿 shows a steady increase
for negative incidence angles from 𝛼 = 0◦ down to 𝛼𝑐 𝑟 ≈ −6.5◦, see
Fig. 3c. This is followed by a gradual decrease with a slope 𝑑 𝐶𝐿/𝑑 𝛼
that is near to independent of the Reynolds number, a change to a
negative mean global lift coefficient between 𝛼 = −25.5◦ and −32◦, and
a moderate recovery towards 𝐶𝐿 = 0 for 𝛼 → −45◦. A relatively similar,
ut opposite behaviour is found for 𝐶𝑚 for 𝑅𝑒𝐷 ≤ 3.5 × 105 in Fig. 3e.

For incidence angles down to 𝛼 = −6.5◦, 𝐶𝑚 reduces sharply. This
decrease is either followed directly by a gradual and steady recovery of
𝐶𝑚 towards 𝐶𝑚 = 0 at 𝛼 = −45◦ (for 𝑅𝑒𝐷 = 2.0 × 105 and 2.5 × 105),
r first by an intermediate and short plateau with a rather constant
alue of 𝐶𝑚 for incidence angles between −6.5◦ and −13◦ (i.e. for
𝑒𝐷 = 1.0 × 105, 3.0 × 105, and 3.5 × 105) before the recovery towards
𝑚 = 0 at 𝛼 = −45◦ sets in as well.

At the first transitional Reynolds number around 𝑅𝑒𝐷 = 4.0 × 105–
4.5 × 105, a change in the absolute values of both aerodynamic
coefficients is seen to occur, for 𝐶𝐿 at angles of incidence between
𝛼 = 0◦ and −19.5◦, while for 𝐶𝑚 this range of incidence angles is limited
to 𝛼 = −6.5◦–0◦. This transition is furthermore much clearer for the
former than for the latter aerodynamic coefficient.

In the following range of Reynolds numbers that prolongs up to
𝑅𝑒𝐷 = 7.5 × 105 the 𝐶𝐿(𝛼) and the 𝐶𝑚(𝛼) curves have swapped
trends and therefore keep their mirrored image. Down to an incidence
angle of either 𝛼 = −6.5◦ (for the first half of this Reynolds-number
range up to 𝑅𝑒𝐷 = 6.0 × 105) or 𝛼 = −3.25◦ (for the second half
up to 𝑅𝑒𝐷 = 7.5 × 105) the global lift coefficient shows a strong
negative trend, while the sectional pitch moment coefficient becomes
ncreasingly positive in the exact same range of incidence angles. This

s directly followed by a steep recovery of 𝐶𝐿 to values that lie close
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Fig. 3. Time-averaged spanwise-integrated drag coefficient ((a) and (b)), time-averaged spanwise-integrated lift coefficient ((c) and (d)), mean sectional pitch moment coefficient
((e) and (f )), and mean sectional base pressure coefficient ((g) and (h)) as a function of the angle of incidence in the range of Reynolds numbers of 1.0 × 105–6.0 × 105 (left
olumn) and 6.5 × 105–6.0 × 106 (right column).
t

a

to 𝐶𝐿 = 0. At several Reynolds numbers this recovery is additionally
ombined with a sign reversal of 𝐶𝐿. In contrast, the 𝐶𝑚(𝛼) curves show
ither a steady and moderate (Fig. 3e) or a steep (Fig. 3f) decrease for
ore negative incidence angles, whereby a sign change appears at all
eynolds numbers. Interestingly, for |𝛼| ≥ 13◦–19.5◦ the behaviour of
ach of those 𝐶𝑚(𝛼) curves clearly resembles that one discussed above
or 𝑅𝑒𝐷 ≤ 4.0 × 105. Regarding the lift coefficient, the majority of the
urves shows a wide valley in this range of incidence angles that ends
t approximately 𝐶𝐿 = 0 at 𝛼 = −45◦.

For all Reynolds numbers above the second common transitional
eynolds number of 𝑅𝑒𝐷 = 8.0 × 105, the individual curves of both

aerodynamic coefficients obtain once again the exact same shape as
previously discussed for subcritical Reynolds numbers.

3.2. Fluctuating global aerodynamic coefficients

The dependency of the fluctuating global force coefficients,
√

(𝐶 ′2
𝐷 )

and
√

(𝐶 ′2
𝐿 ), on the incidence angle is presented in Figs. 4a to 4d for the

same twenty Reynolds numbers in the range of 𝑅𝑒𝐷 = 1 × 105–6 × 106.
At large absolute incidence angles, there is a striking resemblance
between the behaviour of both fluctuating coefficients at each Reynolds
number. Distinct differences in the trends are then again obtained at
combinations of small absolute incidence angles and relatively low
Reynolds numbers up to 𝑅𝑒𝐷 = 3.0 × 105, i.e. up to the point at which
the crossover from the subcritical into the critical Reynolds-number
flow regime takes place. At subcritical Reynolds numbers, the value of
√

(𝐶 ′2
𝐷 ) increases steadily with decreasing angle of incidence, levels off

at intermediate negative incidence angles, and reaches a plateau with
7 
relatively constant values of
√

(𝐶 ′2
𝐷 ) = 0.16–0.21 for 𝛼 → −45◦, Fig. 4a.

By contrast, the curves of the fluctuating lift in Fig. 4c are characterised
by an initial sharp drop in the range of 𝛼 =−6.5◦–0◦. Their further
course down to 𝛼 = −45◦ has then again a similar trend as previously
described for

√

(𝐶 ′2
𝐷 ).

The transition around 𝑅𝑒𝐷 = 3.5 × 105 is also visible in the
rends of both fluctuating global force coefficients. It is reflected in

the presence of an additional bright valley between 𝛼 = −13◦ and 0◦

with minimum values of
√

(𝐶 ′2
𝐷 ) = 0.03 and

√

(𝐶 ′2
𝐿 ) = 0.05 around

𝛼 = −6.5◦. From this Reynolds number upward, several trends can
be distinguished at low to intermediate absolute incidence angles.
At 𝑅𝑒𝐷 = 4.0 × 105 and 4.5 × 105, both fluctuating global force
coefficients possess approximately constant values for incidence angles
down to 𝛼 = −13◦. A slight increase in the Reynolds number to
𝑅𝑒𝐷 = 5.0 × 105 leads to the appearance of a second plateau in both
the

√

(𝐶 ′2
𝐷 )(𝛼) and

√

(𝐶 ′2
𝐿 )(𝛼) curve. The first of the two plateaus at

pproximately
√

(𝐶 ′2
𝐷 ) = 0.06 and

√

(𝐶 ′2
𝐿 ) = 0.11 starts at 𝛼 = 0◦ and

spreads down to 𝛼 = −6.5◦. The following second plateau continues to
angles of incidence as low as 𝛼 = −19.5◦ for the fluctuating global drag
coefficient and even to 𝛼 = −25.5◦ for the fluctuating lift coefficient.
Interestingly, for both coefficients the two plateaus possess a similar
behaviour with a further increase in Reynolds number. It is charac-
terised by a continuous reduction in the range of covered incidence
angles towards a single point at 𝛼 = 0◦ (1st plateau) and 𝛼 = −3.25◦

(2nd plateau), the latter being obtained at 𝑅𝑒𝐷 ≥ 8.5–9.0 × 105. While
the Reynolds number thus has a significant effect on the shape of the
curves at low to intermediate absolute angles of incidence, the trends
of the curves gradually converge to a single one for 𝑅𝑒 ≥ 4.0 × 105
𝐷
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Fig. 4. Fluctuating spanwise-integrated lift coefficient ((a) and (b)), fluctuating spanwise-integrated drag coefficient ((c) and (d)), and Strouhal number ((e) and (f )) as a function
of the angle of incidence in the range of Reynolds numbers of 1.0 × 105–6.0 × 105 (left column) and 6.5 × 105–6.0 × 106 (right column). The dominant Strouhal numbers in (e)
nd (f ) are indicated by circles, whereas the triangles belong to the secondary peaks of the PSDs in Fig. 5.
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at higher absolute incidence angles. It possesses a steep increase with
increasing absolute incidence angles up to a final plateau with high
values of

√

(𝐶 ′2
𝐷 ) and

√

(𝐶 ′2
𝐿 ). For both coefficients, the height of this

plateau strongly depends on the value of the Reynolds number (i.e. the
corresponding Reynolds-number flow regime).

3.3. Strouhal number and power spectra

Based on their overall trend, the curves of the Strouhal number ver-
us the incidence angle in Fig. 4e and 4f can be split up into two parts.

The first one is characterised by clear changes in 𝑆 𝑡𝐿 with varying
Reynolds number for incidence angles in the range of 𝛼 = −6.5◦–
0◦. The second part, which is covered by all remaining incidence
angles, consists of a near-perfect agreement in both the course of the
different curves and the actual values of the Strouhal number among
all Reynolds numbers.

The second of those two branches, i.e. for |𝛼| ≥ 6.5◦, is defined
by a gradual decrease of 𝑆 𝑡𝐿 that ends in a levelling-off towards
an asymptotic value of 𝑆 𝑡𝐿 = 0.12–0.14 at 𝛼 = −45◦. This trend is
confirmed by the underlying power spectra of the unsteady lift force
at six Reynolds numbers in the range of 𝑅𝑒𝐷 = 2.0 × 105 to 6.0 × 106,
presented in Fig. 5. Starting from 𝛼 = −9.75◦ (magenta curves in the
pmost and third row of Fig. 5), a progression towards more negative

incidence angles induces a wandering of the single dominant and
relatively broad peak at each Reynolds number towards lower non-
dimensional shedding frequencies. The PSDs furthermore show that a
continuous increase in Reynolds number from sub- to transcritical has
merely a small effect on the exact location of this peak, i.e. the value
f the Strouhal number. By contrast, the height of the main peak is
learly affected by the Reynolds number. While a change in incidence
ngle from 𝛼 = −6.5◦ towards 𝛼 = −45◦ induces at the majority of the
tudied Reynolds numbers hardly any changes in the peak’s height –
ith the exception of 𝑅𝑒𝐷 = 4.5 × 105 (Fig. 5e) and 5.0 × 105 (Fig. 5f) –
n increase of two orders of magnitude in the peak’s height is observed
etween the lowest and the highest Reynolds number.

The first branch that spans the angles of incidence from 𝛼 = 0◦

o −6.5◦ shows an exact opposite situation: the value of the Strouhal
 (

8 
number now depends to a high degree on the Reynolds number, while
he height of the main peak in the corresponding PSDs in Fig. 5 is
elatively constant for all Reynolds numbers. Based on the shape of the

curves and the values of 𝑆 𝑡𝐿 in Fig. 4e and 4f, three sub-branches can
e differentiated.

The first sub-branch is present up to medium to high critical
eynolds numbers of 4.0 × 105. The 𝑆 𝑡𝐿(𝛼) curve shows a sharp

increase from 𝑆 𝑡𝐿 = 0.14 at 𝛼 = 0◦ up to its absolute maximum of
𝑆 𝑡𝐿 = 0.18 at 𝛼𝑐 𝑟 ≈ −6.5◦, see Fig. 4e. The single dominant peak
f the PSDs in this Reynolds-number range appears at similar non-
imensional shedding frequencies, has a similar height, and is rather

narrow (Fig. 5a and 5c). Around the critical angle of incidence, a
singular point exists in the Strouhal-number curve as the slope 𝑑 𝑆 𝑡𝐿/𝑑 𝛼
changes sign, whereupon the curve starts its second trend line towards
𝛼 = −45◦ (Fig. 4e).

The curve at 𝑅𝑒𝐷 = 4.0 × 105 shows small fluctuations between
𝛼 = 0◦ and 𝛼 = −13◦ that can be seen as an indication for the imminent
ransition from the first to the second sub-branch. The latter is defined
y high, constant Strouhal numbers of 𝑆 𝑡𝐿 = 0.26–0.28. For Reynolds
umbers that belong to the high critical (i.e. 𝑅𝑒𝐷 = 4.5 × 105) and
pper transition (hence, 𝑅𝑒𝐷 = 6.5 × 105–8.5 × 105) Reynolds-number
low regimes this branch is limited to |𝛼| ≤ 3.25◦. For all supercritical
eynolds numbers it continues to |𝛼| = 6.5◦ instead. Subsequently,
ach of these curves experiences a significant drop in 𝑆 𝑡𝐿 down to the
econd overall trend line. A limited range of incidence angles in which
o frequency peak associated with the regular eddy shedding could
e identified precedes this drop. This latter range is denoted hereafter
s 𝛥𝛼𝑤∕𝑜𝑆 𝑡, the length of which varies with Reynolds number. At
𝑒𝐷 = 4.5 × 105 and 5.0 × 105 the jump in 𝑆 𝑡𝐿 takes place in between
= −3.25◦ and −6.5◦ (hence, two neighbouring investigated incidence

ngles), which leads to 𝛥𝛼𝑤∕𝑜𝑆 𝑡 = 0◦. At both Reynolds numbers,
he flow jumps from the supercritical back into the critical Reynolds-
umber flow regime. In addition, at the lower of these two Reynolds
umbers, two Strouhal numbers appear at 𝛼 = −3.25◦ and −9.75◦,
ssociated either with the switching of the flow around the prism back
nd forth between the critical and supercritical flow states (𝛼 = −3.25◦)
r with the presence of two separate branches in the 𝑆 𝑡𝐿(𝑅𝑒𝐷) curve
𝛼 = −9.75◦) at this Reynolds number. At 𝑅𝑒 = 5.5 × 105 the value
𝐷
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Fig. 5. Power spectral densities of the time series of the spanwise-integrated lift force on the prism for 0◦ ≤ |𝛼| ≤ 45◦ at selected Reynolds numbers between 2.0 × 105–6.0 × 106.
(a) and (b): 𝑅𝑒𝐷 = 2.0 × 105; (c) and (d): 𝑅𝑒𝐷 = 3.5 × 105; (e) and (f): 𝑅𝑒𝐷 = 5.0 × 105; (g) and (h): 𝑅𝑒𝐷 = 6.0 × 105; (i) and (j): 𝑅𝑒𝐷 = 8.0 × 105; (k) and (l): 𝑅𝑒𝐷 = 6.0 × 106.

he corresponding Strouhal numbers are indicated by the symbols on the curves and the numbers inside each graph.
c
a
8
s

of 𝛥𝛼𝑤∕𝑜𝑆 𝑡 reaches its absolute maximum of 𝛥𝛼𝑤∕𝑜𝑆 𝑡 = 13.5◦, upon
which it reduces in length with further increasing Reynolds number
before reaching once more its starting value of 𝛥𝛼𝑤∕𝑜𝑆 𝑡 = 0◦ around
𝑅𝑒𝐷 = 8.0 × 105–8.5 × 105, i.e. at the crossover from the upper transi-
tion into the transcritical Reynolds-number flow regime. An example of
the shape of the corresponding PSD curve within this limited range of
incidence angles is given in Fig. 5g for 𝛼 = −9.75◦ at 𝑅𝑒𝐷 = 6.0 × 105.
From this graph, it becomes evident that the eddy shedding (and thus
VIV) is fully suppressed.

The third, and final sub-branch for 𝑅𝑒𝐷 ≥ 9.0 × 105 is marked
y a steady decrease of the Strouhal number from 𝑆 𝑡𝐿 = 0.25–0.26
t 𝛼 = 0◦ down to 𝑆 𝑡𝐿 = 0.19–0.20 at 𝛼 = −6.5◦, at which point
 seamless transition into the second part of the overall trend line
own to 𝛼 = −45◦ takes place. At 𝛼 = −3.25◦, the transition from the
pper transition to the transcritical Reynolds-number flow regime takes
lace in between 𝑅𝑒𝐷 = 9.0 × 105 and 1 × 106. In this limited range

f Reynolds numbers, the flow over the prism alternates between the t

9 
supercritical and transcritical state, confirmed by the occurrence of two
Strouhal numbers at each Reynolds number: 𝑆 𝑡𝐿 = 0.22 (transcritical
and dominant) and 𝑆 𝑡𝐿 = 0.28–0.29 (supercritical and secondary).

4. Discussion

The results that have been presented in the preceding section have
shown that the separate and combined variations in Reynolds number
and angle of incidence have a significant effect on the time-dependent
fluid dynamics of the current prism.

One issue that deserves to be scrutinised in more detail is the mean
ircumferential surface pressure distribution at mid-span of the prism
t multiple selected Reynolds numbers in the range of 1 × 105 ≤ 𝑅𝑒𝐷 ≤
× 106. In the current study no flow visualisation techniques, like

moke visualisation or Particle Image Velocimetry, were applied, since

heir implementation inside a high-pressure environment of up to
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𝑝0 = 10 MPa is associated with major challenges and risks. There-
fore, we cannot substantiate the following discussion with detailed
information on the flow field around and the wake structures be-
hind the analysed rounded square-section prism. Nevertheless, the
surface pressure distributions presented hereafter, in combination with
he corresponding time-averaged and fluctuating aerodynamic forces,
he mean sectional pitch moment, and the frequency and strength of
he shed eddies give us an initial impression of the expected flow
ehaviour.

The second accent of this section is put on a possible susceptibility
of the prism to 1-DoF transverse and rotational galloping within the
studied range of Reynolds numbers. By using the values of the slopes
of the time-averaged global lift and mean sectional pitch moment, i.e.
𝑑 𝐶𝐿∕𝑑 𝛼 and 𝑑 𝐶𝑚∕𝑑 𝛼, at 𝛼 = 0◦ to −9.75◦, it is shown that the linearised
quasi-steady fluid-dynamic models do in fact predict a tendency to
galloping, albeit in specific ranges of Reynolds numbers only that are
either bounded at one or at both sides.

4.1. Mean sectional pressure distribution: effect of both governing parame-
ers

The development of the mean sectional surface pressure distribution
over the prism’s mid-span with incidence angle is presented in Figs. 6
and 7 for six Reynolds numbers that are representative for the various
Reynolds-number flow regimes. The first of these two figures shows
the quantitative distribution of the surface pressure coefficient 𝐶𝑝,𝑐 𝑦𝑙 as
 function of the non-dimensional circumferential distance 𝑠∕𝐷 along

the prism’s peripheral (see Fig. 2). By means of a scaled vectorial repre-
sentation, the second figure gives an additional qualitative impression
f each of those distributions. The values of the time-averaged global
rag and lift coefficients, as well as of the mean sectional pitch moment

coefficient are included in the individual graphs of Fig. 7 to facilitate
the correlation between the changes in surface pressures and in the
resultant fluid-dynamic coefficients.

At the subcritical Reynolds number of 2 × 105, a highly symmet-
ric mean pressure distribution with respect to the virtual horizontal
line through 𝑠∕𝐷 = 0.47 and 2.33 is obtained at 𝛼 = 0◦ (Fig. 6a
nd 7a). Based on the classification by Igarashi (1984), introduced

in Section 1, the flow around the prism belongs to the category of
symmetric flows, i.e. the first of the two sub-categories of the perfect
separated flow regime. The relatively constant negative mean pressures
of 𝐶𝑝,𝑐 𝑦𝑙 = −1.08 over the side faces II and IV and 𝐶𝑝𝑏 = −0.95 over
the base (face III) of the prism demonstrate that after separation of
the laminar boundary layer at both forward-directed rounded edges
no reattachment of the free shear layers does occur on one or more
of those faces. This implies, that a relatively strong deflection of the
streamlines and a distinct downstream spread of the free shear layers
in lateral direction along both side faces II and IV takes place, despite
the presence of a rounding of the lateral edges as large as 16% of the
prism’s side width. The time-averaged global drag coefficient thereupon
reaches a high value of 𝐶𝐷 = 1.29 (Fig. 3a and 8a), while near-zero
values are obtained for both the time-averaged global lift and mean
sectional pitch moment coefficients (Fig. 3c and 3e).

A slight rotation of the prism to 𝛼 = −3.25◦ induces only marginal
hanges in the mean sectional surface pressure distribution. The turning
f the rounded edge between the faces I and II into the wake induces
 small relocation of the boundary layer separation point to, most
robably, a position slightly further downstream that leads to a light

overall reduction of the suction on face II compared to 𝛼 = 0◦. The re-
ultant light asymmetry in the pressure distribution leads nevertheless
o a pronounced time-averaged global lift coefficient of 𝐶𝐿 = 0.30, the
ppearance of a small negative pitch moment coefficient (𝐶𝑚 = −0.01),
nd a small reduction of the time-averaged global drag coefficient
Fig. 8a). This proves that the flow field around the prism belongs
t this angle of incidence to the asymmetric flows, i.e. the second

sub-category of the perfect separated flow regime.
 f

10 
A doubling of the negative incidence angle to 𝛼 = −6.5◦, i.e. near
the critical angle, leads to a distinct asymmetry in the pressure values
between both side faces II and IV (Fig. 6a and 7). A reattachment
of the lower free shear layer on the lateral face II is still prevented
t this incidence angle. The migration of the separation point of the
pposite boundary layer in upstream direction, in combination with
he increased proximity of the free shear layer upon separation to its
orresponding side face IV, allow a reattachment of the free shear
ayer close to the trailing edge of this face. The resultant one-sided
eattachment-like flow field has thereby switched from the perfect
eparated flow regime to the reattachment or separation flow regime.
 recirculation bubble is thus formed on the upstream portion of this
rism’s side face, which appears in Fig. 6a and 7 as a local increase

in the suction pressure, and a secondary separation of the reattached
boundary layer on or near the downstream upper rounded edge. As
a result of the different positions of the boundary layer separation
points on the upper and lower faces of the prism, a much weaker
communication of the two shear layers in the base region of the prism
is expected to take place. This is projected by the absolute minimum
and absolute maximum of the fluctuating global lift force and Strouhal
number, respectively, at this incidence angle (Fig. 4). The mean suction
pressure at the base of the prism (face III) thereupon decreases to
𝐶𝑝𝑏 = −0.89 and the time-averaged global drag coefficient reaches its
absolute minimum of 𝐶𝐷 = 1.08 at the current Reynolds number of
𝑅𝑒𝐷 = 2 × 105 (Fig. 3a and 8a). The clear imbalance between the mean
ressures in cross-flow direction below and above the prism leads to a

large steady time-averaged global lift coefficient of 𝐶𝐿 = 0.63 (Fig. 3c)
and a negative mean pitch moment of 𝐶𝑚 = −0.067 (Fig. 3e).

The wandering of the reattachment location in upstream direction
along side face IV towards its leading edge while turning the prism
to more negative incidence angles induces a shrinkage in size of the
one-sided separation bubble. The latter is visible in the surface pres-
sure distribution by a reduction of the length of the adverse pressure
recovery region. The suction peak near the leading edge initially in-
creases before reducing with every further rotation of the prism towards
𝛼 = −25.5◦ (Fig. 6b and 6c, as well as Fig. 7). The area on the upper
ateral face IV with a reattachment-like flow thus grows steadily in

upstream direction, while the flow on the lower lateral face II remains
fully separated for all angles of incidence. At 𝛼 = −32◦, the pressure on
the upstream half of face IV has becomes negative. The resemblance
of the overall pressure distribution on this face with that on face I
suggests a complete absence of the separation bubble on the former
face. This implies that the boundary layer on face I remains attached
up to its separation over the upper rounded shoulder edge. The flow
field around the prism has thus switched once more, this time from the
reattachment or separation flow regime to the wedge or attached flow
regime. By gradually turning the prism towards 𝛼 = −45◦ a migration
of the stagnation point from s/D = 0.47 at 𝛼 = 0◦ towards s/D = 0 at
𝛼 = −45◦ takes place. During this transition, the increasing symmetry
of the surface pressures between the upper and lower sides of the prism
leads to a gradual decrease of both 𝐶𝐿 and 𝐶𝑚 to 0 at the second
symmetric angle of 𝛼 = −45◦. Similar to sharp-edged square-section
prisms (e.g. Huang et al. (2010), Yen and Yang (2011), Sohankar et al.
(2015)), the increase in the lateral spacing between the two main
boundary layer separation points, located at both rounded shoulder
edges, results in a wider spread in cross-flow direction of the free shear
layers that have separated from those edges. In combination with an
increasing geometric blockage ratio towards 0.13, a larger effective
erodynamic blockage appears. The suction force at the base of the

prism becomes larger (Fig. 3g) and a higher time-averaged global drag
is obtained that slowly approaches the value of 𝐶𝐷 = 1.96 at 𝛼 = −45◦

(Fig. 3a and 8b). The strong increase in the fluctuating global lift
with incidence angle in Fig. 4c is then again most probably caused
by the increased presence of the afterbody, formed by the faces II and
III, while turning them into the wake. Interestingly, the values of the
luctuating global drag and the Strouhal number gradually regain at
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Fig. 6. Quantitative representation of the mean circumferential surface pressure distribution over the mid-span cross-section of the prism for all studied angles of incidence at
selected Reynolds numbers from subcritical to transcritical. (a)-(c): 𝑅𝑒𝐷 = 2.0 × 105; (d)-(f ): 𝑅𝑒𝐷 = 3.5 × 105; (g)-(i): 𝑅𝑒𝐷 = 5.0 × 105; (j)-(l): 𝑅𝑒𝐷 = 6.0 × 105; (m)-(o):
𝑅𝑒𝐷 = 8.0 × 105; (p)-(r): 𝑅𝑒𝐷 = 6.0 × 106. The colours correspond to the colours of the curves in Fig. 5.
d

f

c

𝛼 = −45◦ their initial values for 𝛼 = 0◦ and are thus apparently not
affected by this afterbody. This implies, that during the process of roll-
up of the free shear layers in the base region behind the prism the
interaction of those shear layers with the afterbody induces increasingly
stronger surface pressure fluctuations in cross-flow direction at this
subcritical Reynolds number.

As 𝑅𝑒𝐷 increases, various Reynolds-number flow regimes are passed
one after another for the prism at 0◦ angle of incidence. At the tran-
sitional Reynolds number of 𝑅𝑒𝐷 = 3.5 × 105 we are in the middle
of the critical Reynolds-number flow regime with a fully-separated
flow on the lower lateral face II and a reattachment-like flow with
 small separation bubble on the upper lateral face IV (Fig. 6d and
11 
7). The secondary separation of the reattached boundary layer at the
ownstream upper rounded edge introduces a smaller near wake (van

Hinsberg, 2021a) and a lower mean suction force on the base face III
(𝐶𝑝𝑏 = −0.80, Fig. 3g). This leads to a lower time-averaged global drag
orce of 𝐶𝐷 = 0.93 compared to 1.29 at 𝑅𝑒𝐷 = 2 × 105 in the subcritical

Reynolds-number flow regime (Fig. 3a and 8a).
The light asymmetry in the surface pressures between both lateral

faces and the somewhat higher suction pressures over the laminar
separation bubble result in a steady, but still relatively small negative
time-averaged global lift and positive mean sectional pitch moment
oefficient. Surprisingly, an effect of the light asymmetry in 𝐶𝑝,𝑐 𝑦𝑙(𝑠∕𝐷),

present at 𝛼 = 0◦, is noticed in the mean surface pressure distributions
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Fig. 7. Qualitative scaled vectorial representation of the mean circumferential surface pressure distribution over the mid-span cross-section of the prism for all studied angles of
incidence at selected Reynolds numbers between 2.0 × 105–6.0 × 106. The colours correspond the colours of the curves in Figs. 5 and 6. First page: 𝑅𝑒𝐷 = 2.0 × 105 (upper two
rows); 𝑅𝑒𝐷 = 3.5 × 105 (centre rows); 𝑅𝑒𝐷 = 5.0 × 105 (lower two rows), second page: 𝑅𝑒𝐷 = 6.0 × 105 (upper two rows); 𝑅𝑒𝐷 = 8.0 × 105 (centre rows); 𝑅𝑒𝐷 = 6.0 × 106

(lower two rows).
d
i
m
b
b
f
c
b

for incidence angles as far up as |𝛼| = 25.5◦ at this specific Reynolds
number. It mainly manifests itself in a light reduction of the adverse
pressure recovery region (i.e. the recirculation bubble) on face IV, in
particular at 𝛼 = −6.5◦ and −9.75◦. In addition, the higher suction
peak at the windward-directed upper rounded edge at the transitional
Reynolds number (Fig. 7) and the somewhat higher negative pressure
in the vicinity of the secondary separation point at the trailing edge of
ace IV at 𝛼 = −19.5◦ and −25.5◦ in Fig. 6e and 6f are also directly

related to it. Fig. 3, 4, and 8 demonstrates that those changes in

𝑝,𝑐 𝑦𝑙(𝑠∕𝐷) lead in particular to lower values of 𝐶𝐷, 𝐶𝑚, 𝐶𝑝𝑏,
√

(𝐶 ′2
𝐿 ),

nd
√

(𝐶 ′2
𝐷 ) at those incidence angles, while the time-averaged global

lift coefficient and the Strouhal number remain practically unaffected.
In the range of incidence angles from 𝛼 = −32◦ to −45◦ the differ-
ences in the mean surface pressures between 𝑅𝑒𝐷 = 2.0 × 105 and
3.5 × 105 are marginal. That explains the common values for each
of the fluid-dynamic coefficients and the Strouhal number at those
incidence angles. Hence, at 𝑅𝑒𝐷 = 3.5 × 105 the flow around the prism
slowly migrates from a clear critical Reynolds-number flow state at low
bsolute incidence angles back to the subcritical one at large absolute

incidence angles. The only exception are the somewhat higher values
for the fluctuating lift at 𝑅𝑒 = 3.5 × 105, which indicates a small
𝐷

12 
increase in the communication between both shear layers in the base
region, as well as their interaction with the prism surface.

For 𝑅𝑒𝐷 ≥ 5 × 105, the prism experiences at 𝛼 = 0◦ a supercritical
Reynolds-number flow, characterised by the presence of a large suction
peak of about 𝐶𝑝,𝑐 𝑦𝑙 = −3.4 to −3.8 – depending on the exact Reynolds
number – at the leading edges of the two lateral faces. Travelling
in downstream direction along the two side faces a distinct adverse
pressure recovery region, a laminar separation bubble, and a secondary
separation of the reattached turbulent boundary layer at the trailing
edges of faces II and IV are encountered (Fig. 6g, 6j, 6m, 6p, and
7). The suction at the base of the prism and the time-averaged global
rag are both low, while the symmetric surface pressure distribution
nduces both a zero time-averaged global lift and mean sectional pitch
oment coefficient (Fig. 3). With the exception of 𝑅𝑒𝐷 = 6 million,

oth suction peaks (and most probably therefore also both recirculation
ubbles) exist until an angle of incidence of about 𝛼 = −13◦. At the
ormer Reynolds number, a flat pressure distribution appears on the
omplete side face II as soon as the first non-zero incidence angle has
een reached, see Fig. 7.

Interesting to mention is the dynamic behaviour of the heights
of the suction peaks and the lengths of the subsequent adverse pres-
sure recovery regions with a variation in Reynolds number. For low
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Fig. 7. (continued).
Fig. 8. Time-averaged spanwise-integrated drag coefficient as a function of the Reynolds number for angles of incidence between 𝛼 = 0◦ and −13◦ (left column) and between
= −19.5◦ and −45◦ (right column).
s
p

w

Reynolds numbers up to about 𝑅𝑒𝐷 = 4 × 105–4.5 × 105, an adverse
ressure recovery region in combination with a preceding suction peak
ppears on the upper lateral face only, see, for example, the pressure
istributions at 𝑅𝑒𝐷 = 2 × 105 and 3.5 × 105 in Fig. 7. This explains the

occurrence of a positive time-averaged global lift and negative mean
sectional pitch moment coefficient for all incidence angles down to
𝛼 = −25.5◦ in Fig. 3c to 3f. At Reynolds numbers in the range of
𝑅𝑒𝐷 = 4.5 × 105 to 6.5 × 105 the lower lateral face experiences a
tronger suction peak and a longer adverse pressure recovery region
han the upper one, see Fig. 7. This results in a sign inversion of 𝐶𝐿 for
ncidence angles down to 𝛼 = −25.5◦ and of 𝐶𝑚 down to 𝛼 = −9.75◦

to −13◦. From the surface pressure distributions in Fig. 6m, 6n, and
7 it can be deduced that at 𝑅𝑒𝐷 = 8 × 105 the situation has changed
once more, as the stronger suction peak and the longer adverse pressure
13 
recovery region have now both returned to the upper lateral face. From
this Reynolds number onwards, the prism experiences once again a
teady positive time-averaged global lift and a negative mean sectional
itch moment coefficient at low to moderate absolute incidence angles.

4.2. Susceptibility to transverse galloping and 1-DoF flutter

Consider a visco-elastically supported rigid square-section prism
ith rounded longitudinal edges that is subjected to a cross-flow and

allowed to oscillate with a small amplitude in heave motion only,
i.e. being constrained in both its in-line oscillation with the flow and its
rotation round the longitudinal axis. By solving the linearised equation
of motion in transverse direction, it can be shown that this prism is
stable with respect to small-amplitude transverse disturbances around
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an equilibrium position when the reduced velocity 𝑈⋆
∞ is below a

ertain threshold (Blevins, 2006):

𝑈⋆
∞ =

𝑈∞
𝑓𝑦𝐷

< 2
(𝑑 𝐶𝑦∕𝑑 𝛼)||

|𝛼=𝛼̂

4𝑚𝜋 𝜁𝑦
𝜌𝐷2

(3)

In this equation, 𝑚 is the mass per unit length of the rounded square-
section prism, 𝜁𝑦 the structural damping factor, and the term
(𝑑 𝐶𝑦/𝑑 𝛼)|𝛼=𝛼̂ the derivative of the transverse force coefficient 𝐶𝑦
(positive upwards) with respect to the angle of incidence at the consid-
ered equilibrium angle 𝛼̂. Based on the linearised quasi-steady theory
by Glauert (1919) and Den Hartog (1932), the term (𝑑 𝐶𝑦/𝑑 𝛼)|𝛼̂ can be
pproximated by
𝑑 𝐶𝑦

𝑑 𝛼
|

|

|

|

|𝛼̂
= −

{

𝑑 𝐶𝐿
𝑑 𝛼

|

|

|

|𝛼̂
+ 𝐶𝐷(𝛼̂)

}

(4)

where 𝐶𝐿 and 𝐶𝐷 are the global lift and drag coefficient measured on
a static prism, respectively. For those cases at which the aerodynamic
damping exceeds the structural one (i.e. a negative net damping),
Eq. (3) states that the linear stability threshold for 1-DoF transverse
galloping at 𝛼 = 𝛼̂ is traversed when (1) the term (𝑑 𝐶𝐿/𝑑 𝛼)|𝛼̂ + 𝐶𝐷(𝛼̂)
in Eq. (4) is negative (hence, the Glauert/Den Hartog stability criterion)
and (2) the reduced velocity (Eq. (3)) exceeds its critical value. Under
hose circumstances, a cross-over from a stable to an unstable oscilla-

tory transverse motion around the equilibrium angle of incidence takes
lace. By introducing the Scruton number as the reduced damping,
.e. 𝑆 𝑐𝑦 = [2𝑚(2𝜋 𝜁𝑦)]∕[𝜌𝐷2], the critical reduced velocity at which this

cross-over occurs can be expressed in a compact form as

𝑈⋆
∞,𝑐 𝑟 = − 2𝑆 𝑐𝑦

(𝑑 𝐶𝐿∕𝑑 𝛼)||𝛼̂ + 𝐶𝐷(𝛼̂)
(5)

In the discussion of the results for 𝐶𝐿 as function of the angle of
incidence and Reynolds number (Fig. 3c and 3d) it was highlighted
that, depending on the actual combination of both parameters, the
slope of each 𝐶𝐿(𝛼) curve changes more than once in absolute value and
in sign. Together with the values of the global drag coefficient (Fig. 8)
hese data can be used to analyse the transverse galloping stability
f the current rounded square-section prism according to Eq. (5) and

localise the Reynolds-number range(s) in which this galloping variant
may occur. Fig. 9e shows the resultant stability diagram in terms of
𝑈⋆
∞,𝑐 𝑟∕𝑆 𝑐𝑦 for Reynolds numbers in the range of 𝑅𝑒𝐷 = 1 × 105–6 × 106

t four different equilibrium angles between 𝛼̂ = 0◦ and −9.75◦. From
his graph it can be inferred that at 𝛼̂ = 0◦ two galloping stability

boundaries exist in the studied range of Reynolds numbers, namely
at 𝑅𝑒𝐷 = 4.63 × 105 and 7.92 × 105. According to the classical
transverse galloping model, the instability prone-region of the prism
is confined to Reynolds numbers that are enclosed by both bounding
values. Hence, the prism thus behaves as a soft oscillator only for
those Reynolds numbers that belong to the first part of the supercrit-
ical Reynolds-number flow regime. A gradual increase in the absolute
value of 𝛼̂ towards |𝛼̂| = 9.75◦ induces a significant rearrangement
of the region(s) in which the prism is susceptible to 1-DoF trans-
verse galloping: bounding Reynolds numbers shift to lower or higher
values, new regions of instability appear, while others disappear. At
̂ = −3.25◦, for example, two new galloping-unstable regions can be
observed. The first one is limited to a very small range of Reynolds
numbers between 𝑅𝑒𝐷 = 3.59 × 105 and 3.83 × 105 (hence, within
the critical Reynolds-number flow regime). The second one, however,
is situated at transcritical Reynolds numbers, bounded to the left at
𝑅𝑒𝐷 = 1.146 × 106, while open to the right up to at least 𝑅𝑒𝐷 = 6 × 106.
Even more interesting is that at both 𝛼̂ = −6.5◦ and −9.75◦ a tendency
of the current prism to transverse galloping can be observed for nearly
all investigated Reynolds numbers. The only exception is a relatively
narrow stability interval covered by Reynolds numbers that belong to
the high critical up to low upper transition flow regimes, as well as
a second interval for 𝛼̂ = −9.75◦ positioned at the transition from
the subcritical to the critical flow regime. In addition, the combined
reduction of the negative slope of the 𝐶 (𝛼) curves (Fig. 3c and 3d)
𝐿

14 
and the strong increase in 𝐶𝐷 (Fig. 8) causes the overall rise of the
onset galloping velocity when changing the value of 𝛼̂ from −6.5◦ to
−9.75◦.

In contrast to the current results, Carassale et al. (2013) found a
clear critical galloping velocity 𝑈⋆

𝑐 𝑟∕𝑆 𝑐 for all angles of incidence below
𝛼̂ = 𝛼𝑐 𝑟 in their experiments on a smooth 2D square-section prism with
rounded lateral edges of r/D = 2/15, placed in a smooth cross-flow
t a subcritical Reynolds number of 2.7 × 104. van Hinsberg (2021a)

demonstrated that for the current prism configuration with r/D = 0.16
at 𝛼 = 0◦ an increase in surface roughness has only a marginal effect
on the aerodynamics in the subcritical flow regime. Moreover, the
resented data clearly showed a strong independence of the mean

and fluctuating aerodynamic coefficients from a variation in Reynolds
number within that flow regime. It can therefore be argued that the
observed difference in transverse galloping stability between the two
rounded square-section prisms is mainly caused by the difference in
edge roundness of about 20%. This results in a different behaviour
of the flow around both prisms (van Hinsberg et al., 2017), with the
urrent prism behaving both aerodynamically and aeroelastically closer
o a circular cylinder (being unsusceptible to transverse galloping),
hile the flow over the prism studied by Carassale et al. is somewhat

loser to that around a sharp-edged square-section prism which tends to
gallop at all angles of incidence up to 𝛼̂ = 𝛼𝑐 𝑟. This explains why a clear
stability boundary is found for the latter rounded square-section prism
up to 𝛼𝑐 𝑟 at the subcritical Reynolds number of 𝑅𝑒𝐷 = 2.7 × 104, while
the current prism is stable in transverse galloping below |𝛼| = 6.5◦, as
presented in Fig. 9e.

In the case of pure torsional galloping, also known as 1-DoF flutter,
he prism performs an LCO in its first torsional mode round its elastic
xis (Simiu and Scanlan, 1996; Blevins, 2006). Just like 1-DoF trans-

verse galloping, it occurs when the net damping is negative, hence,
he free stream velocity exceeds a certain lower critical threshold,
nd perturbations in the oncoming flow induce small initial rotational
scillations of the prism round its equilibrium incidence angle. In
ontrast to the previous galloping variant, the resultant motion of the
rism is a rotation round its longitudinal axis in pure pitch, provided
hat (1) the elastic axis of the prism coincides with the axis that goes
hrough the prism’s centre of mass and (2) its oscillation in-line as well
s perpendicular to the oncoming flow are both inhibited. On the basis

of a linear quasi-steady analysis, the following critical reduced velocity
must be exceeded for pure torsional galloping to occur (Blevins, 2006)

𝑈⋆
∞,𝑐 𝑟 =

𝑈∞,𝑐 𝑟
𝑓𝜃𝐷

= − 4
𝑅 (𝑑 𝐶𝑚∕𝑑 𝛼)||𝛼̂

𝐽𝜃2𝜋 𝜁𝜃
𝜌𝐷3

(6)

where (𝑑 𝐶𝑚/𝑑 𝛼)|𝛼=𝛼̂ is the slope of the curve of the static pitch moment
oefficient 𝐶𝑚 (positive upwards) as function of the incidence angle at
𝛼̂, 𝐽𝜃 the polar mass moment of inertia round the prism’s longitudinal
xis per unit length including added-mass effects, and 𝜁𝜃 the rotational
tructural damping factor. Furthermore, 𝑅 equals the ‘‘characteristic
adius’’ associated with a reference point on the cross section of the
odel at which the relative angle of incidence resulting from the pitch

velocity of the prism is calculated. For pure torsion around the central
longitudinal axis of the present rounded square-section prism, 𝑅 =
.5𝐷 could for example be chosen, analogous to the measurements

by Nakamura and Mizota (1975) on both sharp-edged square-section
risms and rectangles with various length-to-height ratios which per-
ormed harmonic torsional oscillations in a steady cross-flow. By using
he torsional Scruton number, 𝑆 𝑐𝜃 = [2𝐽𝜃(2𝜋 𝜁𝜃)]∕[𝜌𝐷3𝑅], the critical

reduced velocity at 𝛼 = 𝛼̂ reads

𝑈⋆
∞,𝑐 𝑟 = − 2𝑆 𝑐𝜃

(𝑑 𝐶𝑚∕𝑑 𝛼)||𝛼̂
(7)

Eq. (7) shows that the linear stability thresholds for pure torsional
galloping are traversed at those points at which a sign reversal of the
slope of the 𝐶𝑚(𝛼) curve at 𝛼 = 𝛼̂ takes place. Using the sectional
aerodynamic moment coefficients of the static prism, reported in Fig. 3e
and 3f, the derived instability regions in which torsional galloping
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Fig. 9. Stability diagrams for 1-DoF transverse and pure torsional galloping as function of the Reynolds number for four different angles of incidence. (a): 𝛼̂ = 0◦; (b): 𝛼̂ = −3.25◦;
c): 𝛼̂ = −6.5◦; (d): 𝛼̂ = −9.75◦; (e): 1-DoF transverse galloping for 𝛼̂ = 0◦ to −9.75◦. Note that for comparison reasons the values for 𝑈⋆
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becomes possible are presented in Fig. 9a to 9d in terms of 𝑈⋆
∞,𝑐 𝑟∕𝑆 𝑐𝜃

for 1 × 105 ≤ 𝑅𝑒𝐷 ≤ 6 × 106 at 𝛼̂ = 0◦ to −9.75◦. For comparison
reasons, the stability diagrams for 1-DoF transverse galloping at equal
alue of 𝛼̂ have also been included in each graph and the values
or 𝑈⋆

∞,𝑐 𝑟∕𝑆 𝑐𝜃 have been divided by 6. Surprisingly, with only a few
inor exceptions at the non-zero values of 𝛼̂, the instability regions for

orsional galloping (i.e. for (𝑑 𝐶𝑚/𝑑 𝛼)|𝛼=𝛼̂ < 0) appear at those Reynolds
umbers at which the Glauert/Den Hartog criterion (Eq. (4)) is not
ulfilled and the prism is thus stable in 1-DoF transverse galloping.

For 𝛼̂ = 0◦ (Fig. 9a) two unstable ‘‘soft torsional galloping’’ regions
appear that are bounded at one side only (i.e. at 𝑅𝑒𝐷 = 4.63 × 105 and
.92 × 105) and separated by a small stable interval, the latter covered
y Reynolds number that belong to the first part of the supercritical
low regime. Based on the present wind tunnel data, a gradual increase
n negative value of 𝛼̂ towards −9.75◦ results in a progressive reduction
f the Reynolds-number ranges in which torsional galloping is predicted
o occur. This shrinkage results from the subsequent appearance of an
pper stability boundary at 𝑅𝑒𝐷 = 9.24 × 105 in Fig. 9b, marking the

cross-over from the upper transition to the transcritical flow regime at
̂ = −3.25◦, and a lower one at 𝑅𝑒𝐷 = 2.91 × 105 for 𝛼̂ = −6.5◦ at the
nd of the subcritical flow regime (Fig. 9c).

Although the necessary condition for pure torsional galloping is not
et in the stable Reynolds-number ranges, torsional divergence could

heoretically take place instead (e.g. Richardson et al. (1965)). For this
latter static aeroelastic problem to occur, the sum of the structural
stiffness and the aerodynamic torsional stiffness has to approach zero
or become negative, which implies that (𝑑 𝐶𝑚/𝑑 𝛼)|𝛼̂ ≥ 0. Since at
those Reynolds numbers either 1-DoF transverse galloping or torsional
divergence could occur, the onset velocity of either one of these two
instabilities that is exceeded first will determine which one of the
wo aeroelastic phenomena will take place. Because the values of the

slope of the mean sectional pitch moment coefficient are only slightly
positive, e.g. (𝑑 𝐶𝑚/𝑑 𝛼)|𝛼̂=0◦ = 0–0.32, while the negative values of
(𝑑 𝐶𝐿/𝑑 𝛼)|𝛼̂ are approximately one order of magnitude larger at equal

eynolds number, the aerodynamic damping that counteracts the struc-
ural damping is larger in the latter case. It is therefore to be expected
hat the critical velocity of the 1-DoF transverse galloping instability is
15 
exceeded first, although the values of the structural properties of the
current prism like the mass moment of inertia, the weight, the natural
frequency, and the structural damping ratios in transverse and torsional
direction play an important role as well (Blevins, 2006; Païdoussis
et al., 2011).

The results presented in this section clearly show that 1-DoF trans-
verse galloping and pure torsional galloping can still take place under
certain conditions, even though the respective classical galloping model
predicts a stable situation. For this to happen, not only the critical
reduced velocity has to be exceeded, but, in contrast to the soft os-
illator variant at 𝛼̂ = 0◦, the prism also has to be given a certain
inimum initial transverse or rotational amplitude in order to be set in

n unstable galloping condition. At those Reynolds numbers, the prism
hus behaves as a hard oscillator.

5. Conclusions

Experimental data on the unsteady and time-averaged aerodynamics
f a static 2D square-section prism with rounded lateral edges of r/D =
.16 and fully covered by a light surface roughness of k𝑠/D = 4.5 × 10−4

ave been obtained through tests in the High-Pressure Wind Tunnel
f the DLR in Göttingen. Their analysis has revealed that both the
eparate and combined variation in the Reynolds number in the range
f 𝑅𝑒𝐷 = 1 × 105–8 × 106 – hence, covering all Reynolds-number flow
egimes from subcritical up to high transcritical – and in the angle of
ncidence between 𝛼 = −45◦ and +3.25◦ have a drastic effect on the
urface pressure distribution along the cross-section at the mid-span
f the prism. It has been proven that the prism’s cross-sectional edge

roundness plays a key role in the behaviour of the flow and thus in
the values of the surface pressures, resultant aerodynamic forces, pitch
moment, and shedding process of the eddies in the wake of the prism.
By applying the linearised quasi-steady aerodynamic modelling to those
data, the proneness of the prism to both 1-DoF transverse and torsional
galloping (i.e. 1-DoF flutter) and their instability regions in terms of
the Reynolds number and incidence angle have been investigated. The
main results can be summarised as follows:
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1. Positioned at 𝛼 = 0◦, the prism experiences a supercritical flow
at least up to a Reynolds number of 10 million. At the first
investigated non-zero angle of incidence, i.e. |𝛼| = 3.25◦, the
upper limit of this Reynolds-number flow regime becomes visible
in the studied range of Reynolds numbers. The upper bound-
ary gradually shifts to lower Reynolds numbers with increasing
absolute value of the angle of incidence, thereby reducing the
supercritical Reynolds-number flow regime step by step to a
single point. As a result, the two uppermost Reynolds-number
flow regimes, hence, the upper transition and the transcritical
flow regime, appear as well and gradually spread over an in-
creasing range of Reynolds numbers with increasing absolute
incidence angle. In contrast, the length of both the subcritical
and the critical Reynolds-number flow regime, as well as the two
bounding Reynolds numbers of the latter flow regime, remain
nearly unaffected by a change in 𝛼. Either a gradual recovery
of the aerodynamic coefficients and Strouhal number occurs
for all non-zero angles of incidence in the upper transition or
a sudden discontinuous step from the supercritical Reynolds-
number flow state into the transcritical one takes place. The
transcritical values of those parameters are therefore at a similar
level as in the subcritical Reynolds-number flow regime for the
majority of the angles of incidence.

2. For specific combinations of the two governing parameters a
complete suppression of the periodic eddy shedding is possible.
This is the case in a limited range of Reynolds numbers that
belongs to the upper transition and only for incidence angles
in the range of |𝛼| = 3.25◦–19.5◦. This particular behaviour at
Reynolds numbers in the upper transition is actually already
known from experimental studies on 2D smooth circular cylin-
ders, but has until now never been demonstrated for rounded
square-section prisms.

3. The critical angle of incidence, 𝛼𝑐 𝑟, at which the detached flow
reattaches on the prism’s side face that is turned into the on-
coming free stream, lies close to 𝛼 = −6.5◦. In comparison to 2D
smooth square-section prisms with sharp edges (i.e. r/D = 0) for
which the critical angle of incidence is positioned at 𝛼 = 12◦–
15◦, the currently applied edge roundness thus produces a re-
duction of 𝛼𝑐 𝑟 by roughly 50%–60%. The effect on the flow
over the current prism in the vicinity of the critical angle of
incidence becomes clearly visible by the presence of a singular
point in the curves of the aerodynamic coefficients as function
of the incidence angle. While for all aerodynamic coefficients an
inversion of the slope of their curves emerges at this angle of
incidence, the 𝑆 𝑡𝐿(𝛼) curves either show such an inversion as
well or possess a strong discontinuity with a step from a high
Strouhal-number value down to a much lower one.

4. The crossover from the critical into the supercritical Reynolds-
number flow regime is characterised by an opposite sign switch
of both the time-averaged global lift and mean sectional pitch
moment slopes for 𝛼 = 0◦ at 𝑅𝑒𝐷 = 4.5 × 105–4.6 × 105, the
former from positive to negative and the latter from negative
to positive values. A second sign inversion of 𝑑 𝐶𝐿/𝑑 𝛼|𝛼=0◦ and
𝑑 𝐶𝑚/𝑑 𝛼|𝛼=0◦ appears at the transition between the supercritical
Reynolds-number flow regime and the upper transition, hence,
at 𝑅𝑒𝐷 = 7.9 × 105–8.2 × 105. This sign switching is in both
cases induced by the relocation of the stronger suction peak
and the ensuing longer separation bubble (visible by the adverse
pressure recovery region) from one upstream lateral rounded
edge and side face to the ones at the opposite side of the
prism.

5. On the basis of the outcomes of the classical 1-DoF transverse
and rotational galloping models, the prism can be characterised
both as a soft and a hard oscillator, depending on the value
of the Reynolds number. At an equilibrium incidence angle of
𝛼̂ = 0◦ (hence, the soft oscillator case), the instability region
16 
in which transverse galloping becomes possible is limited to a
small range of Reynolds numbers within the supercritical flow
regime. For all other Reynolds numbers, the current prism is
potentially unstable to 1-DoF rotational galloping. An increase
in the equilibrium angle of incidence induces significant shifts of
the galloping onset velocities. While for larger initial excitations
of the prism the potentially unstable regions of transverse gallop-
ing gradually spread over larger ranges of Reynolds numbers and
even become unbounded at their lower or upper side, the exact
opposite occurs for rotational galloping. For the latter, a gradual
increase in 𝛼̂ leads to a progressive reduction of the instability
regions, first at transcritical Reynolds numbers for 𝛼̂ = −3.25◦,
then also at subcritical ones for 𝛼̂ = −6.5◦, which results from the
subsequent appearance of an absolute upper and lower stability
boundary.

The rounded lateral edges of the square-section prism allow a
andering of the primary and secondary flow separation points back
nd forth over the those curved edges. The resultant changes in the
pread of the free shear layers upon separation from the windward-

directed edges lead to variations in the reattachment locations of the
free shear layers on both side faces with variations in both the Reynolds
umber and the incidence angle. This results in a distinct fluctuations
n the sectional surface pressure distribution and thus in the time-

dependent aerodynamics of the prism. Ultimately, it is those changes
in 𝐶𝐷, 𝐶𝐿 and 𝐶𝑚 with incidence angle and Reynolds number that are
esponsible for the possible appearance of 1-DoF transverse and pure
orsional galloping in certain Reynolds-number flow regimes. Whether
ne of these aeroelastic instabilities does indeed occur at a certain
eynolds number depends, among other factors, on the value of the
cruton number.
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