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Abstract
Background: Mobile devices for remote monitoring are inevitable tools to support treatment and patient care, especially in
recurrent diseases such as major depressive disorder. The aim of this study was to learn if machine learning (ML) models
based on longitudinal speech data are helpful in predicting momentary depression severity. Data analyses were based on
a dataset including 30 inpatients during an acute depressive episode receiving sleep deprivation therapy in stationary care,
an intervention inducing a rapid change in depressive symptoms in a relatively short period of time. Using an ambulatory
assessment approach, we captured speech samples and assessed concomitant depression severity via self-report questionnaire
over the course of 3 weeks (before, during, and after therapy). We extracted 89 speech features from the speech samples
using the Extended Geneva Minimalistic Acoustic Parameter Set from the Open-Source Speech and Music Interpretation by
Large-Space Extraction (audEERING) toolkit and the additional parameter speech rate.
Objective: We aimed to understand if a multiparameter ML approach would significantly improve the prediction compared
to previous statistical analyses, and, in addition, which mechanism for splitting training and test data was most successful,
especially focusing on the idea of personalized prediction.
Methods: To do so, we trained and evaluated a set of >500 ML pipelines including random forest, linear regression, support
vector regression, and Extreme Gradient Boosting regression models and tested them on 5 different train-test split scenarios: a
group 5-fold nested cross-validation at the subject level, a leave-one-subject-out approach, a chronological split, an odd-even
split, and a random split.
Results: In the 5-fold cross-validation, the leave-one-subject-out, and the chronological split approaches, none of the models
were statistically different from random chance. The other two approaches produced significant results for at least one of the
models tested, with similar performance. In total, the superior model was an Extreme Gradient Boosting in the odd-even split
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approach (R²=0.339, mean absolute error=0.38; both P<.001), indicating that 33.9% of the variance in depression severity
could be predicted by the speech features.
Conclusions: Overall, our analyses highlight that ML fails to predict depression scores of unseen patients, but prediction
performance increased strongly compared to our previous analyses with multilevel models. We conclude that future personal-
ized ML models might improve prediction performance even more, leading to better patient management and care.
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Introduction
Major depressive disorder (MDD) is a major global public
health challenge imposing a substantial burden on individu-
als and society as a whole [1]. Due to the recurrent nature
of MDD in many patients, relapse prevention is an impor-
tant treatment goal [2]. Longitudinal symptom monitoring
is crucial, especially for relapse prevention [2], as mood
deterioration and prodromal symptoms can be detected in
time and additional treatment can be initiated before a
severe episode fully develops. However, traditional retrospec-
tive symptom questionnaires and classification interviews
typically consider the last two weeks of symptoms [3], which
might not be useful for the rapid detection of impending
prodromal symptoms. More specifically, even an unrealis-
tic scenario of conducting classification interviews every 2
weeks might delay the detection of a new episode by weeks
[4,5]. Accordingly, approaches are needed that operate at a
higher frequency, enabling us to detect prodromal symptoms,
for example, on a daily basis.

Leveraging on smartphone-based data collection,
promising avenues are being opened to support the tra-
ditional monitoring of MDD symptoms [6,7]. Offering
continuous, unobtrusive, near–real-time, active and passive
everyday life data collection, the use of ambulatory assess-
ment (AA) increases ecologically valid insights into the lives
of people living with mental disorders [8,9]. Widespread
personal digital devices such as smartphones are used to
capture momentary self-reported symptoms and behaviors
as patients go about their normal daily activities in their
natural environment [10]. As clear biomarkers for MDD are
lacking [11], the identification of behavioral markers that can
be objectively derived from digitally captured everyday life
behavior has great potential to increase automated detec-
tion of new episodes, ultimately improving depression care
[6,12,13].

Speech has been discussed as one such potential behavio-
ral marker [14]. As early as 1921, Kraepelin [15] observed
that patients with MDD tended to speak with a lower speech
rate, more monotonously, and at a lower pitch compared to
healthy individuals. Since then, many studies have descri-
bed further depression-related altered speech characteristics
[14,16]. However, the research field faces several challenges
such as the sheer limitless volume of potential speech
features. Inference statistics require a theory-driven selection
of parameters, as combining thousands of them increases
the α error [17]. Machine learning (ML) techniques offer a

data-driven alternative, allowing a variety of parameters to be
explored without the need for a priori parameter restriction.

Most studies investigating speech in MDD (independent of
using ML or classical inferential statistics) use case-control
designs, comparing speech samples (or often a single sample)
of patients with MDD to healthy controls [14]. While this
approach is initially useful, it does not address the prediction
of upcoming episodes. To predict new emerging episodes or
prodromal symptoms, we need patient data before an episode
and during an emerging episode with prodromal symptoms;
even better is to collect data during and after an episode. Such
data would allow us to train models to discriminate between
healthy, prodromal, and disordered states on a within-per-
son level or to relate speech features to dimensional symp-
tomatology. This would approximate the ultimate goal in
clinical practice, namely to decide within a given patient
that yesterday’s speech features were normal, but today’s
speech features predict an emerging episode. Unfortunately,
longitudinal studies of patients with MDD including regular
speech samples, regular psychopathological ratings as ground
truth and sufficient variance in this ground truth, that is,
changes in healthy and disordered states, are rare [14,16].

To address this gap, we used a longitudinal dataset in
which repeated assessments of depressive momentary states
and speech features derived from selfie videos were col-
lected concomitantly by patients with an acute depressive
episode [18]. While Wadle and colleagues [18] used classical
statistics (multilevel models) and focused on 3 specific,
theory-driven speech features (speech rate, speech pauses,
and pitch variability), which did indeed show associations
with depression severity, we wanted to improve on several
levels. Given the large number of speech features available,
the aim of this study was to extend our previous findings by
examining a comprehensive set of 89 speech features and by
using more complex modeling approaches in terms of ML.
We aim to contribute to this field, as we only identified 3
ML studies using longitudinally assessed data in a clinical (as
opposed to subclinical) population with multiple data points
per patient to predict depression severity based on speech
features.

In one of the studies, speech samples and concomitant
mood self-ratings were collected from 30 patients with MDD
via AA over the course of 2 weeks [19]. ML analyses
revealed a correlation of ρ=.61 between the actual and
predicted mood scores, and an improvement in prediction
when using personalized (ρ=.79) instead of nonpersonalized
models.
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The most promising dataset at present is from the
consortium of the Remote Assessment of Disease and Relapse
—Central Nervous System (RADAR—CNS) project, with 2
relevant publications [20,21]. In the study by Cummins et
al [21], speech data were collected in the form of a scrip-
ted task and a free-response task from 461 patients with
MDD every 2 weeks for 18 months. A set of 28 speech
features was analyzed using linear mixed models. Associa-
tions were found between elevated depression symptoms and
speech rate, articulation rate, and speech intensity. However,
the authors mention in their limitations that the results are
based on the cohort level, which limits insights into intrain-
dividual depression-related speech changes, which they plan
to investigate in the future. The other publication from the
RADAR—CNS project focused on the benefits of model
personalization [20]. Data from the scripted (n=271) and free
response (n=258) task from a subset of patients were used
to explore personalized and generalized ML models. Three
speech parameter sets were extracted from a total of 8004
speech samples, with personalization proving beneficial for
their binary depression classification (high or low depression
severity). Specifically, running a support vector regression
(SVR) classifier based on the extended version of the Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS, audEER-
ING) from the free-response task for this binary decision
resulted in better performance for the personalized compared
to the generalized models.

Building on previous work by the authors [18], we aim
to contribute to closing this gap and to the understanding
of speech-based longitudinal monitoring of MDD. Specifi-
cally, we were interested in whether a multiparameter ML
approach would significantly improve prediction compared
to our previous study, which focused on the three most
prominent speech features. In addition, we explored which
mechanism for splitting training and test data was most
successful, with a particular focus on the idea of person-
alized prediction. To do so, we analyzed a dataset of
patients (n=30) diagnosed with MDD during sleep depriva-
tion therapy, a fast-acting treatment that results in a sig-
nificant improvement of depressive states in most of the
patients within 36 hours [22]. The given treatment ensures
short-term effects, which is advantageous compared to other
studies such as the RADAR—CNS project where patients
are observed for over 2 years to reveal illness episodes [23].
In Wadle et al [18], patients reported momentary depressive
states and recorded concomitant selfie videos talking about
their current feelings 2‐3 times per day for up to 3 weeks.
Speech features were extracted from the speech samples
using the software openSMILE [Open-Source Speech and
Music Interpretation by Large-Space Extraction]) [24]. To
assess the potential clinical utility of automated symptom
monitoring using speech features, we trained and evaluated
a comprehensive set of >500 ML pipelines (by optimizing
hyperparameters of random chance and dummy regressors
for baseline comparisons, random forest, linear regression,
SVR, and XGBoost [Extreme Gradient Boosting] regression
models) to predict individual symptom severity. We used five
different approaches to evaluate whether these ML models
generalize across patients or whether personalized splits are

superior: (1) group 5-fold cross-validation at the subject
level; (2) a leave-one-subject-out (LOSO) approach; and (3)
a train-test-split with 2-fold cross-validation using different
splitting techniques: (3a) chronological split with the first half
as training and the second half as test set; (3b) odd-even split,
with chronologically sorted data put into train and test set by
turns; and (3c) a random split, which was repeated 10 times.

Methods
Sample
We analyzed a dataset that was collected as part of the
Sleep Deprivation and Gene Expression II pilot study
(DRKS00022025). The initial sample consisted of 30
inpatients from the Central Institute of Mental Health in
Mannheim, Germany, who experienced an acute depressive
episode as defined in the ICD-10 (International Statistical
Classification of Diseases, Tenth Revision) on admission to
the hospital. The final sample to be analyzed consisted of 22
(n=12, 55% male) patients aged between 18 and 63 (mean
33.5, SD 12.4, median 29, IQR 23.25-42.75) years, as the
dataset of 8 patients had to be excluded completely. Specifi-
cally, 4 patients did not record any videos, 1 patient did not
say anything during the recordings (23 videos), the data of 2
patients lacked sound due to technical problems (30 videos),
and 1 patient was excluded because they recorded only 2
videos. The final sample corresponds to 18 patients with
moderate depression and 4 patients with severe depression
at study inclusion as assessed by clinical expert interviews
using the Montgomery-Åsberg Depression Rating Scale [25].
The mean score was 28 for patients with moderate depression
and 39 points for patients with severe depression. Exclusion
criteria were comorbid substance use disorders and personal-
ity disorders.
Study Procedure
Data were collected by patients on a study smartphone using
the movisensXS software (movisens GmbH). The patients
underwent sleep deprivation therapy as part of their depres-
sion treatment. In other words, patients had to stay awake
for approximately 36 hours. Treatment effect and relapse can
be measured in a matter of 4 days [22], resulting in substan-
tial within-person variance for many patients in the dataset.
After at least 1 day of baseline assessment, sleep deprivation
therapy was conducted on what we define as day 1 (Figure
1). Specifically, patients stayed awake from 6 AM on day 1
to 6 PM on day 2. Recovery sleep was allowed from 6 PM
on day 2 until 1 AM on day 3. Data were collected before,
during, and after sleep deprivation therapy for up to 26 days.
During the first week of this study, smartphones sent prompts
three times per day (morning, afternoon, and evening); in
addition, self-initiated assessments were possible to report
specific events or to catch up on missed assessments. To
reduce patient burden, the sampling scheme was changed to
two prompts per day (morning and evening). At each prompt,
patients were asked to complete items about their current
affective state and to record a selfie video reporting how they
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currently felt. Patients returned the smartphone at the end of
this study.

Figure 1. Study design.

AA: e-Diary Ratings and Selfie Videos
The dataset contains three sets of momentary affect ratings in
the form of e-diary ratings at each prompt. The full assess-
ment tools are described in Wadle et al [18]. As the analysis
in this work is limited to the target variable of momen-
tary depression, we focus here on its detailed description.
Depression severity was assessed using the short version of
the Allgemeine Depressionsskala (ADS-K) [26]. We adapted
the ADS-K to fit the characteristics of momentary assessment
with 14 items on depressive mood (excluding the sleep item)
rated on a scale from 0=rarely to 3=mostly (Multimedia
Appendix 1). We recoded the reversed items so that higher
scores indicated higher intensity of depressive symptoms,
thereafter, we calculated mean values. In addition to the
e-diary ratings just described, patients were asked to record
selfie videos with the following instructions: “Please keep the
camera stable during the recording and record your whole
face. Please describe in 10‐20 seconds how you currently
feel.”
Ethical Considerations
The Ethics Committee II of the Medical Faculty Mannheim,
University of Heidelberg, Germany, approved this study
(2013-563N-MA). Patients were informed about the aims and
study procedures. All patients gave informed consent and
could withdraw from this study at any time.
Data Preprocessing

Overview
Initially, the dataset contained 899 recorded selfie videos.
As mentioned above, we excluded all videos of 4 patients
(55 videos) and removed 2 additional videos with technical
damage. We extracted audio tracks from the 842 remaining
videos using the ffmpeg package in Python (Python Soft-
ware Foundation) and archived them as .wav files (sam-
pling rate=48 kHz, mono=1 channel). In the next step, we
listened to all recordings and removed test runs (n=14),
content-free accidental short recordings (n=29), recordings
in which the microphone was covered (n=27), and assess-
ments in which either the recording or the affective state

rating was missing (n=24). Moreover, if two consecutive
assessments occurred within 15 minutes of each other (n=21),
the second assessment was removed unless the audio quality
of the first recording was insufficient, in which case the
second assessment was kept. Finally, we excluded record-
ings containing third-party speech (n=8) and recordings
with insufficient speech intelligibility due to background
noise (n=9). Prior to speech feature extraction, we filtered
the remaining 710 recordings usingDeepFilterNet2 [27] to
remove background noise.

Acoustic Features
We extracted acoustic features using the functionals (version
2) of eGeMAPS [28] from the open-source toolkit open-
SMILE implemented in Python [24]. Given the limitless
number of potential speech features and to increase compa-
rability across studies, this minimalistic set of 88 acoustic
features is recommended for use in clinical speech analysis
[28]. We added the parameter speech rate, which requires
transcription of the recordings. We obtained the transcripts
using an automatic speech recognition system according
to published procedures [29] and corrected the transcripts
manually. To determine speech rate, we calculated the ratio
of words divided by the duration of the speech sample.
In our previous publication [18], we included a subset of
three of these speech features (top-down selected: F0sem-
itone From 27.5Hz_sma3nz_stddevNorm, Mean Unvoiced
SegmentLength, speech rate) in multilevel model analyses
and found an association between each of them and depres-
sion severity. In the present work, however, we included
all of the described 89 speech features as predictors for
depression severity in our ML models.
ML Analyses
Five ML analyses were conducted to determine the optimal
model for predicting ADS-K mean scores from our 89 speech
features (Table 1). All analyses used consistent preprocessing,
including median imputation for missing data and stand-
ard scaling for feature normalization. A variety of models
were evaluated: a random chance and a dummy regres-
sor (mean and median; results of the superior are shown)
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for baseline comparisons, random forest, linear regression,
SVR, and XGBoost regression. The models were fine-tuned
using nested cross-validation and a systematic grid search to
optimize the hyperparameters, ensuring the robustness and

reliability of our results using the PHOTON AI (Medical
Machine Learning Lab Translational Psychiatry) software
package [30].

Table 1. Overview of train-test split scenarios.
Train-test split
scenario Explanation Visualization
Group 5-fold cross-validation Separation of data points into five bins of approximately equal size,

with the condition that each patient’s data are represented in exactly
one bin, that is, either in the training set or the test set, but not both.
Train on all but one bin, test on the remaining bin. Repetition of the
procedure until each bin has been used once as a test bin (5-fold cross-
validation).

a
Leave-one-subject-out Train on data from all but one patient. Test on data from the one left-

out patient. The procedure was repeated until each subject was used in
the test arm (in our study N=22).

Chronological split Train on the chronologically first 50% of data, test on the last 50%.

Odd-even split Odd assessment points were assigned to the training set, even
assessment points to the test set. Then the implementation of a 2-fold
cross-validation.

Random split Data points were randomly assigned to either train or test sets. This
was repeated ten times with a 2-fold cross-validation calculated in
each repeated run.

aFor visualizations: squares represent data bins in the first row and individual patients in the remaining rows; circles represent individual data points.
P: patient.

Model performance was assessed quantitatively using the
coefficient of determination (R²). This metric evaluates the
proportion of variance in the dependent variable that can
be explained by the independent variables, providing a clear
measure of model effectiveness. It is essential for comparing
different regression models in our analysis by quantifying
how well each model explains the variability in the data-
set. The performance metrics for each model and splitting
technique combination were averaged to provide a compre-
hensive evaluation of model performance.

The calculation of the R² score in scikit-learn [31] is
executed as follows:

R2(y, y) = 1 − ∑i = 1
n (yi − yi)2
∑i = 1
n (yi − ȳi)2

where y represents the observed values, y represents the
predicted values by the model, ȳ is the mean of the observed
values y, and n is the number of observations.

We also present mean absolute error (MAE) scores which
measure how close the predicted and actual values are. MAEs
provide a straightforward interpretation given that they are
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calculated in the same units as the underlying data. Clinical
relevance can be inferred.

Higher R² scores and lower MAE scores indicate supe-
rior model performance. P values <.05 are considered to
be statistically significant. Negative R² scores indicate poor
model performance, and in such cases, the P value is not of
interest.

Group 5-Fold Cross-Validation
In our first analytical approach, we used group 5-fold nested
cross-validation to assess model performance. Data points
were divided into five bins of approximately equal size,
ensuring that each patient’s data appeared in only one bin,
either in the training set or the test set, but not both. This
means that samples from a single patient were treated as
a distinct group, ensuring the integrity of individual data
within each validation fold. The model was trained on four
bins and tested on the remaining bin. The procedure was
repeated until each bin had been used as the test bin,
completing the 5-fold cross-validation. This approach tested
whether the predictive patterns identified could generalize
from one group of patients to another by modeling the
association between speech features and depression severity
across multiple patients.

LOSO Split
In the second approach, we used the maximum possible data
in a subject-based split for the training set. That is, we
used data from all but one patient in the training set with
the goal of predicting data from this one unknown patient.
This reflects a potential future clinical use case where a
trained model is applied to a new, unknown patient. Thus,
this analysis tests whether the identified predictive pattern
generalizes to an unknown patient.

In the following three approaches, we split the data
fifty-fifty by using three different splitting techniques: a
chronological split, an odd-even split, and a random split.

Chronological Split
In this approach, we used a chronological train-test split
where the first 50% of the data (355 data points), ordered
by assessment date, were used as the training set and the
last 50% were used as the test set (355 data points). Note
that our patients were recruited over a time period of 3
years and 2 months. This means that sometimes data were
collected from only 1 patient and sometimes from 2 patients
at the same time. Specifically, 13 patients of our final sample
were enrolled consecutively. For 9 consecutive patients (ie,
9 pairs of patients), there is an overlap in assessment time
when comparing the first assessment and the last assessment
of an individual patient. Consequently, “earlier” patients are
included in the training set, “later” patients only in the test
set, and 3 patients in both. No cross-validation was applied,
as this would indicate a prediction backward in time. This
approach aimed to simulate a realistic prediction scenario
by training the models on earlier assessments and testing
their performance on later data points, thereby evaluating the

predictive performance for future depression severity based
on past assessments.

Odd-Even Split
This method used a nested 2-fold cross-validation approach,
in which patient-wise chronologically sorted data were
alternately assigned to the training or test set based on odd
and even collection points. As a result, half of the data from
each patient is represented in the training set and half in
the test set. Importantly, with this splitting mechanism, we
assume that both the test and training sets are likely to contain
data points from different states, namely severely depressed
states and euthymic states right after the intervention. This
approach has the advantage that the model is trained with
both individual data from depressive and euthymic states, and
it avoids having all depressive data in the training set but
euthymic data only in the test set. Accordingly, this allows us
to model and evaluate the predictive performance of speech
features in clinical use cases. For example, predicting the
severity of depression in a new depressive episode of a patient
with a history of recurrent depression, who is already known
by the model.

Random Split
Since there is only one way to split data into training and test
sets in the odd-even split, we aimed to test the replicability
of these findings here. We randomly split our data into test
and training sets and performed 2-fold cross-validation. There
are 710 choose 355=1.612 × 10143 ways to randomly split
the data into 2 halves. With this splitting mechanism, it is
possible that some data points never appear in the training set.
Therefore, we repeated this random split ten times and report
the mean values.

Results
Descriptive Results
Our final dataset consisted of 710 pairs of self-reported
depressive momentary states and speech features extracted
from concomitantly recorded selfie videos. Self-reported
depression severity, as indicated by ADS-K responses (scale
0‐3), was on average 1.2 (SD 0.6). The intraclass correlation
coefficient for the ADS-K was 0.47, indicating that 53% of
the variance in momentary depression symptoms is attributa-
ble to within-person variability. The reliability index of the
ADS-K in this study was excellent as evaluated according
to McDonald ω (0.87 within-person and 0.90 between-per-
son). Histograms and correlation plots to illustrate our data
structure are found in the Multimedia Appendix 2.

ML Results

Overview
We present the performance of each of our 30 ML approaches
in Table 2. All combinations of our 6 models (from top to
bottom: random chance, dummy regression, random forest
regression, linear regression, SVR, and XGBoost regression)
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and our 5 splitting mechanisms (from left to right: group
5-fold cross-validation, LOSO, chronological split, odd-even

split, and random split) are included in the table. We show R²
scores and MAE along with their P values.

Table 2. Model performances.
Model Splitting techniques

Group 5-fold
cross-validation

Leave-one-subject-out Chronological split Odd-even-split Random split

R² score MAE R² score MAE R² score MAE R² score MAE R² score MAE

Random chance (P
value)

–3.306
(N/A)a

0.920
(N/A)

–6.833
(N/A)

0.910
(N/A)

–2.364
(N/A)

0.941
(N/A)

–2.115
(N/A)

0.920
(N/A)

–2.205
(N/A)

0.890
(N/A)

Dummy
regression
(median)

–0.289
(.79)

0.499
(.41)

–3.624
(.92)

0.557
(.72)

–0.107
(.99)

0.491
(.99)

–0.001
(.35)

0.482
(.48)

–0.007
(.72)

0.488
(.84)

Random forest
regression (P
value)

–0.102

(.09)

0.455
(.04)

–4.392
(.99)

0.540
(.29)

–0.213
(.65)

0.519
(.81)

0.336
(<.001)

0.381
(<.001)

0.305
(<.001)

0.396
(<.001)

Linear regression
(P value)

–25.508
(.67)

0.588
(.50)

–37.258
(.71)

0.602
(.31)

–0.364
(.15)

0.534
(.18)

–0.179
(<.001)

0.445
(<.001)

–0.558
(.06)

0.459
(<.001)

Support vector
regression (P
value)

–0.136
(.008)

0.468
(.004)

–4.006
(.88)

0.570
(.89)

–0.106
(.59)

0.439
(.87)

0.313
(<.001)

0.388
(<.001)

0.293
(<.001)

0.401
(<.001)

XGBoost
regression (P
value)

–0.093
(.07)

0.455
(.03)

–3.568
(.41)

0.550
(.03)

0.084
(.98)

0.442
(.99)

0.339
(<.001)

0.380
(<.001)

0.289
(<.001)

0.399
(<.001)

aN/A: not available.

Group 5-Fold Cross-Validation
In our initial analysis using group 5-fold cross-validation,
all tested regressors yielded negative R2 scores and failed
to reach a performance above chance level (Table 2). This
indicates that none of the models were able to significantly
explain the variance of the target variable and thus failed
to provide reliable predictive insights for the ADS-K mean
scores in this specific setup. The models were not suitable for
the dataset under the group 5-fold cross-validation scheme.
This finding necessitates a reconsideration of the model
parameters, feature selection, or possibly the experimental
design to improve predictive performance.

LOSO Results
The LOSO approach yielded comparable results. All models
tested yielded nonsignificant negative R2 scores (Table 2).
This indicates that none of the models effectively explained
the variance of the target variable and all models were unable
to predict the mean of the ADS-K scores for an unknown
patient in this particular setup.

Chronological Split
In the chronological split analysis, none of the models
achieved statistically significant results (Table 2). These
results suggest that none of the models evaluated were
effective in explaining the variance in the ADS-K mean
scores or providing reliable predictions in this setup.

Odd-Even Split
Overall, the performance of three models tested was above
chance level (Table 2). The XGBoost regression emerged as
the superior performer, achieving an R² score of 0.339 and
an MAE of 0.38 (both P<.001). These results indicate that
approximately 33.9% of the variance in the ADS-K mean
scores can be explained by the speech features using this
model. The MAE indicates that the mean difference between
the predicted and the actual scores is 0.38 units on the ADS-K
depression severity scale ranging from 0 to 3. This substantial
improvement in model performance of the superior model
in this approach compared to our previous ML approaches
demonstrates the potential effectiveness of the XGBoost
model when data are alternately assigned to training and test
sets based on odd and even collection points. This analysis
highlights the importance of including both depressive and
euthymic data points from the same individual in both the
training and test set. In addition to the XGBoost model,
the SVR and random forest regression yielded statistically
significant results of a descriptively comparable order of
magnitude.

Random Split
The random forest regression emerged as the superior
performer (Table 2) in the random split. The model achieved
an R² score of 0.305 and an MAE of 0.396 (both P<.001).
These results indicate that using this model, approximately
30.5% of the variance in the ADS-K mean scores can be
explained by the speech features. The MAE of the random
forest model indicates that the mean difference between the
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predicted and the actual scores is 0.396 units on the ADS-K
depression severity scale ranging from 0‐3. In addition to the
random forest regression, the SVR and XGBoost regression
models reached statistical significance with descriptively
comparable performance.

Discussion
Principal Findings
The objective of this study was to evaluate if speech-based
multiparameter ML models and specific train-test splits
would significantly increase the prediction of depression
severity ratings compared to previous statistical analyses.
Uniquely, we used a longitudinal dataset of patients with
MDD undergoing sleep deprivation therapy. This approach
allows the observation of treatment onset and relapse within a
few days, thereby allowing for a maximum of within-person
variance of momentary depressive states in our dataset. The
most effective ML model (XGBoost regression with odd-even
splitting) explains 33.9% of the variance of the target variable
depression severity with an MAE of 0.38. It is noteworthy
that this represents a 17-fold increase in predictive power
over our previous analyses of this (same) dataset, which
revealed an R²Hox of 2% [18]. It should be noted that in our
previous analysis we focused on a subset of 3 speech features,
whereas in this work 89 speech features were included into
the models. Furthermore, in our previous work, we used
inference statistics in the form of multilevel models; and
ML here. The present results suggest that integrating a larger
number of speech features and allowing for more complex
modeling can significantly improve prediction performance.
However, these findings need to be replicated in a different
sample.

Moreover, our findings revealed that several models
reached statistical significance, but with varying predictive
power. In short, models in which both the training and the
test set contained data from the same patients were successful
in predicting depression severity based on speech features
(odd-even split and random split). In contrast, all of our
models which were tested on data from patients for whom the
model was naïve, failed (chronological split, 5-fold cross-val-
idation, and LOSO). Interestingly, for both the odd-even and
the random split, three ML models (random forest, SVR, and
XGBoost) achieved statistical significance, with an R² and
MAE of descriptively comparable size. This suggests that
these two approaches perform similarly and it is probably
not critical which one is ultimately chosen. However, this
conclusion must be taken with caution as we did not test the
models against each other as this would require orders of
magnitude more computational power than all the analyses
combined here.

As noted above, all models trying to predict depression
scores only of patients for whom the model was naïve, failed.
This finding suggests that the predictive patterns do not
appear to generalize across patients. This indicates that ML
models need to be fine-tuned to the specific patient about
whom predictions are to be made. This is consistent with

previous research indicating better predictive performance for
personalized models compared to generalized models [20].
It underscores the importance of longitudinal datasets, which
are still scarce. Only when multiple data points per patient are
available for training purposes, that is, longitudinal data, can
prediction reach a sufficient level.

In this context, the heterogeneity of the clinical picture
of MDD must also be taken into account. Widely used
diagnostic criteria allow for more than 400 possible combina-
tions of symptoms [32,33]. This might explain why there is
no one-size-fits-all approach, that is, associations from one
patient can be easily transferred to another patient. In future
work, it might be interesting to test whether models trained
and tested on different patients, but with a similar clinical
picture, would perform better. For example, a model trained
on patients whose clinical picture is strongly characterized
by having low energy might be transferable to patients with
similar characteristics, but not to patients with a high degree
of hyperarousal.
Limitations
Although our study demonstrates the potential use of speech
features in clinical monitoring, particularly of patients with
recurrent MDD, some limitations must be mentioned. First,
our sample size is relatively small. However, we believe that
a unique strength of our dataset is the inclusion of patients
with an acute clinical diagnosis of a depressive episode
requiring an inpatient stay (rather than subclinical study
participants), and the true within-person design. Additionally,
due to our longitudinal intervention design, we do have
a relatively high number of data points per patient and a
meaningful amount of variance in our target variable. Future
studies are needed to test the replicability of our findings.
Second, although eGeMAPS is a standardized set of speech
features recommended for clinical use cases, it may not
capture all relevant speech characteristics associated with
depression. Nevertheless, we prefer to use predefined feature
sets suggested by the community rather than creating our
own features to increase the comparability across studies. In
light of the previous two arguments, pooling of datasets will
become very important in the future, another argument for
relying on well-known feature sets. Third, we limited our
analyses to 5 different splitting techniques, for each of which
we trained over 500 ML models. Nowadays, computational
power would allow us to run huge amounts of ML models
[34]. However, even with our small set of ML variants, we
were still able to demonstrate the importance of individual-
ized ML models with well-designed splitting mechanisms.
Future Directions
Although we did not test personalized ML models per se
in this work, our results support the idea that personalized
state-of-the-art approaches, that is, individual ML models,
are the most promising [19,35]. A prerequisite for this is the
collection of sufficient data points per person in a first step.
Importantly, there must be sufficient within-person variance
in illness states during this so-called burn-in phase [36].
Once a sufficient amount of data of this patient is available,
a first model could be trained. As new data is coming in
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permanently, the model can be constantly updated with the
individual’s data, thus continuously improving its perform-
ance. Another idea is to start with a generalized or semiper-
sonalized model (eg, trained on same-sex data) to avoid the
cold start problem [36]. Incoming data from the patient could
be used to fine-tune the model. This is certainly a complex
endeavor that requires patience and perseverance on the part
of the patients, but might be worth it once a sufficiently
functional model is established. In the long term, this could
be particularly helpful for patients with a history of recurrent
MDD. To test the feasibility of this, longitudinal studies over
even longer time periods than those of the few that already
exist are needed.

Moreover, to reduce patient burden, it is even more
attractive to use behavioral features that patients do not
have to actively collect, such as speech. Since we carry our
smartphones with us most of the time anyway, and most
people speak naturally in their everyday lives, these features

seem promising. However, there are still many ethical and
privacy questions with regard to the specific category of
speech data. For example, speaker identification algorithms
are needed that work reliably, on the fly, and in everyday
environments (including varying background noise) to ensure
that only the target’s speech is analyzed.
Conclusion
Our study contributes to the emerging field of digital
behavioral markers as indicators of mental health by
highlighting the potential and challenges of using speech
features to monitor depression. While our results suggest
that speech features might be useful in predicting momentary
depression severity, future research is needed to evalu-
ate whether these findings can be replicated. Ultimately,
speech-based depression monitoring systems could signifi-
cantly improve patient care in the future.
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