KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving 3D deep learning segmentation with biophysically motivated cell synthesis

Bruch, Roman ORCID iD icon 1; Vitacolonna, Mario; Nürnberg, Elina; Sauer, Simeon; Rudolf, Rüdiger; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets. To address this, we present a framework for generating 3D training data, which integrates biophysical modeling for realistic cell shape and alignment. Our approach allows the in silico generation of coherent membrane and nuclei signals, that enable the training of segmentation models utilizing both channels for improved performance. Furthermore, we present a generative adversarial network (GAN) training scheme that generates not only image data but also matching labels. Quantitative evaluation shows superior performance of biophysical motivated synthetic training data, even outperforming manual annotation and pretrained models. This underscores the potential of incorporating biophysical modeling for enhancing synthetic training data quality.


Verlagsausgabe §
DOI: 10.5445/IR/1000178245
Veröffentlicht am 20.01.2025
Originalveröffentlichung
DOI: 10.1038/s42003-025-07469-2
Scopus
Zitationen: 4
Web of Science
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 2399-3642
KITopen-ID: 1000178245
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Communications Biology
Verlag Nature Research
Band 8
Heft 1
Seiten Art.-Nr.: 43
Vorab online veröffentlicht am 11.01.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page