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SUMMARY 

Digital monitoring tools are the most promising approaches to automatically detect 

impending depressive episodes. Leveraging on the ubiquitous use of smartphones, they 

open new avenues to continuously collect and objectively extract behavioral markers of 

depression in the daily life of patients. Human speech characteristics have been considered 

as a potential behavioral marker for this endeavor, as a growing number of case-control 

studies show depression-related changes in acoustic and linguistic speech features. 

However, longitudinal studies are sparse but necessary to understand whether within-

person changes in speech characteristics could be used for the early identification of 

prodromal symptoms, and thus the prevention of new clinical episodes. 

In the present doctoral thesis, I investigate the informative value of acoustic and 

linguistic features extracted from longitudinally collected everyday speech samples with 

respect to depression severity. Articles 1-3 are based on a dataset of 30 patients with an 

acute depressive episode undergoing sleep deprivation therapy. Before, during, and after 

treatment patients collected speech samples and reported current symptom severity 2-3 

times per day by ambulatory assessment. Sleep deprivation therapy allows to observe 

treatment effect and relapse within four days, thus the dataset contains a wide range of 

depressive state levels. 

Using multilevel regression models, I revealed associations between three 

preselected acoustic features and depression severity. Specifically, lower pitch variability, 

higher speech rate, and shorter speech pauses were associated with lower depression 

severity and more pleasant momentary states in general. A combined model of all three 

speech features explained 2% of variance in depression severity. Article 2 extends the 

depression-related findings of Article 1 by using multi-parameter machine learning 
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models including 89 speech features and different train-test split scenarios. The superior 

model tested explained 33.9% of the variance in depression severity and the results further 

suggest the need for personalized models. In Article 3, I shifted my focus to linguistic 

analysis and identified more positive emotion words and fewer negative emotion words 

to be associated with lower reported depression severity. The commentary presented 

afterwards introduces the term smart digital phenotyping and discusses the challenges 

when extracting a large number of features from behavioral markers and data protection 

concerns. Concluding, a discussion of the main findings and limitations, followed by an 

outlook on future research avenues can be found. In summary, this doctoral thesis 

represents a building block for future speech-based adaptive ambulatory assessment 

systems that could one day be used to monitor depression. 
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ZUSAMMENFASSUNG 

Digitales Monitoring ist ein vielversprechender Ansatz, um drohende depressive 

Episoden automatisch zu erkennen. Die allgegenwärtige Nutzung von Smartphones 

eröffnet dabei neue Möglichkeiten zur kontinuierlichen Erfassung und objektiven 

Extraktion von depressionsrelevanten Verhaltensmarkern im Alltag der Patienten. 

Menschliche Sprachmerkmale werden als potenzielle Verhaltensmarker für dieses 

Vorhaben in Betracht gezogen, da eine wachsende Zahl von Case-Control-Studien 

depressionsbezogene Veränderungen in akustischen und linguistischen Sprachmerkmalen 

zeigen. Es gibt jedoch noch wenige Längsschnittstudien, die notwendig wären, um zu 

verstehen, ob Veränderungen von Sprachmerkmalen auch innerhalb einer Person zur 

Früherkennung von Prodromalsymptomen und damit zur Vorbeugung neuer klinischer 

Episoden genutzt werden können. 

In der vorliegenden Dissertation untersuche ich die Aussagekraft von akustischen 

und linguistischen Merkmalen in Bezug auf den Schweregrad der Depression. Die 

Sprachmerkmale wurden aus Sprachproben extrahiert, die von den Patienten in ihrem 

Alltag längsschnittlich gesammelt wurden. 

Artikel 1-3 basieren auf einem Datensatz von 30 Patienten mit einer akuten 

depressiven Episode, die sich einer Schlafentzugstherapie unterzogen. Vor, während und 

nach der Behandlung sammelten die Patienten 2-3 Mal pro Tag per Ambulantem 

Assessment Sprachproben und gaben zusätzlich Ratings über ihre aktuelle 

Symptomschwere ab. Die Schlafentzugstherapie ermöglicht die Beobachtung von 

Behandlungseffekts und Rückfall innerhalb weniger Tage, so dass der Datensatz ein 

breites Spektrum an Depressionsleveln enthält. 
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Mithilfe von Mehrebenenmodellen konnte ich Zusammenhänge zwischen drei 

vorausgewählten akustischen Merkmalen und dem Schweregrad der Depression 

aufzeigen. Dabei zeigten sich Zusammenhänge zwischen geringerer Tonhöhenvariabilität, 

höherer Sprechgeschwindigkeit und kürzerer Sprechpausen mit einer geringeren 

Depressionsschwere und angenehmeren momentanen Zuständen im Allgemeinen. Ein 

kombiniertes Modell aus allen drei Sprachmerkmalen ergab eine aufgeklärte Varianz der 

Depressionsschwere von 2%. Artikel 2 erweitert die depressionsbezogenen Ergebnisse 

aus Artikel 1 durch die Verwendung von Multiparameter-Modellen für maschinelles 

Lernen, die 89 Sprachmerkmale und verschieden Aufteilung in Trainings- und Test-Sets 

enthalten. Das beste Modell erklärte 33.9 % der Varianz des Schweregrads der 

depressiven Zustände. Weiterhin deuten die Ergebnisse auf die Notwendigkeit 

personalisierter Modelle hin. In Artikel 3 lag der Fokus auf linguistischen Analysen und 

ich konnte zeigen, dass ein erhöhter Gebrauch von positiven Emotionswörtern und 

geringerer Gebrauch von negativen Emotionswörtern mit einem niedrigeren berichteten 

Depressionsschweregrad verbunden sind. Der anschließende Kommentar führt den 

Begriff Smart Digital Phenotyping ein und erörtert die Herausforderungen bei der 

Extraktion einer großen Anzahl von Merkmalen aus Verhaltensmarkern sowie 

Datenschutzbedenken zu finden. Schließlich ist eine Diskussion der wichtigsten 

Ergebnisse und Einschränkungen, gefolgt von einem Ausblick auf zukünftige 

Forschungsmöglichkeiten. Zusammenfassend lässt sich sagen, dass diese Doktorarbeit 

einen Baustein für zukünftige sprachbasierte adaptive ambulante Assessment Systeme 

darstellt, die eines Tages zum Monitoring von Depressionen eingesetzt werden könnten. 
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PREFACE 

Chapter 2 is based on a peer-reviewed article that has been published as Wadle, 

L.-M., Ebner-Priemer, U. W., Foo, J. C., Yamamoto, Y., Streit, F., Witt, S. H., Frank, J., 

Zillich, L., Limberger, M. F., Ablimit, A., Schultz, T., Gilles, M., Rietschel, M., & 

Sirignano, L. (2024). Speech Features as Predictors of Momentary Depression Severity 

in Patients With Depressive Disorder Undergoing Sleep Deprivation Therapy: 

Ambulatory Assessment Pilot Study. JMIR Mental Health, 11, e49222. 

https://doi.org/10.2196/49222 

Chapter 3 is based on a manuscript that has been submitted to JMIR Mental 

Health as Hartnagel, L.-M., Emden, D., Foo, J. C., Streit, F., Witt, S. H., Frank, J., 

Limberger, M. F., Schmitz, S., Gilles, M., Rietschel, M., Hahn, T., Ebner-Priemer, U. 

W., & Sirignano, L. [under review]. Speech-based Machine Learning for Momentary 

Depression-Severity Prediction in Acutely Depressed Patients undergoing Sleep 

Deprivation Therapy  

Chapter 4 is based on a peer-reviewed article that has been published as 

Hartnagel, L.-M., Ebner‐Priemer, U. W., Foo, J. C., Streit, F., Witt, S. H., Frank, J., 

Limberger, M. F., Horn, A. B., Gilles, M., Rietschel, M., & Sirignano, L. (2024). 

Linguistic style as a digital marker for depression severity: An ambulatory assessment 

pilot study in patients with depressive disorder undergoing sleep deprivation therapy. 

Acta Psychiatrica Scandinavica, 1-10. https://doi.org/10.1111/acps.13726 

Chapter 5 is based on a peer-reviewed commentary that has been published as 

Wadle, L.-M., & Ebner-Priemer, U. W. (2023). Smart digital phenotyping. European 

Neuropsychopharmacology, 76, 1-2
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O, how wonderful is the human voice! 

It is indeed the organ of the soul!

 

from Hyperion: a romance 

by Henry W. Longfellow 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

Major Depressive Disorder 

Major depressive disorder (MDD) is a severe mental disorder that is the third 

leading cause of disease burden worldwide and is expected to rank first by 2030 (Malhi & 

Mann, 2018). The global lifetime prevalence of MDD is extremely high, estimated at 30-

40% based on a prospective epidemiologic study (Moffitt et al., 2010). Nearly 230 million 

people worldwide were diagnosed with MDD in 2021, representing approximately 3% of 

the world’s population (Global Burden of Disease Collaborative Network, 2020). An 

estimated increase of an additional 53 million cases was reported due to the COVID-19 

pandemic (Santomauro et al., 2021). The societal economic burden caused by MDD was 

valued to be $333.7 billion US dollars in 2019 (Greenberg et al., 2023). 

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; 

American Psychiatric Association, 2013), MDD is characterized by a range of different 

symptoms, with low mood and a loss of interest in daily activities at its core being present 

for the same 2-week time period. A list of symptoms can manifest negatively, including 

but not limited to issues with sleep quality, appetite, self-worth, guilt, concentration, and 

physical activity, also and suicidal ideation can occur (American Psychiatric Association, 

2013). Specifically, according to widely used diagnostic tools, the experience of 400 

different symptom combinations can be labeled as MDD (Goldberg, 2011; Østergaard et 
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al., 2011), forming heterogeneous clinical pictures (Fried, 2017; Fried & Robinaugh, 

2020). Moreover, MDD is associated with negative outcomes, such as job loss (Lerner et 

al., 2004; Vos et al., 2020), premature mortality (Miloyan & Fried, 2017), cardiovascular 

disease (Hare et al., 2014), and reduced quality of life (Saragoussi et al., 2018).  

Significant scientific breakthroughs that also show in decreased prevalence or 

burden of disease statistics have not been announced over the past three decades (Jorm et 

al., 2017). This may be due to the complex interplay of contributing factors, and the lack 

of clear biomarkers that could be used for objective testing or treatment monitoring, with 

the consequence of having to rely on subjective self-reports (Kapur et al., 2012; Rimti et 

al., 2023; Scull, 2021; Thibaut, 2018). The etiology of MDD is still object of research, but 

it is assumed to be multifactorial, involving biological, environmental, psychosocial, and 

genetic factors (Malhi & Mann, 2018). 

While some patients experience a single episode in their lifetime, MDD evolves as 

a chronic and relapsing illness with fluctuating levels of depression severity in many cases 

(Verduijn et al., 2017). Approximately 50% of patients with MDD experience an ebb and 

flow of relapsing and remitting periods during their lifetime (Verduijn et al., 2017). 

Therefore, secondary prevention, i.e., relapse prevention is an important treatment goal 

(Benasi et al., 2021). This requires long-term care and monitoring to identify early 

indicators of relapse and to track treatment response. There are several treatment options 

available for MDD (Malhi & Mann, 2018), the discussion of which is beyond the scope 

of this doctoral thesis. Therefore, I focus on detailing sleep deprivation therapy (SDT) as 

the treatment implemented in the dataset used in my doctoral thesis. 

SDT is a chronotherapeutic intervention, in which patients are temporarily 

deprived of sleep (Boland et al., 2017; Dallaspezia & Benedetti, 2015; Demet et al., 1999; 
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Wirz-Justice & Benedetti, 2020). Specifically, patients are kept awake for about 36 hours, 

as shown in Figure 1 (Dallaspezia & Benedetti, 2015). Approximately 60% of patients 

experience a reduction in depressive symptoms within hours in the morning following the 

night of sleep deprivation (Dallaspezia & Benedetti, 2015; Wirz-Justice & Van Den 

Hoofdakker, 1999). This rapid onset of treatment is a major advantage over 

antidepressants, which can take up to weeks to take effect. Another advantage of this 

therapy approach is that it has virtually no side effects, except for daytime sleepiness. 

 

 

Unfortunately, the treatment effect is transient with about 80% of patients 

relapsing after a night of recovery sleep (Dallaspezia & Benedetti, 2015; Leibenluft & 

Wehr, 1992). Short-term relapse can be attenuated with strategies such as light therapy or 

sleep phase advance (Echizenya et al., 2013), but only for a minority of patients, achieved 

effects remain (Giedke & Schwärzler, 2002). The complex underlying mechanism of SDT 

is not yet understood, but probably involves an altered brain metabolism caused by the 

lack of sleep (Dallaspezia & Benedetti, 2015).  

Figure 1 

Exemplary Sleep Deprivation Therapy 
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In general, prerequisite for adequate prediction and treatment of MDD is the ability 

to measure it (Fried et al., 2022). The current state-of-the-art MDD assessment relies on 

self-report in the form of interviews, questionnaires, and rating scales. A collection of 

more than 280 measures has been described in the scientific literature (Santor et al., 2006). 

Individuals are asked to rate how severely they have been affected by a list of depression 

symptoms over a predefined period of time. Equivalent to the DSM-5 criteria stating that 

symptoms have to be present for a time frame of two weeks (American Psychiatric 

Association, 2013), this duration is also often referred to in the assessments (Colombo et 

al., 2019). Despite being the current gold standard, these self-report tools do not come 

without drawbacks.  

First, self-report measures are subjective and rely on retrospective recall. Patients 

have to recall emotional, behavioral, or cognitive symptoms, a process prone to systematic 

bias (e.g., Ebner-Priemer & Trull, 2009; Stone et al., 2007). For example, the mood 

congruency effect describes an easier retrieval of information that is consistent with the 

current emotional state, and the peak-end rule states that recall is often dominated by the 

most intense and the most recent experiences (Kahneman et al., 1993; Kihlstrom et al., 

2000). Thus, retrospective reporting in MDD may be blurred by cognitive biases and 

dysfunctional perceptions rather than accurately reflecting current symptom severity or 

mirroring actual experiences over, say, the previous two weeks (A. G. Horwitz et al., 2023; 

Wells & Horwood, 2004; Zupan et al., 2017). Second, assessments are infrequent. Mostly 

administered during clinical visits at arbitrary points in time, assessments do not reflect 

the natural course of symptoms, thus crucial information may be lost (Ebner-Priemer & 

Santangelo, 2020; Ebrahimi et al., 2021). Patients are often required to summarize their 

symptoms and experiences into a single response or score, which fails to capture the 
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dynamic ebb and flow of symptoms and fluctuations in affective states (Ebner-Priemer & 

Santangelo, 2020; Ebrahimi et al., 2021). This is also reflected in MDD studies, showing 

limited congruence between retrospective symptom reports and actual dynamics (Solhan 

et al., 2009; Wells & Horwood, 2004). Even the detection of treatment response may be 

delayed when relying solely on sporadic assessments. By comparing weekly assessment 

interviews and daily process methods, Lenderking and colleagues (2008) demonstrated 

that daily methods can detect treatment effects more quickly than standard assessments, 

where the earliest time to detect therapeutic impact is the next clinical visit. 

Ambulatory Assessment in Major Depressive Disorder 

To overcome these limitations, methodological developments leveraging on 

technological advances are promising. Ambulatory assessment (AA; Fahrenberg, 1996; 

Fahrenberg et al., 2007), also known as experience sampling method (Larson & 

Csikszentmihalyi, 1983), ecological momentary assessment (Stone & Shiffman, 1994), 

and digital phenotyping (Torous et al., 2016), has become the gold standard for studying 

individuals in their daily lives. Although the terms differ, the methodologies are united by 

the use of personal digital devices, such as smartphones, electronic diaries (e-diaries), and 

wearables, to repeatedly assess human behavior, symptoms, and physiological and 

biological processes as they unfold in daily life as individuals go about their normal daily 

activities (Trull & Ebner-Priemer, 2013). 

The main advantages of AA are the ability to collect real-life data in real time, 

minimizing retrospective recall bias and bridging the gap between clinical visits while 

increasing ecological validity (e.g., Ebner-Priemer & Trull, 2009; Trull & Ebner-Priemer, 

2014). In addition, AA allows to capture dynamic within-person changes because data are 

collected repeatedly; the patient does not have to average experiences across time and 
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situations (e.g., Ebner-Priemer & Trull, 2009; Trull & Ebner-Priemer, 2013). 

Furthermore, various types of data can be collected objectively, continuously, passively 

and thus unobtrusively over a prolonged period of time using smartphones or additional 

wearables (e.g., Reichert et al., 2021; Torous et al., 2017). For example, social withdrawal 

could be estimated using GPS information, and instead of asking people about their sleep 

quality over the past two weeks, a sleep tracker could be informative and provide objective 

data. Additionally, multimodal data collection is possible, and combining active (e.g., 

questionnaire via e-diary) and passive (e.g., physical activity) data streams can even 

provide a more holistic picture of the daily life of an individual (e.g., Matcham et al., 

2022). Moreover, AA allows to capture contextual specificities of an individual’s natural 

environment, such as the identification of specific stressors (Trull & Ebner-Priemer, 

2013). Based on this information, so-called just-in-time adaptive interventions (JITAIS) 

and interactive feedback are feasible, allowing the right intervention to be offered at the 

right time (Nahum-Shani et al., 2018). 

As a result, avenues are opened for a shift from reacting with treatment after 

diagnosis to preventing a full-blown episode; in other words, intervening when symptoms 

are still sub-threshold. This could greatly improve patient management and care. 

Importantly, these new approaches do not replace traditional ones, but rather serve as a 

diagnostic adjuncts. Given the ubiquitous use of smartphones today, AA is a promising 

tool for the timely detection of behavioral, cognitive, and physiological changes that occur 

in the trajectory of mental health disorders (Ebner-Priemer & Santangelo, 2020; Onnela 

& Rauch, 2016; Trull & Ebner-Priemer, 2014). Trull and Ebner-Priemer (2013) discuss 

the potential for the mental health context, which includes a) investigating symptom 

dynamics and mechanisms, b) predicting future symptom reoccurrence or onset, c) 
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tracking of treatment effects, and d) predicting treatment effects. With regard to MDD, 

there is a body of AA research that discusses various indicators of daily life associated 

with depressive symptoms, such as physical activity, location, phone use, and speech data 

(for reviews see De Angel et al., 2022; Zarate et al., 2022). 

Human Speech as a Proxy for MDD Severity 

Recently, a person’s speech has been increasingly studied in relation to MDD. 

When we speak, we express our thoughts, intentions, and emotions, providing a wealth of 

information and a window into our innermost selves (Jablonka et al., 2012; Kappas et al., 

1991; Low et al., 2020; Pennebaker et al., 2003; Tausczik & Pennebaker, 2010). Speech 

characteristics can be broadly divided into two facets: acoustic and linguistic features, put 

simply, the how a person speaks and the what a person says. Acoustic features include all 

features that reflect mathematical properties of the sound wave, describing prosody (e.g., 

intonation), tempo (e.g., pause time), loudness (e.g., volume), and voice quality (e.g., 

jitter), among others (Koops et al., 2023). The most prominent computational tool to 

objectively extract acoustic features is the software open-source Speech and Music 

Interpretation by Large-space Extraction (openSMILE; Eyben et al., 2010). Linguistic 

features refer to the content of speech or specific word usage (e.g., thematic word 

categories, grammar, tenses, vocabulary diversity) and require a transcript of speech 

samples. The dictionary-based Linguistic Inquiry and Word Count (LIWC) is widely used 

for linguistic analysis (Pennebaker et al., 2015). 

The idea that speech-based information could serve as a proxy for depressive states 

dates back to early clinical observations by Emil Kraepelin in 1921. He described the 

voice of MDD patients as low, hesitant, slow, monosyllabic, and monotonous (Kraepelin, 

1921). After decades of research, it is now assumed that MDD symptoms can have a 
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number of different effects on the highly complex neuromuscular speech production 

network, which involves over 100 muscles (Cannizzaro et al., 2004; Low et al., 2020). 

Specifically, imaging methods and clinical observations suggest the involvement of the 

motor cortex, the supplementary motor area, the basal ganglia, and the cerebellum 

(Wildgruber et al., 2001). Dopaminergic changes typical of MDD are thought to directly 

affect basal ganglia structures responsible for the motor control of speech movements 

(Wildgruber et al., 2001). Furthermore, typical MDD symptoms such as reduced cognitive 

functioning, fatigue, and persistent negative affect may impact speech planning and 

production (Caligiuri & Ellwanger, 2000). These alterations can then be estimated by 

various parameters of the acoustic waveform (Eyben et al., 2016). In terms of linguistic 

style, presumed MDD-related changes have been motivated by theories of depression. For 

example, specific characteristics in word use have been derived from Beck’s Cognitive 

Model of Depression (Beck et al., 1979) or heightened self-focus theories (Pyszczynski & 

Greenberg, 1987). Deficits in cognitive and executive functioning are also discussed as 

possible reasons (Trifu et al., 2017). 

Recent reviews provide an overview of the potential of speech characteristics in 

relation to a variety of psychiatric disorders (Low et al., 2020), and depression in particular 

(Cummins et al., 2015; Koops et al., 2023). However, much of this evidence is based on 

case-control designs (Low et al., 2020). These between-person comparisons contribute to 

the understanding of speech-related alterations within a person only to a limited extend. 

However, our ultimate goal is to monitor a patient’s fluctuating symptoms over time to 

identify prodromal signs, e.g., of an impending episode. Therefore, we need patient data 

collected at a more granular level, and collected longitudinally, ideally before an episode, 

during an emerging episode showing prodromal symptoms, at best also during, and after 
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a fully developed episode. This would open new avenues for monitoring MDD symptoms, 

not only allowing to detect episodes once they have occurred, but more importantly, to 

identify prodromal patterns, with the chance to prevent relapse (Ebrahimi et al., 2021; 

Fried et al., 2022). 

Particularly in an AA context, everyday speech data as a proxy for depression 

severity is a promising and advantageous candidate for many reasons: Most of us speak 

naturally in our everyday lives, and most of us also carry a smartphone with a built-in 

microphone with us almost all the time. Given informed consent, this opens up the 

possibility of collecting speech remotely and in a cheap, simple, noninvasive, and 

unobtrusive manner (Koops et al., 2023). In addition, data can be collected continuously 

and advances in computational analysis allow for objective extraction and analysis of 

speech features.  

However, there is only a small number of longitudinal studies on speech in MDD 

conducted in a clinical population that provides first, though not always consistent, 

insights relevant to this endeavor, beyond findings from between-person studies (Arevian 

et al., 2020; Campbell et al., 2023; Cummins et al., 2023; Gerczuk et al., 2022; R. Horwitz 

et al., 2013; Mundt et al., 2007, 2012; Quatieri & Malyska, 2012; Stiles et al., 2023; 

Trevino et al., 2011; Yang et al., 2013). Note that work by Horwitz et al. (2013), Quatieri 

and Malyska (2012), and Trevino et al. (2011) are all based on the same dataset by Mundt 

and colleagues (2007), and Campbell et al. (2023) and Cummins et al. (2023) also use the 

same underlying dataset. Depending on the research questions, I will present the relevant 

studies, their results, strengths, and limitations in the respective articles in Chapter 2-4. To 

sum up, a first limiting factor of most of these studies is the rather long time intervals 

between assessments, hindering to capture dynamic fluctuations. In detail, speech analysis 
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is based on a speech sample collected every week (Arevian et al., 2020; R. Horwitz et al., 

2013; Mundt et al., 2007; Quatieri & Malyska, 2012), every other week (Campbell et al., 

2023; Cummins et al., 2023; Trevino et al., 2011), every seven weeks (Yang et al., 2013), 

or is even limited to a pre-post treatment comparison (Mundt et al., 2012), even when 

collected on a higher frequency (Stiles et al., 2023). Overall, only Gerczuk and colleagues 

(2022) aimed to collect data on a more dynamic level, asking for three speech samples per 

day over two weeks. Second, the analysis methods are mixed (e.g., correlations, machine 

learning) but rarely do justice to the data structure at hand, which is repeated and thus 

nested data, requiring multilevel regression models. As a result, the strengths of the 

longitudinal data structure are not fully exploited. 

Research Questions 

In an effort to unlock the full potential of everyday speech data, I aimed to 

contribute a building block on the journey towards a speech-based depression monitoring 

system in this doctoral thesis. My goal was to explore human speech characteristics 

extracted from longitudinally collected speech samples and their associations to 

momentary depressive states in daily life. In Article 1 and 2, I analyze the link between 

acoustic features and momentary depressive states. In Article 3, I investigate linguistic 

features in association to momentary depressive states. In form of a commentary, Article 

4 concludes with a broader discussion on challenges and chances of digital phenotyping.  

Articles 1-3 are based on the same dataset. In short, a sample of 30 inpatients with 

an acute depressive episode underwent SDT. Before, during, and after therapy, patients 

were asked via AA to report how they currently feel 2-3 times per day and to record a 

selfie video at concomitant time points. The audio tracks of these selfie videos served as 

speech samples from which acoustic and linguistic features were extracted with state-of 
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the art computational tools. A major benefit of SDT is that treatment effect and relapse 

can be observed within a few days, which allowed to investigate acoustic and linguistic 

features in the context of varying momentary depressive states.  

In Article 1, I analyze the associations between a pre-defined set of three acoustic 

speech features and momentary depressive states. Based on previous research findings, I 

focused on the features pitch variability, speech rate, and speech pauses to avoid alpha-

error inflation. Besides momentary depressive states, I also included more broadly defined 

momentary affective states in the analyzes, namely negative affect, positive affect, 

valence, energetic arousal, and calmness. This opened the opportunity to gain insights into 

the specificity or transdiagnostic nature of associations. Conducting multilevel analysis, I 

aimed to replicate previous findings regarding the association between speech features 

and depression severity, and to extent them to within-person data. An additional objective 

was to evaluate generalizability of results to more broadly defined momentary affective 

states non-specific to depression. 

RQ 1: Do acoustic features reflect within-person variability in momentary 

depressive states? 

In Article 2, I aimed to understand whether a speech-based multi-parameter 

machine learning approach would improve the depression severity prediction compared 

to my analyzes in Article 1. In total, a comprehensive set of over 500 machine learning 

pipelines were run evaluating random forest, linear regression, support vector regression, 

and eXtreme gradient boosting regression models. A further target of this work was to test 

five different train-test split scenarios and their impact on prediction performance. 

Specifically, a group 5-fold cross-validation on subject level, a leave-one-subject-out 

approach, a chronological split, an odd-even split, and a random split were tested. 
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RQ 2: Does speech-based multi-parameter machine learning enhance predictive 

performance for depression severity, and which role do train-test splitting 

techniques play? 

In Article 3, I switch my focus to linguistic analysis. Using LIWC, I extracted word 

categories from transcribed speech samples and explored the usage of positive and 

negative emotions words, first-person pronouns, and past tense words relative to 

depression level. 

RQ 3: Does linguistic style reflect within-person variability in momentary 

depressive states? 

Additionally, in a commentary, I discuss that digital phenotyping comes with the 

challenge of generating and handling a plethora of features that often lack relevance to the 

clinical phenomena being studied. Introducing the term smart digital phenotyping, I 

advocate for features closely resembling psychopathology rather than being easy-to-

access, and to extract them in a smart, privacy preserving way. 

In the present Chapter 1, I provided background information on MDD, AA, and 

human speech characteristics, and conclude with three RQs that will be addressed in the 

following chapters. Chapters 2-5 comprise four peer-reviewed articles, which are all but 

one published. Article 2 in Chapter 3 is under review. Chapter 6 comprehensively 

summarizes the main results of this doctoral thesis, followed by a discussion of limiting 

aspects, and an outlook on future research avenues. The reference list and the appendix 

build the end of this doctoral thesis.
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CHAPTER 2 

 

ARTICLE 1: 

 SPEECH FEATURES AS PREDICTORS OF MOMENTARY DEPRESSION 

SEVERITY 

 

 

This chapter is based on an adapted version of the peer-reviewed article published as 

Wadle, L.-M., Ebner-Priemer, U. W., Foo, J. C., Yamamoto, Y., Streit, F., Witt, S. H., 

Frank, J., Zillich, L., Limberger, M. F., Ablimit, A., Schultz, T., Gilles, M., 

Rietschel, M., & Sirignano, L. (2024). Speech Features as Predictors of 

Momentary Depression Severity in Patients With Depressive Disorder 

Undergoing Sleep Deprivation Therapy: Ambulatory Assessment Pilot Study. 

JMIR Mental Health, 11, e49222. https://doi.org/10.2196/49222 

 

 



14  Chapter 2 | Acoustic Features 

 

Abstract 

Background: The use of mobile devices to continuously monitor objectively extracted 

parameters of depressive symptomatology is seen as an important step in the 

understanding and prevention of upcoming depressive episodes. Speech features such as 

pitch variability, speech pauses, and speech rate are promising indicators, but empirical 

evidence is limited, given the variability of study designs. 

Objective: Previous research studies have found different speech patterns when comparing 

single speech recordings between patients and healthy controls, but only a few studies 

have used repeated assessments to compare depressive and non-depressive episodes 

within the same patient. To our knowledge, no study has used a series of measurements 

within patients with depression (e.g., intensive longitudinal data) to model the dynamic 

ebb and flow of subjectively reported depression and concomitant speech samples. 

However, such data are indispensable for detecting and ultimately preventing upcoming 

episodes. 

Methods: In this study, we captured voice samples and momentary affect ratings over the 

course of three weeks in a sample of patients (N=30) with an acute depressive episode 

receiving stationary care. Patients underwent sleep deprivation therapy, a 

chronotherapeutic intervention that can rapidly improve depression symptomatology. We 

hypothesized that within-person variability in depressive and affective momentary states 

would be reflected in the following 3 speech features: pitch variability, speech pauses, and 

speech rate. We parametrized them using the extended Geneva Minimalistic Acoustic 

Parameter Set (eGeMAPS) from open-source Speech and Music Interpretation by Large-

Space Extraction (openSMILE) and extracted them from a transcript. We analyzed the 
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speech features along with self-reported momentary affect ratings, using multilevel linear 

regression analysis. We analyzed an average of 32 (SD 19.83) assessments per patient. 

Results: Analyses revealed that pitch variability, speech pauses, and speech rate were 

associated with depression severity, positive affect, valence, and energetic arousal; 

furthermore, speech pauses and speech rate were associated with negative affect, and 

speech pauses were additionally associated with calmness. Specifically, pitch variability 

was negatively associated with improved momentary states (i.e., lower pitch variability 

was linked to lower depression severity as well as higher positive affect, valence, and 

energetic arousal). Speech pauses were negatively associated with improved momentary 

states, whereas speech rate was positively associated with improved momentary states. 

Conclusion: Pitch variability, speech pauses, and speech rate are promising features for 

the development of clinical prediction technologies to improve patient care as well as 

timely diagnosis and monitoring of treatment response. Our research is a step forward on 

the path to developing an automated depression monitoring system, facilitating 

individually tailored treatments and increased patient empowerment. 

Introduction 

Background 

Depression is one of the most prevalent health disorders worldwide (Streit et al., 

2023; Vos et al., 2020). The World Health Organization predicted that depression would 

be one of the three leading causes of disease burden by 2030 (Mathers & Loncar, 2006), 

even before its prevalence increased owing to the COVID-19 pandemic (Santomauro et 

al., 2021). This disorder has symptoms that include depressed mood, loss of energy and 

interest, sleep problems, and diminished ability to concentrate (American Psychiatric 

Association, 2013); thus, depression imposes a substantial burden on the patients as well 
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as their surroundings, society, and the economy (Sobocki et al., 2006). Most importantly, 

depression is a chronic disorder, characterized by multiple episodes over years or decades. 

However, strategies for secondary prevention or early detection of new episodes are 

missing. 

The diagnosis and severity assessment of depression relies mostly on self- or 

caregiver reports, which are prone to retrospective and social desirability bias (Ben-Zeev 

& Young, 2010; Eaton et al., 2000). In addition, such assessments are time and resource 

intensive because clinical specialists are needed over the course of treatment and recovery 

(Abd-Alrazaq et al., 2023). Moreover, many new episodes remain undiagnosed or 

untreated, that is, secondary prevention is the main issue (Kohn et al., 2004; Williams et 

al., 2017). To reduce burden, the timely detection and diagnosis of (new) depressive 

episodes are critical. 

In recent years, research has focused on the identification of mental health disorder 

indicators that can be derived automatically, driven by technological developments (De 

Angel et al., 2022; Torous et al., 2015). In particular, the innovation of the ambulatory 

assessment research technique has contributed strongly to this endeavor (Zarate et al., 

2022). Different terms have been used for this kind of methodology: ambulatory 

assessment (Fahrenberg et al., 2007), ecological momentary assessment (Stone & 

Shiffman, 1994), experience sampling (Csikszentmihalyi & Larson, 1987), and digital 

phenotyping (Torous et al., 2016). Although the terms differ, all approaches use computer-

assisted methodology to assess momentary self-reported symptoms (e.g., via electronic 

diaries (e-diaries)), behaviors, or physiological processes, or actively or passively collect 

smartphone and physical data or context information (e.g., via wearables) while the 

participant performs normal daily activities in their natural environment (Ebner-Priemer 
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& Trull, 2009). The main advantages of ambulatory assessment are (1) the ability to 

collect real-life data in real time, thereby reducing retrospective recall bias and increasing 

ecological validity; and (2) the ability to collect data continuously (passively), which 

allows us to capture dynamic changes. Accordingly, ambulatory assessment is a promising 

tool for the timely detection of upcoming clinical episodes to prevent further clinical 

deterioration (Ebner-Priemer & Santangelo, 2020; Onnela & Rauch, 2016; Trull & Ebner-

Priemer, 2014). In particular, parameters captured objectively by wearables are useful 

because they can be assessed passively with a high frequency over prolonged time periods 

(Torous et al., 2017). 

Promising markers that can be assessed objectively are speech and language, 

which are also metaphorically called the mirror of the soul (Sundberg, 1998). Even before 

objective measurements with ambulatory assessment technology were feasible, clinical 

observations described the voice of patients with depression as low, slow, and hesitant, 

with these patients speaking in a monotonous and expressionless manner (Kraepelin, 

1921; Sundberg, 1998). Voice and speech production may be affected by typical 

characteristics of the clinical nature of depression; for example, psychomotor retardation, 

energy loss, and cognitive difficulties also affect the vocal folds, leading to a lower 

intensity, rate, and loudness of speech, which manifest in a monotone and toneless voice 

(France et al., 2000; Hashim et al., 2017; Smith et al., 2020). Recent reviews have 

highlighted the potential of using speech markers to assess a variety of psychiatric 

disorders (Low et al., 2020), especially depression (Cummins et al., 2015). The use of 

speech as a marker has several advantages because it can be recorded (1) casually; (2) in 

a noninvasive manner at people’s homes or in public places (with consent provided); and 

(3) at low cost because microphones are integrated in many devices such as smartphones, 
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smartwatches, and hearing aids. With the availability of open-source speech analysis 

software (e.g., open-source Speech and Music Interpretation by Large-Space Extraction 

(openSMILE) and Praat) and advances in automatic speech processing technologies based 

on machine learning techniques, research and development on the use of acoustic and 

linguistic features to identify mood disorders in particular (Low et al., 2020) have been 

made possible. 

Prior Work 

Many studies have successfully discriminated between healthy controls and 

patients with depression based on speech features (Cummins et al., 2015). However, 

understanding within-person (vs. between-person) depression-related voice changes is 

essential in detecting new episodes, that is, the secondary prevention. To the best of our 

knowledge, only a few studies in samples with clinical (not subclinical) depression have 

examined the variability of speech features within persons (R. Horwitz et al., 2013; Mundt 

et al., 2007, 2012; Quatieri & Malyska, 2012; Trevino et al., 2011; Yang et al., 2013). In 

a 6-week treatment-monitoring study, weekly speech samples were obtained from 35 

patients with depression using an interactive voice response system (Mundt et al., 2007). 

Patients with an improvement in depressive symptoms showed a significant increase in 

pitch and pitch variability, an increase in speech rate, and shorter speech pauses while 

speaking at their final assessment compared with their baseline assessment. Importantly, 

patients whose depressive symptoms did not improve did not show these changes. 

The data set of Mundt et al. (2007) was reanalyzed multiple times (R. Horwitz et 

al., 2013; Quatieri & Malyska, 2012; Trevino et al., 2011). Quatieri and Malyska (2012) 

integrated additional speech features and identified that lower pitch variability, shimmer, 

and jitter as well as an increased harmonics-to-noise ratio were correlated with lower 
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depression severity. This is in contrast to the study by Mundt et al. (2007), who found that 

increased pitch variability was associated with lower depression severity, which Quatieri 

and Malyska (2012) attributed to differences in the set of voice samples analyzed (read 

speech in the study by Mundt et al., 2007 and free speech in the study by Quatieri & 

Malyska, 2012). 

Trevino et al. (2011) discussed speech rate extraction methods based on the data 

set of Mundt et al. (2007) and replicated results regarding speech rate in automatically 

derived phonologically based features. Speech rate was negatively correlated with 

depression scores and the psychomotor retardation item in particular. Moreover, the 

authors replicated the finding that speech pauses were positively correlated with 

depression severity. 

Furthermore, Horwitz et al. (2013) reanalyzed a subset of data from the study by 

Mundt et al. (2007) with a focus on disentangling how speech features relate to the total 

assessment score and individual symptom items. The authors found a positive correlation 

between pitch variability and depression scores and a slower speech rate with increasing 

depression severity. Notably, they analyzed a different speech task and a different 

depression assessment in comparison with Mundt et al. (2007). 

Mundt et al. (2012) replicated their results from Mundt et al. (2007) in a larger 

study. Here, 105 patients were observed in a 4-week randomized placebo-controlled study. 

Again, analyses entailed a comparison of the final and baseline assessments. For patients 

benefiting from the treatment, total pause time was lower, pitch was higher (pitch 

variability was not assessed), and speech rate was higher. For patients who did not benefit 

from the treatment, only speech rate increased; however, it increased significantly less 

than in patients benefiting from the treatment. 
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Yang et al. (2013) analyzed clinical interviews recorded in 7-week intervals. In 

contrast to Mundt et al. (2007), they did not find a change in pitch variability with a change 

in depression severity in the patients but rather in the interviewers. The authors also found 

shorter switching pauses between patient and interviewer (i.e., both interlocutors) with 

lower depression severity. 

Although not completely consistent, these findings support the assumption that 

voice features change within individuals when depression severity changes. However, 

although data were collected at multiple time points during the study (e.g., weekly), except 

in the study by Yang et al. (2013), the analysis was limited to a comparison between the 

baseline and final assessments. However, given that the goal is to detect and ultimately 

prevent new depressive episodes and deterioration, it is essential to understand within-

person trajectories of voice features and how they are associated with momentary states 

with increased granularity. In this study, we used a naturalistic data set where a rapidly 

acting antidepressant treatment (i.e., sleep deprivation therapy (SDT) (Wirz-Justice & 

Benedetti, 2020)) was applied to patients experiencing a depressive episode. The 

antidepressant effect vanishes in most of the cases after recovery sleep. Baseline, the 

treatment effect of SDT, and relapse can be measured in a matter of four days, making it 

a preferable setting to study within-person fluctuations. 

Aims and Hypotheses 

To investigate the within-person relationship between fluctuations in depression 

severity and fluctuations in speech features, we used a longitudinal data set with an 

average of 32 (SD 19.83) assessments per patient. All patients had experienced an acute 

depressive episode and undergone SDT (Wirz-Justice & Benedetti, 2020), a 

chronotherapeutic intervention that can rapidly improve depression symptomatology. The 
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main advantage of this therapeutic is that we maximize the variance of affective states 

within the data set and ensure sufficient within-person fluctuations over time. As the 

amount of speech features is immense, resulting in alpha error inflation, we focused on 3 

speech features with high face validity that have shown first hints in past research (R. 

Horwitz et al., 2013; Mundt et al., 2007, 2012; Quatieri & Malyska, 2012; Trevino et al., 

2011; Yang et al., 2013). Specifically, we hypothesized that (1) changes in pitch 

variability, (2) shorter speech pauses, and (3) higher speech rate are associated with lower 

depression severity. In addition, we assessed the associations of these features with 

additional momentary affective states (i.e., positive affect, negative affect, valence, 

energetic arousal, and calmness). We hypothesized that the associations of speech features 

with negative affect are similar to those for depression severity and that the associations 

of speech features with the other momentary affective states listed follow the opposite 

pattern. 

Methods 

Sample 

We used a data set that was collected as part of a pilot study (Sleep Deprivation 

and Gene Expression (SLEDGE II; German Clinical Trials Register: DRKS00022025) 

gathering digital phenotypes and multiomics data in a clinical sample undergoing SDT at 

the Central Institute of Mental Health in Mannheim, Germany. A total of 30 inpatients 

experiencing acute depressive episodes were enrolled in the study. The patients were 

diagnosed according to the International Classification of Diseases, Tenth Revision (ICD-

10), codes by the senior clinician at admittance to the hospital. All patients received 

treatment as usual, which also included SDT (for a list of medications, refer to Appendix 

A2.1). Exclusion criteria were comorbid substance use disorders or personality disorders. 
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From this sample of 30 patients, the complete data sets of eight patients were excluded 

from the final analyses (n = 4 did not record any videos; n = 1 did not say anything during 

the videos (23 videos); n = 2 had no sound recorded in the videos owing to technical issues 

(30 videos); and n = 1 recorded only two videos); thus, the final sample consisted of 22 

patients (n = 12, 55% male) aged between 18 and 63 (mean 33.5, SD 12.4; median 29, 

IQR 23.25-42.75) years. 

Ethical Considerations 

The study was approved by the Ethics Committee II of the Medical Faculty 

Mannheim, University of Heidelberg (2013-563N-MA). All patients received detailed 

information about the aims and procedures of the study and provided informed consent. 

Patients could withdraw from the study at any time and did not receive any compensation 

for participation. Data was deidentified to ensure privacy. 

Study Procedure 

Patients were given a study smartphone (Nokia 4.2 or Samsung Galaxy J7) at the 

beginning of the study (day 0), instructed on how to use it, and (if necessary) performed 

test runs supervised by the study personnel. A telephone number for technical support and 

an information sheet regarding the ambulatory assessment procedure were handed out. 

Data were collected using movisensXS software (https://movisens.com/en). Patients 

underwent SDT as part of their depression treatment, which involves staying awake for 

approximately 36 hours. Treatment effect and relapse can be measured in a matter of 4 

days (Wirz-Justice & Benedetti, 2020), thus ensuring a maximum of within-person 

variance in the data set. After at least one day of baseline assessment (day 0), SDT was 

conducted on day 1. Patients stayed awake from 6 AM on day 1 to 6 PM on day 2. 

Recovery sleep was allowed from 6 PM on day 2 until 1 AM on day 3. Data were collected 
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before, during, and after SDT for up to 26 days. In the first week of the study, smartphones 

sent prompts three times per day (morning, afternoon, and evening); in addition, self-

initiated assessments were possible to report specific events or to catch up with missed 

assessments. To reduce the burden on patients, the sampling schema was altered to two 

prompts per day (morning and evening). With each prompt, patients were requested to fill 

out items concerning their affective state and to record a selfie video reporting how they 

felt currently. Patients returned the smartphone at the end of the study. The study 

personnel uploaded the data from the smartphones to the movisensXS platform 

(https://movisens.com/en/) and then downloaded the data for analysis. 

Ambulatory Assessment: E-diary Ratings and Selfie Videos 

The data set contains three sets of momentary assessments in the form of e-diary 

ratings at each prompt (Appendix A2.2-A2.4): (1) the short version of the Allgemeine 

Depressionsskala (ADS-K; Hautzinger, 1988) adapted to momentary assessment with 14 

items on depressive mood rated on a scale ranging from 0 = rarely to 3 = mostly (we left 

out the item regarding sleep from the original questionnaire because its inclusion was not 

reasonable in the momentary assessment design); (2) a total of 15 positive (cheerful, 

content, energetic, enthusiastic, relaxed, and happy) and negative (lonely, sad, insecure, 

anxious, depressed, low-spirited, guilty, distrustful, and irritable) affect items (Myin‐

Germeys et al., 2003) rated on a 5-point Likert scale ranging from 1 = not at all to 5 = 

very much; and (3) a 6-item short version of the Multidimensional Mood Questionnaire 

(MDMQ; Wilhelm & Schoebi, 2007) capturing time-varying momentary fluctuations in 

daily life on the affect dimensions of valence (unwell to well and discontent to content), 

energetic arousal (without energy to full of energy and tired to awake), and calmness (tense 

to relaxed and agitated to calm). The items were presented on visual analog scales with 
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two poles and a slider from 0 to 100. For each of the constructs, we computed mean values 

per scale, resulting in six outcome variables (depressive symptoms, positive affect, 

negative affect, valence, energetic arousal, and calmness). For the ADS-K, we also report 

sum scores as described in the tool’s manual; however, to increase comparability among 

outcomes, we used the mean value for analyses. If necessary, we recoded items such that 

higher values indicated a (1) higher intensity of depressive symptoms, (2) higher positive 

affect, (3) higher negative affect, (4) higher positive valence, (5) higher energetic arousal, 

and (6) higher calmness. 

In addition to the aforementioned e-diary ratings, patients were requested to record 

selfie videos with the following instructions: Please keep the camera stable during the 

recording and record your whole face. Please describe in 10-20 seconds how you 

currently feel. 

Clinical Assessments 

The Montgomery–Åsberg Depression Rating Scale (MADRS; Montgomery & 

Åsberg, 1979) was completed in the morning at four time points (baseline, morning before 

sleep deprivation, one week after sleep deprivation, and two weeks after sleep deprivation) 

and once at midday (the day after sleep deprivation night). The MADRS is a 10-item 

expert assessment of depressive symptom severity over the past week, with items rated on 

a 7-point scale ranging from 0 to 6; higher scores indicate higher severity. 

Data Preprocessing 

The data set contained 899 selfie videos in mp4 format. The full set of videos of 

four of the 30 patients had to be excluded owing to the reasons mentioned previously (55 

videos) and additional two videos had to be excluded because of technical damage (2 

videos). As our research questions focused on audio data (not visual data), we extracted 
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the audio tracks of the remaining 842 from the original 899 selfie videos using the ffmpeg 

package in Python and archived them as wav files (sampling rate: 48 kHz; mono=1 

channel). We excluded test runs (14 videos), accidental short recordings with no content 

(29 videos), recordings during which the microphone was masked by the patient 27 

videos), and assessments in which one of the two corresponding assessments (speech or 

affective state) was missing (18 videos). In addition, if two consecutive assessments were 

<15 minutes apart from each other, only the first assessment was kept unless its audio 

quality was insufficient or only the second assessment included assessments of affective 

states; in such cases, the second assessment was kept (21 videos). We also excluded 

recordings with background noise that restricted speech intelligibility (9 videos) or that 

included the speech of third parties (8 videos). We filtered the remaining 716 recordings 

using DeepFilterNet2 (Schröter et al., 2022) to remove background noise. 

Acoustic Features 

For our main analyses, we focused on the acoustic features pitch variability, speech 

pauses, and speech rate (Table 1). We restricted the number of features to limit α error 

inflation and selected specifically these three features because they revealed sufficient 

empirical support to warrant an explicit hypothesis. We extracted acoustic features of the 

final recordings (n = 716) using the functionals (v02) of the extended Geneva Minimalistic 

Acoustic Parameter Set (eGeMAPS; Eyben et al., 2016) of the open-source toolkit 

openSMILE (Eyben et al., 2010) implemented in Python 

(https://github.com/audeering/opensmile-python). eGeMAPS is a minimalistic set of 

acoustic features recommended for clinical speech analysis; it helps to guarantee 

comparability between studies, given the proliferation of speech features. Features related 
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Table 1 

Overview of Extracted Speech Features 

Speech feature Technical feature Explanation 

Pitch variability 
F0semitoneFrom27.5Hz 

_sma3nz_stddevNorm 

SD of the F0 perceived as the extent to 

which a person’s pitch changes (in Hz) 

Speech pauses 
MeanUnvoicedSegmentLen

gth 

Mean of the length of unvoiced regions 

approximating silent parts of the speech 

sample (in seconds) 

Speech rate Words per second 

Ratio of words counted on the basis of the 

automatically transcribed and manually 

corrected text divided by the duration of 

the speech sample 

Note. F0 = fundamental frequency. 

to frequency, energy, spectrum, and tempo are included in the set. Pitch variability 

is represented by the SD of the logarithmic fundamental frequency (F0) on a semitone 

frequency scale starting at 27.5 Hz and measured in hertz. F0 is the lowest frequency of 

the speech signal and is perceived as pitch. Speech pauses are approximated as the mean 

length of unvoiced regions (F0=0) measured in seconds. With respect to speech rate, a 

transcription of the recordings is necessary, which we obtained using an automatic speech 

recognition system according to published procedures (Abulimiti et al., 2020). We 

corrected the transcripts manually. To determine speech rate, we calculated the ratio of 

words divided by the duration of the voice sample. 

Beside our main analyses based on pitch variability, speech pauses, and speech 

rate, we decided to integrate further eGeMAPS features in an exploratory analysis. These 

features have been recommended in the context of affective states in particular because 

they contain additional cepstral and dynamic features (Eyben et al., 2016). We included 
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the following features in the exploratory analyses: for voiced and unvoiced regions 

together, the mean and SD of the mel-frequency cepstral coefficients (MFCCs) 1 to 4 and 

spectral flux difference of the spectra of two consecutive frames; for voiced regions, the 

formant 2 to 3 bandwidths along with spectral flux and MFCCs 1 to 4; and for unvoiced 

regions, the mean and SD of the spectral flux (Eyben et al., 2016). 

Statistical Analysis 

In addition to the mean, SD, and range, we present min and max as the mean of all 

patients’ minimum and maximum scores, respectively, of each parameter throughout the 

whole study. Moreover, following the recommendations by Snijders and Bosker (2011), 

we computed Pearson correlation analyses with person-mean–centered variables to 

evaluate the relationship between affective scores and speech features. To generate 

person-mean–centered variables, we subtracted the individual’s mean from their score, 

which represents the variation around the individual’s mean. 

To evaluate psychometric properties, we calculated McDonald ω as the reliability 

coefficient using the multilevelTools package in R. For the MDMQ subscales, we used the 

misty package in R to calculate the Spearman-Brown corrected correlation coefficients 

because the subscales consist of only two items (Eisinga et al., 2013). For the MADRS 

score at the time of inclusion, we calculated Cronbach α using the psych package in R. 

To analyze the within-person association of speech features and subjectively 

evaluated affective states, we used multilevel modeling (Snijders & Bosker, 2011) using 

the nlme package in R. Multilevel modeling offers two specific advantages for the given 

data: (1) separation of within-person effects from between-person effects and (2) allowing 

and considering different numbers of assessments per patient. Before the analyses, we 

centered time-variant level-1 predictors (pitch variability, speech pauses, and speech rate) 
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at the person level and included the predictors time and time² in minutes (each centered at 

2 PM) as covariates. To facilitate the comparison of the magnitude of effects among 

different predictors, we report standardized beta coefficients (standardized β) according 

to the recommendations by Hox and van de Schoot (2013) following the equation: 

standardized β = β × (SDpredictor / SDoutcome). We further calculated R²Hox values according 

to the recommendation by Maas and Hox (2005) following the equation: R²Hox = (σ²null − 

σ²model) / σ²null. We set the α level at 5% and applied Bonferroni corrections for exploratory 

analyses (αadj=.002). We performed all analyses in R (version 4.2.1, 2022-06-23). 

Our analyses can be split into four parts: the calculation of intraclass correlation 

coefficients (ICCs); separate models with all speech features as predictors and all affective 

scores as outcomes; combined models with all speech features as simultaneous predictors; 

and exploratory analyses, including additional speech features. Specifically, we first 

descriptively investigated whether our study procedure resulted in sufficient within-

person variance. For this purpose, we calculated ICCs, including all momentary affective 

ratings and speech recordings, regardless of whether they were assessed before, during, or 

after SDT. In general, the ICC indicates the amount of between-person variance in 

unconditional (null) models. The 2-level models analyzed contained repeated measures 

(level 1) that were nested within patients (level 2). The second step contained our main 

analysis: we calculated separate models for each speech feature (pitch variability (model 

set 1), speech pauses (model set 2), and speech rate (model set 3)) and each affective state 

(depression severity (ADS-K), positive affect, negative affect, valence, energetic arousal, 

and calmness), resulting in 18 models. In the third step, to evaluate the relative 

significance of pitch variability, speech pauses, and speech rate, we constructed combined 

models for each of the affective scores, including all three features simultaneously (six 
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models). In the fourth step, exploratory analyses were conducted with the inclusion of 24 

additional speech features from eGeMAPS (Appendix A2.5). These features were used as 

predictors for each of the affective scores separately. 

Results 

Descriptive Statistics 

We included 716 speech-state pairs (mean 32, SD 19.83 per patient) in the final 

analysis. The mean MADRS score at the time of inclusion assessment was 30.1 (SD 5.8). 

This corresponds to 18 patients with moderate depression and four patients with severe 

depression out of 22 patients at study inclusion. 

Regarding depressive symptoms (ADS-K; scale 0-3), patients had a mean score of 

1.2 (SD 0.6; min 0.7, max 2.0) and a mean sum score of 16.9 (SD 8.1; min 9.6, max 26.1). 

At inclusion, the mean ADS-K score was 1.4 (SD 0.6; range 0.4-2.8), and the mean sum 

score was 20.0 (SD 8.4; range 6-39). For positive and negative affect (scale 1-5), the mean 

scores were 2.1 (SD 0.8; min 1.3, max 3.1) and 2.3 (SD 1.0; min 1.4, max 3.9), respectively; 

on the MDMQ (scale 1-100) valence subscale, the mean score was 44.9 (SD 21.5; min 9.4, 

max 67.5); on the energetic arousal subscale, the mean score was 41.7 (SD 21.0; min 16.4, 

max 62.7); and on the calmness subscale, the mean score was 43.8 (SD 22.8; min 6.9, max 

70.7). The ICCs were 0.47 for the ADS-K, 0.45 for positive affect, 0.59 for negative affect, 

0.27 for energetic arousal, 0.25 for valence and 0.40 for calmness, that is, the following 

amount of variance in the momentary assessments can be attributed to within-person 

fluctuations: 53% for the ADS-K, 55% for positive affect, 41% for negative affect, 73% 

for energetic arousal, 75% for valence, and 60% for calmness. 

Regarding speech features, the mean pitch variability was 0.32 Hz (SD 0.09; min 

0.14, max 0.44), the mean speech pause length was 0.26 seconds (SD 0.12; min 0.17, max 
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0.47), and the mean speech rate was 1.77 words per second (SD 0.57; min 1.16, max 2.75). 

The ICCs were 0.66 for pitch variability, 0.36 for speech pauses, and 0.57 for speech rate. 

This corresponds to the following amount of variance in the speech feature assessments 

that can be attributed to within-person fluctuations: 34% for pitch variability, 64% for 

speech pauses, and 43% for speech rate. 

Correlational analyses (see Appendix A2.6) included between 698 and 716 

observations depending upon the specific pairing. We found correlations among and 

between affective scores and speech features, except for pitch variability and speech rate, 

neither of which correlated with negative affect and calmness; in addition, there was no 

correlation between pitch variability and speech rate. Specifically, ADS-K scores 

correlated negatively with positive affect, all MDMQ subscales, and speech rate and 

correlated positively with negative affect, pitch variability, and speech pauses. Negative 

affect showed the same pattern, except for the pairings with pitch variability and speech 

rate, for which no correlations were found. Regarding positive affect, we found the 

opposite correlation pattern, that is, positive correlations with all MDMQ subscales and 

speech rate and negative correlations with pitch variability and speech pauses. The 

MDMQ subscales showed the same relationships as positive affect, except for the pairing 

between calmness and pitch variability and speech rate, for which no correlations were 

found. Within speech features, we found a negative correlation between pitch variability 

and speech pauses, no correlation between pitch variability and speech rate, and a negative 

correlation between speech pauses and speech rate. Overall, correlations among affective 

scores were strong (r > .5). Correlations among speech features as well as between 

affective scores and speech features were weak (r < .2), except for a strong negative 

correlation between speech pauses and speech rate. 
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The psychometric properties for momentary affective ratings were good to 

excellent. Specifically, McDonald ω values (Geldhof et al., 2014) were 0.87 (within-

person) and 0.90 (between-person) for depressive symptoms (ADS-K), 0.87 (within-

person) and 0.95 (between-person) for positive affect, and 0.87 (within-person) and 0.96 

(between-person) for negative affect. The Spearman-Brown coefficients were 0.83 

(within-person) and 0.94 (between-person) for valence, 0.74 (within-person) and 0.89 

(between-person) for energetic arousal, and 0.74 (within-person) and 0.89 (between-

person) for calmness. Cronbach α for the MADRS score at the time of inclusion was 

acceptable (.67). 

Association Between Speech Features and Momentary Affective Scores 

 In Tables 2 and 3, we present the fixed effects of pitch variability, speech pauses, 

and speech rate separately for each affective state. Details, including the effects of time 

and time², are presented in Appendix A2.7. 

ADS-K Scores 

In the column entitled ADS-K (Table 2), we report the results of all models with 

ADS-K scores as the outcome. Pitch variability (standardized β = .14; p = .007), speech 

pauses (standardized β = .10; p = .005), and speech rate (standardized β = −.10; p = .02) 

were significantly associated with the ADS-K score, indicating that higher pitch 

variability, longer speech pauses, and lower speech rate are associated with more severe 

depressive symptomatology. 
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Table 2  

Multilevel Linear Regression Analysis to Predict Depression and Positive and Negative Affect: Fixed Effects for Pitch Variability, Speech 

Pauses, and Speech Rate 

Predictors Outcome 

 ADS-K Positive affect Negative affect 

 
β 

Stand. 

β SE 

R²Hox 

(%) p β 

Stand. 

β SE 

R²Hox 

(%) p β 

Stand. 

β SE 

R²Hox 

(%) p 

Model set 1                

  Intercept 127 - 0.10 - <.001 2.10 - 0.13 - <.001 2.45 - 0.16 - <.001 

  Pitch 

  variability 

.88 .14 0.32 1 .007 -1.50 -.18 0.42 1 <.001 .85 .08 0.43 1 .05 

Model set 2                

  Intercept 127 - 0.10 - <.001 2.09 - 0.13 - <.001 2.46 - 0.16 - <.001 

  Speech 

  pauses 
.52 .10 0.18 1 .005 -1.16 -.17 0.24 17 <.001 .76 .09 0.25 2 .002 

Model set 3                

  Intercept 127 - 0.10 - <.001 2.10 - 0.13 - <.001 2.45 - 0.16 - <.001 

  Speech 

  rate 

-.11 -.10 0.05 <1 .02 .26 .18 0.06 2 <.001 -.13 -.08 0.07 1 .04 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. Stand. β = standardized β coefficient. Statistical significance printed in bold.
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Table 3 

Multilevel Linear Regression Analysis to Predict Valence, Energetic Arousal, and Calmness: Fixed Effects for Pitch Variability, Speech 

Pauses, and Speech Rate 

Predictors Outcome 

 Valence Energetic arousal Calmness 

 
β 

Stand. 

β SE 

R²Hox 

(%) p β 

Stand. 

β SE 

R²Hox 

(%) p β 

Stand. 

β SE 

R²Hox 

(%) p 

Model set 1                

  Intercept 43.72 - 2.70 - <.001 42.82 - 2.71 - <.001 40.97 - 3.39 - <.001 

  Pitch 

  variability 
-36.50 -.16 13.61 1 .008 -33.21 -.15 12.48 1 <.001 -11.52 -.05 12.82 <1 .37 

Model set 2                

  Intercept 43.26 - 2.69 - <.001 42.71 - 2.71 - <.001 40.58 - 3.39 - <.001 

  Speech 

  pauses 

-34.06 -.19 7.71 3 <.001 -14.06 -.08 7.14 1 .049 -24.27 -.12 7.27 5 <.001 

Model set 3                

  Intercept 43.56 - 2.70 - <.001 42.77 - 2.71 - <.001 40.86 - 3.39 - <.001 

  Speech 

  rate 
6.49 .17 2.03 2 .001 4.13 .11 1.87 1 .03 3.43 .09 1.91 5 .07 

Note. Stand. β = standardized β coefficient. Statistical significance printed in bold.
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Positive and Negative Affect 

In the columns entitled Positive affect and Negative affect (Table 2), we show 

results for positive affect and negative affect, respectively, as outcomes. Pitch variability 

(standardized β = −.18; p < .001), speech pauses (standardized β = −.17; p < .001), and 

speech rate (standardized β = .18; p < .001) were significantly associated with positive 

affect, indicating that lower pitch variability, shorter speech pauses, and higher speech 

rate are associated with higher positive affect. The associations between negative affect 

and speech features were in the opposite direction of the associations between positive 

affect and the speech features just presented: speech pauses (standardized β = .09; p = 

.002) and speech rate (standardized β = −.08; p = .04) were significantly associated with 

negative affect, indicating that longer speech pauses and lower speech rate are associated 

with higher negative affect. We further found a trend with respect to the association 

between pitch variability and negative affect, but this result was not statistically significant 

(standardized β = .08; p = .05). In addition, we found trends with respect to the associations 

between negative affect and time and negative affect and time², specifically in the models 

that included pitch variability (time: standardized β = .04; p = .08), speech pauses (time: 

standardized β = .04; p = .08; time²: standardized β < .01; p = .06), and speech rate (time: 

standardized β = .04; p = .09), but these results were not statistically significant. 

MDMQ Results 

In the columns entitled Valence, Energetic arousal, and Calmness (Table 3), we 

present the results for the MDMQ. Pitch variability (standardized β = −.16; p = .008), 

speech pauses (standardized β = −.19; p < .001), and speech rate (standardized β = .17; p 

= .001) were significantly associated with valence, indicating that lower pitch variability, 

shorter speech pauses, and higher speech rate are associated with higher (i.e., positive) 
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valence. In the model that included valence and speech pauses, we found a significant 

association between time² and valence (standardized β < .001; p = .03). In addition, we 

found trends with respect to the associations between valence and time², specifically in 

the models that included pitch variability (time: standardized β < .01; p = .098) and speech 

rate (time: standardized β < .01; p = .07), but these results were not statistically significant. 

Moreover, pitch variability (standardized β = −.15; p < .001), speech pauses (standardized 

β = −.08; p = .049), and speech rate (standardized β = .11; p = .03) were significantly 

associated with energetic arousal, indicating that lower pitch variability, shorter speech 

pauses, and higher speech rate are associated with higher energetic arousal. In all model 

combinations of energetic arousal and each speech feature, we found significant 

associations between time and energetic arousal (standardized β = −.11; p < .001) and 

time² and energetic arousal (standardized β < .01; p < .001). Furthermore, speech pauses 

(standardized β = −.12; p < .001) were significantly associated with calmness, indicating 

that shorter speech pauses are associated with greater calmness. In all model combinations 

of calmness and each speech feature, we found significant associations between time² and 

calmness (standardized β < .01; p = .013 for pitch variability, p = .003 for speech pauses; 

p = .009 for speech rate). In addition, we found a trend with respect to the association 

between speech rate and calmness (standardized β = .09; p = .07), but this result was not 

statistically significant. 

Combined Models 

In Table 4 and Table 5 we display the results for the combined models that included 

all three speech features. In the model of ADS-K scores, associations with pitch variability 

(standardized β = .17; p <.001) and speech pauses (standardized β = .12; p = .01) remained 

statistically significant. Regarding positive affect, associations with pitch variability 
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(standardized β = −.23; p < .001) and speech pauses (standardized β = −.19; p < .001) 

remained statistically significant. We further found a trend regarding the association 

between positive affect and time (standardized β = −.05; p =.09), but this result was not 

statistically significant. Regarding negative affect, associations with pitch variability 

(standardized β = .12; p = .008), speech pauses (standardized β = .12; p = .005), time 

(standardized β = .05; p = .03), and time² (standardized β < .01; p = .03) remained 

statistically significant. In the model of valence, associations with pitch variability 

(standardized β = −.22; p < .001), speech pauses (standardized β = .22; p < .001), and 

time² (standardized β < .01; p = .01) remained statistically significant. Regarding energetic 

arousal, associations with pitch variability (standardized β = −.17; p = .003), time 

(standardized β = .12; p < .001), and time² (standardized β < .01; p < .001) remained 

statistically significant. Regarding calmness, associations with speech pauses 

(standardized β= − .17; p = .002) and time² (standardized β < .01; p = .002) remained 

statistically significant. We further found a trend for the association between calmness and 

pitch variability (standardized β = .09; p = .097), but this result was not statistically 

significant. 

Exploratory Analysis 

Analyzing additional speech features, we found significant associations of the 

equivalent sound level, the mean of spectral flux, and the mean of spectral flux of voiced 

regions only, individually, with all affective scores (Appendix A2.8). With respect to 

equivalent sound level, this indicates that louder voice samples were linked to improved 

affective states (ADS-K: standardized β = −.30; positive affect: standardized β = .34; 

negative affect: standardized β = −.21; valence: standardized β = .29; energetic arousal: 

standardized β = .26; and calmness: standardized β = .19); with respect to the mean of  
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Table 4 

Multilevel Linear Regression Analysis to Predict Momentary Depression, Positive Affect, and Negative Affect: Fixed Effects for the 

Combined Models 

Predictors Outcomesa 

 ADS-K Positive Affect Negative Affect 

 
β 

Stand. 

β SE p β 

Stand. 

β SE p β 

Stand. 

β SE p 

Intercept 1.28 - 0.10 <.001 2.08 - 0.13 <.001 2.47 - 0.16 <.001 

Time <0.01 .02 <0.01 .42 <-0.01 -.05 <0.01 .09 <0.01 .05 <0.01 .03 

Time² <0.01 <.001 <0.01 .44 <0.01 <.001 <0.01 .31 <0.01 <.01 <0.01 .03 

Pitch 

variability 
1.11 .17 0.33 <.001 -1.96 -.23 0.43 <.001 1.19 .12 0.45 .008 

Speech 

pauses 
.64 .12 0.26 .01 -1.29 -.19 0.33 <.001 0.99 .12 0.35 .005 

Speech 

rate 

<-0.01 <.001 0.07 .99 0.04 .03 0.09 .66 0.04 .02 0.09 .68 

Note. Stand. β = standardized β coefficient. aR2
Hox for ADS-K = 2%, for positive affect = 6%, and for negative affect = 2%. Statistical 

significance printed in bold. 
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Table 5 

Multilevel Linear Regression Analysis to Predict Momentary Valence, Energetic Arousal, and Calmness: Fixed Effects of the Combined 

Models 

Predictors Outcomesa 

 Valence Energetic arousal Calmness 

 
β 

Stand. 

β SE p β 

Stand. 

β SE p β 

Stand. 

β SE p 

Intercept 42.95 - 2.68 <.001 42.48 - 2.71 <.001 40.45 - 3.38 <.001 

Time <0.01 .03 <0.01 .48 <-0.01 .12 <0.01 <.001 <-0.01 .01 <0.01 .89 

Time² <0.01 <.01 <0.01 .01 <0.01 <.01 <0.01 <.001 <0.01 <.01 <0.01 .002 

Pitch 

variability 
-49.01 -.22 13.76 <.001 -37.74 -.17 12.78 .003 -21.75 .09 13.07 .097 

Speech 

pauses 
-41.01 .22 10.73 <.001 -12.97 .07 9.97 .19 -32.53 -.17 10.20 .002 

Speech 

rate 
-0.64 .02 2.76 .82 1.96 .05 2.56 .44 -2.28 .06 2.62 .38 

Note. Stand. β = standardized β coefficient. aR2
Hox for valence = 4%, for energetic arousal = 5%, and for calmness= 2%. Statistical signify- 

cance printed in bold. 
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spectral flux, this indicates that a faster change in the spectrum was linked to better 

affective states (ADS-K: standardized β = −.22, positive affect: standardized β = .28, 

negative affect: standardized β = −.15, valence: standardized β = .21, energetic arousal: 

standardized β = .17, and calmness: standardized β = .27); and with respect to the mean 

of spectral flux of voiced regions only, this indicates that a faster change in the spectrum 

in voiced regions was linked to better affective states (ADS-K: standardized β = −.23, 

positive affect: standardized β = .28, negative affect: standardized β = −.15, valence: 

standardized β = .20, energetic arousal: standardized β = .20, and calmness: standardized 

β = .16). Regarding the additional speech features, the following significant associations 

were found: the mean of spectral flux of unvoiced regions only was associated with 

positive affect, indicating that a faster change in the spectrum in unvoiced regions was 

linked to improved positive affect (standardized β = .13); and the mean of the MFCC 2 of 

voiced regions only was significantly associated with energetic arousal, indicating that a 

higher mean was linked to lower energetic arousal (standardized β = −.15). Furthermore, 

we revealed a significant association between the SD of the MFCC 4 of voiced regions 

only ADS-K scores (standardized β = .13) as well as positive affect (standardized β = 

−.10) and negative affect (standardized β = .09). Specifically, smaller SDs were linked to 

higher positive affect, reduced negative affect, and lower ADS-K scores. 

Discussion 

Principal Findings 

This is the first study to investigate whether speech features are associated with 

depression severity and momentary affective states in a longitudinal data set of patients 

with a depressive episode undergoing SDT. Our findings showed that lower pitch 

variability, higher speech rate, and shorter speech pauses were associated with better 
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momentary states (i.e., lower depression severity; higher positive affect and lower 

negative affect; and higher positive valence, energetic arousal, and calmness), supporting 

prior clinical observations with innovative methods applied to an intensive longitudinal 

data set. 

Lower depression severity was accompanied by shorter speech pauses. This is in 

line with past research findings reporting that shorter speech pauses were associated with 

lower depression severity (Mundt et al., 2007, 2012; Trevino et al., 2011; Yang et al., 

2013). Our findings extend prior results because we also found an association between 

speech pauses and affective states more broadly, not limited to depressed mood. 

Regarding speech rate, we revealed associations with depression severity and all other 

affective state scales except for calmness. In particular, we found that higher speech rate 

was associated with lower depression symptomatology and lower negative affect, higher 

positive affect, higher positive valence, and higher energetic arousal. This is in line with 

prior research (R. Horwitz et al., 2013; Mundt et al., 2007, 2012; Trevino et al., 2011), in 

which a higher speech rate was found for patients who benefited from treatment. 

Regarding pitch variability, we found support for our hypothesis that pitch 

variability changes with depression severity; more precisely, lower pitch variability was 

associated with lower depression symptomatology. This is in line with the studies by 

Quatieri and Malyska (2012) and Horwitz et al. (2013), where a positive correlation 

between pitch variability and depression severity was found. However, the results reported 

in the studies by Mundt et al. (2007) and Yang et al. (2013) contrasted with ours and those 

found in the studies by Quatieri and Malyska (2012) and Horwitz et al. (2013), that is, that 

higher pitch variability was associated with lower depression severity. A possible 

explanation for contradictory results in major depression are the heterogeneity of (1) the 
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depression phenotype per se because diagnosis criteria include >400 possible symptom 

combinations (Goldberg, 2011; Østergaard et al., 2011); and (2) the questionnaires, 

assessment approaches, statistical analyses, and speech feature extraction tools used in 

these studies. The within-person research design approach underlying our data set 

addressed the heterogeneity of the depression phenotype at least partially. Furthermore, 

we analyzed free speech collected naturally in a selfie task, whereas in the study by Mundt 

et al. (2007), read speech was used in the analyses. In line with what is suggested in the 

study by Quatieri and Malyska (2012), this could also be a reason for the contradictory 

results. However, because assessing within-person fluctuations in daily life increases 

ecological validity, we regard our results as an important contribution. 

Observing the full picture of associations, we note that the results for all three 

speech features are similar and do not provide evidence of specific associations (e.g., 

association of one specific speech feature with one specific momentary affective state), 

showing no distinct patterns of momentary states for each speech feature. This is 

reasonable because the constructs overlap in content (e.g., patients experiencing 

depression experience higher negative affect and lower positive affect). 

In terms of the combined models evaluating the relative importance of the features, 

we found that in the four models (ADS-K, valence, positive affect, and negative affect) 

both pitch variability and speech pauses remained significant, whereas speech rate did not. 

Pitch variability remained the only significant parameter in the model of energetic arousal, 

and speech pauses remained the only significant parameter in the model of calmness. This 

suggests that pitch variability and speech pauses are speech features rather independent of 

each other, whereas the high correlation between speech pauses and speech rate might 
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account for the fact that only one of these features (in this case, speech pauses) remained 

a significant predictor. 

Limitations 

First, this study examined a limited set of three speech features. Instead of applying 

brute force methods involving thousands of technical speech features, we selected speech 

features based on previous work and with high face validity, restricting the scope of our 

analysis. Although we did expand our scope of features in the exploratory analysis, it is 

very likely that other configurations and features (e.g., the ComParE feature set containing 

6373 features; Schuller et al., 2013) might also be predictive of affective states. Future 

work is needed to compare theory-driven approaches with brute force data-driven machine 

learning methods to find the best possible combination of speech features also considering 

aspects of computational power. However, selecting the features on a theoretical basis and 

restricting their pure number limits alpha error inflation and should increase replicability. 

Second, although the sample size of our study was limited, this was a true within-

person design with many data points per patient. In addition, we regard this study as a 

pilot study providing important indications regarding feasibility in a clinical context. As 

some patients dropped out of the study, and some recordings had to be excluded, in future 

studies, data collection needs to be integrated better into clinical routines. Moreover, the 

instructions for patients may need to be revised to reduce the likelihood of missing data 

and recording errors. However, the data set at hand is still unique in the relatively high 

number of assessments per patient and the applied SDT, which yielded meaningful 

variation in the depression severity within a short time period. From a theoretical 

perspective, it is crucial to emphasize that to uncover existing relations among variables, 

meaningful variance in both parameters is needed. 
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Third and last, selfie videos were recorded in a clinical environment, which may 

limit generalizability to other contexts. In future studies, ambulant patients could be 

integrated and other environments explored to evaluate the replicability of the results. 

However, our approach, which involved sampling free speech, offers higher ecological 

validity to reading standardized text paragraphs because it provides a closer representation 

of people’s everyday lives. The development of passive sensing will be helpful in this 

context (i.e., the random assessment of audio bits in an ecological environment). To date, 

automated passive voice recordings in nonprotected environments have been restricted in 

2-party consent states, such as Germany. However, in single-party consent states, a few 

speech-related applications can be used in the wild (e.g., the Electronically Activated 

Recorder; Mehl, 2006). Although the development of technical devices is ongoing, future 

studies will have to consider ethical issues related to voice recording in natural settings 

(e.g., ensuring that no third parties who did not give informed consent are recorded). 

Conclusions 

Our study provides evidence that fluctuations in the speech features pitch 

variability, speech pauses, and speech rate are associated with fluctuations in depression 

severity and other momentary affect states. Notably, the data were collected from 

clinically diagnosed patients (no subclinical sample or staged emotions) experiencing an 

acute depressive episode. A particularly important advantage is that our longitudinal 

ambulatory assessment data set ensured a maximum of within-person dynamics of 

depressive parameters within a short time period by applying a sleep deprivation 

intervention design. This is of great importance because future technology will try to 

predict upcoming depressive episodes on an individual level and will need information on 

within-person trajectories. For the development of such tailored precision medicine tools, 
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pitch variability, speech pauses, and speech rate present promising features. Our research 

is a step forward on the path to developing an automated depression monitoring system, 

facilitating individually tailored treatments and increased patient empowerment.
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CHAPTER 3 

 

ARTICLE 2: 

SPEECH-BASED MACHINE LEARNING 

FOR PREDICTING MOMENTARY DEPRESSION SEVERITY 

 

 

This chapter is based on a manuscript that has been submitted to JMIR Mental Health as 

Hartnagel, L.-M., Emden, D., Foo, J. C., Streit, F., Witt, S. H., Frank, J., Limberger, M. 

F., Schmitz, S., Gilles, M., Rietschel, M., Hahn, T., Ebner-Priemer, U. W., & 

Sirignano, L. [under review]. Speech-based Machine Learning for Momentary 

Depression-Severity Prediction in Acutely Depressed Patients undergoing Sleep 

Deprivation Therapy 
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Abstract 

Background: Mobile devices for remote monitoring are inevitable tools to support 

treatment and patient care, especially in recurrent diseases such as Major Depressive 

Disorder. The aim of this study was to learn if machine learning (ML) models based on 

longitudinal speech data are helpful in predicting momentary depression severity. Data 

analyses were based on a dataset including 30 inpatients during an acute depressive 

episode receiving Sleep Deprivation Therapy in stationary care, an intervention inducing 

a rapid change in depressive symptomatology in a relatively short period of time. Using 

an ambulatory assessment approach, we captured speech samples and assessed 

concomitant depression severity via self-report questionnaire over the course of three 

weeks (before, during, and after therapy). We extracted 89 speech features from the speech 

samples using the eGeMAPS parameter set from openSMILE and the additional parameter 

speech rate. 

Objective: We aimed to understand if a multi-parameter ML approach would significantly 

improve the prediction compared to previous statistical analyses, and, in addition, which 

mechanism for splitting training and test data was most successful, especially focusing on 

the idea of personalized prediction.  

Methods: To do so, we trained and evaluated a set of > 500 ML pipelines including random 

forest, linear regression, support vector regression, and eXtreme gradient boosting 

regression models and tested them on five different train-test split scenarios: a group 5-

fold nested cross-validation on subject level, a leave-one-subject-out approach, a 

chronological split, an odd-even split, and a random split. 

Results: In the 5-fold cross-validation, the leave-one-subject-out, and the chronological 

split approaches, none of the models were statistically different from random chance. The 
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other two approaches produced significant results for at least one of the models tested, 

with similar performance. In total, the superior model was an XGBoost regression in the 

odd-even split approach (R² = 0.339, MAE = 0.38; both p < .001), indicating that 33.9% 

of the variance in depression severity could be predicted by the speech features. 

Conclusion: Overall, our analyses highlight that ML fails to predict depression scores of 

unseen patients, but prediction performance increased strongly compared to our previous 

analyses with multilevel models. We conclude that future personalized ML models might 

improve prediction performance even more, leading to better patient management and 

care. 

Introduction 

Major depressive disorder (MDD) is a major global public health challenge 

imposing a substantial burden on individuals and society as a whole (Vos et al., 2020). 

Due to the recurrent nature of MDD in many patients, relapse prevention is an important 

treatment goal (Benasi et al., 2021). Longitudinal symptom monitoring is crucial, 

especially for relapse prevention (Benasi et al., 2021), as mood deterioration and 

prodromal symptoms can be detected in time and additional treatment can be initiated 

before a severe episode fully develops. However, traditional retrospective symptom 

questionnaires and classification interviews typically consider the last two weeks of 

symptomatology (Colombo et al., 2019), which might not be useful for the rapid detection 

of impending prodromal symptoms. More specifically, even an unrealistic scenario of 

conducting classification interviews every two weeks might delay the detection of a new 

episode by weeks (Ebrahimi et al., 2021; Fried et al., 2022). Accordingly, approaches are 

needed that operate at a higher frequency, enabling to detect prodromal symptoms e.g. on 

a daily basis.  
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Leveraging on smartphone-based data collection, promising avenues are being 

opened to support the traditional monitoring of MDD symptoms (Abd-Alrazaq et al., 

2023; Torous et al., 2016). Offering continuous, unobtrusive, near real-time, active and 

passive everyday life data collection, the use of ambulatory assessment (AA) increases 

ecologically valid insights into the lives of people living with mental disorders (Ebner-

Priemer et al., 2020; Trull & Ebner-Priemer, 2014). Widespread personal digital devices 

such as smartphones are used to capture momentary self-reported symptoms and behaviors 

as patients go about their normal daily activities in their natural environment (Ebner-

Priemer & Trull, 2009). As clear biomarkers for MDD are lacking (Rimti et al., 2023), the 

identification of behavioral markers that can be objectively derived from digitally captured 

everyday life behavior has great potential to increase automated detection of new episodes, 

ultimately improving depression care (Abd-Alrazaq et al., 2023; De Angel et al., 2022; 

Zarate et al., 2022). 

Speech has been discussed as one such potential behavioral marker (Low et al., 

2020). As early as 1921, Emil Kraeplin observed that patients with MDD tended to speak 

with a lower speech rate, more monotonously, and at a lower pitch compared to healthy 

individuals (Kraepelin, 1921). Since then, many studies have described further 

depression-related altered speech characteristics (Cummins et al., 2015; Low et al., 2020). 

However, the research field faces several challenges such as the sheer limitless volume of 

potential speech features. Inference statistics require a theory-driven selection of 

parameters, as combining thousands of them increases the alpha error (Wadle & Ebner-

Priemer, 2023). Machine learning (ML) techniques offer a data-driven alternative, 

allowing a variety of parameters to be explored without the need for a priori parameter 

restriction. 



Chapter 3 | Acoustic Features (ML)  49 

 

 

Most studies investigating speech in MDD (independent of using ML or classical 

inferential statistics) use case-control designs, comparing speech samples (or often a 

single sample) of patients with MDD to healthy controls (Low et al., 2020). While this 

approach is initially useful, it does not address the prediction of upcoming episodes. To 

predict new emerging episodes or prodromal symptoms, we need patient data before an 

episode and during an emerging episode with prodromal symptoms, even better also data 

during an episode and after. Such data would allow us to train models to discriminate 

between healthy, prodromal and disordered states on a within-subject level or to relate 

speech features to dimensional symptomatology. This would approximate the ultimate 

goal in clinical practice, namely to decide within a given patient that yesterday’s speech 

features were normal, but today’s speech features predict an emerging episode. 

Unfortunately, longitudinal studies of patients with MDD including regular speech 

samples, regular psychopathological ratings as ground truth and sufficient variance in this 

ground truth, i.e., changes in healthy and disordered states, are rare (Cummins et al., 2015; 

Low et al., 2020). 

To address this gap, we used a longitudinal dataset in which repeated assessments 

of depressive momentary states and speech features derived from selfie videos were 

collected concomitantly by patients with an acute depressive episode (Wadle et al., 2024). 

While Wadle and colleagues (2024) used classical statistics (multilevel models) and 

focused on three specific, theory-driven speech features (speech rate, speech pauses, and 

pitch variability), which did indeed show associations with depression severity, we wanted 

to improve on several levels. Given the large number of speech features available, the aim 

of the present study was to extend our previous findings by examining a comprehensive 

set of 89 speech features and by employing more complex modeling approaches in terms 
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of ML. We aim to contribute to this field, as we only identified three ML studies using 

longitudinally assessed data in a clinical (as opposed to subclinical) population with 

multiple data points per patient to predict depression severity based on speech features.  

In one of the studies, speech samples and concomitant mood self-ratings were 

collected from 30 patients with MDD via AA over the course of two weeks (Gerczuk et 

al., 2022). ML analyses revealed a correlation of ρ = .61 between the actual and predicted 

mood scores, and an improvement in prediction when using personalized (ρ = .79) instead 

of non-personalized models.  

The most promising dataset at present is from the RADAR-CNS-consortium 

project, with two relevant publications (Campbell et al., 2023; Cummins et al., 2023). In 

the paper by Cummins et al. (2023), speech data were collected in the form of a scripted 

task and a free-response task from 461 patients with MDD every two weeks for 18 months. 

A set of 28 speech features was analyzed using linear mixed models. Associations were 

found between elevated depression symptoms and speech rate, articulation rate, and 

speech intensity. However, the authors mention in their limitations that the results are 

based on the cohort level, which limits insights into intra-individual depression-related 

speech changes, which they plan to investigate in the future. The other publication from 

the RADAR-CNS project focused on the benefits of model personalization (Campbell et 

al., 2023). Data from the scripted (n = 271) and free response (n = 258) task from a subset 

of patients were used to explore personalized and generalized ML models. Three speech 

parameter sets were extracted from a total of 8,004 speech samples, with personalization 

proving beneficial for their binary depression classification (high vs. low depression 

severity). Specifically, running a support vector regression (SVR) classifier based on the 

extended version of the Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) from 
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the free-response task for this binary decision resulted in better performance for the 

personalized compared to the generalized models. 

Building on previous work by the authors (Wadle et al., 2024), we aim to 

contribute to closing this gap and to the understanding of speech-based longitudinal 

monitoring of MDD. Specifically, we were interested in whether a multi-parameter ML 

approach would significantly improve prediction, compared to our previous study, which 

focused on the three most prominent speech features. In addition, we explored in which 

mechanism for splitting training and test data was most successful, with a particular focus 

on the idea of personalized prediction. To do so, we analyzed a dataset of patients (n = 30) 

diagnosed with MDD during sleep deprivation therapy, a fast-acting treatment (Wirz-

Justice & Benedetti, 2020) that results in a significant improvement of depressive states 

in most of the patients within 36-hours. The given treatment ensures short-term effects, 

which is advantageous compared to other studies such as the RADAR—MDD project 

where patients are observed over two years to reveal illness episodes (Matcham et al., 

2019). In Wadle et al. (2024), patients reported momentary depressive states and recorded 

concomitant selfie videos talking about their current feelings 2-3 times per day for up to 

three weeks. Speech features were extracted from the speech samples using the software 

open-source Speech and Music Interpretation by Large-Space Extraction (openSMILE; 

Eyben et al., 2010). To assess the potential clinical utility of automated symptom 

monitoring using speech features, we trained and evaluated a comprehensive set of > 500 

ML pipelines (by optimizing hyperparameters of random chance and dummy regressors 

for baseline comparisons, random forest, linear regression, SVR, and eXtreme Gradient 

Boosting regression (XGBoost) models) to predict individual symptom severity. We used 

five different approaches to evaluate whether these ML models generalize across patients 
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or whether personalized splits are superior: 1) group 5-fold cross-validation on a subject 

level, 2) a leave-one-subject-out (LOSO) approach, and 3) a train-test-split with 2-fold 

cross-validation using different splitting techniques, 3a) chronological split with the first 

half as training and the second half as test set, 3b) odd-even split, with chronologically 

sorted data put into train and test set by turns, 3c) a random split, which was repeated ten 

times. 

Methods 

Sample 

We analyzed a dataset that was collected as part of the SLEDGE II pilot study 

(Sleep Deprivation and Gene Expression; DRKS00022025). The initial sample consisted 

of 30 inpatients from the Central Institute of Mental Health in Mannheim, Germany, who 

experienced an acute depressive episode (ICD-10) on admission to the hospital. The final 

sample to be analyzed consisted of 22 patients (55% male) aged between 18 and 63 years 

(mean 33.5, SD 12.4, median 29), as the dataset of eight patients had to be excluded 

completely. Specifically, four patients did not record any videos; one patient did not say 

anything during the recordings (23 videos); the data of two patients lacked sound due to 

technical problems (30 videos); one patient was excluded because he or she recorded only 

two videos. The final sample corresponds to 18 patients with moderate depression and 

four patients with severe depression at study inclusion, as assessed by clinical expert 

interview using the Montgomery–Åsberg Depression Rating Scale (MADRS; 

Montgomery & Åsberg, 1979). The mean MADRS score was 28 for patients with 

moderate depression and 39 points for patients with severe depression. Exclusion criteria 

were comorbid substance use disorders and personality disorders.  
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Study Procedure 

Data were collected by patients on a study smartphone using the movisensXS 

software (https://movisens.com/en). The patients underwent sleep deprivation therapy as 

part of their depression treatment. In other words, patients had to stay awake for 

approximately 36 hours. Treatment effect and relapse can be measured in a matter of four 

days (Wirz-Justice & Benedetti, 2020), resulting in substantial within-person variance for 

many patients in the dataset. After at least one day of baseline assessment, sleep 

deprivation therapy was conducted on what we define as day 1 (Figure 2). Specifically, 

patients stayed awake from 6 AM on day 1 to 6 PM on day 2. Recovery sleep was allowed 

from 6 PM on day 2 until 1 AM on day 3. Data were collected before, during and after 

sleep deprivation therapy for up to 26 days. During the first week of the study, 

smartphones sent prompts tree times per day (morning, afternoon, evening); in addition, 

self-initiated assessments were possible to report specific events or to catch up on missed 

assessments. To reduce patient burden, the sampling scheme was changed to two prompts 

per day (morning, evening). At each prompt, patients were asked to complete items about 

their current affective state and to record a selfie video reporting how they currently felt. 

Patients returned the smartphone at the end of the study. 

 Figure 2 

Sleep Deprivation Study Design 
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Ambulatory Assessment: E-diary Ratings and Selfie Videos 

The dataset contains three sets of momentary affect ratings in the form of e-diary 

ratings at each prompt. The full assessment tools are described in Wadle et al. (2024). As 

the analysis in the present work is limited to the target variable of momentary depression, 

we focus here on its detailed description. Depression severity was assessed using the short 

version of the Allgemeine Depressionsskala (ADS-K; Hautzinger, 1988). We adapted the 

ADS-K to fit the characteristics of momentary assessment with 14 items on depressive 

mood (excluding the sleep item) rated on a scale from 0 = rarely to 3 = mostly (Appendix 

A3.1). We recoded the reversed items so that higher scores indicated higher intensity of 

depressive symptoms, thereafter, we calculated mean values. In addition to the e-diary 

ratings just described, patients were asked to record selfie videos with the following 

instructions: Please keep the camera stable during the recording and record your whole 

face. Please describe in 10 - 20 seconds how you currently feel. 

Ethical Considerations 

The Ethics Committee II of the Medical Faculty Mannheim, University of 

Heidelberg, Germany, approved the study. Patients were informed about the aims and 

study procedures. All patients gave informed consent and could withdraw from the study 

at any time.  

Data Preprocessing 

Initially, the dataset contained 899 recorded selfie videos. As mentioned above, we 

excluded all videos of four patients (55 videos) and removed two additional videos with 

technical damage. We extracted audio tracks from the 842 remaining videos using the 

ffmpeg package in Python and archived them as wav files (sampling rate = 48 kHz, mono 

= 1 channel). In the next step, we listened to all recordings and removed test runs (n = 14), 
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content-free accidental short recordings (n = 29), recordings in which the microphone was 

covered (n = 27), and assessments in which either the recording or the affective state 

assessment was missing (n = 24). Moreover, if two consecutive assessments occurred 

within 15 minutes of each other (n = 21), the second assessment was removed unless the 

audio quality of the first recording was insufficient, in which case the second assessment 

was kept. Finally, we excluded recordings containing third-party speech (n = 8) and 

recordings with insufficient speech intelligibility due to background noise (n = 9). Prior 

to speech parameter extraction, we filtered the remaining 710 recordings using 

DeepFilterNet2 (Schröter et al., 2022) to remove background noise. 

Acoustic Features 

We extracted acoustic features using the functionals (v02) of eGeMAPS (Eyben et 

al., 2016) from the open-source toolkit openSMILE implemented in Python (Eyben et al., 

2010). Given the limitless number of potential speech features and to increase 

comparability across studies, this minimalistic set of 88 acoustic features is recommended 

for use in clinical speech analysis (Eyben et al., 2016). We added the parameter speech 

rate, which requires transcription of the recordings. We obtained the transcript using an 

automatic speech recognition system according to published procedures (Abulimiti et al., 

2020) and corrected the transcripts manually. To determine speech rate, we calculated the 

ratio of words divided by the duration of the speech sample. In our previous publication 

(Wadle et al., 2024), we included a subset of three of these speech features (top-down 

selected: F0semitoneFrom27.5Hz-_-sma3nz_stddevNorm, MeanUnvoiced-

SegmentLength, words per second) in multilevel model analyses and found an association 

between each of them and depression severity. In the present work, however, we included 
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all of the described 89 speech features as predictors for depression severity in our ML 

models. 

Machine Learning 

Five ML analyses were conducted to determine the optimal model for predicting 

ADS-K mean scores from our 89 speech features Table 6. All analyses used consistent 

preprocessing, including median imputation for missing data and standard scaling for 

feature normalization. A variety of models were evaluated: a random chance and a dummy 

regressor (mean and median; results of the superior are shown) for baseline comparisons, 

random forest, linear regression, SVR, and XGBoost regression. The models were fine-

tuned using nested cross-validation and a systematic grid search to optimize the 

hyperparameters, ensuring the robustness and reliability of our results using the PHOTON 

AI software package (Leenings et al., 2021). 

Model performance was assessed quantitatively using the R² score (coefficient of 

determination). This metric evaluates the proportion of variance in the dependent variable 

that can be explained by the independent variables, providing a clear measure of model 

effectiveness. It is essential for comparing different regression models in our analysis by 

quantifying how well each model explains the variability in the dataset. The performance 

metrics for each model and splitting technique combination were averaged to provide a 

comprehensive evaluation of model performance. 

We also present mean absolute error (MAE) scores which measure how close the 

predicted and actual values are. MAEs provide a straightforward interpretation given that 

they are calculated in the same units as the underlying data. Clinical relevance can be 

inferred. 
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Table 6 

Overview of Splitting Techniques 

Split mechanism Explanation Visualization 

 

Group 5-fold 

cross validation 

 

Separation of data points into five bins of 

approximately equal size, with the condition that 

each patient’s data are represented in exactly one 

bin, i.e., either in the training set or the test set, but 

not both. Train on all but one bin, test on the 

remaining bin. Repetition of the procedure until 

each bin has been used once as a test bin (5-fold 

cross-validation). 

 

   

Leave-one-

subject-out 

Train on data from all but one patient. Test on data 

from the one left-out patient. The procedure was 

repeated until each subject was used in the test arm 

(here: n=22). 

 

(continued) 
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Overview of Splitting Techniques (continued) 

Note. For visualizations: squares represent data bins in the first row and individual patients in the remaining rows; circles represent individual data 

points. P = patient. 

Split mechanism Explanation Visualization 

 

Chronological 

split 

 

Train on the chronologically first 50% of data, 

test on the last 50%. 

 

Odd-even split Odd assessment points were assigned to the 

training set, even assessment points to the test set. 

Then the implementation of a 2-fold cross-

validation. 

 

Random split Data points were randomly assigned to either 

train or test sets. This was repeated ten times with 

a 2-fold cross-validation calculated in each 

repeated run. 
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Higher R² scores and lower MAE scores indicate superior model performance. P-

values < .05 are considered to be statistically significant. Negative R² scores indicate poor 

model performance, and in such cases, the p-value is not of interest. 

Group 5-Fold Cross-Validation 

In our first analytical approach, we used group 5-fold nested cross-validation to 

assess model performance. Data points were divided into five bins of approximately equal 

size, ensuring that each patient’s data appeared in only one bin, either in the training set 

or the test set, but not both. This means that samples from a single patient were treated as 

a distinct group, ensuring the integrity of individual data within each validation fold. The 

model was trained on four bins and tested on the remaining bin. The procedure was 

repeated until each bin had been used as the test bin, completing the 5-fold cross-

validation. This approach tested whether the predictive patterns identified could generalize 

from one group of patients to another by modeling the association between speech features 

and depression severity across multiple patients.  

Leave-one-subject out 

In the second approach, we used the maximum possible data in a subject-based 

split for the training set. That is, we used data from all but one patient in the training set 

with the goal of predicting data from this one unknown patient. This reflects a potential 

future clinical use case where a trained model is applied to a new, unknown patient. Thus, 

this analysis tests whether the identified predictive pattern generalizes to an unknown 

patient. 

In the following three approaches, we split the data fifty-fifty by using three 

different splitting techniques: a chronological split, an odd-even split, and a random split. 
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Chronological split 

In this approach, we used a chronological train-test split where the first 50% of the 

data (355 data points), ordered by assessment date, were used as the training set and the 

last 50% were used as the test set (355 data points). Note that our patients were recruited 

over a time period of three years and two months. This means that sometimes data were 

collected from only one patient and sometimes from two patients at the same time. 

Specifically, 13 patients of our final sample were enrolled consecutively. For nine 

consecutive patients (i.e., nine pairs of patients), there is an overlap in assessment time 

when comparing the first assessment and the last assessment of an individual patient. 

Consequently, earlier patients are included in the training set, later patients only in the 

test set and three patients in both. No cross-validation was applied, as this would indicate 

a prediction backwards in time. This approach aimed to simulate a realistic prediction 

scenario by training the models on earlier assessments and testing their performance on 

later data points, thereby evaluating the predictive performance for future depression 

severity based on past assessments. 

Odd-even split 

This method employed a nested 2-fold cross-validation approach, in which patient-

wise chronologically sorted data were alternately assigned to the training or test set based 

on odd and even collection points. As a result, half of the data from each patient is 

represented in the training set and half in the test set. Importantly, with this splitting 

mechanism, we assume that both the test and training sets are likely to contain data points 

from different states, namely severely depressed states and euthymic states right after the 

intervention. This approach has the advantage that the model is trained with both, 

individual data from depressive and euthymic states, and it avoids having all depressive 
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data in the training set, but euthymic data only in the test set. Accordingly, this allows us 

to model and evaluate the predictive performance of speech features in clinical use cases. 

For example, predicting the severity of depression in a new depressive episode of a patient 

with a history of recurrent depression, who is already known by the model. 

Random split 

Since there is only one way to split data into training and test sets in the odd-even 

split, we aimed to test the replicability of these findings here. We randomly split our data 

into test and training sets and performed 2-fold cross-validation. There are 716 choose 358 

= 1.03 × 10214 ways to randomly split the data into two halves. With this splitting 

mechanism, it is possible that some data points never appear in the training set. Therefore, 

we repeated this random split ten times and reported the mean values. 

Results 

Descriptive Results 

Our final dataset consisted of 710 pairs of self-reported depressive momentary 

states and speech features extracted from concomitantly recorded selfie videos. Self-

reported depression severity, as indicated by ADS-K responses (scale 0-3), was on average 

1.2 (SD 0.6). The intraclass correlation coefficient for the ADS-K was 0.47, indicating 

that 53% of the variance in momentary depression symptoms is attributable to within-

person variability. The reliability index of the ADS-K in the present study was excellent 

as evaluated according to McDonald Omega (.87 within-person and .90 between-person). 

Machine Learning 

We present the performance of each of our 30 ML approaches in Table 7. All 

combinations of our six models (from top to bottom: random chance, dummy regression, 

random forest regression, linear regression, SVR, XGBoost regression) and our five 
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splitting mechanisms (from left to right: group 5-fold cross-validation, LOSO, 

chronological split, odd-even split, random split) are included in the table. We show R² 

scores and MAE along with their p-values. 

Group 5-Fold Cross-Validation 

In our initial analysis using group 5-fold cross-validation, all tested regressors 

yielded negative R² scores and failed to reach a performance above chance level (Table 

7). This indicates that none of the models were able to significantly explain the variance 

of the target variable and thus failed to provide reliable predictive insights for the ADS-K 

mean scores in this specific setup. The models were not suitable for the dataset under the 

group 5-fold cross-validation scheme. This finding necessitates a reconsideration of the 

model parameters, feature selection, or possibly the experimental design to improve 

predictive performance. 

Leave one subject out 

The LOSO approach yielded comparable results. All models tested yielded non-

significant negative R2 scores (Table 7). This indicates that none of the models effectively 

explained the variance of the target variable and all models were unable to predict mean 

the ADS-K scores for an unknown patient in this particular setup. 

Chronological split 

In the chronological split analysis, none of the models achieved statistically 

significant results (Table 7). These results suggest that none of the models evaluated were 

effective in explaining the variance in the ADS-K mean scores or providing reliable 

predictions in this setup. 
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Table 7 

Model Performances 

Model Splitting techniques 

 
Group 5-fold cross-validation Leave-one-subject-out Chronological split Odd-even-split Random split 

 R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

Random 

chance 
-3.306 0.920 -6.833 0.910 -2.364 0.941 -2.115 0.920 -2.205 0.890 

Dummy 

regression 

(median) 

-0.289 

(p = .79) 

0.499 

(p = .41) 

-3.624 

(p = .92) 

0.557 

(p = .72) 

-0.107 

(p = .99) 

0.491 

(p = .99) 

-0.001 

(p = .35) 

0.482 

(p = .48) 

-0.007 

(p = .72) 

0.488 

(p = .84) 

Random 

forest 

regression 

-0.102 

(p = .09) 

0.455 

(p = .04) 

-4.392 

(p = .99) 

0.540 

(p = .29) 

-0.213 

(p = .65) 

0.519 

(p = .81) 

0.336 

(p <.001) 

0.381 

(p <.001) 

0.305 

(p <.001) 

0.396 

(p <.001) 

(continued) 
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Model Performances (continued) 

Note. XGBoost = eXtreme gradient boosting. Superior model per splitting technique printed in bold.

Model Splitting techniques 

  Group 5-fold cross-validation Leave-one-subject-out Chronological split Odd-even-split Random split 

 R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

R² Score 

(p-value) 

MAE 

(p-value) 

Linear 

regression 

-25.508 

(p = .67) 

0.588 

(p = .50) 

-37.258 

(p = .71) 

0.602 

(p = .31) 

-0.364 

(p = .15) 

0.534 

(p = .18) 

-0.179 

(p <.001) 

0.445 

(p <.001) 

-0.558 

(p = .06) 

0.459 

(p <.001) 

Support 

vector 

regression 

-0.136 

(p = .008) 

0.468 

(p = .004) 

-4.006 

(p = .88) 

0.570 

(p = .89) 

-0.106 

(p = .59) 

0.439 

(p = .87) 

0.313 

(p <.001) 

0.388 

(p <.001) 

0.293 

(p <.001) 

0.401 

(p <.001) 

XGBoost 

regression 

-0.093 

(p = .07) 

0.455 

(p = .03) 

-3.568 

(p = .41) 

0.550 

(p = .03) 

0.084 

(p = .98) 

0.442 

(p = .99) 

0.339 

(p <.001) 

0.380 

(p <.001) 

0.289 

(p <.001) 

0.399 

(p <.001) 
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Odd-even split 

Overall, the performance of three models tested was above chance level (Table 7). 

The XGBoost regression emerged as the superior performer, achieving an R² score of 

0.339 and an MAE of 0.38 (both p < .001). These results indicate that approximately 

33.9% of the variance in the ADS-K mean scores can be explained by the speech features 

using this model. The MAE indicates that the mean difference between the predicted and 

the actual scores is 0.38 units on the ADS-K depression severity scale ranging from 0-3. 

This substantial improvement in model performance of the superior model in this 

approach compared to our previous ML approaches demonstrates the potential 

effectiveness of the XGBoost model when data are alternately assigned to training and test 

sets based on odd and even collection points. This analysis highlights the importance of 

including both depressive and euthymic data points from the same individual in both the 

training and test set. In addition to the XGBoost model, the SVR and random forest 

regression yielded statistically significant results of a descriptively comparable order of 

magnitude. 

Random split 

The random forest regression emerged as the superior performer (Table 7) in the 

random split. The model achieved an R² score of 0.305 and an MAE of 0.396 (both p < 

.001). These results indicate that using this model, approximately 30.5% of the variance 

in the ADS-K mean scores can be explained by the speech features. The MAE of the 

random forest model indicates that the mean difference between the predicted and the 

actual scores is 0.396 units on the ADS-K depression severity scale ranging from 0-3. In 

addition to the random forest regression, the SVR and XGBoost regression models 

reached statistical significance with descriptively comparable performance. 
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Discussion 

The objective of this study was to evaluate if speech-based multi-parameter ML 

models and specific train-test splits would significantly increase the prediction of 

depression severity ratings compared to previous statistical analyses. Uniquely, we used a 

longitudinal dataset of MDD patients undergoing sleep deprivation therapy. This approach 

allows the observation of treatment onset and relapse within a few days, thereby allowing 

for a maximum of within-subject variance of momentary depressive states in our dataset. 

The most effective ML model (XGBoost regression with odd-even splitting) explains 

33.9% of the variance of the target variable depression severity with an MAE of 0.38. It 

is noteworthy that this represents a 17-fold increase in predictive power over our previous 

analyses of this (same) dataset, which revealed an R²Hox of 2% (Wadle et al., 2024). It 

should be noted that in our previous analysis we focused on a subset of three speech 

features, whereas in the present work 89 speech features were included into the models. 

Furthermore, in our previous work, we used inference statistics in the form of multilevel 

models and ML here. The present results suggest that integrating a larger number of 

speech features and allowing for more complex modeling can significantly improve 

prediction performance. However, these findings need to be replicated in a different 

sample. 

Moreover, our findings revealed that several models reached statistical 

significance, but with varying predictive power. In short, models in which both the 

training and the test set contained data from the same patients were successful in 

predicting depression severity based on speech features (odd-even split, random split). In 

contrast, all of our models which were tested on data from patients for whom the model 

was naïve, failed (chronological split, 5-fold cross-validation, LOSO). Interestingly, for 
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both the odd-even and the random split, three ML models (random forest, SVR, XGBoost) 

achieved statistical significance, with an R² and MAE of descriptively comparable size. 

This suggests that these two approaches perform similarly and it is probably not critical 

which one is ultimately chosen. However, this conclusion must be taken with caution as 

we did not test the models against each other as this would require orders of magnitude 

more computational power than all the analyses combined here.  

As noted above, all models trying to predict depression scores only of patients for 

whom the model was naïve, failed. This finding suggests that the predictive patterns do 

not appear to generalize across patients. This indicates that ML models need to be fine-

tuned to the specific patient about whom predictions are to be made. This is consistent 

with previous research indicating better predictive performance for personalized models 

compared to generalized models (Campbell et al., 2023). It underscores the importance of 

longitudinal datasets, which are still scarce. Only when multiple data points per patient 

are available for training purposes, i.e., longitudinal data, can prediction reach a sufficient 

level. 

In this context, the heterogeneity of the clinical picture of MDD must also be taken 

into account. Widely used diagnostic criteria allow for more than 400 possible 

combinations of symptoms (Goldberg, 2011; Østergaard et al., 2011). This might explain 

why there is no one-size-fits-all approach, i.e., associations from one patient can be easily 

transferred to another patient. In future work, it might be interesting to test whether models 

trained and tested on different patients, but with a similar clinical picture, would perform 

better. For example, a model trained on patients whose clinical picture is strongly 

characterized by having low energy might be transferable to patients with similar 

characteristics, but not to patients with a high degree of hyperarousal. 
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Limitations 

Although our study demonstrates the potential use of speech features in clinical 

monitoring, particularly of patients with recurrent MDD, some limitations must be 

mentioned. First, our sample size is relatively small. However, we believe that a unique 

strength of our dataset is the inclusion of patients with an acute clinical diagnosis of a 

depressive episode requiring an inpatient stay (rather than subclinical study participants), 

and the true within-person design. Additionally, due to our longitudinal intervention 

design, we do have a relatively high number of data points per patient and a meaningful 

amount of variance in our target variable. Future studies are needed to test the replicability 

of our findings. Second, although eGeMAPS is a standardized set of speech features 

recommended for clinical use cases, it may not capture all relevant speech characteristics 

associated with depression. Nevertheless, we prefer to use predefined feature sets 

suggested by the community rather than creating our own features to increase the 

comparability across studies. In light of the previous two arguments, pooling of datasets 

will become very important in the future, another argument for relying on well-known 

feature sets. Third, we limited our analyses to five different splitting techniques, for each 

of which we trained over 500 ML models. Nowadays, computational power would allow 

us to run huge amounts of ML approaches (Winter et al., 2024). However, even with our 

small set of ML variants, we were still able to demonstrate the importance of 

individualized ML models with well-designed splitting mechanisms. 

Future Directions 

Although we did not test personalized ML models per se in this work, our results 

support the idea that personalized state-of-the-art approaches, i.e., individual ML models, 

are the most promising (e.g., Gerczuk et al., 2022; Wörtwein et al., 2023). A prerequisite 
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for this is the collection of sufficient data points per person in a first step. Importantly, 

there must be sufficient within-person variance in illness states during this so-called burn-

in phase (Kathan et al., 2022). Once a sufficient amount of data of this patient is available, 

a first model could be trained. As new data is coming in permanently, the model can be 

constantly updated with the individual’s data, thus continuously improving its 

performance. Another idea is to start with a generalized or semi-personalized model (e.g., 

trained on same-sex data) to avoid the cold start problem (Kathan et al., 2022). Incoming 

data from the patient could be used to fine-tune the model. This is certainly a complex 

endeavor that requires patience and perseverance on the part of the patients, but might be 

worth it once a sufficiently functional model is established. In the long term, this could be 

particularly helpful for patients with a history of recurrent MDD. To test the feasibility of 

this, longitudinal studies over even longer time periods than those of the few that already 

exist are needed. 

Moreover, to reduce patient burden, it is even more attractive to use behavioral 

features that patients do not have to actively collect, such as speech. Since we carry our 

smartphones with us most of the time anyway, and most people speak naturally in their 

everyday lives, these features seem promising. However, there are still many ethical and 

privacy questions with regard to the specific category of speech data. For example, speaker 

identification algorithms are needed that work reliably, on the fly, and in everyday 

environments (including varying background noise) to ensure that only the target’s speech 

is analyzed. 

Conclusions 

Our study contributes to the emerging field of digital behavioral markers as 

indicators of mental health by highlighting the potential and challenges of using speech 
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features to monitor depression. While our results suggest that speech features might be 

useful in predicting momentary depression severity, future research is needed to evaluate 

whether these findings can be replicated. Ultimately, speech-based depression monitoring 

systems could significantly improve patient care in the future. 
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CHAPTER 4 

 

ARTICLE 3: 

LINGUISTIC STYLE AS A PREDICTOR OF MOMENTARY DEPRESSION 

SEVERITY 

 

 

This chapter is based on an adapted version of the peer-reviewed article published as 

Hartnagel, L.-M., Ebner‐Priemer, U. W., Foo, J. C., Streit, F., Witt, S. H., Frank, J., 

Limberger, M. F., Horn, A. B., Gilles, M., Rietschel, M., & Sirignano, L. (2024). 

Linguistic style as a digital marker for depression severity: An ambulatory 

assessment pilot study in patients with depressive disorder undergoing sleep 

deprivation therapy. Acta Psychiatrica Scandinavica, 1-10. 

https://doi.org/10.1111/acps.13726 
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Abstract 

Background: Digital phenotyping and monitoring tools are the most promising approaches 

to automatically detect upcoming depressive episodes. Especially, linguistic style has been 

seen as a potential behavioral marker of depression, as cross-sectional studies showed, for 

example, less frequent use of positive emotion words, intensified use of negative emotion 

words, and more self-references in patients with depression compared to healthy controls. 

However, longitudinal studies are sparse and therefore it remains unclear whether within-

person fluctuations in depression severity are associated with individuals' linguistic style. 

Methods: To capture affective states and concomitant speech samples longitudinally, we 

used an ambulatory assessment approach sampling multiple times a day via smartphones 

in patients diagnosed with depressive disorder undergoing sleep deprivation therapy. This 

intervention promises a rapid change of affective symptoms within a short period of time, 

assuring sufficient variability in depressive symptoms. We extracted word categories from 

the transcribed speech samples using the Linguistic Inquiry and Word Count. 

Results: Our analyses revealed that more pleasant affective momentary states (lower 

reported depression severity, lower negative affective state, higher positive affective state, 

(positive) valence, energetic arousal, and calmness) are mirrored in the use of less negative 

emotion words and more positive emotion words. 

Conclusion: We conclude that a patient's linguistic style, especially the use of positive and 

negative emotion words, is associated with self-reported affective states and thus, is a 

promising feature for speech-based automated monitoring and prediction of upcoming 

episodes, ultimately leading to better patient care. 
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Introduction 

Major depressive disorder (MDD) is a major health challenge and often manifests 

itself in a recurring or chronic condition  (Vos et al., 2020). In the absence of biomarkers 

(Rimti et al., 2023), guiding diagnosis and treatment has traditionally relied on subjective 

self-report measures such as questionnaires and interviews by mental health professionals 

(Nezu et al., 2015). As these are administered at sporadic points in time, they are (a) prone 

to retrospective bias (Colombo et al., 2019) and (b) even full episodes might be missed 

(Ebner-Priemer & Santangelo, 2020). Patterns such as moment-to-moment fluctuations in 

symptoms which might be central regarding potential triggers and prodromal warning 

signs will remain undetected (Ebner-Priemer & Santangelo, 2020). 

With the features of near real-time, continuous, active and passive data collection, 

the use of ambulatory assessment (AA) is advantageous as it reduces retrospective recall 

bias and increases ecological validity (Ebner-Priemer & Santangelo, 2020; Trull & Ebner-

Priemer, 2014). AA involves the assessment of momentary self-reported symptoms and 

behaviors assisted by personal digital devices while patients perform their normal daily 

activities in their natural environment (Ebner-Priemer & Trull, 2009). One idea to reduce 

reliance on self-reports is to derive objective parameters from speech. Two different 

streams of parameters have been used in the past: acoustic and linguistic features. Multiple 

studies revealed differences in the acoustic dimension of speech (e.g. pitch, jitter) between 

depressive and non-depressive states (Wadle et al., 2024) or between depressed and 

healthy individuals (for review see Cummins et al., 2015; Low et al., 2020). Leveraging 

the development of natural language tools such as the Linguistic Inquiry and Word Count 

(LIWC; Pennebaker et al., 2003), linguistic style or the choice of words in association 

with MDD is also investigated. Pennebaker and colleagues (Pennebaker et al., 2015) state 
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that individuals' everyday word use, interpreted as a behavioral manifestation of thoughts 

and emotions, can reveal affective and cognitive processes characteristic of mood 

disorders. 

As the potential linguistic feature space is extensive, researchers either pursue a 

brute-force approach (e.g., Arevian et al., 2020; Himmelstein et al., 2018) or inform their 

feature selection by theoretical considerations of MDD (e.g., Huston et al., 2019; 

Sonnenschein et al., 2018). With regard to the latter, in many studies the use of (1) positive 

and negative emotion words, (2) first person singular pronouns, and (3) past tense words 

were analyzed. Traditional theories of depression such as Beck's Cognitive Model of 

Depression (Beck et al., 1979) or heightened self-focus theories (Pyszczynski & 

Greenberg, 1987) suggest such word use. However, empirical results are often mixed 

which might be due to the variety of methodological approaches and samples. Improved 

depressive states have been found to be associated with: (i) heightened use of positive 

emotion words and little use of negative emotion words (e.g., Himmelstein et al., 2018; 

Huston et al., 2019; Sonnenschein et al., 2018), but also greater use of both positive and 

negative emotion words (Weintraub et al., 2023); (ii) little use of first-person singular 

pronouns (review by Edwards & Holtzman, 2017; Himmelstein et al., 2018; Tackman et 

al., 2018), but also opposite effects (Stiles et al., 2023) and null-effects (Sonnenschein et 

al., 2018); (iii) little use of past tense (e.g., Habermas et al., 2008; Jones et al., 2020), but 

also the contrary (Weintraub et al., 2023). 

In the light of future automatic everyday monitoring systems, which shall monitor 

the change of trajectories of patient diseases and prevent upcoming episodes, two 

approaches are of particular relevance: (1) longitudinal studies exploring within-person 

effects and (2) data collection in the field instead of controlled therapy sessions. According 
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to current findings, only two studies meet these criteria (Arevian et al., 2020; Stiles et al., 

2023). In the first study, 120 linguistic and acoustic features extracted from mental health 

patient recordings were analyzed (Arevian et al., 2020). Positive and negative emotion 

words and overall speech features were associated with global clinical assessments and 

depression subscores. However, only 15% of the sample were MDD patients and machine 

learning results refer to the full set of speech features. In another study, speech samples 

from MDD patients were aggregated to pre- and post-treatment assessments (Stiles et al., 

2023). Decreases in negative emotion words, no difference in positive emotion words, and 

increases in first person pronouns for post- versus pre-treatment assessment were 

identified. 

To inform the development of an automatic monitoring tool, robust studies in the 

natural environment of patients during and between state of the art assessed depressive 

episodes are needed. Those that exist exploit the potential of AA only weakly, for instance 

by aggregating multiple assessment points. Additionally, while there is a growing body of 

work on interindividual differences, studies on longitudinal intraindividual differences 

during states of different depression severities are lacking. Understanding the fluctuations 

that occur may help to get a clearer clinical picture and provide warning of impending 

episodes. 

With the present study, we aim to overcome the above-mentioned limitations. 

Based on the available evidence, the linguistic style of speech of clinically diagnosed 

MDD patients in association with their reported depressive state has not yet been 

compared longitudinally during treatment with high temporal resolution. We analyzed a 

dataset of speech samples and concomitant self-reported momentary affective states 

collected longitudinally via AA from MDD patients undergoing sleep deprivation therapy 
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(SDT) in an exploratory way. SDT is a chronotherapeutic intervention that can rapidly 

improve depression severity (Wirz-Justice & Benedetti, 2020). For our linguistic study, 

this is advantageous, as maximum variance in depressive symptomatology is gained 

within a short period of time, enabling to observe associated modifications in linguistic 

style within days. Finally, instead of averaging data from multiple sampling points into 

composite measures, we stay on the most granular level of our data collection (multiple 

data points per day per person), expecting to capture the dynamic ebb and flow of affective 

states. 

To limit alpha error inflation and informed by the existing literature, we decided 

to include four LIWC word categories that closely resemble psychopathological 

phenomena. Accordingly, we formulated four hypotheses regarding associations between 

LIWC categories and concomitantly reported affective momentary states: With lower 

reported depression severity, we expected (1) more words in the LIWC category positive 

emotion words, (2) less words in the LIWC category negative emotion words, (3) less 

words in the LIWC category first person pronouns, and (4) less words in the LIWC 

category past tense. In addition, we analyzed associations of these categories with more 

broadly defined reported momentary affective states (i.e., positive and negative affective 

state, valence, energetic arousal, calmness). We hypothesized that the associations of 

LIWC categories with reported negative affective state are in the same direction as those 

for reported depression severity and in the opposite direction for the remaining reported 

affective states. 

Methods 

Detailed information on the sample, the study procedure and assessment tools can 

be found in Wadle et al. (2024) and Appendix A4.1-A4.3. Data were collected from 30 
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inpatients at the Central Institute of Mental Health in Mannheim, Germany, who 

experienced an acute depressive episode (ICD-10) at admittance to the hospital. Patients 

were informed about the study procedures, gave informed consent before being included 

in the study, and could withdraw at any time. Patients underwent SDT as part of their 

treatment, which involved staying awake for 36 hours. AA collection covered the period 

before, during, and after SDT (up to 26 days in total). In the first week of the study, 3 e-

diary prompts per day (morning, afternoon, and evening) were send via smartphones, 

which was reduced to morning and evening prompts after the first week to minimize 

patient burden. E-diary prompts included a request to respond to items about the current 

affective state on (a) the short version of the Center for Epidemiologic Studies Depression 

Scale (Allgemeine Depressionsskala in German (ADS-K, Hautzinger, 1988)), (b) 15 

positive and negative affective state items from an item pool (Myin‐Germeys et al., 2003), 

and (c) a short version of the Multidimensional Mood Questionnaire (MDMQ; Wilhelm 

& Schoebi, 2007), and to record a selfie video to report current feelings (Please describe 

in 10–20 seconds how you currently feel.). 

From originally 899 recorded selfie videos we had to exclude 155 files, mostly for 

technical reasons (see Appendix A4.4). We obtained transcripts of the audio tracks using 

an automatic speech recognition system (Abulimiti et al., 2020) and corrected them 

manually. The patients' transcripts were analyzed using the language processing tool 

LIWC (Pennebaker et al., 2015), a well-established, transparent, and reliable computer 

text analysis program that automatically classifies words into categories stored in a 

predefined dictionary (Meier et al., 2019). The output is a percentage of words allocated 

to the linguistic categories in relation to the total number of words in a text sample. The 

German LIWC 2015 version used in this study contains 18,711 words and word stems in 
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more than 80 word categories (Meier et al., 2019). We focus on four LIWC categories: 

positive emotion words (posemo), negative emotion words (negemo), first person singular 

pronouns (I), and past tense (focuspast). 

To analyze the within-subject association of LIWC categories and reported 

momentary affective states, we applied multilevel modeling (Snijders & Bosker, 2011) 

with person centered timevariant level-1 predictors (LIWC categories) and added the 

predictors time and time² in hours (centered at 2 p.m.) as covariates. We calculated 

separate models for each LIWC category: positive emotion words, negative emotion 

words, first person singular, past tense, and each affective state as outcome (reported 

depression severity (ADS-K), positive affective state, negative affective state, valence, 

energetic arousal, calmness), resulting in 24 models. As the number of speech samples 

was limited, we included all reported momentary affect ratings and speech recordings 

available irrespective of the time of assessment. We set the initial α level to 5%, applied 

Bonferroni corrections construct-wise (αadj = .008), and performed all analyses in R 

(version 4.3.1 [16 June, 2023]). See Wadle et al. (2024) for details of statistical parameters 

and used R packages. 

Results 

In the final analysis, we included 744 pairs of sampled speech and affective states, 

an average of 34 ± 20.16 pairs per person (range = 5–87). Descriptive statistics on word 

categories and reported affective states, ICCs, and reliability indices (McDonald Omega 

and Spearman-Brown coefficients) are presented in Table 8. The upper part depicts the 

four LIWC categories analyzed, starting with the total word count of all speech samples 

with 28,128 words. Hereafter follow the four LIWC categories with the highest percentage 

of words found for first person singular pronouns (10.81%), followed by positive emotion 
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words (6.22%), negative emotion words (4.64%), and past focus (3.72%). The amount of 

between-person variance represented by the ICCs (0.14–0.32) indicates that most of the 

variance is within-subject, strongly arguing for the chosen assessment and analysis 

approach. The lower part of Table 8 refers to the reported affective momentary states. 

Mean reported depression severity (ADS-K) is presented for all assessment points (1.2 ± 

0.3) and for the baseline assessment only (1.5 ± 0.3), both to be classified as medium high 

on a scale from 0 to 3. Negative (2.4 ± 0.5) and positive (2.1 ± 0.4) affect items were 

medium high on average (scale 1–5), as well as MDMQ scores (valence: 44.7 ± 10.8; 

energetic arousal: 41.6 ± 10.6; calmness: 43.4 ± 11.45; scale 1–100). The ICCs (0.26–

0.60) encourage us to have sufficient within-person variance to run multilevel regression 

analysis. The reliability indices were good to excellent as evaluated according to 

McDonald Omega and Spearman-Brown coefficients. 

In Figure 3, we illustrate Pearson correlation coefficients with person-mean-

centered scores. The left graph displays correlations of the six affective state variables, the 

right graph displays correlations of the four LIWC categories. The color scheme encodes 

the direction and the strength of the correlation; blue indicates a positive correlation with 

darker blue indicating stronger correlations; red reflects the same pattern but for negative 

correlations. On the y-axis and the diagonal, the names of the respective variable pairs are 

depicted. 

Regarding correlational analyses, two main patterns emerged (Figure 3): The e-

diary items on affective states showed a high coherence while the LIWC categories were 

weakly correlated. In detail, we found strong positive correlations (r > .5) between 

reported depression severity and negative affective state; strong negative correlations 

between reported depression severity and positive affective state, and all MDMQ
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Table 8 

Descriptive Statistics of LIWC Categories and Momentary Affective States 

Category / variable 
Output label 

/ Scale 
Examples 

Total number 

of words 

Mean (%) (SD; mina, 

maxa) 
ICC 

Reliability 

(within) 

Reliability 

(between) 

LIWC        

Total word count WC - 28,128 - - - - 

Past focus words Focuspast 
Yesterday, said, 

was 
1142 3.72 (3.87; 0, 7.54) 0.14 - - 

Positive emotion 

words 
Posemo Happy, nice, good 1609 6.22 (4.21; 0.48, 9.24) 0.17 - - 

Negative emotion 

words 
Negemo Sad, fear, nervous 1139 4.64 (4.87; 1.63, 14.98) 0.32 - - 

First person singular 

pronouns 
I I, me, mine 3009 10.81 (4.79; 7.03, 14.81) 0.21 

- - 

Affective states    
    

ADS-K 0-3 - - - 0.48 0.87 0.90 

ADS-K (baseline) 0-3 - - - - - - 

Negative affective 

state 

1-5 - - - 0.60 0.87 0.96 

Positive affective 

state 

1-5 - - - 0.47 0.87 0.95 

(continued) 
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Descriptive Statistics of LIWC Categories and Momentary Affective States (continued) 

Category / variable 
Output label 

/ Scale 
Examples 

Total number 

of words 

Mean (%) (SD; mina, 

maxa) 
ICC 

Reliability 

(within) 

Reliability 

(between) 

Positive affective 

state 

1-5 - - - 0.47 0.87 0.95 

Valence 1-100 - - - 0.26 0.82 0.92 

Energetic arousal 1-100 - - - 0.29 0.61 0.84 

Calmness 1-100 - - - 0.41 0.74 0.91 

Note. aThe mean of all patients' minimum and maximum scores. LIWC = Linguistic Inquiry and Word Count 

 

 

.
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Note. N between affective states and between LIWC categories (n between 729 and 744). Calm = 

calmness, EA = energetic arousal, FirstPerson = first person singular pronoun, NegAff = negative 

affective state, NegEmo = negative emotion words, Past = past tense; PosAff = positive affective 

state, PosEmo = positive emotion words, Val = valence. 

 

subscales. The same was found for negative affective state except for a moderately 

strong negative correlation with energetic arousal. Correlations between positive affective 

state and other momentary states were opposite to the pattern found for the reported 

depression severity (all strong). Valence correlated strongly positively with energetic 

arousal and calmness. Calmness and energetic arousal correlated moderately in a positive 

way. 

Regarding LIWC features, positive and negative emotion words showed the 

highest (negative) correlation, which can be classified as moderate. Past focus words 

correlated weakly with negative emotion words and first person singular pronouns. The 

Figure 3 

Pearson correlations with person-mean-centered variables between affective 

states and between LIWC categories 
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other pairings were not meaningfully linked to each other. Table 9 represents the fixed 

effects of the separate multilevel models with positive and negative emotion words, first 

person singular, and past focus as statistical predictors. Momentary reported depression, 

positive and negative affective state are defined as outcomes. Table 10 has the same 

structure, but reports outcomes related to MDMQ dimensions valence, energetic arousal 

and calmness. All models also included the centered time and time² variables as statistical 

predictors. As findings are comparable, we report the simpler models here and expanded 

models in Appendix A4.5. 

Positive and negative emotion words 

The first two lines in Table 9 and Table 10 depict the results for the LIWC 

categories positive and negative emotion words as statistical predictors. Overall, there is 

a coherent pattern of significant associations between these two LIWC categories and 

momentary affective ratings. Specifically, more words in the category positive emotion 

words were significantly associated with less depressive symptomatology (std. β = -0.14), 

more positive affective state (std. β = 0.16), less negative affective state (std. β = -0.09), 

more (positive) valence (std. β = 0.22), more energetic arousal (std. β = 0.20), and more 

calmness (std. β = 0.22). The associations between negative emotion words and the 

momentary affective states were in the opposite direction of those just presented. 

Specifically, more words in the category negative emotion words were significantly 

associated with more severe reported depressive symptomatology (std. β = 0.16), less 

positive affective state (std. β = -0.18), more negative affective state (std. β = 0.15), less 

(positive) valence (std. β = -0.28), less energetic arousal (std. β = -0.25), and less calmness 

(std. β = -0.20). Effect sizes approximated with standardized beta values are comparably 

high with regard to the outcomes positive and negative emotion words. 
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Table 9 

Multilevel Linear Regression Analysis to Predict Depression and Positive and Negative Affective States: Fixed Effects of LIWC Categories  

Note. ADS-K = Allgemeine Depressionsskala Kurzform. Stand. β = standardized β coefficient. Statistical significance printed in bold. 

 

 

 

Statistical 

predictors 

 

E-diary ratings 

Outcome: ADS-K Outcome: Positive affective state Outcome: Negative affective state 

Beta Stand. β SE p-Value Beta Stand. β SE p-Value Beta Stand. β SE p-Value 

Positive emotion 

words 

-0.02 -0.14 <0.01 <.001 0.03 0.16 <0.01 <.001 -0.02 -0.09 <0.01 <.001 

Negative emotion 

words 

0.02 0.16 <0.01 <.001 -0.03 -0.18 <0.01 <.001 0.03 0.15 <0.01 <.001 

First person 

singular 

<0.01 0.08 <0.01 .066 <-0.01 -0.04 <0.01 .214 0.01 0.07 <0.01 .007 

Focus past <-0.01 -0.03 <0.01 .298 <0.01 0.05 <0.01 .135 <-0.01 <-0.01 <0.01 .876 
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Table 10 

Multilevel Linear Regression Analysis to Predict Valence, Energetic Arousal, and Calmness: Fixed Effects of LIWC Categories 

Note. Stand. β = standardized β coefficient. Statistical significance printed in bold. 

 

 

Statistical 

predictors 

 

E-diary ratings 

Outcome: Valence Outcome: Energetic arousal Outcome: Calmness 

Beta Stand. β SE p-Value Beta Stand. β SE p-Value Beta Stand. β SE p-Value 

Positive emotion 

words 

1.12 0.22 0.18 <.001 0.99 0.20 0.17 <.001 1.19 0.22 0.17 <.001 

Negative emotion 

words 

-1.24 -0.28 0.17 <.001 -1.11 -0.25 0.15 <.001 -0.95 -0.20 0.16 <.001 

First person 

singular 

-0.21 0.05 0.17 .215 -0.06 -0.01 0.15 .713 -0.25 -0.05 0.16 .110 

Focus past 0.21 0.04 0.20 .297 0.25 0.05 0.19 .181 0.42 0.07 0.19 .028 



86  Chapter 4 | Linguistic Features 

 

First person singular words 

Next, we show results for the LIWC category first person singular, which did not 

reveal such a coherent pattern as positive/ negative emotion words. First person singular 

was significantly associated with negative affective state (std. β = 0.07). There was a trend 

with respect to reported depressive symptomatology, but this result was not statistically 

significant (std. β = 0.08). All other associations were not significant. 

Past focus words 

The LIWC category past focus was not significantly associated with any of the 

momentary affective state variables. 

Discussion 

This is the first study to investigate momentary affective states and concomitant 

speech samples collected longitudinally via AA from patients diagnosed with MDD 

during SDT inducing rapid shifts in symptomatology. We found a coherent pattern for the 

LIWC categories positive and negative emotion words in association with concurrently 

reported affective states. Specifically, we found that using more positive emotion words 

and fewer negative ones is linked to lower reported depression severity and negative 

affective states. Additionally, it corresponds to higher levels of positive affective states, 

(positive) valence, energetic arousal, and calmness. These results suggest that changes in 

linguistic style extracted from ambulatorily assessed everyday speech samples may be 

indicative of mood changes. 

As hypothesized, we found a positive association between MDD severity and the 

frequency of negative emotion words and a negative association between MDD severity 

and positive emotion words. This replicates previous work (Himmelstein et al., 2018; 

Huston et al., 2019) and is in line with Beck's depression model (Beck et al., 1979) 
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suggesting that patients suffering from MDD have a severely negative attitude. 

Interestingly, our results generalized over the more broadly defined affective states 

assessed (positive and negative affective states, valence, calmness, energetic arousal). 

This connects to discussions on speech features being considered disorder-specific or 

transdiagnostic (Arevian et al., 2020; Sonnenschein et al., 2018). 

With respect to our hypothesis on first person singular pronoun use, our results 

were more limited. An increased use was observed in association with negative affective 

states and a trend for depressive symptoms, but not with any of the other variables. In a 

previous review, a small positive correlation was found indicating higher self-focus during 

depressive states (Edwards & Holtzman, 2017). One possible explanation for the lack of 

a significant relationship between reported depression and first person singular personal 

pronouns lies in the nature of the task. Unlike studies that have collected language content 

during therapy sessions (Huston et al., 2019; Sonnenschein et al., 2018), or free 

spontaneous speech (Weintraub et al., 2023), patients in this study talked about their 

current mood in a selfie video, which might have been beneficial as more mood related 

content has been reported. Furthermore, earlier studies concluded that linguistic indicators 

of self-referencing seem to rather reflect the negative affective component of depressive 

symptoms. Thus, they might be rather broader indicators of negative affectivity than 

specifically indicating depressive states (Tackman et al., 2018). 

Our fourth hypothesis, which was based on prior studies showing that MDD 

patients refer more frequently to the past in their narratives compared to healthy 

participants (Habermas et al., 2008; Stiles et al., 2023), was not supported by our data. 

However, in a more recent study, more past focus words were associated with less 

depression severity (Weintraub et al., 2023). Surprisingly and not in line with any of these 
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previous findings, in our study the amount of past words was not associated with MDD. 

It is likely that our task instructions resulted in a rather low variance of past word 

frequencies between time points and different affective states in contrast to earlier 

language samples that often instructed a life review feature (Habermas et al., 2008). 

Our results suggest that short speech samples collected in everyday life may serve 

as a behavioral marker of changes in depression severity and may to some extent 

compensate for the lack of objective biomarkers in future studies. The use of emotion 

words in particular (positive and negative) may provide clinically meaningful information 

that could contribute to the detection of impending episodes. Taking the advantage of the 

widespread availability of smartphones and smartwatches that people wear every day, 

speech-based monitoring of MDD is a promising approach. It should be noted that we 

consider such an everyday speech tool to be a supportive monitoring system, coexisting 

with clinical sessions which are essential. However, due to its continuous and unobtrusive 

applicability, speech-based monitoring could offer the crucial advantage of bridging the 

time between clinical sessions. Patients who are approaching their personal relapse 

threshold could be identified earlier, for example, if their linguistic style shows the use of 

more negative emotion words. 

While promising in theory, the development of a speech-based monitoring system 

faces many challenges. We have to identify a speech sampling strategy that is (a) most 

informative, (b) comes with the smallest patient burden, (c) preserves the privacy of 

patients and bystanders, and (d) impacts smartphone battery life minimally. More 

specifically, it is unclear whether active sensing (i.e., asking patients to actively record a 

speech sample or call a system) is necessary or whether passive sensing is sufficient. 

Especially in the case of passive sensing, the need for privacy-preserving tools requires 
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technological development, for example, to filter out bystander's speech or to create 

transcripts in real-time. 

This pilot study had several limitations. First, the sample size was limited and 

future studies are needed to investigate replicability of results as well as generalizability 

beyond an inpatient sample. Still, the dataset at hand is unique as it is based on a true 

within-subject design with a relatively high number of data points per patient. A 

meaningful amount of variability in reported depression severity over a short period of 

time is stimulated by the study design; this is crucial from a theoretical perspective, as 

meaningful variance is necessary in both parameters to uncover existing associations. 

Second, SDT might have additional effects, such as fatigue, beyond the antidepressant 

one. This has to be explored in future work. Third, as we focused our analysis on four 

LIWC categories, it remains unclear whether other word categories are also sensitive to 

changing depressive states. However, as a vast variety of possible linguistic features is 

assess- and extractable in theory, feature selection should be made in a considered manner 

in order to limit alpha error inflation and to increase replicability (Wadle & Ebner-

Priemer, 2023). We decided to focus on features resembling psychopathological 

phenomena in MDD as closely as possible and for which both a theoretical foundation 

and previous empirical evidence are available. Fourth, LIWC is a word count based 

automated language analysis and does not consider the context in which the categorized 

words are used or negations. However, recent findings show comparability between 

LIWC-based and hand-labeled (and thus corrected) categories (Stiles et al., 2023). LIWC 

categories can be compared across studies and have thus proven to be reliable and valid 

(Tackman et al., 2018). Fifth, although we used automated transcription, its manual 

correction was time-intense. For the future, especially if linguistic analysis is used in the 
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context of AA, it is crucial to have reliable speech-to-text tools, as manual correction won't 

be feasible. Finally, our speech task instruction might have biased word use. Whereas this 

might have increased number of negative and positive words, it might have limited words 

related to the past. While previous LIWC studies mostly collected longer speech samples 

or narratives, we requested brief samples to reduce patient burden. Still identifying 

significant associations between linguistic style and reported depression severity supports 

the reliability of the measurement and is promising for AA speech sample collection, 

where minimizing effort per assessment is crucial for feasibility. 

To conclude, our study provides evidence for associations between fluctuations in 

the use of positive and negative emotion words and momentary affective states. These 

changes happened within a relative short time, not lagging behind and as such are a real 

marker. We want to particularly emphasize that the sample consisted of clinically 

diagnosed patients with an acute depressive episode. The intervention study design 

involving SDT ensured a maximum of within subject dynamics of affective states within 

just a few days. The use of these words as a marker is promising for the development of 

future technology predicting upcoming episodes on an individual level. And this research 

adds important observations with respect to the aim of developing an automated 

depression monitoring system. 
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CHAPTER 5 

 

ARTICLE 4: 

SMART DIGITAL PHENOTYPING 

 

 

This chapter is based on an adapted version of the peer-reviewed commentary published 

as 

Wadle, L.-M., & Ebner-Priemer, U. W. (2023). Smart digital phenotyping. European 

Neuropsychopharmacology, 76, 1-2
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Digital phenotyping, one of the hottest topics in psychiatry, generates an incredible 

amount of irrelevant and meaningless features that have little to do with clinical 

phenomena. Accordingly, the payoff in terms of explained variance of clinical outcomes 

is low. The addition of onboard real-time analytics will unlock its full potential by 

enabling digital phenotyping with high validity while ensuring privacy, resulting in smart 

digital phenotyping. 

In detail, Tom Insel speculated that technology and information science will 

outperform neuroscience and genomics (2018), while the World Health Organization 

(WHO; 2019) has particularly highlighted mobile technology as a promising way to 

improve global mental health. All these promises refer in special to digital phenotyping 

(Jain et al., 2015), a method that uses data from personal digital devices to unobtrusively 

quantify human behavior in everyday life with high temporal resolution over long periods 

of time. In practice, multiple smartphone sensors can continuously track every second of 

a lifetime without any effort on the part of the person being tracked. This real-time data 

stream of app usage, typing speed, phone calls, light input and acceleration, to name just 

a few features, is used to predict changes in health status such as relapse or treatment 

response. 

While the promise of digital phenotyping is immense in theory, its full potential 

has not been leveraged (Anmella et al., 2022) or worse, digital phenotyping parameters 

are often shallow and misleading (Ebner-Priemer & Santangelo, 2020). The two main 

reasons for this are: a) data collection tends to focus on features that are easy to collect 

and not on those that might be clinically meaningful (Ebner-Priemer et al., 2020); b) data 

collection and analysis is brute force, i.e., we collect an immense amount of data and 

extract an immense number of features from it, just because we can. 
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Let’s start with the validity of digital phenotyping features. Have you ever seen 

number of unanswered incoming phones calls, data traffic: mobile upload in megabyte or 

number of app usage: Facebook in our classification manuals, DSM or ICD, as a criterion 

for a specific disorder? Probably not. And have you ever thought about how these 

characteristics are clinically different from number of unanswered outgoing phones calls, 

data traffic: upload via Wi-Fi in megabyte or number of app usage: TikTok? Probably not 

also. So why do we measure these features? Because they are easy to measure and not 

because they have a strong link to our clinical phenomena. These problems are reflected 

in a low number of features that replicate across studies and a very low amount of 

explained variance (Anmella et al., 2022; Ebner-Priemer et al., 2020). 

The second issue relates to the brute force manner. Extracting predefined voice 

features from mobile phone conversations to predict mental health states has become 

worthwhile. While the usual number of smartphone sensor features is a few hundred at 

most, the standard affect-related voice feature set is ten times larger, raising questions 

about alpha-error inflation. For example, using the standard 6552 features of the affect-

related voice feature set (Eyben et al., 2010) in combination with classical statistical 

testing, could lead to 327 significant features just by chance. Using multiple outcomes, 

such as just a single expert interview, a single self-report, and a single dimensional expert-

rating, will push the number of significant by chance findings to 1000. Although big data 

in mHealth research poses its own new challenges, including data management, 

individualized predictions and inter-subject variability, upcoming textbooks are tailored 

to provide guidance (Mehl et al., 2023). 

It is therefore not surprising that digital phenotyping and mobile health have not 

yet lived up to their high expectations (Anmella et al., 2022). What we need are smart 
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digital phenotypes. Smart digital phenotypes are both: a) defined in a smart way, by 

closely resembling the psychopathological phenomena themselves, and b) assessed in a 

smart manner. Bipolar disorder may help to illustrate this point. While the easy-to-assess 

features reported above (number of unanswered incoming phone calls, data traffic: mobile 

upload in megabytes, etc.) are somehow related to communicativeness, they do not 

accurately reflect the DSM-5 criterion of more talkative than usual or feeling under 

pressure to talk (American Psychiatric Association, 2013). There are smarter ways to 

operationalize pressure to talk in mobile sensing, e.g., by calculating the number of words 

per minute or the length of pauses between words, which are probably features we 

unconsciously rely on in our clinical interviews. However, recording face-to-face 

communication in public is challenging, raises privacy concerns, or is even prohibited by 

law (Fusar-Poli et al., 2022). 

This calls for smart assessments: Extracting features from an incoming audio 

stream in real time using machine learning techniques, without storing the raw material, 

ensures privacy and anonymity of third parties. This has not yet been implemented in 

mental health, but there are promising examples from the field of affective computing. 

Schindler et al. (2022) have shown that social behavior and environments can be 

automatically classified from uncontrolled, everyday audio recordings. For example, deep 

learning algorithms based on the Google AudioSet transform audio-based context 

information into a 128-feature vector (Gemmeke et al., 2017), and in a second step this 

feature vector is used to classify which of the 521 possible audio classes are present in a 

situation. While such predicted audio classes, including crying, shouting, laughing or 

speech in general, are not yet classical diagnostic criteria, this work shows that the use of 



Chapter 5 | Smart Digital Phenotyping  95 

 

 

real-time onboard analysis mitigates privacy concerns and envisions training of more 

specific classifiers, such as pressure to talk. 

Our patients deserve better than a flash-in-the-pan digital phenotyping research. 

The conceptual advantages of digital phenotyping are obvious: the ability to monitor 

symptoms at high frequency over long periods of time in order to provide early warning 

of relapses or upcoming episodes. We also know how to improve its effectiveness. We 

need to focus on clinically meaningful features and not get distracted by the immense 

numbers of features and findings by chance. Of course, developing meaningful clinical 

digital phenotypes is cumbersome, but work in affective computing shows that smart 

digital phenotyping can be done. This will be a meaningful step towards preventing new 

episodes, reducing patient burden and proving the WHO (2019) right, namely that mobile 

technology is a promising way to reduce global mental health burden.

 

  



 

 

 



Chapter 6 | General Discussion  97 

 

 

CHAPTER 6 

 

GENERAL DISCUSSION 

 

Main Results 

The overall aim of this doctoral thesis was to unravel associations between 

depression severity and other momentary affective states and acoustic and linguistic 

features extracted from everyday speech samples. For this endeavor, speech samples were 

collected longitudinally via AA from acutely depressed patients undergoing SDT 2-3 

times per day before, during, and after therapy. This fast-acting treatment opened the 

opportunity to capture a maximum of variability of different affective state levels within 

a short period of time and to analyze them in relation to speech characteristics present at 

the corresponding time points. I used state-of-the-art computational tools for the extraction 

of acoustic and linguistic features (openSMILE and LIWC). In Article 1, using multilevel 

models, I revealed links between three preselected acoustic features and affective states 

including depression severity. Specifically, lower pitch variability, higher speech rate, and 

shorter speech pauses were linked to more pleasant momentary states; that is lower 

depression severity, higher positive affect and lower negative affect, and higher positive 

valence, higher energetic arousal, and higher calmness. A combined model of all three 

speech features resulted in R²Hox of 2%.  

In Article 2, my goal was to extend the depression-related findings of Article 1 by 

testing whether predictive performance could be improved using multi-parameter ML 
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methods and different train-test split scenarios. An increase in predictive performance was 

expected because 89 speech features were now included in the models, compared to three 

features in Article 1, and more complex ML modeling was used. Indeed, the superior 

model tested explained 33.9% of the variance in the outcome variable depression severity. 

This represents a 17-fold increase in predictive performance over our previous results. 

Testing different train-test splitting techniques revealed another finding: Models were 

successful in prediction only when the training and test sets contained datapoints from the 

same patients. Splitting techniques that lead to unknown patients in the test set, i.e., 

patients for which the model was naïve, did not produce significant results. Concluding, 

this suggests that the predictive patterns do not seem to generalize across patients, calling 

for fine-tuned and personalized models. 

In Article 3, I shifted my focus to linguistic analysis. Analyzing the same 

underlying dataset, I was able to identify coherent associations between the use of positive 

and negative emotion word use and reported affective states. In detail, saying more 

positive emotion words and fewer negative emotion words was associated with more 

pleasant affective states in terms of lower reported depression severity and lower levels of 

negative affect, and higher levels of positive affect, positive valence, energetic arousal, 

and calmness. 

In Article 4, I present a commentary advocating for smart digital phenotyping. I 

discuss that digital phenotyping is promising on one hand, however, until now, it has not 

yet reached its full potential. Often, only small (but still significant) effects are reported 

in studies. One explanation may be the plethora of possible features that can be measured 

and extracted today, and that studies often select the easily accessible low-hanging fruits 

rather than features closely resembling psychopathological phenomena. Second, I discuss 
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digital phenotyping to become smarter, in terms of running real-time analytics on devices 

allowing for privacy preserving applications. Overall, the thoughts in this commentary 

round out the topic of everyday speech data in the context of mental health. An unlimited 

number of speech features can be extracted from speech data, which must be well thought 

out and handled, and moreover, the collection and analysis of speech data is an extremely 

challenging topic from an ethical and privacy perspective. I will take a closer look at these 

aspects and how they should be addressed in future research in this chapter. 

The results of each of the studies presented are discussed and integrated into the 

current state of research in the respective articles. Viewed from a higher perspective, three 

main results can be derived from the synopsis of results, which will be discussed in the 

following. 

First, the present study findings support the main assumption of this doctoral thesis 

that speech features, both acoustic and linguistic, are associated with depression severity. 

This is the first study to show this link in longitudinal high variability within-person data 

from currently depressed patients undergoing a fast-acting and remitting treatment (here: 

SDT). Overall, the acoustic features pitch variability, speech rate, and speech pauses, as 

well as the full set of the eGEMAPS features, and the linguistic features positive emotion 

words and negative emotion words were predictive of depression severity. Looking more 

closely at the results, one remarkable finding is the 17-fold increase in predictive power 

when using multi-parameter ML models based on 89 acoustic features compared to 

performing multilevel model regressions analysis based on three preselected acoustic 

features (a subset of the former). Since we changed the number of speech features and the 

analysis method at the same time, it is difficult to disentangle which thereof (or possibly 

both of them) is responsible for the immense performance gain. This unique twofold 
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analytical approach using the same underlying dataset demonstrates the potential of ML 

for large numbers of variables where inference statistics reach their limits. Running 

multilevel model regressions with 89 speech features would result in alpha error inflation 

due to multiple testing, likely producing chance findings. Moreover, speech features are 

computationally extracted from the physical signal and abstract (e.g., MFCCS), thus not 

necessarily interpretable, and often difficult to grasp for researchers. As a consequence, 

formulating a priori hypothesis or selecting a reasonable number of features for testing 

can be challenging. ML opens new ways of dealing with large numbers of potential 

predictors which is often the case in the speech context and also to consider personalized 

models. It has to be kept in mind that classical ML models (and also those used in the 

present work) do not account for the nested data structure resulting from repeated 

assessments, which is a major strength of multilevel models, and cannot distinguish 

between within and between variance. However, recent innovative methodological 

developments in ML aim to do justice to the specificities of the dependent data structure 

(Wörtwein et al., 2023). 

While the amount of variance explained may seem impressive stunning at first 

glance, future studies have to show whether these results can be replicated. This is 

particularly important because the train and test sets in our superior model contained data 

from the same patients and were therefore not completely independent from each other. 

As another finding was that the associations in our ML models were not generalizable and 

the benefit of personalized models was demonstrated, an ideal (though not necessarily 

realistic) dataset would be new data points from the same patients included in the present 

study. From a practical perspective in the context of future real-time ML analysis in AA, 

the need for sufficient computational power on the device is an important aspect to 
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consider. This would simply not be feasible with current computing times (a single model 

in the present work ran for 12 hours), and the impact on battery life should also be tested. 

Server-based analysis may be a solution, but it would require a stable internet connection, 

and data security may also be an issue. 

Second, because acoustic and linguistic features were analyzed separately in the 

present work, the question arises as to whether a combination of both types of language 

would be beneficial. Previous results from classification studies suggest that a 

combination of both can enhance performance (Morales & Levitan, 2016). With respect 

to our dataset, an unpublished analysis simultaneously including both sets of predictors in 

a multilevel regression model revealed that, with one exception, individual predictors 

remained significant (Hartnagel et al., upcoming conference talk). This suggests that 

information based on both the acoustic and linguistic dimensions each make a substantial 

and independent contribution, and it may be beneficial to integrate both in future analysis. 

From a practical point of view, linguistic analysis requires an extra step, namely the 

transformation of spoken words into written text. However, nowadays automatic speech-

to-text tools efficiently produce transcripts. Although these transcripts may not be 

completely accurate, the findings by Pentland and colleagues (2023) indicate that the 

accuracy is sufficient to produce similar LIWC results based on manually and 

automatically transcribed texts. A more pressing issue may be data protection. Caution is 

warranted when using speech-to-text tools pre-installed on smartphones, as their terms 

and conditions may include sending data to the company’s servers. 

A third point to discuss is that acoustic and linguistic features were also linked to 

the other more broadly defined affective states assessed (positive and negative affect, 

valence, energetic arousal, calmness), not just to reported depression severity. On the one 



102  Chapter 6 | General Discussion 

 

hand, this is reasonable because these underlying factors could all be part of the mosaic, 

whose complete picture would be labeled MDD (i.e., a person experiencing a depressive 

episode is likely to experience negative valence and diminished positive affect). Strong 

correlations (range: |.53| to .81) between ADS-K scores and these affective state variables 

support this notion. On the other hand, this finding calls into question the extent to which 

the associations are specific to MDD, or whether they should rather be interpreted as 

transdiagnostic features that are not specific to MDD. After all, other mental health 

disorders are often reflected in changes in positive and negative affect, valence, energetic 

arousal, and calmness are often affected as well. As the present dataset only contains data 

from MDD patients, it is necessary to look at studies investigating speech characteristics 

in other mental health disorders. Overall some features appear to be relevant across 

disorders, such as pitch variability in MDD, posttraumatic stress disorder, and anxiety 

(Low et al., 2020). Others are more specific, allowing to differentiate between compared 

disorders, e.g., more sadness-related words in MDD compared to anxiety disorder 

(Sonnenschein et al., 2018). It may be necessary to model multiple speech features rather 

than single ones if the goal is to capture diagnostic specificities (Arevian et al., 2020; 

Spruit et al., 2022). 

Also potential comorbidity, which is common in MDD (Kupfer & Frank, 2003; 

Sonnenschein et al., 2018) has to be kept in mind. From a practical perspective, the 

presence of common and distinct features indicating different diagnosis, hint into the 

direction, that speech features are more suitable for the clinical use case described above, 

namely as a diagnostic aid in the process of monitoring recurrent depression. As 

previously mentioned, clinical visits should not be completely replaced by speech-based 

monitoring, because they might also be relevant for detecting comorbidity. 
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Limitations and Outlook  

The work presented in this doctoral thesis contributes valuable steps in the long 

journey towards a mobile depression monitoring tool. Revealing within-person 

associations between speech features and depression severity was a first step in this 

endeavor. In this section, I provide an outlook on future research avenues to gain further 

insights in the context of speech-based monitoring. Partly, the limitations of the present 

study serve as inspiring starting points for future research ideas. To begin with, I will 

address feasibility and usability aspects, followed by ethical questions. Thirdly, I will 

expand the idea of using human speech as a proxy for depression severity to everyday 

audio information in general. Concluding, I will present an idea for an adaptive system 

that meets specific requirements for a depression monitoring tool, taking into account both 

ethical and practical criteria. 

Feasibility perspective: Chances and obstacles  

A first limiting factor in the present work is the small sample size, with usable data 

from only 22 of the initially 30 patients enrolled. But, the dataset at hand is unique with a 

total of 899 data points based on a true within-person study design. Future studies are 

needed to see if the results replicate and test our identified ML models. The various 

reasons for data exclusion can be summarized as including technical reasons and usability 

reasons. Note that the sampling scheme in the SDT was also changed from three 

assessments per day to two assessments per day based on patient feedback about high 

burden. Despite the fact that study participants are the most important allies of researchers, 

a systematic review shows that most studies do not evaluate the usability and acceptability 

aspects of remote monitoring tools (Simblett et al., 2018). In their study collecting speech 

samples in the wild, Arevian et al. (2020) also conducted an exit survey and found that 22 
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of 24 survey respondents described their experience as positive. Acceptance and barriers 

were explored more comprehensively in the recent large-scale RADAR-CNS project, 

which also involved remote smartphone-based speech collection (Dineley et al., 2021). A 

subsample of 385 individuals were invited to complete a questionnaire about their 

experiences during the two-year study. Major findings were that patients preferred 

scripted speech tasks to free speech tasks, and that depression severity significantly 

predicted comfort in responding. Reasons for not providing speech samples included not 

seeing smartphone notifications, low mood, and forgetfulness (Dineley et al., 2021). 

Identifying low mood as an obstacle for providing recordings is an important finding 

especially when the study sample consists of MDD patients. As a consequence, artificial 

intelligence (AI) bias can occur if training datasets consist of disproportionately more 

speech samples from positive than negative momentary states. Also, for a future mental 

health application, these low mood periods may be the most crucial ones. If no speech 

sample is provided, of course it cannot be analyzed, and will not be followed by any kind 

of action that may be necessary. However, if future studies replicate the association 

between low mood and response rate, this information could also be used as metadata. In 

such a case, providing or not providing a requested speech recording might already be 

informative about the current affective state, but at the same time, missing data could also 

be due to a variety of different reasons. Contradictory, analyses based on Ebner-Priemer 

et al. (2020) revealed that depression severity and upcoming depressive episodes were not 

significantly related to missing data entries in a sample of patients with bipolar disorder 

(personal communication with Ebner-Priemer; 08.08.2024). Since lack of motivation is 

also characteristic of MDD (Firth et al., 2017; Fleming et al., 2018), more research is 

needed on how to conduct studies that reduce patient burden while still collecting 

sufficient and useful data. 
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One idea in this regard is to switch from active to passive collection of speech-

data. The Electronically Activated Recorder (EAR; Mehl, 2017; Mehl et al., 2001) could 

serve as an inspiration. The EAR is a digital audio recorder sampling ambient sounds (not 

restricted to speech and legal in one-party consent states in the U.S.), e.g., 30 seconds five 

times per hour. Its unobtrusiveness and high adherence were shown in different clinical 

populations (Mehl & Holleran, 2007). Passive speech collection (given informed consent 

of the target person and good speaker identification) is also possible and may be beneficial 

for patient compliance. However, research is needed to understand how such a system 

should be configured. There are still many open questions that may be answered 

differently depending on the research target. These may include but are not limited to how 

often and how long to sample, when and how to sample (event-, time-, interval-based, or 

random sampling), where to place the recording tool, and which recording tool to use. 

Privacy and ethical considerations 

If a speech-based depression monitoring tool were to become reality at some point, 

the technology per se would have potential to greatly improve depression care. However, 

privacy and ethical considerations are of paramount importance both in the developmental 

phase of such a system (e.g., data collection), as well as when algorithms are ready to be 

applied. First, to train and develop models, it is necessary to collect large amounts of 

speech data and corresponding ground truth affective states, i.e., how a person feels at that 

moment. Ideally, this data is ecologically valid, as aimed for in AA studies (Ebner-Priemer 

& Trull, 2009). In other words, it is collected under circumstances resembling the final 

application scenario as closely as possible. One could argue that it is a limitation of the 

present dataset that it was collected in a rather restricted environment as the sample 

consisted of inpatients being treated in a psychiatric ward. Additionally, patients were 
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instructed to avoid recording third parties as much as possible. Although this was indeed 

the natural environment for these individuals at the respective time and it was not a locked 

ward, the radius of movement was rather small. This raises the question of the extent to 

which the results can be generalized to other real-world scenarios. 

However, speech data collection in the wild is rather restricted in Europe. Data 

protection is a significant and very important topic when it comes to the collection and 

processing of speech data, as the voice is a valuable asset that is protected by law. 

Recording or processing a person’s spoken words without their consent can result in up to 

three years in prison under §201 of the German Criminal Code. Therefore, speech 

recordings are subject to strict legal protection. In Europe, this includes the General Data 

Protection Regulation and in Germany in addition the Telecommunications Act. They 

state that it is generally necessary for all parties involved to provide consent to the 

recording. In research projects, informed consent is usually obtained from study 

participants. However, especially in the context of AA, a problem may arise because it is 

neither possible to guarantee that no third party (without informed consent) is recorded, 

nor is it possible to collect informed consent from all possible bystanders. It can be 

speculated, that this may also be a reason why speech-based studies in real-life are still 

rare, at least in Germany. Limiting data collection to one-consent states in the U.S., which 

allow the recording as long as one party involved provides consent, or restricting data 

collection to controlled environments, could lead to biases in the final applications. 

Technical solutions could help to enable the collection of everyday speech data 

also in countries with strict regulation, while ensuring privacy. One idea is to take 

advantage on recent developments in the speech and audio processing community. 

Advances in speaker identification, recognition, and separation (Radha et al., 2024; 
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Sharma et al., 2024; Togneri & Pullella, 2011) can help to identify the target person in a 

first step. The system could be trained to pass only acoustic information from the target 

speaker for further processing. In a second step, features of interest could be automatically 

extracted from the speech signal on-the-fly with tools such as openSMILE (Eyben et al., 

2010) or LIWC (Pennebaker et al., 2003) adapted for mobile on-device use. Only those 

features are stored or further processed that do not allow a reconstruction of the speech 

signal itself, as they represent summary scores or frequencies. 

Although research in computational speech signal processing is a fast-moving 

field, speaker identification in the wild poses several challenges (e.g., background noise 

and acoustic variability due to different microphones, environments and recording 

conditions) that are still subject of research and may reduce the reliability of such a system 

(Anidjar et al., 2024; Chauhan et al., 2024; McLaren et al., 2016; Togneri & Pullella, 

2011). Moreover, in a recent study, Dumpala and colleagues (2023) showed an overlap in 

speech characteristics used to track MDD and those used for speaker recognition, which 

may affect performance. In short, there are possible solutions for everyday data collection 

in the wild, such as speaker identification as a first step, followed by on-device feature 

extraction without storing of raw audio. However, on the technical side, more research is 

needed for reliable and real-time speaker recognition. Additionally, more interdisciplinary 

research at the intersection of signal processing and psychology would be valuable to 

identify relevant and meaningful use cases and to configure tools in a human-centered and 

confidence-building way. 

Although not directly linked to the limitations of the present study, another ethical 

aspect deserves consideration. As mentioned above, a speech-based MDD tool can be a 

valuable contribution in the mental health context. However, it could also become a target 
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for misuse, such as when the AI behind it is implemented in other tools outside of the 

health sector (Cohen & Mello, 2019; Loch et al., 2022). Nowadays, huge amounts of data 

are shared publicly on social media, YouTube, and similar platforms, and voice messaging 

such as via WhatsApp opens up data sources to uses for which they were not intended. To 

oversimplify, it might be tempting for stakeholders such as insurance companies or 

employers to check these sources with an open-source MDD-monitoring algorithm to 

learn more about their candidates what those never indented to disclose (and probably do 

not even know themselves). Moreover, with widely used voice assistants such as 

Amazon’s Echo, and Alexa, as well as Apple’s Siri, it is often not transparent to users 

whether and how data is stored, further processed, or even shared with third parties, raising 

security and privacy concerns (Anniappa & Kim, 2021). Although users often express few 

privacy concerns (compared to non-users), research findings suggest that an incomplete 

understanding of privacy risks may play a role (e.g., Lau et al., 2018). In this regard, an 

important step has been taken by the European Union (EU). The EU AI act entered into 

force as from August 1st, 2024. It aims to set rules for AI used in the European market, 

with the goal of ensuring human-centered and ethical development and application of 

trustworthy AI, especially in sensitive areas. The regulations apply to all tools used in the 

EU, regardless of where they have been developed. There is reason for hope that this new 

regulation will deter or even prevent abuse. 

Everyday audio beyond human speech 

From a higher perspective, everyday audio information in general (beyond speech) 

can contribute to understanding and monitoring the experiences, triggers, and patterns of 

people living with MDD. If microphones are opened to catch speech signals anyway, 

acoustic scene classification (Burns et al., 2011; Ding et al., 2024) can help to learn about 
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a person’s context without asking them. The Google AudioSet (Gemmeke et al., 2017) is 

a notable advance in this area. It is a comprehensive set of over 2.1 million 10-second 

YouTube sound clips. They have been manually annotated and labeled by human beings, 

according to a hierarchical ontology of 527 sound classes. A wide variety of sounds are 

represented in the ontology, reflecting the soundscapes and distinct audio events one may 

encounter in everyday life. These include but are not limited to different human sounds 

(e.g., speech, screaming, crying), acoustic environments (e.g., outdoor, inside small room, 

rural area), sounds of things (e.g., vehicles, tools), and different musical instruments and 

genres (Gemmeke et al., 2017). While the Google AudioSet represents the database, 

Google’s VGGish is a publicly available pre-trained convolutional neural network 

(Hershey et al., 2017). The model generates 128-dimensional features that are linked to 

the audio event classes but cannot be used to reconstruct the original sound they are based 

on. It is therefore a privacy preserving tool. In the context of MDD, it could be used to 

track contextual factors such as social interaction (Achterbergh et al., 2020), loneliness 

(Santini et al., 2015), and time spent in nature (Oh et al., 2017), all of which have been 

shown to play a critical role in MDD. 

Everyday audio-based adaptive system 

All of the above ideas and considerations can be brought together in the form of 

an audio-based adaptive system. As the name suggests, adaptive systems process an 

incoming stream of information, such as biosignal and behavioral data based on which 

they can adapt to the user and be continuously updated (Benke et al., 2024). The range of 

incoming data processed is comparable to often used parameters in AA research. These 

include sensor data streams (e.g., speech, physical activity), actively and passively tracked 

user behavior and input (e.g., app usage, phone calls, shopping history, selecting items, 
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symptom reporting), and context information (e.g., GPS-based location information, 

temperature, acoustic environment). The output of adaptive systems can be manifolds, but 

most often it includes some kind of decision support or recommendation (Benke et al., 

2024). Although the user may not be fully aware of it, adaptive systems are widely used 

today, especially in the consumer sector (e.g., Spotify, Amazon, booking.com). Areas of 

application in the health context include breaking up long periods of sitting by sending 

triggers to move (Giurgiu et al., 2020), supporting weight loss by providing food 

recommendations (Agapito et al., 2016), or selecting interventions in digitally delivered 

psychological treatments (Mukhiya et al., 2020). In short, adaptive systems can serve to 

provide tailored treatments, trigger interventions or alarms and continuously adapt 

thresholds thereof (Benke et al., 2024), contributing to personalized medicine as a whole. 

Overall, the validity of the parameters used serving as an input for adaptive systems is of 

paramount importance. In other words, parameters should be chosen and collected in such 

a way that they reflect well the phenomenon they are supposed to measure well (Benke et 

al., 2024; Wadle & Ebner-Priemer, 2023). Again here, human speech and everyday audio 

are promising candidates because they are informative about affective states, context, and 

human behavior (Low et al., 2020). 

In the context of MDD, an audio-based adaptive system could be fed with 

information on the patient in a so-called burn in phase. The patient could provide 

information about stressful contexts or triggers (e.g., crowded public transportation) but 

also on pleasant of even curative situations (e.g., spending time in nature) that could later 

be identified by the system based on audio information. Additionally, speech data could 

be collected and ground truth about the current depression severity provided to train a 

personalized ML model for future identification or prediction of affective states. Like this, 
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the system starts with some basic information which can be enriched continuously. For 

instance, sending short e-diary can help the system to learn more about a person’s 

experiences and the associated feelings (e.g., that going for a run reduced symptoms). This 

knowledge can later on be used by the system to suggest JITAIs. Additionally, feedback 

loops should be implemented to keep the patient’s data base as accurate as possible as 

preferences can change and some JITAIs may be more helpful than others. All information 

flows into the user’s data base which is continuously updated. Trained models can also be 

used to predict user’s future states and suggest JITAIS. For instance, if the model has 

learned that a person’s depressive state usually deteriorates when the person is alone for a 

long time (which can be derived from audio data), it could suggest to call a friend. 

In the following, theoretical key points of a technical processing pipeline for a 

fictive audio-based adaptive system will be described, illustrating its potential in the 

mental health sector. As mentioned earlier, ethical and privacy concerns can be obstacles 

for unlocking the full potential of audio-based tools, but recent advances in AI may 

facilitate future applications. The first step for an audio-based adaptive system is to detect 

the audio input and start processing. Since audio signals are pervasive, it is necessary to 

determine in more detail how this should be implemented. There are several possibilities, 

similar to classic sampling schemes in AA research: time-based sampling (e.g., every day 

at 8 AM), interval-based sampling (e.g., every 30 minutes for 30 seconds), random 

sampling (e.g., five times during the day at random times), or event-based sampling, which 

would require continuous passive listening until a predefined event (e.g., specific sound 

class) occurs. The most appropriate sampling scheme can vary greatly depending on the 

phenomenon of interest. Additionally, it is necessary to determine how long the 

microphone should be activated (i.e., the tool should listen). It may also be the case that 
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no audio signal is detected because it is below a (predefined or adaptive) threshold. For 

instance, if a person sits at home all alone for an extended period of time. This in itself 

can be important information useful for an adaptive system, e.g., with the consequence 

that it sends triggers to animate a person for activities. Future research is necessary to 

determine the most promising configurations for signal detection depending on the 

research question or use case. 

In a second step, the previously introduced audio classification comes into play 

(Figure 4). The purpose is twofold. On the one hand, audio event classes are identified 

and context information can be derived. Based on predefined contexts of interest, real-

time triggering can follow in the sense of triggering specific actions or interventions or 

sending a short questionnaire to evaluate the situation. On the other hand, this processing 

step also serves as a bottleneck for further processing that is limited to speech. If the audio 

classifier detects human speech, it extracts speaker embeddings, which are used to identify 

speakers who have given informed consent or who are registered users of the application 

at hand. Speech samples provided during the initial use of the system could serve as a 

starting point for training the model to recognize target speakers. Additional persons of 

interest such as family members can also be registered given informed consent. These 

people can be identified as interaction partners (i.e., an identified social interaction could 

be more accurately classified as a social interaction with the mother), or speech data can 

also be further processed. Another possibility is to use information based on metadata, 

such as the share of speech time. However, the main speech data of interest is that of the 

target person. Given this person has been identified, the speech data can be further 

processed. Acoustic features can be inferred directly, and linguistic information can be 

extracted from a transcript via an intermediate speech-to-text processing step. Both inputs,  



Chapter 6 | General Discussion        113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

Audio Processing Pipeline 

consent provided 

automated extraction 

of acoustic features 
speech-to-text 

automated extraction 

of linguistic features 

audio event class 

human speech 
speaker 

identification 

no consent 

provided 

detection of an 

audio signal audio classification ))) 

audio event class 

(no speech) 

context information; context-

based trigger can follow 

information about affective states; 

trigger / intervention can follow 



114  Chapter 6 | General Discussion 

 

separately or combined, can serve as indicators of affective states. Based on the 

results, further actions can be initiated such as sending feedback, triggering interventions 

such as a breathing exercise, sending alarms to therapists, or sending a short questionnaire 

to further explore the situation. This allows patients to gain more insight into their 

behavior, potential triggers, unhealthy habits, vicious cycles, but also beneficial behaviors. 

Overall, such adaptive systems in the healthcare context can contribute tremendously to 

tailored treatment. 

Clearly, the walk through this fictional audio-based adaptive system is highly 

simplified. Quality and reliability checks have to be implemented as audio quality in the 

wild may be challenging depending on situation. Also sensitivity-specificity trade-offs are 

to be found and probably adjusted over time. Regarding speaker recognition, systems 

should rather be more strictly configured in order to analyze spoken data only in case a 

speaker is recognized with high probability. Overall, all single components of such as 

system have to work reliably and have to be robust to different real-life scenarios, e.g. 

different background noises. To sum up, there are plenty of opportunities for future 

researchers to explore this topic, but this theoretical vision is a first step in this endeavor. 

Interdisciplinary projects would be extremely helpful, as a comprehensive understanding 

of all aspects may only be possible by integrating different communities, such as ethics, 

audio signaling, psychology, psychiatry, and usability experts.  

Conclusion 

To sum up, with this doctoral thesis I have contributed to the understanding of the 

association between everyday speech characteristics and momentary affective states, in 

particular depression severity. The presented analyses are based on a longitudinal dataset 

of patients with an acute depressive episode that are treated with SDT. Using AA, speech 
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samples and concomitant momentary affective states were collected multiple times before, 

during, and after the intervention. I used multilevel modeling and ML to reveal 

associations between extracted acoustic and linguistic features and reported momentary 

states. It can be concluded, that speech-based information can serve as a diagnostic aid in 

the long-term monitoring of MDD.
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APPENDIX 

Supplementary Materials Chapter 2 

A2.1 List of medications 

Patients received guideline-compliant pharmacotherapy for depression. Five participants 

received monotherapy with an antidepressant agent (n=1 sertraline (SSRI); n=2 

venlafaxine (SSNRI); n=1 bupropion and n=1 trazodone); thirteen patients were treated 

with two antidepressants (n=4 venlafaxine and trazodone; n=4 bupropion and trazodone; 

n=2 venlafaxine and mirtazapine; n=1 bupropione and mirtazapine; n=1 sertraline and 

trazodone; n=1 venlafaxine and amitriptyline; two patients were prescribed an 

antidepressant plus augmentation therapy (n=1 bupropion and quetiapine; n=1 

venlafaxine and pregablin); one patient received a quindruple combination of two 

antidepressants medication (bupropion and venlafaxine) and augmentation with 

quetiapine, lamotrigine and pregabalin. Above-mentioned sedative, respectively, sleep-

inducing medication (trazodone, amitriptyline, quetiapine, pregabalin,) was paused 

before sleep deprivation night. 

Sertraline = SSRI 

Venlafaxine = SSNRI 

Mirtazapine = NaSSA 

Bupropion = SNDRI 

Agomelatine = MASSA 

Amitriptyline = TCA 

Trazodone = chemically different antidepressant 

 

A2.2 ADS-K items with English translations in italics 

1) Während der letzten Minuten haben mich Dinge beunruhigt, die mir sonst nichts 

ausmachen. 

During the last few minutes, things that normally don't bother me worried me. 

2) Während der letzten Minuten konnte ich meine trübsinnige Laune nicht loswerden, 

obwohl mich meine Freunde / Familie / Mitpatienten versuchten aufzumuntern. 

During the last few minutes, I couldn't get rid of my gloomy mood, although my friends / 

family / fellow patients tried to cheer me up. 

3) Während der letzten Minuten hatte ich Mühe mich zu konzentrieren. 

During the last few minutes I had trouble concentrating. 

4) Während der letzten Minuten war ich deprimiert / niedergeschlagen. 

During the last few minutes I was depressed / down. 

5) Während der letzten Minuten war alles anstrengend für mich. 

During the last minutes everything was exhausting for me. 
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6) Während der letzten Minuten dachte ich, mein Leben ist ein einziger Fehlschlag. 

During the last minutes I thought my life was one big failure. 

7) Während der letzten Minuten hatte ich Angst. 

During the last minutes I was afraid. 

8) Während der letzten Minuten war ich fröhlich gestimmt. 

During the last minutes I was in a cheerful mood. 

9) Während der letzten Minuten habe ich weniger als sonst geredet. 

During the last minutes I talked less than usual. 

10) Während der letzten Minuten fühlte ich mich einsam. 

During the last minutes I felt lonely. 

11) Während der letzten Minuten habe ich das Leben genossen. 

During the last minutes I enjoyed life. 

12) Während der letzten Minuten war ich traurig. 

During the last minutes I felt sad. 

13) Während der letzten Minuten hatte ich das Gefühl, dass mich die Leute nicht leiden 

können. 

During the last minutes I felt that people didn't like me. 

14) Während der letzten Minuten konnte ich mich zu nichts aufraffen. 

During the last minutes I couldn't get myself up to do anything. 

 

A2.3 MDMQ items with English translations in italics 

Im Moment fühle ich mich …  At the moment I feel ... 

unzufrieden – zufrieden   discontent- content 

unwohl – wohl    unwell - well 

müde – wach     tired - awake 

Im Moment fühle ich mich …  At the moment I feel ... 

energielos – energiegeladen   without energy - full of energy 

unruhig – ruhig    agitated - calm 

angespannt – entspannt   tense - relaxed 

 

A2.4 Positive and negative affect items with English translations in italics 

Im Moment fühle ich mich 

fröhlich / zufrieden / tatkräftig / enthusiastisch / entspannt / glücklich; einsam / traurig / 

unsicher; ängstlich / niedergeschlagen / schuldig / deprimiert / misstrauisch / gereizt 
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At the moment I feel 

cheerful / content / energetic / enthusiastic / relaxed / happy; 

lonely, sad, insecure, anxious, depressed, low-spirited, guilty, distrustful, irritable 

A2.5 Additional eGeMAPS features included in exploratory analysis 

spectralFlux_sma3_amean, spectralFlux_sma3_stddevNorm, 

spectralFluxUV_sma3nz_amean, spectralFluxV_sma3nz_amean, 

spectralFluxV_sma3nz_stddevNorm, mfcc1_sma3_amean, mfcc1_sma3_stddevNorm, 

mfcc2_sma3_amean, mfcc2_sma3_stddevNorm, mfcc3_sma3_amean, 

mfcc3_sma3_stddevNorm, mfcc4_sma3_amean, mfcc4_sma3_stddevNorm, 

mfcc1V_sma3nz_amean, mfcc1V_sma3nz_stddevNorm, mfcc2V_sma3nz_amean, 

mfcc2V_sma3nz_stddevNorm, mfcc3V_sma3nz_amean, mfcc3V_sma3nz_stddevNorm, 

mfcc4V_sma3nz_amean, mfcc4V_sma3nz_stddevNorm, equivalentSoundLevel_dBp, 

F2bandwidth_sma3nz_amean¸ F2bandwidth_sma3nz_stddevNorm, 

F3bandwidth_sma3nz_amean, F3bandwidth_sma3nz_stddevNorm 

 

A2.6 Pearson correlations between and within affective scores and speech features 

 

Note. n between 698 and 716. PosAff: positive affect; NegAff: negative affect, Val: valence; EA: energetic arousal; 

Calm: calmness; PV: pitch variability; SP: speech pauses; SR: speech rate. 
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A2.7 Multilevel linear regression analysis 

Table 11 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Pitch Variability, Time, and Time² 

      
Statistical 

predictor 

Beta 

coefficient 

Standardized 

beta coefficient 

Standard 

error 
T p-value 

ADS-K 

     

   Intercept 1.27 - 0.10 12.87 <.001 

   Time <0.01 - <0.01 0.40 .69 

   Time² <0.01 - <0.01 -0.09 .93 

   Pitch variability 0.88 0.14 0.32 2.73 .007 

Positive affective 

state 

     

   Intercept 2.10 - 0.13 16.78 <.001 

   Time <-0.01 - <0.01 -0.97 .33 

   Time² < 0.01 - < 0.01 -0.13 .90 

   Pitch variability -1.50 -0.18 0.42 -3.56 < .001 

Negative affective 

state 

     

   Intercept 2.45 - 0.16 14.86 <.001 

   Time <0.01 0.04 <0.01 1.74 .08 

   Time² <0.01 - <0.01 -1.43 .15 

   Pitch variability 0.85 0.08 0.43 1.95 .052 

Valence 

     

   Intercept 43.72 - 2.70 16.21 <.001 

   Time <0.01 - <0.01 1.23 .22 

   Time² <0.01 <0.01 <0.01 1.67 .098 

   Pitch variability -36.50 -0.16 13.61 -2.68 <.008 

      

Energetic arousal      

      

   Intercept 42.82 - 2.71 15.79 <.001 

   Time <-0.01 0.11 <0.01 -3.46 <.001 

   Time² <0.01 <0.01 <0.01 -4.41 <.001 

   Pitch variability -33.21 -0.15 12.48 -2.66 <.001 

      

Calmness      

      

   Intercept 40.97 - .3.39 12.08 <.001 

   Time <0.01 - <0.01 0.20 .84 

   Time² <0.01 <0.01 <0.01 2.49 .01 

   Pitch variability -11.52 -0.05 12.82 -.90 .37 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 



Appendix  147 

 

 

Table 12 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Speech Pauses, Time, and Time² 

      
Statistical 

predictor 

Beta 

coefficient 

Standardized 

beta coefficient 
Standard error T p-value 

 

ADS-K 

     

      

   Intercept 1.27 - 0.10 12.99 <.001 

   Time <0.01 - <0.01 0.26 .79 

   Time² <0.01 - <0.01 -0.48 .63 

   Speech pauses 0.52 0.10 0.18 2.80 .005 

      

Positive affective 

state 

     

      

   Intercept 2.09 - 0.13 16.64 <.001 

   Time <-0.01 - <0.01 -0.90 .37 

   Time² <0.01 - <0.01 0.61 .54 

   Speech pauses -1.16 -0.17 0.24 -4.84 <.001 

      

Negative affective 

state 

     

      

   Intercept 2.46 - 0.16 14.95 <.001 

   Time <0.01 0.04 <0.01 1.75 .08 

   Time² <0.01 <0.01 <0.01 -1.90 .06 

   Speech pauses 0.76 0.09 0.25 3.05 .002 

      

Valence      

      

   Intercept 43.26 - 2.69 16.06 <.001 

   Time <0.01 - <0.01 1.28 .20 

   Time² <0.01 <0.01 <0.01 2.22 .03 

   Speech pauses -34.06 -0.19 7.71 -4.42 <.001 

      

Energetic arousal      

      

   Intercept 42.71 - 2.71 15.74 <.001 

   Time <-0.01 0.11 <0.01 -3.25 .001 

   Time² <0.01 <0.01 <0.01 -4.17 <.001 

   Speech pauses -14.06 -0.08 7.14 -1.97 .049 

      

Calmness      

      

   Intercept 40.58  3.39 11.98 <.001 

   Time <0.01 - <0.01 0.06 .95 

   Time² <0.01 <0.01 <0.01 2.98 .003 

   Speech pauses -24.27 -0.12 7.27 -3.34 <.001 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 13 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Speech Rate, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 

Standard 

error 
T p-value 

      

ADS-K      

      

   Intercept 1.27 - 0.10 12.93 <.001 

   Time <0.01 - <0.01 0.26 .80 

   Time² <0.01 - <0.01 -0.22 .83 

   Speech rate -0.11 -0.10 0.05 -2.27 .02 

      

Positive affective 

state 

     

      

   Intercept 2.10 - 0.13 16.71 <.001 

   Time <-0.01 - <0.01 -0.91 .362 

   Time² <0.01 - <0.01 0.18 .859 

   Speech rate 0.26 0.18 0.06 4.09 <.001 

      

Negative affective 

state 

     

      

   Intercept 2.45 - 0.16 14.88 <.001 

   Time <0.01 0.04 <0.01 1.69 .09 

   Time² <0.01 - <0.01 -1.57 .12 

   Speech rate -0.13 -0.08 0.07 -2.05 .04 

      

Valence      

      

   Intercept 43.56 - 2.70 16.13 <.001 

   Time <0.01 - <0.01 1.28 .20 

   Time² <0.01 <0.01 <0.01 1.85 .07 

   Speech rate 6.49 0.17 2.03 3.20 .001 

      

Energetic arousal      

      

   Intercept 42.77 - 2.71 15.76 <.001 

   Time <-0.01 0.11 <0.01 -3.32 <.001 

   Time² <0.01 <0.01 <0.01 -4.29 <.001 

   Speech rate 4.13 0.11 1.87 2.22 .027 

      

Calmness      

      

   Intercept 40.86 - 3.39 12.05 <.001 

   Time <0.01 - <0.01 0.14 .89 

   Time² <0.01 <0.01 <0.01 2.63 .009 

   Speech rate 3.43 0.09 1.91 1.80 .07 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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A2.8 Multilevel linear regression analysis (exploratory) 

Table 14 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Equivalent Sound Level, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 
Standardized 

beta coefficient 
Standard 

error 
T p-value 

ADS-K 

     

   Intercept 1.29 - 0.10 13.11 <.001 

   Time <0.01 - <0.01 0.53 .60 

   Time² <0.01 - <0.01 -1.06 .29 

   Equivalent sound level -0.03 1.52 <0.01 -5.83 <.001 

Positive affective state 

     

   Intercept 2.08 - 0.13 16.59 <.001 

   Time <-0.01 - <0.01 -1.06 .29 

   Time² <0.01 - <0.01 0.96 .34 

   Equivalent sound level 0.05 -1.91 <0.01 6.53 <.001 

Negative affective state 

     

   Intercept 2.47 - 0.16 15.02 <.001 

   Time <0.01 - <0.01 1.92 .06 

   Time² <0.01 - <0.01 -2.27 .02 

   Equivalent sound level -0.04 1.28 <0.01 -4.81 <.001 

Valence 

     

   Intercept 43.12 - 2.70 16.01 <.001 

   Time <0.01 - <0.01 1.32 .19 

   Time² <0.01 - <0.01 2.38 .02 

   Equivalent sound level 1.09 -1.54 0.23 4.63 <.001 

Energetic arousal 

     

   Intercept 42.31 - 2.71 15.64 <.001 

   Time <-0.01 - <0.01 -3.43 <.001 

   Time² <0.01 - <0.01 -3.66 <.001 

   Equivalent sound level 0.95 -1.37 0.22 4.43 <.001 

Calmness 

     

   Intercept 40.48 - 3.39 11.95 <.001 

   Time <0.01 - <0.01 0.09 .93 

   Time² <0.01 - <0.01 3.09 .002 

   Equivalent sound level 0.76 -1.04 0.22 3.50 <.001 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 15 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Spectral Flux, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 

Standard 

error 
T p-value 

      

ADS-K      

   Intercept 1.28 - 0.10 13.02 <.001 

   Time <0.01 - <0.01 0.09 .93 

   Time² <0.01 - <0.01 -0.71 .48 

   Spectral flux -0.84 -0.35 0.17 -4.81 <.001 

      

Positive affective state      

      

   Intercept 2.09 - 0.13 16.64 <.001 

   Time <-0.01 - <0.01 -0.57 .57 

   Time² <0.01 - <0.01 0.71 .48 

   Spectral flux 1.42 0.45 0.23 6.28 <.001 

      

Negative affective state      

      

   Intercept 2.46 - 0.16 14.95 <.001 

   Time <0.01 - <0.01 1.56 .12 

   Time² <0.01 - <0.01 -1.99 .047 

   Spectral flux -0.96 -0.24 0.25 -4.05 <.001 

      

Valence      

      

   Intercept 43.33 - 2.70 16.07 <.001 

   Time <0.01 - <0.01 1.61 .11 

   Time² <0.01 - <0.01 2.14 .03 

   Spectral flux 29.46 0.35 7.23 4.04 <.001 

      

Energetic arousal      

      

   Intercept 42.53 - 2.71 15.70 <.001 

   Time <-0.01 - <0.01 -3.14 .002 

   Time² <0.01 - <0.01 -3.96 <.001 

   Spectral flux 23.56 0.28 6.71 3.51 <.001 

      

Calmness      

      

   Intercept 40.58 - 3.39 11.98 <.001 

   Time <0.01 - <0.01 0.31 .75 

   Time² <0.01 - <0.01 2.99 .003 

   Spectral flux 23.81 0.26 6.86 3.47 <.001 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 16 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects for Spectral Flux of Voiced Regions Only, Time, and 

Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 

Standard 

error 
T p-value 

      

ADS-K      

      

   Intercept 1.28 - 0.10 12.98 <.001 

   Time <0.01 - <0.01 0.07 .94 

   Time² <0.01 - <0.01 -0.58 .56 

   Spectral flux of     

   voiced regions only 

-0.55 -0.38 0.11 -4.81 <.001 

      

Positive affective state      

      

   Intercept 2.09 - 0.13 16.67 <.001 

   Time <-0.01 - <0.01 -0.54 .59 

   Time² <0.01 - <0.01 0.50 .62 

   Spectral flux of     

   voiced regions only 

0.89 0.46 0.15 5.94 <.001 

      

Negative affective state      

      

   Intercept 2.46 - 0.16 14.92 <.001 

   Time <0.01 - <0.01 1.53 .13 

   Time² <0.01 - <0.01 -1.82 0.07 

   Spectral flux of     

   voiced regions only 

-0.55 -0.11 0.16 -3.57 <.001 

      

Valence      

      

   Intercept 43.47 - 2.70 16.09 <.001 

   Time <0.01 - <0.01 1.63 .10 

   Time² <0.01 - <0.01 1.98 .048 

   Spectral flux of     

   voiced regions only 

16.91 0.32 4.80 3.52 <.001 

      

Energetic arousal      

      

   Intercept 42.57 - 2.71 15.70 <.001 

   Time <-0.01 - <0.01 -3.13 .002 

   Time² <0.01 - <0.01 -4.03 <.001 

   Spectral flux of     

   voiced regions only 

16.45 0.32 4.40 3.74 .027 

      

Calmness      

      

   Intercept 40.68 - 3.39 12.00 <.001 

   Time <0.01 - <0.01 0.33 .74 

   Time² <0.01 - <0.01 2.87 .004 

   Spectral flux of     

   voiced regions only 

14.23 0.26 4.51 3.16 .002 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Supplementary Materials Chapter 3 

 

 

  

1) Während der letzten Minuten haben mich Dinge beunruhigt, die mir sonst nichts ausmachen. | 

During the last few minutes, things that normally don't bother me worried me. 

2) Während der letzten Minuten konnte ich meine trübsinnige Laune nicht loswerden, obwohl mich 

meine Freunde / Familie / Mitpatienten versuchten aufzumuntern. | During the last few minutes, I 

couldn't get rid of my gloomy mood, although my friends / family / fellow patients tried to cheer me up. 

3) Während der letzten Minuten hatte ich Mühe mich zu konzentrieren: | During the last few minutes I 

had trouble concentrating. 

4) Während der letzten Minuten war ich deprimiert / niedergeschlagen. | During the last few minutes I 

was depressed / down. 

5) Während der letzten Minuten war alles anstrengend für mich. | During the last minutes everything 

was exhausting for me. 

6) Während der letzten Minuten dachte ich, mein Leben ist ein einziger Fehlschlag. | During the last 

minutes I thought my life was one big failure. 

7) Während der letzten Minuten hatte ich Angst. | During the last minutes I was afraid. 

8) Während der letzten Minuten war ich fröhlich gestimmt. | During the last minutes I was in a cheerful 

mood. 

9) Während der letzten Minuten habe ich weniger als sonst geredet.| During the last minutes I talked 

less than usual. 

10) Während der letzten Minuten fühlte ich mich einsam. | During the last minutes I felt lonely. 

11) Während der letzten Minuten habe ich das Leben genossen. | During the last minutes I enjoyed life. 

12) Während der letzten Minuten war ich traurig. | During the last minutes I felt sad. 

13) Während der letzten Minuten hatte ich das Gefühl, dass mich die Leute nicht leiden können. | 

During the last minutes I felt that people didn't like me. 

14) Während der letzten Minuten konnte ich mich zu nichts aufraffen. 

During the last minutes I couldn't get myself up to do anything. 

A3.1. ADS-K items with English translation in italics 
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Supplementary Materials Chapter 4 

A4.1 ADS-K items with English translations in italics 

1) Während der letzten Minuten haben mich Dinge beunruhigt, die mir sonst nichts ausmachen. 

During the last few minutes, things that normally don't bother me worried me. 

2) Während der letzten Minuten konnte ich meine trübsinnige Laune nicht loswerden, obwohl mich meine 

Freunde / Familie / Mitpatienten versuchten aufzumuntern. 

During the last few minutes, I couldn't get rid of my gloomy mood, although my friends / family / fellow 

patients tried to cheer me up. 

3) Während der letzten Minuten hatte ich Mühe mich zu konzentrieren. 

During the last few minutes I had trouble concentrating. 

4) Während der letzten Minuten war ich deprimiert / niedergeschlagen. 

During the last few minutes I was depressed / down. 

5) Während der letzten Minuten war alles anstrengend für mich. 

During the last minutes everything was exhausting for me. 

6) Während der letzten Minuten dachte ich, mein Leben ist ein einziger Fehlschlag. 

During the last minutes I thought my life was one big failure. 

7) Während der letzten Minuten hatte ich Angst. 

During the last minutes I was afraid. 

8) Während der letzten Minuten war ich fröhlich gestimmt. 

During the last minutes I was in a cheerful mood. 

9) Während der letzten Minuten habe ich weniger als sonst geredet. 

During the last minutes I talked less than usual. 

10) Während der letzten Minuten fühlte ich mich einsam. 

During the last minutes I felt lonely. 

11) Während der letzten Minuten habe ich das Leben genossen. 

During the last minutes I enjoyed life. 

12) Während der letzten Minuten war ich traurig. 

During the last minutes I felt sad. 

13) Während der letzten Minuten hatte ich das Gefühl, dass mich die Leute nicht leiden können. 

During the last minutes I felt that people didn't like me. 

14) Während der letzten Minuten konnte ich mich zu nichts aufraffen. 

During the last minutes I couldn't get myself up to do anything. 

 

A4.2 MDMQ items with English translations in italics 

Im Moment fühle ich mich …  At the moment I feel ... 

unzufrieden – zufrieden   discontent- content 

unwohl – wohl   unwell - well 

müde – wach   tired - awake 
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Im Moment fühle ich mich … At the moment I feel ... 

energielos – energiegeladen without energy - full of energy 

unruhig – ruhig   agitated - calm 

angespannt – entspannt  tense - relaxed 

 

A4.3 Positive and negative affect items with English translations in italics 

Im Moment fühle ich mich 

fröhlich / zufrieden / tatkräftig / enthusiastisch / entspannt / glücklich; einsam / traurig / 

unsicher / ängstlich / niedergeschlagen / schuldig / deprimiert / misstrauisch / gereizt 

At the moment I feel 

cheerful / content / energetic / enthusiastic / relaxed / happy; 

lonely, sad, insecure, anxious, depressed, low-spirited, guilty, distrustful, irritable 

A4.4 Reasons for exclusion of selfie videos 

• the full set of videos from four patients 

o one patient did not say anything during the videos (23 files) 

o in the videos of two patients no sound was recorded due to technical 

issues (30 files) 

o one patient provided only 2 videos (2) 

• videos with technical damages (2) 

• test runs (14) speech sample or the reported affective states were missing (19) 

• files of consecutive assessments less than 15 minutes apart from each other (19); 

here only the first assessment was kept unless its audio quality was insufficient 

or only the second assessment included assessments of affective states; in such 

cases the second assessment was kept 

•  

• accidental recordings without content (30) 

• files in which the microphone was masked (16) 

• assessments in which either the  
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A4.5 Multilevel linear regression analysis 

Table 17 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects of the Positive Emotion Words, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 
Standardized 

beta coefficient 
Standard error T p-value 

ADS-K 

     

   Intercept 1.27 - 0.10 12.93 <.001 

   Time <0.01 - <0.01 0.21 .83 

   Time² <-0.01 - <0.01 -0.20 .84 

   Positive emotion words -0.02 -0.14 <0.01 -4.67 .84 

Positive affective state 

     

   Intercept 2.10 - 0.13 16.53 <.001 

   Time <-0.01 - <0.01 -0.79 .43 

   Time² <-0.01 - <0.01 -0.22 .83 

   Positive emotion words 0.03 0.16 <0.01 5.69 <.001 

Negative affective state 

     

   Intercept 2.46 - 0.17 14.73 <.001 

   Time <0.01 - <0.01 1.41 .16 

   Time² <-0.01 - <0.01 -1.73 .08 

   Positive emotion words -0.02 -0.09 <0.01 -4.00 <.001 

Valence 

     

   Intercept 43.49 - 2.81 15.50 <.001 

   Time 0.17 - 0.13 1.32 .19 

   Time² 0.04 - 0.03 1.37 .17 

   Positive emotion words 1.12 0.22 0.18 6.09 <.001 

Energetic arousal 

     

   Intercept 42.58 -0.11 2.82 15.08 <.001 

   Time -0.42 -0.16 0.12 -3.47 <.001 

   Time² -0.12 0.20 0.02 -4.78 <.001 

   Positive emotion words 0.99 -0.11 0.17 5.91 <.001 

Calmness 

     

   Intercept 40.45 - 3.48 11.62 <.001 

   Time <0.01 - 0.12 0.03 .99 

   Time² 0.07 0.09 0.02 2.65 .008 

   Positive emotion words 1.19 0.22 0.17 7.02 <.001 

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 18 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects of Negative Emotion Words, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 
Standard error T p-value 

      

ADS-K      

   Intercept 1.27 - 0.10 12.95 <.001 

   Time <0.01 - <0.01 0.52 .60 

   Time² <-0.01 - <0.01 -0.15 .88 

   Negative emotion words 0.02 0.16 <0.01 6.13 <.001 

      

Positive affective state      

      

   Intercept 2.11 - 0.13  <.001 

   Time <-0.01 - <0.01 16.54 .26 

   Time² <-0.01 - <0.01 -1.14 .75 

   Negative emotion words -0.03 -0.18 <0.01 -0.32 <.001 

      

Negative affective state      

      

   Intercept 2.46 - 0.17 14.73 <.001 

   Time <0.01 - <0.01 1.72 .085 

   Time² <-0.01 - <0.01 -1.70 .090 

   Negative emotion words 0.03 0.15 <0.01 5.69 <.001 

      

Valence      

      

   Intercept 43.57 - 2.81 15.52 <.001 

   Time 0.13 - 0.13 0.98 .33 

   Time² 0.03 - 0.03 1.26 .21 

   Negative emotion words -1.24 -0.28 0.17 -7.31 <.001 

      

Energetic arousal      

      

   Intercept 42.64 - 2.83 15.09 <.001 

   Time -0.46 -0.12 0.12 -3.85 <.001 

   Time² -0.12 -0.16 0.02 -4.96 <.001 

   Negative emotion words -1.11 -0.25 0.15 -7.15 <.001 

      

Calmness      

      

   Intercept 40.55 - 3.48 11.64 <.001 

   Time -0.03 - 0.12 -0.25 .801 

   Time² 0.06 0.07 0.02 2.48 .014 

   Negative emotion words -0.95 -0.20 0.16 -5.93 <.001 

      Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 19 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects of First Person Singular Pronouns, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 

Standard 

error 
T p-value 

      

ADS-K      

      

Intercept 1.27 - 0.10 12.85 <.001 

Time <0.01 - <0.01 0.17 .87 

Time² <0.01 - <0.01 0.05 .96 

First person pronoun <0.01 0.08 <0.01 1.84 .07 

      

Positive affective state      

      

Intercept 2.11 - 0.13 16.56 <.001 

Time <-0.01 - <0.01 -0.73 .47 

Time² <-0.01 - <0.01 -0.48 .63 

First person pronoun <-0.01 -0.04 <0.01 -1.24 .21 

      

Negative affective state      

      

Intercept 2.45 - 0.17 14.67 <.001 

Time <0.01 - <0.01 1.36 .17 

Time² <0.01 - <0.01 -1.43 .15 

First person pronoun 0.01 0.07 <0.01 2.73 .007 

      

Valence      

      

Intercept 43.66 - 2.80 15.59 <.001 

Time 0.18 - 0.14 1.32 .19 

Time² 0.03 - 0.03 1.13 .26 

First person pronoun -0.21 -0.05 0.17 -1.24 .22 

      

Energetic arousal      

      

Intercept 42.71 - 2.83 15.10 <.001 

Time -0.42 -0.11 0.12 -3.36 <.001 

Time² -0.12 -0.16 0.02 -4.83 <.001 

First person pronoun -0.06 -0.01 0.15 -0.37 .71 

      

Calmness      

      

Intercept 40.65 - 3.49 11.67 <.001 

Time <0.01 - 0.13 0.06 .95 

Time² 0.06 0.07 0.03 2.32 .021 

First person pronoun -0.25 -0.05 0.16 -1.60 .11 

      

Note. ADS-K = Allgemeine Depressionsskala Kurzform. 
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Table 20 

Multilevel Linear Regression Analysis to Predict Momentary Depression Severity and 

Affective States: Fixed Effects of the Past Tense Words, Time, and Time² 

      

Statistical predictor 
Beta 

coefficient 

Standardized 

beta coefficient 
Standard error T p-value 

      

ADS-K      

      

   Intercept 1.27 - 0.10 12.87 <.001 

   Time <0.01 - <0.01 0.20 .84 

   Time² <-0.01 - <0.01 -0.03 .98 

   Past tense <-0.01 -0.03 <0.01 -1.04 .30 

      

Positive affective state      

      

   Intercept 2.11 - 0.13 16.56 <.001 

   Time <-0.01 - <0.01 -0.77 .44 

   Time² <-0.01 - <0.01 -0.45 .65 

   Past tense <0.01 0.05 <0.01 1.50 .13 

      

Negative affective state      

      

   Intercept 2.45 - 0.16 14.70 <.001 

   Time <0.01 - <0.01 1.37 .17 

   Time² <-0.01 - <0.01 -1.56 .12 

   Past tense <-0.01 <-0.01 <0.01 -0.16 .88 

      

Valence      

      

   Intercept 43.62 - 2.80 15.58 <.001 

   Time 0.17 - 0.14 1.29 .20 

   Time² 0.03 - 0.03 1.18 .24 

   Past tense 0.21 0.04 0.20 1.04 .30 

      

Energetic arousal      

      

   Intercept 42.70 - 2.83 15.10 <.001 

   Time -0.42 -0.11 0.12 -3.40 <.001 

   Time² -0.12 -0.16 0.02 -4.83 <.001 

   Past tense 0.25 0.05 0.19 1.34 .18 

      

Calmness      

      

   Intercept 40.60 - 3.48 11.65 <.001 

   Time <-0.01 - 0.13 <-0.01 .99 

   Time² 0.06 0.06 0.03 2.38 .017 

   Past tense 0.42 0.07 0.19 2.20 .028 

    Note. ADS-K = Allgemeine Depressionsskala Kurzform. 

 


