KIT | KIT-Bibliothek | Impressum | Datenschutz

An Artificial Intelligence Approach to Predict Physical Properties of Liquid Hydrocarbons

Virt, Márton ; Zaghini Francesconi, Victor 1; Drexler, Marius 1; Arnold, Ulrich 1; Sauer, Jörg ORCID iD icon 1; Zöldy, Máté
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate physical property prediction of newly developed compounds is vital across various industrial sectors, particularly for the
customization of fuels and additives. Artificial intelligence (AI) has recently emerged as a best practice in numerous industrial fields
because of its capacity for swift and precise calculations. While conventional methods such as group contribution models have been
used to estimate physical properties from molecular structure, AI offers significant potential for improving the predictive accuracy.
Thus, this work focuses on developing an AI model to predict key properties – boiling points, melting points, and flashpoints –
of various hydrocarbons, to demonstrate the AI's superior predictive capabilities. A dataset consisting of 202 organic compounds
was created and multilayer perceptron (MLP) neural networks were employed to estimate these properties using atomic numbers,
functional groups, and molecular complexity as inputs. The model's performance was evaluated and compared against conventional
group contribution methods on the same dataset. The AI model was further tested on new acetal compounds, revealing its broader
... mehr

Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0324-5853, 0031-5311, 1587-3765
KITopen-ID: 1000178314
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in Periodica Polytechnica Chemical Engineering
Verlag Budapest University of Technology and Economics
Band 68
Heft 4
Seiten 561 – 570
Vorab online veröffentlicht am 06.11.2024
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur

Verlagsausgabe §
DOI: 10.5445/IR/1000178314
Veröffentlicht am 24.01.2025
Seitenaufrufe: 27
seit 24.01.2025
Downloads: 17
seit 27.01.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page