KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing power skiving tool longevity: the synergy of AI and robotics in manufacturing automation

Kiefer, Daniel ; Grimm, Florian; Straub, Tim; Bitsch, Günter; Dinther, Clemens Van

Abstract:

In gear manufacturing, the longevity and cost-effectiveness of power
skiving tools are essential. This study presents an innovative approach that
combines artificial intelligence and robotics in manufacturing automation to
prevent tool breakage to improve the remaining useful life (RUL). Using a
robotic cell, the system captures six images per tooth from different angles. An
unsupervised generative deep learning model approach is used because it is
more suitable for industrial application as it can be trained with a small number
of defect-free images. It is used in a first step as a classifier and, in a second
step, to segment tool wear. This approach promises economic benefits by
reducing manual inspection and, through automated tool inspection, detecting wear earlier to prevent tool breakage.


Verlagsausgabe §
DOI: 10.5445/IR/1000178316
Veröffentlicht am 22.01.2025
Originalveröffentlichung
DOI: 10.1504/IJMMS.2024.143059
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und -management (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1753-1039, 1753-1047
KITopen-ID: 1000178316
Erschienen in International Journal of Mechatronics and Manufacturing Systems
Verlag Inderscience
Band 17
Heft 2
Seiten 201–224
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page