IEEE COMMUNICATIONS LETTERS, VOL. 29, NO. 1, JANUARY 2025

45

Spiking Neural Belief Propagation Decoder for Short
Block Length LDPC Codes

Alexander von Bank™, Graduate Student Member, IEEE,
Eike-Manuel Edelmann, Graduate Student Member, IEEE, Sisi Miao ™, Student Member, IEEE,
Jonathan Mandelbaum™, Graduate Student Member, IEEE, and Laurent Schmalen ™, Fellow, IEEE

Abstract— Spiking neural networks (SNNs) are neural
networks that enable energy-efficient signal processing due to
their event-based nature. This letter proposes a novel decod-
ing algorithm for low-density parity-check (LDPC) codes that
integrates SNNs into belief propagation (BP) decoding by approx-
imating the check node update equations using SNNs. For the
(273,191) and (1023,781) finite-geometry LDPC code, the pro-
posed decoder outperforms sum-product decoder at high signal-
to-noise ratios (SNRs). The decoder achieves a similar bit error
rate to normalized sum-product decoding with successive relax-
ation. Furthermore, the novel decoding operates without requir-
ing knowledge of the SNR, making it robust to SNR mismatch.

Index Terms—Spiking neural networks, channel codes,
decoder, message passing, belief propagation decoding, LDPC
codes, neuromorphic, event-based computing.

I. INTRODUCTION

EUROMORPHIC computing has gained much attention

in recent years as CPUs are approaching their physical
limits of operation speed and efficiency [1]. Spiking neural
networks (SNNs) mimic the behavior of the human brain,
which is a highly efficient computational device that con-
sumes only 20 W of power to solve several complex tasks
concurrently [2]. Hence, implementing SNNs on neuromor-
phic hardware is particularly interesting since it promises
energy-efficient signal processing due to its event-based com-
puting [3]. Furthermore, SNNs can be implemented on various
types of neuromorphic hardware, enabling computation in the
analog, digital, or photonic domain [1], [4], [5]. An SNN-
based equalizer was emulated on an FPGA and compared
to benchmark equalizers in [6], demonstrating the superior
energy efficiency of SNNs.

Low-density parity-check (LDPC) codes are forward
error-correcting codes included in various modern communica-
tion standards, e.g., 5G and WLAN, due to their outstanding
error correction performance with iterative message-passing
decoding, typically known as belief propagation (BP)

Received 15 October 2024; accepted 2 November 2024. Date of publi-
cation 6 November 2024; date of current version 10 January 2025. This
work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program
(grant agreement No. 101001899). Parts of this work were carried out
in the framework of the CELTIC-NEXT project AI-NET-ANTILLAS
(C2019/3-3) (grant agreement 16KIS1316) and within the project Open6GHub
(grant agreement 16KISK010) funded by the German Federal Ministry of
Education and Research (BMBF). The associate editor coordinating the review
of this letter and approving it for publication was W. Liu. (Corresponding
author: Alexander von Bank.)

The authors are with the Communications Engineering Laboratory,
Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany (e-mail:
alexander.bank @kit.edu; eike-manuel.edelmann@Xkit.edu; sisi.miao@Kkit.edu;
jonathan.mandelbaum @kit.edu; laurent.schmalen@kit.edu).

Digital Object Identifier 10.1109/LCOMM.2024.3492711

decoding. In particular, close-to-capacity performance is
reported when decoding LDPC codes using the sum-product
algorithm (SPA). However, the SPA requires the evaluation
of computationally intensive check node updates [7]. There-
fore, complexity-reduced variants like normalized min-sum
(NMS) [8] or differential decoding with binary message pass-
ing (DD-BMP) [9] have been introduced.

It is known that introducing memory to decoding via suc-
cessive relaxation (SR) enhances its performance for the SPA
and the min-sum (MS) algorithm [10]. As pointed out in [11],
DD-BMP is also related to SR due to the memory of the
decoder. Hence, decoding with memory can reduce the gap
between complexity-reduced BP and plain SPA. Furthermore,
SPA with SR can outperform classical SPA. In addition,
a threshold to suppress small values can also help to improve
MS decoding, as the offset MS decoder shows [12].

A system implementing the BP algorithm with SNNs has
the potential to provide energy-efficient decoding. Therefore,
BP was implemented with SNNs in [13] by connecting multi-
ple SNNs and exchanging messages via spikes. The deviation
of SNN-based BP messages compared to the correct messages
was measured for a small graph with six nodes. However,
no practical channel code was evaluated in [13].

In this letter, we propose a novel BP decoder that incor-
porates SNNs. In contrast to [13], the novel system uses
simple SNNs rather than liquid and readout pools. Further-
more, we rely on real-valued/graded spikes, compared to the
encoding to a pulse rate of [13]. We optimized SNNS to replace
the complex SPA check node update with energy-efficient
SNN operations. Two decoding variants are introduced. The
simplified variant requires SNNs consisting of only a single
neuron. While both outperform NMS and DD-BMP decoding
in Monte Carlo simulations, in high signal-to-noise ratio
(SNR) regimes, the proposed decoder outperforms SPA, and
the simplified variant achieves SPA-like performance. To the
best of our knowledge, this is the first work that uses SNNs
to improve the energy efficiency of BP for channel decoding
of practically relevant channel codes. The implementation of
the proposed SNN-based BP decoder and additional results
are available at [14].

II. SPIKING NEURAL NETWORKS

SNNs consist of multiple layers of spiking neurons.
Like classical neural networks, the layers are connected
by linear layers. Spiking neurons can be interconnected
within a layer, resulting in recurrent connections. Compared
to classical neural networks, SNNs exhibit two significant
differences: First, they exchange information in short pulses,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0008-5616-3091
https://orcid.org/0000-0002-3483-7891
https://orcid.org/0009-0007-3257-1106
https://orcid.org/0000-0002-1459-9128

46

Fig. 1. Exemplary SNN dynamics. Input spikes sin (¢) (illustrated by dots)
generate a synaptic current ¢(¢), which charges the membrane potential v(t).
If v(t) exceeds the firing threshold vyy,, an output spike sout (t) is generated.

so-called spikes. Second, spiking neurons are state-dependent
and exhibit temporal dynamics, mimicking the biological
neuron [15]. The membrane potential v(t) of a spiking neuron
describes its state. An incoming spike induces a synaptic
current i(t), which charges v(t). Concurrently, v(t) decreases
over time. If v(t) exceeds the threshold potential vy, of
the neuron, an output spike is generated and the membrane
potential is reset to the resting potential v,. The leaky
integrate-and-fire (LIF) model is a simple yet biologically
plausible and, therefore, common spiking neuron model. Its
dynamics in differential form are [15]

di(t)

dt Sln,_] (1)
do(t) _ ((v() — vr) +i(t))

a . + sout(t) (U — vim) . (2)

Hereby, 7, € RT denotes the time constant of the synaptic
current, w; € R the weight applied to the j-th incoming
sequence of spikes sin,j(t) €R, 7y € RT the time constant
of the membrane potential, and sout(t) € {0,1} the output
spike sequence generated by soui(t) = O(v(t) — ven),
where ©(-) denotes the Heaviside function. The input spike
sequence Sin ;(t) can be either sent from downstream layers
(feed-forward) or spiking neurons within the same layer
(recurrent). Fig. 1 provides an example of the dynamics of
a LIF neuron. The leaky integrate (LI) neuron is obtained
by deactivating the spiking functionality. Hence, LI neurons
act as memory with leakage. For simulation and training,
we utilize the PyTorch-based framework Norse [16].

III. BELIEF PROPAGATION DECODING

We consider the decoding of binary (N, k) LDPC codes,
which map £ data bits onto N code bits. LDPC codes are
defined as the null space of a sparse parity-check matrix
PCM) H € Fé” *N Bp decoding is conducted on the
Tanner graph, a bipartite graph associated with the respec-
tive PCM [17, pp. 51-59]. A Tanner graph consists of
two types of nodes. First, the check nodes (CNs) c;, with
je{1,2,..., M}, which correspond to the single parity
checks, i.e., the rows of the PCM. The second type of nodes
are variable nodes (VNs) v;, with ¢ € {1,2,..., N}, where
each node is associated with a code bit, i.e., a column of
the PCM. An edge between a CN c; and a VN v; in the
Tanner graph exists iff H;; = 1. A regular (d,, d.) LDPC
code possesses d. non-zero entries per row and d, non-zero
entries per column in its PCM. The check node degree and
variable node degree are denoted by d. and d,, respectively.

Assume that a random codeword « is binary phase
shift keying (BPSK) modulated and transmitted over a
binary-input additive white Gaussian noise (AWGN) channel,
ie., y; = (—1)% + n;, with n; ~ N(0,02).

IEEE COMMUNICATIONS LETTERS, VOL. 29, NO. 1, JANUARY 2025

)
F sgn(-) B 11
—
L[V] Ul r—_>
b
Ly —4+| abs() [SNN @=(LD—
b IR 3 L,
=] ™

Fig. 2. Setup of an Elena-SNN SCNU calculating the message Ll

i3
based on the messages L[,LJ, i€ M)\ {i} = {i1,...,4ax} with
d¥ = dc — 1. The upper and lower branches realize (5) and (6), respectively.
The LI neuron implements the memory.

D
@ o~ € {0,065}
o |

“1 1 6,

Fig. 3. Setup of the SNN block in Fig. 2 implementing (8) using dc
LIF-neurons. If an input value is below 61, the connected neuron is charged to
emit a spike. The upstream neuron combines all incoming spikes and forwards
them, leading to a zero output. If all input values are larger than 61, no neuron
is charged, leading to 62 as output.

-1 6; 10

The bit-wise log-likelihood ratio (LLR) L; at the channel
output w.r.t the i-th code bit is defined as

P(Y; =y;|X; =0)
L;=1 .
°g<P<m- — X, = 1)

Next, we consider the SPA, in which messages are LLRs
that are iteratively updated in the nodes and passed along the
edges of the Tanner graph. A BP iteration with a flooding
schedule includes the parallel updating of all CN messages
and then all VN messages. The variable-to-check-node mes-
sages are initialized with LEiJ L;, where LE_]U is the
variable-to-check-node message sent from v; to c;. First, the
check-to-variable-node messages L[°l —; are evaluated. To this
end, we simplify the update equation [17, (2.17)] by sphttlng

it into the absolute value ag‘i = Ll ‘ and the sign ﬁ =

3)

17 1]
sign (L£1j> 1.€.,
L =ald, g9, vie M(), @)
[1 \LEYLA
al ; =2 tanh H tanh | —=5)) (5)
e M)\ {i}
g, = I sien(r0L). ©

i€ M(H\{i}
where M(j) = {i :
connected to CN j.

Next, we introduce the VN update calculating the variable-
to-check-node message sent from v; to c; using

H,;; = 1} is the set of indices of VNs

Lo=rn+ Y L, vienNw), ™
3'EN(@\{5}
where N(i) = {j : H;; = 1} is the set of indices of

neighboring CNs of v;.
Note that both the CN and the VN update follow the
extrinsic principle, i.e., when updating the message to VN

VON BANK et al.: SPIKING NEURAL BP DECODER FOR SHORT BLOCK LENGTH LDPC CODES 47
o
_ Jas —])
141 L if1 ~
| SCNU L, .
Ly g s el g
Lo 143 5L i1 Ly | 2| .
° £ | SCNU b
. c < o
. = S b <
: 2 = . =
Ly] s : - z
'z, L[”] %D [e] Ly = N
> N=id 2 Ly iy M P by
" 2‘* | SCNU
v e] —
LN%J‘;‘}‘V Ly i M
> SCNU
~— u* I ~—

Fig. 4.
NG = {ji,... 7jéu} and M(j) :=={d],..., ifiv}, respectively.

v; (CN c;), the message originating from v; (CN c;) is
excluded from the update equation. After reaching a predefined
maximum number of ~iterations, the bit-wise output LLRs L;
are calculated using L; = L; + de NG) Ll Finally, the

g
decoded bits b; are obtained by applying a hard decision to
Ll, where bl = 0 if L > 0 and bl = 1 otherwise. For a
more detailed explanation of message-passing algorithms, the
interested reader is referred to [17, Ch. 2].

IV. SPIKING NEURAL BELIEF PROPAGATION DECODING

Equation (5) constitutes a significant part of the complexity
of the SPA [7]. Therefore, an efficient replacement of the CN
update using, e.g., SNNs, can improve the energy efficiency
of the decoder. Hence, we propose a novel decoder named
Enlarge-Likelihood-Each-Notable-Amplitude Spiking-Neural-
Network decoder, referred to as Elena-SNN. Elena-SNN uses
a so-called SNN CN update (SCNU) substitute for integrating
SNNs into the CN update equations (4)-(6).

Fig. 2 depicts the setup of an SCNU calculating the message
LI given the messages LY . i € M(j) \ {i}. The

i—J i =7

incoming L[vl _,; are split into their sign and absolute value;
both are processed, combined, and afterward integrated over
time by an LI neuron, which acts as memory. Therefore,
T, and 7, of the LI neuron control the behavior of the
SCNU memory. The upper branch performs (6), which can
be implemented using XOR operations. The lower branch
realizes (5), where the computationally complex operations
of (5) are replaced by the SNN, shown in Fig. 3. Inspired
by the offset MS algorithm [12], which approximates (5)

by a[] . A~ max mini’e./\/l(j) Lz’Lj‘ — 91,0 , WE fur_
ther mmphfy the approach by
i if min ‘LEﬂ_W >0,
R ireM(H)\{i} ‘ ®)

0 otherwise.

Like the offset MS algorithm, (8) returns zero if the input val-
ues are below the threshold ; € RT. In contrast to the offset
MS algorithm, which returns the biased minimum value, (8)
returns a fixed value 05 € R if the threshold 6; is exceeded.
Hence, we approximate the term ming ¢ pq(j)\ {4} |L1[YL j\ -0
with 6. Fig. 3 visualizes the implementation of (8) using
LIF spiking neurons. To 1mplernent (8), we emit zero if at
least one input value |L[| is below the threshold 6, and

i —j

The architecture of the proposed decoder. The SCNU contains the SNN. For i € {I,...

,N} and j € {1,...,M}, we use the notation

m -—,

Lu—j

Fig. 5. Simplified Elena-SNN* SCNU. The multiplication of the signs and
the LI neuron act similarly to DD-BMP.

0y otherwise. Therefore, the signs of all inputs |L1 HJ| are
inverted, the bias #; is added, the mgnal is amplified and
integrated by LIF neurons. If (61 — |L1 ~.;1) > 0, the connected
LIF neuron is charged, an output spike is generated and passed
to the combining LIF neuron. If (6; — |L£VL]\) < 0, the
connected LIF neurons are discharged, and no output spike
is generated. Hence, the multiplications, the adder, and the
LIF neurons implement the inverted sign function; if a value
is below 6, a spike is emitted. The following combining
LIF neuron fires if any of the previous neurons emit a spike.
If the combining LIF neuron emits a spike, the output turns
zero. Hence, if the minimum absolute of the input values is
above 61, 0 is emitted. If at least one value is below 61,
zero is emitted.

Fig. 4 depicts the overall decoder architecture, integrating
the SCNUs. All SCNUs share the same parameters. First,
for initialization, all Lgij are set to zero, and the VNs
are updated according to (7). Next, we start the iterative
decoding process. The update of each CN consists in allocating
the variable-to-check-node messages L£ ij to the respective
SCNU. Assuming a regular LDPC code, there exist M - d.
SCNUs, each performing an extrinsic CN update. Hence, in the

allocation, all variable-to-check node messages L with

i’ —j
i € M(j) \ {¢} participating in the update of L[<l _ are routed
to the respective SCNU, which implements (4) Afterward,
the VNs are updated, and the process is iteratively repeated
until the hard decision maps the output LLRs to binary values.
After that, the membrane potentials and synaptic currents of
all neurons are reset to zero. The memory is, therefore, also
reset. It is important to note that the decoder uses a flooding
schedule, i.e., all node updates are performed in parallel.
Each SCNU of the Elena-SNN decoder uses d. LIF spiking
neurons and a single LI neuron. We furthermore propose a
simplified version of Elena-SNN, called Elena-SNN*. Inspired
by the DD-BMP, which only takes the sign of each LEﬂ ; into
account, the number of neurons per SCNU can be reduced to
a single LI neuron by omitting the lower path of Fig. 2. Its
simplified SCNU can be seen in Fig. 5.

48

Elena-SNN* ¢ BER \

Elena-SNN* Cy
Elena-SNN C;
Elena-SNN Cy

BER

T 1N MS
(a) BER over 7y, for the proposed decoders
for both codes with 81 = 60> = 1.

V. RESULTS AND DISCUSSION

We implemented and evaluated the two proposed decoders
for two different finite-geometry (FG) LDPC codes, the
(273,191) and the (1023,781) code [7], in the following called
C; and Ca, respectively. Both FG LDPC codes are regular
overcomplete codes, C; has d. = 17,d, = 17, whereas
Cy has d. = 32, d, = 32. FG LDPC codes together with
BP decoding are known to typically possess very low error
floors, which are of interest for, e.g., storage and wireline
applications. Currently, due to the highly irregular structure
of the 5G LDPC code and the presence of low-degree VN,
Elena-SNN does not yet achieve competitive performance.
Adapting Elena-SNN to perform better with such codes is part
of our ongoing investigation.

For y;, which is the received value corresponding to the i-th
code bit of a codeword, the bit-wise LLRs are L; = y; - L,
where L. is the channel reliability parameter Usually, for an
AWGN channel, L. = 4E 2 and therefore needs to
be adapted to the channel SNR However dependlng on the

to a BER of approximately 10~%. For evaluatlon the value of
L. is maintained, regardless of the channel SNR. To compare
against the fixed L., the Elena-SNN- L decoder adjusts L. to
match the channel SNR. We choose £ N = 3.5dB for C; and
= 3.4dB for Cs. For 20 decoding iterations, the proposed
decoders are compared to the following benchmark decoders:
SPA, DD-BMP, MS, NMS, and NMS with SR decoding
(SR-NMS). Further increasing the decoding iterations did not
yield a significant improvement in the decoding performance.
For all benchmark decoders, L. matches the actual E/No.

A. Parameters

For all LIF spiking neurons of the Elena-SNN decoder,
we fix 7, = 1ms, 73 = 1ms and vy, = 1. Furthermore,
we fix 7, = 1ms of the LI neurons. Hence, the remaining
parameters subject to optimization are Ty, of the LI neurons
as well as 61 and 65. For the Elena-SNN* decoder, 7 = 1 ms
of the LI neurons is also fixed. Hence, the set of tuneable
parameters is reduced to 7, of the LI neuron.

The membrane time constants 7, for the Elena-
SNN decoder and Elena-SNN* decoder are determined by
a simple line search with 6; = 63 = 1. With the obtained
Tm, another line search yields 6;. The obtained 7, and
0, are fixed to determine 65 in a final line search. Fig. 6(a)
shows the impact of 7, on the performance of both decoders

61

(b) BER over 6, for the Elena-SNN decoder
and C1 with 7;p = 1 ms and 62 = 1.

Fig. 6. Impact of the parameters of the decoders on the performance. Both decoders are run for 20 iterations. Cy is run at ﬁ“ =

IEEE COMMUNICATIONS LETTERS, VOL. 29, NO. 1, JANUARY 2025
2% ~1
‘ Spike rate ’ 10
11.5%
1072 1 E
g
1]
% g &
= Bt 1
o5}
10.5%
1074 E
é 30% 1 2 3 4

[
(c) BER over 6> for the Elena-SNN decoder
and C1 with 7, = 1 ms and 61 = 2.

Es _
x> =3.4dB.

for both codes. For Elena-SNN, small 7, yield the best
performance, reducing the averaging effect of the LI neuron.
Elena-SNN* performs best at larger 7,,, demonstrating the
need for averaging by the LI neuron. For Elena-SNN and
Cy, Fig. 6(b) shows the effect of the bias 6; on the BER
and the spike rate of the SNN, where the spike rate is
the ratio of spikes generated by all LIF spiking neurons to
possible spikes of the discrete SNN simulation. Up to a value
of #; =~ 2, an increase in #; leads to a decreasing BER,
while the spike rate increases. Further increasing 6y yields
both a higher BER and a higher spike rate. For C3, a sim-
ilar behavior was observed. As Fig. 6(c) shows, the output
amplitude 6, significantly impacts the BER. Again, for Ca,
a similar behavior was observed. For the Elena-SNN decoder
we have chosen (7, = 1ms, 6; = 2, 5 = 1.4) for C; and
(Tm = 1.667ms, 68; = 1.6, 63 = 1) for Cs. For the Elena-
SNN* decoder we have chosen 7, = 1.639ms for C; and
Tm = 4.167ms for Cs.

B. Evaluation

Fig. 7 compares the different decoders for C; and C,.
As expected, the SPA performs best in the low SNR regime for
both codes. For higher SNR, the SR-NMS decoder performs
best. Comparing the SR-NMS and the NMS decoders reveals
that SR decreases the BER for Co. The Elena-SNN* outper-
forms DD-BMP for both codes. Elena-SNN performs slightly
worse than the SR-NMS decoder. At a BER of 1075, Elena-
SNN has a gap of 0.046 dB to the SR-NMS decoder for C;.
Elena-SNN yields an SNR gain of 0.35dB compared to SPA.
For Cy, Elena-SNN achieves a gap of 0.03 dB to SR-NMS and
a gain of 0.28 dB over SPA. The Elena-SNN decoder exhibits
an error floor for F}, /Ny greater than 4.9dB, as Fig. 7(a)
shows, resulting in a BER of approximately 10~°. The error
floor results from the low resolution of the approximation
in (8); future work will investigate an approximation with
higher resolution and dynamic range. For the Cy code, we sim-
ulated 10% codewords at an F, /Ny of 4.48dB and did not
observe an error floor. Also, the constant L. enables decoding
without continuous SNR measurement, with improvement
at low SNRs and only a slight penalty for high SNRs,
as Fig. 7(a) shows.

C. Discussion

We want to emphasize three significant points: First, Elena-
SNN outperforms the SPA in high SNR regimes. Compared

VON BANK et al.: SPIKING NEURAL BP DECODER FOR SHORT BLOCK LENGTH LDPC CODES 49

o —— \\
10-3| /
SPA .
5 10-5 |1 DD-BMP S
m SR-NMS
NMS
1077 H o vrerrnnnens MS e
Elena-SNN*
10-9 1 Elena-SNN-L, |
Elena-SNN
| |
0 1 2 3 4 5
Ey/No (dB)
(a) BER curve for the (273,191) FG LDPC code
§ N
1073 ¢ : *
% | ——— SPA]
m 107 H DD-BMP E
B SR-NMS i
107° NMS €
MS]
1076 Elena-SNN* \\7
107 7 Elena-SNN ‘ 4
2 3 4
Ey/No (dB)

(b) BER curve for the (1023,781) FG LDPC code.

Fig. 7. BER curves of the Elena-SNN , Elena-SNN* and reference decoders.

to Elena-SNN, the simple Elena-SNN* decoder reduces the
computational complexity at the cost of decoding performance.
It can only reach SPA performance; however, it solely requires
the multiplication of signs and a single LI neuron. Second,
Elena-SNN and Elena-SNN* were optimized for a fixed
E,/Ny and L. value. The results show that both approaches
can generalize over a broad SNR regime. Thus, the set of
applied parameters solely depends on the code, not the channel
quality. Third, in high SNR regimes, the variable-to-check-
node messages LEVL]. tend to have large absolute values.
Hence, the LIF spiking neurons of the Elena-SNN decoder are
not sufficiently charged to generate an output spike. Therefore,
at Fy, /Ny = 3.5 dB, a spike rate of 0.6% is achieved, whereas,
at F,/Nyg = 0 dB, the spike rate is increased to 9% at
0dB. Hence, depending on the SNR, the number of emitted
spikes varies for the code C; between 557 spikes per codeword
and 8354 spikes per codeword between 0 dB and 3.5 dB.

VI. CONCLUSION

In this work, we introduced Elena-SNN, a novel channel
decoder for LDPC codes, which overcomes the complexity of
the SPA by replacing its computationally complex calculations
with an SNN. We furthermore introduced a simplified ver-
sion of the Elena-SNN decoder, namely Elena-SNN*, which
significantly reduces the number of neurons. The number
of parameters that need to be optimized are three parame-
ters for the Elena-SNN decoder and one parameter for the
Elena-SNN* decoder. For the (273,191) and the (1023,781)

FG LDPC codes, BPSK, and an AWGN channel, we have
shown that both decoders outperform complexity-reduced ver-
sions of the SPA, e.g., MS and DD-BMP. In high SNR
regimes, the Elena-SNN decoder outperforms SPA. Both
decoders were optimized at a fixed E;/Ny value and have
been shown to generalize over the whole range of evaluated
E,/Ny values. Hence, the decoder works without knowledge
of the E;/Ny of the system, which is an advantage compared
to the SPA.

Future work will test both proposed decoders on neuro-
morphic hardware and compare their complexity with the
benchmark decoders. Furthermore, we will evaluate the pro-
posed decoders for different types of LDPC codes. We are
aware that the SNN input of the proposed decoders is real-
valued. Thus, the neuromorphic hardware needs to support
real-valued input, like, e.g., Intel Loihi [4].

REFERENCES

[1] T. F. de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and
P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics,
vol. 6, no. 3, pp. 577-599, Mar. 2017.

[2] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607-617, Nov. 2019.

[31 Y. S. Yang and Y. Kim, “Recent trend of neuromorphic computing

hardware: Intel’s neuromorphic system perspective,” in Proc. Int. SoC

Design Conf. (ISOCC), Yeosu, South Korea, Oct. 2020, pp. 218-219.

Intel. (2021). Taking Neuromorphic Computing To the Next Level With

Loihi 2. Accessed: May 22, 2024. [Online]. Available: https://download.

intel.com/newsroom/202 1/new-technologies/neuromorphic-computing-

loihi-2-brief.pdf

[5] C. Pehle et al., “The BrainScaleS-2 accelerated neuromorphic system
with hybrid plasticity,” Frontiers Neurosci., vol. 16, Feb. 2022.

[6] M. Moursi, J. Ney, B. Hammoud, and N. Wehn, “Efficient FPGA
implementation of an optimized SNN-based DFE for optical communi-
cations,” in Proc. IEEE Middle East Conf. Commun. Netw. (MECOM),
Abu Dhabi, United Arab Emirates, Nov. 2024, pp. 1-6.

[71 Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes

based on finite geometries: A rediscovery and new results,” IEEE Trans.

Inf. Theory, vol. 47, no. 7, pp. 2711-2736, Nov. 2001.

F. Angarita, J. Valls, V. Almenar, and V. Torres, ‘“Reduced-complexity

min-sum algorithm for decoding LDPC codes with low error-

floor,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 7,

pp- 2150-2158, Jul. 2014.

[91 N. Mobini, A. H. Banihashemi, and S. Hemati, “A differential binary

message-passing LDPC decoder,” IEEE Trans. Commun., vol. 57, no. 9,

pp- 2518-2523, Sep. 2009.

H. Xiao, S. Tolouei, and A. H. Banihashemi, “Successive relaxation

for decoding of LDPC codes,” in Proc. 24th Biennial Symp. Commun.,

Kingston, ON, Canada, Jun. 2008, pp. 107-110.

E. Janulewicz and A. H. Banihashemi, “Performance analysis of iterative

decoding algorithms with memory over memoryless channels,” IEEE

Trans. Commun., vol. 60, no. 12, pp. 3556-3566, Dec. 2012.

J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,

“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,

vol. 53, no. 8, pp. 1288-1299, Aug. 2005.

A. Steimer, W. Maass, and R. Douglas, “Belief propagation in

networks of spiking neurons,” Neural Comput., vol. 21, no. 9,

pp. 2502-2523, Sep. 2009.

[14] A. von Bank. (2024). Enlarge-Likelihood-Each-Notable-Amplitude

Spiking-Neural-Network (ELENA-SNN) Decoder. [Online]. Available:

https://github.com/kit-cel/ELENA

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning

in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks,” IEEE Signal Process. Mag.,

vol. 36, no. 6, pp. 51-63, Nov. 2019.

C. Pehle and J. E. Pedersen. (Jan. 2021). Norse—A Deep Learning

Library for Spiking Neural Networks. [Online]. Available: https://norse.

ai/docs/

T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge,

U.K.: Cambridge Univ. Press, 2008.

[4

=

[8

—

[10]

[11]

[12]

[13]

[15]

[16]

[17]

