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Abstract

The tire road noise is the main traffic noise source in urban areas. For elec-
tric vehicles at speeds where aerodynamic disturbances do not result in large
noise excitation, it even is the only relevant noise source. The health of a
large percentage of the global population is impacted by traffic noise, which
is why regulations for the vehicle noise are in place. Since the regulatory lim-
its are stepwise decreased, vehicle manufacturers need to be able to estimate
in the digital prototype phase if their vehicles meet the criteria. One large
fraction thereby is the prediction of sound pressure levels caused by the tire
on their specific test tracks. This dissertation investigates multiple machine
learning approaches to predict sound pressure levels of rolling tires at one spe-
cific point of these measurement track, the whole measurement track, and as
1/3 octave levels for the entire measurement track. This is done on the basis of
1443 coast-by measurements, which include 42 different tires with tire nom-
inal widths from 205 mm to 285 mm, rim diameters from 16 in to 22 in, and
tire aspect ratios from 30 % to 65 %. All measurements were conducted at the
Mercedes-Benz testing facilities in Immendingen, Germany. Predictions are
done with linear regression models, lasso regression models, Artificial Neural
Networks, Convolutional Neural Networks, a combination of Artificial Neu-
ral Network and Convolutional Neural Network, and Bayesian Hierarchical
Models. It is shown, that with increased model complexity also the model ac-
curacy improves without indications of overfitting. According to the model
structure, different values are used as input features, models including convo-
lutions receive tire tread pattern images extracted from 3D tire models recon-
structed with the structured light approach. The shape of the contact patch is
initially approximated as a rectangle. In later sections, contact patch shapes
derived from the normal pressure distributions of individual tires are also used.
Other models include features describing the tire, environment, and operation
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conditions. The best leave-one-out model performance achieves a root mean
squared error of 0.58 dB(A). The model used for this is the combined model,
based on the contact patch shapes derived from the normal pressure distribu-
tions and the averaged sound pressure levels of both microphones. The model
predicts the entire measurement distance and was minimized on the sum of
the error of the test and training set. Through methods of explainable Al, it
is shown that the most important tire features are the nominal width and the
load index with positive and negative correlation to the sound pressure level.
The load index also showed a strong correlation to the outer tire diameter.
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Kurzfassung

Das Reifen-Fahrbahn-Gerédusch ist die Hauptquelle fiir Verkehrslirm in
stadtischen Gebieten. Bei Elektrofahrzeugen ist es bei Geschwindigkeiten,
bei denen aerodynamische Stérungen nicht zu grofien Gerduschanregungen
fihren, sogar die einzige relevante Larmquelle. Die Gesundheit eines grof3en
Teils der Weltbevolkerung wird durch Verkehrslarm beeintrichtigt, weshalb
es Vorschriften fiir den Fahrzeuglarm gibt. Da die Grenzwerte schrittweise
gesenkt werden, miissen die Fahrzeughersteller in der Lage sein, bereits in
der digitalen Prototypenphase abzuschétzen, ob ihre Fahrzeuge die Kriterien
erfilllen. Ein grofler Teil davon ist die Vorhersage von Schalldruckpegeln,
die durch die Reifen auf ihren spezifischen Teststrecken verursacht werden.
In dieser Dissertation werden mehrere Ansitze des maschinellen Lernens
untersucht, um Schalldruckpegel von rollenden Reifen fiir einen Punkt der
Messstrecke, die gesamte Messstrecke und als 1/3 Oktavpegel fiir die gesamte
Messstrecke vorherzusagen. Dies geschieht auf der Grundlage von 1443 Coast-
by-Messungen, die 42 verschiedene Reifen mit einer Reifennennbreite von
205 mm bis 285 mm, einem Felgendurchmesser von 16 in bis 22 in und einem
Reifenquerschnittsverhéltnis von 30% bis 65 % umfassen. Alle Messungen
wurden auf dem Mercedes-Benz Testgelinde in Immendingen, Deutsch-
land, durchgefiihrt. Vorhersagen werden mit linearen Regressionsmodellen,
Lasso-Regressionsmodellen, Kiinstlichen Neuronalen Netzen, Faltungsneuro-
nalen Netzen, einer Kombination aus Kinstlichen Neuronalen Netzen und
Faltungsneuronalen Netzen sowie Bayes’schen Hierarchischen Modellen
durchgefiihrt. Es wird gezeigt, dass sich mit zunehmender Modellkomplexitat
auch die Modellgenauigkeit verbessert, ohne dass es zu Overfitting kommt.
Je nach Struktur des Modells werden verschiedene Werte als Eingangs-
merkmale verwendet. Modelle, die Faltungen enthalten, erhalten Bilder von
Reifenprofilen, die aus 3D-Reifenmodellen extrahiert wurden, welche mit
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dem Ansatz des strukturierten Lichts rekonstruiert wurden. Die Form der
Bodenaufstandsflache wird zunéchst als Rechteck approximiert, spatere Ab-
schnitte enthalten auch Latschformen, die aus den Normaldruckverteilungen
der einzelnen Reifen extrahiert wurden. Andere Modelle enthalten Merkmale,
die den Reifen, die Umgebung und die Betriebsbedingungen beschreiben. Die
beste Leave-One-Out-Modellperformance ergibt fiir die Wurzel des mittleren
quadratischen Fehlers einen Wert von 0,58 dB(A). Das dafiir verwendete
Modell ist das kombinierte Modell, auf Basis der mittels Normalduckver-
teilung angepassten Bilder und dem gemittelten Schalldruckpegel beider
Mikrophone. Das Modell sagt die gesamte Messstrecke vorher und wurde
auf die Summe des Fehlers der Test- und Trainingsmenge minimiert. Mit
Hilfe von Methoden der erklarbaren KI wird gezeigt, dass die wichtigsten
Reifenmerkmale die Nennbreite und der Belastungsindex mit positiver und
negativer Beziehung zum Schalldruckpegel sind. Der Belastungsindex zeigte
auch eine starke Korrelation zu dem dufleren Reifendurchmesser.
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Notation

This chapter introduces the notation and symbols which are used in this thesis.

Symbols

a,b Tire rolling noise coefficients

a Arithmetic mean of TRN coefficients a

b Arithmetic mean of TRN coeflicients b

b; Bias of neuron j in a predefined layer

l"j Bias of neuron j in layer 1 for step n

b{’j_l Bias of neuron j in layer | for step n-1

Abl';._l Bias update of neuron j in layer |

C Cost function

Cab Connector distribution of TRN coefficients initially
sampled from N(42,5)

CAR Tire aspect ratio

Cow Average circumferential groove width

Ci Tire load index

CRG Tire tread block-to-groove ratio

CRD Rim diameter

CTw Tire nominal width

d; Reconstructed instance

d, Reconstructed instance

Xi



Notation

dy; i th sample for instance reconstruction

dy; i th sample for instance reconstruction

D Observed Data

S piteh Tire pitch frequency

Jo Center frequency of 1/3 octave band

il Lower frequency of 1/3 octave band

b Upper frequency of 1/3 octave band

f(x) Output of function f for input x

F Set of all features

g Gravitational acceleration

I; i th feature importance

Korm Regression Coefficient for temperature correction
according to UNECE R117

Kyg Regression Coefficient for temperature correction
according MB correction

Leontact patch Length of contact patch

Liaq A-weighted equivalent continuous Sound Pressure
Level

L; Sound pressure level of measurement i

Lp Sound pressure level

Lyitch Tire pitch length

Ly Reference sound pressure level of TRN

L Mean sound pressure level

m Number of steps in Riemann Integral

Myehicle Vehicle mass

M; Model j

N(u,,02) Gaussian distribution with mean u,, and variance o2

ny Number of samples

n, Number of measurements

ng Overall number of features
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o

Pinflation
P(6|D,M;)
P(D|O,M,;)
P(D|M;)
P(6|M;)
P(D|M;)
R2

5

T
T
T
Tiire

U(UigysUnigh)

air
road

ref

v

v

Ui

U, log
Umin
Umax
Vs
Uref

Uref, norm

Wi

Wz

n
Wiij

Random perturbation of all features
Inflation pressure of tire

Posterior Distribution

Likelihood

Marginal Likelihood

Prior

Evidence

Coefficient of Determination

Coefficient of Determination for feature j
Air temperature

Road surface temperature

Reference temperature according to UNECE R117
Tire surface temperature

Uniform distribution with lower bound u,,,, and
upper bound U,

Vehicle speed in kmh™!

Mean vehicle speed

Vehicle speed of measurement i

Logarithmic speed of measurement i with regards to

Uref

Min speed of data set
Max speed of data set
Vehicle speed in ms™!

Vehicle reference speed

Vehicle reference speed as defined in Regulation No.
117

Weight of neuron i

Weight functions for possibility of entering coalition
Z

Weight matrix of neuron j in layer 1 for step n

xiii
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scaled

= xRl

.

pred
—pred
y

ref
1

Ji

Z U {j}

D © = v

RN

Xiv

Weight matrix of neuron j in layer I for step n-1
Weight update matrix of neuron j in layer 1
Cartesian coordinate system

Feature / Predictor variable

Input sample

Feature matrix / Predictor variable matrix
Mean input sample

Baseline of Integrated Gradients

Scaled values of x;

Predicted value

Predicted value for sample i

Mean predicted value for sample i

Reference value for sample i

Predictive data of pooled model i for output j
Coalition without feature j

Coalition with feature j

Momentum

Regression coefficient

Regression coefficient of feature i

Center point of average groove width parable
Center point of block-to-groove ratio parable
Residual

Residual of sample i

Interpolation integrator

Learning rate

Hyperparameters

Hyperparameters of Model i

Regularization parameter for Lasso regression

Arithmetic mean
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Mz
(9

¢,
b

O'a
Op

op

Mean value for prior distribution

Utility function /characteristic function
Linear path between two points

Prior

Shapley value of feature j

i th sample for Shapley value of feature j
Standard deviation

Standard deviation of coefficient distribution of
coefficient a

Standard deviation of coefficient distribution of
coefficient b

Standard deviation of Sound Pressure Level (SPL)
distribution

Standard deviation of x

Standard deviation for prior distribution

Variance

Temperature correction coefficient in Bayesian model

MB temperature correction coefficient
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Al

ANN

CB

CM

CNN

CoD

CPB

CPX

DL

FFT

IG

KDE

lasso

Artificial Intelligence
Artificial Neural Network
Coast-by

Combined Model
Convolutional Neural Network
Coefficient of Determination
Controlled Pass-by
Close-Proximity

Deep Learning

Fast Fourier Transformation
Integrated Gradients

Kernel Density Estimation

Least Absolute Shrinkage and Selection Operation

LeakyReLU Leaky Rectified Linear Unit
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LOOCV Leave-One-Out Cross-Validation
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MBGD Mini-Batch Gradient Descent
MCMC Marcov Chain Monte Carlo
ML Machine Learning

MSE Mean Squared Error

OBSI On-Board Sound Intensity
PDF Probability Density Function
PSD Power Spectral Density

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error
SHAP Shapley Additive Explanations
SPB Statistical Pass-by

SPL Sound Pressure Level

SRTT Standard Reference Test Tire
STD Standard Deviation
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TRN Tire Road Noise
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1 Introduction and Motivation

The exterior vehicle noise plays a crucial role in society, especially in urban ar-
eas. The European Environment Agency reported that 72 million inhabitants
experience traffic noise levels of 55 dB in the day-evening-night period and 48
million people are exposed to nighttime levels of at least 50 dB in 2017 [Eur20].
However, the World Health Organization (WHO) strongly recommends 53 dB
for the average road noise exposure and 45 dB for nighttime exposure. A con-
nection between health issues as hypertension and ischaematic heart diseases
as well as sleep disturbances was already recorded in 1994 [Hea94] and later
reaffirmed [Thel1].

When it comes to engine and exhaust sound, some might consider these pleas-
ant or enjoyable while others find them disturbing. In contrast to this, the Tire
Road Noise (TRN) is widely considered as bothering. Yet many studies in re-
cent years have shown that the overall exterior sound of a vehicle is dominated
by tire road noise [Jab12, Put13, Zel18] and that the tire rolling noise already
surpasses the propulsion noise at 35kmh~! to 50kmh~! depending on the
vehicle [van05]. This domination solidifies itself through the electrification of
vehicles, so that the main, if not only relevant noise source for future vehicles
will be the TRN. Assuming that noises such as AVAS (acoustic vehicle alter-
ation systems) are not required at higher Sound Pressure Levels (SPLs) and
higher vehicle speeds. In highway regions, an additional noise due to aerody-
namic effects can occur, this is however not expected to be as relevant as the
TRN for urban regions where vehicle speeds are generally lower.

Even though, the health issues in relation with traffic noise and the domina-
tion of the traffic noise by TRN were often observed, no recent decrease in
regulations specifically regarding the TRN are in place. In 2016 the necessary
tire rolling noise was decreased between 2 dB(A) to 5 dB(A) for all passenger
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vehicle tires. The decrease was defined in dependency of the nominal with,
leading to a decrease of 4 dB(A) to 5 dB(A) in the range of 215 mm to 275 mm.
[UNE22] These can be considered common tire specifications nowadays. But
no later decreases than these specified in 2016 in regulatory noise levels for
tires are known to the author.

For vehicle manufacturers, this is especially challenging since [UNE18] de-
mands a decrease of pass-by SPLs of 4 dB(A) in three steps from July 2016
to July 2026. These decreases make it necessary for vehicle manufacturers to
shift certification processes in the digital prototype phase to ensure passing
the regulations. In general, this requires predictions of SPLs caused by engine,
and exhaust for the entire measurement track as well as similar predictions
for tire induced noise. However, as stated at the beginning of this section
only the latter remains in case of electric vehicles which is why the focus of
vehicle manufacturers lies on predicting the exterior TRN from digital proto-
types. The fact that this is strongly driven by vehicle manufacturers, results
from the stronger decrease in SPLs for vehicles and not for tires and from
the observation that even test tracks with ISO 10844 surface vary in recorded
SPLs [San17, San21]. This makes it necessary for vehicle manufacturers to fit
regression models to their explicit certification tracks.

This dissertation explores various methods for predicting tire rolling noise
levels using digital prototypes to facilitate digital certification processes. The
methods used include standard linear regression models and Machine Learn-
ing (ML) models, which allow for the analysis of tire parameters’ impact on
SPL and the development of quieter tires. The primary objective is to design
models with varying complexity to accurately simulate Coast-by (CB) mea-
surements and determine the necessary complexity for faster tire selection
during vehicle certification. Additionally, this dissertation aims to provide
insight into the relevant parameters needed to predict the SPL.



2 Basics

This chapter is subdivided into five parts. First, influencing factors on the
TRN are described based on previous publications. The focus herein lies on
the impact of the tire and operational as well as environmental conditions.
For analyzes of the road impact and acoustical excitation processes the reader
is referred to [San80, San02, Li18a, Pin23]. Second, some statistical models
for the TRN are presented. Third, mathematical fundamentals are explained,
which is followed by ML models used in this research. The last part explains
methods of Explainable Artificial Intelligence (XAI).

2.1 Literature Review of Tire Parameters and
Operation Conditions on Tire Rolling
Noise

One criterion in vehicle certification is the exterior noise. In vehicles with
internal combustion engines generally three main sources of exterior noise are
recorded: The engine, exhaust, and the tires. For electric vehicles the first two
are mostly negligible so that the tire achieves a dominant role on the exterior
vehicle noise [Jab12, Put13, Zel18]. However, literature indicates that even in
vehicles with internal combustion engine the tire has a key impact [Put13].

The noise component of the tire is a result of the excitation through the contact
with the road surface which leads to structural vibrations as well as direct dis-
turbances in the air causing acoustical signals. The level of the recorded noise
depends on many complex interactions. The following subsections provide an
overview of different impact parameters subcategorized into tire parameters
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and operating conditions. Following, the abbreviation TRN is used, which

refers to the noise recorded for free rolling tires.

The following literature considers different measurement principles:

Close-Proximity (CPX): Microphones are mounted in close proximity
of the tire. The tire itself can be mounted in a trailer towed by a
vehicle or on the vehicle itself. The microphones therefore move with
the tire. [Deul7]

Drum test bench: Microphones are mounted in close proximity of the
tire. Tire rolls on test bench with different surfaces. [San02]

Controlled Pass-by (CPB): Measurement setting as described in
section 3.1. Measurement vehicle moves relative to microphones,
which are mounted on the road. The vehicle drives at constant speed,
the engine is not switched off. [San02]

Coast-by (CB): Measurement setting as described in section 3.1.

Measurement vehicle moves relative to microphones, which are
mounted on the road. The principle is equivalent to CPB but the
engine is switched off and gear switched to idle. [Int19]

Statistical Pass-by (SPB): Measurement setting is similar to the one
described in section 3.1. However measurements are conducted on
standard roads under normal traffic conditions. Measurement vehicle
moves relative to microphones, which are mounted on the road.
[Deu22]

On-Board Sound Intensity (OBSI): Two sound intensity probes are
mounted in the close proximity of the tire. These move with the tire
and have a predefined fixed distance to the tire. One is mounted
approximately in the axis of the leading edge and one in the axis of the
trailing edge. [Ame16]
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2.1.1 Influence of Tire Parameters

The emitted sound is largely dependent on the tire itself. This is mainly due
to the fact that different acoustic generation mechanisms act simultaneously,
which can be amplified under different circumstances and tire parameters.
In common literature the tire nominal width, aspect ratio, rubber hardness,
tread pattern, rim diameter, tire diameter, and internal tire structure are in-
vestigated. Some literature on these is presented in the following paragraphs.
Generally, it is observed that the separation of the above-stated influences
is rather difficult since most of the parameters change interdependent. This
complicates the separation of singular aspects. [San02]

The tire nominal width is of special interest since in most markets a trend
of steady growth in width can be observed.

Sandberg et al. summarize literature from 1974 to 2001, and record an in-
crease of 0.2 dB(A) (10mm) " to 0.8 dB(A) (10mm) " width increase in SPL.
Hereby investigations on porous pavements show lower increase compared
to dense pavements. [San02] A different study of over 400 tires on a drum
test bench shows similar behavior on a smooth ISO surface. Tires are sorted
into groups according to their outer diameter and the SPL is averaged for
identical widths. The obtained averaged values increase by approximately
0.3dB (10mm)_1. The same consistency could not be replicated on a rougher
surface. [San02] Sandberg et al. put the overall expected increase in SPL to
approximately 0.4 dB ( 10mm)_1 but state that for tires above 200 mm the ab-
solute impact diminishes. [San02]

In 2011 research finds higher increases in SPL due to width increase for tires
in the range of 145 mm to 205 mm. 14 tires are categorized into three groups
based on their outer diameter. Averaging the increase inside of the groups
leads to 0.97 dB (IOmm)_1 and 0.92 dB (10mm)_1 for a rough asphalt surface
and an ISO 10844 surface for CB measurements. [Kum11]

These high values are supported by a finite element analysis of TRN conducted
in 2013. The approach consists of two sub-models, a tire pavement model and
a propagation model which are coupled by a fluid-structure interface. The
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simulation is validated against measurements at 50 km h~!, 70kmh~1, and
90kmh~!. The tire model width is increased in increments of 10 mm. This
results in an increase in SPL of 1.0 dB(A) (10mm)_1 in the range of 180 mm
to 200 mm and an increase of 0.2 dB(A) from 200 mm to 210 mm. The authors
assume that the width influence is negligible above 200 mm. [Yan13] This gen-
erally coincides with the previous suggestion that for wider tires, the width
effect declines. However, it is questionable if three steps in tire width in the
range of 180 mm to 200 mm in the finite element model are sufficient to cap-
ture overall trends. Similarly, it could be argued that only one more step to
210 mm is not sufficient to truly verify that the increase in SPL through width
increase gets smaller for wider tires. Furthermore, the incline of 1.0 dB(A)
seems rather large compared to previously presented research.

The increase in SPL with tire nominal width is argued to result from three
mechanisms. A stronger amplification through the horn effect, the necessity
for more air displacement and therefore higher aeroacoustic induced noise,
and a generally higher number of impacts of tread blocks during a fixed time
period. The horn effect describes the acoustic amplification caused by the
gradually increasing volume between the front or rear edge of the tire and
the road surface. [San02]

In case of the tire outer diameter Sandberg et al. do not record a consistent
correlation of SPL and diameter. This might be explained through opposing
trends of air displacement and vibration induced mechanisms. Effectively, the
angle between tire and pavement decreases for increased diameter. This might
lead to a stronger horn effect. Simultaneously, a decreased angle also results in
a more continuous deflection of the tread which is assumed to lower induced
vibrations. [San02]

A decrease in SPL with increasing diameter of 0.065 dB(A) mm™! is reported
in an earlier investigation for tires in the range of 121in to 13 in. [Ejs82] How-
ever, it should be stated that tires of these diameters are rather outdated, so
that it is questionable if the recorded trend also remains for greater diameters.

Regrouping the measurements according to the tire nominal width allows Ku-
mar et al. to conduct an investigation of the diameter impact. The tendencies
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for neither all groups nor both examined test tracks are consistent and the
authors can only assume a slight negative correlation between tire diameter
and SPL. [Kum11]

The aspect ratio puts the tire nominal width in relation to the tire sidewall
height and is therefore an important characterization for each tire. However,
no literature on the impact on the SPL is known to the author.

In regard to the inner construction of tires, one main aspect is the struc-
ture of the plies. However, since the 1980s radial ply tires dominate the mar-
kets [San02]. Analyzes comparing bias and radial ply are therefore no longer
important.

The impact of altering the belt stiffness, on the other hand, is still of interest.
First investigations on the belt stiffness are conducted by Ejsmont in 1982. The
investigation includes eight tires on an asphalt road as well as on a drum test
bench with a road replica and steel surface. Ranking tires across speeds rang-
ing from 60kmh~! to 120kmh~1, with steps of 20kmh~? for various road
surfaces, based on their A-weighted SPL, and subsequently averaging these
rankings, reveals a negative correlation between belt stiffness and SPL. [Ejs82]

Tests of nine different tires with up to four different variations in inner con-
struction show up to 1.5 dB difference on drum measurements on a road com-
parable surface at 80 kmh~! and 90kmh~!. [San02]

An effective yet simple way to gain some insight into the elastic properties
of a vulcanized rubber is the investigation of the shore hardness. The scale
ranges from zero indicating no stiffness to 100 representing a perfectly rigid
material. [Cha07] Measurement of shore hardness are defined in DIN EN ISO
868 [Deu03].

A series of drum measurements on an ISO surface at 70kmh™! show an in-
crease in A-weighted SPLs with increasing shore hardness. The study includes
three different tread patterns, one slick and two summer tires from which one
is considered much less noisy. These tires are produced once with 57 °Sh and
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once with 67 °Sh. Since the recorded increase in A-weighted SPL is not consis-
tent for each tread pattern, the authors assume that the increase positively cor-
relates with the aggressiveness of the pattern. Aggressive patterns are defined
as those with around 50 % block-to-groove ratio and many, wider grooves
which are not circumferentially oriented. [San02] A study with more tires, se-
lected from the open market, investigated the relation between shore hardness
and SPL for three different drum surfaces. The tires are grouped into summer
tires up to speed rating of 190 km h=!, summer tires between speed ratings of
190 kmh~! to 210 km h=!, summer tires with speed ratings above 210 km h~!,
and winter tires. In all cases except the summer tires with speed ratings above
210kmh~!, the correlation between shore hardness and A-weighted SPL is
positive, however the authors recommend leaving this group out due to its
low variability in shore values and simultaneously high variance in other tire
parameters. The correlation for different surfaces is similar. [San02]

During later research, the same authors reanalyze the data and put the
impact of the shore hardness in the range of 1.0dB(A) (10°Sh)_1 to
1.5 dB(A)(10°Sh)_1. The research also states that throughout the life-
time of a tire the shore hardness greatly increases. This is mainly due to high
temperatures, which cause the rubber to deteriorate. The authors therefore
point out a graphic from [Nor04] indicating that after 10 years the shore
hardness for winter tires increases by 12 °Sh to 13 °Sh. [San07]

A more recent study of three different tires on three different surfaces per-
forming CB measurements at 80 km h™! also finds an increase of up to 3 dB(A)
for changes from 50 °Sh to 70 °Sh. However, the author points out that values
as low as 50 °Sh generally do not satisfy other criteria, such as handling and
aquaplaning demanded by vehicle manufacturers for summer tires. [Sae08]

Bithlmann et al. investigate an approach to correct CPX measurements of Stan-
dard Reference Test Tires (SRTTs) defined by ISO/TS 11819-3:2017 (replaced
by ISO/TS 11819-3:2021 [Int21]) due to changes in the shore hardness of tires.
For this 247 shore hardness noise relations of previous literature are analyzed
from which 172 are defined as statistically relevant. This leads to a median
rubber hardness effect of 0.12dB °Sh™" for the SRTT defined for OBSI and
CPX measurements. Temperature dependencies of the shore hardness are also
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considered. [Biith18] This seems necessary since measurements in the range
of 5°C to 40°C of five SRTTs show a decline in hardness of 0.25°Sh°C ™"
[Weh18]. In an earlier investigation Bithlmann et al. record an increase of
0.05 °Sh per measurement day for SRTTs [Biith13].

Lee et al. investigate the change in tire surface acceleration while driving over
a cleat mounted on a drum test bench. They found that decreasing the hard-
ness of the rubber as well as the tread stiffness leads to lower vibration en-
ergy. [Lee08] However these observations are in the range of 20 Hz to 100 Hz
[Lee08] and therefore negligible for exterior noise.

The tire tread pattern seems to be the most obvious parameter that might
be furthermore very easily adapted. Looking at the tire tread pattern many
components should be considered.

The tire tread pattern is constructed out of many segments like blocks and
grooves [San02]. The distance between two identical points on a block and
its consecutive is called pitch and defines a length [Bri23]. Through variation
of the pitch, the profile is randomized around the circumference of the tire.
In close relation to the pitches, the offset is defined. It indicates an optimized
circumferential shift of segments on both shoulder sides of the tire. [San02]
The randomization of pitches is especially important for the subjective per-
ception of noise since a constant pitch leads to constant impact frequency of
blocks and therefore to a very narrow frequency band in the spectrum which
indicates tonal character. In these cases the resulting frequency can be ap-
proximated through

Uny/
fpitch = Lms . (21)
pitch

with fl. as frequency, vy as vehicle speed in ms~! and Lyiten s pitch in
meter. The randomization is said to be synchronous if the sequence of the
pitches remains the same for both tire sides and asynchronous if the sequence
changes. The asynchronous randomization generally allows for a more uni-
form mass and stiffness distribution. [San02]
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Similar to the occurrence of aquaplaning, a tire tread pattern that is not prop-
erly ventilated will result in a much noisier tire. Essentially, the aim is to
prevent air from being trapped between the rubber and the pavement, which
leads to pressure fluctuations and thus to noise. This is achieved by designing
the tread in such a way that all cavities are connected to the air surround-
ing the tire. Additional long grooves without ventilation should be avoided
to reduce pipe resonance. Alternatively, Sandberg et al. mention a method
developed by Bridgestone called Groove Fence, where a flexible rubber mem-
brane is added to the grooves to break pipe resonance for an overall decrease
of 1dB(A) at 50kmh~! in truck tires. [San02]

The impact of different tire tread patterns on the SPL was investigated in 1984
by Ejsmont et al. on a set of hand cut tires. Profiles are cut from nine 165 SR
13 slick tires, subsequently adding more characteristics after a measurement
series on a steel drum and a road replica surface. One series includes changes
of the transversal groove width from 2 mm, to 6 mm, to 9 mm, and to 12 mm.
This shows an increase in the SPL up to 9 mm and a decrease in the SPL for
groove width above 9mm. A spectral analysis discovers an influence in the
range of 1000 Hz to 4000 Hz. The highest observed changes are at around
1600 Hz independently of the vehicle speed. This increase could be explained
by the pipe resonance frequency of the grooves. It is speculated that the de-
crease in SPL above 9 mm is caused by lower pipe resonance excitation due
to less air pumping caused by better overall ventilation. This is supported by
adding circumferential grooves which result in a substantial drop at the pre-
vious resonance frequency of the pipe resonance. As second parameter, the
groove angles of 0°, 45°, 60°, 75°, and 90° are investigated. Circumferential
grooves are represented by 0° and transversal grooves by 90°. The measure-
ments show that changes from 90° to 75° lead to a decrease in the overall SPL
while further decreasing the angle only results in a less profound tread impact
frequency. Mirroring the diagonal grooves on the main plain of the tire does
not result in any changes of the SPL. It is also demonstrated that adding a sin-
gle circumferential groove for ventilation purposes to encapsulated grooves
leads to a reduction between 5dB to 8 dB in the SPL above 1000 Hz. In terms
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of the groove orientation, the SPL decreases by 8 dB at the tread impact fre-
quency if grooves are curved similarly to the trailing edge instead of the lead-
ing edge of the contact patch. Lastly, a decrease at frequencies above 4000 Hz
for an increasing block-to-groove ratio is reported. An impact on the overall
A-weighted SPL is not reported. [Ejs84] Considering the huge decrease in SPL
due to the addition of a circumferential groove it should be mentioned that
the reference tire in this case only had transversal grooves which are not ven-
tilated by the shoulders and therefore build air pockets. These are generally
considered noisy [San02].

As already stated by Ejsmont et al., these tendencies should not be taken for
granted since the chosen patterns are rather generic [Ejs84] and, frankly do
not represent realistic tire tread patterns, especially not for modern tires.

Furthermore, Schnieders analyzed the groove angle impact on the TRN for
truck tires on a drum test facility. For this, grooves of the angles 0°, 15°, 30°,
and 45° are carved in a semi slick truck tire. The author records a steady de-
crease in the SPL with increasing groove angle. He furthermore points out
that the amount of change in the SPL resulting from adapted groove angles
is also speed dependent. [Sch17] In contrast to Ejsmont et al. [Ejs84] this
research defines the groove angles of 0° as transversal and 90° as circumfer-
ential groove.

In 2008 Saemann investigated the impact of circumferential and transversal
voids. Two tires with identical tread patterns but different shore hardness
are adapted in their circumferential and transversal void. For both tires, a de-
creased void volume from 20 % to 10 % in both directions leads to substantially
lower recorded A-weighted SPLs for CB SPLs at 80 km h™!. In case of the tire
with 52 °Sh a decrease of 7.7 dB(A) and for the tire with 66 °Sh a decrease of
4.3dB(A) is recorded if only the transversal void is decreased. The decrease
from 20 % to 10 % circumferential void with constant 10 % transversal void for
the softer tire leads to 2.5 dB(A) decrease in SPL. The author mentioned that
this leads to a target conflict of aquaplaning and noise emission. [Sae08]

In the tire road noise reference book the authors also suggest that asymmetric
tires could allow optimizing the outer side to generate lower noise while the
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inward side is optimized for handling and braking characteristics. Especially
in tires which also include a predefined direction of rotation, grooves can also
be aligned in a manner to minimize sound excitation. [San02] However, this
might not be an optimal solution since under sharp cornering maneuvers es-
pecially the outer shoulder of tires is under load and therefore needs to be
optimized for handling and breaking.

Through various simulations conducted with the SPERoN software (see sec-
tion 2.2), Liljegren concludes that the overall pattern stiffness should be kept
constant and low to optimize noise emission. This is especially found in pat-
terns with offset and S-shapes. However simulations are only conducted for
90kmh~!. It is also found that offsets and randomization decrease the noise
levels as well as higher groove angles to make voids more aligned with the
tire’s main plane. A further decrease in the A-weighted SPL is also achieved
through designing transversal grooves thicker and shorter compared to nar-
row and long for constant voids. [Lil08]

In 2009, research includes additional resonators in the form of additional
grooves in transversal grooves to actively dampen pipe resonances. An
overall decrease for 80 kmh~! of 0.8 dB(A) is reported. [Fuj09]

More recent research linked the tire tread pattern noise recorded with OBSI to
tire tread pattern spectra extracted from laser scans of tires. This proves that
the recorded sound spectra after separating it from non-tread-pattern noise is
actually defined by the tread pattern. [Li16]

Another research analyzed the impact of the groove resonance frequency on
the A-weighted SPL by gluing acoustic foam in the grooves of a summer and
a winter tire. Measurements for different loads, speeds, and different surfaces
are conducted on a drum test bench. The delta between tire with and without
foam averaged over all varied speeds, loads, surfaces, and tires is recorded
as 1.7dB(A). The research also includes finite element models which are
constructed from a deformable tire model and an imprint of the tire contact
patch to simulate the tire groove resonance frequency and thus verify that
the recorded delta in the SPL is in fact a result of the suppressed groove res-
onance. [Pin20]
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Lastly an impact of tire wear and with it tire profile depth on noise emission
is in place. Sandberg et al. summarize multiple studies that indicate an in-
crease of SPL with increased wear and therefore lower profile depth. [San02]
In contrast to that, a reduced SPL of 1dB to 2 dB for a profile depth change
from 8 mm to 2mm through wear is recorded. [Ho13, cited from Sandberg
U, Glaeser K. Effect of tire wear on noise emission and rolling resistance. In:
Proceedings of inter-noise 2008. Shanghai, China, 26-29 October 2008.]

2.1.2 Influence of Operational and Environmental
Conditions

The most important feature for the TRN is the vehicle speed. Generally, the
correlation between speed and the SPL can be described as

v

L, =a+blog

(2.2)
Uref

where: a,b Tire specific coefficients in dB
v Vehicle speed in kmh~!
Ut Reference speed in kmh=!

[on the basis of Nil76, San02]. Furthermore a strong linear relation between
the coefficients a and b exists [San02]. The speed relationship had been
proven through various literature for different surfaces as well as different
measurement methods including the CB, CPX, drum, and SPB. This includes
1700 tire-surface combinations measured at the Technical University of
Gdansk with the drum method and a total of four different surfaces. For
these measurements a ranges from 4.3 dB to 58.7 dB with an average value
of 30.6dB and b ranges from 22.4dB to 50.7 dB with an average value of
34.6dB for an ISO surface when the vehicle speed v is normalized by U,
as 1kmh™!. [San02]

Another important factor for the TRN is the tire load. However, the effect of
tire load is not completely consistent throughout literature.
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Ejsmont reports an increase of 0.8 dB(A) to 1.5dB(A) per doubling of load
if the inflation pressure is not adjusted. An adjustment of the inflation pres-
sure leads to an increase of 0.5 dB(A) to 1.0 dB(A) if the adjustments ensures
doubling of the surface pressure. These values are reported for two tires (both
13 in, one with and one without tread pattern) measured on a drum test bench.
The author also states that for more aggressive profile patterns, higher in-
creases in SPL are possible in low pressure, high load scenarios. [Ejs82]

Sandberg et al. refer to an earlier investigation that found an increase of
2.4dB(A) for a load increase from 1668 N to 3335N. This results from
measurements including more than 100 tires [San02, cited from Koéllmann
A., Ermittlung des Standes der Technik der Gerduschemissionen von PKW-
Reifen, Research Report 105 05 144, FIGE GmbH, Herzogenrath, Germany,
1993]. Finally, Sandberg et al. conclude that in general the SPL increases
with increasing load. However, the actual amount depends on the tire itself
as well as other parameters as e.g. the vehicle speed. It is assumed that
the increase in SPL does not exceed 2.5 dB(A) for passenger car tires in the
range of 50kmh™! to 80kmh™! if the load is risen from 50 % to 100 % of
the rated maximum load. [San02]

More recent research tries to investigate the SPL for different tire road pair-
ings with a multilevel Bayesian regression. For this, measurements of three
different tires are performed according to the CPX trailer method. The SPLs as
well as vehicle speed, tire type, pavement type, and trailer weight are used as
input for the ML model. This shows an increase in the SPL for increased load
in three steps of 100 kg from 300 kg to 500kg. The Bayesian model defines
the mean impact as 0.026 dB(A) kg_l. [Che21]

A previous publication of the author of this thesis investigated the load impact
on CB measurements. For that, an identical tire is mounted on three different
vehicles which differ 1020 N and 4650 N in weight. The vehicles are loaded
with stone granulate to approximate axle loads of each of the other vehicles.
During this process, no relevant change in the SPL due to vehicle or load
adaptations for CB measurements in the range of 40kmh~! to 90kmh~! is
recorded. [Leu22]
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Another tire feature which is important for the acoustic emission of a tire is
the tire contact patch. This includes the dimensions width, length, as well as
shape and the thus resulting surface pressure. The literature presented here is
not in each case connected to the TRN. However, since this dissertation also
approximates the contact patch of different tires, the presented literature is
within the scope of this research.

To analyze the impact of the contact patch, Polasik et al. increase the tire
inflation pressure in steps of 0.5bar between 0.5bar and 3.0bar and the
tire load in steps of 50 kg between 50 kg and 500kg. Surface measurements
are performed for three different summer tires (165/80R14, 195/65R15, and
205/55R16). These show an overall trend of the contact area getting larger for
higher load when the inflation pressure is kept constant. Also, the contact
area decreases with increasing inflation pressure for constant tire load. Values
at 2.0 bar especially show a linear relationship between tire load and contact
area. The authors furthermore point out that at 2.0 bar and loads from 200 kg
to 300 kg the contact area is unaffected by the tire itself. This might result
from the correlating tire width and height. [Pol17]

Ekinci et al. confirm the trend of a growing contact area for larger loads and
a smaller contact area for higher inflation pressure. The authors also show a
linear relation between the contact area and the tire deflection and prove that
the deflection is almost independent of the tire speed. [Eki15]

Sharma et al. furthermore mention the tire dimensions, carcass stiffness, and
tread pattern design as important for the contact area. They also give an over-
view of analytical approaches to calculate the contact patches based on prior
assumptions. [Sha96]

Riehm et al. present another method of estimating the contact area in 2019.
This method is based on determining a deflection of the tire caused by load
as a function of the footprint length and unloaded tire radius. The footprint
length is approximated through a linear regression model, fitted with mea-
surements. Combining the deflection equation with an equation representing
the curvature over the tire width allows for calculation of a contact patch
outline. [Rie19]
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Other research investigates the effective contact area with a fast drying super
emulsion ink on seven different tires of the size 155/70R12, five loads, and four
inflation pressures. The effective contact area is the actual rubber surface that
is in contact with the road. It therefore combines the outer silhouette of the
contact area with the design of the tread pattern. From these measurements a
regression model is built to calculate the effective contact area for an arbitrary
load. The authors report a reduction of 17 % in the effective contact area for
an increase in inflation pressure from approximately 1.4 bar to 2.1 bar and an
area increase of 42 % for a load increase from 2kN to 3kN. The regression
model shows that the data variance is explained to 51 % by the load, 37 %
by the tire, and only 9 % by the inflation pressure. The authors assume the
linear regression model to be sufficiently accurate to capture the relationship
between effective contact area, tire load, and inflation pressure. [Mun14]
The reported impact of the tire on the contact area contradicts other presented
literature stating that the tire itself has no noticeable influence on the contact
area. However, in these publications it is not specified whether the effective
contact area or the contact area is investigated.

Other research from Marshek et al. find similar values for the gross contact
area for a mix of eight truck tires (bias ply and radial). They record a 30 %
to 35 % increase in gross contact area for a 50 % increase in axle load and a
decrease of 8% to 20 % in gross contact area for a 50 % increase in inflation
pressure. Changes in gross contact area for bias ply tires compared to radial
tires caused by inflation pressure and load are similar, yet radial tires form
overall smaller contact areas. [Mar85]

The size of the footprint can also impact the spectral representation of sound
emission. This mainly results from the groove resonance effect in which stand-
ing waves occur in grooves which are open at one or both sides. The frequency
of these waves is defined by the length of the grooves which in turn is influ-
enced by the shape of the contact area. [Ulf04]

The impact of the inflation pressure on the contact area of the tire was al-
ready described. Other than the implicit impact on the emitted sound through
the contact area, the inflation pressure was investigated in some literature on
its direct impact on SPLs.
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Iwao et al. report an increasing averaged SPL in dB(A) through applying
torque from approximately —150 N m to 500 N m on the tires. [Iwa96] With
380 N'm approximately equal to 1.5ms~2 and 620N m equal to 2.5ms™2,
with the torque applied on each tire of a passenger car [San02]. The increase
through torque is higher for an inflation pressure of 3 bar compared to 1 bar
for a 195/60R14 tire under investigation. [Iwa96]

Another study on the effect of the inflation pressure on the recorded SPL does
not show consistent behavior regarding its impact on the TRN. For this, three
tires of size 135/70R13 are tested at the Technical University of Gdansk on two
different surfaces mounted on a drum. Spectral investigations do not show
clear correlations for specific frequencies. Only between 1250 Hz to 2500 Hz
higher inflation pressures result in higher SPLs, however this behavior is only
reported for one of three tires on an ISO surface. [San02]

The temperature has a strong impact on the recorded SPLs. This is not only
explained by the change in shore hardness. Most literature separates three
different temperatures: Air temperature, road temperature, and tire temper-
ature [San02].

Research including ten different road surfaces for an overall of 200 SPB mea-
surements found a positive correlation between the road and air temperature
and constructed a linear regression model with a Coefficient of Determina-
tion (CoD) of 0.83. The measured road temperature deviates around +5°C
from the estimated road temperature for a given air temperature. The mea-
surements show that higher air temperatures lead to even higher road tem-
peratures and vice versa. [And06]

Anfosso-Lédée et al. perform CPB measurements on a specific test track to
investigate the impact of road, air, and tire temperature. The tire temperature
is thereby the average of two measurements with a thermo-contact sensor in
a groove and on a block. These measurements are performed before and after
eight consecutive SPL measurements in the range of 70kmh~! to 110 km h~!.
Before starting the measurements the tires are heated up by driving for 15 min
to 20 min. The investigated SPL is constructed similarly to eq. (2.7) but with
a reference speed of 90 kmh~!. Two SRTTs are measured on seven different
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road surfaces at four different days in between spring 2000 and winter 2001.
The measurements show a linear relation between the temperatures

Troaa = 1.7 Ty, — 4.5°C; Tiire = 1.05 T, — 15.8°C (2.3)

and a CoD of 0.94 for both regressions if all road types are included.
The relation between the SPL and the air temperature is calculated to
—0.10dB(A) °C™! for dense bituminous and —0.06 dB(A) °oc™! for porous
bituminous pavements at 90 km h™!. The research also discovers differences
in the temperature dependencies of different 1/3 octave bands between
100Hz to 5000Hz. Temperature dependency merely exists below 500 Hz
and above 1600 Hz. The authors believe that the temperature importance
at higher frequencies results from changes in adhesion. Altogether, these
temperature dependencies indicate that it is more plausible to speculate
that the temperature changes impact the importance of different generation
mechanisms and not the propagation mechanisms. [Anf07]

Bendtsen et al. states that the temperature effect on the SPL highly depends
on the tire itself as well as the pavement type. In case of OBSI measurements
on SRTT Bendtsen et al. report —0.027 dB °C™" for air temperature correction
and —0.018dB°C™" for pavement temperature correction averaged for two
different pavement types. They also speculate that the effect of different pave-
ments cancels out if enough tires are included in the measurements. [Ben09]

Bihlmann et al. investigate the temperature impact during CPX measure-
ments. Two tires (truck and SRTT) are tested on 39 road surfaces at the speeds
50kmh~! and 80 kmh~!. Linear relations between the overall SPL and differ-
ent temperatures are analyzed. The average CoD is between 0.86 to 0.87 for
air temperature measured at 15 cm, 35 cm, 150 cm above the surface, surface
temperature, and tire temperature. The linear correlations of the different
temperatures with the SPL are similar. Also all temperatures show high lin-
ear correlation with the air temperature measured at 150 cm. This leads the
authors to recommend using the air temperature measured at 150 cm above
the surface for correction since it is the least sensitive to solar radiation. In
contrast to other presented research, a temperature effect was also found in
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the mid frequency range from 800 Hz to 1250 Hz. As overall average correc-
tion slopes of the SRTT, —0.10 dB(A) °C™! for dense, —0.08 dB(A) °c™! for
concrete, and —0.05 dB(A) °c™! for porous pavements are recorded. [Bith11]

In a review which combines 17 earlier published studies, Bithlmann et al. pro-
pose different temperature correction parameters for different pavement cat-
egories. All studies are selected due to their standard error of the temperature
slope and CoD of the regression. Studies that reported only the road temper-
ature are converted to air temperature through conversion factors. The 17 re-
viewed studies include CPX, OBSI, CPB, SPB, and L; Aq Measurements, speeds
from 50kmh~! to 140kmh~!, car and truck tires, with the majority being
car tires. The review concludes grouping the pavements into dense, cement

-1 1

concrete, and porous pavements with —0.10dB(A)°C™ ", —0.07 dB(A)°C ",

and —0.05dB(A)°C~" for temperature slopes. [Biith14]

It can be concluded, that the overall observation in literature is to correct the
SPL according to the temperature with higher temperature leading to lower
SPL.

This probably leads to a temperature correction allowed during tire measure-
ments according to UNECE regulation no. 117 [UNE22] with

LR(Tref) = LR(Troad) + KNorm(Tref - Troad) (2-4)

where: T, Reference temperature of 20 °C
T.aa  Road surface temperature in °C
K. orm Regression coefficient
Lg TRN reference sound level in dB(A)

and

c _(-003dB() °C™l T > Tet

= _ 2.5
o T _0.06dB(A)°CT" i Ty < Tret (@3)
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The Ly value is the calculated reference sound for multiple measurements
calculated trough

- 1
MRS
Vi
Ui | log (2.8)
boe Uref, norm
-1 &
U= — U; 2.9
ng e i, log ( )
n _ -
Zi:Rl(Ui, log — U)(Li - L)
ﬁR = Y —2 (210)
Zi:l(vi, log = U)
where: L; SPL of measurement i
Lp TRN reference sound level in dB(A)
L Mean of L; of np measurements
v; Speed of measurement i
Ui log Logarithmic speed of measurement i with regards to v,¢
Uref nom  Reference speed used in Regulation No. 117
v Mean of v; 1, of ng measurements

and Upef norm as 80kmh™!. [UNE22]

However, in a previous study it could be found that a logarithmic approach
might fit the temperature gradient better than the unsteady slope adaptation
of two straight lines [Leu22]. A recent Working Party on noise and Tyres
[UNE23b] also considers changing the temperature correction to a logarith-
mic curve [UNE23a].

A recent investigation considers the temperature impact for urban measure-
ments. The Ly, according to IEC 61672-1 [Int13] is calculated for a defined
time period in Madrid traffic in which the traffic flow could be considered
stable. The microphones are placed at 4m to 6 m above ground in the
perimeter of traffic lanes. For 21 different measurement locations, ranges
from —0.04dB°C~" to —0.13dB°C™" with CoD ranging from 0.04 to 0.42
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are found. The Lg,, are calculated for hourly intervals, with 1236 to 1539
available intervals for different measurement locations. [Bar22]

2.2 Literature Review Tire Noise Statistic
Models

Due to the high complexity of the TRN, many approaches to estimate the
TRN are considered in research. These include finite element simulations and
statistical models. Some models also actively take a step back from the total
SPL and focus on frequency levels which allows for an investigation of single
acoustical phenomena. Some of these approaches are presented below.

Kim et al. investigate an approach to predict the air-pumping noise for rolling
tires. They model the acoustical source by what they call a piston/sliding-
door/cavity geometry. In essence, this represents a transversal groove which
is continuously closed and opened by sliding a flat surface over it while com-
pressing and expanding the air inside the groove through moving its bottom.
The flow properties are obtained from a Navier-Stokes finite volume simula-
tion for the piston cavity. These properties are propagated to a larger CFD
simulation to compute the flow field in the near field of the tire. Through a
Kirchhoff integral, far field SPLs are simulated. [Kim06]

A hybrid approach, which combines statistics and physical models is the
SPERON (Statistical Physical Explanation of Rolling Noise) model. The model
calculates 1/3 octave levels for CB measurements. As input, road and tire
properties as well as a 3D geometry are necessary. The calculation relies
on splitting the overall sound excitation into four subparts: Mechanical
induced vibration, airflow within the contact patch, interior cavity noise
of the tire, and aerodynamic noise induced by the air flow around the car
body. Thus assuming incoherent processes, allowing linear superposition
of intensities. Each of the subparts is modeled as physical equation with
regression coefficients. The regression coefficients are estimated on the basis
of the Sperenberg project data. [Bec08] The model is validated for one tire
and eight surfaces, the difference in overall A-weighted SPL is recorded as
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1dB(A) on average and 2.5dB(A) as maximum value [Kle08]. A deviation
over the measured distance is not recorded. The focus of SPERoN lies on
optimizing the road surface [Bec08]. The model allows for predictions in
the range of 315Hz to 2000 Hz and from 50kmh~! to 120kmh~!. To cal-
culate the vibration excitation of the tire, the model relies on calculating its
contact forces through a plane of uncoupled springs (Winkler bedding) and
an orthotropic plate as coupled tire module. These demand tire properties
that can be obtained from vibroacoustical measurements. [Bec12] Forssén
et al. use the SPERoN model as basis for an auralization model of pass-by
simulations. The method combines it with an adapted version of the earlier
developed auralization approach for pass-by measurements which is a result
of the LISTEN: Auralization of Urban Soundscapes project. [For18]

In 2017 Li et al. predict the tread pattern related noise with an Artificial Neural
Network (ANN). For this, 23 tires with similar size and aspect ratio are mea-
sured with the OBSI method. The ANN receives two different types of spectra
as input for each tire. A coherent tread pattern spectrum and an air volume
velocity spectrum of the contact patch. These are both extracted from 3D tire
tread patterns obtained through laser scanning the tires. The coherent tread
pattern spectrum is obtained through averaging the complex Fourier coefli-
cients of each circumferential line on the tire, before calculating the power
spectrum. The air volume velocity spectrum is obtained by moving a rectan-
gle representing the contact patch over the 3D tire. From the 3D model, the
air volume in the grooves for each position of the rectangle can be calculated.
Deriving this signal by the time leads to a volume velocity signal which can be
Fourier transformed to calculate the air volume velocity spectrum. The maxi-
mum recorded difference in the tread pattern noise is recorded as 17.2 dB(A).
The authors separate the entire SPL into two parts, the noise related to the
tread pattern and the non-tread pattern related noise through an order anal-
ysis. The tread pattern related noise is described through the coherent tread
pattern spectrum and the air velocity spectrum. The ANN reaches an average
error of 2.1 dB and 3.5 dB for test and validation sets. [Li17]

Other research investigates an image based approach to predict the air pump-
ing noise. The essence of the algorithm is to track air gaps that enter and exit
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the contact patch. This allows for a calculation of the change in air volume in
the contact patch. In combination with an assumed tread deformation due to
the load, this allows the modeling of a monopole sound source under free-field
conditions. The algorithm is then used to investigate the impact of transversal
groove length, width, angle, contact patch length, offset, and vehicle speed on
the SPL. [Oor17]

Chen et al. design a multilevel Bayesian analysis on the basis of trailer mea-
surements according to the CPX norm. During the measurements, the trailer
weight, vehicle speed, tires, and road surface are changed. These include three
different tires and 38 different road sections which can be subdivided in five
categories. The multilevel Bayesian model includes parameters to describe
the road surface in more detail, in case of the tires this is not the case. These
measurements and the model are focused on analyzing impact factors on the
noise contribution with main investigations in the area of different pavements.
[Che21].

Lee et al. predict the TRN with an ANN and a Convolutional Neural Network
(CNN). The networks are based on drum test bench measurements of 28 tires
at 80 km h~! with three microphones at a radius of 1 m from the center of the
tire. The microphones are all located in the plane spanned by the direction of
travel and the tire’s axis of rotation. Four of the 28 tires have the dimension
215/60R16, 24 have the dimension 245/45R18, yet they differ greatly in their
tread patterns. The ANN receives the coherent tread profile spectrum as well
as the contact patch air volume velocity spectrum after sampling both down
to order spectra and applying Gaussian curve fitting. The spectra are calcu-
lated on the basis of laser scans of the tires, the ANN predicts the tread pattern
noise spectra for 101 orders. In case of the CNN tread pattern images are com-
pressed with 2D wavelet transformation. These are then passed through the
CNN to predict the same 101 orders as in the ANN investigation. Four specific
tires are left out of the training set for testing. For model evaluation CoDs be-
tween target and predicted values of 0.745 for the ANN and 0.89 for the CNN
are reported. [Lee21]

However, no test error in terms of SPL as e.g. Root Mean Squared Error
(RMSE) is reported.
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A more detailed research on different ML algorithms to predict the TRN is
presented in 2022. CB measurements are performed in the range of 70 km h~!
to 90kmh~! to fit these to the tire noise label calculated for 80 kmh~! for
23 tires. The authors investigate four different model types: support vector
machine, relevance vector machine, ANN, and CNN. All models but the CNN
receive the tire load index, tire speed index, tire nominal width, aspect ratio,
rim diameter, vehicle speed, frequency corresponding to the SPL to predict,
tread impact spectra, and air pumping spectra. In case of the CNN the last
two are replaced by a tread pattern image and the groove depths. The output
of the models is the SPL at the frequency used as input. Through this, the
range of 250 Hz to 2500 Hz is covered. The performance of each model is
estimated with k-fold cross-validation leading to RMSE values of the total
SPL of 1.21 dB(A), 0.83 dB(A), 1.48 dB(A), and 1.19 dB(A) for the test losses
of above-mentioned models. [Moh22]

Rapino et al. predict the 1/3 octave sound intensity levels by training an
ANN on data of 83 tires measured at a drum test bench with sandpaper in
a semi-anechoic chamber. The measurements are performed at the speeds
of 50kmh~!, 80kmh~1, and 110kmh~! and SPLs are recorded by six mi-
crophones placed in a semicircle with radius 1.5m around the tire. The
microphones are all located in the plane spanned by the direction of travel
and the tire’s axis of rotation. 24 parameters are used as input for the network.
These are the operation parameters: RPM of the tire and inflation pressure;
Footprint parameters: Width, length, and roundness of the footprint; Tire
structure parameters: Width, external radius, and rubber hardness; Tread
pattern characteristics: 1/3 octave levels in the range of 200 Hz to 4000 Hz.
[Rap23] The last parameter is similar to the process described by [Li17].
Three different speeds are used as training samples for each tire. This leads
to 249 data points. The ANN structure can be considered small with only
one hidden layer with fourteen neurons. A sigmoid is uses as activation
function. The data are split in training, validation, and test data set by 70 %,
15%, and 15 % respectively. The validation data are used for stopping the
training early to decrease overfitting. The test loss is recorded as 2.3 dB(A),
the output values are fourteen 1/3 octave bands sound intensity values in the
frequency range of 200 Hz to 4000 Hz. [Rap23]
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A more comprehensive review which also considers earlier research on TRN
models can be found in [Li18b].

2.3 Statistical Parameters

This section provides an introduction to statistical parameters used in the pre-
sented research.

Root Mean Squared Error (RMSE)

The RMSE is often used as evaluation criteria for model performance. For
discrete functions it can be calculated through

n
13 pred £ 2
RMSE = = z;) (yi — e ) (2.11)
=
where: y?red Predicted value for sample i
yf Reference value for sample i
ng Number of samples

In models with multiple outputs, this can also include vectors. In these cases
often the mean of the RMSE of the output variables is reported as RMSE. In
the present dissertation, the RMSE is always calculated for vectors without
averaging over the amount of vector dimensions.

Coefficient of Determination (CoD)

Another method to determine how well a model represents the data is the CoD
also referred to as R2. The value space ranges from 0, indicating no relation,
to 1, indicating perfect data fit. It is calculated through
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where: R? Coefficient of Determination

yfred Predicted value for sample i

Y Reference value for sample i

—pred

%" Mean output value for all samples
ng Number of samples
€ Residual

More graphically, the CoD can be interpreted as the proportion of the variance
in output data that is explained by the model. However, models should not be
chosen solely on their CoD. This is due to the fact, that lim;_,,_ R? = 1 with j
representing the number of features. Which indicated that the CoD increases
through ever-growing model complexity.

Variance and Standard Deviation
The variance is defined through
ng

o2 = —— > (5~ o) (213)

i=1

Variance

ng  Number of samples
X; Data point

Y Arithmetic mean

where: o

The Standard Deviation (STD) is defined as o. It indicates how much the data
differs on average from the mean value and therefore is an important mea-
surement for the overall data spread [Boy18].
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Variance Inflation Factor

The Variance Inflation Factor (VIF) is a statistic parameter to estimate if mul-
ticollinearity of input features is in place. It is calculated through

(2.14)

with RJZ- as the CoD that is obtained for feature j predicted with all remaining
features. A value of 1 for the VIF indicates no correlation. [Mon12]

Even though the VIF gives an intuitive understanding of the proportions of
variance in the data, the threshold which is considered to indicate severe mul-
ticollinearity is not clearly defined. O’brien combines literature which mostly
indicate that the VIF should not exceed 10, however some literature refers to
4 as critical. Altogether, O’brien makes a case that the VIF should always be
considered in the context of the specific problem since factors such as e.g.,
the amount of samples also impact the variance and with it the VIF. [Obr07]
Others identify values between 5 and 10 as possibly problematic and values
above 10 as problematic [Aki15].

2.4 Machine Learning

Machine Learning (ML) is a subset of methods belonging to the broader spec-
trum of Artificial Intelligence (AI). It can be thought of as computational meth-
ods that learn from previous data to improve their accuracy or performance.
The use case of these methods has almost no limit. [Moh18] One common
problem in ML is the model selection. Data are separated into training, test,
and sometimes validation set. The model is trained exclusively on the training
data while the model performance and thus the generalization ability of the
model is calculated on the test and validation data. Fig. 2.1 illustrates the thus
occurring dilemma. Models of high complexity tend to memorize the data
which can lead to bad generalization while too low complexity might not be
able to reconstruct the true complexity of the problem. The issue of model
overfitting is more widely discussed by Hawkins [Haw04].
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Train Test

Optimal Model

Underfitting Overfitting

Loss

Model Complexity

Figure 2.1: Visualization of underfitting versus overfitting dilemma.
Overfitting can occur in all models presented in the following, which is why of-
ten ML engineers work together with experts in the relevant subject to quickly
build models of representative complexity.

2.4.1 Multiple Linear Regression

The multiple linear regression combines a multitude of features to a predic-
tion via

k
y=Bo+ ). Bix+e (2.15)
i=1

y  Predicted value

Xx  Feature (regressor/predictor variable)
B Regression coefficients

€ Residual

The number of features is not limited and can also include combinations of fea-

tures to represent dependencies. Furthermore, the linear regression only de-
mands linearity in the regression coefficients, not in the regressors. [Mon12]
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An estimation of the regression coefficients can be calculated analytically with
the ordinary least-squares estimation. This method is based on the minimiza-
tion of

ef=cle=y-XPy-Xp) . (2.16)
1

n
i=

This leads to the regression parameters of § = (X' X)X y.

Another approach to estimate the regression coeflicients is the Least Absolute
Shrinkage and Selection Operation (lasso) [Tib96, Xu08] method. The method
is also based on eq. (2.15). However, some regression coefficients are shrunk
and some even suppressed to be zero so that the solution is no longer ana-
lytically defined but the minimization problem shown in eq. (2.17). This is
considered to lead to higher prediction accuracy since it tackles the problems
with the original least-square of high variance with low bias. [Tib96]

n

min =3 (vi - BTx)" + 2 |18l (2.17)

1

with 4 as regularization parameter. Due to its characteristic of building a
sparse (3, lasso regression can also be thought of as feature selection method
[Zho21]. This property also leads to easier model interpretation than the or-
dinary least-square method [Tib96].

2.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by the way the human brain
functions [Abr05, Kro08]. The first ANN was built by Rosenblatt in 1957 with
only one layer of neurons. This is referred to as perceptron [Fra57]. An artifi-
cial neuron, as shown in fig. 2.2a, receives multiple inputs and combines them
linearly with a weight assigned to each of these inputs. The bias term is an
additional predefined offset that is added to the neuron independently from
the received other input values. Function f; is referred to as activation func-
tion. As indicated by the arrow in fig. 2.2b, a standard feed-forward ANN has

29



2 Basics

a strict direction for the flow of information. Other network structures might
also include information flowing backwards (as e.g., described in [Med01]) .
For networks with an arbitrary amount of hidden layers and neurons, it was
shown that with the use of unbounded activation functions, ANNs can be used
to approximate every possible function [Son17].

Training the network can be done through different approaches. In this dis-
sertation, all training is conducted as supervised learning. This implies that
labeled data are applicable and the model receives inputs with correlated la-
bels for the training. For an overview of different learning scenarios refer
to [Moh18].

Bias (b)

Input Layer Hidden layers Output Layer
X1 l
X2
N
Ja (Z,-Zl w;x; + b)
Rt
XN
(a) Principle sketch of a single artificial (b) Principle sketch of a feed-forward ANN
neuron

Figure 2.2: Principle sketch of basis element in ANN and standard feed-forward ANN.

Training the model can be done by backpropagation in which the gradient of
each weight and bias with respect to the cost function is calculated. These
are then updated as

Wi = Wit + awpt Iy = bt +Abl! (2.18)
with Wyj; as weight matrix where i and j indicate the number of inputs and
the corresponding neuron in the specified layer I. n indicates the number of

steps already taken in training. Equivalently blnj indicates the bias of neuron
j in layer L.
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Generally, the necessary AWl'i’j_l to update the weights can be constructed dif-
ferently and poses an optimization problem in itself. In the most simple form
of the gradient descent it is constructed from the partial derivatives of the
ANN

ac ac
-1 _ -1 _
AWl’l-lj = _’7an@¢1 Abl”j = _"abl".—l (2.19)
ij J

where 7) is the learning rate and C the cost function which indicates the perfor-
mance of the network. The so far described learning algorithm is referred to
as gradient descent. Often, an additional term is added to the weight update

ocC

_ _ _ oC _
AW = _UW-l_O{Aerilj oAbt = _UW‘*‘“M’{; 2 (2.20)

lij lj

with o as momentum which influences the current weight and bias update
in dependence of updates in earlier iterations. This can be especially useful
to shorten calculation time and decrease the probability of getting stuck in
a local minimum. The backpropagation essentially calculates partial deriva-
tives of the cost function with respect to each weight and bias through the
chain rule. Some algorithms include an additional coefficient for the opti-
mization step, the weight decay. This in essence describes a way to avoid
large weights by adapting the loss function through e.g. the L2-Norm of the
weights [Kro91, Smi18].

The learning rate, the momentum, and the weight decay are so called hyper-
parameters. These describe parameters that control the learning process and
describe the network architecture [Moh18]. As earlier mentioned, the ANN
also makes use of activation functions. These are non-linear functions. Oth-
erwise, the ANN would not be able to learn non-linear dependencies since it
would simply build a highly complex multiple linear model. In this disserta-
tion, the activation functions displayed in fig. 2.3 are used. However, generally
each non-linear function might be applicable [Sha17].
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—— ReLU

4.5

f(x) 15

Leaky ReLU

-1.5

Figure 2.3: Overview of activation functions used in this dissertation.

The functions are mathematically defined as

ReLU :  f(x) = {

Sigmoid :

Tanh :

ELU :

Leaky RelLU :

f(x) = tanh(x)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

with o = 0.1 in fig. 2.3. Training models is typically performed iteratively in
epochs. One epoch indicates that the model has seen the whole training set
once. Furthermore, training is performed online or in batches. In online learn-
ing, after each random sample, an optimization step in weights is taken. For
Gradient Descent, this refers to Stochastic Gradient Descent. In batch training,
the gradients are calculated for the whole batch of the training data, for Gra-

dient Descent this refers to Batch Gradient Descent. A compromise between

32



2.4 Machine Learning

these both approached is reached for mini-batches where the whole data is re-
organized in mini-batches of defined size and a step of the optimizer is taken
based on each processed mini-batch. In the case of Gradient Descent opti-
mization this refers to Mini-Batch Gradient Descent (MBGD). As necessary
gradients and loss values, the average of the batch is used. [Abr05, Ian16]

The terms online and stochastic are sometimes used interchangeably, how-
ever online is more commonly used if the data is continually created during
the training process. It can be said that larger mini-batches lead to more ac-
curate estimations of the gradients during training, however using the whole
data as batch also demands much more hardware resources. [lan16] Other
literature argues, that online training leads to faster convergence due to mul-
tiple steps being taken in each epoch and the advantage of this since it allows
for curved gradients in the data set compared to straight gradients in batch
learning. [Wil03]

As cost function, which is necessary for training, arbitrary functions can be
defined. A common function for regression tasks is the Mean Squared Error
(MSE) or the Mean Absolute Error. Through the squared error, MSE punishes
outliers more strongly than the Mean Absolute Error.

Even though ANNs can approximate any function, they are not suitable for
all problems. This applies in particular to image processing and pattern recog-
nition. Standard ANNs are fully connected. This combined with the thought
of processing every single pixel of an image as input node, leads to compu-
tationally inefficient networks. [OSh15] This issue is overcome with CNNs
presented in the following section.

2.4.3 Convolutional Neural Networks

The general structure of CNNs is rather similar to that of ANNs. However,
not all layers are fully connected. [OSh15] In contrast to standard ANNs no
feature extraction needs to be performed. CNNs can find them themselves. It
is thereby based on human vision [Hub62].

Standard CNNs consist out of three types of layers:
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« Convolutional layers
« Pooling layer
« Fully connected layers

The convolution layer receives a matrix and applies a mathematical convolu-
tion on the matrix. This is represented by sliding a so called kernel over the
image. Fig. 2.4 demonstrates the process with corresponding output. The ker-
nel is a learnable entity so that the model learns itself how to convolve the
input for the best data representation. The shape of the kernel is generally
predefined as model hyperparameter.
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Figure 2.4: Principle sketch of a 2D convolution with 2x2 kernel on 5x5 input data. Different
colored areas in input data display the interaction of the kernel, input data, and the
identically colored output.

CNNs can be used for any data type but they are especially suitable for pat-
tern recognition. In this dissertation, they are used for image processing, this
is why following explanations also refer to an image input. Like the convolu-
tional layer, the pooling layer is based on a kernel that slides over the input
data. The essence of pooling layers is to reduce the dimension of the input by
combining multiple pixels into one, as indicated in fig. 2.5 for average pooling
or max pooling. Both, the convolution as well as the pooling layer, demand
additional parameters: stride and padding. Stride defines how many input
data points the kernel slides over for each step. Padding is necessary to spec-
ify how to process the edges of the data. As illustrated in fig. 2.4, the 5x5
input dimension processed with a 2x2 kernel and no padding leads to a reduc-
tion of the output dimension to 4x4. This is a result of the necessity for the
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kernel to be fully within the range of the input data dimension. To also con-
volve the border areas of the input, padding can be applied, which essentially
enlarges the input dimension. For example, the common zero-padding of one
enlarges the 5x5 data to 7x7 with the additional values all being zero. It should
be mentioned that the kernels do not have to process directly connected pix-
els. Through the concept of dilation, kernels can cover larger spatial areas
than their own size and for example only process every second pixel. Via
deformable convolution, it is furthermore possible to enable the network to
train its own sampling location in kernels [Jif17].
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Figure 2.5: Principle sketch of average (avg) and maximum (max) pooling with 2x2 kernel, indi-
cated in blue, on 4x4 input data without padding.

The fully connected layers have the same tasks as in ANNs. They map the
flattened activation maps to actual labels.

All the above-mentioned layers can be applied on 1D, 2D, and 3D data. The
input of a CNN is defined through height, width, and depth. The depth can
be thought of as channels in images. [OSh15]

The whole CNN is constructed through multiple layers in sequence. An exam-
ple of how the spatial dimensions for an image input could look like is shown
in fig. 2.6. The figure especially illustrates the common approach of increas-
ing the number of channels in each convolution. This is seen in the increasing
width of the spatial data. In processing terms this results from multiple ker-
nels that process the same spatial area. A stack of kernels is referred to as
filter. Activation functions as presented in section 2.4.2 are also included in
CNNs. The representation achieved after each layer is referred to as activa-
tion or feature maps. In CNNs not each neuron is connected to all neurons in
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the preceding layers. They rather correspond to a fixed area which is called
the receptive field. Also, kernels are not calculated for each receptive field
individually, they are shared along a layer, which means the weights are also
shared for many connections. Those principles greatly reduce the necessary
parameters and therefore help in faster convergence. Lastly, pooling layers
also reduce spatial dimension and with it the number of trainable parameters.
[OSh15, Ket17, Li21]

Conv Pool Conv Pool Flat Fc

diraddiaad.

Input Image

Figure 2.6: Schematic model representation of CNN structure.

For a further overview of models in deep learning, the interested reader is
referred to [Sch15, Ian16, Alo19, Poul9, Don21].

2.4.4 Bayesian Hierarchical Modeling

In contrast to the Frequentist approach, which defines probability as relative
frequency of a reoccurring event, the Bayesian approach interprets probabili-
ties as measure of belief. The Bayesian approach does not try to predict single
regression coefficients but rather a distribution of these coefficients. This im-
plicitly allows the model to state uncertainty in the prediction and with it
illustrates a convenient way to estimate model accuracy.

Bayesian linear regression models can be described through eq. (2.15), only
that the coefficients 3; are probability distributions and not fixed values. For
this, Bayes’ theorem

P(B|A)P(A)

P(AB) = = B

(2.26)
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is used, which allows for a calculation of the conditional probability of P(A|B)
if the conditional probability P(B|A), and the prior probabilities P(A) and
P(B) are known. The prior probability P(A) represent the probability of event
A occurring without any constraints. The conditional probability P(A|B) rep-
resents the probability of observing A under the premise that B has also oc-
curred. In the context of machine learning models this can be rewritten as

Likelihood Prior
Pos}tj;i;]l];ist]r\ju;ion P(Dle, MJ) P(@ |M]) (2 27)
R P(D|M;) '
—_—
Evidence
where: 0 Parameters of the model

M;  Specific model j
D Observed data

[Bar12, Ghal5, van21]. The idea in Bayesian models is to approximate the pos-
terior distribution through changes in the parameterization of the likelihood
to create a posterior distribution that accurately represents the observed data.
The prior defines the a-priori believe about the model parameters, this de-
scribes the assumed range and distributions of the parameters before seeing
the data. The evidence can be thought of as normalization factor and describes
a marginal likelihood and can be calculated through integrating over all pos-
sible values of the parameter range for a specific model

P(D|M;) = f P(D|6,Mj)P(6|M;)do . (2.28)
6€®

Bayesian statistics are constructed in three steps: [Was04]

1 Defining prior distributions 77(8) for each parameter 8. These
represent the belief or knowledge about parameter 8 before analyzing
data.

2 Defining the likelihood P(D|6, M) which represents how likely it is to
receive the data with the condition of parameter 6 for model M;. This
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represents a statistical model which allows for data generation with
the assumption of parameters 6 and model M;.

3 Use available data D to calculate the posterior distribution and update
prior beliefs.

Inference can be achieved in different ways. Two very common ones are the
variational inference and the Marcov Chain Monte Carlo (MCMC). In the vari-
ational inference the posterior distribution is approximated through a combi-
nation of simpler distributions. For these, the inference algorithm optimizes
the parameters to minimize a loss function. The MCMC embodies an approach
to estimate the true posterior of any distribution by combining Monte Carlo
sampling and empirical probability estimation through the Markov Chain.
The variational inference demands lower computational effort but also results
in a generally less accurate posterior than the MCMC inference. [van21] A
Markov Chain is a sequence of elements in which the conditional distribution
of a consecutive element is dependent only on the immediately preceding el-
ement. [Bro11] The higher accuracy of MCMC comes at high computational
cost, which is why in cases where computational cost is more important than
accuracy, variational inference might be preferred over MCMC [Sal15].

The priors are generally divided into weakly informative, informative, and
diffuse priors. [van21] The latter are also referred to as non informative, vague,
or flat priors [Gel13]. These basically categorize how much information the
model received through the priors. An informative prior is therefore e.g. a
Gaussian distribution with a mean close to the expected value and a small
variance. Priors like these allow for information that might not be included
in the data but has been achieved by previous studies. [van21]

Bayesian models are also referred to as hierarchical models since Bayes’ the-
orem induces a hierarchical structure through the multiplication of a condi-
tional distribution with the distribution of the parameter on which the preced-
ing is conditioned [Lyn07]. The hierarchical structure also allows for adding
information on different levels to the model. Data can be grouped to build a
compromise of pooled and unpooled models. [Vee23] Unpooled models sepa-
rate the data into different fragments and train a model for each of these data
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fragments independently. In case of pooled models one model is trained for
the entirety of the data. [Gel13] Fig. 2.7 illustrates the concept of a hierarchi-
cal Bayesian model, in which data are separated in i fragments, yet the model
parameters 0; are connected through a prior distribution. The prior 7 can
also be specified through overlying hyperpriors, these would then describe
U and o, in fig. 2.7 through a distribution. [Gel13] The whole process of
model design and evaluation is also described in [Gel20].
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Figure 2.7: Principal sketch of a hierarchical Bayesian model. Adapted from [Gel13].

2.4.5 Cross-Validation

As described above in this section, model selection is an important topic in
ML. This occurs out of dilemma between over- and underfitting. The model
performance is estimated with an arbitrary metric on at least two types of
data: The training and the test data. Training data implies, that the included
data points are used in the training process. The correlating training loss in-
dicates how well seen data are represented by the model. The test data are
explicitly left out of the training process, therefore the test loss estimates the
true prediction error. The split in the data can have a major impact on the
recorded losses, which is why methods to divide the data are an important re-
search topic. A common approach is the cross-validation in which the model
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is trained multiple times for different data splits and the overall model perfor-
mance is recorded as average performance of all trained models. In the k-fold
cross-validation, the whole data is divided into k approximately equally large
subsets. These are built through random sampling from the entirety of the
data without replacement so that no data point exists in more than one sub-
set. The training data are assembled through combining k — 1 data packages,
the omitted data are used as test data. Fig. 2.8 illustrates the iterative process.
The special variant of the method is reached for k = n with n as number
of data points. In this case only one data point is left out, which is why this
method is referred to as Leave-One-Out Cross-Validation (LOOCV). For larger
data sets this is however rather computationally costly. In some cases, the di-
vision of the data into subsets is not performed randomly but rather in a way
to ensure equivalent populations of each subset.

Test Data Training Data
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Figure 2.8: K-fold cross-validation principal sketch based on [Ber19]. White square indicate
batch used in training data and black square indicate batch used as test data.

2.4.6 Hyperparameter Optimization

Parameters that are not determined through the training process are referred
to as hyperparameters. These parameters are used as input for the learning al-
gorithm to define the architecture of the model as well as the learning process
itself. [Moh18] Included parameters for ANNs and CNNs are, but not limited
to, number of hidden layers, number of neurons in each layer, number and size
of kernels in the convolutional layers, pooling layer variation and kernel size,
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learning rate, optimization algorithm, activation function, batch size, dropout
rate, weight decay, loss function, and number of epochs. Overall, these pa-
rameters define the model architecture, regularization, and the optimization
process [Feul9]. These parameters can substantially impact the model per-
formance but yet bear the challenge of being chosen optimally. Especially in
Deep Learning (DL) it is difficult to estimate these parameters since it is also
not straightforward to estimate the necessary model complexity.

A standard approach for hyperparameter optimization is to split the data into
three parts: Train, validation, and test set. The validation set is solely used to
optimize the hyperparameters, while the test set is used to estimate the overall
performance of the optimized structure and learning process. [Moh18]

Due to the high variance in parameters, recent research investigates different
optimization algorithms to let the system define these themselves. Some of
these approaches are explained in [Feul9].

2.5 Explainable Artificial Intelligence (XAI)

One problem of ANNs and CNNss, especially if they are designed as DL mod-
els, is that they are black box models [Gui19]. This basically means, other
than in multiple linear regression models (see section 2.4.1), the importance
of features, also known as feature attribution, is not directly available. This is
unpleasant since it prohibits users to gain further understanding of the mod-
els predictions and also decreases the amount users trust in them. This also
makes it more complex to estimate if actual correlations of the problem are
learned or if rather scenarios like shortcut learning [Gei20] occurred. In short-
cut learning, the model acquires decision rules from the training set that are
present in the data but may not necessarily correlate with the actual problem.
As a consequence, these rules lead to inaccurate predictions when applied to
other data sets. [Gei20]

These aspects lead to a recent development of many algorithms in Explainable
Artificial Intelligence (XAI). The strong drive in demand for explainability can
be divided into four major motivations: [Ada18]
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1. Justification: implies that an erroneous prediction or decision can be
ruled out

2. Control: gives deeper insight in the models decision process and leads
to easier implementation of changes

3. Improvement: deeper insight allows faster implementation of new

knowledge

4. Discover: user can gain additional knowledge on the matter through
the model

Kokhlikyan et al. classify the algorithms in XAI by two metrics, first being
the depth of explanation and the second as the underlying algorithm. The
depth is divided into primary-, neuron-, and layer attribution, from which
primary is commonly described as feature attribution. The classification by
algorithm is divided in gradient, perturbation, and others. [Kok20] A similar
classification via core algorithmic into gradient and perturbation based is done
by Das et al. [Das20]. While the first one makes use of the gradients calculated
with backpropagation to explain the model, the latter induces small changes
in the input data to investigate the correlated model response [Das20]. In
this dissertation, one perturbation based and one gradient based method are
applied. These are described in the following sections. For a general overview
of XAl the reader is referred to [Ada18, Guil9, Iva21].

2.5.1 Integrated Gradients

The method Integrated Gradients (IG) was first introduced in 2017 as a gradi-
ent based method for XAI The idea behind IG is to integrate the gradients of
the model along a straight line that connects two arbitrary input vectors.

The IG can be described through

1
£ — 8f(€()) 9&i()
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where:  f Function of model
i Dimension i of vector
¢ Interpolation integrator

£(¢) Linear path between two points

Substituting the proposed linear path between two point defined by £(¢) =
x" + {(x — x") and approximating the integral trough the Riemann approx-
imation leads to

(x’ + % (x— x’))
ox;

(2.30)

I~

aj roxX - af
IGPP™(x) = (x; — x}) 2
k=1

where: x  Input sample
X

Baseline
k  Interpolation step
m  Number of steps in Riemann Integral

[Sun17] proof axiomatic that the attribution method satisfies the following
principles:

Completeness: equality between the sum of attributions and the actual
change in output value from the baseline to investigated input

Sensitivity: a change in a feature that results in changes of the output,
for all other features kept constant, results in an attribution unequal to
zero. Similarly if this change in feature value does not lead to changes
in the output, its attribution is zero

Implementation invariance: two individually designed models which
result in equivalent output for equivalent input assign identical
attributions to their features

linearity: combining models linearly with weighting factors leads to
the weighted sum of the attribution of the singular models as
combined model attribution

Symmetry-preserving: two variables that are interchangeable for each
of their values and thus do not cause any changes in the output are
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assigned the same attributions if their input and baseline values are
identical

An advantage of IG is the application which does not need any changes in
the ML model since it is performed after model training. As baseline the au-
thors suggest using a value with prediction close to zero, which they consider
to be a black image for image processing. [Sun17] However, it was pointed
out in a later comment that the method is basically blind to the defined base-
line. A black image as the baseline therefore means that the algorithm is not
influenced by black pixels when calculating the IG. [Sun18]

This led to a more profound investigation of different baselines by Sturmfels
et al. For a specific image, four approaches are investigated: The maximum
baseline which describes an image that is the furthest away from the current
image in each pixel value; the blurred baseline which blurs the current image;
the uniform baseline which represents an image drawn from uniform distribu-
tion of the whole pixel value range; the Gaussian baseline, which adds noise
to every pixel of the current image drawn from a Gaussian distribution. Es-
pecially for the latter two approaches, multiple draws from the distributions
and averaging over these is also considered by the authors. Even though, the
baseline leads to different attributions on different data, the authors conclude
that there is no overall best performing baseline since it always makes as-
sumptions about the distribution in the data and the explicit understanding
of missingness of the specific problem. [Stu20] Even though, the definition of
the baseline can lead to difficulties in interpreting the attributions, IGs have
advantages over methods that consider gradients of single inputs without in-
terpolation between baseline and input. This is a result of saturation effects
in DL which represents a sort of threshold above which no changes in the
predictions occur for additional changes in the input value. [Stu20] Still, the
saturation effect does impact the attributions computed through IG. This is
shown by the alternative approach of splitting the regions of IG into two parts,
one above and one below a predefined value. This value is defined through
a threshold in absolute maximum value of the predicted output, so that the
overall interpolation space is separated in saturated and not saturated areas.
The authors conclude on basis of their case study that calculated attributions
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with IG might be dominated by saturated areas. They therefore recommend an
adapted, two sided version of the method. [Mig20] It should be noted that this
might also be a result of the chosen baseline, reported as gray, which leads to
bright colorful pixels having very different values which might lead the x —x’
multiplier in eq. (2.29) to overestimate the importance of the saturated area.

Another adaption of the method is achieved through adaptively changing the
path along which the gradients are integrated. In the concept of Guided Inte-
grated Gradients only some features are changed each step. These are chosen
as the features with the lowest absolute partial derivatives. This avoids points
with anomalies to induce noise to the attributions. [Kap21]

2.5.2 Shapley Additive Explanations

Shapley values were first introduced by Lloyd S. Shapley in 1953 [Sha53] as
co-operative game theory. They try to rank each player by their impact on the
output of the game. This is achieved by averaging the marginal contribution
of a player on each coalition over the total number of coalitions. A transfer
from game theory to ML is achieved through considering each input feature
as players.

They can be calculated via

marginal contribution of j to Z
—_——
$i= > w@| WZuih-»2) | (2:31)
Z<{1,...,npR\{}
1Z|\(np — 2] = D)!

nF!

wZ(Z) = (2.32)
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where:  ¢; Shapley value of feature j

V4 Coalition without j

Z U{j} Coalition with j

ng Overall number of features

v Function measuring the usefulness of the coalition (also
called characteristic function)

Wz Weight function for probability of entering in coalition
z

[Sha53, Lip01, Mol22] This also includes the concept of usefulness introduced
by Darlington, who defines it as the decline in R? after excluding the specific
variable in a multiple linear regression. [Dar68]

Eq. (2.31) is constructed for linear models including multicollinearity and de-
mands a multitude of models to be trained to gain insight into the model per-
formance for only subsets of features. By approximating the equation by sam-
pling this can be achieved much less computationally heavy. Lundberg et al.
introduce multiple new approximation methods which are more efficient or
model specific. [Lunl17]

They are both derived from the sampling method presented in 2014 by Strum-
belj et al. to approximate Shapley values which is explained below. A huge
advantage of that method is the applicability on any model since no changes
are necessary due to its sole investigation of the relation between input and
output. In case of the sampling, it is important to ensure that the distribution
of each feature is independent of another. The process is abbreviated from
the Monte Carlo integration. [Str14]

To calculate the contribution of a feature j for a data point x1, the correspond-
ing Shapley values are calculated a user defined n times and averaged with
respect to n

¢; = %;)%,i . (2.33)
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‘ take corresponding values from x; }<—{ features preceding j in O }—»{ take corresponding values from x; ‘

‘ take corresponding value from x, } feature j } take corresponding value from x; ‘

‘ take corresponding values from X, }<—{ features succeeding j in O }—>{ take corresponding values from x, ‘

d, d

Figure 2.9: Construction rule of new data points to approximation of the Shapley values.
(Adapted from [Str14])

The Shapley value of each iteration is calculated as shown in eq. (2.34) as

the difference in the models prediction for two newly constructed data points
dyand d,.

$ji = fldi) — f(da) (2.34)

These new data points are constructed for each iteration as combination of the
data point under investigation x; and an independently sampled data point x,
from all possible data points. The construction is done with a randomly drawn
perturbation O of all features. The perturbation defines how the new data
points are constructed during each iteration, the associated rule is displayed
in fig. 2.9. [Str14] The exact Shapley values as defined by Shapley also fulfill
some desirable properties: [Sha53, Roz22, Mol22]

« Efficiency, which states that the sum of all Shapley values adds up to
the overall value of the coalition (similar to completeness in
section 2.5.1)

« Symmetry, if two features contribute identically to all coalitions, they
get assigned the same Shapley value

« Dummy, a feature that does not impact any coalition, gets assigned a
Shapley value of zero

« Linearity, this implies that scaling the output values also scales the
Shapley values with the same factor
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This chapter describes the processes used to acquire data necessary for the
TRN modeling, gives an overview of the performed experiments, and presents
the tire tread pattern image processing steps.

3.1 Acoustical Methodology and Measurement
Process

All measurements included in this research are executed at the testing facili-
ties of Mercedes-Benz (MB) situated in Immendingen, Germany. The measure-
ment track satisfies the specifications described in ISO 10844 [Deu23]. Fig. 3.1
visualizes an according test track with its specific dimensions and point labels.
Measurements are performed with the PAK Pass-By Software versions 3.2 and
3.3 from Miiller-BBM VibroAkustik Systeme GmbH.

During each run, the SPLs on each side of the vehicle are recorded, as well
as the vehicle speed, air temperature, road temperature, wind speed, wind di-
rection, and humidity. The vehicle speed in combination with light barriers,
which start the measurement when triggered by the front of the vehicle, is
also used to calculate the vehicle position on the test track. All environmen-
tal values are always recorded at approximately the same position, which is
located diagonally the furthest away from the center point of the test track.
At this point, also the road temperature is measured through the weather sta-
tion. The microphones are placed at a height of 1.2m, at a distance of 7.5m
to the center line at the O m location of the track according to ISO 10844.
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Figure 3.1: Principal sketch of the measurement track. [Leu22]

To combine both UNECE regulations (no. 51 and no. 117), speeds from
40kmh~! to 90kmh™! are included in this study. Each speed is recorded
twice, which is theoretically once from AA’ to BB’ and once from BB’ to AA’.
However, if a run of these two measurements failed one of the other criteria,
multiple runs from the same direction are accepted as well. The speed is
increased in increments of 5kmh~! leading to at least 22 measurement per
tire. All runs are conducted according to CB method in idle mode. Tires
are always mounted in sets of four, no mixed dimensions are used to ensure
that a whole measurement series of one tire can be directly connected to one
specific tire size, brand, and tread pattern. The inflation pressure is adapted
to 2.5bar for each measurement series after a warm up period of 15min.
This ensures that the pressure is constant during the whole measurement
series, making further analysis easier. The measurement speeds are chosen
randomly to avoid conditioning the tire through constantly increasing or
decreasing the vehicle speed. All tires are driven for approximately 200 km
for preconditioning before the measurements.
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To ensure the dominant noise source is the tire and not exhaust, engine or
background noises, measurements are only conducted with electric vehicles,
an acoustically encapsulated vehicle, or in the case of one tire a vehicle with
very quiet combustion engine which is not audible while idling. The differ-
ent tire load resulting through different measurement vehicles is not com-
pensated. The background noise is always at least 10 dB(A) below the maxi-
mum recorded SPL of each run. Measurements with higher wind speeds than
5ms~! are not recorded. The air temperature is also in the range of 5°C to
40 °C and the road temperature in the range of 5°C to 50 °C, as demanded

by UN regulation no. 117.

Additional to acoustical measurement, the rubber hardness as Shore A as well
as the tire profile depth is measured. For the rubber hardness, the HPE III de-
vice from Bareiss Priifgerdtebau GmbH is used. This allows measurements of
the surface temperature as well as the hardness. The shore hardness is mea-
sured once in the shoulder region and once in the center region for each tire.
For all four identical tires the average of these measurements is used. The
measurements are conducted within three months of the acoustical measure-
ments to ensure that the surface temperature is around 20 °C and the tire did
not deteriorate. Profile depth is measured with a caliper in a circumferential
groove for each tires. The average of four tires of these measurements is used
as model input.

3.2 Tires and Vehicles in Experiments

In total this study includes measurements of 42 summer tires, from 14 differ-
ent tire manufacturers. These include sizes ranging from tire nominal width
of 205 mm to 285 mm, aspect ratios of 30 to 65, and rim diameters of 16in to
22in. Table 3.1 presents a full design of experiments as well as the ratio be-
tween the load applied by the vehicle and the load index. The tires are herein
sorted according to their usage in later presented analysis. This means row
one corresponds to data set 0 or tire 0 and row 42 corresponds to data set 41
or tire 41. The vehicles 243 (EQA) and 293 (EQC) are both electric SUVs, the
212 is an older E-Class that was specially modified for tire measurements so
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that its engine and exhaust are not audible. The 167 (GLS) is a vehicle with
combustion engine. However, the used version is very silent so that the ex-
haust and engine sound are not audible while idling and the tire noise can be
considered as the dominant noise source.

Table 3.1: List of all tires included in measurements with associated measurement vehicle. The
load ratio column puts the load of the measurement vehicle and the load ratio in rela-

tion.

Vehicle Manufacturer Profile Dimensions Load ratio
212 Dunlop Sport BlueResponse 225/55R19 95V 0.76
212 Goodyear Wrangler HP 215/60R16 95H 0.76
212 Michelin Energy Saver MO 205/65R16 95V 0.76
243 Bridgestone Alenza 001 MO 235/45R20 96W 0.72
243 Continental Premium Contact 5 MO 225/55R17 97Y 0.70
243 Continental Premium Contact 6 MO 225/45R18 95Y 0.74
243 Continental Ultra Contact 215/60R17 96H 0.72
243 Continental 4x4 Contact 235/50R18 101H  0.62
243 Fortuna Ecoplus UHP 235/45R18 98W 0.68
243 Goodyear Eagle F1 Asymmetric5 MO 225/40R19 93Y 0.78
243 Goodyear Efficient Grip 255/40R18 95Y 0.74
243 Goodyear Excellence 245/45R19 98Y 0.68
243 Michelin Pilot Sport4 SUV MO 255/45R20 105W  0.55
243 Michelin Primacy4 MO 225/45R18 95Y 0.74
243 Nexen N Fera Sport SU2 MO 225/55R18 102Y  0.60
243 Pirelli P Zero Nero GT 235/35R19 91Y 0.83
243 Pirelli Cinturato P7 MO 235/55R18 104T 0.57
243 Pirelli Scorpion Verde MO 235/55R19 101V 0.62
243 Viking ProTech NewGen 225/50R17 98Y 0.68
243 Vredestein Ultrac MO 225/55R18 102Y  0.60
243 Hankook Ventus S1 Evo 3 MO 225/55R18 102Y  0.60
293 Dunlop Dueler H/P Sport MO 235/55R19 101V 0.76
293 Bridgestone Potenza S001 MO 245/45R19 102Y  0.74
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Vehicle Manufacturer Profile Dimensions Load ratio
243 Bridgestone Turanza T005 MO-S 255/40R20 101Y  0.76
293 Continental ContiSportContact 5 MO1 255/50R19 103Y  0.71
293 Continental EcoContact 6Q MO 235/55R19 105W  0.68
293 Cooper Zeon Crossrange MO 255/45R20 105H  0.68
293 Dunlop SP Sport Maxx GT 275/30R20 97Y 0.86
293 Goodyear Eagle F1 SuperSport 265/35R20 99Y 0.81
293 Kumbho Ecsta PS91 MO 245/45R18 100Y 0.78
293 Michelin ePrimacy MO 245/45R19 102Y  0.74
293 Michelin Latitude Sport 3 MO 235/60R18 103V 0.71
293 Michelin Pilot Sport 4 SUV MO 235/45R21101Y  0.76
293 Michelin Pilot Sport 5 MO 245/40R19 98Y 0.83
293 Michelin Pilot Sport Cup 2 MO1 265/35R19 98Y 0.83
293 Michelin Pilot Sport 4 SUV MO 255/40R21 102Y  0.74
293 Pirelli P Zero (PZ4) MO 235/45R20 100T 0.78
293 Pirelli Powergy MO 255/45R19 104Y 0.69
293 Pirelli P Zero Corsa Asimmetrico2  265/30R19 93Y 0.96
293 Dunlop SP Sport Maxx GT MOE 245/35R20 95Y 0.91
293 Yokohama Advan Sport (V105) MO 235/60 R18 103V 0.71
167 Continental Premium Contact 6 MO-S 285/45R22 114Y  0.55

3.3 Data Preprocessing

While some ML models can deal with alphanumeric values, in standard ANNs,
data must be converted into numerical values. This is due to the working
principle of ANNs which relies on applying mathematical operations on the

data. Other algorithms, as e.g., Decision Trees [Rok05, Kin08], can also receive

alphabetical input and progress these through their structure.

One method to transform non numeric values into linear numeric space is the

one-hot encoding. Thereby the values are transformed into a matrix of shape
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NxN for a variable with N different values and each value N; is represented
by a single 1 in row i and column i, while all other rows in column i are
filled with zeros. This is illustrated in eq. (3.1) for four values (Dummies) of
a specific feature.

Dummyl Dummy2 Dummy3 Dummy4

1 0 0 0

0 1 0 0
(3.1)

0 0 1 0

0 0 0 1

Other encoding methods could include hashing functions as presented in

[Wei09]. Some more encoding schemes are listed in [Pot17].

An additional step in data preprocessing includes standardizing or normaliz-
ing. This is a preprocessing step to avoid overweighting features with larger
value ranges [Han11]. Al Shalabi et al. provide an overview on different nor-
malization techniques [Al 06]. One of these is the z-score normalization

scaled _ (51 = X)

: = (3.2)

X
The z-score normalization refers to the StandardScaler in Scikit-learn [Ped11].
The normalization is performed on each feature individually. The z-score nor-
malization in essence removes the mean of the data and scales the value range
to unit variance. Even though data normalization is very common, research
investigating the impact on the prediction accuracy for a specific use case
with different ML algorithms found no normalization method that leads to
the highest accuracy in all algorithms [Ahs21].
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3.4 Digitalization Method

In this research two different methods to extract tire images are used. These
can be used as input for a CNN and to extract relevant tire tread pattern fea-
tures. These two methods are briefly explained in the following sections.

3.4.1 Photogrammetry - Structured Light

Digital representations can be accomplished through photogrammetric meth-
ods, which include all methods that enable extracting measurement data as
length, width, and height from pictures [Mik01, Lin06].

More advanced processes are not limited to extracting some dimensions but
allow the reconstruction of a full 3D tessellation model. For this purpose,
some commercial as well as open source pipelines (as put together in [Rad22])
are already available. In a previous research, the usability of two such systems
is investigated and they are compared on the basis of some acoustical feature
extraction. This investigation showed, that the extracted features through the
open source pipeline and a commercial tool do not vary gravely. However, the
commercial tool is faster in computational time and in the setup, including
taking the necessary pictures. [Leu23].

In this research the commercial system ATOS III Triple Scan from Carl Zeiss
IQS Deutschland GmbH (former GOM GmbH) is used. The system uses two
cameras and one projector. Due to the different orientation of the cameras,
some points of the image are recorded multiple times, therefore making the
3D transformation more stable and allowing for deeper pouches to be visu-
alized. [Car23] The photogrammetric process resulting out of the combina-
tion of at least one camera and a projector is referred to as structured light
approach [Bel99]. The projector stabilizes the process even more, since it al-
lows for an easier matching of different images through the projected light
pattern. This results in the possibility to connect every pixel in the images
with a unique codeword, making it easier to find corresponding points while
overlapping multiple images in the reconstruction process. This is referred to
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as encoding. [Bel99] For the reconstruction, the relative orientation of cam-
era and projector must be known [Heh20]. The ATOS III Triple Scan projects
multiple different encodings with phase difference of blue light on the objects
surface. Due to the lower wavelength of the blue light bad lighting and shiny
objects can be better compensated. [Car23] The system outputs tire models
as presented in fig. 3.2.

Figure 3.2: Extracted tire model with structured light approach.

For later usage as input for the ML models the tread pattern is transformed to
2D along the circumferential direction. This leads to an image as presented in
fig. 3.3 with only the rubber in contact with the road included. In the following
these images are referred to as tire circumference images.
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Figure 3.3: Tire circumference image extracted from digital tire model. Image shows whole cir-
cumference of a tire. Scales in circumferential and transverse direction are not iden-
tical.

The process of extracting these images is explained in depth in [Leu23].

3.4.2 Contact Patch Extraction

The contact patches of tires can be easily extracted with the FUJIFILM Cor-
poration Prescale pressure measurement film [Fuj11]. These are available in
different pressure ranges and therefore come as two-sheet and mono-sheet
variation. Since in this investigation the purpose is to capture the whole con-
tact area and not the specific pressure distribution, high pressure sensitivities
are more useful. The herein specified pressure range, is from 0.05MPa to
0.2 MPa.

Fig. 3.4 illustrates the composition of such a two-sheet low pressure foil. One
sheet includes microcapsules that burst under the predefined pressure and
release a liquid dye. The second sheet has developer material as coating, which
reacts with the dye, coloring the area under pressure red. By using a series of
microcapsules of different sizes that burst under different pressures, a color
gradient in correlation with the existing pressure gradient is achieved.
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Figure 3.4: Principle of FUJIFILM Corporation Prescale two-sheet type adapted from [Fuj11,
FUJ23].

Fig. 3.5 shows the setup to capture the tire tread patterns. The used measure-
ment device consists of three air bellows which allow for a precise adjustment
of the tire load. The chosen tire load refer to the actual load during the acous-
tical measurements. These are 510 kg, 525 kg, 625 kg, and 650 kg for the mea-
surement vehicles 243, 212, 293, and 167. All tires except those with 16 in rim
diameter are mounted on the measurement device for the use of the pressure
foils. The 16 in rim tires are mounted on the actual measurement vehicle and
load is applied by releasing the vehicle from an auto hoist. Between the thick
metal sheet which is placed on the ground and the aluminum foil, which is
placed on said metal sheet, some mechanic grease is applied to allow the alu-
minum to move while pressure is being applied. The pressure foil is fixed on
the aluminum sheet so that no relative movement between these occurs.

U

Figure 3.5: Process of creating tire tread patterns with FUJIFILM Corporation Prescale pressure
measurement film.
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The colored foils are afterwards scanned with 600 dpi to receive digital repre-
sentations for further processing. Fig. 3.6 shows exemplary images obtained
by this process.

Jdlle ARk
werr QW

Figure 3.6: Exemplary scans of tire tread visualised with FUJIFILM Corporation Prescale pres-
sure measurement film.

3.5 Image Processing

The tire circumference image, described in section 3.4.1, should have the same
pixel size to further process them in a CNN. This however leads to a loss of in-
formation if not preprocessed before usage in the CNN. Some of the tires have
different dimensions but the same image sizes. This results in a tire with e.g.,
205 mm width being scaled differently than a 285 mm wide one. Structure-
wise, this is not supposed to change the orientation of grooves, but it makes
it impossible for the CNN to extract features as e.g., groove widths correctly.

The easiest approach is to not change the images at all, and assume that more
complex models which combine CNN and ANN will learn the correlation be-
tween the tire nominal width as input and the different image representations
by themselves. Nevertheless, this is not guaranteed at all and therefore not
assumed to be the best approach and also is not possible in the investigation
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of a single CNN. An alternative approach correlates the image height to a de-
fined tire width. Thinner tires receive the same overall image height but some
areas remain white. This approach can be thought of as something similar to
zero padding to keep the scale between images consistent but simultaneously
ensure that each image has the same dimension. Also, for standard CNNs the
high resolution of the extracted tire circumference image needs to be down-
sampled. Simple downsampling loses a lot of image information. Many pixels
are combined to one, resulting in grooves being closed and therefore lost in
the process. This, combined with the need for more images to train the CNN,
makes other approaches necessary.
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Figure 3.7: Illustration of tire fragmentation process to create multiple tire images from each tire
for usage in CNNs.

This is why one tire image is fragmented into smaller parts by moving a mask
in circumferential direction over the whole structure and saving all masked
images as new tire fragments. Fig. 3.7 visualizes this process. This is assumed
to be a reasonable approach since it represents the actual process of the tire
rolling on the road. The tire structure being in contact with the road changes
due to the randomization of the tire. Nevertheless, no measurements per-
formed for this dissertation indicate that this randomization leads to up and
down swelling of the emitted SPLs over one tire rotation. For this reason, it is
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not to be expected that the inclusion of only parts of the individual tires in the
images will lead to a high loss of information. Especially because features for
shoulder randomization as well as offset randomization can be calculated as
additional power density spectra, as explained in [Li16, Leu23]. These spec-
tra can be given to the models as additional information, thus making the
information loss through only including tire fragments minimal. Section 4.7
presents models which receive this additional input.

One more step for correct image cropping is necessary. This results from the
origin of the coordinate system of each 3D tire model, which is not fixed with
regard to its position in relation to the tire. Especially, in case of axis x, (see
fig. 3.2), only the orientation, pointing into the rim, is defined, but not the
location of x, = 0. Taking the maximum and minimum X, values included in
fig. 3.7 for cropping is not a robust approach since these values are sensitive
to single outliers. Therefore, all grid points of one tire are projected into one
plane of a cylindrical coordinate system through their radii. For the tire pre-
sented in fig. 3.7, this results in fig. 3.8. From this figure, the correct center
location is extracted. For this purpose, points of the tire are extracted whose
tire height corresponds to the rim radius plus half of the aspect ratio times the
tire width plus 5 mm, rounded to one decimal place. Due to the high resolu-
tion of the model and non-equidistant net, multiple of these grid points exist.
The relevant center of these points is easiest obtained by rounding all grid
points to one decimal and then applying a k-means clustering which results
in one cluster for each shoulder.
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Figure 3.8: Tire silhouette for tire width and center location extraction. X-axis refers to X, axis
defined in the digitization process of the tire. It is located in the center of the rim,
pointing inwards.

By calculating the average x, value of these two clusters, the x, value of the
tire’s main plane is obtained. After determining the specific tire center, it is
utilized as the center point for the symmetrical cropping process in order to
create a rectangular contact patch. The image cropping height is defined as
0.8 times the tire nominal width cry. The patch length, which corresponds
to the image width, is calculated with the assumption that the contact patch
area is equivalent for all tires. This leads to

8 Myehicle
1 4

contact patch = (33)
P Pinflation 0.8 Ctw

under the assumption of a rectangle as contact patch. For the used vehicles,
a mass of 2200 kg is taken. Even though that calculation includes many sim-
plifications, it can still be expected to lead to satisfying results. This is all the
more the case as there are other studies in which the tire contact patch is de-
fined identically for all tires included in these studies [Li17, Moh22]. Since the
values obtained for lqyngact paten are rather small and might not include enough
information for the CNN to learn correctly, each image includes three consec-
utive contact patches. The mask, which is therefore three times the length of
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3.5 Image Processing

the contact patch, is iterated over the tire in steps of one tenth of the mask
width. This ensures that at least some difference will be recorded between im-
ages and also generates more images for the training of the CNN. Furthermore,
this approach ensures overlapping between images, which might make it eas-
ier for the CNN to learn the relationship between the images. The pressure
in the contact patch is set equal to the inflation pressure of the tire during
the CB measurements to 2.5bar. Before using the images as input for the
CNN, all cropped images are rescaled to have the same millimeter to pixel
ratio of 0.05mm pixel_1 in image height. The image width is also rescaled
to 0.1 mm pixel_l. The scaling in image width is necessary due to the differ-
ent circumferences of all processed tires. These lead to a different length per
degree ratio in each image. The different mm pixel_1 representations are cho-
sen to obtain approximately square tire fragments for tires of average dimen-
sions. After rescaling both dimensions, the images are reframed to a standard
size and pasted on a white background of identical size for all tires. The in-
dependently appearing maximum image height and width of all tires define
the white background image size. The whole cropping, scaling and reframing
process leads to tire images as represented in fig. 3.9 of the pixel size 3947 x
4559. In the transformation from images (.png) to PyTorch tensors they are all
downscaled to 224 x 224 shape to reduce the CNN dimension even further. As
seen in fig. 3.9a the narrowest tire defines the image width while the widest
tire, in fig. 3.9c, defines the image height.
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(a) Narrowest tire (205) (b) Mean tire (245) (c) Widest tire (285)

Figure 3.9: Three different tire images after cropping and rescaling to standardized format with
pixel size 3947 x 4559. Frames only added for displaying purpose.
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4 Development and Evaluation of
Statistical and Machine Learning
Models

In the following chapter, the data processing as well as modeling processes
are explained. The chapter is divided into the different steps of data analysis
and modeling. Firstly, some statistical analyses are performed on the data.
Secondly, simple benchmark models are presented. Lastly, different ML ap-
proaches are presented. These include deterministic models in the sense that
once trained, the output for identical inputs will always be identical as well
as probabilistic ones. The model complexity is increased over the sections.
Model interpretation is conducted with an intuitive data modification as well
as through the method of XAI presented in section 2.5. The obtained model
performance as well as model interpretation is presented in the same sections
as the related model design. In this dissertation, the evaluation of models is
mainly based on the RMSE. The RMSE is thereby calculated for the output vec-
tor as whole and not for each output considered as individual sample, so that
the RMSE of a model with multiple output variables is expected to be higher
than the one of models with one output variable.

4.1 Statistical Data Analysis

Before training statistical models in the form of ML or DL, it is necessary to an-
alyze the data on different aspects, such as the general range of input and out-
put values, deviation in repeated measurement, and deviation for both micro-
phone sides. Fig. 4.1 gives an overview of all 1443 conducted measurements
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4 Development and Evaluation of Statistical and Machine Learning Models

of the 42 different tires, four different measurement vehicles, and other con-
trolled and uncontrolled variables. The displayed SPLs are the ones recorded
while the vehicles position is at PP’. For a single nominal speed the maxi-
mum spread adds up to the range of 3.96 dB(A) to 6.00 dB(A) for the left and
4.44 dB(A) to 5.85 dB(A) for the right microphone. The considered speeds are
in steps of 5kmh™! in the range of 40kmh~! to 90kmh™!, all speed mea-
surements are rounded to integers for this calculation.
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(a) Left microphone side (b) Right microphone side

Figure 4.1: Overview of all measurements for both microphones while vehicle is at test track
position PP’.

The variability in measurements due to different tires can be approximated
through their speed SPL relation in eq. (2.2). This enables the calculation of
TRN coefficients a and b for each tire. Since their accuracy has been proven
in literature [San02, Leu22], they can be utilized to reconstruct measurements
at arbitrary speeds for each tire with high accuracy. Doing so for the whole
range in vehicle speeds from 40 kmh~! to 90 km h~! leads to the SPLs curves
for position PP’ for each tire as indicated in fig. 4.2a. The green curves indi-
cate the minimal and maximal reached SPLs over the whole speed range, the
blue curve indicates the mean SPL. Fig. 4.2b shows the resulting maximum
difference due to different tires at the position PP’ for the entire speed range.
These are slightly smaller than the recorded values from the measurements.
However, this is not surprising, as the displayed values form an average over
the left and right microphones and general measurement deviations are also
reduced by calculating the TRN coefficients.
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Figure 4.2: Reconstructed SPLs for all tires over the whole speed range at PP’ with associated
difference in SPL obtained at each speed.

Other than the total spread in measurements especially the difference in
recorded SPLs during one run between the left and the right microphone
is interesting, since this mainly represents the variability which is assumed
to be seen in models with output values for both microphones as well. In
case of the measurement deviation between both microphones not only
the absolute values but especially the distribution is of interest. Fig. 4.3a
shows the recorded deviations. The mean recorded deviation is calculated
to —0.04 dB(A).

The distribution of the deviation can be approximated through a Kernel Den-
sity Estimation (KDE). Here, a Gaussian kernel with a bandwidth of 0.2 is
applied on the data. Fig. 4.3b shows the resulting Probability Density Func-
tions (PDFs) for different vehicle positions in the range of —10m to 10m in
steps of 2m. The PDFs do not change substantially. Also, they are all centered
around the value of zero deviation. Combined with the Gaussian shapes of the
PDFs this indicates, that the overall measurement differences between both
microphones can be assumed to be Gaussian distributed with zero mean.
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(a) Deviation of left and right microphones (b) PDFs for SPL deviation between left and
for all runs at position PP’. Mean value right microphone for different vehicle
at —0.04 dB(A). positions on the measurement track.

Figure 4.3: Overview of all measurements for both microphones with deviation between micro-
phones in absolute values and as probability distribution.

Another feature for which the impact can be compared to many investiga-
tions from literature is the temperature impact on the emitted SPL. According
to UNECE regulation no. 51 [UNE18] the air temperature range during mea-
surements is supposed to be in the range of 5°C to 40 °C. UNECE regulation
no. 117 [UNE22] demands additional road surface measurements which must
be in the range of 5 °C to 50 °C. Regulation 117 also implements a temperature
correction of the SPL, as already presented in eq. (2.4).

Engineers at Mercedes-Benz (MB) however designed a slightly different tem-
perature correction curve based on their many years of experience. This cor-
rection is defined as

Tair
LP(Tref) = LP(Tair) + TMmB IOg <T ) (41)

ref

with Ty being 2.60 dB(A). This temperature correction was investigated in
an earlier publication [Leu22]. The analysis concluded that the MB tempera-
ture correction leads to overall higher CoDs of tire models than the correction
from the standard. This is why the MB correction is considered to be a better
representation of the actual temperature relation with the SPL than the cor-
rection from the standard. This is not surprising since its steadiness alone is
physically more plausible. [Leu22] Fig. 4.4 shows a comparison of the adjust-
ment of the SPL resulting from the two different corrections.

68



4.1 Statistical Data Analysis

—— Norm —— MB-Correction
2
< 0
/M
T
S =2
<
-4

0 5 10 15 20 25 30 35 40 45 50

Temperature (°C)

Figure 4.4: Two different temperature correction curves for the absolute SPL. Reference temper-
ature is 20°C as indicated by the zero-crossing of both curves at 20°C. The illustrated
curves show the correction for the air temperature measured on the test site. [Leu22]

The air temperature of the measurements ranges from 13.40 °C to 31.46 °C
and the road temperature from 15.83 °C to 49.37 °C. It can be noted that the
temperature range in which measurements are performed makes it almost
trivial which correction curve is applied since no large difference occurs. Ta-
ble 4.1 presents the overall deviations due to temperature for both tempera-

tures and correction curves.

Table 4.1: Absolute temperature influence on the SPLs of the entire data set, calculated with two
different correction functions and two different temperature measurements.

Temperature Norm MB
Min Max Min Max
Air —0.40 0.34 —0.45 0.51
Road —0.25 0.88 —0.26 1.02

In literature some different opinions on which temperature results in the most
accurate adaptation of the SPL exist. It is also questionable if the correction
curves need to be adapted for different temperatures. As indicated in fig. 4.5,
a linear relation between air and road temperature of all performed measure-
ments can be found. This relation reaches a CoD of 0.69 for
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Troad = 1.63T,;, — 2.34°C. More interesting than the linear relationship is
the actual range of the recorded values, which is almost twice as large for
the road temperature as for the air temperature. While all the recorded air
temperatures are distributed around the reference value of 23 °C, most road
temperatures are located around 37 °C as indicated by the PDFs in fig. 4.5.
The PDFs are estimated with Gaussian kernels and a bandwidth of two. The
higher overall values in road temperature are not surprising since all measure-
ments are conducted outdoors, which makes it nearly impossible to prevent
the surface from warming up due to solar radiation. This also leads to much
higher local fluctuations due to measurement location as well as temporary
fluctuations due to e.g., cloud fronts for the road temperature compared to air
temperature. This observation aligns with the literature reported on in the
temperature paragraph in section 2.1.2.

Air Temperature (°C)

Road Temperature (°C)

Figure 4.5: Relation between air temperature and road temperature measurements for all runs,
at position PP’ with PDFs and regression curve calculated with least-squares.

In the following sections, tire parameters are considered as features in ML
models and the models are used to explain the impact of single features on the
recorded SPL through methods of XAI For features with high covariance, this
can lead to fluctuating feature importance since the model somehow randomly
assigns the weights to highly correlated features. Therefore, fig. 4.6 shows the
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4.1 Statistical Data Analysis

covariance between features calculated for the overall amount of 145743 data
points. The tire nominal width, tire aspect ratio, and the rim diameter have
rather high correlation coefficients. In particular, the correlation between
the tire nominal width and the rim diameter is not surprising. This can be
explained with the overall industrial trend of growing diameters and widths
due to design reasons, as well as other changing engineering requirements
like heavier vehicles that demand higher possible loads as well as growing
engine power which results in larger brakes and therefore demand for more
space. The negative correlation between the tire nominal width and the aspect
ratio is also explained due to the definition of the aspect ratio, which defines
the sidewall height in percent of the nominal width. Meaning not reducing
the aspect ratio with increasing width would lead to exceptionally high tire
sidewalls. The same principle applies for the rim diameter and the aspect ratio.
With growing rim diameter, the aspect ratio generally decreases. This leads to
a compensation of the outer tire diameter. The speed index only shows some-
how higher correlation with the aspect ratio. This can be explained through
the construction of performance tires, which tend to have large width and low
aspect ratio to increase transversal stiffness. At the same time these tires are
designed for high speeds and thus have high speed indices. The load index
only shows moderate correlation to other parameters. In appendix B more
correlation analysis can be seen.
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Figure 4.6: Feature covariance as heat map for input features with each point on test track as
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4.2 Linear Regression Models

Before training complex ML models, it is reasonable to investigate some
simpler models. These can be used as benchmark models for more complex
models to evaluate the trade-off between model performance and complex-
ity. These benchmark models mostly do not require complex optimization
strategies and allow for easier model interpretation.

The numerical data recorded during the measurements can be used for linear
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regression models. Three different modeling approaches are investigated.
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4.2 Linear Regression Models

4.2.1 TRN Coefficients

As described in section 4.1, the TRN coefficients are calculated from eq. (2.2)
for each tire. These parameters can be averaged to create a predictive model.
To ensure comparable conditions for the accuracy, similar to later evaluated
ML models, a train test split with LOOCV is applied. The omitted tire is there-
fore predicted using the average coefficient values and the deviations from
the actual measurements are calculated. Since this model does not require
any knowledge of further tires for the prediction, it can be interpreted as the
most simple possible benchmark model.

The data sets are not specially filtered, leading to slightly unbalanced sets
since the number of runs per tire is not exactly the same. However, this is
considered the best approach when it comes to model comparison since the
same runs are used furthermore for the ML models. The decision to not re-
strictively filter the data is taken to ensure that the spread in variables as the
air temperature or wind speed is as high as possible. Also, as shown in a pre-
viously published research paper, the impact of slightly unbalanced data sets
for multiple linear regression models is not essential [Leu22].

The TRN coefficients are calculated as average values for the left and right
sides. Fig. 4.7 displays the model input and output. This sketch will reoccur
throughout the whole methodological part of this dissertation to allow for a
quick overview of the model design.

{ Linear Regression1
Vehicle Speed L J SPL at vehicle speed at PP’

Figure 4.7: Principle sketch of TRN coefficients model.

The LOOCV with the RMSE of the predictions is used to evaluate the predic-
tion quality. The same evaluation is used later for the ML models. The error
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vector necessary for the calculation of the RMSE is constructed by subtract-
ing the predicted output from measurements for the left as well as the right
microphone.

This approach leads to the results in table 4.2. These results, as well as all
further results, are however dependent on the chosen set of tires and do not
guarantee to represent the overall market.

Table 4.2: Performance metric for TRN coefficients model calculated with LOOCV. All values
expect Meang: in dB(A). The values are not averaged over the number of outputs, so
that these values indicate the RMSE between vectors with 2 elements each.

Meangysg  STDpyse  MaXpyse  Mingysg  Meange
1.56 0.78 3.60 0.60 0.89

To gain more insight into the loss, fig. 4.8 displays the correlation between the
coefficients a and b as well as their PDFs. For the calculation of the TRN in
this dissertation, the reference speed v,.sis set to 1 km h™1, This implies the co-
efficients, especially coefficient a, should not be interpreted as SPL at the ref-
erence speed but they are merely mathematical coefficients used in the equa-
tion. It is visible that a high correlation between both tire coefficients exists.
A linear regression model of both values, as indicated in the figure reaches
R? = 0.87 with a mean residual of zero (-5e-15) and a Standard Deviation
(STD) of residuals of 0.61. Considering these values as well as the fact, that
the 95 % confidence interval for the a values lies in the range from 7.25 dB(A)
to 9.02dB(A) and for b in the range from 33.51 dB(A) to 34.55dB(A), it is
obvious that even the least informative model is not completely off in the av-
erage prediction. However, especially tires which are far away from the mean
values, lead to poor prediction accuracy in the model. This leads to the maxi-
mum RMSE of 3.60 dB(A). Furthermore, due to its simplicity, this benchmark
model cannot provide any further knowledge on feature importance of the
tire and is not considered useful for predictions of new tires since it only pre-
dicts the mean values of the speed relation in the training data. However, this
is a direct result of the input values which are used in this model.
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Figure 4.8: Analysis of correlation of TRN coefficients with their independent PDFs. As refer-
ence speed Uy is defined as 1kmh™L.

4.2.2 Linear Regression

As second benchmark model, a linear regression with more numerical input
data is considered. No interactions between variables are considered and
only the vehicle speed is preprocessed to be log,, vif with v,y = 1kmh™!.
This is applied because the literature provides evidence of this connection
([Nil76, San02, Leu22]) and disregarding this can be considered to intention-
ally worsen the model accuracy.

As stated above, the second benchmark model takes more values as input.
These partly describe the tire itself, the environmental conditions, and the
operation conditions. Fig. 4.9 shows a full principle sketch with the corre-
sponding input and output values of the model.
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Figure 4.9: Principle sketch of the linear regression model. Rubber hardness incorporates two
hardness values with correlated surface temperature. Environment incorporates the
wind speed and direction, air and road temperature, air pressure, and humidity. Tire
geometry incorporates the tire nominal width, the aspect ratio, rim diameter, and
profile depth. Tire labels refer to the load and speed index.

The performance metric for the linear regression model is displayed in ta-
ble 4.3. The model outperforms the first presented model which only used the
TRN coefficients in the maximum and the mean RMSE.

Table 4.3: Performance metric for linear regression calculated with LOOCV. All values expect
Meang: in dB(A). The values are not averaged over the number of outputs, so that
these values indicate the RMSE between vectors with 2 elements each.

Model Meangyse  STDpyse Maxpyse  Mingyse  Meang
Linear Regression 1.54 0.65 3.04 0.68 0.90
TRN Coefficients 1.56 0.78 3.60 0.60 0.89

The mean RMSE with 1.54 dB(A) is rather good for such a simple linear re-
gression model, however a maximum RMSE of 3.04 dB(A) is very high and
shows that the model does not generalize. One large advantage of the sim-
ple regression models compared to the latter build machine learning models
is the easy interpretability. Even though the model does not result in a low
RMSE, the associated CoD is high, indicating that the model does capture a
high percentage of the data variance correctly. It is therefore still interesting
to look into the model reasoning.

The importance of feature x; can be analyzed through

(max(x;) — min(x;)) mean(;) (4.2)
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which calculates the absolute difference in SPL caused by one feature over its
recorded domain on basis of the mean correlated regression coefficient 8; of
all different models obtained through the cross validation as average for the
left and right microphone.
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Tire Speed Index
Rim Diameter
Wind Direction

ind Spee
Air Temperature
Humidity
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Road Temperature
Tire Temperature Block
Tire Load Index
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Feature Importance (dB(A))

Figure 4.10: Linear regression model feature impact, associated p-values of the regression coef-
ficients are presented in table A.6.

As indicated in the mean feature importances in fig. 4.10, the major variabil-
ity in the SPL results from the vehicle speed, tire nominal width, and tire load
index. The overall high values especially in the speed importance is as ex-
pected from earlier investigations where only the speed was considered. The
low absolute importance of the wind speed and wind direction seem plausi-
ble since measurements are conducted to a maximum wind speed of 5ms~!
which is assumed to not impact the SPLs gravely. Still, the observation that
with higher wind speeds, the SPL decreases is not plausible, the irrelevance
of both variables is also indicated by their p-values which are calculated to
0.38 and 0.60 for wind speed and wind direction. The importance of the shore
values lacks explainability. While the shore values in the shoulder region cor-
relate negatively with the SPL, the shore values in the tread region correlate
positively with the SPL. This can be a result of the position at which the shore
hardness measurements are conducted. The shoulder measurement is under
normal conditions not part of the contact patch, so that the relevant indication
of the model is an increasing SPL for increasing rubber hardness. Generally,
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it is also questionable if the model weights the impact of the shore hardness
at the shoulder well, since its p-value reaches 0.25. The associated tempera-
tures show opposing behavior. In case of the air and road temperature, the
model captures the overall understanding of a negative correlation between
the temperatures and the SPL in the range from 5°C to 50 °C. The effect is
only spread over the two variables passed independently to the model. Still,
the p-value of the air temperature is greater than the one of the road temper-
ature which might indicate that the road temperature is generally the more
important variable. Lastly, the figure shows that a strong negative correlation
between the load index and the SPL exists. This could be a result of higher
tire mass and stiffer inner structure which generally come along with higher
load index and lead to less vibration and therefore less noisy tires. However,
it can be possible that the trends in fig. 4.10 are impacted by the high multi-
collinearities of some variables. All p-values are available in table A.6.

The feature importance can be examined with a sanity check. This is possible
through the well-known and proven speed relation of the TRN. Combining
this with the observation of the distribution of the TRN coefficients leads to
the approximations

I, ~ blog <UL) (4.3)

> Li~a . (4.4)

ieF\v

Arithmetic mean of TRN coefficients a

Arithmetic mean of TRN coefficients b
Set of all features

Feature importance of feature i

Feature importance of the vehicle speed i
Minimum speed in data set

Maximum speed in data set

where:

= ol el

c C
E
5

=]
o
~

In case of eq. (4.3) the values are similar with 16.43 for the left hand side
and 16.38 for the right hand side, which indicates that the model correctly
reproduced the impact of the vehicle speed on the SPL. In case of eq. (4.4) the
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values are with 3.64 and 8.13 far more apart. This is not entirely surprising
since the linear regression model is also off by a mean RMSE of 1.54 dB(A),
therefore the sanity check can be considered working.

4.2.3 Lasso Regression

The third benchmark model is a lasso regression, which has, as shown in
fig. 4.11, the same input variables as the linear regression model.

Tire Geometry

Tire Labels .
Lasso Regression
Rubber Hardness SPL at PP’ for

both microphones

Environment
Vehicle Speed

J

Figure 4.11: Principle sketch of the lasso regression model. Rubber hardness incorporates two
hardness values with correlated surface temperature. Environment incorporates
the wind speed and direction, air and road temperature, air pressure, and humidity.
Tire geometry incorporates the tire width, the aspect ratio, rim diameter, and profile
depth. Tire labels refer to the load and speed index.

The lasso approach (explained in section 2.4.1) applies an L1 norm regular-
ization on the regression coeflicients to avoid large coefficients. This process
makes use of a hyperparameter A, that scales the impact of the L1 norm. In
case of the lasso regression, a hyperparameter optimization of A can be per-
formed. The hyperparameter for the present problem is evaluated through
a grid search with values in from 0.01 to 1 with steps of 0.01. For each data
split the best hyperparameter is obtained by evaluating the train performance
through 5-fold-cross-validation and comparing the obtained training perfor-
mance to those with other hyperparameter values of the search space. The
optimization and calculation is done with the Python package Scikit-learn
[Ped11]. In all 42 data splits, the A values leading to the lowest RMSE are de-
termined from 0.02 to 0.04. As seen in the associated performance metric in
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table 4.4 this leads to a 0.09 dB(A) lower mean RMSE and 0.09 dB(A) lower
maximum RMSE compared to the linear regression model.

Table 4.4: Performance metric for lasso regression calculated with LOOCV. All values expect
Meang: in dB(A). The values are not averaged over the number of outputs, so that
these values indicate the RMSE between vectors with 2 elements each.

Model Meangyse  STDpuse MaXpyse  Mingyse  Meang
Lasso Regression 1.45 0.55 2.95 0.70 0.91
Linear Regression 1.54 0.65 3.04 0.68 0.90
TRN Coefficients 1.56 0.78 3.60 0.60 0.89

Fig. 4.12 shows the feature importance for the linear regression model in
fig. 4.12a and for the lasso model in fig. 4.12b. For easier visual comparison,
fig. 4.12b presents them sorted according to their importance in the linear re-
gression model. It seems that the overall trend of feature importance remains
similar. However, it is especially notable that the temperatures of the shore
hardness measurements lose substantially in impact. This is what would gen-
erally be expected. Summarized, the lasso regression almost suppresses nine
features completely. This exact behavior is why lasso models are sometimes
considered as models for feature selection. The coefficient vector represents a
sparse solution and therefore exactly what is expected from a lasso regression.
Interestingly, the impact of the environmental air pressure remains intact and
also reaches high significance as indicated by their p-values (table A.6). This
can be explained by the slight imbalance in the data, generally more tires
are measures at higher air pressures than lower air pressures. These further-
more show slightly higher SPLs than the ones measures at lower air pressures
which is also a result of the observation that slightly more data points at higher
speeds exist at higher air pressures than at lower air pressures.
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Figure 4.12: Comparison in feature importances obtained for the linear and lasso model, sorted
according to the feature importance obtained for the linear regression model. Both
figures display the feature importance as average of the LOOCV model splits for
the average of the left and right microphone.

4.3 Artificial Neural Network

The following section is divided into two subsections. First, an overview of
the scope of the used ANNSs is given and a hyperparameter optimization is
performed. The optimized models are then used to approximate the general-
ization performance.

4.3.1 Model Definition and Hyperparameter
Optimization

All models designed so far are multiple linear regression models, which cannot
depict nonlinearities between features but only in variables themselves. Even
though they would also allow for higher orders of variables in features, this
was not taken into account. However, the relation between tire parameters
and their sound emission is highly nonlinear. For this, ANNs as described in
section 2.4.2 are useful. All input parameters used previously in this research
are solely numeric values so that they can be directly used as input for an ANN.
The ANN also has the advantage that the microphones on the left and right
sides of the test track can be used in a multi-output regression. This allows
for an interdependent calculation of the weights. The model outputs for both
microphones are thus related, which helps in avoiding unsteady solutions. In
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the earlier presented linear models, both sides are completely independent.
This can in essence lead to predictions that diverge largely for both sides.

Additionally to the presented numeric values used in the linear model ap-
proaches, the ANN receives information about the measurement vehicle, the
tire manufacturer, and the driving direction. Fig. 4.13 shows the model sketch.
The driving direction indicates from which side the symmetric test track is
entered.

Tire Geometry
Tire Labels
Rubber Hardness
Environment

Artificial Neural

: Network SPL at PP’ for
Vehicle Speed both microphones

Tire Manufacturer

Driving Direction

Measurement Vehicle

Figure 4.13: Principle sketch of the ANN. Rubber hardness incorporates two hardness values
with correlated surface temperature. Environment incorporates the wind speed
and direction, air and road temperature, air pressure, and humidity. Tire geome-
try incorporates the tire nominal width, the aspect ratio, rim diameter, and profile
depth. Tire labels refer to the load and speed index.

The measurement vehicle and tire manufacturer cannot be directly included
as input in the ANN. This is due to them being on nominal scale (e.g., words in
case of the manufacturer) and series numbers (in case of the vehicles). While
the second is a numeric format and therefore generally usable in ANNS, giving
these numbers directly to the ANN is not expected to result in realistic outputs.
This is because the numbers defined by the vehicle manufacturer do not have
a strict mathematical relation.

These issues can be overcome through applying encodings to the input. Sec-
tion 3.3 gives an explanation on the one-hot encoding. The one-hot encoding
of the measurement vehicle, the tire manufacturer, and the driving direction
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leads to them being in linear numeric space. As such, it is more reasonable
to use them as input in the ANN.

In case of the four different measurement vehicles this leads to the transfor-

mation as shown below.

= o o O
— e

The input vector representing the vehicle labeled as 212 (E-Class) is repre-
sented as the second row of the matrix, so that x = (x;,X,,X3,X4).

The measurement vehicles could also be described with deeper features which
include actual relations and scalability. These could include the vehicle mass,
length, engine power, drag coefficient, wheelhouse geometry, or ground clear-
ance. However, in an earlier publication it was found, that the impact of five
different measurement vehicles on the TRN under measurement conditions
according to UNECE regulation no. 51.03 and UN regulation no. 117 are neg-
ligible within the group of investigated vehicles [Leu22]. Dissolving the ve-
hicles in deeper features is therefore not expected to lead to higher model
accuracy. In cases where more than four different vehicles are used for mea-
surements, deeper features could be useful for the model, however in this case
due to low variance it is not expected to produce better models. Still it is rea-
sonable to allow for a distinction of the different vehicles which is achieved
through the one-hot encoded values as input.

The one-hot encoded values can be used as single neurons for each value x; of
X in the input layer. Guo et al. show that it might be better to include the one-
hot encoded variables in an additional input layer, the so called embedding
layer [Guo16]. This approach breaks down the one-hot encoding to a prede-
fined number of neurons. The further used ANN includes three embedding
structures: the first one receives the fourteen different tire manufacturers as
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input, the second one receives the four different measurement vehicles as in-
put, and the third one receives the shore hardness on shoulder and block with
the corresponding tire surface temperature as input. Each of these structures
breaks down their inputs to one output. This definition of the terminology
clarifies, that the embedding happens in one layer, yet the single values that
are embedded are completely independent. Therefore these embeddings are
referred to as embedding structures. All three embedding structures break
down their input to one neuron so that the core ANN receives a total number
of 17 features as input. The choice to apply embedding on the shore hardness
is taken due to its interdependence between both hardness values as well as
the associated temperatures, as seen in fig. 4.6.

The equation of how the encoded values are combined is trained during net-
work training and can also include nonlinearities through activation functions.
Fig. 4.14 shows the structure developed for hyperparameter optimization.

Embedding Layer Input Layer Hidden Layer ~ Output Layer

Figure 4.14: Principle sketch of ANN architecture with embedding layer including three embed-
ding structures.

A Python framework for hyperparameter optimization is Optuna [Aki19]. In
cases of multi-objective Optuna uses the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [Deb02] sampler. The Optuna package also allows ranking
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the impact of different hyperparameters on the models performance through
an adaption of the Analysis of Variance (ANOVA) [Hut19].

During the hyperparameter optimization the following parameters are inves-
tigated:

« Activation function in embedding layer: Rectified Linear Unit (ReLU),
no activation

Activation function in hidden layers: Sigmoid, Tangens Hyperbolicus
(Tanh), ReLU, and Leaky Rectified Linear Unit (LeakyReLU) with
negative slope of 0.1

Activation function in output layer: ReLU, no activation

+ Number of layers: embedding layer, input layer, 1-4 hidden layers,
output layer

« Batch size: 4, 16, 64
« Learning rate: le-4, le-3, le-2
» Dropout rate: 0, 0.1, 0.2, 0.4

The dropout layer is located after the first hidden layer. The dropout layer
deactivates a random number of neurons independently in each forward pass.
Whether a neuron is deactivated is determined by a Bernoulli distribution for
the given probability. The number of neurons in each layer is indirectly de-
fined by the number of layers. A subsequent layer has four times or a quarter
of the number of neurons of its preliminary layer, depending on whether its
layer count (counted from zero) is smaller or larger/equal the number of layers
divided by two. Model training is performed for a maximum of 5000 epochs,
but early stopping applies if for 100 epochs the test set performance does not
improve. Overall, 200 hyperparameter combinations (further referred to as
trials) are evaluated. The Python package Optuna handles the parameter se-
lection for each model. The optimization process is defined as multi-objective.
The training and test loss, which are both minimization criteria, are the ob-
jectives of the optimization. The decision to optimize both, the training and
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test loss, is made to reach a reasonable compromise between potentially over-
and underfitting.

Hyperparameter optimization is performed on three different data splits to
ensure that the ANNs architecture is not specifically optimized for one tire.
For this, tires 0, 20, and 40 from table 3.1 are chosen as test tires and the
data sets are constructed according to LOOCV. Each of these hyperparameter
optimizations is conducted completely independent for 200 trials. Since the
model parameter settings are defined during the hyperparameter optimiza-
tion, they also vary for the different optimizations. The optimization uses
Adam as the optimizer, and the loss function is MSE. All further presented
ANNs and CNNs are built in PyTorch [Pas19].

The input data which is not one-hot encoded is standardized with the z-score
normalization presented in eq. (3.2). The transformation is applied on each
feature individually. This is done since literature shows that feature scal-
ing speeds up the learning process through weighting all attributes equally
[Han11].

Fig. 4.15 shows the three different hyperparameter optimizations with im-
portance of each hyperparameter for the test loss. The strongest agreement
seems to lie in the importance and the activation function after the output
layer, whereby most of the values of the theoretical Pareto front show that it
is better not to use an activation function. However, solely considering the
theoretical Pareto front of the study might be misleading. Fig. 4.16 shows
all 200 trials with test and train loss. The train loss is thereby always cal-
culated for the model which performed the best on the test data. Assuming
a model to neither under- nor overfit, the multi-objective optimization with
train and test loss consists of two linearly dependent objectives. Furthermore,
the augmentation shows that many more trials exist which are almost not
differentiable in performance from the ones defined by the theoretical Pareto
front. Retrospectively, it is reasonable to argue that the data does not exhibit
an explicit Pareto front since no real trade-off curve between test and train
loss is seen in fig. 4.16.
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Figure 4.15: Hyperparameter importances for test data set for optimization with three data splits
for a study including 200 different parameter settings for the ANN.
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Figure 4.16: Train over test losses for hyperparameter study of first data split in ANN.

The most important hyperparameters are the activation functions in the out-
put and the hidden layers. Considering each 10 best performing models on
the test sets defines LeakyReLU 14 times as the most promising activation
function for the hidden layers. The importance is rather consistent for test
and train data set, which is shown in table A.7.
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Taking a closer look into the optimization history, which shows the minimum
test loss for all 600 trained models, in fig. 4.17, it seems that the study is mainly
impacted by large outliers. The associated distribution is shown in fig. 4.18 and
demonstrates that 6 models reach losses higher than 90 dB(A) and 36 models
are in the range from 65dB(A) to 70dB(A) . The analysis of large outliers
shows that in these cases, one of both microphone values is constantly pre-
dicted as zero if the last layer is ReLU activated, otherwise they even reach
negative values, while the other side predicts reasonable values. These are
in the range of 60 dB(A) as RMSE. Models which predict zero for both sides
have around 90 dB(A). In case of smaller outliers in the range of 10 dB(A) to
20 dB(A) RMSE, the predicted values for left and right side seem to be consis-
tent but off by a certain amount. The models in the RMSE range of five seem
to predict almost the same SPLs for any input, which results form large bias
terms. This is observed to result from the sparsity of data in combination with
the activation function in the hidden layers. These models mostly use Tanh
or Sigmoid as hidden layer activation which reach saturation for some input
values. That input value in these cases is smaller than the data grid, which
leads to constant predictions.

—e— Split 0 —— Split 20 —— Split 40

- Dbk

0 20 40 60 80 100 120 140 160 180 200

Trial

Figure 4.17: Optimization history for three different hyperparameter studies of an ANN. Each
study uses a different split for test loss estimation. The figure displays test losses
only.
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Figure 4.18: Histogram for three different hyperparameter studies of an ANN. Figure displays
test losses only.

All together, fig. 4.17 and fig. 4.18 allow two conclusions. First, the majority of
models (404/600) will reach acceptable accuracy (RMSE below 2.0 dB(A)) on
the test set, no matter the choice of the hyperparameter settings, at least in the
investigated ranges of hyperparameters. Second, no optimal hyperparameter
settings for the three test studies exist.

4.3.2 Performance Evaluation

Since the hyperparameter study did not result in distinct hyperparameter set-
ting for the investigated models for the LOOCV investigation the following
settings are chose as a compromise:

» Activation function in hidden layers: LeakyReLU
« Activation function in output layer: ReLU

« No activation function in embedding layer

» Number of hidden layers: 4

« Batch size: 4

+ Learning rate: adaptive between 1le-5 and le-2
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» Dropout rate: 0.1

Throughout the hyperparameter studies, the performance of the model is as-
sessed by examining the combination of test and train loss. This is decided to
build a compromise between under- and overfitting, but it does not guarantee
that the best performing model for the test set is chosen. To avoid this behav-
ior, in the LOOCYV for each split two models are kept and investigated on their
losses. The first model is the model that reaches the minimal test error, not
taking the training loss into account, these models are further indexed with
Test optimized. The second model represents the model with minimal sum
of test and training loss. In the following section the second model is referred
to as the Test-Train (TT) model performance, these models are for visualiza-
tion purposes not indexed specially. After each epoch the whole training set
is passed through the model in training to calculate the exact loss on the train-
ing set equivalently to the test loss. The hyperparameter study furthermore
showed that rather high learning rates are necessary for the model to not
get stuck in local minima during training. These learning rates tend to lead
to strong oscillation in the near region of the expected global minima. This
observation leads to the implementation of an adaptive learning rate. This
principle was introduced by Smith [Smi15]. In this dissertation, the cyclic
range is defined in the range from 1le-5 to 0.01, the learning rate is re-scaled
each cycle with an exponential function as seen in fig. 4.19. One cycle repre-
sents 10 steps upwards and 50 steps downwards. After each epoch, one step
in the learning rate is taken. The model training includes 600 epochs. Early
stopping, as in the hyperparameter study, is not applied since this could lead
to interruption in the training before reaching small learning rates.
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Figure 4.19: Cycling learning rate for the ANNSs.

The resulting RMSE of each data split is shown in fig. 4.20 for the models with
combined train and test loss as evaluation criteria. The diagram shows that
for the majority of models the test performance reaches less than 0.3 dB(A)
higher RMSE values than on the train data set. The fact that some models
score up to 0.4 dB(A) higher RMSE values on the train set than the test set
is assumed to be caused by the method of choosing the best model through
the combined test and train loss. The changes in test loss for each data split
are caused by the imbalance in test and train data. Through the complete
elimination of one tire in the training set and using this data as test set, the
data sets are not balanced at all and therefore lead to higher fluctuation than
k-fold methods that ensure equal populations in test and train set. Also, some
tires have larger deviations in their true data between single runs or between
the microphones, which naturally causes their losses to be larger. Since the
test set is only constructed with one tire, these effects dominate the changes
in test performance. However, it is visible that the ANN approach performs
better than the linear and lasso regression models on all shown metrics. It is
also visible from fig. 4.20 that the variance in the performance on the training
set is smaller than the variance of the test data set. This can be interpreted as
an indicator that the data split does not impact the training process hugely.
Training performances that vary more than test performances would have to
be examined since the training data set does only change by approximately
1/42 for all different splits so that no large changes in the training performance
should appear. The corresponding performance metric is shown in table 4.5.
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All values Meangysg, ST Dypyises and Maxgyse are herein metrics for the per-
formance on the test data set. Only Meangysg, 1rain describes the performance
of the models on the training data set. This nomenclature is used in all fol-

lowing performance metrics.
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Figure 4.20: RMSE for LOOCV data splits for ANNs defined as Test-Train (TT) models.

Table 4.5: Performance metric for ANNs calculated with LOOCV. All values in dB(A). The val-
ues are not averaged over the number of outputs, so that these values indicate the
RMSE between vectors with 2 elements each.

Model Meanypysg  STDpysg MaXpyse  Mingyse  Meahgysg, train
ANN 1.0 0.31 1.84 0.64 0.79
ANNT optimized 0.86 0.26 1.57 0.51 1.30

4.4 Convolutional Neural Network

The following section is divided into three subsections. First, an overview of
the scope of the defined CNNs is given, then the hyperparameter optimiza-
tion is explained. This leads to the impact of the different hyperparameters
on model performance. The optimized model is then used to approximate the

92



4.4 Convolutional Neural Network

generalization performance and finally interpret the model based on Shap-
ley values.

4.4.1 Model Definition and Hyperparameter
Optimization

After transforming the images of each tire into 224x224 tensors and matching
them with the corresponding acoustic measurements, the ML model can be
trained. All images of one tire are combined with each run of this specific
tire. The number of tire section images range from 12 to 76. The different
amount in these images is due to the masking process (described in more de-
tail in section 3.5) combined with some digitization errors present in the tire
circumference images. While the masking process is done for each tire with a
pixel step correlating to its specific patch length, the images are afterwards fil-
tered for the appearance of obvious image artifact which leads to the different
amount in images per tire. This is done through a manual visual inspection.
For each tire, a minimum of two runs, and maximum of six runs is recorded in
the speed range of 78.5kmh~! to 81.5kmh~! at PP’. The total data set used
in the CNN has 5074 data points for an overall of 125 runs.

Fig. 4.21 presents the schematic structure of the CNN.

( Convolutional 1

Tire Images LNeural Networkj SPL at PP’ for
both microphones

Figure 4.21: Schematic model representation of CNN structure.

Before applying hyperparameter optimization on the CNN, the general ex-
pected error is analyzed.

The CNN does not receive any numeric data, not even the vehicle speed, ex-
cept the SPL values necessary to perform supervised learning. This means
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that only one specific vehicle speed can be predicted. Yet it is not possi-
ble to only include runs of one exact vehicle speed since this shrinks down
the data set to a minimum. Therefore, only runs between 78.5km h~! to
81.5kmh~! at PP’ are included. Assuming an average rolling speed coeffi-
cient b of 34.03 dB(A), the expected average difference due to speed can reach
34.03 logm(81 5) = 0.55dB(A). The accuracy in the CNN is therefore not ex-
pected to be less than 0.55dB(A) per microphone, or rather 0.78 dB(A) in
RMSE. The speed range around 80 kmh~! is chosen since UNECE regulation
no. 117, which defines the approval process of tire rolling sound emission,
demands measurements in the range of 70kmh~! to 90kmh~! to calculate
a reference SPL at 80kmh~! [UNE22].

The hyperparameter optimization includes the following changes in the CNN
architecture:

Activation function in convolutional layer: ReLU, Tanh, Sigmoid
« Convolutional kernel size: 3, 4, 5

« Pooling: Max, Avg, None (kernel size 2)

« Convolution layers: 1, 2, 3, 4,

« Batch size: 4, 16, 64,

» Learning rate: 1le-6, le-5, le-4,

« Dropout: 0, 0.1, 0.2, 0.4

The number of output channels in the convolution layers is set to twice the
number of input channels. Two fully connected layers precede the convolu-
tion layers in the CNN. The second fully connected layer breaks down 28 input
values to two network outputs. After each fully connected layer the values
are passed through a ReLU activation function. The dropout layer is situated
between both fully connected layers. The hyperparameter optimization re-
ceives the loss on training and test data set as criteria for minimization. The
models kept are the ones performing best on the test set as well as the TT
model (similarly to the process described in section 4.3). Hyperparameter op-
timization is performed on three independent data splits. As seen in fig. 4.22
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the importance of each hyperparameter diverges slightly for different data
splits. However the overall trend of importance can be identifies as similar
for each split. The as best identified parameter setting varies more gravely.
Similar to the observation in section 4.3 in case of the ANN no optimal set-
ting for all three data splits can be identified. The hyperparameter importance
is also less stable in case of the CNN than in case of the ANN. For the dropout
setting the ten best performing models on the test set identify 0.1, 0.1, and 0.2
through the multi-objective optimization as most promising. However it must
be stated that models which perform almost identical have different setting
in the dropout layer. This begs the question if the hyperparameter study truly
identified true hyperparameter importances or if those are merely impacted
by models which did not converge at all.

Dropout ]
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Learning Rate
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Figure 4.22: Hyperparameter importances for test data set for three data splits on model perfor-
mance of on the test set for CNNs.

The assumption of the hyperparameter study being largely impacted by out-
liers is supported by the optimization history presented in 4.17. Identical to
the optimization history for the ANN, the different steps in model perfor-
mance can be identified. It seems that in case of the CNN more models did
converge, than in case of the ANN. For the CNN 79/300 reached higher RMSEs
than 2 dB(A) while in case of the ANN this was the case for 196/600 models.
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Figure 4.23: Optimization history for three different hyperparameter studies of an CNN. Each
study uses a different split for test loss estimation. The figure displays test losses
only.
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Figure 4.24: Histogram for three different hyperparameter studies of an CNN. Figure displays
test losses only.

4.4.2 Performance Evaluation

The model performance is calculated through LOOCV approach with the fol-
lowing settings as trade-off from the hyperparameter study:

« Convolutional activation: Sigmoid

« Kernel size: 3
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« Pooling: Max (kernel size 2)

« Convolutional layers: 3

+ Batch size: 16

+ Learning rate: Adaptive between le-5 and 1le-2
« Dropout: 0.1

The learning rate is adapted similarly as in the earlier described ANN after
each epoch according to fig. 4.19. Fig. 4.25 presents the losses for each indi-
vidual split. The corresponding performance is shown in table 4.6. The CNN
reaches an overall better mean performance than the ANN, however the de-
viation between model splits is marginally larger for the CNN approach.
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Figure 4.25: RMSE for LOOCV data splits for CNNs defined as TT models.

Table 4.6: Performance metric for CNNs calculated with LOOCV. All values in dB(A). The values
are not averaged over the number of outputs, so that these values indicate the RMSE
between vectors with 2 elements each.

Model Meangysg  STDpysp Maxpysg  Mingygy  Meangygg rain
~ —T
CNN~80kmh 0.73 0.33 2.10 0.28 0.74
~80kmh™1
CNN o ed 0.53 0.17 0.86 0.18 1.67
ANN?! ons 1.0 0.31 1.84 0.64 0.79
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As seen in fig. 4.2 the spread in SPLs is around 5 dB(A) for each specific vehi-
cle speed. The restricted data used for the CNN has approximately the same
spread. Values for the left microphone range from 70.16 dB(A) to 76.17 dB(A)
and 69.79 dB(A) to 76.28 dB(A) for the right microphone. It can be assumed
that the performance is, up to a certain amount, defined by the spread in the
left out measurements. This is especially the case since each test set only in-
cludes two to six different measurements, making it difficult for the CNN to
learn to fit their variance especially for both microphone sides, if those tires
variance is not represented exactly in the training set. In case of tire eleven
as test tire, a RMSE of 2.10 dB(A) is obtained, the true underlying data, as pre-
sented in fig. 4.26b, shows that the left out tire includes three measurements
whose trend in SPLs for both microphone sides is inconsistent. Furthermore
this tire is overall underestimated leading to the worst model split.

The underlying assumption of the images used as input is that the extraction
of tread patterns over the circumference of the tire has no influence on the
predicted SPL. This means the CNN should predict the same SPL for all indi-
vidual images of one tire. The prediction for three different data splits (model
3, 11, 24 in fig. 4.25) as well as the corresponding measurement values are
shown in fig. 4.26. The difference in the number of predictions is due to the
different number of images for each tire as well as the different number of
runs. The number of runs can be seen in the steps of the gray and light green
curves. In all three models the individual images of one tire do not lead to large
differences in the predicted SPLs. Furthermore, the left and right side are al-
most predicted as identical values, especially in case of fig. 4.26c. However,
the important observation is, that each of the models learned to distinguish
whether tire fragments are from the same or different tires. This is indicated
by the maximum spread between the predictions for the tire fragments of one
specific tire and their STDs, which reach 0.78 dB(A) and 0.2 dB(A) for tire 3,
1.32dB(A) and 0.25dB(A) for tire 11, and 0.80 dB(A) and 0.17 dB(A) for tire
24. These values are not as low as expected, however compared to the differ-
ence in SPL obtained for different tires, it can still be argued that the CNN
learned not to distinguish the fragment of one tire gravely.
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Figure 4.26: Comparison of model prediction and measurements for three different data splits.
Steps in reference values indicate the amount of measurements of the specific tire.
Predictions are done for each of the tire digital footprint images of one tire.

The mean RMSE of the CNNss is calculated to 0.73 dB(A) (as seen in table 4.6)
and can thus be considered good, especially with the additional information
that the mean is pulled upward by only two outliers which reach higher RM-
SEs than 1.5dB(A). However, the test error can be interpreted even further.
Similar to the training loss due to speed difference which was approximated
with an average TRN coefficient at the beginning of this section as 0.55 dB(A),
the actual test loss caused by speed differences can be calculated for each
tire with the tire specific TRN coefficient. This allows to put the loss caused
through inaccurate speed representation in respective to the reached test loss
for each data split. Fig. 4.27 shows the corresponding data, yet no clear rela-
tion between the losses is visible. The loss due to speed is calculated with the
TRN coefficient for each tire averaged for the left and right side and multiplied
by \/22) to make its value comparable to the RMSE.
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Figure 4.27: Test loss trough inaccurate speed representation compared to actual test loss
recorded by each data split.

4.4.3 Model Interpretation

Model interpretation is done with Shapley values on a model which is trained
on the whole data set. For this, the DeepExplainer of Shapley Additive Ex-
planations (SHAP) is used since it is computationally designed for DL models
and therefore more efficient [Lun17]. As background data, all 5074 images
are used. As test data, one image of each tire is picked. Fig. 4.28 shows three
different tires as inverted CNN input (4.28a) and their corresponding Shapley
values at the left (4.28b) and the right microphone (4.28c). Even though the
images do not indicate design rules for less noisy tires, they still allow some
insight into the prediction process.

The first observation is the change in the general area of importance. The
CNN seems to grasp the shape of the contact patch well and uses this general
information as a feature. This is indicated by the overall width and height of
colored pixels and the fact that this changes for different tires. Further, it does
not seem like the existence of more or wider circumferential grooves strongly
affects the predicted SPL. On the other hand, the CNN seems to recognize
transversal grooves very well. This is seen in the rows which include blocks.
Here, very little rows with constant coloring and therefor impact exist. Rather
only the rubber blocks seem to have an impact and the transversal grooves
are not categorized as important by the model. This is especially visible in the
third image row in the second block row from above. The lowest row shows
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all Shapley values for each microphone overlapped, these images are solely
included to show that there is in fact a rather large variance in the areas which
impact the prediction for each individual tire. All remaining tire footprints
and their corresponding Shapley values are available in the appendix D.
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Figure 4.28: Shapley values for images input of CNN structured like reference image, Shapley
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values left microphone, Shapley values right microphone. Red areas indicate a pos-
itive relation between pixel value and the SPL and blue areas indicate a negative
relation between pixel value and the SPL. The last row illustrates the overlapped

Shapley values of all 42 tires.
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4.5 Combination of CNN and ANN

The next logical step in model complexity is a combination of ANN and CNN.
The isolated CNN is not able to combine multiple vehicle speeds in one model
or take environmental conditions into account. This is especially important
considering the possible range in air and road temperature, which is known to
have a large impact on the emitted SPL. Also, the temperature range is not as
narrowly defined as, e.g., the wind speed so that it could simply be left out. At
the same time, the single ANN lacks all relevant information about the tread
pattern, from which around 16,000 different versions existed in 2002 [San02].

These observations lead to the idea of combining the CNN with the ANN into
one prediction model that receives multi-modal input. In the following, the
model which combines ANN and CNN is referred to as Combined Model (CM).
Fig. 4.29 shows the principle sketch.

Convolutional
Neural Network

Tire Images

Tire Geometry

Tire Labels Artificial Neural
Rubber Hardness Network SPL at PP’ for
Envi both microphones
nvironment
Vehicle Speed

Tire Manufacturer

Driving Direction

Measurement Vehicle

Figure 4.29: Principle sketch of CM. Rubber hardness incorporates two hardness values with
correlated surface temperature. Environment incorporates the wind speed and di-
rection, air and road temperature, air pressure, and humidity. Tire geometry incor-
porates the tire nominal width, the aspect ratio, rim diameter, and profile depth.
Tire labels refer to the load and speed index.

103



4 Development and Evaluation of Statistical and Machine Learning Models

Generally, this can be done by either pre-training the model entities by them-
selves and combining pre-trained models. However, in this case, the ANN
receives the output of the CNN as input, which does not allow for supervised
learning since no output labels are available for the training of the CNN, nor
are all necessary input values available to train the ANN. The output values of
the CNN and the embedding layers are combined with all other input values
of the ANN instance to one tensor. This is done by simply stacking tensors
together to one larger tensor. The ANN receives this tensor as input. The opti-
mizer receives all weights and biases available in the CNN, embedding layers,
and the ANN, allowing for the whole architecture to be trained as one entity.

Since the hyperparameter study of the CNN showed that no ideal design ex-
isted, the CNN structure is simplified slightly to decrease calculation time. Fig.
4.30 shows the architecture of the used CNN. Hyperparameter optimization
is performed for the activation function as well as the layer and neuron count
in the ANN structure. This study also includes the learning rate, batch size,
and dropout layer probability for 100 different models on three different data
splits. As slightly more promising the Elu [Cle15] function as activation func-
tion is observed. However, as in the previously shown cases no absolutely
clear trends can be derived, which is why it is refrained from discussing the
optimization further. The final ANN consists of the input layer, two hidden
layers and the output layer.

cemo Linear
Conv 2D Sigmoid | Cony 2p | Sigmoid Relu Linear Relu
00106
‘ (1, 4,3) Max Pool (2) 8 3) 8 12271)0) (@7, 2*5)

Figure 4.30: Structure of CNN part in combined model approach, nomenclature: Conv 2D(input
channels, output channels, kernel size), Max Pool (kernel size), Linear (input nodes,
output nodes).

Model performance is analyzed through LOOCYV, training and test losses for
each split on the TT models are displayed in fig. 4.31. The corresponding
metric with comparison to the singular CNN and ANN models is presented
in table 4.7. Even though the mean RMSE does not improve gravely and is
even worse compared to the CNN approach, the CM has advantages over to
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the single models. This is indicated by the smaller STD and especially by the
smaller max RMSE which indicates that the CM performs on all data splits bet-
ter and therefore reaches better generalization than the sole ANNs and CNNs.
Furthermore, the mean performance on the training set does not change as
gravely as in single models, with 0.74 dB(A) to 1.67 dB(A) for the CNN and
from 0.79 dB(A) to 1.30 dB(A) for the ANN, comparing TT best and best test
model performance. All data splits are trained for 30 epochs with a fixed
learning rate of 1e-4 and no adaptive learning rate since the scheduler showed
worse performance in a smaller study. However, model training shows that
the process is even after hyperparameter optimization still a stochastic pro-
cess which means that more epochs or multiple runs of the training process
can still improve the model performance. This is visualized in fig. 4.32.
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Figure 4.31: RMSE for LOOCV data splits for CM defined as TT models.

Table 4.7: Performance metric for CMs calculated with LOOCV. All values in dB(A). The values
are not averaged over the number of outputs, so that these values indicate the RMSE
between vectors with 2 elements each.

Model Meangysy  STDpyse Maxpysg  Mingysy  Meangysg, train
cM 0.95 0.28 1.59 0.51 0.63
CMreqt optimized 0.82 0.26 1.50 0.49 1.04
ANN 1.0 0.31 1.84 0.64 0.79
CNN~80kmh ! 0.73 0.33 2.10 0.28 0.74
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Figure 4.32: Losses per epoch for training and test data set for two individual splits in the
LOOCYV validation. Epoch zero indicated the losses after initiating the model, be-
fore training.

While the loss on the training data set shows convergence for both data splits,
the test loss, especially in fig. 4.32a, is much more volatile. This might result
from the imbalance in both data sets and the overall small number of data
points in the test set. Furthermore, especially looking at the image input, it
cannot be verified for each data split if the mathematical operation would
represent an extrapolation or an interpolation. The overall fast convergence
in the models is not surprising since through the combination of image and
numerical data, the CNN receives each image multiple times and the ANN re-
ceives each numerical data tensor multiple times. Therefore an epoch actually
represents multiple epochs in classic sense of ML problems.

In addition to the TT model performance for the test data set, it is also im-
portant to ensure whether the whole data range is covered with reasonable
accuracy. Fig. 4.33 displays the predicted and reference values for the test
data across two different data splits (for more model representations refer to
appendix C). These graphs show that all models seem to capture the impact
of the speed accurately, which is indicated by the fact that the predicted SPL
increases with increasing reference SPL. Some models tend to slightly over-
or underestimate the actual SPL, leading to the TT model losses as recorded
earlier.
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Figure 4.33: Prediction over reference values for two different data splits for test data.

Fig. 4.34 shows measurements which indicate that the shape of the runs of
different tires can vary greatly. It can be noted that even repeating runs for
the same tire or changing the speed sometimes changes the shape of the mea-
surement curve. The first observation is a result from different radiation char-
acteristics of different tires. How directional the emission characteristic of a
tire is, is mainly indicated by the incline and decline at the start and end of
the test track, as well as the setback at around 0 m.
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Figure 4.34: Example measurements of idle runs with 50 kmh™! at PP’ showing difference in
curve shape for different tires.

This observation makes it necessary to have information about the predicted
location on the test track as well. The simplest approach therefore is training
an independent model for each point of the test track, which does not need
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any adaptation in the networks structure but only requires the input and tar-
get values to be updated to the specific location values. The input images
remain the same for each location while the numeric data (e.g., vehicle speed
or wind direction and speed) change slightly. The difference in the measured
SPLs is larger, which is a result of the combination between the distance be-
tween the vehicle (sound source) and the microphones as well as the radiation
characteristic of the tire. Hereby, the emission direction in driving as well as
the opposite direction is dominant over an emission lateral to the rim. This
is mainly caused by the horn effect. Even though the time series of the CB
measurements are fitted to the track distance in steps of 0.2 m, model training
is only carried out for every 0.4 m step between —10 m and 10 m. This leads to
51 models to cover the entire track, with three splits of the LOOCV approach
153 models are trained in total.

Fig. 4.35 shows the model performance on the test set for these three data
splits over the whole distance. The figure indicates that no point of the track
seems to be generally worse in the prediction for all three investigated tires.
However, the range in minimum and maximum predictive accuracy over the
test track slightly changes for the three data sets. This is indicated trough
maximum and minimum performance in the performance metric in table 4.8.
This still does not indicate that these models generalize worse than the CM for
only position PP’. The slightly higher RMSE can also be caused by higher vari-
ance in the underlying measurements, especially in higher spreads between
the left and right microphones.
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Figure 4.35: RMSE for TT model performance on test data set for three different data splits of
CM over the whole test track.

Table 4.8: Performance metric for CMs for three data splits over the whole test track calculated
with LOOCV. All values in dB(A). The values are not averaged over the number of
outputs, so that these values indicate the RMSE between vectors with 2 elements each.

Model Meangyse  STDpysg Maxpuse Mingyse
Data set 0 1.10 0.34 1.84 0.66
Data set 20 0.93 0.23 1.54 0.50
Data set 40 1.03 0.44 1.98 0.47

Fig. 4.36 shows that compared to the measurement used as ground truth, the
concatenated predictions over the distance look way less stable. The higher
volatility between two predictive steps is amplified by the larger steps be-
tween two data points for the prediction compared to the measurements. Also,
since models are trained independently, the model cannot learn any relation
for the distance, which makes it more unlikely to get a smooth curve as sug-
gested by the measurements.
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Figure 4.36: Example measurements of idle runs with 50 kmh~! at PP’ showing difference in
comparison to predicted values of independent models for each distance. Predictive
step is 0.4 m and measurement step is 0.2 m.

It can also be noted that the prediction over the distance also inherits some er-
ror. The performed measurements are in classical sense time series. Through
the combination of the known start of the measurement at position AA’ and
the speed measurement, the time steps can be interpolated on the test track.
Since this does not guarantee a measurement point each 0.2 m, the used mea-
surement software interpolates the SPL to these points. However, it is not
probable that the variance included through this process causes a noticeable
impact on the measurement. If this led to a noticeable error, the expected er-
ror would grow with increasing vehicle speed. This results from the decrease
in measurement time to pass trough AA’ and BB’. Through the defined sam-
pling frequency, the grid in the SPL over distance curve gets wider and thus
the impact of interpolation two discrete points is larger.
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4.6 Combination of CNN and ANN over
Distance

As section 4.5 showed, it is possible to predict the SPL over the whole test
track with independent models for each point. However, through this the
relationship between the data points is lost and it is less likely that the predic-
tions will be smooth. To avoid this information loss, in the following a CM is
defined which enables predictions over the full test track. Slightly modified
versions of this model are then used for model interpretation.

4.6.1 Model Definition and Performance Evaluation

Basically, the same model as the CM which only predicted one point on the
test track, can be trained for the purpose of predicting the whole CB measure-
ment. As illustrated in fig. 4.37 the only change necessary considering the
model architecture is to enlarge the ANN input by one dimension, the dis-
tance. This makes changes in the data structure necessary. The entire data
set consists of 1443 runs, each with 101 points on the test track, resulting in a
total of 145743 data points. Merging every tire image with the connected data
points, as done in previously presented models, is not reasonable anymore.
Therefore, each data point of a run gets one cropped tire image assigned. Dur-
ing this process, it is ensured that each of the cropped images of the specific
tire is represented equally often in the data set. This process does not enlarge
the whole data set. Equally to the CM without distance information, the in-
put data are scaled with a z-score normalization as described in eq. (3.2). All
numerical input values except the distance are scaled. Since the distance is al-
ready a uniformly distributed variable through the fixed step of 0.2 m between
—10m to 10 m, it is not expected that the transformation of the distance vari-
able will increase the model performance.
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Figure 4.37: Principle sketch of CMPistar¢e pubber hardness incorporates two hardness values
with correlated surface temperature. Environment incorporates the wind speed and
direction, air and road temperature, air pressure, and humidity. Tire geometry in-
corporates the tire nominal width, the aspect ratio, rim diameter, and profile depth.
Tire labels refer to the load and speed index.

Fig. 4.38 shows the losses received for each model through LOOCV. The test
performance is more stable than in all previously built models, since the low-
est STD for RMSE of all models considered so far is reached. The train per-
formance is also visibly more stable.
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Figure 4.38: RMSE for LOOCYV data splits CM distance models defined as TT models.
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This is further supported by table 4.9 which shows the performance of the
distance model in comparison to the previous approaches. While the mean
performance on the RMSE of the TT models slightly deteriorates compared
to the single point CM, the STD of the RMSE as well as its maximum value
decreases. However a direct comparison of the mean RMSE of these models
does not seem reasonable. This arises from two observations. Firstly, even
though the spread between the microphones on both sides is not gravely im-
pacted by the distance on the test track (as seen in fig. 4.3b), this does not
indicate if the spread between quasi-identical runs is larger at some points of
the test track. Secondly, including every position of the test track increases
the number of data points and therefore the likelihood of predicting points
with low accuracy, which affects the performance of the model.

The first argument is validated by the observation in table 4.8 that the purely
stacking of models for each point on the test track in three cases leads to
almost no change in the mean RMSE performance. However, in two of three
cases, the maximum prediction error gets worse.

Table 4.9: Performance metric for CMs for full test track calculated with LOOCV. All values in
dB(A). The values are not averaged over the number of outputs, so that these values
indicate the RMSE between vectors with 2 elements each.

Model Meangysg  STDpysg Maxpysg  Mingysy  Meanpys, rain
CcMPERnee 1.08 0.23 1.55 0.66 0.62
CMypie o izea 0.98 0.21 1.55 0.60 1.00
cM” 0.95 0.28 1.59 0.51 0.63
ANN 1.0 0.31 1.84 0.64 0.79
o —1
CNN~80kmh 0.73 0.33 2.10 0.28 0.74

Fig. 4.39c displays the identical three runs as earlier predicted by the stacked
models for each individual distance (fig. 4.36). The full distance model pro-
duces much smoother SPL curves for each of the three runs compared to the
previous prediction and also in comparison to the actual measurements. It
can also be stated that even though the location of the maximum SPL for tire
20 is not fitted correctly, the shapes in measurement and simulated curves
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seem to align rather well. Tire 0 and tire 40 raise rather steeply until point
PP’ in the measurement as well as in the simulation and are rather constant
after that point. In tire 20 the measurement shows a steep decline in SPL af-
ter its maximum, this is also indicated by the simulation. This implies that
the model learns some underlying radiation characteristics for each tire from
the data set. To analyze the radiation pattern of the tires based on the angle
between tires and microphones, the vehicle length must also be considered.
This results from the measurement process used in measurements conducted
for this dissertation, which triggers the measurement the moment the front
of the vehicle crosses position AA’ and stops the measurement, the moment
the vehicle front passes position BB’. Taking this into account, the steep in-
cline in SPL for tire 0 up to position PP’ combined with its plateau afterwards
indicate a stronger signal amplification through the horn effect at the trailing
edge than on the leading edge. Tire 20 seems to have the exactly opposing ra-
diation pattern. While the SPL at entrance and exit of the measurement track
is rather similar, which would indicate a radiation pattern which is similar for
the trailing and leading edge, however taking the measurement vehicle length
in consideration, the tire indicates a stronger amplification on the leading edge
than on the trailing edge. Tire 40 shows the in between, the measurements
drop slightly more towards the end of the measurement track compared to
tire 20. Tire 40 therefore indicates a more or less identically strong signal
amplification for the leading and trailing edge.
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Figure 4.39: Example measurements of idle runs with 50 kmh~1 at PP’ showing difference in
comparison to predicted values of distance dependent models. Predictive step is
0.2 m and measurement step is 0.2 m. Predictions are performed for test data.

Using every data point for model training leads to a RMSE of 0.50 dB(A). Even
though this model cannot be used to analyze the model’s generalization capa-
bility, it is still useful to analyze the model’s capability to represent the data
in general. This allows to estimate if the model complexity is high enough
for the specific problem.

Consequently, fig. 4.40 shows six different measurements of six different tires
with their belonging prediction of CMP**™® trained on the whole data. The
figure shows once more the variability in the overall shape of the measured
SPL curves for different tires which makes it a more complex problem for the
model to learn. Also, the predicted SPLs are much less volatile compared to
the real measurements, making it less probable for the model to reach RMSE
values near zero. This, however, indicates that even after using the whole data
set in training, the data points are not simply remembered by the network, yet
it cannot be ruled out that the model learns specific shapes for each tire. The
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network also learns to predict different values for both microphone sides. In
the shown examples, the prediction for the right microphone is always slightly

higher, which is also indicated by the measurement.
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Figure 4.40: Example idle runs with corresponding prediction of CM
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4.6.2 Model Interpretation

The model trained on the whole data reproduced the measurements accurately.
This is a necessary condition to derive information through model interpre-
tation. However, it is reasonable to change the model input before applying
XAI methods on it. This is due to the rather high correlation between some
of the features of the models as seen in fig. 4.6. A more profound insight into
the multicollinearity of the features can be seen through the VIF. For four
different models, fig. 4.41 shows the correlating VIF values as obtained for
the actual data set used in the CM. CM™*"*"*® refers to the CM as described
in section 4.6. All other models do not include the humidity and the road
temperature. In case of the temperatures, the VIF can mainly be reduced by
only using either the road or the air temperature in the model. Since the air

temperature is generally more stable due to less local effects like the sun ra-
Distance
tire aspect ratio

does not receive the rim diame-

diation, the air temperature is kept as input. Model CM also does

Distance

not receive the tire aspect ratio. CM[in, dgiameter

ter. CM?&i?}ﬁZmeter does not receive the tire aspect ratio, the rim diameter, and
the tire load index. Instead of these CMbSR™¢  receives the outer diame-
ter of the tire which is a combination of the tire nominal width, tire aspect
ratio, and rim diameter. The VIFs drop considerably for all model variations.
Only CMﬁiztﬁ?;;eter has slightly higher values for the tire nominal width and

the tire aspect ratio.
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Figure 4.41: VIF values of model variations calculated for all features passed directly to the
model structure without being preprocessed in an embedding layer. To enhance
the visibility of multiple data points that have the same values, the markers are
slightly shifted along the x-axis.

Table 4.10 shows the performance metric of each of the models in comparison
to the model which included all features.

Table 4.10: Performance metric for CMs for full test track calculated with LOOCV for multiple
data input manipulations. All values in dB(A). The values are not averaged over the
number of outputs, so that these values indicate the RMSE between vectors with 2
elements each.

Model RMSEgyse  STDruse Maxpyse  Mingysg  Meangys, irain
CMrs apect ratio 1.14 0.22 1.57 0.65 0.62
CMDistanee 1.17 0.24 1.64 0.79 0.60
CMDstanee 1.20 0.24 1.69 0.74 0.63
CMPistance 1.08 0.23 1.55 0.66 0.62

Since these models show high accuracy and no critical multicollinearity, they
are suitable for model interpretation. As an alternative to the use of SHAP
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package to estimate shapley values, Captum (presented in section 2.5.1) pro-
vides a convenient method for estimating feature importance of multi modal
models based on Integrated Gradients. For the use of this method, an explicit
basevalue must be defined. This basevalue should not inherit any information.
In case of the tire images this is somehow difficult to define. Yet the usage of a
completely black image as background image provides advantages. The black
image thereby represents a slick tire. Through the definition of the basevalue,
the algorithm gets insensitive to these values. In this specific investigation
that means, black pixels do not impact the estimated feature attribution. This
is interesting since it actively allows to analyze the impact of any grooves on
the models prediction.

To investigate the impact of the image input of the tire on the prediction, the
following approach is applied to the data and the model. First, the embed-
ding layers are deactivated and the corresponding values of variables that use
embedding layers are precalculated. Second, the basevalues are defined as
minimum values in each numerical category and the tire is defined as slick.

For this, the cropped tire image is set to black for its entire image fragment
before it is pasted on the white background, as described in section 3.5. As
input values for calculation of the IG, 1000 random data points of each tire are
used. These consist of full sets of data including numerical and image data as
specified through the necessary input for the ML model. While the numerical
data are kept as randomly selected, the image data are manipulated. This is
done in a way that each of the 1000 data points of one tire has the same tire
fragment. The used fragment is chosen randomly. This is necessary to avert
a blurring effect in the influence of vertical grooves when building the mean
impact over all images of one tire. This occurs because of the horizontal shift
of said grooves in these images. This process allows for an overall evaluation
of the tire tread pattern on the emitted noise.

Furthermore, a second set of basevalues is defined with all tires reconstructed
as semi slick. This is achieved by first dilating over the cropped images to elim-
inate small outliers in circumferential grooves and afterwards eroding over
the image with a kernel of almost no height but great width before pasting it
on the white background. This allows to leave the width of the circumferential
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blocks nearly untouched but to close all included grooves of any orientation
not equal to 0°.

Fig. 4.42 shows a full set of images for the investigation of feature importance.

O]
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(a) Original tire cropped image (b) Tire slick representation (c) Tire semi slick
representation

Figure 4.42: Three different tire images after cropping and rescaling for standardizes CNN input
with each pixel size 3947 x 4559. Frames only added for displaying purpose

The IGs do not show clear trends for the images. This was already seen in
the model interpretation of the CNN through SHAP. Fig. 4.43, fig. 4.44, and
fig. 4.45 show two tires as input compared to the slick and semi slick repre-
sentation for both output microphones for each of the adapted models. The
scale is modified to be symmetric and chosen as the absolute maximum pixel
representation divided by ten. This is necessary for visual representation. It
can be pointed out that trends like circumferential grooves leading to lower
SPL are not supported by the images. Neither do higher angles in transversal
grooves show any clear trend. Also, no noticeable changes between the dif-
ferent models can be observed. The displayed values in the figures represent
the average output for the 1000 random samples which are explained for each
tire. The full set of images is displayed in appendix E.

120



4.6 Combination of CNN and ANN over Distance

00002 00002

00002 00002

00001 00001

00001 00001

00000 00000 00000

00000

77 00001 00001
00001 e el . 00001

IERREREY Nt o

00002 00002

(a) Tire 23 semi slick  (b) Tire 23 semi slick (c) Tire 23 slick left

right
left

00003

00003

: SR ERIERE]
: pERE L
i 00002 00002 AN DA A I I 00002 00002

RN REENE
! f i 00001 00001 00001 00001
00000 00000 00000 00000
o001 o001 00001 —~0.0001
o002 o002
o0z

00002

~0.0003 . - 00003

(e) Tire 38 semi slick  (f) Tire 38 semi slick (g) Tire 38 slick left  (h) Tire 38 slick right
left right

Figure 4.43: Feature importance interpretation through IG for baselines as slick and semi slicks.
Numerical values are chosen as minimum baseline. Left and right in sub captions re-
fer to the output feature, i.e., the microphone. Color scales are defined by a tenth of
the absolute maximum value occurring in a pixel and defined symmetrically. Blue
pixels indicate negative correlation to the SPL, red pixels indicate positive correla-
tion with the SPL. As Model CMpsanee is used.
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Figure 4.44: Feature importance interpretation through IG for baselines as slick and semi slicks.
Numerical values are chosen as minimum baseline. Left and right in sub captions re-
fer to the output feature, i.e., the microphone. Color scales are defined by a tenth of
the absolute maximum value occurring in a pixel and defined symmetrically. Blue
pixels indicate negative correlation to the SPL, red pixels indicate positive correla-
tion with the SPL. As Model CMLs e .. is used.

rim diameter

121



4 Development and Evaluation of Statistical and Machine Learning Models

oooos oocors Jid 00002 ] i il 00002
o000 00000
00001 00001

000005 000005

000000 000000 00000 00000

~000005

000005 00001 00001
000010 000010

TN EENEE TR 00002 NN EEEE 00002
IR EEEEE P I I A O O I O

000015

(a) Tire 23 semi slick  (b) Tire 23 semi slick (c) Tire 23 slick left  (d) Tire 23 slick right
left right

TR RENET]
| A O D I

s aN AN R oot
it

000020 Tt T o000
oooms 000015 [ o}

oooo1s 1 i, oouors
aom0t o0o010 TrTnT o000
000005 i e 000005

000000 i

000005 000005

é. 000000 3 i
SNNNNS e | YYS | o
H H H LN ] i
i

000000 000000

~0.00005 000005

~0.00010 000010

“ocems N -

P W

000020 LR | -0.00020

(e) Tire 38 semi slick  (f) Tire 38 semi slick (g) Tire 38 slick left  (h) Tire 38 slick right
left right

Figure 4.45: Feature importance interpretation through IG for baselines as slick and semi slicks.
Numerical values are chosen as minimum baseline. Left and right in sub captions re-
fer to the output feature, i.e., the microphone. Color scales are defined by a tenth of
the absolute maximum value occurring in a pixel and defined symmetrically. Blue
pixels indicate negative correlation to the SPL, red pixels indicate positive correla-
tion with the SPL. As Model CMDistance . is used.

outer diamete;

Fig. 4.46 shows the interpretation of the numerical input. The vehicle speed is
for all modified models the most important feature. The air temperature is de-
termined as the feature with the second largest negative correlation to the SPL.
In case of the feature which shows the strongest negative correlation with the
SPL, the models are also identical. Models CMLE%2  and CMgrith?;:Ct Latio
which include the tire load index determine the tire load index as said feature,
while model CMLE@"¢ determines the outer diameter. However, this is
not contradictory since CMOD;iz:n(fizmeter does not include the tire load index
and the tire load index shows a strong correlation to the outer diameter (see
fig. A.1). This allows to argue, that it might be able to simply swap the tire
load index and the outer diameter, as indicated by the IG. The tire nominal
width, distance, and the tire profile depth always show a positive correlation
with the SPL, however their absolute impact does not remain constant. It can
also be observed that the impact of the tire aspect ratio in model CMPEstance

rim diameter

. . . . . . . Distance
is almost identical to the impact of the rim diameter in model CMyjre aspect ratio-
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Figure 4.46: Comparison of feature importance obtained through IG for three models with fea-
ture adaptions.

Model explainability or feature importance is also possible through directly
looking into changes of the predictive value caused by iteratively changing
one single feature. However, this neglects interdependencies between all fea-
tures. This problem can be overcome by randomly sampling a fixed value of
data points first and second iteratively changing only the feature under in-
vestigation in the sampled data. The predicted value can thus be averaged to
analyze overall trends in the underlying data. This is repeated for each fea-
ture independently. By choosing a reasonably large number of samples, it is
not to assume that only local trends are reproduced. The process relies on
accurate inference of the trained model. This is especially the case for mod-
els which are trained on the whole data set, which is why these models are
used to identify overall data trends. This procedure is especially useful since
it basically allows to break down multidimensional problems to a single in-
put feature and its related output variable but yet takes all other features into
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account, thus making it possible to visualize trends which are not displayed
by simply displaying feature values over labels of the data set. This process
is performed for each of the values tire nominal width, tire aspect ratio, tire
speed index, tire load index, rim diameter, vehicle speed, driving direction,
distance, tire manufacturer, measurement vehicle, air temperature, and air
pressure independently. For the one-hot encoded values measurement vehi-
cle, tire manufacturer, and driving direction the procedure is slightly adapted.
The encoding allows for an easy adaptation of the values for all the samples
under investigation. This means, in case of the direction, all chosen samples
are first manipulated to enter the test track from one side and afterwards from
the other side. The thus obtained values are subtracted from another to receive
a delta for each of the microphones caused by the driving direction. Similarly
for the measurement vehicle as well as the tire manufacturer, the input sam-
ples are also manipulated in such a way, that each sample is considered as
each of the measurement vehicles and tire manufacturer once.

The analysis of the impact of the vehicle speed on the SPL in fig. 4.47a shows
the behavior as expected for model CMEi;tg?;&eter. The data are well repre-
sented by a logarithmic curve. This again supports the speed SPL relation-
ship frequently described in the literature. The distance variation in fig. 4.47b
reveals how directional the average tire’s sound emission actually is. More
interestingly, it also indicates that the tires under investigations on average
have an emission characteristic that is more prominent on the front side of
the tire than the rear side. This is shown by the fact that the SPL reaches
its maximum value before it passes the microphones and continues to fall
monotonously from then on.
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Figure 4.47: Feature importance of CMLS0ee
In case of the tire parameters shown in fig. 4.48, similarly to the investigation
with IG, the iterative process reveals the tire nominal width, tire profile depth,
and the tire load index as most important for CML2%¢ . All indicate linear
behavior. In case of the tire nominal width, this was expected from previous
literature, however some literature considered narrower tires and came to the
conclusion that for wider ones the impact of tire nominal width is negligible
[San02, Yan13]. This is not supported by the model interpretation determined
here, in which the linear effect remains intact for the investigated range of
tire nominal widths from 205 mm to 285 mm. The impact of the tire nominal
width and the tire profile depth for the other models are comparable to the
ones shown in fig. 4.48. The impact of the tire load index is also comparable to
that of the outer diameter. In case of the tire aspect ratio and the rim diameter,
the trends are not comparable. However as seen in fig. 4.48b the tire aspect
ratio also does not show a clear trend in the one model in which it is included.
The corresponding diagrams for the other model modifications are displayed

in appendix F.
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Figure 4.48: Feature importance of CMyjn, diameter-

In case of the impact of the air temperature and the air pressure, the results
are also consistent with those received with IG. The air temperature shows
a strong negative correlation with the SPL, which is also what the general
sentiment from literature shows. In case of the air pressure the relation is
positive. However, an effect of the environmental air pressure on the TRN
is not recorded elsewhere in literature, known to the author. The impact of
the air temperature is obtained as —1.63 dB(A) for the maximum recorded air
temperature difference of 18.06 °C when both microphones are averaged. As
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suggested earlier, with the MB temperature correction applied to air or road
temperature the expected difference reaches —0.95dB(A) and —1.27 dB(A)
so that the model defined the temperature impact as more important than the
predefined temperature correction.
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Figure 4.49: Feature importance of CMRS2e

Fig. 4.50 shows the results for the one-hot encoded features. Since the driving
direction only has two possible values, from left to right and from right to left,
fig. 4.50a displays the difference in output values. The mean values for the left
and right sides are marked in red at —0.27 dB(A) and 0.16 dB(A). Due to the
symmetry of the measurement process, values close to zero would be expected.
However, reasons as e.g. slight cross or longitudinal slope of the test track as
well as local asphalt effects might lead to these effects. The slight divergence
might also be caused by unbalanced data since not exactly the same amount
for drives from both sides exist in the data. In case of the tire manufacturer
in fig. 4.50b the predictions for the tires are in the range of —0.15dB(A) to
0.29 dB(A) from the mean. For the measurement vehicle this spread is in the
range from —0.40 dB(A) to 0.69 dB(A). These ranges are slightly different for
the other investigated models as shown in appendix F. Generally, the analyzed
impact of the tire manufacturer as well as the measurement vehicle should be
viewed with caution. This is the result of the unbalanced data when it comes
to these variables since not the same number of tires of each of the 14 tire
manufacturers is used. The same applies for the vehicles. The majority of
tires is measured on vehicle 1 and 2.
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Figure 4.50: Feature importance of one-hot encoded features of CMRSee

4.6.3 Model Averaging Outputs and Tread Pattern
Variation

As already shown in fig. 4.3b, the deviation between both microphones used
during the measurements can be rather high even though it seems to be Gaus-
sian distributed. This is also a result of the different tire geometries and struc-
tures which are differently designed so that each of the tires might show a
different behavior in the spread of emitted sound to both sides. This, com-
bined with the fact that the certification regulations take the maximum SPL
of each run, no matter the microphone which recorded it, justifies using the
average SPL of both microphones as output of the ML model.

This does not require any changes in the model itself, so that the model still
refers to the principle sketch in fig. 4.37 with only the output adapted from
vector of the shape (y1,y,) to % Table 4.11 shows the specific perfor-

mance metric.
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Table 4.11: Performance metric for CMs for full test track with average value of both micro-
phones calculated with LOOCV. All values in dB(A). RMSE values of third row are
calculated for an output vector of dimension two.

Model Meangysg  STDpysg Maxpysg  Mingysg  Meanpysg, irain
CMQS;““ 0.64 0.16 0.93 0.34 0.39
CMi‘lzs;’}lec:t optimized 0.60 0.16 0.92 0.28 0-50
CMDlstance 1.08 0.23 1.55 0.66 0.62

Due to the different RMSE criterion, the values of the model predicting both
microphones independently (CM”***"“) need to be divided by /(2) for com-
parison, which leads to a mean RMSE of 0.76 and a max value of 1.09. These
values are still slightly higher than the ones recorded for the averaged model.

Even though a mean RMSE of 0.64 dB(A) is rather low, using the tire frag-
ments as rectangles is a rather strong simplification of the underlying physics.
This is why the Fuji pressure foils, as described in section 3.4.2, are used to ex-
tract more realistic tread images. The pressure images thereby are solely used
to extract an image mask which can be iterated over the tire circumference
images, as described in section 3.5, to extract multiple tread images for each
tire. Due to the different scale and orientation of the standard images and
the scans of the Fuji pressure foils, some processing steps are necessary. First,
the tread pattern contours are extracted from the pressure foil scans with an
active contour finder (from Scikit-Image [van14]). With the contour it is pos-
sible to extract the sole tire tread from the pressure foil scan. The tire tread is
then projected on the standard image via template matching. This essentially
ensures that the tread pattern scan is centered correctly on the standard image
and scaling is done correctly. Through precalculating the scale of the mask
through the known pixel representation in the tread image and the circum-
ferential image, the proneness to errors in the template matching is reduced.
The successful template matching leads to an image representation which has
the same image height as the circumferential image, and width of the maxi-
mum width of the scaled tread pattern active contour. This image represents
a mask that can be iterated over the circumferential image of each tire. Apply-
ing the same image processing steps as in previous described methods leads
to images presented in fig. 4.51.
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Figure 4.51: Three different tire images after cropping and rescaling to achieve a standardized
format with each pixel size 1559 x 4707. Images extracted from tire circumference
images with tread pattern shape achieved from Fuji Prescale” pressure foils. Frames
only added for displaying purpose.

Table 4.12 displays the corresponding performance metric. For this observa-
tion not the whole data set of 42 tires is available anymore. Two tires (Tire 19
and 20 in table 3.1) were not available for the generation of the contact patches
anymore, which is why these are not considered in this modeling approach.
This reduces the data set to 40 tires and 1397 measurements.

Table 4.12: Performance metric for CMs for full test track with average value of both micro-
phones and pressure foils as image input adaption calculated with LOOCV. All values
in dB(A). RMSE values of third row are calculated for an output vector of dimension

two.
Model Meangyisg  STDgysg Maxgysg  Mingygg Meangysg, train
CM g o 0.58 0.15 0.98 0.32 0.37
CMii/SgtE}"r:.\ij ,’_I‘est optimized 0.51 0.13 0.98 0.32 0.59
CMDlstance 1.08 0.23 1.55 0.66 0.62
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4.7 Combination of CNN and ANN over
Distance for 1/3 Octave Levels

The prediction of the 1/3 octave SPL, requires additional input. The frequen-
cies for 1/3 octave SPLs can be calculated with lower (f]) and upper (f,) as
well as center frequency (fy) as

fi= % =32 fo=XNTirh (45)

which results in 31 frequency bins in the range of 15.625Hz to 16 000 Hz for
fo- The time series extracted from the tire models are transformed via a Fast
Fourier Transformation (FFT) into a two sided frequency spectra with narrow,
equidistant bins. These are then transformed into a two sided power density
spectra. Generally, the prediction of spectral SPLs is even more useful than
the prediction of overall SPLs. For tire manufacturers in particular, this pro-
vides insights into the various sound-generating mechanisms of the tires and
thus enables targeted changes to the tire profile in order to weaken dominant
mechanisms. By multiplying each frequency except 0 with two, a one-sides
Power Spectral Density (PSD) is constructed [Cer00].

In the following, three different approaches for the additional frequency input
are investigated. This input describes the 3D tire model through a spectral
analysis and is therefore referred to as tire spectrum.

The first model CI\/I};/S3D octave Teceives the same frequency bins as input as de-
fined by the output. This, however, requires an adaptation of the initial fre-
quency bins calculated through the FFT. The bins are defined by the sampling
frequency, which is defined through the absolute sample point count and the
time duration of the signal. However, the process described here, as well as
in a previous publication [Leu23] does not guarantee identical frequency res-
olution in the FFT. The process is therefore adapted slightly to guarantee an
identical sampling frequency for all tires. Since this leads to different length
in the extracted time series, all series are zero padded to same size before
applying the FFT.
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In the first step, FFT signals are combined to the same frequency bins as de-
fined through the output values. This is achieved by mapping each frequency
of the PSD to its referring 1/3 octave frequency bin through their upper and
lower frequencies. The PSD values of each bin are then added together to
calculate the PSD value of the 1/3 octave frequency bins. This induced some
error since frequency bandwidths of the PSD do not coincide with those of
the 1/3 octave frequencies. However, this error is considered negligible and is
performed equivalently on each tire. The frequency resolution of the original
PSD was approximately 0.51 Hz.

In the second model CMpY), , the frequencies are not combined into the 31

bins of the output. This is especially interesting since the combining of the
frequencies loses some information. However, the maximum frequency of
the input is defined as 4000 Hz and the frequency resolution is adapted to
approximately 5.4Hz. These two changes are applied to keep the number
of input nodes referring to the PSD slightly lower. This leads to an overall
number of 739 input values for each spectra.

The third model CMgfnlie ddeq Minimizes the number of input nodes by using an
embedding layer for the frequency spectra which combines the 739 different
values into 31 values which are used as input for the fully connected ANN
structure.

Fig. 4.52 shows the schematic sketch for the architecture and necessary input
values abstracted for all approaches. The model predicts 31 1/3 octave levels
for the left and right microphones, leading to 62 output variables for each
prediction. Since this research always uses the sum of output variables in the
RMSE calculation and not the mean of the difference in all output variables,
these values are naturally larger than they might be in other literature.

132



4.7 Combination of CNN and ANN over Distance for 1/3 Octave Levels
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Figure 4.52: Principle sketch of combination of CM as distance model for 62 octave level out-
put. Rubber hardness incorporates two hardness values with correlated surface
temperature. Environment incorporates the wind speed and direction, air and road
temperature, air pressure, and humidity. Tire geometry incorporates the tire nom-
inal width, the aspect ratio, rim diameter, and profile depth. Tire labels refer to the
load and speed index. Tire spectrum refers to the PSD extracted from digital tire
models.

Table 4.13: Performance metric for CMs for full test track 1/3 octave level output calculated
with LOOCYV. All values in dB(A). The values are not averaged over the number of
outputs, so that these values indicate the RMSE between vectors with 62 elements

each.
Model Meangysg  STDpysg  Maxpysg  Mingysg  Meangysg, rain
PSD
CM; 1y hetave 24.83 3.71 33.19 18.73 13.72
cMpy 23.86 3.72 32.29 18.18 11.19
PSD
CMpo edded 23.31 3.60 30.22 17.89 13.75

For all approaches, the logarithm of the PSD values is used to push them in
approximately the same scale as the 1/3 octave SPLs of the tires in dB(A).
As shown in the LOOCV performance metric in table 4.13 the different ap-
proaches do not differ gravely in their performance. It is visible that the pre-
calculated 1/3 octave levels lead to the largest mean RMSE and especially, the
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minimum and maximum RMSE values are higher than in the other approaches.
The approach to use all FFT values as input leads to the highest STD on the
test set and lowest mean RMSE on the training data, which might indicate
the greater possibility of overfitting due to the much larger input data and
therefore overall more neurons since the networks are scaled according to
the amount of input nodes. The third approach to use the FFT values in an
embedding layer seems to output the best performing models. This is not only
indicated by the overall lowest mean in RMSE but also the lowest STD indi-
cating better generalization. This is further supported by the higher RMSE on
the training data than without including an embedding layer.

The observation that embedding layers lead to the best performing models
is also convenient computationally. The insertion of embedding layers lower

the number of fully connected layers and with it the trainable parameters
compared to the same input without embedding layers. This leads to lower

computation time.

—=— Refjyy —— Refnghl —e— Pred, Predngh\ —=—Refjq —— Refugh\ —— Pred, PYEdngm
60 60 Fa_
Fa Pl
= F = 4 =
< 40§ - < 40 ¢
= § e — SR = !
= 20§ e 2 20
5 H = §
7] H @ 1
0 I (U4
H
-20 -20
0 2000 4000 6000 8000 10000 12000 14000 16000 o 2000 4000 6000 8000 10000 12000 14000 16000
Frequency (Hz) Frequency (Hz)
(a) Tire 0 (b) Tire 20
—— Refjyy —— Refng)xl ——Pred, Prednghl

60 e
g

P,
7 .

40 f \
g iy

20 §
i
H
i
L]
0

2000 4000 6000 8000 10000 12000 14000 16000

SPL (dB(A))

Frequency (Hz)

(c) Tire 40

Figure 4.53: Example measurements of idle runs with 50 kmh~1 at PP’ for three different tires
and their corresponding 1/3 octave SPLs for both microphones.
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Fig. 4.53 displays the predictions and measurements of 1/3 octave SPLs for
three different tires for a run at 50kmh~! at position PP’. The predictions
are made with the embedded model and each show the test tire that was left
out according to LOOCV. Especially the peak between 750 Hz to 2000 Hz is
predicted accurately for each tire. Fig. 4.54 shows the identical measurements
and predictions as fig. 4.53 but for a restricted frequency range.
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Figure 4.54: Example measurements of idle runs with 50 kmh~! at PP’ for three different tires

and their corresponding 1/3 octave SPLs for both microphones with limited axis
range.

4.8 Bayesian Models

All previously calculated models are deterministic models in the sense that
once trained, the output for identical inputs will always be identical. In con-
trast to probabilistic models, they do not offer implicit values of uncertainty
other than those calculated through an evaluation metric. In the following,

135



4 Development and Evaluation of Statistical and Machine Learning Models

two different probabilistic models which are implemented as Bayesian mod-
els in Pyro [Bin18], are presented. For the inference process, the No-U-Turn
Sampler, which is an algorithm from the MCMC family introduced in [Hof14],
is used.

Fig. 4.55 shows two different approaches of Bayesian models. The simpler
model in fig. 4.55a refers to a Bayesian linear regression model which does
not include an additional hierarchical structure. The more complex one in
fig. 4.55b includes an additional hierarchical layer in the hyperparameter
space to distinguish the tires explicitly in their TRN coefficients.

oGP

ONQOY

O BRPHOe
S

Tires
Data
. . PP’ . PP’
(a) Simple Model (Bayesian simpl e (b) Complex Model (Bayesian,_ ompl ex)

Figure 4.55: Plate notation for investigated Bayesian models.
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The simpler model represents a model of the form

a = Bo+ Picrw + Bacar + Bscrr + PaCrp

+Bs(r1 — cow)® + Bs(r2 — )’ (4.6)
b=cy—a (4.7)

' T,
LB = a + blog( U”f) +Tlog( (4.8)

where:

Ob
op
4!
V2
U(UigyUnigh)

N(tn,07)

Connector distribution of TRN coefficients initially
sampled from N'(42,5)

Tire aspect ratio

Tire block-to-groove ratio

Average circumferential groove width

Tire load index

Rim diameter

Tire nominal width

Temperature coefficient initially sampled from
N(2.6,0.1)

STD of TRN coefficient a initially sampled from in-
verse Gamma distribution (3, 0.1)

STD of TRN coefficient b initially sampled from in-
verse Gamma distribution (3, 0.1)

STD of SPL initially sampled from inverse Gamma
distribution (3, 0.1)

Center point of cqy impact initially sampled from
U(4,16)

Center point of cpg impact initially sampled from
U(0.1,0.9)

Uniform distribution with lower bound u,,, and up-
per bound Uy

Gaussian distribution with mean u,, and variance o2

The necessary block-to-groove ratio is calculated on basis of the pressure foils.

Through the shape extraction necessary for tread pattern extraction, the block-

to-groove ratio is calculated by dividing the included red pixels inside the

137



4 Development and Evaluation of Statistical and Machine Learning Models

shape by the area enclosed by the extracted shape. The used priors in case for
and c,;, can be considered informative since they include a mean value unequal
to zero and compared to the mean the STD is not large. The priors for y; and
¥, can be considered weakly informative as they restrict the initial sample
range but do not favor any particular values as these priors are uniformly
distributed.

The variables a and b do not occur in the plate notation of the simpler Bayes-
ian model since they represent fixed mathematical expressions and not distri-
butions that are sampled from in the inference process. Eq. (4.8) is a combina-
tion of the earlier displayed speed relation between the SPL, the TRN (2.2), and
the temperature correction (4.1). Eq. (4.7) enforces a relationship between the
TRN coeflicients a and b and eq. (4.6) builds a probabilistic regression model
for the TRN in relation to tire parameters. In case of eq. (4.7) a linear relation
would be more consistent with the observation in literature ([San02]) as well
as the results in section 4.2.1. Yet, fig. 4.8 showed that the coefficients for the
tires used in the presented research are Gaussian distributed so that a combi-
nation of the TRN coeflicients with a distribution c,, seems accurate enough.
Also, combining the TRN coeflicients with a linear equation adds much more
complexity to the system since coefficient a is already an equation of multi-
ple linear and quadratic terms. This leads to a multiple in calculation time,
a loss in stability of the Markov chain, and no mentionable gain in the per-
formance, which was analyzed in a smaller pre-study. The used parameters
represent features that were recorded as important in earlier investigations
in this dissertation as well as some in relation to the tire tread pattern based
on the investigations of Ejsmont et al. [Ejs84]. During inference, the PDF of
each latent variable displayed in fig. 4.55a is reconstructed to fit the PDF of
the observed variable as close as possible.

In contrast to this, the second model, shown in fig. 4.55b, introduces an addi-
tional hierarchical layer. Tire coefficients a and b are no longer described as
global distribution solely defined by the model and tire parameters. For each
tire, a specific coefficient is defined. They are however incorporated from an
underlying distribution which is defined similarly to eq. (4.6) and eq. (4.7). In
this model, they represent latent variables which is why they appear in the
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plate notation. They also receive priors for their assumed STD as indicated
by o, and 0. c,, represents the relation between a and b and the SPL is
calculated equivalently to the simpler model.

However, the problem with using each tire as hierarchical instance is that it
is not possible to make precise predictions on completely new tires. This is
due to the fact that all tires share an underlying distribution for their TRN
coeflicients. However, these are conditioned in the inference process on the
observed data. Simply forwarding the model therefore leads to much higher
uncertainty. The more complex model is expected to represent the data much
better than the simple model but incorporates difficulties in transferring the
learned knowledge on completely unseen tires. This is especially seen in the
fact that the STD in the TRN coefficients of each split is much higher on the
test set compared to the training set. Fig. 4.56 demonstrates this spread in
STD between test and train data.
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tire without tire without

Figure 4.56: PDF for TRN coefficients in complex model for one specific data split.

To investigate the capability of the described models, 40 models for each of
the plate notations are inferred. This refers to a LOOCV investigation with the
data for which the pressure foil measurements are available. Table 4.14 shows
the correlating performance metric. In case of the complex model, the infer-
ence process results in 40 TRN coefficients. The model does not receive data
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to condition on for one tire so that always 1/40 tire coefficient combination is
only sampled from the underlying parameter distributions.

Table 4.14: Performance metric for Bayesian regression models calculated with LOOCV. All val-
ues in dB(A).

Model Meangyse  STDpyse MaXpyse  Mingyse  Meahgpys, train
Bayes, . 1. 0.97 0.60 2.79 0.33 1.02
Bayes'" 1.16 0.64 2.88 0.28 0.28

complex

In case of the simple model, the mean coefficients 3, to S84 do not change
much for the different model splits. The mean values y; and y, are however
rather volatile as seen in their PDF in fig. 4.57. Since all recorded block-to-
groove ratios are between the values of 0.49 and 0.70, it is surprising that
¥, changes its value mainly from 0.11 to 0.89, since this leads to completely
opposing rankings in the block-to-groove rating of the tires. Furthermore, 34
also changes its sign depending on y,, which makes it impossible to analyze
a trend between the block-to-groove ratio and the SPL. Similar behavior is
seen in case of y; and S5 only that the PDF of y; is more widespread than
the PDF of 7,.
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Figure 4.57: PDF for mean ¥ values for all model splits of the simple Bayesian model.

The overall spread in the model parameters and the thus occurring uncertainty
in the predictions is best described through a PDF for the entire input data. Fig.
4.58 shows three representations of the simple model inferred on different data
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splits with their performance on the left out test data. The first represents a
model that performs well on test data, the second a model which performs
not well on test data, and the last being a model trained on the whole data
set to demonstrate the overall model capability to fit the data. It can be seen
that the uncertainty of the model is rather large and does not vary much for
one of the described models and data splits. This is not surprising since the
model is rather simple and therefore does not offer many degrees of freedom
to fit the data.

Posterior Sample —— Posterior Mean —— Observed Data Posterior Sample —— Posterior Mean —— Observed Data Posterior Sample —— Posterior Mean —— Observed Data

50 55 60 6 70 75 8 8 90 50 55 60 6 70 75 8 8 90 50 55 60 6 70 75 8 8 90

SPL (dB(A)) SPL (dB(A)) SPL (dB(A))

(a) PDF of test set with low  (b) PDF of test set with high  (c) PDF of data received from
RMSE RMSE model inferred on all data

Figure 4.58: PDF for posterior samples, posterior mean sample, and observed data for the simple
Bayesian model. The three figures refer to three models trained on different data.
Figures a) and b) show PDF for one single tire left out for testing while figure c)
shows the PDF for the entirety of data.

Even though it is reasonable to assume that the more complex model is less
suitable to predict entirely new tires and tends to overfit the training data. This
is also indicated by the higher maximum and mean RMSE values of the com-
plex model compared to the simpler model as presented in table 4.14. This is
a direct consequence of the lack of data to condition on and yet the additional
degrees of freedom through describing each tire with individual TRN coeffi-
cients. The overlying distributions therefore have a high variance which leads
to high variance in new predicted tires. This is demonstrated in the predicted
TRN coefficients for the test tires shown in fig. 4.59. These have high vari-
ance and only differ slightly in their mean values achieved for different tires.
This is especially different from the PDF for tires included in the training data,
which reach much lower variance. This was shown for one model in fig. 4.56.
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Figure 4.59: PDF for TRN coefficients for all model splits for tire left out of training for complex
Bayesian model.

The recorded mean values for y; and y, averaged over all data splits are with
11.08 mm and 0.50 more plausible than the values recorded for the simpler
model. However, as seen in fig. 4.60 the complex model also results in much
higher uncertainty of these parameters, which makes it questionable if the
obtained values are reliable. This is especially the case for y,.
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Figure 4.60: PDF for y values for all model splits of the complex Bayesian model calculated for
the entirety of posterior samples.

The investigation of the general data fit of the complex model is shown in
fig. 4.61. The results are distinct from those of the simpler model. The model
performance on test data sets for a tire that is predicted with low and one with
high RMSE, shown in fig. 4.61a and fig. 4.61b, both have exceptionally high
variance. In case of the model which received the entire data as training data,
the data fit is exceptionally good. This, however, is not surprising since the
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model infers TRN coefficients for each tire only with the condition of them
being part of an underlying distribution.
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Figure 4.61: PDF for posterior samples, posterior mean sample, and observed data for the com-
plex Bayesian model. The three figures refer to three models trained on different
data. Figures a) and b) show PDF for one single tire left out for testing while figure
c) shows the PDF for the entirety of data.

It can be summarized that both Bayesian models perform worse on the test
set than the previously considered CM™. As shown in table 4.14, this is es-
pecially the case for the maximum RMSE, the mean RMSE is only marginally
smaller. This might result from the highly non-linear interaction of the rele-
vant features, which the Bayesian models as considered here are not capable
to reproduce. Still the Bayesian model offer easier interpretation and do not
require as much data as the DL models for training, which is why they can still
be considered useful. Also, it can be stated that the complex Bayesian model
fits the training data even better than the CM™". This indicates overfitting,
so that an adjustment of the mathematical representations in the complex
Bayesian model should be considered.
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5 Conclusion and Summary

This research investigates different models on their suitability to predict the
Tire Road Noise (TRN) on an ISO 10844 test track. This is done on the basis
of 3D tire models reconstructed through photogrammetry, pressure foil mea-
surements, and Coast-by (CB) measurements. Throughout this dissertation,
the complexity of the models is continuously increased. The features used in
different models include the vehicle speed, the position of the vehicle on the
test track, the tire nominal width, aspect ratio, rim diameter, shore hardness
with measurement temperature, load index, speed index, tire manufacturer,
measurement vehicle, driving direction, air temperature, road temperature,
air pressure, air humidity, wind speed, wind direction, tread block-to-groove
ratio, average width of circumferential grooves, tire tread pattern spectra, the
total tread pattern design as well as the shape of the contact patch.

In this dissertation, the Root Mean Squared Error (RMSE) values are calculated
as sum of the output variables which naturally leads to larger errors for more
output variables of a model. This was decided since it indicates the overall per-
formance in output values, however in literature it is more common to average
over the output variables. Therefore, the values in this chapter are adapted to
the more common form in literature, to make cross comparison easier.

The simplest models (section 4.2) predict the TRN at one point of the mea-
surement track for the average of both microphones and uses linear and Least
Absolute Shrinkage and Selection Operation (lasso) regression. Even though
their mean RMSE values obtained through Leave-One-Out Cross-Validation
(LOOCYV) could be considered good (1.11 dB(A), 1.09 dB(A), and 1.03 dB(A))
for the simplicity of the models, the maximum recorded RMSEs are high
(2.54dB(A), 2.15dB(A), and 2.08 dB(A)), which indicates that the models do
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not generalize well. Still, the lasso regression in particular provides impor-
tant information, as it can also be regarded as a method for feature selection.
For the chosen 17 features, lasso only results in the vehicle speed, the tire
nominal width, the air pressure, the road temperature, and the load index
having acknowledgeable impact on the prediction.

To incorporate nonlinearities, Artificial Neural Networks (ANNs) are also in-
vestigated (section 4.3). For this, features in nominal scale are one-hot en-
coded. These, as well as the shore hardness values with correlating surface
temperature measurements, are preprocessed in an embedding layer before
being passed to the ANN. The performance of the ANN for the two indepen-
dent microphones at one point of the test track is much better than in case of
the linear and lasso regression. This includes the mean (0.71 dB(A)) as well
as maximum RMSE (1.30 dB(A)). Throughout the model design process, it is
shown that hyperparameter tuning does not lead to acknowledgeable better
performance of the models. Yet, an adaptive learning rate possibly enables a
broader coverage of the parameter space and at the same time allows small
steps in the last iterations.

In contrast to the ANN, which does not include information of the tire tread,
except the tire nominal width, Convolutional Neural Networks (CNNs) (sec-
tion 4.4) are constructed which receive tire tread images of each tire. These
images are extracted from the 3D models of the tires and scaled so that the rep-
resentation in millimeters per pixel is identical for each image. These images
only include a fragment of the tire, so that it is possible to extract multiple
images from one tire which are thus not identical. This allows for a much
bigger data set for training. For the CNN, only measurements in the range of
78.5kmh~! to 81.5kmh~! are included. Hyperparameter optimization once
again does not result in much better performance of the model. However,
a rather small architecture with only three convolutional layers and three
maximum pooling layers shows satisfying performance on the mean RMSE
(0.52dB(A)). The problem is seen in the high maximum RMSE (1.48 dB(A)),
which is 0.18 dB(A) larger than the one recorded for the ANN. In case of the
CNN, the model performance is strongly impacted by the left out tire, which
is also a result of the imbalance of the data. Model interpretation with Shapley
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Additive Explanations (SHAP) values on pixel basis did not show any notice-
able trends, hereby it seemed that the largest influence comes from the shape
of the tread pattern passed to the CNN. Still, the CNN provides valuable infor-
mation and especially shows, that the model is capable of learning to distin-
guish different tires from only a different fragment of the same tire. Also, this
approach shows that the Sound Pressure Level (SPL) of a tire is determined
through the tread pattern.

In the next step, the ANN and CNN are combined (section 4.5) into a mul-
timodal model that allows a simultaneous input of the tire tread image and
the numerical values. These describe the tire, operating conditions, and envi-
ronment to predict the SPL on one point of the track for both microphones.
The thus produced model performs better than the ANN for all metrics under
consideration. Especially, the maximum RMSE is 0.18 dB(A) lower. The com-
bination of many models that are trained each for a specific point on the test
track to predict the SPL over the test track also reaches satisfying results. Ad-
ditionally including the location on the test track as feature in the model leads
to much steadier predictions of SPL curves. The investigation of some mod-
els that are trained with certain features left out to decrease multicollinearity
show the following trends. The vehicle speed is the most important feature,
followed by the location on the test track, and the tire nominal width. These
are all positively correlated with the SPL. The air temperature and the tire load
index have a strong negative correlation with the SPL. These results are ob-
tained through applying Integrated Gradients (IG) as well as manually investi-
gating the model prediction through interactively changing single features in
a representative batch of samples. The model also predicts the overall shape
of the SPL curves for most tires well. This could indicate that the model learns
the radiation characteristic of the tires up to a certain degree and with this in-
dicates that the average tire tends to stronger radiation from the leading edge
than the trailing edge, which could also be seen for the average measurements.

In addition to the prediction of two independent SPL for both microphones,
model performance for 1/3 octave levels is also part of this research (sec-
tion 4.7). This is possible by providing an additional tread pattern spectrum
as input to the model to incorporate knowledge about the randomization and
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offset. These spectra are obtained through virtually rolling the 3D tire mod-
els on a plane road and using the thus achieved contact pattern as input for
an FFT. This research investigates three different processes of passing these
spectra to the model. As raw output of the FFT directly to the model, as raw
output of the FFT to an embedding layer, and as preprocessed 1/3 octave lev-
els. Even though the models do not vary gravely (mean RMSE of 3.15 dB(A),
3.03 dB(A), and 2.96 dB(A) for 1/3 octave levels, FFT, and embedding input) in
their performance, the embedding layer performs slightly better on the other
metrics calculated for the test data set. It can be noted that all models ap-
proximate the measured 1/3 octave levels well in the range of investigation
of 15.625 Hz to 16 000.0 Hz. Especially the peak at around 750 Hz to 2000 Hz,
which is also the range expected from literature, is well approximated.

Since the measurements show some unsteady behavior and discrepancy be-
tween the measured SPLs for both microphones, a last DL iteration is per-
formed which receives the average SPL of both microphones as labels for
training (section 4.6.3). This model is better than any of the previous mod-
els. It reaches a mean RMSE of 0.64 dB(A) with maximum 0.93 dB(A) for the
prediction of the whole measurement track when the model that minimizes
the combined loss of test and training set is considered. In case of the model
that performs best on the test set, the values are even as low as 0.60 dB(A) for
the mean RMSE and a maximum RMSE of 0.91 dB(A) while the mean training
RMSE only increases by 0.11 dB(A). As a variation of this model, the extracted
tread pattern images from pressure foils are used as image input. This results
in only slightly different values with mean RMSE of 0.58 dB(A) and maximum
0.98 dB(A) for the Test-Train (TT) models and a mean RMSE of 0.51 dB(A) and
maximum 0.98 dB(A) for the models performing best on the test data. In this
case only 40 of the previous 42 tires could be used since only for these pressure
foils are available. Still, this shows that the earlier approach of modeling the
tire tread pattern as simple rectangle with dimensions linked to these of the
tires, also leads to high model accuracy. These models can still be improved,
but the model which receives a rectangular tread pattern seems to offers the
best trade-off between model accuracy and data acquisition effort.
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In contrast to the linear models, ANNs, and CNNs, two Bayesian models are
also investigated (section 4.8). One embodies a rather simple Bayesian linear
regression while the other includes an additional hierarchical layer to allow
model pooling. Both models are based on the speed SPL relation of the tire.
The easier model assumes a global probability distribution of these parameters
and the model with additional hierarchical layer infers one set of TRN coef-
ficients for each tire, and extracts these from an underlying density function,
which connects all tires. Even though especially the hierarchical model is ca-
pable of representing the distribution of the data well, the performance on the
test sets, especially the maximum RMSE, is with 2.79 dB(A) and 2.88 dB(A) for
the simpler and the more complex model much higher than the CM for posi-
tion PP’, which results in 1.12 dB(A). The Bayesian models are trained with
the tire nominal width, tire aspect ratio, rim diameter, load index, air tem-
perature, average circumferential groove width, and block-to-groove ratio ex-
tracted from the pressure foil measurements. In case of the block-to-groove
ratio, no clear trend could be extracted. The average groove width however,
showed to result in the lowest SPL for 11.08 mm.
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6 Outlook

While this dissertation shows the capability of purely empirically predicting
CB measurements, the model performance can still be improved in the future.
This might be achieved through different approaches. While the data used
for this research was restricted in some parameters, such as the wind speed,
the deviation between runs and or between the vehicle sides was not used
to cleanse the data set. Eliminating measurements that differ stronger than
expected could lead to a better data set and with it more accurate predictions.
However, especially the difference in recorded SPL for both sides of the tires
could also be used to understand the acoustic process even better and abbre-
viate design criteria for less noisy tires. To add onto this, even larger mea-
surement campaigns could be performed to enlarge the overall data set and
also ensure that the data are balanced. E.g., same amount of tire fragments as
image input and measurements per tire. This could also include many more
measurement vehicles so that future models might gain advantage through in-
cluding vehicle distinct features as length, mass, drag coefficient, ground clear-
ance, wheelhouse geometry, and absorption characteristic of the vehicle un-
derbody. The biggest gain however could be reached by simply adding more
tires to the data set which are representative for a common target market.

Also, the empirical models could be connected with more physical sub models.
Especially a precalculation of the horn effect for each of the independent tires
might lead to an even better representation of the tire radiation characteristic
and thus increase model accuracy. Furthermore, the images extracted from
the 3D tire models constructed with photogrammetric methods also induce
some error into the model. This results from digitization errors which extend
to some artifacts in the images, some additional grooves, or some grooves to be
closed. Improving this process therefore also enables higher model accuracy.
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Even though the models described in this dissertation are capable to predict
each point on the test track and also learn the relation between these points,
it might still be interesting to have a full CB measurement predicted at once
and not only by parts. Ongoing research could also include hyperparameter
optimizations with different sampling in hyperparameter space. This should
include deeper, pretrained models or transformers.

Through larger calculation power, it might also be possible to design models
that receive the actual 3D tire models and not only fragments of the tread
pattern as images. These could also be in the shape of the tire silhouette pre-
sented in this research.

In terms of model usability, the presented approach could be extended to mul-
tiple measurement tracks. An inclusion of pavement characteristics such as
micro- and macro texture, absorption coefficient might even enable the trans-
fer from one measurement track to another. For this, especially the Bayesian
model with additional hierarchical structure could be extraordinarily suitable.
Using each measurement track as component in the hierarchical structure al-
lows linking the test tracks but keep a certain degree of freedom in the inferred
parameters. Adding surface parameters can generally be expected to lead to
higher model accuracy since the interaction of tire and pavement is highly
nonlinear and defined by the surface pairing.

Also, this research indicated that the load index of tires plays a crucial role for
the emitted exterior noise. Since this is nowhere else recorded in literature,
it should be investigated further. It might especially be reasonable to take a
look into how the load index is obtained by tire manufacturers and use the
thereby necessary parameters as features in similar models as shown in this
dissertation. This is especially interesting since it could show if the tire load
index indeed has a large effect on the TRN or if it merely results from the high
correlation of the tire load index and the outer tire diameter.

Lastly, since this research focused on the free rolling tire but for certification
acceleration is also necessary, this should be a main focus in further research.
It is generally known that a positive correlation between the drive torque
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applied on tires and the SPL exists. However, the tire parameters explicitly
influencing this behavior are not well researched yet.
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A Additional Data

A Additional Data

Table A.1: Overview on all used input with min and mac values and dimensions

Feature Minimum Maximum Dimension
Tire nominal width 205 285 mm
Tire aspect ratio 30 65 100 X %
Rim diameter 16 23 in
Outer diameter 641.60 815.30 mm
Tire load index 615 1180 kg
Tire speed index 190 300 kmh™!
Shore hardness block 50.975 73.95 °Sh
Tire temperature block 18.25 25.75 °C
Shore hardness shoulder 56.675 74.275 °Sh
Tire temperature shoulder 17.5 25.75 °C
Tire profile depth 5.525 8.475 mm
Tread block-to-groove ratio 0.48 0.70 %
Avg. circumferential groove width 7.83 15.35 mm

Tire spectrum - -
Vehicle speed 32.68 101.09 kmh™!
Measurement vehicle - -
Driving direction - -
Tire manufacturer - -
Tire fragment images - -
Tire fragment images (Fuji) - -

Air temperature 13.40 31.47 °C
Road temperature 15.82 49.37 °C
Wind speed 0.0 17.94 kmh™!
Wind direction 1.60 359.93 °
Air pressure 929.45 944.38 kPa
Humidity 25.04 94.21 %
Distance -10 10 m
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A Additional Data

Table A.3: Combined CNN and ANN Leave one Out performance metric for full test track pre-
diction. All values expect R? values in dB(A).

Model Meangysg  STDpyise Maxpyse  Mingysg  Meangys, irain
TRN coefficients 1.56 0.78 3.60 0.6 R? =0.89
Linear Regression 1.54 0.65 3.04 0.68 R?=0.90
Lasso Regression 1.45 0.55 2.95 0.70 R?=0.91
ANN 1.0 031 1.84 0.64 0.79
ANNrg optimized 0.86 0.26 1.57 0.51 1.30
CNN80km ! 0.73 033 2.10 0.28 0.74
CNN;i?i‘;’:i},‘n_i;d 0.53 0.17 0.86 0.18 1.67
cM 0.95 0.28 1.59 0.51 0.63
CM gt optimized 0.82 0.26 1.50 0.49 1.04
CcmPistance 1.08 0.23 1.55 0.66 0.62
CMrast omtimized 0.98 0.21 1.55 0.60 1.00
CMre saeet ratio 1.14 0.22 1.57 0.65 0.62
CMDstanee 1.17 0.24 1.64 0.79 0.60
CcMDistanee 1.20 0.24 1.69 0.74 0.63
CMp™ 0.64 0.16 0.93 0.34 0.39
CM v s optimized 0.60 0.16 0.92 0.28 0.50
CM e o 0.58 0.15 0.98 0.32 0.37
CM s et optimized 0.51 0.13 0.98 0.32 0.59
CMEY ave 24.83 3.71 33.19 18.73 13.72
cMpy 23.86 3.72 32.29 18.18 11.19
CMER ded 2331 3.60 30.22 17.89 13.75
Bayes. .. e 0.97 0.60 2.79 0.33 1.02
Bayes, . 1.16 0.64 2.88 0.28 0.28
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Table A.4: Combined CNN and ANN Leave one Out performance metric for full test track pre-
diction. All values expect R? values in dB(A). The RMSE values for this table are
averaged over the number of output variables of the models.

Model Meangyisg  STDpysg Maxpysg  Mingysy  Meangysg irain
TRN coefficients 1.11 0.55 2.54 0.42 R?=10.89
Linear Regression 1.09 0.46 2.15 0.48 R? =0.90
Lasso Regression 1.03 0.39 2.08 0.50 R? =091
ANN 0.71 0.22 1.30 0.45 0.56
ANNr optimized 0.61 0.18 111 0.37 0.92
CNN 80k 0.52 0.23 1.48 0.20 0.52
CNN}i?f;;},;:ed 0.38 0.11 0.62 0.12 1.18
CcM 0.67 0.20 112 0.36 0.44
CMipeqt optimized 0.58 0.18 1.06 0.35 0.73
CmPitanee 0.76 0.16 1.09 0.47 0.44
CM?jﬁta;‘;ﬁmized 0.70 0.15 1.09 0.42 0.70
CMreames s ratio 0.80 0.15 1.11 0.46 0.44
CMDistnee 0.82 0.17 1.16 0.56 0.42
CMDstanee 0.85 0.17 1.19 0.52 0.45
CMjy ™ 0.64 0.16 0.93 0.34 0.39
CM s optimized 0.60 0.16 0.92 0.28 0.50
CMav s 0.58 0.15 0.98 0.32 037
CM vt Test optimized 0.51 0.13 0.98 0.32 0.59
CMD e 3.15 0.47 4.22 2.38 1.74
cMby 3.03 0.47 4.10 231 1.42
CMPD e 2.96 0.46 3.83 2.27 1.75
Bayes., .. 0.97 0.60 2.79 0.33 1.02
Bayes, ... 1.16 0.64 2.88 0.28 0.28
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Table A.5: List of all tires included in measurements with vehicle with which measurements are

performed.

Manufacturer Profile Dimensions a b R?

Dunlop Sport BlueResponse 225/55R19 95V 10.63  32.13  0.9928
Goodyear Wrangler HP 215/60R16 95H 6.90 3435 0.9944
Michelin Energy Saver MO 205/65R16 95V 7.94 3356 0.9928
Bridgestone Alenza 001 MO 235/45R20 96W 10.46  33.50 0.9954
Continental Premium Contact 5 MO 225/55R17 97Y 495  36.22  0.9947
Continental Premium Contact 6 MO 225/45R18 95Y 10.67 33.18  0.9926
Continental Ultra Contact 215/60R17 96H 8.66 33.11 0.9933
Continental 4x4 Contact 235/50R18 101H 6.54 35.26 0.9944
Fortuna Ecoplus UHP 235/45R18 98W 349 3639 0.9968
Goodyear Eagle F1 Asymmetric5 MO 225/40R19 93Y 15.10  30.31  0.9942
Goodyear Efficient Grip 255/40R18 95Y 6.00 36.28  0.9963
Goodyear Excellence 245/45R19 98Y 292 37.75  0.9969
Michelin Pilot Sport4 SUV MO 255/45R20 105W 9.68 33.16  0.9943
Michelin Primacy4 MO 225/45R18 95Y 5.97 3432 0.9917
Nexen N Fera Sport SU2 MO 225/55R18 102Y 8.56  34.03 0.9940
Pirelli P Zero Nero GT 235/35R19 91Y 7.38 3477  0.9950
Pirelli Cinturato P7 MO 235/55R18 104T 8.00 33.97  0.9909
Pirelli Scorpion Verde MO 235/55R19 101V 11.70  31.65 0.9957
Viking ProTech NewGen 225/50R17 98Y 852 3413 0.9899
Vredestein Ultrac MO 225/55R18 102Y 2.41 36.07  0.9953
Hankook Ventus S1 Evo 3 MO 225/55R18 102Y  13.26 31.03  0.9951
Dunlop Dueler H/P Sport MO 235/55R19 101V 10.20  32.58  0.9922
Bridgestone Potenza 5001 MO 245/45R19 102Y 9.30 32,63 0.9918
Bridgestone Turanza T005 MO-S 255/40R20 101Y 8.15 33.73  0.9956
Continental ContiSportContact 5 MO1 255/50R19 103Y 9.96 34.14 0.9971
Continental EcoContact 6Q MO 235/55R19 105W  6.67  33.66  0.9967
Cooper Zeon Crossrange MO 255/45R20 105H 422 3541 0.9909
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Manufacturer Profile Dimensions a b R?

Dunlop SP Sport Maxx GT 275/30R20 97Y 9.72 3329  0.9962
Goodyear Eagle F1 SuperSport 265/35R20 99Y 7.89 3549  0.9949
Kumho Ecsta PS91 MO 245/45R18 100Y 10.33  32.47 0.9878
Michelin ePrimacy MO 245/45R19 102Y 9.35 3250 0.9933
Michelin Latitude Sport 3 MO 235/60R18 103V 8.31 33.44  0.9949
Michelin Pilot Sport 4 SUV MO 235/45R21 101Y 8.53 34.02  0.9967
Michelin Pilot Sport 5 MO 245/40R19 98Y 6.38 35.60 0.9974
Michelin Pilot Sport Cup 2 MO1 265/35R19 98Y 9.33 33.93  0.9952
Michelin Pilot Sport 4 SUV MO 255/40R21 102Y 8.97 33.82  0.9956
Pirelli P Zero (PZ4) MO 235/45R20 100T 6.77 34.84 0.9935
Pirelli Powergy MO 255/45R19 104Y 1143  32.21 0.9943
Pirelli P Zero Corsa Asimmetrico2  265/30R19 93Y 631 3598 0.9946
Dunlop SP Sport Maxx GT MOE 245/35R20 95Y 10.31  32.87 0.9934
Yokohama Advan Sport (V105) MO 235/60 R18 103V 9.98  32.66  0.9945
Continental Premium Contact 6 MO-S 285/45R22 114Y -0.22 3883 0.9932
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Table A.6: P-values of features in linear and lasso regression.

Feature Linear Regression  Lasso Regression
Vehicle speed 0 0

Tire nominal width 0.0000007367 0.0032227598
Tire temperature shoulder 0.0134476673 0.6447870438
Tire aspect ratio 0.0660130903 0.9875592583
Air pressure 0.0000031891 0.0000041675
Shore hardness block 0.0395834399 0.8858826724
Tire profile depth 0.0014254838 0.0126329030
Tire speed index 0.1444596024 0.5512727475
Rim diameter 0.7699015670 0.9071323847
Wind direction 0.6017873573 0.9868901362
Wind speed 0.3822990259 0.8776349902
Air temperature 0.4479964555 0.2830135890
Humidity 0.2357968483 0.9948160756
Shore hardness shoulder 0.2476162282 0.5510819674
Road temperature 0.0159929044 0.1332388569
Tire temperature block 0.0305054756 1

Tire load index 0.0005953554 0.1063855711

Table A.7: Hyperparameter Optimization Importances for Test and Train Datasets of ANN.

Model Split 1 Split 2 Split 3
Test  Train Test Train Test Train
Activation output 0.52 0.49 0.46 0.49 0.47 0.47
Activation hidden 0.24 0.26 0.29 0.30 0.22 0.28
Num Layers 0.02 0.03 0.03 0.03 0.03 0.05
Batch Size 0.03 0.03 0.03 0.02 0.04 0.02
Learning Rate 0.07 0.08 0.07 0.05 0.07 0.08
Dropout 0.08 0.06 0.08 0.07 0.14 0.13

Activation embedding 0.03 0.03 0.07 0.05 0.02 0.02
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Figure A.1: Correlation of Load Index and Outer Diameter for the 42 different tires.
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Figure A.2: Mean SPL of all 1443 measurements over distance.
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B Additional Covariance Maps
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Figure B.1: Feature covariance as heat map for tire parameters for merged data set as used in
CM.
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B Additional Covariance Maps
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Figure B.2: Feature covariance as heat map for operation and environmental conditions for
merged data set as used in CM.
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Figure B.3: Feature covariance as heat map for tire parameters of 42 different tires.
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C Additional Model Performance CM®”

C Additional Model Performance
cM®?

(a) Data split 0 (b) Data split 1 Ddtd spht 2

(d) Data split 3 (e) Data split 4 (f) Data split 5

Ddtd spht 8

Data spht 9 (k) Data spht 10 Data spht 11

Ddtd bpht 12 (n) Ddtd spht 13 Ddtd apht 14

Data spllt 15 Data spllt 16 (r) Data spllt 17

(s) Data split 18 (t) Data split 19 (u) Data split 20

Figure C.1: Prediction over reference values different data splits of CM™ for test data.

208



C Additional Model Performance CM™"

(a) Data split 21 (b) Data split 22 ) Data spllt 23

/ 1

(f) Data ipht 26

/

(g) Data split 27 (h) Data split 28 ) Data spht 29

//

) Data spht 32

ﬂ/

Data spht 35

(r) Data split 38

(a) Data split 39 (b) Data split 40 (c) Data split 41

Figure C.2: Prediction over reference values different data splits of CM™ for test data.
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D Additional Images
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E Additional Covariance Maps

E Additional Images of Integrated
Gradients
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Figure E.21: Additional images of IG investigation for CM
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F Additional Model Interpretation

F.1 Additional CM"*"™" Interpretation

The values in this subsections are calculated for ten independently trained
models and averaged for these. This step is taken to somewhat compensate
the multicollinearities.
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Figure F.1: Feature Importance of numerical input into CM distance model calculated through
integrated gradients. Values averaged for ten independently trained models on whole
data set, averaged for both microphone sides and slick and semi slick images.
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F Additional Model Interpretation
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Figure F.2: Feature importance of one-hot encoded features of CMPi!a1¢,
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F.1 Additional CMP*'*™® Interpretation
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F Additional Model Interpretation
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Figure F.5: Feature importance of CM

F.2 Additional CMESiIs,zltlcriﬁo Interpretation
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Figure F.6: Feature importance of CMasl;ei?Cr:ﬁO.
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F.2 Additional CMgpect ratio Interpretation
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Figure F.7: Feature importance of CMgpect ratio-
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Figure F.8: Feature importance of CMjspect ratio-
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Figure F.9: Feature importance of one-hot encoded features of CMpucer watio-

F.3 Additional CMDS®"¢ Interpretation
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Figure F.10: Feature importance of CMDiStanee
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F.3 Additional CMgyter diameter Interpretation
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Figure F.11: Feature importance of CMgier diameter
—=— Predyy —— Pred;g, —e— Pred,q —— Pred,g
70 70
69.5 ~ 69.5
S
69 2 e
=
I
68.5 @ 685
68 68
12 14 16 18 20 22 24 26 28 30 32 929 933 937 941 945

Air Temperature (°C)

(a) Air Temperature

Air Pressure (kPa)
(b) Air Pressure

Distance

Figure F.12: Feature importance of CMgyter diameter-
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F Additional Model Interpretation
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