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Abstract: In recent years, synthetic Computed Tomography (CT) images generated from Magnetic
Resonance (MR) or Cone Beam Computed Tomography (CBCT) acquisitions have been shown to be
comparable to real CT images in terms of dose computation for radiotherapy simulation. However,
until now, there has been no independent strategy to assess the quality of each synthetic image in the
absence of ground truth. In this work, we propose a Deep Learning (DL)-based framework to predict
the accuracy of synthetic CT in terms of Mean Absolute Error (MAE) without the need for a ground
truth (GT). The proposed algorithm generates a volumetric map as an output, informing clinicians of
the predicted MAE slice-by-slice. A cascading multi-model architecture was used to deal with the
complexity of the MAE prediction task. The workflow was trained and tested on two cohorts of head
and neck cancer patients with different imaging modalities: 27 MR scans and 33 CBCT. The algorithm
evaluation revealed an accurate HU prediction (a median absolute prediction deviation equal to 4
HU for CBCT-based synthetic CTs and 6 HU for MR-based synthetic CTs), with discrepancies that do
not affect the clinical decisions made on the basis of the proposed estimation. The workflow exhibited
no systematic error in MAE prediction. This work represents a proof of concept about the feasibility
of synthetic CT evaluation in daily clinical practice, and it paves the way for future patient-specific
quality assessment strategies.

Keywords: synthetic CT; conversion prediction; MR-only adaptive radiotherapy; deep learning

1. Introduction

Recently, several methods able to convert Magnetic Resonance (MR) and Cone Beam
Computed Tomography (CBCT) images into synthetic CT (sCT) have been proposed [1-4].
This image-to-image (I2]) translation strategy can help when it is not possible or not
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convenient to acquire a real CT. In particular, radiotherapy is one of the main fields where
sCT can play a fundamental role in improving treatment planning, allowing MR and CBCT
to be integrated into the imaging pipeline without the need for additional CT scans [5-11].
Indeed, MR offers better soft tissue contrast to contour the target tissue and the organs at
risk during treatment simulation. However, MR intensities do not reveal electron density
properties, and additional CT acquisitions are necessary for dose calculation purposes.
CBCT, on the other hand, is widely used for assessing inter-fraction geometric deviations
in adaptive radiotherapy. But, again, CBCT cannot be used to calculate the dose due to the
poor image quality; this forces the clinician to re-plan the treatment on new CT scans when
it is necessary. The conversion of MR and CBCT in sCT images can reduce radiation toxicity
among patients and decrease the time required for the treatment [2,12]. To date, the best-
performing strategies to remap image intensities rely on supervised artificial intelligence
algorithms [3,4], in particular those based on deep learning (DL). However, the accuracy
of this kind of algorithm strongly depends on the dataset used for the training, and they
can underperform in case of strong image artifacts and atypical anatomy. Moreover, the
translation quality is assessed by comparing the sCT with the real CT, which represents
the ground truth (GT). One of the most used metrics to assess conversion accuracy is the
pixel-to-pixel Mean Absolute Error (MAE) [3], defined as Equation (1).

Y 1|GT; —sCT;|
n

MAE = (1)
Mean Absolute Error formula.
iranges from 1 to n, number of pixels/voxels both for GT and sCT.

In the case of clinical use, the absence of GT makes it impossible to evaluate the
conversion accuracy, which has a direct impact on dose calculation. As a consequence,
clinicians have to trust the pre-trained DL algorithms, being unable, except for eye-catching
macroscopic mistakes, to detect conversion errors that could dramatically affect the treat-
ment. For the clinical use of sCT for treatment adaptation [13], the implementation of online
quality control procedures is mandatory. Some recent works [14-16] propose a DL model
for synthetic CT generation with uncertainty predictions. The conversion pipeline provides
an sCT alongside a predicted uncertainty map. A shortcoming of this approach is the
information generation within one algorithm. In case of conversion failure, the uncertainty
estimation could also be unreliable. Moreover, it is worth underlining the fundamental
difference between “uncertainty” and “error”: a system (as well as a human) can make
totally wrong predictions while being, at the same time, absolutely certain about them.
For this reason, it is important to predict, preferably by using an independent tool, the
conversion error of a process rather than its confidence. In this paper, we implemented
a strategy to estimate the quality of sCT in terms of MAE without the need for the cor-
responding GT and independent of the translation model. The method is based on deep
learning algorithms that were trained and tested on two patient cohorts including MR- and
CBCT-based sCT images.

2. Materials and Methods
2.1. Dataset

Two datasets of head and neck cancer patients, previously described in Thummerer
etal. [17,18], were used in this study. All patients were treated with intensity-modulated
proton therapy at the University Medical Center Groningen, The Netherlands. The first set
included 33 patients scanned both with CBCT and CT. The second set included 27 patients
with MR and corresponding CT images. All CBCT/CT and MR/CT pairs were carefully
aligned using deformable image registration to match the anatomy. For each patient of
both datasets, an sCT was generated by using a basic version of the algorithm described
in Spadea et al. [19]. The original Spadea et al. method, relying on an encoder/decoder
architecture to execute 2D-based image translation, takes advantage of a multi-plane
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approach, in which volumes obtained along axial, sagittal, and coronal directions are
voted to generate the final image. In this work, only the synthetic CTs reconstructed by
stacking the translated 2D images along the craniocaudal axis were used. From now on,
the sCTs derived from CBCT will be referred to as sCTcpcr and the ones obtained from
MR as sCTpg-

2.2. General Pipeline

The proposed quality control approach is based on a 2D DL model architecture pipeline.
The main idea is to provide an axial sCT slice as the input to the DL scheme and to obtain
the predicted MAE for that image as the output (see Figure 1). To achieve this, the DL
model is trained on retrospective data where ground truth CT and the corresponding sCT
are available. Having GT images, the actual MAE can be computed slice-by-slice according
to equation 1. During the training, the pipeline receives the sCT slice (input) and the actual
MAE (output to predict). Afterwards, during deployment, the trained models only receive
the sCT slices and predict an MAE scalar for the synthetic 2D image.

DL based Predicted
algorithm MAE
(scalar)

Figure 1. Representation of the general MAE prediction pipeline. An axial sCT slice is given as input,

and the associated MAE scalar for the image slice is predicted by using a DL pipeline.

More specifically, as depicted in Figure 2, the workflow consists of a cascade of 2 series
of DL models, used in a sequential way to handle the complexity of the MAE prediction
task. The rationale is to first execute a raw prediction of the MAE interval (classification),
followed by a more precise estimation of the MAE value (regression). This approach was
inspired by a similar and successful strategy to predict segmentation accuracy in multi-
atlas-based segmentation [20]. This strategy allows the initial problem to be split into two
subproblems, both of which are easier to solve than the first one.

DL based algorithm
Raw MAE Predicted
interval = ':-’tlezlszion MAE
classification 9 (scalar)

Figure 2. A more detailed graphical representation of the MAE prediction pipeline. The final MAE
prediction is obtained as a result of two DL steps: First a raw MAE interval classification is performed,
followed by a more precise MAE estimation based on a regression algorithm.

2.3. Output Visualization

The output of a single prediction is a scalar value representing the estimated MAE
for the entire given axial slice. In envisioning a clinical use, it is fundamental to visualize
the predicted conversion error slice-by-slice and overlaid on the sCT. To achieve this, a
volume (named “Predicted MAE volume”, pMAE,1,m.), having the same shape as the
corresponding sCT, is generated. During the sCT evaluation step, the predicted MAE of the
i-th axial slice is assigned to the i-th axial slice of pMAE ., which will be visualized by
taking advantage of a dedicated color map. Figure 3 shows an example of an sCT overlaid
toits pMAE yo1ume-
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Predicted MAE A Predicted MAE

Predicted MAE Predicted MAE

Figure 3. Exemplary sCTcpcr overlaid with its pMAE,o;,.. In addition to the 2D views (axial,
sagittal, and coronal planes), the 3D representation is also shown.

2.4. Pipeline Details

As already reported, the first step for MAE estimation is a raw classification of the
conversion error. More specifically, 4 classes are used in the proposed pipeline (low, low-
medium, medium-high, and high MAE). In order to define the MAE range for each interval,
the actual MAE distribution of the entire dataset is computed. Then, the first class of
the prediction is associated with an MAE ranging from 0 to the 1st quartile of the total
distribution, the second class from the 1st to the 2nd quartile, the third class from the
2nd to the 3rd quartile, and finally the fourth class from the 3rd percentile to the highest
MAE values (in order to deal with an open interval, this last bin was saturated to an upper
bound HU value). This allows for the balancing of the number of examples per class.
The same values are also used as an initialization to define the MAE boundaries for the
regression step (the second one of the pipeline), where a separate model is trained for
each of the four MAE classes. More specifically, each of the four regression models is
trained by showing only the slices having an MAE value included in the same range of the
connected classification class. However, in order to take into account possible mistakes in
the classification step, the boundaries of the regression models are relaxed by also including
cases with GT MAE slightly lower/higher than the quartiles (+5 HU). Table 1 reports the
computed bin ranges, both for the classification and regression steps. In total, 5 models
have to be trained (1 for classification and 4 for regression), but, in the inference mode, each
sCT slice will be processed just by 2 of them (classification followed by the class-specific
regression). For the sake of clarity, the entire prediction pipeline is shown in Figure 4.
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Figure 4. Detailed workflow of MAE prediction. A single sCT axial slice is fed firstly into a DL model
that classifies it as belonging to a specific MAE class. According to this prediction, the 2D image
is then provided as input to a connected DL regression model, specifically trained to operate on a
restricted range of MAE values. As a result, the MAE of a single sCT slice can be forecasted. In order
to train the different models with a GT MAE, the ground truth CT is needed (dashed lines are needed
only to train the models).

2.5. DL Architecture and Training

The DL architecture to be used in this work was chosen after testing several models,
both from VGG [21] and ResNet [22] families. Our tests revealed that VGG-16 provides
the best prediction accuracies, so it was used as the baseline architecture for all the models.
VGG (Visual Geometry Group) is a family of high-performance convolutional neural
networks developed for classification and regression tasks. Even though it was created
for general-purpose computer vision applications, it has also been widely used in the
biomedical environment. The backbone of VGG-16 includes 13 convolutional layers (that
serve as feature extraction engines), followed by 3 fully connected layers (that are used
to obtain the output label starting from the computed feature map). The loss functions to
optimize for classification and regression are, respectively, cross entropy and mean squared
error. The best epoch for the classification task is not chosen on the basis of the cross
entropy value but by considering the accuracy weighted according to the misclassification
magnitude. In practical terms, this means that a classification error of 1 class is preferred
over 2 and 3 classes of misclassification. This choice is made to let the regression step,
trained on slightly larger MAE boundaries than the connected classification bin, recover the
potential classification error. The entire workflow is written in Python by taking advantage
of PyTorch library [23]. The learning rate is set to 5 x 1075, and L1 and L2 regularizations
are included (both weights equal to 4 x 10~%). The image augmentation scheme includes
mirroring and translations, as defined by Spadea et al [19]. The dataset is split into 75%
training, 10% validation, and 15% testing. K-fold cross-validation is used to evaluate the
model generalization performance on the entire dataset.
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2.6. Experiments

To assess the learning generalization capability of the approach toward different image
modalities, 3 pipelines are implemented:

1.  Models trained only with sCTcpcr as input (named Pipelinecpcr),
2. Models trained only with sCTg as input (Pipelineyr),
3. Models trained with both sCTcpcr and sCTyr as input (Pipelinepixep)-

Once all the models of each pipeline are trained, multiple testing schemes are run to
evaluate the prediction performance. In particular, the following experiments are executed:

e Pipelinecpcr is used to predict the MAE only for sCTcpcr data

*  Pipelinepp is used to predict the MAE only for sCTyr data

*  Pipelinepxep is used to predict the MAE only for sCTcpcr data
*  Pipelinepxep is used to predict the MAE only for sCTyr data

Table 1 shows the MAE binning used to train both classification and regression models
in each pipeline.

Table 1. MAE ranges for classification and regression, both for MR, CBCT, and MIXED pipelines.

Pipeline Low MAE Medium-Low MAE = Medium-High MAE High MAE

0-47 47-54 54-68 68-100
MR (classification) (classification) (classification) (classification)
0-52 42-59 49-73 63-100
(regression) (regression) (regression) (regression)
0-27 27-32 3242 42-70
CBCT (classification) (classification) (classification) (classification)
0-32 22-37 27-47 37-70
(regression) (regression) (regression) (regression)
0-32 32-44 44-56 56-90
(classification) (classification) (classification) (classification)
MIXED
0-37 27-49 39-61 51-90
(regression) (regression) (regression) (regression)

2.7. Prediction Pipeline Evaluation
The accuracy of the prediction workflow is quantified in terms of signed and unsigned
deviation from the GT MAE. More specifically, both the Prediction Deviation (PD) and the
Absolute Prediction Deviation (APD) are computed for each slice as defined in Equations (2)
and (3):
PD = MAEgT — MAEpredicted 2)

Signed predicted deviation between GT and inferred MAE.
APD = |MAEgT — MAEpredicted @3)

Absolute predicted deviation between GT and inferred MAE.

Both MAEGT and MAE,gicteq are saturated to the upper bound values reported in
Table 1.
3. Results

Figures 5 and 6 show, for each DL pipeline, the PD and APD distributions computed
over all the 2D slices of all the patients.
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Prediction Deviation

40 1
SCTCBCT SCTMR
30 1
20 A N

10
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_10 .

PipelineCBCT PipelineM,XED PipelineMR PipeIineM,XED

Figure 5. PD distributions for modality-specific and mixed pipelines. Results for sCTcpcr and sCTyr
are reported, respectively, in the left and in the right panel.

Absolute Prediction Deviation

351 _
30 SCTCBCT SCTMR

. Il

Pipelinecger  Pipelinemxep Pipelineygr Pipelinemxep

Figure 6. APD distributions for modality-specific and mixed pipelines. Results for sCTcpcr and
sCTyr are reported, respectively, in the left and in the right panel.

Tables containing the median, the 5th, the 25th, the 75th, and the 95th percentiles of
both PD and APD are reported in Appendix A. To assess whether a statistical difference ex-
ists between the predictions obtained by using the mixed-trained workflow (Pipelinepxep)
versus the specific modality pipeline (Pipelinecpct and Pipelineyr), the Wilcoxon rank-
sum test is run over all the pairs of MAE predictions obtained for all the patients fed into
the different pipelines. These tests reveal that both single-modality options performed
significantly better than the mixed solution (p-values < 0.01). Figure 3 shows an example of
the overlay of the sCT and its pMAE o1, As can be seen, for slices depicting small and
movable anatomical structures (e.g., nasal cavities), higher MAE values are predicted. This
behavior was expected and desirable, confirming the effectiveness of the proposed strategy.

Despite the necessity for a more extended training phase to enable the training of
5 different models, the inference step is completed in a few seconds. As a result, the
required time to evaluate an sCT is totally compatible with a clinical scenario and will not
slow down the radiotherapy planning workflow.
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4. Discussion

In this work, we introduce a new method to predict the accuracy of sCT generation
when the GT is not available (i.e. use of sCT in a clinical setting). The technique is based on
using a DL model that is independent from any other model used to generate the sCT.

Being the first implemented workflow for the autonomous MAE prediction of DL-
based sCT, there are no closely related studies to compare it with. The most similar articles
in the literature are those that generate uncertainty maps alongside sCT [14-16]. The idea
behind such works is to have a distribution of values for each voxel rather than a single
intensity (by using Bayesian neural networks or by executing multiple inferences with
active dropout layers). The averages of the obtained distributions represent the final sCT,
while the variabilities are informative about the uncertainty of the prediction (with the
uncertainty map correlating with the GT intensity and dose errors). However, in this regard,
it is fundamental to underline the conceptual difference existing between our proposed
workflow (conversion error estimation) and the uncertainty prediction proposed by others,
since being confident about something does not necessarily mean being accurate. The
main concern about these strategies is the possibility that the conversion model provides,
with high assurance, a synthetic image that is actually wrong. Because of this, the main
pillars of the proposed workflow are the separation between the image translation step
and its quality control, and the prediction of the actual error rather than the confidence.
Predicting the conversion error of sCT, in fact, is of paramount importance in contexts such
as radiotherapy, where wrong HU assignments lead to wrong dose estimation to the target
and organs at risk. Specifically, for the clinical introduction of MR-guided radio and proton
therapy [24], an autonomous and independent quality control tool (an information with an
additional level of redundancy and with a rationale totally different from the uncertainty
assessment produced by the conversion algorithm itself) would be required to ensure
reliable clinical decision-making based on deep-learning generated medical image data. We
would like to highlight that the aim of the proposed tool is to intercept conversion errors
that are not expected and not detectable by the human operator. Clinicians, in fact, well
know the anatomical regions that can be more likely affected by translation error and are
able to identify evident anomalous conversions, so our intention is to catch unforeseeable
failures. The findings of our experiments show that it is possible to predict the accuracy of
sCT in terms of MAE, with small deviations between inferred and GT MAE values. In fact,
considering the HU range, an absolute prediction deviation of 4 = 3HU (for CBCT-derived
sCT) and 6 £ 3.5HU (for MR-derived sCT) has no impact on the dose estimation, even in the
case of proton therapy, known to be extremely sensitive to HU variations. Signed prediction
deviations demonstrate the absence of systematic errors. Results are also consistent with
real-case expectations. Referring to Figure 3, worse conversion error is predicted for axial
slices included between the nasal cavities and the mandibular bone. This result is very
common in sCT generation, since the image quality in this anatomical area is deteriorated
by the presence of dental fillings and motion artifacts. In a typical clinical setting, the
user would receive a warning on which part of the sCT is reliable and which is not. In
light of the magnitude of the predicted error and its spatial localization with respect to
the tumor and the tissues to be spared, clinicians may elect to exclude the use of the sCT.
The comparison between models trained by using single-modality versus mixed-modality
dataset reveals that better results are obtained with single-modality training. The mixed
setup was implemented to test the capability of the workflow to be agnostic to the initial
image modality. The entire workflow is based on the VGG-16 model, which has been
demonstrated to be the most effective architecture for predicting the MAE in our tests. In
addition to its high predictive accuracy, this model requires fewer computational resources
than deeper networks, allowing for fast sCT evaluation even in the absence of dedicated
high-end GPUs, which is a crucial advantage in a real clinical setting.

Regarding the potential error propagation between the classification and regression
steps, the proposed workflow is also robust to this possibility. In fact, as can be deduced
from the results (Figures 5 and 6), the prediction deviations are much smaller than the



J. Imaging 2024, 10, 316

90f11

differences that would be generated if the raw MAE bin was misclassified and if this error
was not recovered in the regression phase.

The proposed approach could be further improved by replacing the global axial MAE
scalars currently predicted as quality control metrics with a more informative index from
a clinical point of view. Such an index could, for example, include dosimetric and/or
voxel-level prediction. In the future, it would be interesting to evaluate the proposed
workflow on images collected in different institutions and converted by using different
translation strategies (including cycle-GAN architectures, to get rid of the error introduced
by the image registration step). We envision pursuing work in that direction, executing
more complex and more computationally demanding experiments. The proposed idea, in
addition to enabling a real-time synthetic image evaluation in the clinic, can be also used to
implement synthetic image generation algorithms, when CT-MRI or CT-CBCT paired data
are not available. The pipeline described here, in fact, can directly replace the computation
of the MAE-based loss when the ground truth CT is not available.

5. Conclusions

In conclusion, we demonstrated that an independent prediction of the performance
of an algorithm for sCT generation is possible and, most importantly, we hope to start a
debate about usable strategies in real clinical environments for assessing the quality of
synthetic medical images.

Author Contributions: P.Z.: Conceptualization, Investigation, Methodology, Software, Visualization,
Formal analysis, and Writing—original draft; C.B.R.: Software, Writing—review and editing; A.T.:
Data curation, Resources, and Writing—review and editing; G.G.M.: Data curation, Resources, and
Writing—review and editing; J.A.L.: Supervision, Writing—review and editing; A.P.: Visualization,
Writing—review and editing; C.C.: Supervision, Visualization, and Writing—review and editing; J.S.:
Supervision, Writing—review and editing; A.C.K.: Supervision, Visualization, and Writing—review
and editing; S.B.: Supervision, Resources, and Writing—review and editing; M.ES.: Supervision,
Methodology, Formal analysis, and Writing—review and editing. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All the patients were enrolled in the UMCG Radiation
Oncology standardized follow-up program, approved by the medical ethics committee. Being a
retrospective study, no additional images were acquired.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets used in this article are not readily available because
they contain sensitive information. Requests to access the datasets should be directed to the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Tables A1 and A2 show, for each DL pipeline, the median and the percentiles of PD
and APD distributions computed over all the 2D slices of all the patients.

Table Al. Statistics about the PD for each conducted experiment.

Prediction Deviation (PD)
5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Experiment

[HU] [HU] [HU] [HU] [HU]
Pipelinecpcr predicting on sCTcper -10 —4 0 5 20
Pipelinepg predicting on sCTyr —12 —4 1 7 16
Pipelinepxep predicting on sCTcper —23 —6 -1 4 21

Pipelinepxgp predicting on sCTyr —11 -3 4 15 32
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Table A2. Statistics about the APD for each conducted experiment.

Absolute Prediction Deviation (APD)
5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Experiment (HU] [HU] [HU] (HU] [HU]
Pipelinecpcr predicting on sCTcpcr 0 2 4 8 21
Pipelinepr predicting on sCTyr 1 3 6 10 17
Pipelinepxgp predicting on sCTcpcr 0 3 5 11 29
Pipelineyrxep predicting on sCTyr 1 4 8 16 32
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