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Abstract
Enhancing nonlinear optical effects is critical to improving the performance of many functional devices

for nonlinear and quantum optical applications. Here we study the possibility of bending a waveguide to

enhance the photon pair generation rate in a spontaneous four-wave mixing process. Whereas intuition might

suggest that bending makes the process less efficient, because the waveguides are more lossy when bent,

we show that the increase in the effective nonlinearity outperforms the disadvantage for moderate bending

radii. That can be explained by a better localization of the guided eigenmodes, leading to a reduced mode

area. By studying selected waveguide devices with a fixed length, we demonstrate an optimal improvement

between 5 % and 270 % in the photon pair generation rate for an optimal bending radius. These findings have

implications for the future design of integrated photonic devices for quantum optical applications, especially

in cases where the chip estate tends to be a limiting factor.

INTRODUCTION

Photon pair generation in waveguides or ring resonators leads to the creation of squeezed states
of light. This capability can enable on-chip quantum photonic technologies [1, 2], because the
photon pair sources can be implemented in compact and complex quantum circuits [3, 4]. It has
the advantage that the photon pairs do not need to be injected from an external source, and so
coupling loss can be avoided [5]. The on-chip creation of entangled photon pairs, demonstrated
for example in [6] with two 5.2 mm long spiral waveguides or two microring resonators [7], can
be used for quantum interferometry. This paves the way to quantum communications and optical
quantum computation [8, 9], e.g. Gaussian boson sampling [10], as well as quantum metrology to
light-sensitive samples [11]. It has been theoretically predicted and experimentally verified that
spontaneous four-wave mixing (SFWM) in a third-order nonlinear material is an efficient source for
quantum correlated photon pairs [5, 12]. Third-order nonlinear processes in silicon like four-wave
mixing (FWM), self- and cross-phase modulation (SPM, XPM) or two-photon absorption (TPA)
can also be exploited for ultrafast all-optical switching at low power [13], temporal imaging [14],
optical couplers, and logic gates [15].

Generally speaking, enhancing the nonlinearities can increase the efficiency of all these signal-
processing devices in integrated photonic circuits. Since the nonlinearity of the material is an
intrinsic quantity and hard to change, the most obvious solution is to make the nonlinear waveguides
longer. However, that is not always desirable since chip estate is precious. Especially with an eye
on an ever-denser integration of photonic components on chips, it would be desirable to maintain
the spatial footprint of the nonlinear components small but enhance the nonlinear response. In that
respect, a systematic bending of the waveguides has already been suggested, and it was shown that
the waveguide length can be increased up to several centimeters by forming low-loss spirals using
smooth Euler bends [16, 17]. These specifically bent waveguides minimize higher-order mode
coupling [18].
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In different integrated photonic platforms (with varying core sizes of the waveguides and con-
sidered refractive indices), waveguides can be bent with a reasonable radius without significantly
increasing losses [17, 19]. This property was already exploited in literature [16–18]. However, so
far, the possible bend has only been considered from the perspective of increasing the waveguide
length without compromising the spatial footprint, leaving the impact of the bend on the waveguide
nonlinearity completely unattended. An effect is safe to be expected, as the modal properties change
when the waveguide is bent, and most notably, the field localization improves. This translates
directly to the effective nonlinearity of the waveguide, which promises to render any nonlinear
effect more efficient. However, the fundamental question remains whether these benefits outweigh
the detrimental aspect of increased losses when the waveguides are bent. This contribution strives
to answer this question while concentrating on the important example of the photon pair generation
rate in a spontaneous four-wave mixing process.

To give a comprehensive answer, we consider multiple waveguide systems that could be consid-
ered for this purpose and rely on different material platforms. The manuscript is structured into
various sections to explore the problem comprehensively. In section Theory, we describe at first
the formalism used to calculate the nonlinear coefficients and photon pairs generation rate for
channel waveguides. This serves as a reminder, and the general framework has been presented in
the literature [20, 21]. In dedicated sections, we discuss the influence of different types of losses,
outline the different waveguide systems we considered, and describe the numerical details of our
procedure. Finally, in the Results section, we present the results of our calculations for commonly
used nonlinear waveguides with different curvatures, and we perform a study on a lossy waveguide
to show the peak in nonlinear response. We present the results in detail for two different material
systems and provide the results for several waveguide systems in an aggregated table. We finish
with the physical discussion of the achieved results.

THEORY

Four-wave mixing is a typical third-order (χ3) nonlinear optical process, where two or three
wavelengths interact within a medium to generate a fourth wavelength. Four-wave mixing can
occur classically or spontaneously, depending on whether an external input signal is provided or
not in addition to a pump [16]. In spontaneous four-wave mixing, the case on which we concentrate
here, the annihilation of two pump photons results in the creation of a pair of one signal and one
idler photon. The created photons are usually entangled, and the superposition of created pairs
of photons forms squeezed light states. These two effects are of interest in quantum information
processing protocols [20].
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The generation rate R of photon pairs can be expressed as

R =
number of generated pairs

time
=

2π

h̄2

∫ ∫
δ (Ω(ωS,ωI))|M(ωS,ωI)|2

1
vS

1
vI

dωSdωI , (1)

which is analogous to the formula (A16) in [21], when integrating over the frequencies instead of
the wavenumbers. In the equation above, h̄ is the reduced Planck constant, ωS and ωI are the angular
frequencies of signal and idler photons, respectively, and vS and vI refer to the group velocity of
signal and idler mode, respectively. The quantity M(ωS,ωI) with units m3s−2kg corresponds to the
FWM generation efficiency [1]. The Dirac delta distribution δ (x) depends on Ω(ωS,ωI), which ex-
presses the frequency difference of the annihilated and created photons Ω(ωS,ωI) = 2ωP−ωS−ωI ,
for a fixed frequency of the pump photons ωP. We use the condition Ω(ωS,ωI) = 0 to express
energy conservation. We require the unit of the photon pair generation rate to be [Hz], i.e., pairs/s.
This formula was derived in [20] and [21] from Fermi’s golden rule with continuous-wave (CW)
pump, after defining interaction Hamiltonian for creating signal and idler photons, and annihilating
pump photons.

The crucial quantity to calculate is the FWM generation efficiency M(ωS,ωI). It was shown in
[21] that it can be expressed as

M(ωS,ωI) =
6πPP

ε0h̄ωPvP
K(ωS,ωI,ωP,ωP) , (2)

where PP and vP are the power and the group velocity of the pump source, respectively, and ε0 is the
vacuum permittivity. We can find in analogy to equation (11) in [21] that K(ωS,ωI,ωP,ωP) reads as

K(ωS,ωI,ωP,ωP) =
∫

Γ
i jkl
3 (r)(Di

S(r))
∗(D j

I (r))
∗Dk

P(r)D
l
P(r)dr , (3)

where

Γ
i jkl
3 (r) =

χ
i jkl
3 (r)

ε2
0 ε2

1 (r;ωP)ε1(r;ωI)ε1(r;ωS)
(4)

expresses a normalized nonlinearity, where the third-order nonlinear susceptibility tensor χ
i jkl
3 (r)

is normalized to the electric permittivity of the waveguide ε1(r;ωJ). We consider here centrosym-
metric materials, for which χ

i jk
2 (r) disappears. Superscript indicates Cartesian coordinates, which

are summed over when repeated.

The electric displacement field for a waveguide mode that we have to consider in the expression
(3) is, following Eqn. (4) from [21], defined as

DJ(r) =
√

h̄ωJ

4π
dJ(r⊥)eiβJz . (5)

In this expression, the displacement field amplitude of the mode dJ(r⊥) is defined in a plane
perpendicular to the principal propagation direction z of the mode J. The propagation constant of the
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mode J is denoted by βJ. The subscript J denotes the pump P, signal S, or idler I, i.e., J = {P,S, I}.
The displacement field amplitudes should be normalized according to equation (70) from [20]∫ d∗

J (x,y) ·dJ(x,y)
ε0ε1(x,y;ωJ)

vph(x,y;ωJ)

vg(x,y;ωJ)
dxdy = 1. (6)

The quantities vph(x,y;ωJ) and vg(x,y;ωJ) denote the local phase velocity and group velocity,
respectively. They are derived from the bulk properties of the material that is at a specific point in
the waveguide and account for material dispersion [22].

Considering the formula for the displacement field (5) and the expression (4), we can rewrite
K(ωS,ωI,ωP,ωP) as

K(ωS,ωI,ωP,ωP) =
h̄2√

ωSωIωP

16π2

∫ L
2

− L
2

eiz(2βP−βS−βI)dz

· ε2
0

∫
D

χ
i jkl
3 (x,y)

(
ei

S(x,y)e
j
I (x,y)

)∗
ek

P(x,y)e
l
P(x,y)dxdy , (7)

where we consider the wave propagating over length L. In the derivation of the above for-
mula, we already took into account the relation between the electric and the displacement field:
di

J(r⊥) = ε0ε1(r⊥;ωJ)ei
J(r⊥) and∫

Γ
i jkl
3 (r⊥)di

P(r⊥)d
j
P(r⊥)d

k∗
S (r⊥)dl∗

I (r⊥)dr⊥

= ε
2
0

∫
χ

i jkl
3 (x,y)

(
ei

S(x,y)e
j
I (x,y)

)∗
ek

P(x,y)e
l
P(x,y)dxdy , (8)

following from the considerations (380-382) in [20], appropriately for channel waveguides. Inte-
grating over r⊥ = dxdy means integrating over the entire plane D perpendicular to the propagation
direction of the waves.

To simplify the formula (7) further, we introduce the nonlinear coefficient [20] for channel
waveguides

γSFWM =
3(ωSωIω

2
P)

1/4ε0

4
√

vSvIv2
P

∫
χ

i jkl
3 (x,y)

(
ei

S(x,y)e
j
I (x,y)

)∗
ek

P(x,y)e
l
P(x,y)dxdy . (9)

The nonlinear coefficient γSFWM is a measure of nonlinearity in a given structure corresponding to
the strength of spontaneous four-wave mixing [18]. It helps to compare the nonlinearity of different
structures and materials. The nonlinear coefficient is often defined with the use of an effective area
of the waveguide mode [13, 20, 23]

Aeff =
NPNPNINS∫ χ

i jkl
3 (x,y)

χ̄3

[
ei

P(x,y)e
j
P(x,y)

]∗
ek

I (x,y)e
l
S(x,y)dxdy

, (10)
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where

NJ =

√∫ n(x,y;ωJ)/n̄J

vg(x,y;ωJ)/vJ
e∗J (x,y) · eJ(x,y)dxdy , (11)

with n̄J being the value of the refractive index of the core at wavelength λJ and χ̄3 – the characteristic
value of the susceptibility tensor components of the core. This derivation utilized the normalization
condition (6). With the formula (10), the nonlinear coefficient simplifies to

γSFWM =
3(ωSωIω

2
P)

1/4χ̄3

4ε0
√

n̄Sn̄In̄Pn̄Pc2
1

Aeff
. (12)

Utilizing all of the above equations results in

K(ωS,ωI,ωP,ωP) =
h̄2(ωSωIω

2
P)

1/4ε0

12π2

√
vSvIv2

P γSFWM

∫ L/2

−L/2
eiz∆β dz , (13)

where the phase matching (momentum conservation) is quantified with ∆β = 2βP −βS −βI. Finally,
we arrive at the expression for M(ωS,ωI)

M(ωS,ωI) =
PPh̄(ωSωI)

1/4

2π

√
vSvI

ωP
γSFWMLsinc

(
∆β

L
2

)
, (14)

where we used sinc(x) = sin(x)/x.

Treatment of losses

In the above derivation, neither scattering nor absorption losses were included explicitly. In
this subsection, we discuss the various sources of losses and their significance for the considered
waveguide materials and structures.

One common energy limitation is two-photon absorption (TPA) quantified by the coefficient
βTPA = 3ω

2ε0c2n2 ℑ{χ(3)}, governed by the imaginary part of the nonlinear susceptibility [24]. The
generated photon pairs could be lost due to TPA. Especially silicon-on-insulator (SOI) suffers from
TPA [25] if the photon frequencies (pump, signal, or idler) are higher than the silicon bandgap
frequency [1], which is the case at telecommunication wavelengths [26]. The solution can be to shift
the pump to a longer wavelength or use another material like silicon nitride, which has a bigger band
gap and is characterized by low nonlinear and linear losses at telecommunication wavelengths [16].
TPA, free carrier absorption (FCA), and dispersion [27] can also be reduced through lower pump
powers. It was shown experimentally [28] that the correlated photons can still be distinguished
from accidental coincidences for a CW pump power of 10 mW at wavelengths close to 1.55 µm. In
[27], it was shown that the pump powers around 100 mW are still below conversion efficiency (the
ratio between the output idler power and input probe power) enhancement saturation due to TPA
and FCA at telecommunications wavelengths [27]. In our computations, we use a pump power of
100 mW. However, due to the square proportionality of the photon pair generation rate to the pump
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power, our findings should apply to smaller powers as well.

Another issue are propagation losses caused by scattering on sidewalls due to surface roughness
[29]. Such surface roughness can be caused, e.g., by an imperfect etching process in the waveguide
fabrication [18, 30]. In silicon nanowires, this effect can worsen the generation of high absolute
idler powers [18]. However, we do not consider fabrication imperfections in this theoretical study.

In this work, we consider only the propagation losses along waveguides induced by bents.
The bending loss is included in the integral (7) in the form

∫ L/2
−L/2 eiℜ{∆β}ze−βimzdz, where the

total imaginary part of the propagation constant equals βim = 2|ℑ{βP}|+ |ℑ{βS}|+ |ℑ{βI}|. The
absolute values are introduced to make sure the imaginary parts are positive regardless of the
convention used. Integrating the exponential part of the amplitudes from −L/2 to L/2 results in∫ L/2

−L/2
ei∆β ze−βim(z+L/2)dz =

2e−
L
2 βim sinh

(L
2 (βim − i∆β )

)
βim − i∆β

. (15)

Note that the term in the expression above that expresses the losses, i.e., the second exponential
on the left-hand side of the equation, takes a distance from 0 to L as the effective argument. We
ensure with this formulation that the losses are properly accumulated and consider the propa-
gation in a waveguide section of length L. When the phase-matching condition is satisfied, the
peak photon pair generation rate occurs for ∆β = 0. In this case, the integral (15) approaches
−(exp(−βimL)−1)/βim, which is analogous to formula (30) in [21].

We are aware that in the experiments, the signal-to-noise ratio SNR = (ca + cp)/ca, where ca

is the number of accidental coincidences and cp is the number of coincidences due to correlated
photons [28], may be affected by free carrier absorption and bending loss. The quantum information
application of generated photon pairs may be limited as the heralding of photons may be inaccurate
due to the loss of either the signal or idler photon [4, 31]. Fortunately, the linear loss (bending
loss) is low (if not negligible) in the case of silicon [30] and silicon nitride. This is characteristic
for structures with high index contrast [30], where the guided mode is strongly confined to the
waveguide core. It will be discussed in the Results section.

The last aspect of practical interest is the photon pair heralding efficiency, which quantifies the
probability that if an idler photon were detected, the signal photon would also be detected (and
vice-versa). In the presence of propagation losses, this efficiency would be impaired because of the
loss of either idler or signal photon from the pair. The influence of absorption loss on heralding
efficiency was studied in [5], and the simplified formula for the heralding efficiency HE was given
as

HE ≈ (αL)2

2(eαL −αL−1)
, (16)

with α being an absorption coefficient. In the Results section, we use this formula to compare the
heralding efficiency for different waveguide structures and radii of curvature.
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Description of the considered waveguides

In this subsection, we describe the different waveguides we consider in the following. To
keep it rather general, we rely on a selection of waveguide examples, previously studied in the
literature, made from different materials: silicon nitride buried in silicon dioxide [16, 32], silicon
photonic wires [24], silicon on insulator (SOI) [18, 27, 30], and freeform waveguide made of
IP-Dip photoresist (Nanoscribe GmbH) [33], which can be written with three-dimensional additive
manufacturing techniques [34, 35]. Table I lists the investigated waveguide systems. The considered

Table I: Investigated materials and structures

core material cladding material core cross-section (w [µm]× h [µm])

IP-Dip nclad = 1.36 2 × 1.8

Si3N4 SiO2 2 × 1.8

Si3N4 SiO2 1.7 × 0.711

Si3N4 SiO2 1 × 1

Si3N4 SiO2 1 × 0.5

Si3N4 SiO2 0.46 × 0.3

Si SiO2 2 × 1.8

Si SiO2 0.45 × 0.22

Si air 1 × 0.32

Si air 0.45 × 0.22

waveguides differ not only in their core and cladding materials but also in their core sizes. To justify
the choice of materials, we wish to stress that silicon is a popular core material due to its high
nonlinearity and tight confinement of light due to high refractive index [16]. Additionally, it has the
advantage of combining electronics and photonics on the same chip [16]. The major limitation of
silicon is TPA. In response to this problem, silicon nitride platforms were developed, which reduce
nonlinear losses at telecommunication wavelength [16, 18]. Along with the high nonlinear materials,
we also show one example of a photonic wire bond made from a polymer characterized by a weak
nonlinearity and a rather low refractive index. That combination of material properties facilitates
the discussion of the trade-off between loss and the possible enhancement of the nonlinear effects.

NUMERICAL DETAILS

In this section, we describe the computation steps. For each structure from Table I, we start by
computing the supported waveguide modes with the use of Ansys Lumerical [36] for wavelengths
ranging from 1510 nm to 1600 nm, with 5 nm step, which encompasses the common telecommuni-
cation wavelength 1550 nm. The limits of the range are caused by difficulty in finding propagating
modes for some materials and cross-sections for wavelengths outside the given range, especially
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for smaller bending radii. Each set of modes from the spectral range is computed separately for
radii of curvature ranging from 4 µm to 100 µm. The exception is IP-Dip, for which the software
could not find numerical modes for radii of curvature smaller than 10 µm with the given settings.
To numerically calculate the modes, the computational domain was limited to the waveguide core
surrounded by the cladding of dimensions three times bigger than the core width. The FDE (finite
difference eigenmode) simulation region was limited to 1.2 times the cladding width. To account
for losses in bent waveguides, the PML (perfectly matched layers) were set on the boundaries of
the computational domain D . As the result of mode computation, the TE-polarized electric field
of the fundamental mode, effective refractive index, effective area, loss, and group velocity of the
mode are stored for further calculations.

In the case of silicon, silica, and silicon nitride, the refractive index values for particular
frequencies are calculated from a Sellmeier equation, with the parameters determined by fitting the
sample data points from the Ansys Lumerical database. To perform the analogous fitting for IP-Dip,
the sample values of refractive index were taken from [33]. The air and the cladding of the IP-Dip
waveguide were assumed to be non-dispersive. The values and formulas for the components of the
third-order susceptibility tensor were taken from [37]. The local phase and group velocities were
calculated with formulas (68) and (69) from [20].

The nonlinear coefficients were computed with the equation (12) for each combination of
pump, signal, and idler wavelengths from the precomputed modes with the use of the formula for
the effective area (10). The maximum γSFWM, obtained for ωS = ωI = ωP ≈ 193.42 · 2π [THz],
corresponding to wavelength λ = 1.55 µm, was chosen for comparison of different waveguides.
The nonlinear coefficient was used to compute M(ωS,ωI) from equation (14) similarly for each
combination of pump, signal, and idler wavelengths from the precomputed modes set.

The photon pair generation rate was computed from equation (1) for every pump wavelength
from the considered range. Due to the lack of data for all the frequencies (available just a limited
set of discrete wavelengths), we modeled the Delta distribution with a Gaussian function δ (Ω) =

1/
√

πa2 exp(−Ω2/a2), where the parameter a was found empirically (a = 1012 Hz). The photon
pair generation rate was calculated for the pump power 100 mW injected into a waveguide of
length 15.7 µm, which corresponds to 90◦ arc of radius 10 µm. For the purpose of the photon pair
generation rate comparison between the waveguides, the pump is fixed at 1550 nm, and signal and
idler are produced across the available spectral domain.

RESULTS

In this section, we present the results of calculations for the examples listed in Table I. We start
with depicting the quantities used to calculate photon pair generation rate and their dependency
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Figure 1: The value of |M| from equation
(14) for a straight waveguide made of a
silicon nitride core in a silica cladding for
pump wavelength 1.55 µm and different
combinations of idler and signal wave-
lengths. Although the values in the im-
age are always positive, the colorbar was
shifted to increase the visibility of local
maxima.

on signal and idler wavelengths. Later, we discuss in detail one of the most efficient examples
that we have looked at, i.e., the silicon nitride waveguide with a cross-section of 1.7 × 0.711 µm2

and the least efficient example, IP-Dip waveguide with a cross-section of 2.0 × 1.8 µm2, to show
additional effects difficult to observe in almost lossless structures. An analysis with the discussion
and physical interpretation follows, and finally, we summarize the results in Table II.

Figure 1 shows how the absolute value of the quantity M depends on idler and signal wavelengths
for one chosen pump wavelength. The local maxima occur for signal and idler wavelengths
corresponding to modes that satisfy the phase-matching condition. For the plot in Fig. 1, the chosen
wavelength span was 1.3 µm – 1.8 µm. The values were calculated for 1.7 × 0.711 µm2 silicon
nitride straight waveguides of length 15.7 µm. The wavelength span for bent waveguides was chosen
smaller as there may be a convergence problem for small radii and wavelength differing much from
the central wavelength 1.55 µm.

The first example of a bent waveguide we discuss in depth is silicon nitride in silica cladding,
a very common material platform for photonic integrated circuits. In this case, the bending loss
is minor, and the effective nonlinearity increases with increasing curvature. These dependencies
are presented in Fig. 2. While both the nonlinear coefficient γSFWM and bending loss increase as a
function of the radius of curvature, the gain in nonlinearity is much higher and increases already for
curvatures with minor bending losses.

Consequently, the photon pair generation rate increases for waveguides that are stronger bent, as
depicted in Fig. 3 (a), where the arc length is fixed and only the curvature changes. We see here
clearly that the bending of the waveguide is beneficial. For the same length of the waveguide, the
photon pair generation rate will be doubled in the case of 4 µm bending radius as compared to the
straight waveguide. From the different factors that affect the photon pair generation rate, we see
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Figure 2: Nonlinear coefficient (black ’x’)
and loss (blue ’+’), at pump wavelength
1.55 µm as a function of the radius of curva-
ture for silicon nitride 1.7×0.711 µm core
in silica cladding. Both the nonlinear coeffi-
cient and the loss increase with decreasing
radius of curvature but at different rates.

that the effective nonlinearity increases with decreasing radius of curvature, which is obviously
beneficial in improving the efficiency of the nonlinear processes. We explain this further below
by the tighter localization of the mode in the curved waveguide. The increase in losses does not
substantially degrade the photon pair generation rate. We stress that the bending loss would be more
dominant for very small radii of curvature. Such a functional dependency can be better seen in
waveguide examples where the modes are not that well localized, which we show in the following
example of the IP-Dip waveguide.

(a) (b)

Figure 3: The photon pair generation rate as a function of radius of curvature for silicon nitride
waveguide 1.7×0.711 µm core in silicon dioxide cladding at pump wavelength 1.55 µm. (a) The
photon pair generation rate increases with increased bending for a fixed arc length, in this case,

equal to 15.7 µm. (b) The photon pair generation rate increases with increasing radius of curvature
for 90◦ bow because the propagation length increases. The inset shows in detail the change of

photon pair generation rate for radii of curvature between 4 µm and 15 µm.

Furthermore, we stress that the photon pair generation rate can be trivially enhanced by making
the waveguides longer. This can be seen in Fig. 3 (b), where we show the photon pair generation
rate for a fixed arc length of 90◦ bend as a function of the radius of curvature. Here, making the
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radius of curvature larger makes the waveguide longer, which allows us to generate a larger number
of photon pairs. Nevertheless, in the light of a finite chip estate in a future generation of highly
integrated photonic circuits, we should eventually ask ourselves which waveguide maximizes the
observed effect for a given waveguide length. Comparing the two plots, we can conclude that
the same generation rate reached by 90◦ bows of radii of curvature between 10 µm and 15 µm
can be achieved with an 15.7 µm long arc of smaller radius of curvature, below 10 µm. This
reduces the estate taken on the circuit board. In general, independent of the chosen length, su-
perimposing the curvature as a design feature would always enhance the photon pair generation rate.

While Fig. 3 shows that the photon pair generation rate increases both with decreasing radius
of curvature and increasing length, Fig. 4 presents how much longer the straight waveguide
should be to achieve the same generation rate as the bent one. It can be observed that for sharp
bends, the corresponding straight waveguide should be almost 1.5 times longer. This fact can
be used to increase the compactness of the waveguiding structures in the photonic integrated circuits.

Figure 4: The fraction of the length of a
straight waveguide to the corresponding
length of a bent waveguide, resulting in
the same photon pair generation rate. The
values were calculated for silicon nitride
bends of length 15.7 µm and radii of curva-
ture ranging from 4 µm to 50 µm and core
cross-section 1.7 µm×0.711 µm.

A similar analysis can be performed for weakly nonlinear material IP-Dip. In Fig. 5, one can see
that the small nonlinear coefficient increases slightly with bending. At the same time, the losses
start to be significant for a radius of curvature as big as 40 µm and rise dramatically as the curvature
increases. In the case of this core material, the loss influences the photon pair generation to a great
extent, which is visible in Fig. 6.

Figure 6 shows how the photon pairs generation rate changes for arcs of the same length 15.7 µm
as a function of different radii of curvature. Because the generation rate depends on propagation
length, in this case, we study only the influence of bending on the result. The study shows that
the generation rate increases with increasing radius up to 36 µm. Then, a slight decay can be
observed. It is clear that for small bending radii, the efficiency is impaired by loss. For higher radii
of curvature, the generation rate converges to the limiting value for a straight waveguide because
the nonlinear coefficient decreases, as shown already in Fig. 5. Also, in the case of IP-Dip, it is
possible to reduce the waveguide length by introducing bending, shown in Fig. 7. Due to induced
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Figure 5: Nonlinear coefficient (black ’x’) and
loss (blue ’+’) as a function of the radius of
curvature for IP-Dip 2.0 µm×1.8 µm core, at
pump wavelength 1.55 µm. Both the nonlinear
coefficient and the loss increase with decreasing
radius of curvature but at different rates.

Figure 6: The photon pair generation rate at
pump wavelength 1.55 µm as a function of the
radius of curvature for photonic wire bond fabri-
cated with IP-Dip photoresist.

losses, the length gain is very little and does not exceed 10 %.

Figure 7: The fraction of the length of a straight
waveguide to the corresponding length of a bent
waveguide resulting in the same photon pair
generation rate. The values were calculated for
IP-Dip bends of length 15.7 µm and radii of
curvature ranging from 10 µm to 50 µm and core
cross-section 2.0 µm×1.8 µm.

It appears that the optimal radius of curvature may depend on the interaction length in the
waveguide. Figure 8 (a) shows the expected increase in photon pair generation rate as a function
of waveguide length. In Fig. 8 (b), one can see the corresponding radius of curvature for which
the peak photon pair generation rate was achieved. The optimal radius of curvature increases
with increasing interaction length. It is probably caused by the different rate at which losses and
generation rate increase with the waveguide length.
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(a) (b)

Figure 8: (a) Dependence of the generation rate on the waveguide length. (b) Radius for which the
maximum generation rate is achieved as a function of waveguide length. Both plots were generated

for IP-Dip.

In the following, we discuss the possible reasons for the enhancement of nonlinearity. Figure 9
shows mode profiles of the real part of the x-component of the normalized electric field on the
waveguide cross-section and the corresponding effective areas of the modes. The upper row
presents the cross-section of 1.7 µm×0.711 µm silicon nitride, and the lower row contains the
corresponding values for 2.0 µm×1.8 µm IP-Dip. The profiles in different columns are plotted
for different bending radii. In the case of silicon nitride, increasing the curvature enhances the
confinement of the electromagnetic field in the core and so reduces the effective area of the mode
guided in the waveguide. In the case of IP-Dip, the effective area initially decreases, reaches the
minimum, and then increases for very sharp bends. Decreasing the effective area causes an increase
of the nonlinear coefficient γSFWM, as seen in equation (12).

Figure 9 suggests that the effective mode area changes with the bending radius of the waveguide.
The explicit dependence of the area on the radius of curvature is shown in Fig. 10 (a) for silicon
nitride, IP-Dip, and also silicon for completeness, as it is the third material we study. One can see
that for both silicon nitride and IP-Dip, it is possible to indicate the radius of curvature, for which
the effective area of the guided mode is the smallest. In the case of silicon, the effective area of the
mode is almost independent of the radius of curvature. The change of the effective area is compared
to the losses in the waveguide as a function of the curvature, shown in Fig. 10 (b). In the case of
IP-Dip, the effective area decreases for radii of curvature smaller than 50 µm until the minimum
Aeff is achieved for radii of curvature around 20 µm. The mode radiates into the cladding for higher
curvature, increasing the effective area. This effect is visible in Fig. 10 (b), where the loss starts to
increase strongly for the radii of curvature smaller than 30 µm. Therefore, the optimal radius of
curvature is to be expected somewhere in the range between 30 µm and 50 µm, as already shown in
Fig. 8 (b). A similar situation occurs for silicon nitride, but the mode characterized by a minimal
effective area occurs at smaller radii, and the loss is much lower. Silicon behaves differently -
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Figure 9: Mode profiles of the real part of the x-component of the normalized electric field obtained
with Lumerical on the cross-section of waveguide for 1.7 µm×0.711 µm silicon nitride (top) and
2.0 µm×1.8 µm IP-Dip (bottom) for different radii of curvature, waveguide bent along x-axis. All

fields are normalized to the maximum amplitude of the fundamental mode of the straight
waveguide for the particular material. The core of the waveguide is marked with a black rectangle
in scale. Although the computational domain depends on the core size, the cladding was cut to the
same size for plotting. The effective area of the mode decreases with bending for silicon nitride. In
the case of IP-Dip, it achieves its minimum for radius of curvature around 40 µm and then increases

due to leakage of the mode from the core to the cladding.

the loss increases while there is no significant gain in the effective area of the mode. It results in
regression of the photon pair generation rate, also visible in Table II, where the results for nonlinear
coefficients and generation rate are collected for all the structures studied.

In Table II, the increment in photon pair generation rate can vary between 5 % for IP-Dip and
272 % for silicon. This property depends not only on the core and cladding material but also on
the cross-section size. The bigger silicon nitride cores result in higher photon pair generation rate
enhancement. In contrast, for very small cores, the losses outbalance the mode confinement, and
the generation rate decreases with curvature. The enhancement effect cannot be observed due to the
too low confinement of the mode to the core. In this case, the effective area of the mode tends to
increase with decreasing radius of curvature, decreasing the nonlinear coefficient γSFWM. Similar
dependency can be observed in the case of silicon and silicon on insulator.
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(a) (b)

Figure 10: (a) Effective area of the mode as a function of radius of curvature. (b) Dependence of
the loss on the radius of curvature. The values were computed with Lumerical. The legend shows
the materials and core cross-sections picked for the comparison. The values of mode effective area

are normalized to the corresponding values of a straight waveguide.

Table II: Results of calculation for chosen waveguides of length 15.7 µm and pump wavelength
1.55 µm.

Waveguide type1 γSFWM,min
2 γSFWM,max

2 generation rate3 [Hz] increment4 [%] peak radius5

IP-Dip 2 × 1.8 0.048 0.052 0.25 5 36

Si3N4 2 × 1.8 0.33 0.53 4 250 7

Si3N4 1.7 × 0.711 1.06 1.51 40 188 4

Si3N4 1 × 1 0.79 0.95 21 45 5

Si3N4 1 × 0.5 – 1.64 90 – ∞

Si3N4 0.46 × 0.3 – 0.33 6 – ∞

Si 2 × 1.8 6.83 18.57 103 272 4

Si 0.45 × 0.22 – 116.80 105 – ∞

SOI 1 × 0.32 52.57 62.38 104 40 4

SOI 0.45 × 0.22 142 142 105 < 0.02 4
1 described by core material followed by cross-section size in µm×µm.
2 values given in (Wm)−1.
3 for straight waveguide of length 15.7 µm and pump power 100 mW.
4 increment of the generation rate with respect to a straight waveguide.
5 radius of curvature in µm for which the maximum generation rate was achieved numerically.

The last feature we studied is the heralding efficiency, expressed with the formula (16). We
performed the calculations for exemplary silicon, silicon nitride, and IP-Dip waveguides, taking the
imaginary part of the propagation constant as α . The results are presented in Fig. 11. For the sake of
readability, the values of radii of curvature were limited to 5 µm as the heralding efficiency dropped
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below 0.8 for higher curvatures. The HE of silicon starts at 0.958 for a radius of curvature 5 µm and
0.998 for silicon nitride. The photoresist IP-Dip exceeds the heralding efficiency of 0.98 for bending
radii greater than 18 µm. Depending on the threshold heralding efficiency in the experiment, the
proper radius of curvature can be chosen for the waveguide design.

Figure 11: Heralding efficiency for different
materials and cross-sections for interaction
length 15.7 µm as a function of radii of cur-
vature between 5 µm and 50 µm.

CONCLUSIONS

The enhancement of the effective nonlinearity in waveguides by exploiting their curvature
has been discussed at a qualitative and quantitative level. We investigated how the photon pair
generation rate in a spontaneous four-wave mixing process changes with an increase in the curvature
of the waveguides. The process is technologically important, as it is used to generate quantum
states of light that are a source for a future generation of on-chip quantum technological devices.
We considered third-order strongly nonlinear core materials like silicon nitride and silicon and
compared their behavior to weakly nonlinear material IP-Dip. We showed that increasing the
curvature results in stronger mode confinement in the waveguide core, reducing the effective area of
the mode and increasing the nonlinear coefficient. At the same time, the scattering losses increase
but at a rate different from the nonlinear coefficient, which allows an indication of the optimal
radius of curvature for the photon pair generation rate. The optimal curvature may depend on
the interaction length, which should be considered for the design. Also, the required heralding
efficiency should be taken into account for experiments.

The bending of the waveguide has a clear advantage for the confinement of guided modes.
The spatial confinement of light enhances the nonlinear interaction strength. This effect has the
potential to reduce the interaction lengths in the waveguides. We showed the photon pair generation
enhancement for very short waveguides. In practical cases, where much longer waveguides are
fabricated, the space gain may be much higher, assuming the low-loss range of the radii of curvature.
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