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A scalar product for radiating resonant modes
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The study of the modes of optical resonators is beneficial for theoretical and practical endeavors.
Here, we introduce a scalar product, originally devised for radiation fields, to such studies. This
scalar product allows one to normalize and compare resonant modes using their corresponding
radiation fields. Such fields are polychromatic fields free of divergences, which are determined for
any given mode by its complex frequency and the modal field on the surface of the resonator. The
scalar product is expressed as a surface integral involving the modal fields, multiplied by a closed-
form factor incorporating the complex frequencies. In a practical application, we study the modes of
disk-shaped whispering gallery resonators, and we show that the proposed scalar product accurately
predicts the geometry-dependent coupling between modes.

I. INTRODUCTION AND SUMMARY

Optical resonators allow us to control and enhance
light-matter interactions [I]. They offer strong optical
confinement, which can reduce the size of optical instru-
ments and decrease optical loss [2]. Resonant recircula-
tion of an input signal increases the field intensity, which
finds applications in lasers and photovoltaics [TH3]. The
implementation of optical resonators differs in form, ma-
terials, and principle of operation. Among the many
kinds of optical resonators, the ones hosting whisper-
ing gallery modes (WGMs) are particularly attractive
for many applications due to their high quality factor
and unique spectral properties such as tunability, nar-
row linewidth, and high stability [2, [, [5].

The physics of resonators can be conveniently studied
through their resonant modes [6], which are the natu-
ral damped resonances of the system. Such modes are
also known as quasi-normal modes, leaky modes, electro-
magnetic eigenmodes, or simply, modes. In particular,
resonant modes are being used for the study and engi-
neering of light-matter interactions [{H22]. For example,
the fields scattered by the resonator upon a given illu-
mination may be expanded to good approximation as a
linear combination of a few modal fields, at least in lim-
ited frequency ranges [23] [24]. The general question of
orthogonality and completeness of the modal fields out-
side the resonator is particularly relevant for such ap-
plications [25]. Such a question is complicated by the
divergence of time-harmonic modal fields as |r| — oo,
albeit, in principle, such divergence can be mitigated by
causality [12 26]. An even more fundamental question
[8, 16] is which scalar product to use for normalization
and projections?

Regarding radiated fields, there is a scalar product
with many desirable properties [27]. For example, the
square of the norm induced by such scalar product (f|f)
gives the number of photons of the field [28]. Also, the
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values of fundamental quantities in the field, such as en-
ergy or momentum, can be computed as “sandwiches”
(fIT|f), where T is the operator representing the partic-
ular fundamental quantity [29, Chap. 3,§9]. For example,
using the energy operator H, the value of (f|H|f) can be
shown to be identical to the typical integral giving the
energy of the field. Moreover, the invariance properties
of the scalar product (f|g) underpin the consistent defini-
tion of projective measurements in electromagnetism [30}
Sec. III]. The use of this scalar product in light-matter
interactions has been recently reviewed [31].

Here, we investigate the use of the scalar product for
radiation fields in the study of optical resonators. We
start by deriving a polychromatic radiation field free of
divergences from the field profile and the complex fre-
quency of a given electromagnetic eigenmode of a three-
dimensional (3D) structure. Then, a cross-energy expres-
sion between the radiations of any two given eigenmodes,
(f|H|g), is identified as a suitable scalar product after the
first obvious candidate, (f|g), is discarded because (f|f)
diverges for any given eigenmode. The computation of
(f|H|g) consists of the integral of a simple function of the
modal fields at the surface of the resonator, and a closed-
form factor involving the complex modal frequencies.

We show that the cross-energy scalar product produces
physically relevant information, by means of a first ex-
emplary application. Inspired by the coupling between
WGMs reported in [32], we study the coupling between
the modes of a disk resonator as the thickness of the disk
changes. We observe that the absolute value of (f|H|g)
between two normalized modes is zero when there is no
interaction between them, in particular when the real fre-
quencies of that particular pair of modes cross. In sharp
contrast, for interacting anti-crossing modes, the same
quantity shows a prominent peak that grows as the real
frequencies of that particular pair of modes get close to
each other. The position of the peak coincides with the
thickness for which the two modes anti-cross, denoting
interaction between modes, which here translates to non-
orthogonality. We also provide evidence that strongly
suggests that the height of such a peak is a measure of
modal coupling strength: The peak occurs at the thick-



ness that coincides with the maximum overlap of the in-
ternal modal profiles, when the energy exchange between
the two modes should also be maximum. Besides our
example, the studying of coupling between modes is of
interest in the study of other resonant structures in the
literature [33H35].

The rest of the article is organized as follows. In Sec-
tion [l we first put forward a way to obtain the field
radiated by a given leaky mode using causality. The
resulting polychromatic field is free of divergences. We
then start from a recent surface integral expression of the
(f|g) scalar product, introduced in [36], and derive the
corresponding expression for radiation fields of resonant
modes of 3D structures. We show that (f|f) diverges,
but (f|H|f) does not, and we adopt the latter, which we
call cross-energy scalar product. In Section [Tl we apply
the cross-energy scalar product to the resonant modes of
a disk-shaped WGM resonator, with the particular aim
of studying the coupling between modes as the thickness
of the disk changes. We finish with conclusions and an
outlook in Section [Vl

II. A SCALAR PRODUCT FOR LEAKY MODES
IN 3D STRUCTURES

We start by establishing a way to obtain the field radi-
ated by a given leaky mode. The resulting polychromatic
field is free of divergences.

A. Electromagnetic fields radiated by a leaky mode

Let us consider Fig. where a closed surface in R?
delimits a volume D with a boundary 0D that has con-
tinuous first derivatives. It is surrounded by an achiral,
non-absorbing, homogeneous, and isotropic background
medium, which we assume to be vacuum for simplicity,
but without loss of generality. Any other such surround-
ing medium can be readily accommodated in the formulas
by replacing the vacuum permittivity and permeability
by those of the medium. We assume the existence of
time-dependent helical fields Fy(r € 9D, t), for helicity
A = +1, on the boundary surface dD.

The time-dependent fields are given in SI units as

Fi(r,t) = ﬁ[E(rJ) +iAZoH(x, )], (1)

with vacuum permittivity ¢, vacuum impedance Zj,
time and spatially dependent complex electric field
E(r,t), and complex magnetic field H(r,¢). We also
use their monochromatic components Fy(r,|k|), which
define the F)(r,t) through a one-sided inverse Fourier
transform:

Fa(r,t) = / °° 3'% Fa(r, k) exp(—ico[Klt),  (2)

where |k| is the angular wavenumber, and ¢y denotes the
speed of light in vacuum.

Fi(r € 0D.t)

FIG. 1. A volume D in R® is delimited by a closed surface
0D with continuous first derivative. Fields Fi(r € 0D,t) on
the surface produce electromagnetic radiation towards spatial
infinity. The dS(r) are outwards-pointing normal vectors of
the surface element at each point r € 9D. The & and § denote
unit vectors in the Cartesian coordinate system.

An expression for the electromagnetic scalar product
between radiation fields that only involves integrals of the
fields over closed spatial surfaces was derived in recent
work [36, Eq. (17)]. In particular, the F(r, |k|) appear
in the expressions for the number of photons (f|f), and
energy (f|H|f) of a given field |f), which can be com-
puted as integrals on a closed boundary [36, Eqs. (19,
21)]:

AN =3 - [
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/ dS(r) - [FX(r, [k]) x Fa(r, [k[)], (3)
redD
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/ dS(r) - [F3(x, [k]) x Fa(r. [K])],  (4)
recdD

with energy operator H, infinitesimal surface element dS
at the position r, and the integral over any piecewise
smooth surface 9D enclosing a compact volume contain-
ing the sources of radiation [36].

The fact that electromagnetic fields on a boundary act
as sources of radiation fields is well-known in electromag-
netism (see, e.g., [37][38, Chap. 5]), with the components
of the electric and magnetic fields tangential to the sur-
face determining the whole field outside the enclosed vol-
ume. The principle that the tangential components of
the electric and magnetic fields uniquely determine the
radiation field outside the volume enables us to obtain
the field radiated by a given leaky mode. It is important
to note that the boundary 9D does not need to be twice
continuously differentiable as stated in e.g. [37], rather
once continuously differentiable is enough [38, Chap. 5].
The sufficiency of being once continuously differentiable
comes from the underlying fact that the Maxwell equa-
tions for helical fields contain only first-order differentials



[38, §1-2.3], and increases the class of surfaces to which
the results apply from “continuous curvature” surfaces
such as an ellipsoid to “continuous tangent” surfaces such
as a disk with rounded corners.

Let us now assume that the boundary dD in Fig.
is the boundary of an object, and that the electromag-
netic eigenmodes of the object are available to us. Such
eigenmodes will, in general, be leaky, and each of those
modes with finite lifetimes can be characterized by spa-
tial field profiles {€(r), H(r)}, and complex frequencies
w=Q—il, with {Q, T} € RT.

We define the helical fields produced by a given leaky
mode in the surface as:

Fy(r,t) = ﬁ[é’(r) +iAZoH(r)] exp(—iwt)u(t)
= M, (r) exp(—iwt)u(t),

(5)

where the second line defines M (r). The function w(t)
is the Heaviside step function, which represents the fact
that the leaky mode has been excited at some time,
which we choose to be t = 0. This avoids the amplifica-
tion that occurs in M (r) exp (—iQ¢t) exp (—I't) for t < 0
while keeping the damping that occurs for ¢t > 0. More-
over, and importantly, the fields F(r, |k|) exp (—ico |k|?)
on the right-hand side of Eq. result in radiated fields
that decay as 1/|r| as |r| — oo [37, Eq. (35)], also avoid-
ing the divergence of the modal fields as |r| grows. Hence,
the presented strategy avoids the two unphysical expo-
nential growths of the modal field outside the resonator,
as t — —oo, and as |r| — oo, which have been tied
to each other by causality [26]. Here, the wavenumbers
of the source fields in D are always real. In contrast,
identifying the complex eigenfrequency with a complex
wavenumber would cause the field outside the resonator
to grow exponentially as |r| increases.

We note that, even though the surface fields that act
as sources must be defined on the surrounding medium,
and {&€(r),H(r)} are the fields inside the object, this is
not a problem because the tangential components of the
electric and magnetic fields are continuous at the inter-
face between the object and the surrounding medium.
The surface integrals in Eq. and Eq. ensure that
only the components tangential to the surface affect the
result.

We now want to isolate the F(r,|k|) corresponding
to Eq. (5). Applying Fourier transform to Fy(r,t), and
inserting the result of Eq. , results in

o0
/ dt Fy(r,t) exp(icogt) =

iM)\(I‘)
coq —w

/OOO dt My (r) exp(i(cog — w)t) = (6)

On the other hand, from equation Eq. , we get

/ dt Fy(r,t) exp(icogt) =

> dk| /°° .
—F\(r, |k dt exp(—ico(|k| — q)t
) [t exsp(ieo(K )
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by using [~ 2% exp(iz(a — b)) = 6(a — b) in the second
line of equation . Equating formulas @ and , and
replacing ¢ — |k|, yields the monochromatic field com-

ponents

icoM (1)

m =Fa(r, k) | (8)

Given a 3D object, the necessary {M(r), w} can be
obtained from software packages such as JCMsuite [39],
Lumerical [40], or COMSOL [41], to name just a few.

Equation results from our particular choice of tem-
poral dependence in Eq. , which features the Heaviside
step function u(t). Such a choice is justified because the
result in Eq. is also reached by the analytical contin-
uation onto the real frequency axis of the modal field at
its complex frequency w.

B. The cross-energy scalar product

If we plug Eq. into Eq. , we quickly see that
the integral with respect to the angular wavenumber |k|,
and therefore the entire result, diverges because of the
|k| — 0 behavior of its integrand. Collecting all relevant
terms, we find the following expression:

Tk 1
/>0 |k| |(Co|k| —w) |2 ’ 9)

For small |k|, the integrand behaves like

1 1 1 1

K Teol —o) P~ e 8 K10 (10)
making Eq. (9) diverge. In contrast, (f[H|f) from Eq.
does not diverge. Therefore, the number of photons of
the radiation by a leaky mode is not well-defined, but
its energy is. The cross-energy (f|H|g), between arbi-
trary modes f and g, meets the requirements of a scalar
product, which can be readily verified using the fact that
the energy operator H is self-adjoint. This motivates us
to use (f|H|g) instead of (f|g) as the scalar product for



leaky modes. We call it the cross-energy scalar product:
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/eaD dS(r) - [M’;\’f(r) X MA,g(r)] , (11)

where the first equality is [36, Eq. (17)], and the sub-
scripts f, g denote the two considered modes. Ap-
pendix [A] shows that the result of the d|k| integral can
be obtained in closed form, with which one obtains:

In(—wy) — ln(—w}) Y

(W} —wy) 27

{Aél(_i)\) /reaD dS(r) - [MJ 4(r) x MA,g(r)]}

(12)
that significantly simplifies the numerical calculation of
Eq. .

The fact that one needs to use a cross-energy scalar
product is reminiscent of the scalar product derived from
the Poynting vector for the propagating modes of waveg-
uides [42] [43], which can be used to investigate the or-
thogonality between the modes [44].

In the following section, we use the cross-energy scalar
product to study the coupling between the modes of
a disk resonator as the thickness of the disk changes.

(f[Hlg) =

III. APPLICATION TO WHISPERING
GALLERY RESONATORS

A. The modes

Here, we consider a WGM resonator, modeled as a disk
of radius 25 ym and thickness changing from 1.8 ym to
3.1um. The electric and magnetic fields alongside the
resonance frequencies are computed with the finite ele-
ment method (FEM) simulation software JCMsuite. It
solves the resonant mode problem by finding electric and
magnetic fields (€ (r), H(r)) of the modes f and corre-
sponding eigenvalues wy = Qy — il'f, satisfying the time-
harmonic Maxwell equations in a source-free medium.
The disk exhibits a rotational symmetry with respect to
the z-axis, so the eigenmode computation is reduced to
a two-dimensional problem in the plane (p, ¢ =0, 2), as
visualized in Fig. 2l At any point of the disk, the field of
a given leaky mode (in Cartesian coordinates) obeys

Ef(peosp,psing,z) = R-E5(p,0,2)eNe¢ | (13)

4

with azimuth ¢, integer azimuthal mode number Ng , and
the rotation matrixEl [39]

cosp —sing 0
sinp cosp 0] . (14)
0 0 1

R:

It is straightforward to show that the cross-energy
scalar product between two modes of different N, van-
ishes identically: The integral in Eq. would contain

a term ei(N«i_NsJ;)“’, which makes the integral over the
cylindrical surface equal to zero unless NJ = N£ . There-
fore, in the following, we only consider modes sharing the

same azimuthal mode number N, = 139 (in accordance

with [32]).

FIG. 2. The radial component of the real part of the electric
field of the fundamental mode on the disk surface (left). Be-
cause of the azimuthal symmetry, we consider resonant modes
computed in a slice of the disk in the zz plane (projected on
the right). The discretization in the radial direction is nonuni-
form and finer close to the rim. The field decreases by several
orders of magnitude at the borders of the chosen computa-
tional domain. For the sake of visibility, the domain in the
figure differs from the size of the actual computational do-
main, and the scale of the z-axis is different from that of the
remaining two axes.

The modes are calculated for a real permittivity
' = (1.481)? and imaginary permittivity el = 107*
of the disk resonator, and the surrounding permittivity
gsur = (1.000275)2, following [32]. Due to the field lo-
calization near the resonator rim, the region from which
the fields are extracted can be limited to [19.5,27.0] pm
along p and [—3,3] pm in z-direction. The target rela-
tive precision of resonance frequencies is set to 1076, and
an adaptive mesh refinement scheme with two maximum
refinement steps is used. The computational domain is
surrounded by perfectly matched layers (PMLs) [39].

The fields (€(r), Hs(r)) are used to construct the
(helical) modal fields M, (r) according to their definition
in Eq. [5l Note that the surrounding medium here is not
vacuum as assumed before. However, &g, differs only
marginally from unity and we can neglect its influence,

1 Note, that JCMsuite uses a different convention with the y-axis
being the axis of rotational symmetry.



since the results are essentially identical to the vacuum
case.

The resonance frequencies of the modes change with
varying thickness of the disk. The real parts of the fre-
quencies of the first ten modes emerging from FEM com-
putation are plotted in Fig. 3] for disk thicknesses ranging
from 1.8 pm to 3.1 pm. As a result of FEM computation,
the modes are sorted and assigned a spectral order num-
ber according to their increasing real part of the reso-
nance frequency independently for every disk thickness.
However, it is known from symmetry analysis in [32] that
some modes over the course of the varying disk thick-
ness exhibit crossings, and some exhibit avoided cross-
ings, also called anti-crossings. In particular, the disk is
invariant under the mirror reflection z — —z, and the
field distribution £¢(r) of each mode is an eigenstate of
such reflection with eigenvalue m, = 1 or m, = —1,
which we call the parity of the mode. For example, the
field in Fig. [2] transforms with an eigenvalue m, = —1.
Note that the magnetic field distribution H ¢ (r) is also an
eigenstate of the reflection z — —z with eigenvalue —m.
Modes of opposite parity cross, indicating the lack of in-
teraction between them, and modes with the same parity
anti-cross, indicating that the modes couple and interact
with each other [32]. The anti-crossings are marked with
gray circles in Fig. [3l Examples of fields M, (r) associ-
ated with crossing and anti-crossing modes are presented
in Fig.[§and Fig. [0} respectively, in Appendix B. It is im-
portant to highlight that crossings affect the ordering of
the modes. The spectral order coming from the numeri-
cal tool naturally swaps the labels for modes that cross as
the thickness of the disk increases, and, therefore, does
not reflect their true order. In our case, however, this
can be circumvented by considering the spectral order of
modes separately for different m,, since crossings only
occur between modes of opposite m,.

B. The cross-energy scalar product for measuring
the coupling between modes

We analyze the orthogonality properties of the modes
as a function of the disk thickness using the following
quantity:

|(f[H]g)[*
(fHf) (glHlg) "

where the normalization of each mode is considered so
that each normalized mode radiates the same amount of
energy.

The integral in Eq. is further simplified by ex-
ploiting the cylindrical symmetry of the system, which
reduces the two-dimensional surface integral to a one-
dimensional contour integral. See Appendix[A]for details.
The integral is then computed using the trapezoidal rule
over the contour C drawn with a white line in the projec-
tion in Fig. We chose the dimensions of the contour
(the height and width) to be 2 % bigger than the actual

| (f[H]g) > = (15)
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FIG. 3. Real part of the angular resonance frequency of the
five pairs of lowest order modes as a function of disk thick-
ness. Modes of equal parity m, undergo avoided crossings at
the spots marked with gray circles. Solid lines follow modes
with negative parity, and dashed lines mark the resonance fre-
quencies of modes with positive parity upon a z — —z mirror
transformation.

contour of the ¢ = 0 slice of the disk to avoid regions
of numerical artifacts in the simulated fields, which are
found near the sharp edges of the disk resonator. Sam-
pling the fields slightly outside the resonator technically
means sampling fields that feature an exponentially di-
vergent behavior towards spatial infinity due to being
associated with a complex wavenumber. However, the
rate of divergence is related to the radiative damping of
the resonant modes. For fairly high-quality resonances,
indicated by the ratio /T, in the order of 10° for the
modes discussed here, the exponential divergence is slow
enough to be negligible close to the resonator surface.
Correspondingly, this is a close approximation to the de-
sired fields at the surface of the disk. The contour is dis-
cretized finer close to the rim of the disk, where the fields
are localized. While the sampling points are chosen to
coincide with the contour of a resonator with sharp edges,
this does not violate the assumption of “continuous tan-
gent” surfaces pointed out earlier since the contour’s re-
gion of curvature can be assumed small compared to the
finite sampling.

The modes that cross, having opposite parity, are or-
thogonal under the cross-energy scalar product. This is
readily seen by splitting the surface integral in Eq.
into its z > 0 and z < 0 pieces, whose sum cancels out if
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FIG. 4. Result of Eq. for chosen pairs of modes as a

function of disk thickness. The peaks coincide with the thick-
ness for which the anti-crossing occurs between the particular
modes, as marked in Fig. [3]

0.8 mode 2 mode 3

oo

0.6 [ mode 2 7

N de 3

< mode

= 04r ]

<: :

v 0.3F :
0.2+ |
0.1F 1
0.0+ 1

1.8 2.0 2.2 2.4 2.6 2.8 3.0
disk thickness d [pm]

FIG. 5. Result of Eq. for the modes of spectral order 2
and 3 and parity m, = —1 as a function of the disk thickness.
The inset figures show the normalized energy density distri-
bution of the modes at particular values of the thickness. The
field distributions plotted here are closely related to the ones
in |32 Fig. 3].

the modes have opposite parity. Figure[dshows the result
of Eq. for selected pairs of modes of the same par-
ity. Each line shows how a prominent peak grows as the
real frequencies of that particular pair of modes get close
to each other in Fig. [3] The position of the peak neatly
aligns with the thicknesses at which the two modes anti-
cross, denoting interaction between modes, which here
translates into enlarged non-orthogonality. We surmise
that the height of each peak is a measure of modal cou-
pling strength. Such a possibility is strongly suggested
by the results in Fig. |5l which shows the value of Eq.
for a pair of modes of m, = —1. The inset figures present
the electric field density profiles of the investigated modes
for chosen values of disk thickness. As the disk thick-
ness increases, the profiles deform, reach approximately
the same shape and overlap, and then separate but with
interchanged modal numbers (2,3) <> (3,2). The cross-
energy scalar product peaks exactly when the two mode
profiles have maximum overlap, and hence when the max-
imum coupling between them in terms of energy exchange
is expected.

IV. CONCLUSION AND OUTLOOK

We have put forward a scalar product for the study
of optical resonators. We showed how any given numer-
ical resonant mode obtained from a Maxwell solver can
be used to determine fields on the surface of the res-
onator that produce a polychromatic radiation free of
divergences. Then, we identified a cross-energy expres-
sion between the radiations of any two given eigenmodes
as a suitable scalar product. The application to the
modes of a disk-shaped WGM resonator showed that the
cross-energy scalar product produces physically relevant
information, as it predicts the coupling between modes
upon smooth changes of the geometrical parameters of
the disk.

The same cross-energy scalar product can be used be-
tween the radiation of a given eigenmode and any general
radiation field, thereby allowing the decomposition of the
latter into normalized eigenmodes. This scalar product
also opens a path for a different elucidation of the or-
thogonality and degree of asymptotic completeness of a
given series of resonant modes. Moreover, one may al-
ways derive an orthonormal set of modes from the possi-
bly non-orthogonal set produced by numerical solvers.

We also envision the use of the cross-energy scalar
product between eigenmodes as a general way to track
such modes, as some resonator parameters change
smoothly. This can be done by projecting the radiation
field of each mode for a given set of parameters onto the
radiation field of each mode in the next set and connect-
ing a given mode of the first set to the mode of the second
set which results in the maximum value of the projection.
In our application to a disk, such mode tracking can be
performed “manually” using symmetry arguments, but
more complex resonators may not allow it.
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Appendix A: Cross-energy scalar product
1. A general simplification

The formula for the cross-energy scalar product in

Eq. reads

00 —iAcd
fH|g) = / dfk] o
< | | )\;1 -0 | 27T(Co|k| _Wf)(CO‘k| _wg)

/ dS(r) - [M5,(r) x My o(r)] . (A1)
recdD

with subscripts f, g denoting two considered resonant
modes. Calculating the scalar product Eq. numeri-
cally over the whole 3D object requires either vast com-
puting resources or much time. However, the integral
over k| can be solved analytically and reads

/00 d|k| _ In(—wy) — In(—w})
>0 (colk| = w})(colk| —wy) Co(Wf — wy)

(A2)
The real and imaginary parts of the resulting function
are plotted separately for an exemplary pair of anti-
crossing modes in Fig. [6]

2. Application to a disk

In our example, the surface integral in Eq. (A1) can be
rewritten to

[ a8 My )" x Moy )
redD
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FIG. 6. Real and imaginary parts of the integral over |k| for
two anti-crossing modes of m, = —1 (left column), and the
modes with themselves (right column).

taking into account the cylindrical symmetry of the sur-
face 8D and Eq. (13)), and writing dS(r) = ds-pde¥(r) in
cylindrical coordinates (p, ¢, z), with the surface normal
vector V. The fields M, f(r) and M ,4(r) are taken from
the FEM solver. Here, C refers to the 1D curve defined
at the ¢ = 0 slice of @D, and ds denotes a differential
line element of C. The dy integral has been carried out
explicitly and results in the prefactor of 2w. The values
of the integral in Eq. summed for both helicities as
a function of disk thickness are plotted in Fig. [7]
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FIG. 7. Real and imaginary part of contour integral of two

anti-crossing modes of m, = —1 (left column), and the modes
with themselves (right column).

It is important to note that the actual values plotted



in Fig. [7]are not physically meaningful since they depend
on the normalization scheme of the Maxwell solver used
to obtain the modal fields, JCMsuite in this case. In
principle, the numerically obtained modal fields (€4(r),
H4(r)) scaled by an arbitrary (complex) factor are still a
valid solution to the resonance problem. A consequence
of this is directly observed in the left column of Fig. [7}
The applied normalization scheme apparently allows
for relative changes in sign between modes evaluated
at different disk thicknesses. This does not happen
simultaneously for all modes and leads to seemingly
random changes in the overall sign of the scalar product,
seen by the symmetric distribution of values around
the z-axis in the left column. This does not affect the
data shown in the main text since we only consider ab-
solute values of the normalized scalar product in Eq. .

Combining all simplifications, the final formula for the
scalar product reads

— In(—w})

3 (Cideg) T2

A=+1 “iT Y

/ dspv(r

Appendix B: Exemplary mode profiles

(f[Hlg) =

M,\ f( ) X M,\)g<1‘)] . (A4)

In Fig. [8] we show the Cartesian components of the
mode profiles M (p,z) of the fundamental (spectral
order number 1) modes, for A\ = +1, characterized by
different parities m,. Modes of different symmetry
eigenvalue are orthogonal to each other and do not
couple. Therefore, the integral in Eq. over the
surface of the disk vanishes (up to numeric imprecision).

In Fig. [0] we show the Cartesian components of the
mode profiles of My(p, z) of the second and the third

mode of equal parities m, = —1. Since the modes share
the same eigenvalue upon mirror transformation z — —z,
mode coupling is not prohibited by symmetry.
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FIG. 8. Cartesian components of the real (upper row) and
imaginary (bottom row) part of the field M of the first modes,

characterized by (a) m. = +1 and (b) m. = —1.
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FIG. 9. Cartesian components of the real (upper row) and
imaginary (bottom row) part of the field M of the (a) second
and the (b) the third mode, both characterized by m. = —1.
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