
Automatic Control of Linear Particle
Accelerators with Machine Learning

Methods

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

von der KIT-Fakultät für Physik

des Karlsruher Instituts für Technologie (KIT)

angenommene

Dissertation

von

M. Sc. Chenran Xu

aus Shanghai

Tag der mündlichen Prüfung: 29. November 2024

Erster Gutachter: Prof. Dr. Anke-Susanne Müller

Zweiter Gutachter: Prof. Dr. Torben Ferber

Abstract

Particle accelerators are among the most complex physical systems globally, with their

design and operation posing significant challenges due to versatile operation modes,

stringent beam quality requirements, and the demand for high availability. This dissertation

provides a comprehensive overview of integrating machine learning (ML) techniques

throughout the life cycle of linear particle accelerators, from design to operation.

In the simulation, the neural networks (NNs) are used as surrogate models for fast, high-

quality predictions in place of computationally expensive physics simulations and virtual

diagnostics for real-time, non-destructive measurements. In the design phase, parallel

Bayesian optimization (BO) is introduced for more efficient parameter optimization. A fast-

executing backward-differentiable beam dynamics simulation code Cheetah is developed.

Some of its application cases are highlighted in this dissertation, including gradient-based

simulated optimization and support for other algorithms.

This dissertation further explored the use of convolutional neural networks (CNNs) for

control of spatial light modulators for laser pulse shaping, with results demonstrated at

the FLUTE accelerator. Such fine-grained photo-injector laser pulse shaping is expected

to allow tailored generation of electron bunches and increase the accelerator’s dynamic

range.

For the online tuning of the accelerator, the performance of BO and reinforcement

learning (RL) is compared for online accelerator tuning, with results showing that BO

is a turn-key tuning solution and RL has superior performance at the cost of increased

upfront engineering effort. Several proposed techniques for building robust and generaliz-

able ML-based controllers across different accelerators are discussed, including domain

randomization, meta-RL, and GP-MPC which combines the strengths of BO and RL for

beam trajectory tuning tasks.

These advancements highlight the potential of ML-driven solutions in improving the

accelerator design, tuning, and control. These preliminary studies pave the way for the

development and operation of more efficient and reliable accelerators in the future.

i

Contents

Abstract . i

1. Introduction . 1
1.1. Terminology . 3

1.2. Machine Learning Enabled Future Accelerator Operation Scheme 4

1.3. Contributions of this Dissertation . 5

1.4. Collaborators . 7

2. Beam Dynamics and Linear Particle Accelerators 9
2.1. Beam Dynamics in Particle Accelerators 9

2.1.1. Multipole Expansion of Transverse Magnetic Fields 10

2.1.2. Hamiltonian of Charged Particles 11

2.1.3. Transfer Maps . 12

2.1.4. Collective Effects . 14

2.2. Accelerator-based Radiation Generation 14

2.3. Linear Particle Accelerators . 17

2.4. Accelerators Studied in this Dissertation 18

2.4.1. FLUTE . 18

2.4.2. ARES . 19

2.4.3. European XFEL . 20

3. Machine Learning Methods . 21
3.1. Neural Networks . 21

3.1.1. Automatic Differentiation and Gradient Descent Optimization . . 23

3.2. Bayesian Optimization . 25

3.2.1. Gaussian Process Modeling . 26

3.2.2. Acquisition Function . 30

3.2.3. Tailoring Bayesian Optimization Methods for Particle Accelerators 31

3.3. Introduction to Reinforcement Learning 32

3.3.1. Reinforcement Learning Problem Formulation 33

3.3.2. Policy and Value Functions . 34

3.3.3. Basic Learning Concepts . 36

3.3.4. Policy Gradient Methods . 38

3.3.5. Modern RL Algorithms . 38

3.3.6. Reinforcement Learning Applications for Accelerators 41

iii

Contents

4. Applying Machine Learning Methods for Accelerator Simulation 43
4.1. Surrogate Modeling of FLUTE . 43

4.1.1. Training the Surrogate Model . 45

4.1.2. Applications of the Surrogate Model 47

4.2. Simulated Optimization for Intense THz Radiation 53

4.2.1. Calculation of the Coherent Synchrotron Radiation Generation at

FLUTE . 53

4.2.2. Parallelized Bayesian Optimization 55

4.2.3. Optimization Settings . 57

4.2.4. Optimization Results . 58

4.3. Differentiable Beam Dynamics Simulation 62

4.3.1. Simulation Code Cheetah . 62

4.3.2. Differentiable Modeling of the THz CSR Generation at FLUTE . . 64

4.4. Bayesian Optimization with Physics-informed Prior 68

4.5. Summary Machine Learning Assisted Simulated Optimization 71

5. Photo-Injector Laser Pulse Shaping . 75
5.1. Motivation for Photo-injector Drive Laser Shaping 75

5.2. Laser Shaping with Spatial Light Modulators 78

5.2.1. Implementing the Laser Modulation Setup at FLUTE 80

5.2.2. Controlling the Spatial Light Modulator 81

5.3. Demonstration of Transverse Laser Modulation 83

5.3.1. Laser Modulation Correction using Convolutional Neural Network 83

5.4. Transverse Spatial Light Modulator Setup for FLUTE Photo-Injector Laser 87

5.5. Outlook for Full Laser Modulation at FLUTE 90

5.6. Summary Machine Learning Enabled Laser Pulse Shaping 93

6. Autonomous Online Accelerator Tuning . 95
6.1. SASE Tuning at European XFEL . 96

6.1.1. Implementing Bayesian optimization for SASE tuning 97

6.1.2. European XFEL SASE tuning results 99

6.2. Reinforcement Learning Control for FLUTE Tuning 103

6.2.1. Formulation of the FLUTE Tuning as a Reinforcement Learning Task 103

6.2.2. Implementation of FLUTE Tuning in a Reinforcement Learning

Framework . 104

6.3. Comparing Reinforcement Learning with Bayesian Optimization for On-

line Tuning . 107

6.3.1. Transverse Beam Tuning at ARES Experimental Area 107

6.3.2. ARES Experimental Area Tuning with Reinforcement Learning . 109

6.3.3. ARES Experimental Area Tuning with Bayesian Optimization . . 111

6.3.4. Benchmarking Reinforcement Learning and Bayesian Optimiza-

tion results . 112

6.3.5. Practical Challenges for Online Accelerator Tuning 116

6.3.6. Inference Time . 122

6.3.7. Discussion on the Benchmark Study 122

iv

Contents

6.4. Towards Generalizable Machine Learning-based Controller 123

6.4.1. Generalizable Reinforcement Learning Agent with Domain Ran-

domization . 123

6.4.2. Fast Reinforcement Learning Deployment with Meta-Learning . 127

6.4.3. TowardsMore Sample Efficient and ExplainableMachine Learning-

based Controller . 131

6.5. Summary Machine Learning-based Online Accelerator Tuning 132

7. Summary and Outlook . 135

List of Figures . 139

List of Acronyms . 143

List of Publications . 147

Bibliography . 151

AI Assistance Disclosure . 167

A. Appendix . 169
A.1. Feature importance study of the Surrogate Model 169

A.2. Kernel Density Estimation . 171

A.3. Laser Modulation Results with Convolutional Neural Network 173

A.4. Laser Modulation with Zernike Polynomials 174

A.5. Non-Machine Learning Algorithms for Accelerator Tuning 176

A.5.1. Nelder-Mead Simplex . 176

A.5.2. Extremum Seeking . 179

A.6. FLUTE Reinforcement Learning Training Configurations 180

A.7. Benchmarking Bayesian Optimization Implementations in the Xopt Pack-

age on EA Tuning Task . 181

A.8. Lattice-agnostic Reinforcement Learning Training Configurations 182

A.9. Code Availability . 183

Acknowledgments . 185

v

1. Introduction

Particle accelerators are pivotal engines that drive our understanding of the world and

facilitate groundbreaking discoveries across a wide range of scientific disciplines [1]. High-

energy particle colliders, for instance, enable the discovery of new particles and push the

boundaries of our knowledge in high-energy physics. In addition, dedicated light sources,

which utilize high-energy electrons to generate high-brightness synchrotron radiation

ranging from THz to X-ray, serve as essential tools for discovering new materials and

illuminating atomic and molecular structures across various scientific fields.

X-ray free electron lasers (FELs) driven by linear accelerators are excellent candidates as

the new generation light sources, capable of providing femtosecond coherent pulses and

peak intensities orders of magnitude higher than the storage ring-based third generation

sources [2]. Since the first soft X-ray FEL FLASH started operation in 2005, several FELs

have been built and proposed worldwide, including the LCLS [3], SACLA [4], FERMI,

PAL-XFEL [5], EuXFEL [6], SwissFEL [7], and SXFEL [8]. The timeline when these

accelerators started operation is indicated in Fig. 1.1. The existing accelerators are also

undergoing continuous upgrades, improving the stability of the operation and allowing

more operation modes. New beamlines were being built to provide radiation with different

wavelengths. For example, the recently finished LCLS-II upgrade brings the repetition rate

up to 1MHz using superconducting cavities. In the next decade, more FELs are expected

to be constructed and start operation, such as SHINE and S3FEL, and existing facilities like

the SwissFEL and SACLA will also undergo major upgrades. To meet the requests from

user experiments, the FELs all aim to provide ultrashort coherent light pulses with high

output power. This requires a stable operation with a high repetition rate, high bunch

charge, low emittance, and short bunch length.

These modern particle accelerators are some of the most complex scientific systems with

sizes up to multiple kilometers, consisting of thousands of components and subsystems

like magnets, RF cavities, and diagnostic devices. Detailed first-principles physics-based

simulation models are developed to support the operation of accelerators and various

predefined subroutines exist to control certain subsystems or perform specific beam-

tuning tasks automatically. The extreme operation conditions such as ultrashort bunches

with charges are very challenging in accelerator modeling. Higher-order effects and

collective effects, which are necessary to model the beam dynamics in such conditions,

need considerably more computation resources. To conduct the simulation in a feasible

time, certain approximations need to be made which introduce errors in the simulation

model. The accuracy of the simulation is further limited by real-world errors, as all the

components in particle accelerators are physical devices. They are subject to environmental

variables like temperature, magnetic hysteresis, field imperfections, calibration errors,

and misalignment of the components. Most of these issues are well-known and can be

modeled and compensated by dedicated routines. For example, the hysteresis effects can

1

1. Introduction

be explicitly modeled for individual magnets and mitigated by doing power cycles. The

positioning of the magnets can be improved in dedicated alignment campaigns. As such

processes take up a considerable amount of time, light sources with a requirement of high

availability can not afford to perform them frequently enough. Additionally, systematic

drifts, such as those caused by temperature changes over the course of operations are not

accounted for in the simulation models, but they can hamper the machine’s performance.

As a result, mismatches are inevitable between the real-world operation condition and the

ideal working point. In the commissioning phase or during long-term operation, manual

tuning by operators is still frequently required to bring the machine to the target working

point or to maintain a certain performance level in the operation of particle accelerators

nowadays.

2005 2009 2013 2017 2021

F
L
A
S
H

F
E
R
M
I

S
X
F
E
L

L
C
L
S

S
A
C
L
A

P
A
L
-X
F
E
L

E
u
X
F
E
L

S
w
is
s
F
E
L

L
C
L
S
-I
I

S
H
IN
E

2025 2030+

S
w
is
s
F
E
L
u
p
g
r
a
d
e

S
A
C
L
A
-I
I

S
3
F
E
L

s
o
f
t
X
-
r
a
y

h
a
r
d
X
-
r
a
y

Figure 1.1.: Timeline indicating the time when X-ray free electron lasers (FELs) started in

user operation. The dashed lines include the expected time for upgrades of

existing facilities and the operation start of new FELs. [2]

Specifically, being single-pass accelerators, linac-based FELs have multiple operation

modes and often need to quickly switch between those to meet the requests of different

beamline experiments. For example, SACLA needs to simultaneously provide bunches for

two undulator beamlines and injection into a storage ring at 60Hz, demanding concurrent

optimization of three different working points. For such facilities, the downtime needs to

be minimized, and the desired beam needs to be constantly delivered with high quality.

This demand would only increase as future accelerators have finer control of the bunches

and can provide radiation tailored to individual experiments. Therefore, versatile and

intelligent controllers would be essential to operate the accelerators efficiently and reliably

under various conditions.

The integration of ML and artificial intelligence (AI) techniques offers a promising

strategy to address the challenges faced by future accelerator operations. They can model

the remaining mismatches between the simulation model and the real-world accelerators

in a data-driven way and provide fast and intelligent control both in setting up the accel-

erator and maintaining their peak performance. Due to advancements in algorithms and

2

1.1. Terminology

computing hardware, various ML methods have been successfully applied to accelerator

operation and more promising application scenarios are proposed [9, 10], concurrent to

the period when this dissertation is conducted. Both the European strategy [11] and the US

Snowmass reports [12, 13] have identified ML and AI as important assets for aiding future

accelerator operations. The integration of ML/AI techniques has been considered from the

beginning of the Electron Ion Collider (EIC) [14], one of the largest particle accelerators to

be built in the next decades. The ML/AI techniques are expected to enhance the precision,

versatility, and efficiency of particle accelerators, making them more effective tools for

scientific discovery and technological advancement.

A large portion of the early applications of ML in accelerators is dedicated to developing

customized methods for a certain task. Despite their success, the tailored methods are

seldom transferred to other tasks or routinely deployed in operation. With the maturing

of ML algorithms and the increasing knowledge in the accelerator community, it is now

essential to investigate how to provide new ML methods as ready-to-use solutions in the

toolbox of accelerators and how the individual ML methods can work in orchestration

to further increase their performances. This aim to increase the standardization and

reusability of the methods is also reflected in the recent development of software tools

and packages in accelerators, including the general-purpose optimization packages like

Xopt [15] andOptimas [16], and facility-agnostic online tuning frameworks like Badger [17]

and GeOFF [18].

This dissertation provides a holistic study of the applications of ML/AI methods for

electron linear accelerators, ranging from efficient simulation and modeling, laser and

electron bunch shaping, to online accelerator tuning. In addition to the performance of

the methods, this dissertation also discusses the practical details of the deployment and

reviews the potential of scalability for further accelerator operations.

Although the studies presented here all focused on linear electron accelerators, the

same techniques can easily be transferred to comparable tasks in storage rings, colliders,

and novel accelerator types like laser-plasma accelerators.

1.1. Terminology

In the context of applying ML algorithms to particle accelerators, several terminologies are

closely connected and often used ambiguously in different scientific communities. Some

clarifications are provided below for their meaning throughout the dissertation.

• Optimization is the process of finding the best set of parameters that maximize (or

minimize) a specific objective function. This can be done either through real-time

interactions with the accelerator, or independent of accelerator operation using the

historical data or in a physics-based simulation model.

• Control is the process of maintaining the system in a desired state under internal

changes or external disturbances, often achieved via a feedback controller. One

example is keeping the beam at a certain position over a period of time. The term

control is mostly used when an explicit time dependency is present in the system.

3

1. Introduction

Task Methods & concepts Application examples

Modeling, virtual
diagnostic

• Neural network

• Differentiable simulation

• Phase space prediction [19, 20, 21]

• Beam reconstruction [22, 23]

• Accelerator design [24]

Anomaly detection • Autoencoder

• Recurrent network

• Faulty diagnostic [25, 26]

• RF failure, interlock [27]

Optimization • Bayesian optimization

• NN-assisted opt.

• Radiation intensity [28, 29, 30]

• Injection efficiency [31, 32]

• Emittance, beam energy [33, 34]

Control • Reinforcement learning

• Extremum seeking

• Model-based control

• Trajectory control [35, 36]

• Microbunching instability [37, 38]

• Power supplies [39]

Table 1.1.: Possible applications of machine learning for particle accelerator operation

• Tuning is a common type of task performed at accelerators, where the parameters

are continuously adjusted in real-time to maintain or improve certain aspects of

the performance. Tuning often contains both aspects in optimization and control,

i.e. both for finding the optimal condition initially and maintaining it throughout

operation.

• Online means that the algorithm is running and interacting with the accelerator

in real-time during the operation. An online ML algorithm can adapt and make

decisions on the fly when receiving new data.

• Offline means that the process is done with respect to a fixed batch of data, without

requiring real-time interactions with the accelerator. Examples of offline operations

are the training process prior to the deployment, and slow post-processing of the

gathered data.

1.2. Machine Learning Enabled Future Accelerator Operation
Scheme

As the complexity of the system increases and beam quality requirements become evermore

stringent, the operation of future accelerators will certainly become more autonomous.

Some successful applications are listed in Table 1.1. The integration of ML algorithms

will bring a paradigm shift in the operation of future accelerators. Instead of spending

time repeatedly adjusting the individual settings to achieve the target beam parameters,

future accelerator operators will be able to set higher-level objectives, such as beam phase

space or radiation properties. Intelligent ML algorithms will then adjust the accelerator

to the desired state safely and efficiently. This requires an orchestration of various ML

methods. For example, the data-driven models and virtual diagnostics would provide

4

1.3. Contributions of this Dissertation

high-resolution noise-free signals that can guide the optimization algorithm or controller

and avoid exploring unsafe settings. On a broader scope, the overall operation schedule

can be optimized to minimize the downtime further. Models that are trained to predict

anomalies and forecast component failures can both avoid interlock during operation and

make informed predictions on maintenance requirements.

1.3. Contributions of this Dissertation

Among these possible application scenarios, this dissertation focuses on the integration

of ML-based methods into the life-cycle of electron linear accelerators, from simulated

optimization of working points to online tuning during operation. An overview of the

covered topics is illustrated in Fig. 1.2.

In the design stage, machine learning algorithms like Bayesian optimization (BO) can

greatly reduce the resources and time required to find an accelerator configuration to

produce the target beam. The simulation data, as well as measurement data, can be further

used to train a surrogate model, often using a NN, to map the accelerator settings to the

output beam parameters. Once trained, the surrogate model is usually computationally

cheap to evaluate and accurate in predictions. During operation, it can be used as a virtual

diagnostic, providing non-destructive high-resolution information on the beam. The

emerging differentiable programming technique [40, 41] will also become an essential tool

for accelerator simulation and modeling. It allows both efficient simulated optimization

using gradient information in the design stage and fast prediction like a data-driven

surrogate model in an online setting. The measured beam parameters can in turn be used to

calibrate and identify the mismatch between the model and the real-world accelerator [42].

During operation, machine learning methods can be applied to detailed beam control

and enlarge the achievable range of beam charge and emittance. One particular scenario

is the photo-injector laser shaping using programmable devices with a high number of

actuators, which allows precise control of the initial bunch distribution. Most importantly,

the autonomous accelerator operation relies on ML-based controllers for automatic tuning

to reach the target beam parameters given by the operators, and maintain the peak

performance in the presence of system drifts. They obtain measurements from diagnostic

devices and additional information from fast-executing models. Based on the data received,

they make real-time intelligent decisions about the new accelerator settings, either by

setting the actuators like magnet strengths directly or by setting some target parameter

for other low-level controllers in subsystems.

This dissertation is structured in the following way:

Chapter 2 This chapter introduces basic accelerator theory concepts relevant to this disser-

tation, including beam particle dynamics and accelerator-based radiation generation.

The accelerators studied in this dissertation are also introduced.

Chapter 3 This chapter introduces the concepts of the ML methods investigated in this

dissertation, including NN as a basic building block, and BO and RL as two of the

most promising optimization and control methods. It also contains a short review

5

1. Introduction

Figure 1.2.: Overview of applications of ML methods in the operation scheme of electron

linear accelerators.

6

1.4. Collaborators

of the existing ML applications in the particle accelerator field with a focus on the

online tuning aspect.

Chapter 4 This chapter showcases how ML methods can be applied to accelerator design

and optimization in a simulated study. Using the FLUTE lattice as an example, three

applications are presented: NN-based surrogate modeling of lattice sections for fast

inference and virtual diagnostics, parallelized BO for guided simulation optimization,

and utilization of a novel differentiable simulation code Cheetah for more efficient

optimization.

Chapter 5 This chapter demonstrates the photo-injector laser shaping as an example of ML

methods increasing the accelerator operation range. Spatial light modulators (SLMs)

are deployed for photo-injector laser shaping at the accelerator FLUTE, allowing a

versatile control of the laser pulse and the resulting initial electron bunch distribution.

A proof-of-principle study for a transverse setup with a test laser is shown, using a

NN-assisted control for generating higher-quality laser profiles. The laser modulation

concept is subsequently tested with the FLUTE drive laser. The practical aspects

of SLM-based laser shaping and the possibility of having full 3D modulation of the

FLUTE electron bunch are discussed.

Chapter 6 This chapter contains the simulation and experimental results on applying BO

and RL to online-tuning tasks atmultiple accelerator facilities, including the European

XFEL, FLUTE, and ARES. For each method, its advantages and shortcomings in

different task scenarios are discussed. Various extensions and adaptions to the

algorithms beyond their normal settings are presented. Based on these results,

guidelines are proposed to combine the strengths of existingmethods and improve the

scalability and robustness of ML-based controller for future accelerator operations.

1.4. Collaborators

Some topics of this dissertation were developed jointly with Jan Kaiser, including the

differentiable simulation code Cheetah in Section 4.3, designing the RL framework, agent

training, and conducting experiments at the ARES accelerator in Section 6.3. In Chapter 5,

the optical setups and experimental studies are carried out with the help of Matthias

Nabinger and Carl Sax.

7

2. Beam Dynamics and Linear Particle
Accelerators

This chapter starts with an introduction to the fundamentals of beam dynamics in particle

accelerators, a more detailed treatment can be found in textbooks [43, 44, 45]. The coherent

synchrotron radiation is introduced as an important source of light generated at particle

accelerators. The chapter concludes with an overview of the accelerator facilities FLUTE,

ARES, and European XFEL, where experimental studies are conducted in the scope of this

dissertation.

2.1. Beam Dynamics in Particle Accelerators

A particle moving in an electromagnetic field with charge 𝑞 experiences the Lorentz force

𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩), (2.1)

where 𝑬 is the electric field and 𝑩 is the magnetic field. They are related to a magnetic

vector potential 𝑨 and an electric scalar potential 𝜙

𝑩 = ∇ ×𝑨
𝑬 = −∇𝜙 − 𝜕𝑨/𝜕𝑡

(2.2)

For relativistic particles moving at the speed of light |𝒗 | ≈ 𝑐 , the magnetic fields have a

much stronger impact on the particle motion than what could be technically achieved by

using electric fields. As a result, magnetic fields are mostly used to deflect and focus the

particles along the trajectories in accelerators. Nevertheless, the electric fields are essential

for particles to gain energies, i.e. the acceleration process.

The energy and momentum of a particle are given by

𝐸 = 𝛾𝑚𝑐2

𝒑 = 𝜷𝛾𝑚𝑐,
(2.3)

where𝑚 is the rest mass, 𝜷 = 𝒗/𝑐 is the relativistic velocity, and 𝛾 = 1/
√︁
1 − |𝜷 |2 is the

relativistic Lorentz factor. In the case of a constant vertical magnetic field 𝑩 = (0, 𝐵, 0)⊤, for
example produced by a dipole magnet, the particle moving with the velocity 𝒗 = (0, 0, 𝑣)⊤
experiences a centripetal force which bends its path in a circular trajectory

𝛾𝑚𝑣2

𝜌
= 𝑞𝑣𝐵 =⇒ 1

𝜌
=
𝑞

𝑝
𝐵. (2.4)

The bending radius 𝜌 increases linearly with the particle momentum and the quantity 𝐵𝜌

is often referred to as beam rigidity.

9

2. Beam Dynamics and Linear Particle Accelerators

Reference trajectory

Reference particle

𝑧

𝑦

𝑥

Individual particle

𝒓

𝑠

Figure 2.1.: The curvelinear coordinate system used in beam dynamics. The position vector

𝒓 of an individual particle is defined as the offset to the reference particle on

the ideal trajectory at any given longitudinal position 𝑠 . The unit vector 𝒆𝑧 is
parallel to the trajectory, 𝒆𝑥 , and 𝒆𝑦 are orthogonal to the trajectory.

2.1.1. Multipole Expansion of Transverse Magnetic Fields

The magnet used for beam transportation in particle accelerators ideally has a static field

𝑩 = (𝐵𝑥 , 𝐵𝑦, 𝐵𝑧)⊤ which does not depend on the longitudinal coordinate, i.e. 𝐵𝑧 is constant.

In such a case, the transverse fields can be described as the superposition of a set of

multipole fields

𝐵𝑦 + 𝑖𝐵𝑥 =
∞∑︁
𝑛=1

𝐶𝑛 (𝑥 + 𝑖𝑦)𝑛−1, (2.5)

where 𝐶𝑛 ∈ C are complex coefficients. The index 𝑛 denotes the order of the fields and
can be attributed to physical magnets. The dipole field has 𝑛 = 1, the quadrupole field has

𝑛 = 2, and the sextupole field has 𝑛 = 3. A pure multipole magnet has 𝐶𝑛 ≠ 0 for only

one order 𝑛 and is assumed to have a vanishing longitudinal field 𝐵𝑧 = 0. The solenoid

magnet is a special case with 𝐶𝑛 = 0,∀𝑛 and 𝐵𝑧 ≠ 0. By introducing a reference field and a

reference radius, the multipole expansion can be expressed

𝐵𝑦 + 𝑖𝐵𝑥 = 𝐵ref
∞∑︁
𝑛=1

(𝑏𝑛 + 𝑖𝑎𝑛)
(
𝑥 + 𝑖𝑦
𝑅ref

)𝑛−1
, (2.6)

with dimensionless real-numbered coefficients 𝑏𝑛 and 𝑎𝑛 . As seen in Eq. (2.4), the net effect

of a magnetic field on the motion of a charged particle is scaled with the particle charge 𝑞

and momentum 𝑝 . It is thus advantageous to define normalized multipole strengths

𝑘𝑛 =
𝑞

𝑝

𝜕𝑛𝐵𝑦

𝜕𝑥𝑛
= 𝑛!

𝐵ref

𝑅𝑛
ref

𝑏𝑛+1. (2.7)

10

2.1. Beam Dynamics in Particle Accelerators

Expanding the scaled magnetic field around 𝑥 = 0 gives

𝑞

𝑝
𝐵𝑦 =

1

0!

𝑞

𝑝
𝐵𝑦 +

1

1!

𝑞

𝑝

𝜕𝐵𝑦

𝜕𝑥
𝑥 + 1

2!

𝑞

𝑝

𝜕2𝐵𝑦

𝜕𝑥2
𝑥2 + . . .

= 𝑘0︸︷︷︸
dipole

+ 𝑘1𝑥︸︷︷︸
quadrupole

+ 1

2

𝑘2𝑥
2︸︷︷︸

sextupole

+ . . . (2.8)

Each of these orders represents a special functionality that is desired for the beam dynamics

in particle accelerators. For example, the dipoles are used for steering and quadrupoles

are used for focusing the beam.

2.1.2. Hamiltonian of Charged Particles

Due to the magnets present in the particle accelerators, the beam transport path is not

always a straight line, making the equations of motion in Cartesian coordinates more

complicated. It is more convenient to use the curvelinear coordinate system instead, also

known as the Frenet-Serret system, which is illustrated in Fig. 2.1. The coordinates are

locally defined relative to a given distance 𝑠 along the reference trajectory, i.e. an ideal

design path, in an accelerator beam line. The longitudinal 𝒆𝑧 unit vector is chosen to be

tangential to the trajectory at position 𝑠 . The horizontal 𝒆𝑥 and vertical 𝒆𝑦 coordinates are
chosen so that they are perpendicular to the longitudinal axis, and together they form a

right-handed orthogonal basis 𝒆𝑧 = 𝒆𝑥 × 𝒆𝑦 . Throughout the dissertation, this curvelinear
coordinate system is used.

The Hamiltonian of a single relativistic particle moving in electromagnetic field is given

by

HCartesian = 𝑐
√︁
(𝑷 − 𝑞𝑨)2 +𝑚2𝑐2 + 𝑒𝜙 (2.9)

in the Cartesian coordinate system, where 𝑷 = 𝒑 + 𝑞𝑨 denotes the canonical momentum.

In particle accelerators, it is usually considered that the scalar potential vanishes 𝜙 = 0

and the vector potential only has a longitudinal component 𝐴𝑥 = 𝐴𝑦 = 0, which means

the magnetic fields only acts in the transverse plane. Expressed in the curvelinear system

as defined above with a curvature of the reference trajectory ℎ = 1/𝜌 , the Hamiltonian

becomes

HCurvelinear = 𝑐

√︂
(𝑝𝑧

1 + ℎ𝑥 − 𝑞𝐴𝑧)
2 + 𝑝2𝑥 + 𝑝2𝑦 +𝑚2𝑐2, (2.10)

The corresponding canonical variables are

𝒙 = (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑡,−H), (2.11)

also known as the phase-space coordinates. In the limit of 𝜌 → ∞, i.e. the trajectory

becomes a straight line, ℎ → 0 and the Hamiltonian reduces to the one in Eq. (2.9) with

𝜙 = 0.

11

2. Beam Dynamics and Linear Particle Accelerators

Further canonical transformations are commonly performed so that the transverse

momenta are also scaled to the reference particle moving along the reference trajectory

with momentum 𝑝0 = 𝛽0𝛾0𝑚𝑐

𝑝𝑥 =
𝑝𝑥

𝑝0
=
𝛽𝑥𝛾𝑚𝑐

𝑝0

𝑝𝑦 =
𝑝𝑦

𝑝0
=
𝛽𝑦𝛾𝑚𝑐

𝑝0
,

(2.12)

where 𝛽𝑥 = 𝜷 · 𝒆𝒙 is the horizontal velocity and 𝛽𝑦 is the vertical velocity. The longitudinal

coordinates can also be redefined as

𝑧 =
𝑧

𝛽0
− 𝑐𝑡

𝛿 =
𝐸

𝑝0𝑐
− 1

𝛽0
.

(2.13)

The new position 𝑧 describes the longitudinal displacement of an individual particle with

respect to the reference particle. For a particle arriving at the position 𝑠 earlier than the

reference particle 𝑡 < 0, the position is positive 𝑧 > 0. The new momentum 𝛿 describes the

energy deviation relative to the nominal energy. For the reference particle, and 𝐸 = 𝛾0𝑚𝑐

and 𝛿 = 0.

This leads to a new set of canonical coordinates

𝒙̃ = (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧, 𝛿)⊤, (2.14)

with the position along the beamline 𝑠 being the independent variable. The corresponding

Hamiltonian becomes

H =
𝛿

𝛽0
− (1 + ℎ𝑥)

√︄
(𝛿 + 1

𝛽0
)2 − 𝑝2𝑥 − 𝑝2𝑦 −

1

𝛽2
0
𝛾2
0

− (1 + ℎ𝑥) 𝑞
𝑝0
𝐴𝑧 (2.15)

2.1.3. Transfer Maps

In the following, the tildes are omitted in the normalized phase space coordinates in

Eq. (2.14) 𝒙 = (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧, 𝛿)⊤ for the sake of simplicity. For the most simple case of a

drift space, where curvature ℎ = 0 and the external electromagnetic field vanishes 𝑨 = 0,

the Hamiltonian above becomes

HDrift =
𝛿

𝛽0
−

√︄
(𝛿 + 1

𝛽0
)2 − 𝑝2𝑥 − 𝑝2𝑦 −

1

𝛽2
0
𝛾2
0

. (2.16)

For relativistic particles moving in a particle accelerator, the transverse momenta are much

smaller than the longitudinal momenta 𝑝𝑥,𝑦 ≪ 1. Using the paraxial approximation, the
Hamiltonian can be expanded in lower orders of 𝑝𝑥,𝑦

HDrift = −1 +
𝑝2𝑥

2

+
𝑝2𝑦

2

+ 𝛿2

2𝛽2
0
𝛾2
0︸ ︷︷ ︸

H (2)
Drift

+𝑂 (𝒙3) (2.17)

12

2.1. Beam Dynamics in Particle Accelerators

where𝑂 (𝒙3) denotes terms that contain dynamical variables to the third order and higher.

The equation of motions can be derived from the second-order Hamiltonian for the

transverse variables {𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦}

d𝑝𝑥,𝑦

d𝑠
= −

𝜕H (2)
Drift

𝜕𝑥
= 0

d𝑥,𝑦

d𝑠
=
𝜕H (2)

Drift

𝜕𝑝𝑥,𝑦
= 𝑝𝑥,𝑦,

(2.18)

and the longitudinal variables

d𝛿

d𝑠
= −

𝜕H (2)
Drift

𝜕𝑧
= 0

d𝑧

d𝑠
=
𝜕H (2)

Drift

𝜕𝛿
=

1

𝛽2
0
𝛾2
0

.

(2.19)

These linear equations can be analytically solved. For a drift space with path length 𝐿

and the initial particle 𝒙 (𝑠0), the phase space vector at the exit of a drift space 𝑠1 = 𝑠0 + 𝐿
is given by

𝒙 (𝑠1) = 𝑹Drift · 𝒙 (𝑠0), (2.20)

where 𝑹 is the transfer matrix of a drift space

𝑹Drift =

©­­­­­­­­«

1 𝐿 0 0 0 0

0 1 0 0 0 0

0 0 1 𝐿 0 0

0 0 0 1 0 0

0 0 0 0 1
𝐿

𝛽2
0
𝛾2
0

0 0 0 0 0 1

ª®®®®®®®®¬
. (2.21)

Note that in this paraxial approximation, the normalized transverse momenta become

𝑝𝑥 =
d𝑥

d𝑠
= 𝑥′, (2.22)

which represents the geometric angle of the transverse motion of a particle.

Similar calculations can be performed for any givenmagnets. In general, the propagation

of particles along an accelerator beam line can be written as

𝒙 (𝑠1) = 𝑴 (𝒙 (𝑠0)) , (2.23)

with 𝑴 being a vector-valued function of the phase space coordinates. The transfer map

can be expanded as described above

𝑥𝑖 (𝑠1) =
∑︁
𝑗

𝑅𝑖 𝑗𝑥 𝑗 (𝑠0) +
∑︁
𝑗,𝑘

𝑇𝑖 𝑗𝑘𝑥 𝑗 (𝑠0)𝑥𝑘 (𝑠0) +𝑂 (𝒙3) (2.24)

13

2. Beam Dynamics and Linear Particle Accelerators

where 𝑅𝑖 𝑗 denotes a component of the linear transfer matrix 𝑹 ∈ R6×6 as described before

and 𝑇𝑖 𝑗𝑘 is the component of a second-order transfer matrix 𝑻 ∈ R6×6×6. If only the linear

order is considered, the transfer matrices can be grouped by matrix multiplication

𝒙 (𝑠2) = 𝑹 (𝑠1, 𝑠2) · 𝑹 (𝑠0, 𝑠1) · 𝒙 (𝑠0)
= 𝑹 (𝑠0, 𝑠2) · 𝒙 (𝑠0),

(2.25)

with the combined transfer matrix 𝑅𝑖𝑘 (𝑠0, 𝑠2) =
∑
𝑗 𝑅𝑖 𝑗 (𝑠1, 𝑠2)𝑅 𝑗𝑘 (𝑠0, 𝑠1).

In this dissertation, this idea of matrix based particle tracking is utilized to build a

fast-executing differentiable simulation code Cheetah [42], which can be applied both to

simulated optimization (see Section 4.3) and building fast RL training environments for

online accelerator tuning (see Section 6.3).

2.1.4. Collective Effects

Until this point, all the calculations consider only the particles’ motion under some external

electromagnetic field, for example, provided by the magnets in an accelerator. Nevertheless,

the motion of a particle bunch cannot be solely considered as a collection of individual

particles, as the particles are charged and will interact with each other. Such effects are

known as the collective effects [46]. As the dynamics of the particle beam is influenced

by the charge density of the beam itself, collective effects cannot be modeled statically.

One example is the space charge effect, coming from the electric fields of particles inside a

bunch, which deteriorates the bunch profile quality and increases the beam sizes or beam

emittances. For general bunch shapes other than uniform or Gaussian bunches, the forces

from the space charge effects cannot be analytically solved. Simulating the impact of space

charge usually involves discretizing the space, numerically solving the electric field at a

given point, and applying the space charge forces as sequential kicks along the tracking.

In general, these collective effects can only be approximated, and the accuracy is usually

limited by computing resources and execution time. They become non-negligible and

contribute largely to discrepancies between simulations and real-world conditions when

accelerators operate in high bunch current and low energy regimes, which is common for

linear accelerators.

Coherent synchrotron radiation (CSR) is another collective effect that is of particular

interest. It is due to (part of) the electron bunch emitting coherently as a single particle.

CSR is sometimes undesired as it may interact with the electron bunch again and degrade

the beam quality, especially when the beam is fully compressed. However, this dissertation

focuses on the beneficial aspect of CSR, which is using the emitted radiation as a source of

intensive light.

2.2. Accelerator-based Radiation Generation

The instantaneous synchrotron radiation power emitted by a single electron moving on a

circular trajectory with radius 𝜌 is given by

𝐼𝛾 =
𝑒2𝑐

6𝜋𝜖0

𝛽4𝛾4

𝜌2
, (2.26)

14

2.2. Accelerator-based Radiation Generation

𝜌

Electron Photon

Figure 2.2.: Illustration of the synchrotron radiation emitted by an electron passing through

a bending magnet.

where 𝑒 is the unit charge, 𝜖0 is the vacuum dielectric constant [44]. Note that the radiation

power scales with 𝐼𝛾 ∝ 𝛾4 and quickly becomes intense for ultra-relativistic electrons.

108 1010 1012 1014 1016

ω/2π (Hz)

10−36

10−35

10−34

10−33

d
I
/d
ω

(J
s)

ωc/2π

50 MeV

100 MeV

Figure 2.3.: Synchrotron radiation energy spectrum emitted by a single electron with

different traveling in a circular trajectory with radius 𝜌 = 1m according to

Eq. (2.27). The vertical dashed line marks the critical frequency 𝜔𝑐 of the

50MeV electron, dividing the spectrum into two equal parts of integrated

intensities. The power spectra are spatially integrated over solid angle Ω.

The emitted radiation covers wide spectra with the spectral density being

d
2𝐼0

dΩd𝜔
=

3𝑒2𝛾2

16𝜋2𝜖0𝑐

(
𝜔

𝜔𝑐

)
2

(1 + 𝛾2𝜃 2)2
(
𝐾2

2/3(𝜉) +
𝛾2𝜃 2

1 + 𝛾2𝜃 2𝐾
2

1/3(𝜉)
)

(2.27)

where𝜔𝑐 = 3𝛾3𝑐
/
2𝜌 is the critical frequency, 𝜉 = 𝜔 (1 + 𝛾2𝜃 2)3/2

/
2𝜔𝑐 , and𝐾𝜈 are the mod-

ified Bessel functions. Fig. 2.3 illustrates the angle-integrated single electron synchrotron

15

2. Beam Dynamics and Linear Particle Accelerators

radiation energy spectrum. The spectral intensity peaks at the order of 𝜔𝑐 , which divides

the total spectrum into two halves of equal intensities when integrated over frequencies.

For ultra-relativistic electrons 𝛾 ≫ 100, the radiation is predominantly emitted in the

forward cone with an opening angle 𝜃𝑐 ∼ 1/𝛾 .
The total synchrotron radiation emitted by an electron bunch is

d
2𝐼

dΩd𝜔
= [𝑁e︸︷︷︸

Incoherent

+𝑁e(𝑁e − 1)𝐹 (𝜔)︸ ︷︷ ︸
Coherent

] d
2𝐼0

dΩd𝜔
, (2.28)

where 𝑁e is the number of electrons in a bunch, 𝐹 (𝜔) ∈ [0, 1] is the form factor. The first

part is the incoherent synchrotron radiation (ISR), scaling linearly with 𝑁e. The second

part is the CSR, which scales quadratically. Due to the large number of electrons in a

bunch, the coherent radiation is enhanced by orders of magnitude when the form factor 𝐹

is close to 1.

In the ultra-relativistic case, the form factor can be reduced to only the longitudinal

component 𝐹 (𝜔) ∼ 𝐹𝑙 (𝜔). For a bunch with longitudinal Gaussian distributed charge

density, the form factor can be analytically calculated

𝐹𝑙 (𝜔) = exp

(
−𝜔2𝜎2

)
, (2.29)

where 𝜎 is the root mean square (RMS) bunch length. The calculation for arbitrary

bunch distribution is further discussed in Section 4.2. This shows that the form factor

exponentially decreases to zero for frequencies that are larger than the inverse bunch

length.

Fig. 2.4 depicts the effect of CSR for longitudinal Gaussian bunches with 10 pC bunch

charge and 50MeV bunch energy. Note that the bunch length is expressed in 𝜎𝑡 (s) instead

of 𝜎𝑧 (m). For relativistic particles, they are simply related by the speed of light

𝜎𝑡 = 𝜎𝑧/𝑐. (2.30)

The emitted intensity is clearly dominated by the coherent component from low-frequency

to a cut-off frequency, which is inversely proportional to the bunch length 𝜔/2𝜋 ∼ 1/𝜎𝑡 .
For shorter bunch lengths, the CSR spectrum extends to higher frequencies, and the overall

radiation intensity is increased.

In addition to broadband CSR radiation, strong narrowband radiation can be generated

with the help of undulators. They consist of alternating magnetic fields which deflect

the electron bunch on an oscillating trajectory and the emitted radiation with the correct

frequency component will be amplified by constructive interference.

Nowadays, many particle accelerators are built as dedicated light sources to utilize the

synchrotron radiation effects. Storage rings have the advantage that they provide overall

high radiation power due to the high repetition rate, and they can serve dozens of beamlines

simultaneously. Linear accelerators are often limited in their repetition rates, commonly

between 1 - 100Hz, except for superconducting radio frequency (RF) guns, which can go

up to the MHz range. However, they can generate ultra-short electron bunches and strong

coherent radiation, emitting intensive light pulses down to attosecond ranges [47, 48].

They often have multiple operation modes and can provide tunable radiation pulses that

are tailored to the experimental requirements.

16

2.3. Linear Particle Accelerators

109 1010 1011 1012 1013 1014 1015 1016

ω/2π (Hz)

10−4

10−2

100

102

104

106

108

1010

N
or

m
al

iz
ed

sy
n

ch
ro

tr
on

in
te

n
si

ty

1/σt

Coherent radiation

1 ps

100 fs

10 fs

ISR

Figure 2.4.: Coherent synchrotron radiation spectrum for Gaussian bunches with different

bunch lengths. The radiation intensities are normalized with respect to the

maximum of the incoherent spectrum. All the bunches have 10 pC bunch

charge and 50MeV bunch energy.

2.3. Linear Particle Accelerators

The first component in an electron linear accelerator is the particle source. One common

choice is the RF photo-injector, also known as the RF photocathode gun. The electrons are

released via the photo-electric effect by laser pulses and metal or semiconductor cathodes.

Pulsed electron bunches with high charge and low emittance can be generated in such RF

photo-injectors. By changing the laser properties and the RF phase and amplitude, the

initial bunch charge as well as the distribution can be tuned. The emitted electrons are

rapidly accelerated to a few MeV by the RF cavities to reduce the space charge effect. In

most cases, the strong defocusing effect and rapid emittance growth by repelling space

charge effects [46] of the low energy electrons are further compensated by a solenoid

magnet positioned after or even surrounding the RF gun [49].

The electrons are further accelerated in an array of periodic RF cavities, where the phase

of the RF wave is synchronized with the bunches. The relativistic electrons pass through

the cavities and get accelerated up to the desired energy. The high energy electrons can

be directly utilized for experiments or radiation generation, for example using bending

magnets or undulator magnets.

As shown above, very short electron bunch lengths are required to generate intensive

radiation. In linear accelerators, such compression is performed using a bunch compressor.
Fig. 2.5 shows the working principle of a standard bunch compressor consisting of four

dipole magnets, also known as the magnetic chicane. The dipole magnets operate at the

samemagnetic strength, while the second and third magnets have an opposite sign than the

17

2. Beam Dynamics and Linear Particle Accelerators

other two. The particles with different momenta will be deflected with different bending

radii and therefore have different path lengths through the bunch compressor. A particle

with a higher momentum than the reference particle 𝑝0 will have a shorter path and move

to the head of the bunch, and vice versa. As a result, the bunch length can be reduced if

it is initially chirped. This means that the momentum offset 𝛿 and longitudinal offset 𝑧

are correlated so that the high-energy particles are initially at the tail of the bunch, and

low-energy particles at the head of the bunch.

𝑝 < 𝑝0

𝑝 > 𝑝0

𝑝 = 𝑝0

Figure 2.5.: Working principle of a bunch compressor consisting of four dipole magnets.

The three dashed lines denote the trajectories of particles with momenta equal

to the reference momentum 𝑝0 (black), lower (blue), or higher (red) than 𝑝0
respectively.

In linear accelerators, such longitudinal correlation can be created by an accelerating

cavity. When passing through an ideal RF cavity with sinusoidal voltage, the particle with

initial energy deviation 𝛿 (𝑠0) will have the final energy deviation

𝛿 (𝑠1) = 𝛿 (𝑠0) +
𝑞𝑉RF

𝐸0
sin

(
2𝜋 𝑓RF

𝑧 (𝑠0)
𝑐
+ 𝜙RF

)
, (2.31)

where 𝐸0 is the reference energy, 𝑉RF is the voltage amplitude, 𝑓RF is the RF frequency, and

𝜙RF is the phase offset. The chirp becomes more linear when the cavity is operated near

zero-crossing 𝜙RF = 0, which inevitably reduces the energy gain of the particles in the

cavity. While in small accelerators the main linac is often both used for accelerating and

providing chirp, larger accelerators have additional dedicated cavities, providing more

precise chirp and bunch length control.

2.4. Accelerators Studied in this Dissertation

2.4.1. FLUTE

The far-infrared linac and test experiment (FLUTE) [50] is an accelerator test facility at KIT

to study the generation and diagnostics of ultra-short electron bunches and broadband THz

radiations. It is designed to operate with a wide range of parameters, generating electron

bunches with charges from pC to nC, bunch energy up to 90MeV with an upgrade of RF

systems (in 2024), and bunch lengths down to a few femtoseconds. The usual operation

parameters of FLUTE and other accelerators are listed in Table 2.1.

18

2.4. Accelerators Studied in this Dissertation

Table 2.1.: Typical operation parameters of the studied accelerators FLUTE, ARES, and

EuXFEL

Typical parameters FLUTE ARES EuXFEL

Beam energy (MeV) 40 - 90 100 - 155 8 - 17.5 × 103
Bunch charge (pC) 1 - 1000 3 × 10−3 - 100 20 - 1000

Bunch length (fs) 1 - 300 0.2 - 10 3 - 150

Repetition rate (Hz) 1 - 50 1 - 50 10

Figure 2.6.: Schematics overview of the FLUTE components. Figure adapted from [51].

Figure 2.6 shows the schematic layout of the FLUTE accelerator [51]. The electrons

are generated at a copper cathode and accelerated up to 7MeV by the RF gun. A solenoid

magnet is positioned after the gun to focus the electron bunch. This section from the RF

gun to the entrance of the linac is referred to as the low energy section. Afterward, a 3.15m
long linac accelerates the bunch to its final energy. In the simulation studies presented in

this dissertation, the beam energy is limited to ∼ 50MeV. Thanks to the latest RF system

upgrade, the top energy can be increased to ∼ 90MeV. The bunch is then longitudinally

compressed using a bunch compressor consisting of four dipole magnets. At the last dipole,

strong CSR will be emitted by the compressed bunch and further used for experiments.

2.4.2. ARES

The accelerator research experiment at SINBAD (ARES) [52] is an accelerator facility

located at DESY to produce and study sub-femtosecond electron bunches, conduct acceler-

ator components development, and provide electrons for medical experiments. Figure 2.7

shows a simplified schematic of the ARES layout. It shares a similar design as the FLUTE

accelerator and therefore serves as an ideal test bed for investigating the transferability

of the developed machine learning (ML) methods. The ARES contains a photo-injector

and two independently driven traveling wave structures, providing electrons with bunch

charges from 3 fC to 100 pC, energies up to 155MeV, bunch length down to a few femtosec-

onds, and repetition rate from 1 - 50Hz. In Section 6.3, the section named Experimental
Area (EA) is investigated to compare the performance of various ML-based algorithms for

online-tuning tasks.

19

2. Beam Dynamics and Linear Particle Accelerators

Figure 2.7.: Schematic layout of the ARES Accelerator. Figure from [53]

2.4.3. European XFEL

The European X-Ray Free-Electron Laser (EuXFEL) [6] is a hard X-ray free electron laser

(FEL) in Hamburg. A simplified layout of the European X-Ray Free-Electron Laser (EuXFEL)

is given in Fig. 2.8. The 1.7 km long superconducting linear accelerator can accelerate the

electron bunches up to 17.5GeV. It can accelerate a train of up to 2700 electron bunches

with bunch charges from 20 pC to 1 nC and a maximal repetition rate of 10Hz with 0.6ms

pulse duration, corresponding to a peak repetition rate of 4.5MHz for the X-ray pulses.

The high-energy electron bunches are subsequently guided into the beamlines equipped

with arrays of undulators and emit intensive coherent radiations with the self-amplified

spontaneous emission (SASE) mechanism, with photon energies ranging from 7 - 14 keV.

In Section 6.1, Bayesian optimization is applied to maximizing the FEL intensity at the

SASE1 beamline of the European XFEL.

Dump

Dump

Gun section

𝐸 ∼ 130MeV

BC0 BC1 BC2

𝐸 ∼ 17.5GeV

Linac

L1

Linac

L2

Linac

L3

SASE1

S
A
S
E
2

S
A
S
E
3

Radiation

Figure 2.8.: Simplified layout of the EuXFEL. The blue line denotes the electron path. The

bunch goes through a series of accelerating structures and bunch compressors.

It consists of three beamlines with undulators that can generate intense coher-

ent radiation using the SASE mechanism. Figure adapted from [54].

20

3. Machine Learning Methods

This chapter aims to provide some basic concepts in machine learning (ML), which are

required to follow the discussions in this dissertation. It starts with an introduction to

the general concepts neural network (NN) and gradient-based optimizations. The chapter

focuses then on Bayesian optimization (BO) and reinforcement learning (RL), two methods

for online accelerator tuning that are investigated in detail in this dissertation. A brief

overview of the successful applications of BO and RL at particle accelerators is provided

as well. For more mathematical treatments, readers are referred to the textbooks for the

individual textbooks respectively [55, 56, 57].

3.1. Neural Networks

The neural network is one of the most fundamental building blocks in modern machine

learning methods. They are universal function approximators that describe a general

nonlinear function

𝑓 (𝒙 |𝒘) = 𝒚, (3.1)

with parameters𝒘 , which maps the vector-valued inputs 𝒙 to outputs 𝒚.
Fig. 3.1 illustrates the structure of a neural network in its most simple form, consisting

of only one layer with a single neuron, also known as the perceptron. It takes an 𝑛-

dimensional input (𝑥1, . . . , 𝑥𝑛) and transforms it by a weighted sum (𝑤 (1)
1
, . . . ,𝑤

(1)
𝑛) and a

bias term 𝑏

𝑡 (1) =
𝑛∑︁
𝑖=1

𝑤
(1)
𝑖
𝑥𝑖 + 𝑏. (3.2)

The superscripts here denote the number of layers. For the sake of simplicity, the bias can

be absorbed into the weight vector𝑤0 B 𝑏 and the input vector 𝒙 is augmented with an

additional 𝑥0 = 1, so that the weighted sum becomes simply

𝑡 (1) = 𝒘 (1)⊤𝒙 . (3.3)

The transformed value is further processed by a nonlinear activation function 𝑔(·) to
generate the output

𝑎(1) = 𝑔(𝒘 (1)⊤𝒙). (3.4)

In a feed-forward fully connected neural network (NN), also known as the multilayer

perceptron (MLP), the neurons are aligned in layers. The output of 𝑗-th layer 𝒂 (𝑗) is
passed as the input of the next layer 𝑗 + 1, until reaching the output layer. This process is

called the forward propagation. When NN is trained and used to make predictions, it is

often referred to as inference. By addressing the propagation as tensor multiplication and

21

3. Machine Learning Methods

𝑥0

𝑥1

𝑥2

𝑥𝑛

...
...

𝑔
𝑤
(1)
0

𝑤
(1)
0

𝑤
(1)
1

𝑤
(1)
1

𝑤
(1)
2

𝑤
(1)
2

𝑤
(1)
𝑛𝑤
(1)
𝑛

𝑎(1) = 𝑔
(∑𝑛

𝑖=0𝑤
(1)
𝑖
𝑥𝑖

)
𝒙 = (1, 𝑥𝑖, . . . , 𝑥𝑛) ∈ R𝑛+1

𝒘 (1) = (𝑏,𝑤 (1)
1
, . . . ,𝑤

(1)
𝑛) ∈ R𝑛+1

𝑔 : activation function

Figure 3.1.: Structure of a one-layer neural network, also known as the perceptron. The in-
put 𝒙 is multiplied with𝒘 , which includes the weights (𝑤1, . . . ,𝑤𝑛) augmented

by a scalar-valued bias 𝑏. The sum is transformed by a nonlinear activation

function 𝑔 to produce the output 𝑎(1) .

utilizing specialized processors like graphical processing units (GPUs), the calculation can

be highly parallelized and the inference with NN becomes very efficient.

Within one layer, usually, the same activation functions are used for the sake of par-

allelism. The nonlinear activation functions are essential in the neural network for its

approximation capabilities. Without them, the represented function mapping becomes

linear and can be reduced to a simple matrix multiplication.

−1 0 1

x

−1

0

1

g
(x

)

(a) Sigmoid

−1 0 1

x

(b) Tanh

−1 0 1

x

(c) ReLU

Figure 3.2.: Commonly used activation functions in neural networks, including (a) sigmoid,

(b) hyperbolic tangent, and (c) ReLU function.

Various activation functions are designed for different purposes and applications. They

are often composites of simple functions where the derivatives can be analytically calcu-

22

3.1. Neural Networks

lated. Some commonly used activation functions are introduced below and visualized in

Fig. 3.2.

𝑔sigmoid(𝑥) =
1

1 + 𝑒−𝑥 ,

𝑔′
sigmoid

(𝑥) = 𝑔(𝑥) (1 − 𝑔(𝑥))
(3.5)

The sigmoid function is smooth and constrained in [0, 1], which makes it ideal for binary

classification tasks. Another popular choice of activation function is the hyperbolic tangent

function, which is constrained in the range of [−1, 1].

𝑔tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 ,

𝑔′
tanh
(𝑥) = 1 − 𝑔(𝑥)2

(3.6)

In comparison to sigmoid, tanh has the advantage that it is zero-centered and the derivative

is four times larger than the one of sigmoid at 𝑥 = 0, allowing the training process to

be faster. Nevertheless, it still saturates at large input amplitudes and the gradient could

vanish for deep neural networks. Rectified linear unit (ReLU) is a widely used non-bounded

activation function

𝑔ReLU(𝑥) = max(0, 𝑥),

𝑔′
ReLU
(𝑥) =

{
0, 𝑥 < 0

1, 𝑥 > 0

(3.7)

As it does not contain exponential terms, ReLU is much simpler to implement in hardware

and requires considerably lower computation resources. Although it can struggle to predict

highly nonlinear features when using a small-sized NN, this is not a problem in larger NNs.

One downside of ReLU is its flat region for negative input values, which can potentially

stop the progress in NN training. This can be mitigated by several variants, including

Leaky ReLU 𝑔(𝑥) = 𝛼𝑥 for 𝑥 < 0, exponential linear unit (ELU) 𝑔(𝑥) = 𝛼 (𝑒𝑥 − 1) with a

free parameter 𝛼 controlling the behavior for 𝑥 < 0, and Softplus
1

𝛽
ln(1 + exp(𝛽𝑥)) with

a parameter 𝛽 which constrains the output to be always positive.

It is favorable to scale the inputs and outputs of the neural networks according to

the active regions of the activation function to fully utilize their nonlinearity. Common

practices are min-max normalizing the input to [0, 1] or standardizing the input data with

zero mean and unit standard deviation.

3.1.1. Automatic Differentiation and Gradient Descent Optimization

The network weights𝒘 are usually randomly initialized and need to be adapted so that

they can approximate the behavior of an unknown mapping. This process is known as the

training of NNs. It becomes a standard optimization problem with a dataset of training

inputs 𝑋 and target outputs 𝑌

min

𝒘

∑︁
𝒙∈𝑋, 𝒚̂∈𝑌

𝐿(𝒚 = 𝑓 (𝒙 |𝒘), 𝒚̂), (3.8)

where 𝒚̂ denotes the target output, also known as the training labels, and 𝐿 is a custom

scalar-valued loss function, quantifying the discrepancy between the NN prediction and the

23

3. Machine Learning Methods

target output. Commonly used loss functions are the mean squared error (MSE) and mean

aboslute error (MAE) for regression tasks, and the cross-entropy function for classification

tasks. Almost any numerical optimization algorithms can be used to fit the NN parameters,

such as particle swarm optimization, genetic algorithm (GA), simulated annealing, and

L-BFGS [58]. Nevertheless, due to the large number of parameters to be optimized and

the fact that the computations in the network are composites of elementary functions,

gradient descent algorithms are very effective and have become de facto the standard

approach when it comes to neural network training.

In many cases, the stochastic gradient descent (SGD) is used for optimizing the pa-

rameters, which means that instead of the gradient of the total loss in the dataset, only

the gradient with respect to a single data pair or a mini-batch of data is calculated. This

increases the frequency of gradient updates and accelerates the overall training process.

In each step, the parameters𝒘 are updated using the gradient values

𝒘 ← 𝒘 − 𝛼∇𝒘𝐿(𝒙, 𝒚̂,𝒘), (3.9)

where 𝛼 is the learning rate that scales the amplitude of each update and ∇𝒘 denotes the

partial derivative of the loss function with respect to the parameters𝒘 .
Modern machine learning software libraries, such as PyTorch [59, 60], TensorFlow [61],

and JAX [62] support a feature called automatic differentiation (AD), which allows the

derivatives of a function to be automatically obtained. When training NNs, a computation

graph is built to keep track of the transformations being applied to obtain the output

during the forward propagation, i.e. passing the input training data to obtain the output

values. Afterward, the partial derivative of the loss function with respect to an individual

weight parameter can be calculated based on the gradient of the next layer by applying

the chain rule iteratively. As the gradient flows backward through the network, this step

is also known as the backpropagation. This backward propagation can also be repeated to

obtain Hessians if higher-order derivative information is required for the gradient-based

algorithms.

Multiple variants of the basic SGD algorithm are designed to improve its speed and

convergence properties. For example the introduction of a momentum term to accelerate

the convergence when gradients are in the same direction over multiple update steps, the

adaptive learning rate based on past gradients in RMSprop, and the Adam optimizer which

combines both ideas [63].

Moreover, the usage of gradient descent methods is not only limited to neural network

training but more generally in scenarios where the gradient information can be readily

accessed, such as when simulation tools are built with ML libraries. In Section 4.3, Cheetah
is introduced as a novel differentiable accelerator simulation code built with PyTorch, fully

utilizing the advantages of AD with modern gradient descent algorithms.

When using neural networks to approximate the function mappings, the final perfor-

mance not only depends on the optimized weights but also on the set of hyperparameters.
They are additional parameters that are usually fixed before the training process and

govern the overall behavior of the algorithm. Hyperparameters can be numerical values

like the number of neurons and number of layers in a NN, size of the mini-batches, initial

learning rate, and the number of epochs, i.e. the number of complete passes through the

24

3.2. Bayesian Optimization

training dataset. They could also be categorical values such as choice of activation function

and optimizer algorithms.

3.2. Bayesian Optimization

While neural networks are powerful tools that can approximate arbitrarily complex func-

tions, they require a large number of high-quality training samples. Such amount of data

is often not available, especially in real-world accelerators, where beam time is scarce.

Bayesian optimization (BO) is a class of numerical optimization algorithms that can

globally optimize an unknown objective function efficiently. Recently it has been widely

applied in the particle accelerator community for both online and simulated optimization

tasks. This section introduces the basic concepts of BO algorithms used in this dissertation,

more details on the mathematical formulation can be found in the textbook [56]. An

introduction to BO as well as its application cases for particle accelerators are also provided

in the recent review paper [64].

−1

0

1

y

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

0.0 0.5 1.0

x

0

1

α
(x

)

0.0 0.5 1.0

x
0.0 0.5 1.0

x
0.0 0.5 1.0

x

GP mean

2σ bound

Observations

True objective

α(x)

max α(x)

Figure 3.3.: Visualization of Bayesian optimization steps. In each step, a Gaussian process

(GP) is trained on previous observations (red dots) as a statistical model for an

unknown objective function (red dash-dot line). The GP model predicts the

function value (blue line) with uncertainty (blue shaded region). Based on the

GP posterior predictions, an acquisition function (green line) is calculated and

the next point to sample (yellow star) is chosen by maximizing the acquisition

function.

Here, a general optimization problem is considered

max

𝒙∈X
𝑓 (𝒙), (3.10)

25

3. Machine Learning Methods

where an unknown black-box objective 𝑓 is to be maximized within an input domain

X ⊆ R𝑑 . This means that the objective can only be evaluated but the analytical form of

it is unknown, and no gradient information is available. Although not considered here,

constraints can be included so that the domain of possible input parameters is further

limited.

At each step, the evaluation of the objective will return a noisy signal

𝑦 = 𝑓 (𝒙) + 𝜖, (3.11)

with a Gaussian noise following an independent, identically distributed Gaussian distribu-

tion 𝜖∼N(0, 𝜎2𝜖). In most cases, this noise is assumed to be homoscedastic, which means

that it does not depend on the input parameters 𝒙 . Additionally, the function evaluation is

assumed to be expensive, which can be due to high computational or monetary costs. The

goal is to find the optimal set of parameters with the least amount of steps.

The working principle of BO is illustrated in Fig. 3.3 for a one-dimensional optimization

task. In each step, a surrogate model of the objective is built using the observation data.

While the surrogate model can have arbitrary structure, in most cases a GP model [56] is

used. Based on the predictions of the surrogate model, an acquisition function 𝛼 (·) can
be defined to determine the parameter setting to sample. Then, the function is evaluated

at the setting that maximizes the acquisition, and the observations are added back to the

dataset. These steps are repeated until the optimization criteria are met.

3.2.1. Gaussian Process Modeling

GP is a non-parametric way to model unknown functions. It is used in BO as a sample

efficient probabilistic surrogate of the objective function, providing both the estimate

of objective value at a given point and its uncertainty. A GP describes a distribution of

possible functions

𝑓 (𝒙) ∼ GP(𝑚(𝒙), 𝑘 (𝒙, 𝒙′)), (3.12)

with the prior mean function𝑚(·) and covariance (or kernel) function 𝑘 (·, ·) defined as

𝑚(𝒙) = E [𝑓 (𝒙)]
𝑘 (𝒙, 𝒙′)) = E [(𝑓 (𝒙) −𝑚(𝒙) (𝑓 (𝒙′) −𝑚(𝒙′)] .

(3.13)

For convenience of calculation, or when the landscape of the objective function is unknown,

the prior mean is often set to be𝑚(𝒙) ≡ 0. However, this is not always the case, as discussed

later in Section 4.4.

At each input position 𝒙∗, the function value is a Gaussian distributed random variable

𝑝 (𝑦 |𝒙∗), as visualized in Fig. 3.4(a). Samples of functions can be drawn from the GP by

evaluating at a set of input points𝑋 ∗, where the function values jointly form a multivariate

Gaussian distribution. After observing 𝑛 data points 𝐷 = {𝑋,𝑌 }, the model can make

posterior predictions 𝑝 (𝑦 |𝒙∗, 𝐷) conditioned on the available data, which are still Gaussian

distributed. In general, the posterior distribution for 𝑛∗ test points 𝑋 ∗ in the noise-free

case 𝜎𝜖 = 0 is given by N(𝝁∗,𝝈∗2), where

𝝁∗ = 𝐾 (𝑋 ∗, 𝑋)𝐾 (𝑋,𝑋)−1𝑌,
𝝈∗2 = 𝐾 (𝑋 ∗, 𝑋 ∗) − 𝐾 (𝑋 ∗, 𝑋)𝐾 (𝑋,𝑋)−1𝐾 (𝑋,𝑋 ∗).

(3.14)

26

3.2. Bayesian Optimization

−2

0

2

y

(a)

p(y|x∗)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

x

−2

0

2

y

(c)

p(y|x∗, D)

0.0 0.2 0.4 0.6 0.8 1.0

x

(d)

GP mean

2σ bound

Sampled functions

Data points D

Prob. dist. at x∗

Figure 3.4.: GP prior and posterior visualizations. (a) The prior distribution of GP with

zero prior mean. The function value at an arbitrary point is distributed ac-

cording to a Gaussian distribution. (b) Function samples drawn from the prior

distribution. (c) Posterior predictions of GP can be calculated by conditioning

on the observed data points 𝐷 . (d) Function samples drawn from the posterior

distribution.

𝐾 (𝑋,𝑋) is an 𝑛×𝑛 covariance matrix between the dataset, 𝐾 (𝑋 ∗, 𝑋) is an 𝑛∗×𝑛 covariance
matrix between the test points and the dataset, and 𝐾 (𝑋 ∗, 𝑋 ∗) is an 𝑛∗ × 𝑛∗ covariance
matrix between the test points. Similarly, as for the prior distribution, functions can also

be sampled from the posterior distribution as shown in Fig. 3.4(d).

The behavior of GP model is governed by the choice of the covariance function, which

quantifies the similarity between two points. Based on the assumption that the objective 𝑓

is continuous, the data points that are close to another point 𝒙 are expected to have similar

output values to 𝑓 (𝒙). In many cases, stationary kernels are used, which means that

the correlation only depends on the relative displacement between two points 𝑘 (𝒙, 𝒙′) =
𝑘 (𝒙 − 𝒙′), and not on their absolute positions.

One of the most commonly used covariance functions is the radial basis function (RBF),

resembling the form of a Gaussian distribution. The RBF is defined as

𝑘RBF(𝒙, 𝒙′) = exp

(
−1
2

| |𝑥 − 𝑥′| |2
ℓ2

)
, (3.15)

where ℓ is the lengthscale hyperparameter. More generally, the objective can have different

sensitivity to individual input dimensions, leading to a vector of lengthscales ℓ = (ℓ1, . . . , ℓ𝑑)

27

3. Machine Learning Methods

0.0 0.5 1.0

x

−2

0

2

y

(a) ` = 0.1

0.0 0.5 1.0

x

(b) ` = 0.3

0.0 0.5 1.0

x

(c) ` = 1.0

GP mean

2σ bound

Sampled functions

Data points D

Figure 3.5.: Effects of the lengthscale hyperparameter on the GP model.

with distinct values, also known as the automatic relevance determination. The RBF can
therefore be extended to

𝑘RBF, ARD(𝒙, 𝒙′) = exp

(
−1
2

(𝒙 − 𝒙′)⊤ diag(ℓ)−2(𝒙 − 𝒙′)
)

= exp

(
−1
2

𝑑∑︁
𝑖=1

(
𝑥𝑖 − 𝑥′𝑖
ℓ𝑖

)
2

)
,

(3.16)

where diag(ℓ) denotes a𝑑×𝑑 diagonal matrix with ℓ as entries. Each ℓ𝑖 roughly corresponds
to the distance along one input axis, at which the two data points become uncorrelated, and

the function values can change significantly. The effect of the lengthscale hyperparameter

is visualized in Fig. 3.5. For small values of ℓ , the function varies rapidly over a short

interval. When the lengthscale becomes larger, the function becomes smoother and varies

slowly over a long range.

The RBF kernel makes smooth predictions, i.e. the represented functions are indefinitely

mean-square differentiable. In reality, however, this is often too stringent of a constraint

on the modeled physical objectives. A generalization of RBF is the Matérn kernel. It is

defined as

𝑘Matérn(x, x′) =
2
1−𝜈

Γ(𝜈)

(√
2𝜈
| |𝒙 − 𝒙′| |

𝑙

)𝜈
𝐾𝜈

(√
2𝜈
| |𝒙 − 𝒙′| |

𝑙

)
, (3.17)

with positive hyperparameters 𝜈 and ℓ , and 𝐾𝜈 is the modified Bessel function. The values

for 𝜈 are commonly chosen to be half-integer, e.g. 𝜈 = 1.5 leads to once mean-square

differentiable functions, and 𝜈 = 2.5 leads to twice mean-square differentiable functions.

The complete covariance function can also be a composite of multiple basic kernels

by multiplication or addition. In particular, the covariance function used in GP is often

expressed as

𝑘 (𝒙𝑝, 𝒙𝑞) = 𝜎2𝑓 𝑘0(𝒙𝑝, 𝒙𝑞) + 𝜎
2

n
𝛿𝑝𝑞, (3.18)

where 𝑘0 is a basic kernel function like RBF and Matérn, 𝒙𝑝 and 𝒙𝑞 are two arbitrary points,
and 𝛿𝑝𝑞 is a Kronecker delta (𝛿𝑝𝑞 = 1 ⇔ 𝑝 = 𝑞, 𝛿𝑝𝑞 = 0 otherwise). It contains further

28

3.2. Bayesian Optimization

0.00 0.25 0.50 0.75 1.00

x

−2

−1

0

1

2

y

(a) Before model fitting

0.00 0.25 0.50 0.75 1.00

x

(b) After model fitting

GP mean

2σ bound

Data points D

True objective

Figure 3.6.: Maximum log-likelihood fitting of the GP hyperparameters

hyperparameters that can be varied, the signal variance 𝜎2
𝑓
and the noise variance 𝜎2

n
.

The diagonal term containing the noise variance is used to model the independent white

noise in the measurement. The signal variance 𝜎2
𝑓
scales the absolute amplitude of the

covariance function.

The hyperparameters of the GP model need to be adapted so that the resulting model

can best represent the observed data points (𝑋,𝑌). The marginal likelihood of the model

over the latent function values 𝒇 is

𝑝 (𝑌 |𝑋) =
∫

𝑝 (𝑌 |𝒇 , 𝑋)︸ ︷︷ ︸
likelihood

𝑝 (𝒇 |𝑋)︸ ︷︷ ︸
prior

d𝒇 , (3.19)

which equals the integration of the likelihood times the prior integrated over the parameter

space of 𝒇 . Under the GP assumption, the prior 𝑝 (𝒇 |𝑋) is Gaussian, and its log-likelihood

function can be calculated analytically. The marginal log likelihood (MLL) of the GP model

conditioned on the hyperparameters 𝜽 with 𝑛 data points (𝑋,𝑌) can be expressed as

log𝑝 (𝑌 |𝑋, 𝜽) = −1
2

𝑌𝑇𝐾−1𝑌 𝑌 − 1

2

log |𝐾𝑌 | −
𝑛

2

log 2𝜋, (3.20)

where 𝐾𝑌 = 𝐾 (𝑋,𝑋) + 𝜎2
n
𝐼 is the covariance matrix for the noisy target 𝑌 , the model

hyperparameters 𝜽 are contained in 𝐾𝑦 , and 𝑛 is the number of training samples 𝑛 =

len(𝑋). The first term with the training data quantifies the goodness of the data fit, the

second term contains only the model parameters and acts as a penalization for model

complexity, and the third term is a normalization constant. Taking the lengthscales ℓ as

an example, smaller values of ℓ lead to a more flexible model but a higher penalty in the

model complexity. Therefore, maximizing the MLL results in a GP model that sufficiently

represents the training data and contains the simplest model. One way to determine the

GP hyperparameters is to estimate them in advance using historical data [31], but this

29

3. Machine Learning Methods

limits the model’s ability to adapt to new conditions that are not described by the historical

data. Alternatively, the GP model can be re-trained on the dataset at every step during

optimization, at the cost of increasing computational requirements during application

time. The maximization of the MLL typically takes 0.1 - 10 seconds on a conventional CPU,

but the time scales 𝑂 (𝑛3) with the number of training points.

3.2.2. Acquisition Function

0.0 0.5 1.0

x

−2

−1

0

1

2

y

(a) Posterior GP

0.0 0.5 1.0

x

−2

−1

0

1

2

α
(x

)

(b) UCB

0.0 0.5 1.0

x

0.00

0.05

0.10

α
(x

)

(c) EI

GP mean

2σ bound

Data points D

True objective

α(x)

max α(x)

Figure 3.7.: Acquisition functions are constructed using the GP posterior predictions. (a)

shows the GP model with the observed data. (b) shows the upper confidence

bound (UCB) and (c) shows the expected improvement (EI) acquisition function.

With a GP model inferring the posterior distribution of the objective function, an

acquisition function 𝛼 is built to determine the next sample point to evaluate, so that the

number of required physical observations is effectively reduced. Concretely, the objective

𝑓 is sampled at argmax𝒙 𝛼 (𝒙 |𝐷) at each step. This is visualized in Fig. 3.7. Custom

acquisition functions can be constructed to meet specific task requirements. In general,

to find the global optimum of the unknown objective, they all balance the exploration

and exploitation of the search space. This can be explained in the following by the two

commonly used acquisition functions: the upper confidence bound (UCB) and the expected

improvement (EI). UCB explicitly controls the exploration-exploitation trade-off with a

parameter 𝛽UCB
𝛼UCB(𝒙) = 𝜇 (𝒙) + 𝛽UCB𝜎 (𝒙), (3.21)

where 𝜇 (𝒙) and 𝜎 (𝒙) are the GP posterior mean and standard deviation. For high 𝛽UCB val-

ues, the contribution of the variance term becomes large and points with high uncertainty

are sampled, which leads to more exploration. On the contrary, small 𝛽UCB values lead to

more exploitation of observed peaks, as they have a higher posterior mean. An empirical

choice of the parameter is 𝛽UCB = 2, which corresponds to the usual 95% confidence

bound for Gaussian distributed values. Nevertheless, 𝛽UCB can also increase along with

the evaluation steps to ensure that BO converges to the global optimum [65, 66].

30

3.2. Bayesian Optimization

The EI calculates the expected value of the improvement of a proposed point 𝒙 over the

best-observed value 𝑓best [67]

𝛼EI(𝒙) = E[max(𝜇 (𝒙) − (𝑓best + 𝜉), 0)]
= (𝜇 (𝑥) − (𝑓best + 𝜉))Φ(𝑍) + 𝜎 (𝒙)𝜙 (𝑧)

(3.22)

with the parameter 𝑧 describing the normalized improvement

𝑧 =
𝜇 (𝒙) − (𝑓best + 𝜉)

𝜎 (𝒙) , (3.23)

where 𝜙 is the probability density function (PDF) and Φ is the cumulative density function

(CDF) of the standard normal distribution. The exploration-exploitation trade-off in EI

can be controlled by introducing a positive parameter 𝜉 [68]. In general, a large 𝜉 value

acts as if the previous best value is higher, steering the BO to perform more exploration.

For many optimization tasks, UCB and EI both behave robustly and lead to comparable

performance. However, numerical instabilities can arise when optimizing the EI acquisition

when a large region of the parameter space has acquisition values that are close to zero.

This is also reflected in Fig. 3.7(c), where the EI is very flat for 𝑥 ∈ [0.5, 1.0].

3.2.3. Tailoring Bayesian Optimization Methods for Particle Accelerators

Although the vanilla version BO algorithm can already handle a wide range of optimization

tasks, adapting individual components of the algorithms to the individual tasks will further

increase its performance and allow it to meet certain real-world requirements. Specifically

in the domain of particle accelerator tuning, the beamtime for tuning needs to beminimized,

certain safety constraints must be respected, and prior knowledge of the accelerator system

can be included. Below, some customizations of the BO algorithm with their application

for the accelerator are introduced. A more detailed treatment can be found in [64].

The modifications of BO can be mainly separated into the GP modeling techniques and

the design of acquisition functions. Due to the specific layout of each accelerator, settings

like magnet strengths are often grouped in so-called families and changed simultaneously

during operation, such correlation information can be input into the kernel function.

For example in the free electron laser (FEL) intensity tuning task [28] and beam loss

minimization task in a storage ring [69], the correlations between quadrupole strengths

are calculated in the form of Hessian matrices and used to speed up the BO. In addition,

the objective function is not always a static function of the tuning parameters like magnet

strengths. In reality, they could depend on contextual variables like the bunch current

or vary in time due to systematic drifts. Such effects can be explicitly modeled as extra

dimensions in the GP models, also known as adaptive BO (ABO) [70] or contextual BO

(C-BO) [71] respectively. C-BO has been applied to optimize the injection rate into the

storage ring Karlsruhe research accelerator (KARA), keeping track of the optimum setting

varying over the amount of accumulated current [31]. ABO has been applied to beam

trajectory tuning in the APS linac for an upstream beam that is drifting over time [72,

73]. Another important feature of the accelerators is that data can be obtained at different

fidelities. In simulation, this means that multiple simulation models are available with

31

3. Machine Learning Methods

different physical effects included. In online tuning, this means that beam measurements

with different diagnostic devices or data acquisition configurations. Generally, such a

multi-fidelity setup involves a trade-off of spending more time to obtain more accurate

data, or saving resources but obtaining only low-quality data. The data coming from

different sources can be combined and explicitly modeled in the GP model with an extra

fidelity parameter. This has been demonstrated in the design optimization in laser-plasma

accelerator simulations [74, 16]. Lastly, non-zero prior mean functions can be used in the

GP modeling instead of the uninformative zero prior mean. This is further illustrated in

Section 4.4 for the simulation of FLUTE.

The acquisition function can be tailored to change the behavior of BO for accelerator

tasks. One example is to use only the GP posterior uncertainty as acquisition 𝛼 (𝑥) = 𝜎 (𝑥)
to only focus on the exploration of the parameter space. This has been applied for efficient

online characterization in accelerator experiments [75]. For accelerator tuning, smaller

step sizes in parameter changes are often preferred to maintain an overall stable system and

reduce the settling time of these parameters via individual feedback controllers. This can

be achieved by setting a hard limit on the step size or by biasing the acquisition function

towards the current setting [75, 76]. Accelerators often have safety constraints that should

not be violated during the optimization process. The constraints can be explicitly predicted

using GP models in the SafeOpt algorithms so that the optimization is only performed

in the safe region. In the context of accelerator tuning, this has been demonstrated by

FEL tuning while maintaining a threshold radiation intensity [77], beam loss optimization

while not triggering any interlock systems [30], and timing jitter minimization while

maintaining the laser lock in the laser synchronization system [78]. In the multi-fidelity

case, the acquisition function also needs to be modified. This has been demonstrated in the

laser-plasma accelerator simulations, where a low-fidelity fast-executing simulation is used

to support the optimization for a computationally intensive high-fidelity simulation [16].

The acquisition function can also be extended to solve the multiobjective optimization

task, finding a Pareto-front of non-dominated points with competing objectives. This

has been demonstrated in the photo-injector tuning to find the beam with minimal beam

emittances, beam sizes, and energy spread [79]. Another example is to find the maximum

bunch charge with minimal energy spread in a laser-plasma accelerator [80].

3.3. Introduction to Reinforcement Learning

Reinforcement learning (RL) is a machine learning (ML) paradigm, where the algorithm

learns to make decisions to maximize a reward signal. The learner, referred to as the agent,
can make decisions and interact with an environment. Similar to a numerical optimization

algorithm like BO, it also faces the exploration-exploitation trade-off. The agent needs to

focus on previous effective actions to gain more rewards but also needs to try out new

actions in the hope of more future rewards. In the last decade, reinforcement learning (RL)

has been successfully applied to a wide range of tasks, from complex games like Atari [81],

chess, and go [82, 83], to real-world control tasks such as tokamak fusion control [84] and

drone racing [85].

32

3.3. Introduction to Reinforcement Learning

This section gives a brief introduction to RL, providing the basic terminologies that are

required to understand the work in this dissertation. More details on RL can be found in

[57], where most of the treatment below is based on.

3.3.1. Reinforcement Learning Problem Formulation

The successful application of RL depends heavily on the formulation of the task. In

general, the RL problems are formulated as Markov decision processs (MDPs). A MDP is a

formalization of sequential decision-making, where the actions can also have a long-term

influence on the subsequent situations and therefore the future rewards. The interactions

take place in discrete time steps 𝑡 = 0, 1, 2, At each time step 𝑡 , the agent receives

a representation of the environment’s current state 𝑆𝑡 ∈ S. Based on this observation,

the agent takes an action 𝐴𝑡 ∈ 𝒜. Note that in general, the possible action space can be

dependent on the specific state 𝒜 = 𝒜(𝑠). The environment enters into the next state

𝑆𝑡+1 and the agent receives a scalar-valued reward 𝑅𝑡+1 ∈ R ⊂ R. The sequence of such
interactions is called a trajectory, which looks like

𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, . . . (3.24)

When the agent takes a certain action, the next environment state does not need to be

deterministic. It can be generally described with a probability function

𝑝 : (S × R) × (S ×𝒜) → [0, 1]
𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) = Pr {𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} ,

(3.25)

where 𝑠′, 𝑠, 𝑟 , 𝑎 are specific instances of the states 𝑆 , rewards 𝑅, and actions𝐴. This denotes
the conditional probability of the state going into a new state 𝑠′ and returning the reward

𝑟 if the agent takes action 𝑎 at a system state 𝑠 . The transition function 𝑝 is also called the

dynamics of the MDP, with∑︁
𝑠′

∑︁
𝑟

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) = 1, ∀𝑠 ∈ S,∀𝑎 ∈ 𝒜. (3.26)

Thismeans that the possible next states 𝑆𝑡+1 and rewards𝑅𝑡+1 depend only on the immediate

preceding state 𝑆𝑡 and action 𝐴𝑡 , but not on the history, i.e. earlier states and actions. This

is called the Markov property. In the context of RL, this implies that the agent should be

able to make a decision based only on the current information of the environment. At

any given time step 𝑡 , the agent is then tasked to maximize the cumulative rewards that it

receives in the future. This is also called the return

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + · · · + 𝑅𝑇 , (3.27)

where 𝑇 is the time step for a terminal state. This sequence of interactions is also called

an episode. In the real world, the task can also be continuous and does not have a specific

terminal state. In such a case, the return might become infinite. A discount factor 𝛾 ∈ [0, 1]

33

3. Machine Learning Methods

can be introduced to mitigate the infinity and simplify the mathematical derivations. The

return in Eq. (3.27) can be generalized to the discounted return

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 · · · =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1. (3.28)

Here, the 𝛾 effectively determines the horizon the RL agent looks into the future. For 𝛾 = 0,

the RL agent only looks at the immediate return, behaving like a numerical optimizer. For

𝛾 close to 1, the delayed reward also becomes relevant, and the agent can learn to trade off

immediate rewards for higher future rewards, planning far ahead in time steps. Overall, a

MDP can be defined using a five-tuple

(𝑆,𝐴, 𝑅, 𝑝,𝛾), (3.29)

that contains the state, action, reward, dynamics, and the discount factor.

Nevertheless, such an idealized formalismmay not be always directly applicable to a real-

world task. One issue is that the agent sometimes cannot fully observe the environment’s

state. Such a problem is called the partially observable Markov decision process (POMDP).

In each time step, the agent only receives an observation𝑂𝑡 ∈ O, instead of the underlying
state 𝑆𝑡 . For example, this can be due to the limited diagnostics available in the real-world

system. The agent needs to infer the latent variables and try to make the optimal decision

based on the partial observations. In this case, the Markov property can still be restored in

the agent’s view if certain histories are included in the state definition, that are sufficient for

the agent to infer the latent states. The consideration of partially observable environments

becomes essential when training RL agents for real-world particle accelerator tuning, as

will be discussed in Section 6.3. For simplicity reasons, the following treatment will still

assume that the state is fully observable 𝑂𝑡 = 𝑆𝑡 .

3.3.2. Policy and Value Functions

The way that the RL agent behaves is called the policy. Formally, it is defined as the

probability distribution 𝜋 (𝑎 |𝑠),∀𝑎 ∈ 𝒜, 𝑠 ∈ S, i.e. how likely the agent will select an

action 𝑎 when being in the state 𝑠 . RL algorithms specify how the policy 𝜋 should be

changed based on the agent’s experience to optimize the return.

Most of the RL algorithms make use of value functions to quantify how valuable a given

state is, or how valuable it is for the agent to perform a certain action in that state. As the

future rewards depend on the agent’s behavior, such value functions also depend on the

policy 𝜋 that the agent takes. Specifically, the state-value function for an agent following

a policy 𝜋 is defined by

𝑣𝜋 (𝑠) = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠
]
∀𝑠 ∈ S, (3.30)

34

3.3. Introduction to Reinforcement Learning

which is the expected return it receives by following the policy 𝜋 . To help the agent choose

a specific action, the action-value function can be defined similarly by

𝑞𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
,∀𝑠 ∈ S,∀𝑎 ∈ 𝒜,

(3.31)

which is the expected return of the agent taking a specific action 𝑎 in the state 𝑠 , and

following the policy 𝜋 thereafter. It can be identified that the two definitions of value

functions are related by

𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋 (𝑠 |𝑎)𝑞𝜋 (𝑠, 𝑎) (3.32)

for any given policy 𝜋 .

Based on the definition of return 𝐺 given in Eq. (3.28), it satisfies the recursive relation

that

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 . . .
= 𝑅𝑡+1 + 𝛾 (𝑅𝑡+2 + 𝛾𝑅𝑡+3 . . .)
= 𝑅𝑡+1 + 𝛾𝐺𝑡+1.

(3.33)

Making use of this relation, the value function can also be obtained recursively by taking

the value functions of the next states

𝑣𝜋 (𝑠) = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠]
= E𝜋 [𝑅𝑡+1 + 𝛾𝐺𝑡+1 |𝑆𝑡 = 𝑠]
=

∑︁
𝑎∈𝒜

𝜋 (𝑎 |𝑠)
∑︁

𝑠′∈S,𝑟∈R
𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)] , ∀𝑠 ∈ S.

(3.34)

This is called the Bellman equation for the state-value function 𝑣𝜋 . It is a sum over all the

possible actions 𝑎, next states 𝑠′, and the rewards 𝑟 , weighted by the probability of taking

the action 𝜋 (𝑎 |𝑠) and transitioning into the next state and reward 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎). Similarly,

the action-value function can also be recursively calculated

𝑞𝜋 (𝑠, 𝑎) =
∑︁

𝑠′∈S,𝑟∈R
𝑝 (𝑠′, 𝑟 |𝑠, 𝑎)

[
𝑟 + 𝛾

∑︁
𝑎′∈𝒜

𝜋 (𝑠′, 𝑎′)𝑞𝜋 (𝑠′, 𝑎′)
]
, ∀𝑠 ∈ S,∀𝑎 ∈ 𝒜, (3.35)

summing over the possible next states 𝑠′, rewards 𝑟 , and actions to be taken in the next

state 𝑎′.
The goal of the RL is to improve the policy. In MDPs, there is at least one policy 𝜋∗ so

that its expected return is greater or equal to that of any other policies 𝜋 ′ for all states.
The state-value function corresponding to such an optimal policy is defined as

𝑣∗(𝑠) = max

𝜋
𝑣𝜋 (𝑠), ∀𝑠 ∈ S, (3.36)

which is called the optimal state-value function. Similarly, the optimal action-value

function can be defined as

𝑞∗(𝑠) = max

𝜋
𝑞𝜋 (𝑠, 𝑎), ∀𝑠 ∈ S,∀𝑎 ∈ 𝒜. (3.37)

35

3. Machine Learning Methods

Inserting the optimal state-value function into the Bellman equation in Eq. (3.34) removes

the dependency on a specific policy

𝑣∗(𝑠) = max

𝑎

∑︁
𝑠′∈S,𝑟∈R

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣∗(𝑠′)] , ∀𝑠 ∈ S. (3.38)

This is called the Bellman optimality equation. The corresponding optimality equation for

the action-value function is

𝑞∗(𝑠) =
∑︁

𝑠′∈S,𝑟∈R
𝑝 (𝑠′, 𝑟 |𝑠, 𝑎)

[
𝑟 + 𝛾 max

𝑎′
𝑞∗(𝑠′, 𝑎′)

]
, ∀𝑠 ∈ S,∀𝑎 ∈ 𝒜. (3.39)

3.3.3. Basic Learning Concepts

For simple MDPs with accurately known dynamics 𝑝 and a finite number of discrete states

and actions, the optimal value functions 𝑣∗ or 𝑞∗ can be calculated exactly, for example

using exhaustive searches and dynamic programming.

Dynamic programming and many modern RL algorithms utilize the value functions to

guide the search for good policies. In general, the problem can be split into two parts. First,

the state-value function 𝑣𝜋 needs to be computed for a policy 𝜋 . This is called the policy

evaluation step. This can be done iteratively using the Bellman equation in Eq. (3.34)

𝑣𝑘+1(𝑠) =
∑︁
𝑎∈𝒜

𝜋 (𝑎 |𝑠)
∑︁

𝑠′∈S,𝑟∈R
𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝑘 (𝑠′)] , (3.40)

where 𝑘 denotes the index of the updated value function. For 𝑘 →∞, 𝑣𝑘 converges to the

state-value function 𝑣𝜋 . The second part is the policy improvement, where the obtained

state-value function can be used to improve the policy. A new greedy policy with respect

to the value function can be obtained

𝜋 ′(𝑠) = argmax𝑎

∑︁
𝑠′∈S,𝑟∈R

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)] . (3.41)

This is strictly better than the original policy except when the original policy is optimal.

By repeating these two steps, they will converge to the optimal value function 𝑣∗ and the

optimal policy 𝜋∗. In general, these two steps can also be interleaved, without the need

to perform a full sweep in the policy evaluation step. This approach is called generalized

policy iteration and is shown in Fig. 3.8.

One limitation of dynamic programming is that the system dynamics 𝑝 needs to be

known. If that is not the case, Monte Carlo sampling can be used to estimate the value

function 𝑣𝜋 (𝑠) with 𝑉 (𝑠), by averaging over the sampled returns. Nevertheless, the Monte

Carlo method requires a large number of samples and becomes very inefficient when the

episodes are long. Temporal-difference (TD) learning mitigates this issue by bootstrapping,

which is performing updates iteratively based on the estimated value functions for the

next states. In its simplest case, the estimated state-value function is updated with

𝑉 (𝑆𝑡) ← 𝑉 (𝑆𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑉 (𝑆𝑡+1) −𝑉 (𝑆𝑡)] , (3.42)

36

3.3. Introduction to Reinforcement Learning

𝑣∗, 𝜋∗
𝑣, 𝜋

𝑣 = 𝑣𝜋

𝜋 = gr
ee
dy
(𝑣)

e
v
a
l
u
a
t
i
o
n

i
m
p
r
o
v
e
m
e
n
t

Figure 3.8.: Simplified view of the generalized policy iteration in RL. It consists of two

steps, policy evaluation (blue) and policy improvement (red). From an arbitrary

value function 𝑣 and policy 𝜋 , the policy evaluation step updates the value

function to be consistent with the current policy 𝑣𝜋 , the policy improvement

step makes the policy greedy with respect to the current value function. These

two steps will converge to the optimal policy 𝜋∗ and the optimal value function

𝑣∗. Figure adapted from [57].

considering only one-step transition from 𝑆𝑡 to 𝑆𝑡+1 and receiving reward 𝑅𝑡+1. Here, 𝛼 is

the learning rate. The estimated action-value function can be updated similarly

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄 (𝑆𝑡+1, 𝐴𝑡+1) −𝑄 (𝑆𝑡 , 𝐴𝑡)] , (3.43)

and the policy can be made greedy with respect to the 𝑄 (𝑆𝑡 , 𝐴𝑡). The idea of TD-learning
and Monte Carlo can also be combined, resulting in the generalized TD(𝜆) algorithm. The

corresponding 𝜆-return used for the updates is defined as

𝐺𝜆𝑡 = (1 − 𝜆)
𝑇−𝑡−1∑︁
𝑛=1

𝜆𝑛−1𝐺𝑡 :𝑡+𝑛 + 𝜆𝑇−𝑡−1𝐺𝑡

𝐺𝑡 :𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + · · · + 𝛾𝑛𝑉 (𝑆𝑡+𝑛),
(3.44)

where 𝜆 ∈ [0, 1] is a decay factor, and𝑇 is the final time step if the episode terminates. The

term𝐺𝑡 :𝑡+𝑛 denotes the estimated return looking 𝑛-steps ahead and using the approximate

value function at the new state 𝑆𝑡+𝑛 for bootstrapping. In the case of 𝜆 = 1, the first

summation goes to 0 and only the actual return 𝐺𝑡 . This is equivalent to the Monte Carlo

algorithm. For the other limit 𝜆 = 0, the second term is 0 and the first summation reduces

to 𝐺𝑡 :𝑡+1, corresponding to the one-step TD method. The term 𝜆 characterizes how far in

the future steps the algorithm will consider.

Lastly, in real-world tasks such as accelerator tuning, the state space is often continuous.

The estimated value functions can no longer be stored as a look-up table but need to be

parameterized, i.e. 𝑣 (𝑠,𝒘) and 𝑞(𝑠, 𝑎,𝒘). Now it is common to use NNs to approximate the

value functions, due to their capability to model arbitrary functions. This also marks the

beginning of the deep RL field.

37

3. Machine Learning Methods

3.3.4. Policy Gradient Methods

The above methods rely on learning the value functions 𝑣𝜋 and 𝑞𝜋 . The behavior policy is

obtained by choosing greedy actions with respect to the action-value functions. Alterna-

tively, one could directly learn a parameterized policy 𝜋 (𝑎 |𝑠, 𝜽) = Pr {𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠, 𝜽𝑡 = 𝜽 }.
This also allows an effortless extension to the continuous action space case. In the case of

policy learning, a value function can still exist to aid policy learning but is not mandatory.

When both the policy and value approximations are being learned, the method is referred

to as actor-critic methods, where "actor" denotes the policy and "critic" denotes the value

function. The policy gradient methods learn policy parameters based on the gradient of a

given performance measure J (𝜽). The parameters are updated using gradient ascent

𝜽𝑡+1 = 𝜽𝑡 + 𝛼 ˆ∇J (𝜽𝑡), (3.45)

where 𝛼 is the learning rate and
ˆ∇J (𝜽𝑡) is the estimated gradient of the performance

measure.

In the episodic case, the performance measure can be simply defined as

J (𝜽) = 𝑣𝜋𝜽 (𝑠0), (3.46)

where 𝑠0 is the episode’s initial state. According to the policy gradient theorem, the

gradient of performance measure can be expressed by other known quantities

∇𝜽J (𝜽) ∝
∑︁
𝑠

𝜇 (𝑠)
∑︁
𝑎

𝑞𝜋 (𝑠, 𝑎)∇𝜽𝜋𝜽 (𝑎 |𝑠) (3.47)

where 𝜇 (𝑠) denotes the normalized fraction of time spent in state 𝑠 by following the policy

𝜋 . In its generalized form, the gradient can be expressed as

∇𝜽J (𝜽) ∝ E [Φ𝑡∇𝜽 ln𝜋𝜽 (𝑎𝑡 |𝑠𝑡)] , (3.48)

where Φ𝑡 can take different forms [86], such as the return 𝐺𝑡 , the action-value function

𝑞𝜋 (𝑠𝑡 , 𝑎𝑡). One choice is particularly of interest, which is the advantage function

A𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝑞𝜋 (𝑠𝑡 , 𝑎𝑡) − 𝑣𝜋 (𝑠𝑡). (3.49)

By subtracting the state-value function, the variance in the estimated gradient updates

can be reduced, leading to more stable policy learning. The advantage function is now

widely used in the actor-critic algorithms for policy updates.

3.3.5. Modern RL Algorithms

These RL concepts introduced above, such as the value function, advantage function, TD,

and policy gradient, are the fundamental building blocks of modern RL algorithms. A

spectrum of RL algorithms have been developed in the last decade, aiming to provide

higher sample efficiency, better policy performance, and more robust training progress.

This section briefly introduces some modern RL algorithms that have been used in this

dissertation to train RL agents for the particle accelerator tasks.

38

3.3. Introduction to Reinforcement Learning

3.3.5.1. Trust Region Policy Optimization

One issue of the standard policy gradient method is that the training is not guaranteed to

be stable. Due to the complexity of the RL problem, sometimes the small updates in the

policy parameters can also lead to drastic performance drops. This issue is addressed in

the trust region policy optimization (TRPO) algorithm [87]. The TRPO aims to maximize

the following surrogate objective

L𝜽𝑘 (𝜽) = E𝑠,𝑎∼𝜋𝜽𝑘

[
𝜋𝜽 (𝑎 |𝑠)
𝜋𝜽𝑘 (𝑎 |𝑠)︸ ︷︷ ︸
𝑟 (𝜽 ,𝜽𝑘)

A𝜋𝜽𝑘
(𝑠, 𝑎)

]
, (3.50)

where 𝑟 (𝜽 , 𝜽𝑘) is the probability ratio between the new and old policy, acting as a scaling

factor in the importance sampling method. A𝜋𝜽𝑘
(𝑠, 𝑎) is the advantage function using the

old policy. This measures how good a new policy 𝜋𝜽 performs compared to the old policy

𝜋𝜽𝑘 , averaged over data generated using the 𝜋𝜽𝑘 . The parameter is updated using

𝜽𝑘+1 = argmax𝜽 L𝜽𝑘 (𝜽) subject to E
[
𝐷KL(𝜋𝜽 | |𝜋𝜽𝑘)

]
≤ 𝛿, (3.51)

i.e. maximizing the surrogate objective under the constraint that the Kullback–Leibler (KL)

divergence is below a certain threshold 𝛿 . In practice, the true KL divergence is usually

approximated using the average one over the states visited by the old policy

𝐷KL(𝜋𝜽 | |𝜋𝜽𝑘) ≈ 𝐷KL(𝜋𝜽 | |𝜋𝜽𝑘) = E𝑠∼𝜋𝜽𝑘
[
𝐷KL(𝜋𝜽 (·|𝑠) | |𝜋𝜽𝑘) (·|𝑠)

]
(3.52)

The updates can be calculated using the conjugate gradient method [88], which finds the

direction of the update, and a line search, which finds the proper step size.

The advantage of TRPO is that it guarantees the policy update produces a better policy,

resulting in mostly monotonic performance improvement. Nevertheless, the policy can

still converge to local optima.

3.3.5.2. Proximal Policy Optimization

While TRPO has desirable guarantees in the policy training process, it is often compu-

tationally intensive to solve such a constrained optimization problem. This is mitigated

in the proximal policy optimization (PPO) algorithm [89]. It maximizes the following

objective

LClip

𝜽𝑘
(𝜽) = E𝑠,𝑎∼𝜋𝜽𝑘

[
min

(
𝑟 (𝜽 , 𝜽𝑘)A𝜽𝑘 (𝑠, 𝑎), clip(𝑟, 1 − 𝜖, 1 + 𝜖)A𝜽𝑘 (𝑠, 𝑎)

)]
, (3.53)

where 𝜖 ∈ (0, 1) is a hyperparameter controlling how large the policy update step can be.

This circumvents the constrained optimization and KL divergence by explicitly clipping the

policy updates. This clipped objective can be explained as the following: if the advantage

is positive A ≥ 0, the probability of taking certain action 𝜋𝜽 (𝑎 |𝑠) will be increased but

bounded to be no larger than (1+𝜖)𝜋𝜽𝑘 (𝑎 |𝑠). Similarly, if the advantage is negativeA ≤ 0,

the probability of taking that action will be decreased, but not smaller than (1−𝜖)𝜋𝜽𝑘 (𝑎 |𝑠).

39

3. Machine Learning Methods

In this way, it ensures that the new policy after the update is still not far away from the

old policy. The updates can be simply performed by the gradient descent algorithms, such

as SGD and Adam.

Thanks to its computational efficiency, the PPO can be more easily scaled up to large-

scale problems with higher dimensions of action and state spaces. In addition, the sample

collection in PPO can be easily parallelized, making it much faster to train when there are

enough computational resources.

3.3.5.3. Twin Delayed Deep Deterministic Policy Gradient

The TRPO and PPO are both on-policy algorithms, which means that the target policy

being updated is also the behavior policy that generates the data. Another class of RL

algorithms is off-policy, which means that the training data is not necessarily generated

by the target policy. Off-policy algorithms are usually more sample-efficient as they

can utilize all the data, instead of only the ones generated with the current policy. One

popular algorithm is the twin delayed deep deterministic policy gradient (TD3) [90]. It

is based on the previous deep deterministic policy gradient (DDPG) algorithm, which

learns a Q-function and derives the action by maximizing the Q-function. The TD3 further

improves the training process in three aspects. First, it learns two Q-functions and uses the

lower one to estimate the target critic update (twin), reducing the influence of potentially

overestimated Q-values. Second, it updates the actor (policy) less frequently than the critic

(Q-function), allowing the critic to learn the Q-value better and stabilizing the training

process. Third, it added noise to the target action to prevent the policy from exploiting

sharp peaks in the learned Q-function, resulting in smoother policies.

3.3.5.4. Soft Actor Critic

The soft actor-critic (SAC) [91] combines features from TD3 and stochastic policy opti-

mization. It uses the entropy of the policy as a regularization term and aims to optimize

the following performance measure

J (𝜋) = E(𝑠𝑡 ,𝑎𝑡)∼𝜋

[∞∑︁
𝑡=0

𝛾 𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛼𝐻 (𝜋 (·|𝑠𝑡)))
]
, (3.54)

where 𝛼 > 0 is a trade-off parameter controlling the exploration and exploitation. The

action-value function can be defined according to this entropy-regulated objective

𝑄𝜋 (𝑠, 𝑎) = E(𝑠𝑡 ,𝑎𝑡)∼𝜋

[∞∑︁
𝑡=0

𝛾 𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛼𝐻 (𝜋 (·|𝑠𝑡)))
�����𝑠0 = 𝑠, 𝑎0 = 𝑎

]
. (3.55)

Similar to TD3, the SAC algorithm uses the double Q-functions idea and performs updates

using the one with smaller values. The loss function of the SAC critic update is

𝐿(𝒘𝑖,D) = E(𝑠,𝑎,𝑟,𝑠′,𝑑)∼D
[
(𝑄𝒘𝑖 (𝑠, 𝑎) − 𝑦 (𝑟, 𝑠′, 𝑑))

]
, (3.56)

40

3.3. Introduction to Reinforcement Learning

where𝒘𝑖 are the parameters of the 𝑖-th Q-function and D is the replay buffer storing the

environment transitions as tuples (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑), i.e. the state, action, reward, next state, and
a done flag indicating the end of the episode. The target value 𝑦 is defined as

𝑦 (𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾 (1 − 𝑑)
(
min

𝑖=1,2
𝑄𝒘𝑖 (𝑠′, 𝑎′) − 𝛼 ln𝜋𝜽 (𝑎′|𝑠′)

)
, 𝑎′ ∼ 𝜋𝜽 (·|𝑠′), (3.57)

where 𝑎′ is the next action sampled using the policy network. The policy is then updated

to maximize the following policy objective function

argmax𝜽 J𝜋 (𝜽) = E𝑠∼D
[
E𝑎′∼𝜋𝜽 (·|𝑠)

[
min

𝑖=1,2
𝑄𝒘𝑖 (𝑠′, 𝑎′) − 𝛼 ln𝜋𝜽 (𝑎′|𝑠′)

]]
. (3.58)

This is performed again using the gradient descent methods. As SAC explicitly considers

the entropy of the policy, it encourages the exploration behavior during training and

prevents the policy from local convergences.

3.3.6. Reinforcement Learning Applications for Accelerators

In the past few years, modern RL algorithms have been applied to train intelligent agents

for online optimization and control at several particle accelerators. Many of these works

were conducted concurrently with the research presented in this dissertation. In the

following, a non-exhaustive overview of the RL applications at accelerators is provided.

For example, policy gradient algorithms have been applied at the FERMI laboratory, a

seeded-FEL facility [92]. The RL agent was used to control themirrors to align the seed laser

pulse transversely with the electron bunches, maximizing the overlap and the generated

FEL intensity. RL has been further used to tune the dispersion-generating magnet and the

delay time between the seed laser and the electron beam to maximize the FEL energy [93].

At CERN, normalized advantage function (NAF) was used to efficiently control the electron

trajectory steering tasks at AWAKE and LINAC4 [35, 94]. At the ARES accelerator, RL

agents were trained to transversely control the bunch properties [36, 95], which will be

further discussed in Section 6.3. A similar beam transport tuning task was demonstrated

at the CAFe II accelerator [96, 97].

Another key aspect of the RL approach is the real-time control, meaning that the RL

agent can process the information and take action at a very high frequency, meeting the

requirement of a dynamically changing system. At the Fermilab booster, the RL agent

was trained using a surrogate model and deployed in a field-programmable gate array

(FPGA) to allow real-time regulation of the magnet power supply with a repetition rate

higher than 15Hz. At the KARA storage ring, RL was studied to control the microbunching

instability [37, 98]. When implemented in the heterogeneous computing board Versal, the
RL agent can interact with the accelerator with a latency of about 2.8 µs, allowing turn-by-

turn control at the KARA storage ring. It has been demonstrated that this RL approach

allows the agent to effectively control both the horizontal betatron oscillation [99] and the

microbunching instability [38].

Most of the algorithms discussed in this chapter are model-free, meaning they do not

explicitly learn or use a model of the environment’s dynamics. Although they are versatile

41

3. Machine Learning Methods

and can be applied to almost every task, model-free algorithms often suffer from sample

efficiency. Another class of RL algorithms is model-based. They are provided with a

model or learn it explicitly, and use the model to predict future states and rewards. The

model-based algorithms are often more sample-efficient than the model-free ones, at the

cost of increased complexity of the algorithm or upfront engineering effort. At the FERMI

FEL, model-based RL was applied for the same FEL tuning task and required only a few

hundred samples [100]. At the AWAKE accelerator, model-based RL using GP models was

tested and also demonstrated extreme sample efficiency [101, 102]. This will be further

discussed in Section 6.4.3.

42

4. Applying Machine Learning Methods for
Accelerator Simulation

Physical simulations are the cornerstones for designing and operating particle accelerators.

With the growing size of accelerator systems and ever-increasing demands on beam

intensity and beam quality like small emittances and short bunch lengths, the system can

no longer be accurately described by single-particle dynamics and linear approximations.

Detailed beam dynamics simulations are required, including higher-order transfer maps

and collective effects, which increases the computational requirement and slows down the

overall simulation process. The emerging machine learning (ML) methods are promising in

speeding up the design process and reducing required computation resources from various

aspects. This chapter uses the linear accelerator far-infrared linac and test experiment

(FLUTE) [50] as a test bench and presents several case studies on ML applications for

accelerator simulation and modeling. When enough training data is available, either from

simulation or measurements, a surrogate model can be trained as a computationally cheap

replacement. Section 4.1 uses the ASTRA [103] simulation data to train a neural network

as a surrogate model for the low-energy section of FLUTE. When such a surrogate model is

trained with enough data, it can offer fast and accurate predictions after training. During

the design phase, when little prior knowledge exists and optimized parameters need to be

found for a new accelerator configuration, Bayesian optimization (BO) can be used as an

efficient global optimizer. In Section 4.2, a parallel version of BO is implemented to optimize

the coherent synchrotron radiation produced at FLUTE. The simulated optimization can

become more efficient if the gradient information is available. To that extent, a novel

differentiable beam dynamics simulation code Cheetah [42] is developed. In Section 4.3,

Cheetah is applied to the FLUTE tuning task using the gradient-descent algorithms. Lastly,

Section 4.4 presents a proof-of-principle study on integrating Bayesian optimization and

differentiable simulation to achieve more sample-efficient optimization in the presence of

complicated physics effects, such as space charge. Parts of the results presented in this

chapter have previously been published in [42, 104, 105].

4.1. Surrogate Modeling of FLUTE

In particle accelerator simulations, it is often crucial to account for collective effects as

they limit the ultimate performance when accelerators are operating toward their limits

in terms of bunch charge, bunch lengths, and emittances [46]. They are non-static effects

that come from the interaction between particles themselves. The electromagnetic fields

of the charged particles alter their environment, which in turn affects the dynamics of the

particles themselves. As a result, modeling collective effects typically requires numerical

43

4. Applying Machine Learning Methods for Accelerator Simulation

approximations, making the computing process much more demanding in comparison to

the single-particle beam dynamics. For example, a detailed space charge particle tracking

simulation can take minutes or hours to run and thus makes simulated optimization of

high-dimensional parameters extremely time-consuming. This leads to the ever-increasing

requirement of computation time and resources for designing modern linear accelerators

with versatile operation modes, especially when the parameter optimization needs to be

repeated for various conditions. To reduce the computation cost and accelerate the design

process, it is beneficial to fully utilize the obtained results when calculating new working

points.

Table 4.1.: Surrogate model methods and applications

Methods and structure • Neural network [106]

• Gaussian process [56]

• Random forest [107]

Applications in accel-

erator

• Fast exploration in simulation [108, 33]

• Training environment for reinforcement learning controller [39]

• Replace parts of the simulations [36, 109]

• Virtual diagnostics [19, 20, 110]

• Assist other algorithms in online-tuning [111, 112, 113]

A surrogate model can be used to approximate the output values and provide rapid

evaluations with low computational costs, in replacement of the time-consuming sim-

ulations. Surrogate modeling is a data-driven technique to map the inputs to outputs

when the true relationship is either unknown or computationally expensive. Table 4.1

lists some of the methods used for building surrogate models and the application cases in

particle accelerators. Common methods for building a data-driven surrogate model include

Gaussian process (GP) regression [56], random forests [107], and deep neural network

(NN) [106]. Among these methods, deep NN has the advantage that it can approximate

arbitrary non-linear functions at the cost of a large number of required training samples.

It is therefore preferred when sufficient training samples can be gathered, for example, in

the case of simulation.

Once a surrogate model is trained, it can be queried at low costs for future usage,

allowing a more efficient exploration of the parameter space in the design stage [33,

108]. The surrogate models can be also integrated into physical simulations to model

components and sections of the accelerator [109] or to approximate the computationally

intensive effects like space charge [42]. As they are fast to execute, they are also used as

training environments for the reinforcement learning (RL) algorithms, which require up

to millions of interactions with the environments [39].

During accelerator operation, certain beam information can only be measured de-

structively or take a long time, for example measuring the beam transverse phase space

information using quadrupole scans and diagnostic screens. Surrogate models could be

used online as virtual diagnostics, providing valuable information about the beam in a

non-destructive way, e.g. the longitudinal phase space of the electron bunches [19, 20],

44

4.1. Surrogate Modeling of FLUTE

and the transverse emittance [110]. They can also be combined with other algorithms or

controllers to speed up the online tuning of accelerators, such as extremum seeking [111,

21], feed-forward controllers [113], and BO.

In this section, a NN surrogate model is developed to predict the output beam parameters

at the end of the low-energy section of FLUTE. The layout of the section is shown in

Fig. 2.6. It consists of an RF photo-injector which generates the electron bunch and brings

the energy up to 7MeV, a solenoid magnet to focus the beam and compensate for the space

charge effect, screens for transverse beam images, and a spectrometer dipole to diagnose

the beam energy.

x1

x2

x3

x4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
32

...

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
32

...

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
32

...

y1

y2

y6

...

Bunch charge

Gun phase

Gun gradient

Solenoid strength

Transverse beam size

Bunch length

Normalized emittance

Bunch energy

Energy spread

Remaining particles

Input
layer

Hidden
layers

Output
layer

Figure 4.1.: Structure of the NN surrogate model for FLUTE low-energy section

4.1.1. Training the Surrogate Model

The input layer of the surrogate model NN consists of 4 neurons representing the adjustable

parameters, i.e. the bunch charge, the gun RF phase, the maximal gun RF gradient, and

the solenoid magnetic field. The bunch charge can be controlled by changing the photo-

injector laser intensity, while other parameters are directly adjustable. These are the

most important parameters which govern the behavior of the beam in the low-energy

section. The output layer returns 6 scalar values representing the bunch properties, namely

the horizontal beam size 𝜎𝑥 , bunch length 𝜎𝑧 , mean energy 𝐸, relative energy spread 𝜎𝐸 ,

normalized transverse emittance 𝜖𝑥 , and percentage of the remaining particles 𝑁remain. As

FLUTE usually operates with a round beam, the vertical beam size 𝜎𝑦 = 𝜎𝑥 is not considered

here. These bunch properties can also be measured using the diagnostic devices [114] so

that the model can be further retrained and fine-tuned to match the measurement results.

A fully connected feed-forward NN with 3 hidden layers is used, as shown in Fig. 4.1.

Each hidden layer has 32 neurons and the hyperbolic tangent function (tanh) as the

activation function. The size of the network is chosen to sufficiently approximate the

transfer map from the photocathode to the beginning of the linac. At the same time, the

NN is not too large to fully memorize the dataset, also referred to as over-fitting, which
can lead to poor generalization capability to unseen scenarios.

The training dataset consists of 10 000 samples randomly selected from the parameter

space in Table 4.2. Each parameter configuration is simulated using an ASTRA tracking

45

4. Applying Machine Learning Methods for Accelerator Simulation

Table 4.2.: Input parameter ranges used to generate training data for the surrogate model.

The RF phases are given in ASTRA’s convention, i.e. the global absolute phase

offset with respect to the start of the tracking.

Input Parameters Range

Charge 1 - 30 pC

Gun RF phase 175 - 235 deg

Gun RF gradient 50 - 100MV/m
Solenoid field 0.08 - 0.2 T

Table 4.3.: Neural network training parameters. The loss function and optimizer are com-

mon choices. The batch size, learning rate, and epoch number are tuned via

hyperparameter scan across multiple training trials.

Hyperparameters Value

Loss function MSE

Batch size 64

Optimizer Adam

Learning rate 0.001

Epoch 200

simulation with the space charge effect. Before feeding into the NN, the input and output

parameters are min-max normalized, i.e. mapped to [0,1] intervals, to speed up the training

process. The output normalization also ensures that each predicted bunch property is

equally weighted in the loss calculation. Table 4.3 lists the hyperparameters used in the

training process. Adam optimizer is used, with a batch size of 64 and an initial learning

rate of 0.001. The loss function to be minimized is the mean squared error (MSE) between

the predicted and the target bunch properties. Training is performed for 200 epochs to

prevent overfitting on the dataset.

The trained model is then evaluated on test data, consisting of 1000 random param-

eter settings on which the NN is not trained. The prediction error is shown in Fig. 4.2,

where almost all the predicted values show good agreement with the target outputs. The

prediction of the mean energy 𝐸 is slightly lower than the target values, but the overall

discrepancy is still well under 0.1MeV. After training, the surrogate model can predict the

beam properties very fast. As an example, Fig. 4.3 shows a 2D subspace of the 4D input

parameter space of the transverse beam size 𝜎𝑥 depending on the solenoid magnetic field

and the bunch charge 𝑄 . The left plot is generated by ASTRA simulations with a 10×10
grid, which takes ∼5 h if executed sequentially. The right plot is a 50×50 grid predicted by

the trained NN surrogate, which only takes milliseconds as the prediction can be easily

parallelized. As shown in the figure, the NN-predicted beam sizes have a similar structure

as the ASTRA simulation results, e.g. the solenoid field required to minimize the beam

size at the screen is slightly increasing with the bunch charge due to space charge effects.

Deviations from the ideal field strength lead to larger 𝜎𝑧 due to under- or over-focusing

46

4.1. Surrogate Modeling of FLUTE

−0.5 0.0 0.5

∆σx (mm)

0

200

400

600
C

ou
n
ts

(a)

−0.1 0.0 0.1

∆σz (mm)

(b)

−0.1 0.0 0.1

∆E (MeV)

(c)

−0.1 0.0 0.1

∆σE (%)

0

200

400

600

C
ou

n
ts

(d)

−2.5 0.0 2.5

∆Nremain (%)

(e)

−0.2 0.0 0.2

∆εx,y (mm mrad)

(f)

Figure 4.2.: Prediction error on the test data for each output variable: (a) transverse beam

size, (b) bunch length, (c) mean energy, (d) relative energy spread, (e) remaining

particles, and (f) transverse emittance.

of the bunch. The minimum beam sizes, marked as white stars, are very comparable,

with 𝜎𝑥 = 0.166mm for the ASTRA simulation and 𝜎𝑥 = 0.164mm for the NN prediction,

corresponding to a relative error of 1.2%. While this level of accuracy is sufficient for

the proposed applications at FLUTE, the model’s performance can be further improved if

more accurate predictions are required. Possible methods include adding more training

data, tailoring the model structure to the accelerator section, and retraining the model on

real-world measurements.

4.1.2. Applications of the Surrogate Model

As the surrogate model is trained to approximate the dynamics of the underlying physical

system, it can provide insights into the importance of the input parameters with respect to

the output beam properties. The Shapley additive explanations (SHAP) method [115] can

be used to calculate the feature importance of the input parameters for arbitrary nonlinear

mappings. Such methods are very useful in complex systems, as the commonly used

Pearson correlation coefficients can only work with linear dependencies. Figure 4.4 shows

the SHAP values for the transverse beam size 𝜎𝑥 prediction. The results on other output

beam parameters and more details on the method can be found in Appendix A.1.

47

4. Applying Machine Learning Methods for Accelerator Simulation

1 10 20

Charge (pC)

0.08

0.10

0.12

0.14

0.16

0.18

S
ol

en
oi

d
fi

el
d

(T
)

ASTRA simulation

1 10 20

Charge (pC)

Surrogate prediction

1 2 3 4 5
Transverse beam size σx (mm)

Figure 4.3.: Beam size prediction by the surrogate model (left) and the ASTRA simulation

results (right). The minimal beam sizes are marked with white stars for the

respective method. The results are obtained by varying the solenoid magnetic

field and the bunch charge while keeping the gun RF parameters fixed. The NN

predictions take less than 1ms on a common laptop. The ASTRA simulations

each take about 3min on the same device and can be parallelized using multiple

CPU cores.

−0.2 0.0 0.2 0.4

SHAP value, impact on the output σx

Gun phase

Charge

Gun gradient

Solenoid

Low

High
F

ea
tu

re
va

lu
es

Figure 4.4.: Feature importance study of the surrogate model for the transverse beam size

𝜎𝑥 prediction using the kernel SHAP method [115]. The SHAP values are

calculated for individual input parameters and denote their attribution for

predicting the output 𝜎𝑥 . For more details on the method and the results of

other output beam parameters, see Appendix A.1.

For each input parameter, its SHAP values denote the attribution of the input parameter

on the output, evaluated over a set of test points with different values of the other input

48

4.1. Surrogate Modeling of FLUTE

σx σz E ∆E Nremain εx

Output parameters

Charge

Gun phase

Gun gradient

Solenoid

In
p

u
t

p
ar

am
et

er
s

0.22 0.14 0.02 0.10 -0.01 0.40

0.01 0.76 -0.09 0.68 0.39 0.21

-0.38 -0.49 0.99 -0.47 -0.10 -0.36

0.08 -0.07 0.12 -0.08 0.01 0.24

Figure 4.5.: Pearson correlation coefficients between the input parameters (x-axis) and the

output beam parameters (y-axis) at the FLUTE low energy section.

parameters. In this plot, the input parameters are ordered by the amount of impact they

have on the prediction. The points are color-coded based on the values of the corresponding

input parameters. The solenoid field strength has overall the most significant impact on

the beam size 𝜎𝑥 . This effect is expected as the solenoid magnet is designed to transversely

focus the beam. It is worth noting that there are regions with overlapping red and blue

points, meaning that different solenoid fields can lead to the same beam sizes. This is

because, with the same solenoid field strength, the beam can be optimally focused (negative

impact on 𝜎𝑥), or over-focused when the beam energy is lower (positive impact on 𝜎𝑥). The

second most important parameter is the gun RF gradient, which determines the energy

gain of the bunch and thus the space charge effect. Its impact is easier to identify, higher

radio frequency (RF) (red) leads to higher beam energy and a more focused beam (negative

impact on 𝜎𝑥) at the end of the section. The gun phase and the bunch charge have a smaller

impact, but correlations can still be identified.

As a comparison, the Pearson correlation coefficients are calculated between the input

parameters and the output beam parameters, using the same test data points. The results

are shown in Fig. 4.5. For features with a clear linear or monotonic dependency, such as the

beam energy and the gun RF gradient, the correlation coefficient is very high as expected.

Nevertheless, it fails to explain the non-linear dependencies, especially in the case where

the input parameter has a different impact when other inputs are varied. Looking at the

solenoid strength and the beam size 𝜎𝑥 , for example, the correlation is close to zero and

appears insignificant, which is contradictory to the results obtained by the SHAP method.

Such commonly used linear correlation methods can be thus misleading when it comes to

explaining the data and unveiling the dependencies in a non-linear system.

Although in this simple case of a photo-injector gun section, these correlations are

already well known, it is expected that methods like SHAP can provide valuable insights

in more complex nonlinear systems, especially when the beam dynamics are not fully

49

4. Applying Machine Learning Methods for Accelerator Simulation

understood. In such a case, these methods can be used to guide the physicists both in

further simulation studies and in the actual operation of the accelerator.

4.1.2.1. Virtual Diagnostics

One of the use cases of a trained surrogate model is to provide a virtual diagnostic for the

accelerator operation. Thanks to its fast inference time, the surrogate model can be used

to predict the beam parameters shot-to-shot in a non-destructive manner. At the FLUTE

accelerator, for example, the beam energy 𝐸 is measured destructively with a spectrometer

dipole magnet. The resulting bending angle is proportional to the bunch energy for a given

magnetic field. By varying the dipole magnet strength, the beam can be deflected and

observed on a Yttrium Aluminum Garnet (YAG) screen in the spectrometer arm, where the

energy can be determined from the bunch position. Even with an automated procedure, an

energy measurement could take up to several minutes, as the dipole needs to be cycled to

avoid the remnant field due to magnetic hysteresis affecting the normal operation. In this

case, the predictions provided by the surrogate model can be used to guide the operation

and speed up the machine setup process.

Figure 4.6 shows the comparison of the surrogate model predictions to the energy

measurements for a photo-injector gun RF power scan [116]. The upper plot shows the

beam energy over the gun power and the lower plot shows the differences with respect to

the measured values. For each data point, an ASTRA tracking simulation and surrogate

model prediction are performed with the corresponding accelerator parameters. The

computation time of the surrogate model is within a millisecond, which is negligible

compared to ∼ 1 h of required ASTRA simulation time and several hours of beam time

needed for the measurement. Both the surrogate model predictions and the ASTRA

simulation results correspond well to the measurement data with a deviation of under

0.1MeV. The surrogate model predictions follow more closely the values of the ASTRA

outputs, as the model is trained on the simulation data. There are also systematic errors

between the simulation results and the measurement, which can be explained by the

calibration in the power supply and non-ideal magnetic and RF fields in the real-world

setup.

It needs to be noted that the NN model was only trained on the data in the ranges shown

in Table 4.2. In particular with a minimum gun gradient of 50MV/m, which corresponds

to a gun power of ∼3.8MW in real-world measurement. This means that the model

extrapolated to an unseen parameter range for the first few points in the plot, showing

the capability of the model to predict the beam properties in a wider range of operation

conditions.

In addition, Fig. 4.7 shows the same comparison for the RF phase scan, where the

surrogate model also shows good agreement with the measurement results. Similar to the

case for the energy scan measurement, there are systematic errors between the simulation

and measurement results. It is worth noting that the ASTRA tracking simulation failed

for the RF phase value at 178 deg, due to the loss of the reference particle. In the real

world, part of the beam was emitted from the gun and could be measured. The trained

NN still predicted a value by extrapolation, even if it is at the edge of the training range.

Nevertheless, the difference between the NN prediction and measurement for that RF

50

4.1. Surrogate Modeling of FLUTE

3.0

4.0

5.0

6.0

E
(M

eV
)

unseen region training region

ASTRA simulation

Surrogate prediction

Measurement

2 4 6 8 10

Gun power (MW)

−0.1

0.0

0.1

∆
E

(M
eV

)

Figure 4.6.: Energy measurements (green dots) for a FLUTE photo-injector RF power

scan compared to ASTRA simulations (blue squares) and surrogate model

predictions (red stars). The lower plot uses the measurement values as a

reference and shows the remaining differences between the simulation results

and the NN predicted values. Each measurement is averaged from 20 shots

with a standard error of about 0.1 %. The shaded region denotes settings with

low RF powers that are unseen during the NN training.

phase is larger than the ones within the training region. Such cases can be identified if the

surrogate model also provides the uncertainty estimate along with its prediction. This can

be achieved for example using GP or an ensemble of NNs [117].

The NN model can be further improved by retraining on the measurement data, which

could not only reduce the discrepancy between simulation and measurement but also

mitigate the long-term drifts of the accelerator components.

4.1.2.2. Fast Evaluation for other Algorithms

Apart from providing virtual diagnostics, the surrogate model can also be used to aid

other algorithms. One example is the accelerator tuning with RL [35, 36, 39, 95]. The

training process of the RL agents is notoriously time-consuming, often taking millions

of interactions with the environments. Therefore, it is infeasible to train RL on computa-

tionally expensive simulations or directly on the accelerator with a low repetition rate,

which will take about a year of continuous beam time at a real-world accelerator [36]. The

surrogate model can be used as a training environment for RL, allowing the agent to learn

51

4. Applying Machine Learning Methods for Accelerator Simulation

5.3

5.4

5.5

5.6

5.7

5.8

E
(M

eV
)

simulation failed

ASTRA simulation

Surrogate prediction

Measurement

180 190 200 210 220 230

Gun phase (deg)

−0.1

0.0

0.1

∆
E

(M
eV

)

Figure 4.7.: Energy measurements (green dots) for a photo-injector RF phase scan of the

gun, compared to ASTRA simulations (blue squares) and surrogate model

predictions (red stars). The lower plot shows the differences between the

predicted values and the measurement values. Each measurement is averaged

from 20 shots with a standard error of about 0.1 %. Phase values are given as

in the ASTRA convention. For the RF phase at 178 deg, the ASTRA simulation

failed because of the loss of the reference particle.

the policy and minimize the beam time needed to retrain on the accelerator. Although the

surrogate model has certain discrepancies compared to the actual accelerator, robust RL

agents can still be trained on it that can be further adapted to the real-world accelerator.

This approach minimizes the beam time needed for the deployment of an RL agent at the

accelerator. It has been demonstrated in several cases where the RL is trained on simplified

simulation and transferred to the real-world accelerator subsequently [36, 96]. This will

be further discussed in Chapter 6.

Last but not least, a NN surrogate model can be used in combination with other op-

timization algorithms, such as BO, to speed up the optimization process. This can be

achieved via different approaches, such as constraining the parameter space to explore,

providing correlation information of the input parameters, or acting as the prior mean

module for the GP function [42, 112]. This will be further discussed in Section 4.4.

52

4.2. Simulated Optimization for Intense THz Radiation

4.2. Simulated Optimization for Intense THz Radiation

In the design phase of a new particle accelerator, beam parameters need to be optimized

or reach certain threshold values by changing the lattice parameters, such as the magnet

strengths and the lengths of the components. These objectives are often conflicting and

depend non-linearly on the tuning parameters. The accelerator optimization also needs to

be repeated for different working points, i.e. beam parameters need to be optimized at a

fixed final energy or fixed bunch charge. Sometimes the optimization for one accelerator

section needs to be run again due to the change in the upstream beam condition. In

these scenarios, there is usually limited or no simulation data available for training an

informative surrogate model. Physical prior knowledge is available and can identify

a subset of tuning parameters that most significantly affect the desired output beam

characteristics. At the same time, the task is inherently complicated so no analytical

solution can be directly derived. Consequently, the best accelerator parameters need to be

determined efficiently using some numerical optimization algorithms. Methods like line

search and Nelder-Mead simplex are effective but prone to local optima so they need to be

repeated with multiple initial conditions. Grid scan and random search are valid methods

for finding the global optimum in the accelerator settings, but their sample requirements

scale exponentially with the number of tuning parameters and quickly become infeasible

when a large accelerator section is considered. ML algorithms, especially the BO, are

promising candidates to solve such global black-box optimization tasks efficiently.

This section uses the FLUTE coherent synchrotron radiation (CSR) optimization task

as an example to demonstrate how such ML-based algorithms can be applied to aid the

simulated optimization of particle accelerators. At the FLUTE accelerator, one of the

scientific goals is to generate and study intense radiation in the THz range. This requires

optimal beam compression, which is achieved by creating an energy chirp, i.e. longitudinal

position-dependent beam energy, and setting the bunch compressor strength accordingly.

As the electron bunches at FLUTE are low-energy (𝐸 < 50MeV) and can have high bunch

charges, the beam dynamics are strongly influenced by collective effects and the accelerator

settings need to be jointly optimized.

4.2.1. Calculation of the Coherent Synchrotron Radiation Generation at
FLUTE

The emitted synchrotron radiation from an electron bunch can be calculated based on

Eq. (2.28), where the amount of coherent emission is governed by the form factor 𝐹 (𝜔).
In the relativistic case, only the longitudinal form factor 𝐹𝑙 (𝜔) is considered. For lower
frequency regions where the form factor is close to 1, the coherent radiation scales quadrat-

ically with the number of electrons in the bunch, leading to a significant enhancement of

the radiation intensity. For an arbitrary electron bunch, the longitudinal form factor 𝐹𝑙
can be calculated

𝐹𝑙 (𝜔) =
����∫ ∞

𝑡=−∞
𝜚 (𝑧)𝑒 (i𝜔𝑧/𝑐)d𝑧

����2 , (4.1)

53

4. Applying Machine Learning Methods for Accelerator Simulation

where 𝜚 (𝑧) is the normalized longitudinal charge density of the bunch. By reducing the

bunch length 𝜎𝑧 , the form factor 𝐹𝑙 can be extended to higher frequencies, leading to an

increase in the overall CSR intensity. Therefore, a natural objective for the optimization

task is to minimize the root mean square (RMS) bunch length 𝜎𝑧 .

Since the longitudinal bunch distribution can not be simplified as a Gaussian, the RMS

bunch length does not always correspond to the actual form factor, especially when

substructures are present due to collective effects. As an alternative, the peak electric

field of the THz pulse can be used as an objective function, which leads to a more direct

optimization of the THz pulse despite requiringmore processing steps of the output particle

distribution. Here, the CSR pulse emitted by an arbitrarily shaped bunch is calculated

following the semi-analytic approach introduced in [118, 119]. The E-field is given by

𝑬 (𝑡) = 𝑁e

∫ ∞

−∞
𝑬0(𝜏)𝜚 (𝑡 − 𝜏) d𝜏

= 𝑁e

1

𝜋
Re

∫ ∞

0

𝑬̃0(𝜔) 𝜚 (𝜔) 𝑒 i𝜔𝑡 d𝜔 ,
(4.2)

where 𝑁e is the number of electrons and 𝑬0 is the single-particle electric field. The equation
is expressed in the time domain as the bunch is relativistic, and 𝜚 (𝑡) denotes the normalized

charge density of the electron bunch in the time domain. For simplicity, the higher order

terms in the originally proposed spline interpolation are dropped and 𝜚 is approximated

using a stepwise linear interpolation

𝜚 𝑗 (𝑡) ∼ (𝜅 𝑗 (𝑡 − 𝑡 𝑗−1) + 𝑐0, 𝑗)
(
Θ(𝑡 − 𝑡 𝑗−1) − Θ(𝑡 − 𝑡 𝑗)

)
, (4.3)

where 𝑗 denotes the index of the interpolated segments, Θ is the Heaviside step function,

𝑐0, 𝑗 is a constant offset, and 𝜅 𝑗 is the slope of the charge density in the 𝑗-th segment

𝜅 𝑗 =
𝜚 (𝑡 𝑗) − 𝜚 (𝑡 𝑗−1)

𝑡 𝑗 − 𝑡 𝑗−1
. (4.4)

With the linear interpolation, the Fourier-transformed charge density 𝜚 (𝜔) is obtained
analytically via

𝜚 (𝜔) =
𝑁∑︁
𝑗=1

𝜅 𝑗

i𝜔

(
𝑒 i𝜔𝑡 𝑗 − 𝑒 i𝜔𝑡 𝑗−1

)
. (4.5)

In the frequency domain, the single-particle electric field is given by [44]

𝑬̃0(𝜔) =
√
3𝑒

4𝜋𝜖0 𝑐 𝑅
𝛾 (1 + 𝛾2𝜃 2) 𝜔

𝜔𝑐

[
𝐾2/3(𝜉)𝒖𝜎 + i

𝛾𝜃𝐾1/3(𝜉)√︁
1 + 𝛾2𝜃 2

𝒖𝜋

]
, (4.6)

where 𝜉 = 𝜔 (1 + 𝛾2𝜃 2)3/2
/
2𝜔𝑐 as defined in Eq. (2.27), 𝐾𝜈 is the modified Bessel function,

𝜃 is the observation angle, and 𝑅 is the distance from the observation point to the source

of the emission. The electric field contains two polarization components, where 𝒖𝜎 and 𝒖𝜋
denote the unit vectors for the 𝜎- and 𝜋-polarization components respectively.

54

4.2. Simulated Optimization for Intense THz Radiation

In the following studies, the case 𝑅 = 1m and 𝜃 = 0 is considered, which means only the

𝜎-polarization contributes to the electric field of the pulse. Inserting Eq. (4.5) and Eq. (4.6)

into Eq. (4.2) gives

𝐸𝜎 (𝑡) =
−3𝑁e𝑒

8𝜋𝜖0𝑐𝑅

𝛾 (1 + 𝛾2𝜃 2)
𝜔𝑐

×
𝑁∑︁
𝑗=1

𝜅 𝑗

[
cosh

(
2

3

arcsinh

(
𝑡 − 𝑡 𝑗
𝜏𝑐

))
− cosh

(
2

3

arcsinh

(
𝑡 − 𝑡 𝑗−1
𝜏𝑐

))]
(4.7)

and |𝑬 (𝑡) | = 𝐸𝜎 (𝑡) for 𝜃 = 0.

Two objective functions are considered and maximized for the THz radiation generation

at FLUTE based on the equations above.

Bunch length : 𝑓 = − 𝜎𝑧,
Max E-field : 𝑓 =𝐸max = max

𝑡
|𝑬 (𝑡) | . (4.8)

The FLUTE accelerator is implemented as a start-to-end model using simulation codes

ASTRA [103] and OCELOT [120]. The electron bunch is first created by ASTRA and

tracked from the photocathode to the entrance of the bunch compressor, including the

space charge effect along the track. The ASTRA output particle distribution is then fed

into an OCELOT model, which tracks the bunch further until the end of the magnetic

chicane and, in addition, includes the CSR effects. Two different simulation codes are

required here because ASTRA has the capability of handling real field maps in the photo-

cathode gun and OCELOT contains the CSR calculations. The resulting beam distribution

is used to calculate the respective objective function 𝑓 . For the simulation presented below,

10 000 macro particles were generated and tracked in ASTRA and OCELOT, where each

simulation took about 10min on a single CPU core.

4.2.2. Parallelized Bayesian Optimization

Many derivative-free algorithms can be used to find out the best accelerator parameters in

such an optimization task, such as random search, iterative line scans, and genetic algo-

rithms. However, these methods suffer from local convergence and low sample efficiency.

They scale poorly when the number of tuning parameters increases. BO is a promising

sample-efficient algorithm for black-box optimizations. In its vanilla formulation, as intro-

duced in Section 3.2, the next point to evaluate is selected by maximizing an acquisition

function 𝛼 (𝑥), which is built on a GP model and aims to balance the exploration and

exploitation behavior. In the simulation case, the evaluation can often be run in parallel

when computational resources are available, e.g. multiple CPU cores or using a computing

cluster. It is desirable if the algorithm can provide multiple points to speed up the overall

optimization process. In BO, this is referred to as parallel or batch BO. Taking the expected

improvement (EI) acquisition as an example, the batch points can be calculated by jointly

optimizing the expected value of improvement [64]. Although this works for a small batch

size, the computation time for the joint optimization scales exponentially with the batch

55

4. Applying Machine Learning Methods for Accelerator Simulation

size. Therefore, this is undesirable in a scenario where the function evaluation itself is not

very time-consuming (∼ 10min) and rather large batch sizes are possible, as the acquisition

function optimization would take a non-negligible fraction of overall computation time.

When the batch size becomes too large, the benefit of using a GP model to propose valuable

settings decreases. If the extra computation resources can be afforded, one could consider

a hybrid GP-genetic algorithm method [121] or a common evolutionary algorithm.

0.0

0.2

0.4

0.6

0.8

α

(a) 1st sample (b) 2nd sample (c) 3rd sample

0.25 0.50 0.75

x

0

1φ

0.25 0.50 0.75

x
0.25 0.50 0.75

x

Figure 4.8.: Penalized acquisition function for parallel BO. After selecting the first point,

a subsequent point to evaluate (black star) is selected by maximizing the

penalized acquisition function (green line), which is obtained by the product of

the original acquisition function 𝛼 (green dashed) and a penalization function

𝜑 (yellow line) centered at previously sampled points (gray star). This process

is repeated until the desired amount of points is chosen.

An alternative approach for parallel BO is proposed in [122] based on local penalization

of the acquisition function, as visualized in Fig. 4.8. For a positive acquisition function like

expected improvement (EI), the 𝑘-th sample to evaluate in optimization step 𝑡 is selected

by

𝒙𝑡,𝑘 = argmax

𝒙∈X
{𝛼 (𝒙)𝜙}

= argmax

𝒙∈X

{
𝛼 (𝒙)

𝑘−1∏
𝑗=1

𝜙 (𝒙, 𝒙𝑡, 𝑗)
}
,

(4.9)

where 𝜙 (𝒙, 𝒙𝑡, 𝑗) are the local penalizers centered at the previously selected points 𝒙𝑡, 𝑗 in
the same batch. The local penalizers smoothly reduce the value of the optimal around 𝒙𝑡, 𝑗 ,
so that the batch of points is not concentrated in one region of the parameter space. In

such a way, the selected batch is expected to both better explore the parameter space and

56

4.2. Simulated Optimization for Intense THz Radiation

have a higher chance of finding the global maximum. Here, the penalization function is

defined as

𝜙 (𝒙, 𝒙 𝑗) =
1

2

erfc(−𝑧)

𝑧 =
1√︁

2𝜎2𝒙 𝑗

(
𝐿 | |𝒙 𝑗 − 𝒙 | | − 𝑓best + 𝜇 (𝒙 𝑗)

)
,

(4.10)

where erfc is the complementary error function, 𝑓best is the best-observed function value,

𝜎2 is the posterior variance, 𝜇 is the posterior mean predicted by the GP model, and 𝐿 is

a Lipschitz constant. The behavior of this penalizer can be seen in the bottom plots in

Fig. 4.8. Its value is close to 1 for regions far away from previously selected points 𝒙 𝑗 and
goes to zero when approaching these points, effectively excluding the neighborhood of 𝒙 𝑗 .
The Lipschitz constant 𝐿 controls the width of the exclusion region and can be defined

based on the characteristic of the objective function. Using this approach, the batch of

points to be evaluated in the next optimization step can be effectively selected, with the

computation time scaling linearly with the batch size.

4.2.3. Optimization Settings

The electron bunch must be optimally compressed and have high bunch energy to generate

intensive CSR radiation. The final bunch energy depends on the RF settings at the photo-

injector gun and the linac. The beam compression in the bunch compressor requires an

energy chirp, which is created by the off-crest acceleration at RF fields with the photo-

injector and the linac at FLUTE. The final bunch length 𝜎𝑧 is limited by the non-linearity

in the energy chirp, which is in turn attributed to the non-linearity in the RF fields and the

collective effects. Moving away from the on-crest phase reduces the non-linearity in the

sinusoidal accelerating field that the bunch experiences at the cost of lower energy gain

and higher energy spread. At the same time, this leads to a stronger space charge effect

and a lower single-particle radiation power. Such a trade-off in the parameter settings

makes the THz optimization a non-trivial task. Consequently, the optimization task takes

six accelerator settings as the input parameters, because they have the most influence on

the THz radiation generation. The ranges of the input parameters are listed in Table 4.4.

Table 4.4.: Input parameters for the simulated optimization of THz pulse generation at

FLUTE. The RF phases are given in ASTRA’s convention, i.e. the global absolute

phase offset with respect to the start of the tracking.

Parameter Range

Gun RF phase 180 - 220 deg

Gun RF amplitude 100 - 120MV/m
Linac RF phase 150 - 190 deg

Linac RF amplitude 9 - 12MV/m
Solenoid strength 0.07 - 0.15 T

Bunch compressor angle 0.12 - 0.13 rad

57

4. Applying Machine Learning Methods for Accelerator Simulation

The parallel BO algorithm was run on a computing cluster with 20 parallel evaluations

and a maximum of 50 optimization steps. A single optimization run took a total of about 6

hours. The majority of the time was spent on the simulation, with the inference time of BO

being negligible in comparison. For each optimization configuration, 20 random sample

points are used to initialize the GP model. The GP hyperparameters like the variance 𝜎2

and the kernel lengthscales ℓ , are fitted dynamically during the optimizations.

4.2.4. Optimization Results

−25 0 25

z/c (fs)

40.5

41.0

41.5

42.0

42.5

E
(M

eV
)

µE : 41.5 MeV

σE : 0.3%

σz : 6.1 fs

(a) Before opt.

−25 0 25

z/c (fs)

µE : 41.5 MeV

σE : 0.5%

σz : 3.9 fs

(b) Bunch length

−25 0 25

z/c (fs)

µE : 41.4 MeV

σE : 0.4%

σz : 4.6 fs

(c) Peak E-field

100 101 102

Counts

Figure 4.9.: Longitudinal phase spaces of the optimized 1 pC bunches for (a) the previous

design settings in the design stage, (b) the BO result when using the bunch

length as the objective, and (c) the BO result when using the peak electric field

as the objective.

First, the low charge case with 1 pC bunch charge is considered. The initial particle

distribution is generated by a Gaussian laser pulse with a transverse size of 0.25mm and

a pulse length of 700 fs. The longitudinal phase spaces of the electron bunches from the

optimization results are shown in Fig. 4.9, with the result from the design stage settings

shown in (a) as a comparison. The one-dimensional projections of the beam distributions

are shown in the gray curves. All the settings produced bunches with similar final energy

at about 41MeV. The bunch length optimization further compressed the bunch down to

𝜎𝑧 = 3.9 fs. On the other side, optimization for peak electric field leads to a higher peak

current where a large portion of the charge is centered in the bunch, even though with a

larger RMS bunch length of 4.6 fs.

The corresponding longitudinal form factors 𝐹𝑙 (𝜔) are calculated and shown in Fig. 4.10

(a). The form factor is close to one for lower frequencies and decreases rapidly above

the critical frequency 𝜔𝑐 ∼ 1.4 × 1014 s−1 (corresponding to about 22 THz). The angular

integrated synchrotron radiation intensity spectra are shown in Fig. 4.10 (b). The spectrum

58

4.2. Simulated Optimization for Intense THz Radiation

0.0

0.2

0.4

0.6

0.8

1.0
F

or
m

fa
ct

or

(a)

1012 1013 1014 1015

ω (1/s)

10−26

10−25

10−24

10−23

10−22

10−21

10−20

S
R

sp
et

ru
m

(J
s)

(b)

−20 −10 0 10 20

t (fs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
-fi

el
d

(M
V

/m
)

(c)

Before opt Peak E-Field Bunch length

Figure 4.10.: Optimization results for the 1 pC bunch: the design stage settings (before

optimization), BO optimization result when using the bunch length as an

objective, and the BO optimization result when using the peak electric field

as an objective. (a) shows the longitudinal form factors for three bunches. (b)

shows the angular integrated synchrotron radiation spectra, and (c) shows

the temporal electric field profiles of the generated THz pulses.

59

4. Applying Machine Learning Methods for Accelerator Simulation

of the 𝐸max-optimization extends to higher frequencies and has a smooth curve, while the

spectra for other settings show visible side bumps in the high-frequency region due to the

substructures in the bunch with heterogeneous charge densities. Lastly, the electric fields

of the THz pulses are calculated and shown in Fig. 4.10 (c). The electric field optimization

reaches a peak electric field of 0.6MV/m, which is higher than the design settings with

0.35MV/m by a factor of ∼ 1.7 and the bunch length optimization with 0.4MV/m. For

the design settings, the THz pulse shape follows roughly the shape of the bunch current

profile. Decreasing the bunch length further smooths the bunch structure. Afterward,

the resulting THz pulse approaches a Gaussian shape with a full width at half maximum

(FWHM) of about 1/𝜔𝑐 (corresponding to about 7 fs).

−100 0 100

z/c (fs)

38

40

42

44

E
(M

eV
)

µE : 41.1 MeV

σE : 1.0%

σz : 54.6 fs

(a) Before opt.

−100 0 100

z/c (fs)

µE : 40.9 MeV

σE : 1.8%

σz : 11.6 fs

(b) Bunch length

−100 0 100

z/c (fs)

µE : 40.2 MeV

σE : 1.8%

σz : 14.0 fs

(c) Peak E-field

100 101 102

Counts

Figure 4.11.: Longitudinal phase spaces of the optimized 100 pC bunches for (a) the previous

design settings in the design stage, (b) the BO result when using the bunch

length as the objective, and (c) the BO result when using the peak electric

field as the objective.

The same optimization is run for a high bunch charge case with 100 pC. The initial

bunch distribution is generated from a Gaussian laser pulse with a transverse size of

0.25mm and a pulse length of 2 ps. The optimized bunch length 𝜎𝑧 = 11.6 fs is smaller than

the design stage value of 54.6 fs by a factor of ∼ 4.7. Both bunches from BO optimizations

have a higher energy spread, which is a side effect of moving away from the nominal linac

phase for a more linear accelerating gradient and thus a better compression. In comparison

to the 1 pC case, the final bunches for the 100 pC case are still longer than 1/𝜔𝑐 . Therefore,
minimizing the bunch length is still a valid strategy to maximize the electric field of the

CSR pulse, and both objectives are similar. Reducing the bunch length 𝜎𝑧 still efficiently

extends the form factor to higher frequencies and increases the overall CSR pulse intensity,

as shown in Fig. 4.12. Both BO results show similar spectrum intensities, which are more

60

4.2. Simulated Optimization for Intense THz Radiation

0.0

0.2

0.4

0.6

0.8

1.0

F
or

m
fa

ct
or

(a)

1012 1013 1014 1015

ω (1/s)

10−20

10−19

10−18

10−17

10−16

S
R

sp
et

ru
m

(J
s)

(b)

−80 −60 −40 −20 0 20 40 60 80

t (fs)

0

10

20

30

40

E
-fi

el
d

(M
V

/m
)

(c)

Before opt Peak E-Field Bunch length

Figure 4.12.: Optimization results for the 100 pC bunch: the design stage settings (before

optimization), BO optimization result when using the bunch length 𝜎𝑧 as an

objective, and the BO optimization result when using the peak electric field

as an objective. (a) shows the longitudinal form factors for three bunches. (b)

shows the angular integrated synchrotron radiation spectra, and (c) shows

the temporal electric field profiles of the generated THz pulses.

61

4. Applying Machine Learning Methods for Accelerator Simulation

intense than the one from the design settings. A peak E-field of about 43MV/m is reached,

which is higher than the previous design value at 8.4MV/m by a factor of 5. The generated

THz pulse can also be optically focused and further enhanced by two orders of magnitudes,

reaching a peak field in the order of ∼ GV/m.

Using the same method, the radiation generated at FLUTE with other mechanisms

like coherent transition radiation (CTR) and edge radiation (ER) can be optimized in

the same way, simply by replacing the CSR calculation with the respective radiation

calculations. Moreover, this optimization setup can be readily extended to a multiobjective

task. This is achieved by using multiobjective acquisition functions such as the expected

hypervolume improvement as demonstrated in [79]. In such a task, a Pareto front is to

be determined with multiple competing objectives, such as the highest final beam energy

with the highest radiation intensity. In the design phase, this helps unveil the possible

ranges of beam parameters. The obtained Pareto front contains more information than the

single-objective optimization result and allows physicists to fix the layout and parameters

of the accelerator a posterior, depending on a specific trade-off between the objectives [74].

In online operations, efficient multiobjective optimizations can find different operation

modes with focuses on different beam parameters, for example, trading off the maximal

bunch charge and the minimal energy spread that can be achieved in a laser-plasma

accelerator [80].

4.3. Differentiable Beam Dynamics Simulation

As shown above, ML-based algorithms like BO are very effective in finding the optimum

in a black-box optimization problem for accelerator simulations. However, as the number

of input parameters increases, the parameter space to be optimized scales exponentially,

and the required number of steps will increase accordingly. This inevitably requires

more computational resources and slows down the overall design process of future large

accelerators with many tuning parameters. One possibility to mitigate this issue is by using

gradient-based optimization algorithms, which often outperform gradient-free algorithms

in terms of sample efficiency. Recent results in ML show that they are even successful in

optimizing up to billions of parameters [123].

4.3.1. Simulation Code Cheetah

Conventional beam dynamics simulations only provide the output beam parameter as

the result. The gradient of the output with respect to an input parameter, such as a

magnet strength, can only be estimated numerically, for example using finite differences.

This scales poorly with the number of input parameters and requires a large number of

simulations to be run every time. This limits in practice the number of input parameters

that can be optimized simultaneously using gradient-based optimizers. The emerging ML

libraries allow an alternative technique called automatic differentiation. It decomposes

all the computations in a function mapping into atomic operations, such as addition and

multiplication, and uses the chain rule to automatically obtain the partial derivatives up to

arbitrary orders. Using these novel software libraries, a new generation of simulation codes

62

4.3. Differentiable Beam Dynamics Simulation

can be built that automatically deliver the derivative information together with the tracking

results. This allows the gradient-based optimization to be applied for high-dimensional

optimization tasks in particle accelerator simulations. To this end, I developed together

with Jan Kaiser the differentiable simulation code Cheetah [42]. It is one of the first beam

dynamics simulation packages that supports full differentiability, dedicated to enabling

seamless integration of ML methods into particle accelerators. Several other differentiable

codes were developed around the same time with specialized features, including Bmad-

X [124] with supports backend-agnostic implementations of particle tracking routines,

a differentiable space charge simulation [125] based on truncated power series algebra

(TPSA) which supports forward-mode differentiation, a differentiable beam dynamics

package JuTrack [126] implemented using the Julia programming language supporting

TPSA, and a differentiable synchrotron light simulation [127].

Focusing DefocusingDrift Drift

𝑃in 𝑅𝑄1(𝑘𝑄1) 𝑅𝐷1 𝑅𝑄2(𝑘𝑄2) 𝑅𝐷2 𝑃out 𝑃target

𝐿(𝑃out, 𝑃target)
𝜕

𝜕𝑘𝑄2

𝜕
𝜕𝑘𝑄1

Figure 4.13.: Differentiable simulation of a FODO lattice in Cheetah. An incoming beam 𝑃in
(denoted by the green ellipse) is sequentially tracked through the FODO lattice

consisting of two quadrupoles {𝑄1, 𝑄2} (in red) and drift spaces {𝐷1, 𝐷2}with
linear transfer matrices {𝑅𝑄1, 𝑅𝐷1, 𝑅𝑄2, 𝑅𝐷2} respectively. The final beam 𝑃out
is compared with the desired target beam 𝑃target to calculate a loss function 𝐿.

The quadrupole strengths {𝑘𝑄1, 𝑘𝑄2} can be optimized using gradient descent,

where the gradients are obtained by backpropagation.

Cheetah benefits from the optimized tensor computations implemented in PyTorch and

allows high-speed tracking of the particles, reaching more than 3 orders of magnitude

speed-up compared to other commonly used simulation tools. In Cheetah, each particle is

represented using a 7-dimensional vector
1

𝒙Cheetah = (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧, 𝛿, 1), (4.11)

with the first six dimensions being the canonical phase space coordinates 𝒙 as defined

in Eq. (2.11). The 6D phase space vector is expanded at the end, analogous to an affine

1
The description here is based on the version v0.7, while the explanation in [42] refers to an earlier version

v0.6.

63

4. Applying Machine Learning Methods for Accelerator Simulation

space, allowing a coherent representation of transfer maps for real-world effects such

as magnet misalignment and thin-lens magnets. The macroparticles are combined in a

so-called ParticleBeam 𝑃 with the shape (𝑁particles, 7) to represent the electron beam.

The accelerator components are implemented in the Element classes in Cheetah, such as

magnets, RF cavities, drift spaces, and diagnostic devices. By default, the elements compute

linear beam dynamics using an implementation of the linear transfer map 𝑅Cheetah ∈ R7×7

𝑅Cheetah =

(
𝑅0

...

0 · · · 0 1

)
, (4.12)

with 𝑅0 ∈ R6×6 being the standard transfer matrix based on [128]. When tracking a beam

𝑃in through an element with a transfer matrix 𝑅, the outgoing beam is

𝑃out = 𝑃in𝑅
⊺ . (4.13)

This process is visualized in the schematic in Fig. 4.13. For a FODO section with two

quadrupole magnets and drift spaces, the outgoing beam is

𝑃out = 𝑃in𝑅
⊺
𝑄1
𝑅
⊺
𝐷1
𝑅
⊺
𝑄2
𝑅
⊺
𝐷2
, (4.14)

where the transfer maps {𝑅𝑄1, 𝑅𝑄2} depend on the quadrupole strengths {𝑘𝑄1, 𝑘𝑄2} respec-
tively. If a specific beam distribution 𝑃target at the final position is desired, a loss function

𝐿 can be defined to quantify the difference between 𝑃out and 𝑃target. Using the automatic

differentiation (AD) functionalities in PyTorch, the partial derivatives to the quadrupole

strengths { 𝜕𝐿
𝜕𝑘𝑄1

, 𝜕𝐿
𝜕𝑘𝑄2

} can be directly obtained.

4.3.2. Differentiable Modeling of the THz CSR Generation at FLUTE

To apply gradient-based algorithms, the optimization task needs to be end-to-end differen-

tiable. The high-energy section of the FLUTE lattice is implemented in Cheetah, allowing

differentiable particle tracking from the entrance of the linac until the end of the bunch

compressor. The remaining part lies in the calculation of the charge density profile 𝜌 from

the macroparticle phase space coordinates. In the calculations presented in Section 4.2, this

step was performed using the histogram method, rendering the process non-differentiable.

An alternative approach that retains differentiability is the KDE. The estimated density

at a given position is calculated by summing the kernel values of all the samples, often

using a Gaussian kernel. Figure 4.14 illustrates this approach using the longitudinal phase

space of the 100 pC bunch. The KDE can smoothly approximate the structure of the charge

density profile. The corresponding discrete histogramming method is also shown below

for comparison. This method is detailed further in Appendix A.2.

Using KDE for the charge density estimation, the electric field of the emitted CSR

pulse can be calculated in a differentiable way. To ensure the stability of the gradient-

based optimization, the input parameters are scaled and normalized to the same range.

As the gradient descent is an unconstrained algorithm, the physical constraints on the

parameters can be incorporated via transformations by nonlinear activation functions.

For example, a parameter with a lower bound can be transformed by rectified linear unit

64

4.3. Differentiable Beam Dynamics Simulation

39

40

41

42

43

E
(M

eV
)

(a)

−150 −100 −50 0 50 100 150

z/c (fs)

0.000

0.005

0.010

0.015

0.020

D
en

si
ty

(b) KDE

Histogram

100

101

C
ou

n
ts

Figure 4.14.: Kernel density estimation for the longitudinal beam profile. (a) The longi-

tudinal phase space of an 100 pC electron bunch. (b) The charge density

estimation using histogram (blue) compared to the kernel density estimation

(KDE) method (red).

(ReLU), exponential linear unit (ELU), or Softplus functions, and sigmoid or tanh can be

used to represent a parameter with both lower and upper bounds. Other general inequality

constraints can also be introduced via the log barrier method [88].

Figure 4.15 shows the progress of a gradient-based optimization for the THz electric field

using the linac phase, linac voltage, and the bending angle. The initial beam distribution at

the entrance of the linac is taken from the ASTRA simulation result with the optimal setting,

and the other parameters being optimized are randomly initialized. The optimization is

performed using the Adam optimizer with an initial learning rate of 0.005 and in total

1500 steps. The electric field of the THz pulse was smoothly maximized and convergence

was observed. Thanks to the fast-executing simulation and the automatic differentiation

(AD), such an optimization process took only a few seconds, allowing computationally

cheap evaluations of new accelerator configurations.

Recent advances in differentiable simulation also include the propagation of synchrotron

light through optical elements such as lenses, mirrors, and detectors [127]. Further com-

bination of such a differentiable optics simulation with the Cheetah beam dynamics

simulation will allow also end-to-end differentiable modeling of the accelerator, from an

initial electron bunch to the observed light in either beamline experiments or diagnostic

65

4. Applying Machine Learning Methods for Accelerator Simulation

5

10

15

T
H

z
m

ax
E

-fi
el

d
(M

V
/m

)
(a)

30

35

40

L
in

ac
p

h
as

e
(d

eg
)

(b)

42.5

45.0

L
in

ac
vo

lt
ag

e
(M

V
/m

)

(c)

0 200 400 600 800 1000 1200 1400

Step

0.12

0.14

B
en

d
an

gl
e

(r
ad

)

(d)

Figure 4.15.: Gradient-based optimization of the THz radiation using the differentiable

simulation code Cheetah. The maximum electric field of the THz pulse is to

be maximized using the linac RF phase, voltage, and the bunch compressor

bending angle.

devices. This will also open the door for more targeted optimization, with objectives tai-

lored to the needs of beamline users such as a specific temporal profile or certain spectral

component of the light.

The longitudinal phase spaces of the beam distributions at different stages are shown

in Fig. 4.16. (a) shows the initial beam distribution before entering the linac. (b) shows

the beam at the end of the bunch compressor before the optimization, where the beam is

not optimally compressed. After running the optimization, the output beam is optimally

compressed as shown in (c). It can be seen that the resulting beam phase space is much

smoother than the ones obtained in Section 4.2. The reason for the discrepancy is that the

FLUTE simulation model implemented in Cheetah does not include collective effects yet.

66

4.3. Differentiable Beam Dynamics Simulation

−1 0

z (mm)

7.70

7.75

7.80

7.85

7.90

7.95

E
(M

eV
)

(a) Initial dist.

−0.05 0.00 0.05

z (mm)

39

40

41

42

43

44

45
(b) Before opt.

−0.05 0.00 0.05

z (mm)

39

40

41

42

43

44

45
(c) After opt.

100 101 102

Counts

Figure 4.16.: Longitudinal phase space of the electron bunches (a) at the entrance of linac,

(b) at the end of bunch compressor before the optimization, and (c) at the end

of bunch compressor after the optimization.

For the 100 pC electron bunch with about 40MeV energy studied here, the space charge

and CSR effects have a strong influence on the beam dynamics.

In Fig. 4.17, the tracking is repeated in OCELOT with different physical effects activated.

In (a), the bending angle of the bunch compressor is scanned while keeping the linac

parameters fixed, leading to different bunch lengths 𝜎𝑧 when including collective effects.

It can be identified that including space charge (SC) has the strongest influence. In

comparison, CSR has a small impact as the beam is compressed only at the final dipole

magnet, and the CSR is negligible before that. Overall, the collective effects affect the

beam dynamics at FLUTE. If they are ignored, the optimization can lead to settings that

cannot be achieved in the real world.

This is one of the current limitations of using gradient-based optimization with differen-

tiable simulations. At the time of completing this dissertation, there are ongoing efforts to

implement more physical effects such as space charge into Cheetah. Including these effects

will increase the fidelity of the simulation and allow more accurate and reliable results

using gradient-based optimization in the future. Nevertheless, as more and more effects

are taken into consideration, the computation requirement inevitably grows. This also

poses a challenge to the gradient calculation, both for the memory requirement for storing

all the computation steps and for numerical stability when propagating the gradient back

to the parameters to be tuned. The feasibility of performing gradient-based optimization

in complicated simulations remains an open question and will be investigated in the future.

One alternative approach is to integrate the NN surrogate model with Cheetah simula-

tion. This has been initially demonstrated in [42], where a NN is trained to model the

beam tracking through a quadrupole magnet including space charge effects. As Cheetah

implements the accelerator components also in PyTorch modules, a NN model can be

seamlessly integrated into the existing lattice elements. Such a combination allows a

67

4. Applying Machine Learning Methods for Accelerator Simulation

0.10 0.12 0.14 0.16

Bend angle (rad)

200

400

600

σ
z
/c

(f
s)

(a)

−0.1 0.0 0.1

z (mm)

38

39

40

41

42

43

E
(M

eV
)

(b)

No SC With SC With SC & CSR

Figure 4.17.: Tracking results of a 100 pC using the same accelerator settings with different

physical effects activated, no space charge (SC) (blue dotted), with space

charge (SC) (red line), and with SC and CSR (green dashed). (a) Final RMS

bunch lengths with a bending-angle scan. (b) Longitudinal phase spaces of

the output beams.

data-driven modeling of the complex collective effects and the particle tracking remains

computationally cheap.

4.4. Bayesian Optimization with Physics-informed Prior

Even though the reduced physics model in Cheetah does not fully reproduce the real-world

experimental results, it can still be utilized to guide the search for the optimum setting

in a computationally intensive simulation, reducing the number of evaluations using the

complex simulation and lowering the overall computational cost. One example of such

an approach is combining the differentiable simulation Cheetah with the BO algorithms.

Available physical information on the task can be integrated into BO in various ways, such

as calculating the correlation between the input parameters to better construct a kernel

function [28], utilizing the results from different simulations explicitly as a multi-fidelity

problem [74, 16]. In this section, the feasibility of using a fast-executing simulation like

Cheetah directly as the prior mean function for BO is explored.

For the BO results presented in Section 4.2, a constant zero prior mean𝑚 ≡ 0 is used. In

general, any function mapping from the input parameters to the objective function values

can be used. This changes the posterior prediction of the GP model on test points 𝑋 ∗ from
Eq. (3.14) to

𝝁∗ = 𝒎(𝑋 ∗) + 𝐾 (𝑋 ∗, 𝑋)𝐾 (𝑋,𝑋)−1(𝑌 −𝒎(𝑋 ∗)), (4.15)

where 𝐾 (·, ·) is the kernel function and {𝑋,𝑌 } are the data points.

68

4.4. Bayesian Optimization with Physics-informed Prior

When using an informed prior mean function that contains structural information on

the objective function, the GP can approximate the objective function with fewer data

points, and the efficiency of BO can be greatly improved. This effect is visualized in

Fig. 4.18.

0.0 0.2 0.4 0.6 0.8 1.0

x

−1

0

1

2

y

(a) GP with zero mean

0.0 0.2 0.4 0.6 0.8 1.0

x

(b) GP with non-zero mean

GP mean

2σ bound

Data points D

True objective

Prior mean

Figure 4.18.: Effect of using a non-zero prior mean for the GP modeling. Based on the three

observation points (red dots), a GP model is fitted to an unknown objective

function (red dash-dot line), and the posterior mean (blue line) and uncertainty

(blue-shaded region) predictions are shown. (a) GP uses the constant zero

mean𝑚 ≡ 0. (b) GP uses an informative prior mean that resembles the shape

of the underlying objective.

The GP is built on three observation points (red dots) to model an underlying objective

function (red dash-dot line), which has a sinusoidal form. In (a), the zero prior mean is

used for the GP model. The resulting posterior prediction contains large uncertainty in

regions that are distant from the observed points and the posterior mean fails to model the

true objective function. In comparison, when using a sinusoidal function as the prior mean

in (b), the posterior prediction contains less uncertainty and approximates the objective

function much better than the zero prior mean case.

In practice, the implementation of the prior mean function for GP should be fast-

executing and differentiable. As the prior mean function needs to be repeatedly evaluated

both for fitting the GP model to the data and maximizing the acquisition function, a

slow-executing prior mean function will take prohibitively long to compute. This makes a

differentiable simulation like Cheetah an ideal choice as a physics-informed prior for BO.

Alternatively, for slow simulation or real-world data where fast simulation is not available,

data-driven models like NNs can be trained and used as prior mean functions [79, 112].

For the THz optimization task at FLUTE, again the 100 pC case was considered. The

tracking was performed in ASTRA and OCELOT taking space charge and CSR into account.

The BO using Cheetah as the prior mean function was compared to the vanilla BO using

69

4. Applying Machine Learning Methods for Accelerator Simulation

zero prior mean and latin hypercube sampling (LHS). Fig. 4.19 shows the optimization

progress of the three methods, where each algorithm was repeated 10 times with the same

initial setting and different random seeds. As expected, both BO variants converged to

settings with higher objective values than the LHS. BO with a physics-informed prior mean

leads to faster optimization and converges to a better setting, even when the low-fidelity

Cheetah simulation is mismatched to the ASTRA and OCELOT simulation including

the collective effects. The final result obtained using BO prior mean is comparable to

the one obtained via parallel BO in Section 4.2, which took 1000 evaluations in total.

This corresponds to a tenfold saving in computation resources. If the wall time for the

optimization process is to be minimized, the physics-informed BO can be run in parallel

as well.

0 20 40 60 80 100

Step

0

5

10

15

20

25

30

35

40

B
es

t
P

ea
k

E
-fi

el
d

(M
V

/m
)

BO prior mean BO zero prior LHS

Figure 4.19.: Progress of BO using the physics-informed prior mean compared to BO with

zero prior mean, and latin hypercube sampling (LHS). All optimization runs

started from the same initial setting. Each algorithm was repeated 10 times

with different random seeds for calculating the standard deviations, which

are shown in the shaded region.

The output beam distributions obtained from the best settings of each algorithm are

further investigated. Figure 4.20 shows the longitudinal phase spaces of the compressed

beams after the bunch compressor. For both BO results, the electron bunches are well

compressed, and only a sharp single peak can be seen in the projected longitudinal beam

profile. The final bunch lengths are 14.2 fs for BO with prior mean and 12.2 fs for BO with

zero prior mean. For the LHS result, the final bunch is slightly longer with 𝜎𝑧 = 21 fs.

This is reflected in the emitted synchrotron radiation spectra of the beam distributions,

which are shown in Fig. 4.21.

The BO results show a smooth spectral power until the cutoff which is limited by the

bunch length. In comparison, the spectrum intensity of the LHS result drops at a lower

70

4.5. Summary Machine Learning Assisted Simulated Optimization

−100 0 100 200

z/c (fs)

38

40

42

E
(M

eV
)

(a) BO prior mean

−100 0 100 200

z/c (fs)

34

36

38

(b) BO zero prior

−100 0 100 200

z/c (fs)

39

40

41

42

43

(c) LHS

20 40 60 80 100 120

Counts

Figure 4.20.: Longitudinal phase spaces of the final beam from different methods: (a) BO

using Cheetah as the prior mean function, (b) BO with zero prior mean, and

(c) LHS method. The projection onto the 𝑧 axis is shown at the bottom.

frequency due to a longer bunch length, but it exhibits substructures extending to higher

frequencies. Despite having a slightly longer bunch length than the one from BO with

zero prior mean, the BO with prior mean result shows a higher radiation power overall, as

the bunch has a higher energy. This is consistent with the findings in Section 4.2. Lastly,

the electric fields of the generated THz pulses are calculated and shown in Fig. 4.21 (b). It

is visible that the shape of the THz pulses follows closely the shape of the charge density

distributions of the bunches.

This example shows how Cheetah simulation can be used in combination with BO

algorithms and further speed up the parameter optimization. Moreover, the same method

can also be applied in the real world to guide the online tuning process of accelerators.

4.5. Summary Machine Learning Assisted Simulated
Optimization

Physics simulations are essential components in the life cycle of a particle accelerator. The

design and operation of future accelerators with increasing controllable parameters and

tighter operation conditions pose rising challenges to physics simulations and optimization

methods. In this chapter, the THz pulse generation at FLUTE with the CSR mechanism

was studied as an example. By applying ML algorithms, accelerator settings for different

bunch charge cases were found to produce ultrashort THz pulses, which are up to 5 times

more intensive than the ones from design settings.

The presented usage of ML methods for particle accelerator simulations can be mainly

summarized in three aspects. First, data-driven surrogate models like NNs can be trained

71

4. Applying Machine Learning Methods for Accelerator Simulation

1013 1014 1015

ω (1/s)

10−20

10−18

10−16

S
R

sp
ec

tr
u

m
(J

s)

(a)

−60 −40 −20 0 20 40 60

t (fs)

0

10

20

30

40

E
-fi

el
d

(M
V

/m
)

(b)

BO prior mean BO zero prior LHS

Figure 4.21.: Resulting synchrotron radiation (SR) spectra and the electric fields of the

CSR pulses generated by the electron bunches with different optimization

methods, including BO with Cheetah as prior mean, BO with zero prior mean,

and the LHS.

from existing simulation data as a replacement for the time-consuming simulations. They

are cheap to evaluate and can provide fast and high-resolution predictions on the beam

parameters, reducing the need to repeatedly run simulations with similar parameter

settings. They can also be utilized to provide insight into the dependency of the beam

parameters on input accelerator settings. Second, intelligent algorithms like BO can be

used to efficiently solve black-box optimization tasks in simulations. Utilizing the parallel

execution in computing clusters, the performance of BO exceeds the conventional genetic

algorithms. Third, there is an emerging generation of accelerator simulation codes with

72

4.5. Summary Machine Learning Assisted Simulated Optimization

support for differentiation and ML methods. The Cheetah beam dynamics simulation code

developed in this dissertation is one prominent example. The AD feature allows direct

gradient-descent optimization of the accelerator parameters such as RF settings andmagnet

strengths to produce the desired beam. Compared to the black-box optimization algorithms

like BO, the differentiable simulations providing gradient information allow more efficient

optimization that can be effortlessly scaled up to thousands of input parameters. At present,

they have implemented only a small amount of physical effects like collective effects. This

inevitably limits the number of simulation tasks that can benefit from the differentiable

simulation. Nevertheless, it can be foreseen that the applicable tasks will grow with the

future development of the differentiable simulation codes.

Most importantly, the presented ML applications can also be combined to design more

tailored methods for individual accelerator tasks. For example, both the NN surrogate

model and the Cheetah simulation can be used as a physics-informed prior mean for the

GP modeling in the BO algorithms to improve the sample efficiency. This allows BO to be

applied to more complex tasks with a higher number of input parameters. NN models can

also be trained to model the computationally intensive effects and integrated as additional

elements in the particle tracking routines. This approach increases the fidelity of the

Cheetah simulation while maintaining the execution speed.

While all the applications presented in this chapter are based on FLUTE with a few

adjustable parameters, the approaches used here can be generalized to any simulation

task for particle accelerators. The advantages of ML methods are expected to be more

prominent when traditional approaches become infeasible, for example when scaling

to hundreds of input parameters or dealing with computationally intensive simulations

taking hours to run.

Last but not least, with the increasing capability of computing hardware and ML algo-

rithm development, it is foreseeable that the physics simulation will be more integrated

and benefit the operation of particle accelerators. Trained surrogate models can be used

as virtual diagnostics to provide high-resolution and non-destructive information on the

beam parameters, saving the beam time required for setup and measurement during oper-

ation. Fast-executing simulations can also be directly run in situ to guide the operation

with the help of on-site computing clusters.

73

5. Photo-Injector Laser Pulse Shaping

At linear accelerators, the characteristics of the electron beam are largely governed by the

initial beam distribution in the injector section. For example, the normalized emittance

can at best be preserved or grow slowly along the accelerator. To extend the operation

limit and increase the radiation output at free electron laser (FEL) facilities, it is essential

to optimize the initial electron bunch distribution. For photo-injector-based accelerators,

this can only be achieved via tailored control of the laser pulses. This chapter presents the

photo-injector laser shaping experiments with spatial light modulator (SLM) devices at the

far-infrared linac and test experiment (FLUTE). The proof-of-principle studies demonstrate

that machine learning (ML) techniques can facilitate high-dimensional, adaptive control

towards a tailored laser shaping. This highlights a scenario where ML methods can

broaden the range of beam parameters and enable new operation modes for existing

and future accelerators, for example expanding the limits on bunch emittance and bunch

charge. Section 5.1 shortly motivates the importance of laser shaping for photo-injector-

based linear accelerators. Section 5.2 discusses how the laser pulse is modulated using

SLMs and introduces the photo-injector laser at FLUTE. A proof-of-principle transverse

laser shaping setup using a neural network (NN)-assisted algorithm is demonstrated in

Section 5.3. Initial tests of transverse modulation for the FLUTE photo-injector laser are

presented in Section 5.4 and the outlook for a full 3D laser shaping setup at FLUTE is

discussed in Section 5.5. Parts of the results presented in this chapter have previously been

published in [129, 130].

5.1. Motivation for Photo-injector Drive Laser Shaping

A three-dimensional (3D) uniform ellipsoidal distribution produces only linear space

charge force fields, which can be further compensated by tuning the solenoid magnetic

field [131, 132], resulting in a minimal emittance growth in the photo-injector gun. As

such, they are the desired initial bunch distribution for applications that require high

charge and small emittance electron bunches, for example, high-brightness FELs, ultra-fast

electron diffraction experiments, and energy recovery linacs [133, 134, 135]. In linear

accelerators with an RF photo-injector gun, the electron bunch characteristics are largely

determined via the drive laser pulses, and forming a uniform ellipsoidal distribution after

the bunch generation can only be achieved in special operation modes and with limited

bunch charge. A promising alternative is to generate such electron distribution directly

at the photo-injector by using a uniform ellipsoidal laser pulse. Such a 3D uniform laser

profile is obtained by consecutive transverse (spatial) and longitudinal (temporal) shaping

setups. Nevertheless, spatial-temporal laser shaping requires specialized setups and can not

75

5. Photo-Injector Laser Pulse Shaping

be accomplished with standard optical elements, making it less commonly implemented

in accelerator facilities.

For the transverse profile, the hard-edged uniform distribution, also known as a flattop
distribution, is hard to realize experimentally. In practice, the transverse flattop laser

is often approximated by a Gaussian laser pulse and using an iris to cut off the edge,

resulting in a so-called truncated Gaussian distribution. The normalized radial charge

density 𝜌 (𝑥,𝑦) of these three distributions can be expressed as

𝜌uniform(𝑥,𝑦) =
1

𝜋𝑟 2
, 𝑥2 + 𝑦2 ≤ 𝑟 2

𝜌Gaussian(𝑥,𝑦) =
1

2𝜋𝜎2
exp

(
−𝑥

2 + 𝑦2
2𝜎2

)
,

𝜌trunc. Gaussian(𝑥,𝑦) =
1

2𝜋𝜎2 · erf
(
𝑟√
2𝜎

) exp (
−𝑥

2 + 𝑦2
2𝜎2

)
, 𝑥2 + 𝑦2 ≤ 𝑟 2

(5.1)

The transverse space charge (SC) electric field 𝐸𝑥 can be calculated as

𝐸𝑥 (𝑥,𝑦, 𝑧) =
1

4𝜋𝜖0

𝜕

𝜕𝑥

∭
𝜌 (𝑥′, 𝑦′, 𝑧′)
|r − r′| 𝑑𝑥′𝑑𝑦′𝑑𝑧′, (5.2)

where 𝒓 = (𝑥,𝑦, 𝑧) is the position vector.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x/r

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

E
x

(a
rb

.
u

n
it

)

Gaussian

Uniform

1σ trunc. Gaussian

Figure 5.1.: Illustration of transverse space charge fields for different radial beam distribu-

tions: Gaussian, uniform, and 1𝜎 truncated Gaussian distribution.

The transverse SC fields for the different radial charge distributions are visualized in

Fig. 5.1, showing a Gaussian bunch, a uniform bunch, and a 1𝜎 truncated Gaussian bunch

(𝑟 = 𝜎). The calculations are based on [136], assuming a longitudinal-Gaussian cigar-like

76

5.1. Motivation for Photo-injector Drive Laser Shaping

bunch, i.e. with a bunch length much larger than the transverse beam size 𝜎𝑥/𝜎𝑧 ≪ 1.

It is visible that the uniform distribution shows a more linear SC field compared to the

1𝜎 truncated Gaussian distribution. In the case of a pancake-like bunch 𝜎𝑥/𝜎𝑧 ≫ 1, the

1𝜎 truncated Gaussian distribution behaves better than the uniform distribution [137].

Nevertheless, both uniform and truncated Gaussian distributions clearly outperform the

Gaussian distribution in terms of linearity in the SC field.

−2.5 0.0 2.5

x (mm)

−2

0

2

y
(m

m
)

(a) Gaussian

−2.5 0.0 2.5

x (mm)

−2

0

2

(b) Uniform

−2.5 0.0 2.5

x (mm)

−2

0

2

(c) Truncated Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s (m)

0.10

0.15

0.20

0.25

0.30

ε x
(π

m
m

m
ra

d
)

(d) Emittance Growth

Gaussian

Uniform

Truncated Gaussian

0 10 20 30 40 50

Counts

Figure 5.2.: Transverse emittance growth of 1 pC electron beam in the FLUTE low energy

section for three different initial radial distributions: Gaussian, 1𝜎-truncated

Gaussian, and uniform distribution.

To further illustrate this effect, the emittance growth of the three distributions is studied

using the RF photo-injector gun at FLUTE. The transverse beam images of the simulated

particle distributions are shown in Fig. 5.2, each containing 50,000 macroparticles and a

bunch charge of 1 pC. The three bunches are tracked in ASTRA using the same accelerator

settings through the RF gun and solenoid magnet until 2.86m, before the entrance of

the linac, with an energy of 5MeV. As can be seen in Fig. 5.2, the emittance increase is

77

5. Photo-Injector Laser Pulse Shaping

stronger for the Gaussian bunch due to the space charge forces. The uniform and the

1𝜎 truncated Gaussian bunches showed very similar behavior and in total about a 11%

emittance reduction compared to the Gaussian bunch. This difference becomes even

larger for higher bunch charges. In FELs, for example, low emittances are mandatory

to reach enough transverse overlap of the electron bunch and the emitted optical beam

and thus achieve strong coherent radiation [138]. Similar considerations exist also in the

longitudinal direction. To reach the ideal 3D uniform electron bunch, both transverse and

longitudinal modulations are required for the photo-injector laser. This is also referred to

as the spatio-temporal shaping. Overall, shaping the photo-injector laser is an effective

method to provide tailored electron bunch distributions and minimize the emittance

growth. This effectively pushes the operation limit and increases the radiation output of

the FEL facilities.

5.2. Laser Shaping with Spatial Light Modulators

Several non-adaptive approaches for laser shaping have been successfully demonstrated

at particle accelerators and could produce certain pre-determined laser profiles with high

precision. These include employing optical gratings and masks, temporal shaping with

stacking and superposition of the pulses, and a novel technique to incorporate the shaping

process in the up-conversion into ultraviolet (UV) [133, 139, 140, 141]. Nevertheless,

they either require manufacturing new optical elements for different modulations or

are inherently limited in the degrees of freedom of the generated laser profiles. Having

the possibility to shape the laser on demand is advantageous in the operation of future

accelerators. It allows the modulation to be adaptively controlled, which means the

modulation pattern can be iteratively refined to improve the quality of the electron bunch

profile or to compensate for drifts of other components in the laser path. In particular, they

could also correct for the varying quantum efficiency (QE) of the photocathode surface due

to the degradation over a longer period and ensure the generation of the desired charge

distribution with high fidelity [142].

A promising adaptive method for laser shaping is by using an SLM. It is a programmable

device that allows arbitrary modulation patterns, also known as computer generated

holograms (CGHs). It consists of pixelated cells filled with liquid crystal (LC). One type of

SLM is electrically-addressed, which means that the applied modulation can be controlled

electronically through voltages. When subjected to a voltage, the LC molecules rotate

and lead to spatial modulation in either phase, amplitude, or both. This chapter mainly

focuses on the phase-only type of SLM, which employs the liquid crystal on silicon

(LCoS) technique and operates in the reflective mode. Figure 5.3 shows schematically the

working principle of such a device. It is composed of multiple layers including cover glass,

transparent electrodes, LCmolecules, reflective pixelated electrodes, and a silicon substrate.

The orientation of the LC molecules at each pixel is controlled by the voltages applied

between the electrodes. As a result, the reflected light undergoes a phase modulation

spatially, changing its wavefront compared to the incoming light. [143]

SLMs have been successfully applied to the spatial-temporal shaping of photo-injector

lasers. In [142], arbitrary laser and electron profiles were generated using an SLM in

78

5.2. Laser Shaping with Spatial Light Modulators

Transparent electrode

Cover glass

Reflective electrodes

Silicon substrate

®𝐸

Incoming

wavefront

Outgoing

wavefront

Liquid crystal cells

Pixels

Figure 5.3.: Schematic working principle of an LCoS SLM. The SLM consists of layers of

cover glass, transparent electrodes, liquid crystal cells, reflective pixelated

electrodes, and a silicon substrate. The electrical fields between the electrodes

control the orientation of the LC molecules at each pixel. The reflected light

receives the phase modulation and contains a different wavefront than the

incoming light.

combination with a cathode with a direct current (DC) voltage. At the Photo Injector

Test Facility at DESY in Zeuthen (PITZ), the laser shaping capabilities of SLMs were

demonstrated with multiple setups. One of them used two SLMs with an infrared (IR) laser

to generate the 3D uniform ellipsoidal laser distributions. A recent work used SLMs with

the green laser at 𝜆 = 515 nm and directly applying the modulated laser to the CsK2Sb

cathode for electron generation [144, 145, 146, 147].

It needs to be noted that, in addition to the electrically-addressed SLMs discussed here,

other programmable or adaptive devices for laser shaping also exist. One notable example

is the acousto-optic modulator (AOM) device [148, 149], which is mostly used in temporal

shaping. AOMs demonstrate comparable performance to SLMs in terms of fidelity of

the modulated pulse but often have lower transmission efficiencies. The main advantage

of using an AOM is that they can operate directly in the UV regime and handle very

high laser power, with the gas-based device being able to modulate GW-scale lasers [150].

It has been shown that AOMs could be used for spatial-temporal shaping of the photo-

injector laser pulses [151]. A recent work [152] also demonstrated successful temporal

shaping of a photo-injector laser, where the control is also achieved with the help of a NN,

similar to the work presented in the following sections. Another approach uses deformable

mirrors equipped with electrostatic piezo actuators [153]. They also have the advantage of

operating with short-wavelength and high-power laser than the LC-based SLMs. However,

deformable mirrors are limited in their actuators’ degrees of freedom (commonly 𝑑 < 100),

and subsequently the fidelity of the modulated laser distribution [142]. A more extensive

review on bunch shaping in electron linear accelerators can be found in [154].

79

5. Photo-Injector Laser Pulse Shaping

5.2.1. Implementing the Laser Modulation Setup at FLUTE

The FLUTE accelerator uses a photo-injector driven by an 800 nmTitanium:Sapphire (Ti:Sa)

laser. Figure 5.4 shows the simplified schematics of the laser transportation path. The

800 nm laser pulses are first generated in the clean room, at 1 kHz. The laser is transported

with the uncompressed pulse length of 200 ps to reduce the dispersive effects in the long

transportation path of ∼ 35m to the photocathode.

Figure 5.4.: Schematic of the FLUTE laser path layout. The diagram is simplified and only

shows components that are relevant to the study in this dissertation.

The laser pulse is further guided through the measurement room into the experimental

hall, where the accelerator FLUTE is located. A pulse picker reduces the pulse repetition

rate to 1 - 50Hz, depending on the selected operation mode. Subsequently, the laser is split

using a variable attenuator so that a part of the intensity can be used for a laser-based THz

generation setup [155]. The laser pulse is then compressed down to 35 fs pulse length and

converted to 266 nm through the third harmonic generation (THG) process. The UV pulse

is then stretched to ∼ 10 ps using quartz rods of various lengths. The pulse is split before

entering the vacuum chamber and focused onto the copper cathode for electron generation.

The reflected laser from the cathode is imaged on a screen with a camera to capture the

transverse profile of the laser pulse. A part of the laser intensity is projected onto a virtual

cathode, which is placed at the same distance as the real cathode for additional diagnostics.

As current LC-based SLM cannot work in the UV range, the SLM needs to be posi-

tioned before the UV conversion and modulate the IR laser. In addition, due to the space

80

5.2. Laser Shaping with Spatial Light Modulators

constraints, the SLM setup could not be placed in the FLUTE experimental hall. This is

very challenging for laser shaping, as the modulation quality can degrade significantly

due to the long optical transportation and non-linear processes such as the THG. Two

SLM setups were built and investigated at FLUTE, including a standalone test setup in the

measurement room and an integrated setup in the laser clean room.

5.2.2. Controlling the Spatial Light Modulator

Algorithm 1 Gerchberg-Saxton algorithm for phase-only laser shaping

Require: Target laser amplitude 𝑇 at the image plane, incoming laser amplitude 𝐸 at the

Fourier plane, 𝑇, 𝐸 : R2 → R
Initialize phase at the Fourier plane 𝜙 (0) randomly

𝐴1 ← 𝐸 ∗ exp
{
(𝑖𝜙 (0))

}
⊲ Represent the wavefront as a complex-valued function

for j=1, . . . , n do
𝐴2 ← F (𝐴1) ⊲ Propagate the wavefront to the image plane

𝐴3 ← 𝑇 ∗ exp{(𝑖 · Phase(𝐴2))} ⊲ Replace the amplitude with the target 𝑇

𝐴4 ← F −1(𝐴3) ⊲ Propagate the wavefront back to the Fourier plane

𝐴1 ← 𝐸 ∗ exp{(𝑖 · Phase(𝐴4))} ⊲ Replace the amplitude with the incoming laser

amplitude 𝐸

end for
Return 𝜙 (𝑛) = Phase(𝐴)

In this chapter, the phase-only SLMs are used for the laser shaping setups. Despite

their names, they are versatile devices as they can provide both phase and amplitude

control [156] with proper setups. They are more efficient than the amplitude-only devices

which block part of the incident light. The setups use a commercially available phase-

only LCoS-SLM from Hamamatsu (model X13138-02). It has a specified wavelength of

(800 ± 50) nm, a pixel number of 1024 × 1272, and a frame rate of 60Hz. The SLM is

connected to a laptop as a second display monitor. The voltage and hence the phase

modulation patterns, are set using grayscale images in 8-bit encoding, i.e. the phase shift

of [0, 2𝜋] is discretely mapped to gray levels of [0, 255]. In total, it adds up to 256
(106)

degrees of freedom.

In phase-only SLMs, only the phases of the light are modulated. The modulated laser

further propagates along the optical path and gets measured on an image plane. Due to the

interference, the final image will also contain an amplitude modulation. For each desired

amplitude pattern, the correspondingmodulation pattern on the SLMneeds to be calculated.

Due to the high degrees of freedom in the modulation, dedicated algorithms are developed

to perform the CGH calculation efficiently. One of the most widely used algorithms for

calculating the CGH for an arbitrary target image is the Gerchberg-Saxton (GS) algorithm,

originally designed as a phase-retrieval method. The CGH task can be described as follows:

given the desired laser pulse intensity at the image plane 𝐼 (𝑥,𝑦) = |𝑇 (𝑥,𝑦) |2, corresponding
to an amplitude of 𝑇 (𝑥,𝑦), find the modulation pattern 𝜙 (𝑥,𝑦) ∈ [0, 2𝜋) at the diffraction
plane. When using the phase-only modulation, a lens is commonly used to reconstruct

81

5. Photo-Injector Laser Pulse Shaping

the image in practice so that the light propagation can be described using the far-field

approximation, i.e. the Fraunhofer approximation. In such a case, the wavefronts at these

two planes are related by the Fourier transform (FT), and the diffraction plane is also

referred to as the Fourier plane. The GS algorithm utilizes this idea to determine the phase

modulation pattern 𝜙 by iterative FTs and constraining the amplitudes at these two planes.

0 10 20 30

Iterations i

0.05

0.10

0.15

M
S

E
(a

rb
.

u
n

it
s)

(a)

(c)

(d)

(e)

(b) Target (c) i = 0

(d) i = 1 (e) i = 30

Figure 5.5.: Progress of Gerchberg-Saxton algorithm. (a) The mean square error of the

reconstructed image using the GS algorithm compared to the target image.

Right: (b) the target image containing a KIT logo, and the reconstructed images

corresponding to (c) the randomly initialized phase, (d) at iteration 𝑖 = 1, and

(e) at iteration 𝑖 = 30.

The progress of the GS algorithm in this setting is outlined in Algorithm 1 with an

illustration in Fig. 5.5. The target image is a 1024 grayscale image of the KIT logo. In the

initial step (c), the modulation pattern is randomly generated, and no meaningful image

can be reconstructed. Already after one iteration (d), the target intensity pattern starts

appearing, although some noise is still visible. The mean squared error (MSE) between

the target and the reconstructed image continues to decrease and converges in around

30 steps. The final image (e) could accurately reproduce the target image. The above

computation of 30 iterations takes about 1 s on a normal laptop, mostly attributed to the

𝑂 (𝑛 log𝑛) complexity of fast Fourier transforms (FFTs). For lower-resolution images, this

comes down to the millisecond range. Consequently, this method is sufficiently responsive

for most linear accelerators operating at low repetition rates and commercially available

SLMs with 60Hz frame rate.

In the context of transverse photo-injector laser modulation with an SLM, which is

further investigated below, the intensity 𝐼 (𝑥,𝑦) at the image plane corresponds to the

laser pulse intensity at the cathode surface, which directly influences the initial radial

distribution of the generated electron bunch. The SLM is put in the Fourier plane and

the retrieved phase 𝜙 (𝑥,𝑦) is the modulation pattern to be set in the SLM. As SLMs are

pixelated devices, the modulation pattern 𝜙 (𝑥,𝑦) is a matrix with the dimension of pixels,

and the FT is achieved via FFT.

82

5.3. Demonstration of Transverse Laser Modulation

5.3. Demonstration of Transverse Laser Modulation

As mentioned above, one drawback of using an SLM for laser shaping is the operating

wavelength, commonly ranging from visible to infrared, as the LC cells are quickly damaged

by UV lasers. Therefore, the SLM has to be placed before the UV conversion for a photo-

injector laser. This inevitably introduces multiple optical elements between the SLM and

the cathode plane, affecting the quality of the modulated laser. It is expected that ML

methods, specifically NNs, can be used to compensate for the errors and improve the

modulation quality. To study the feasibility of SLM control using NNs, a standalone setup

for the transverse laser pulse modulation was first built in the measurement room, as a

proof-of-principle experiment.

Figure 5.6.: Test setup for transverse laser manipulation. (1) The red line depicts the

path of the 638 nm laser. (2) Horizontal polarization filter. (3, 4) 𝑓 = 150mm,

𝑓 = 100mm lens. (5) Iris. (6) SLM. (7) 𝑓 = 500mm lens. (8) Screen with the

camera behind. [129]

The setup for transverse laser manipulation is depicted in Fig. 5.6. A continuous wave

(CW) test laser with a wavelength of 𝜆 = 638 nm in the visible range is used in this proof-

of-principle setup, enabling a fast iteration process, as it facilitates easier alignment and

result visualization. The test laser is first collimated and passes through a polarization filter,

generating horizontally linearly polarized light required by the SLM. Next, a telescope

consisting of two lenses expands the laser to utilize the SLM’s active area fully. The laser

is subsequently phase-modulated and reflected by the SLM before passing through the

focusing lens. Lastly, the image is projected onto a screen and captured by a camera [129].

5.3.1. Laser Modulation Correction using Convolutional Neural Network

To generate a laser pulse with an intensity pattern 𝐼target, a CGH (phase pattern) 𝜙 =

GS(𝐼target) is calculated using the GS algorithm and displayed on the SLM. The pulse

modulated by the SLM further propagates through the optical path P to the image plane

and is captured with an intensity pattern 𝐼 . Thus, the forward mappingM of the intensity

patterns can be written as a composite function of GS and P

𝐼 =M(𝐼target) = P(𝜙) = P ◦ GS(𝐼target). (5.3)

83

5. Photo-Injector Laser Pulse Shaping

The optical propagation P needs to be accurately modeled and incorporated into the

back-and-forth propagation steps in the GS algorithm to reproduce the 𝐼target on the image

plane with high quality. However, this is not always feasible due to additional elements

present in the laser path and the mismatch between optical simulation and the real-world

setup. NNs are a promising method to model an unknown propagation P thanks to their

capability as general function approximators. Previous work [157] demonstrated that a

convolutional neural network (CNN) can be used to learn the inverse process P−1, i.e.
predicting the modulation pattern 𝜙 to be applied on the SLM from any given target image.

In our setup, however, learning the inverse processP−1 directly is difficult and undesired,

as it adds complexity to the training process by requiring the network to learn the FT,

because the image plane is placed in the far-field to the SLM. Therefore, an alternative

strategy is proposed: train a CNN to directly learn the inverse processM−1 between the

target image 𝐼target and the produced image 𝐼 at the image planeM−1(𝐼) = 𝐼target.
The network structure used here is inspired by the U-Net [158]. It can map an input

image to an output image with the same dimension and perform modifications on the

image while preserving the spatial information in the input. The U-Net structure consists

of multiple downsampling blocks, upsampling blocks, and skip-connections between the

same level of down- and upsampling blocks. The downsampling block contains convolution

layers and pooling layers to extract the spatial features in the image, reducing the image

dimension and increasing the channel number. Each channel in the CNN can be viewed as

a certain feature in the image. The upsampling blocks utilize the transpose convolution

layers to increase the dimension back to the input image size sequentially. The skip-

connections preserve the spatial information in the images and help the upsampling blocks

to locate the features in the image. This structure suits the transverse setup here as the

distortion in the optical path is small so the target image and the modulated image are

expected to be strongly correlated.

Figure 5.7 shows the network structure used in this study. The definitions of the network

layers and blocks are as follows: BN is a 2D batch normalization layer [159]; rectified

linear unit (ReLU) is the rectified linear unit activation function; Conv(𝐾, 𝑆) is the 2D
convolution layer with kernel size 𝐾 and stride 𝑆 ; TConv(𝐾, 𝑆) is the transposed 2D

convolution layer. The ConvSame block consists of a Conv(3, 1) and a BN layer, which

changes the number of convolution channels but preserves the pixel count. It is used

for processing the input image and predicting the output image. The "Down" block with

Conv(3, 2) reduces the image resolution and increases the number of channels𝐶 , whereas

the "Up" block does the opposite. The network is chosen to take grayscale input images with

a pixel count of 𝑁 2 = 32
2
, mapping to an initial count of 𝐶𝑖 = 16 convolutional channels.

The downsampling blocks and upsampling blocks of the same depth are skip-connected

to aid the training and preserve the spatial information. It includes four downsampling

blocks, ultimately expanding to 256 channels at the deepest layer of the network.

The dataset for training comprised images from the widely-used MNIST database, which

contains handwritten digits [160]. These images, originally at a resolution of 28
2
, are

zero-padded to 32
2
to fit the network’s input size. Figure 5.8 illustrates the process of

training data generation. The original image (a) 𝐼target is transformed into a CGH, i.e.

an image consisting of phase patterns, using the GS algorithm. The phase pattern (b)

GS(𝐼target) is then displayed on the SLM. The incident laser is modulated by the SLM and

84

5.3. Demonstration of Transverse Laser Modulation

懋 懋

齉 頾齉 遢䢲

Input
Up Down

Skip connection

Cᵢ*N²

Down

2Cᵢ*(N/2)²

1*N² Cᵢ*N² 1*N²

Output

Up

Down=[ConvSame,
Conv(3,2), BN, ReLu]

4Cᵢ*(N/4)²

Up=[TConv(2,2), BN,
ReLu, ConvSame]

Figure 5.7.: Structure of the CNN. The network consists of sequential downsampling and

upsampling blocks, which are skip-connected. 𝐶 : numbers of the convolution

channels; 𝑁 2
: resolution of the image; BN: Batch normalization; ReLu: Rectified

linear unit activation. [129]

further propagates onto the screen. The projected screen image (c) is captured using a

camera. Subsequently, the camera image is processed by cropping to region of interest

(ROI) and re-scaling to match the network’s expected resolution of 32
2
, resulting in the

final image (d) 𝐼 =M(𝐼target). It is worth noting the bright spot in the middle of the image,

also known as the zeroth order diffraction (ZOD). This is due to the unmodulated light that

does not interact with the CGH, resulting primarily from dead areas between pixels on

the SLM surface or window reflections. The zeroth order should be less significant when

working with the FLUTE driving laser with 𝜆 = 800 nm, which is inside the working range

of the SLM. Nevertheless, this presents a challenging scenario for testing the capability of

NN-based corrections to improve the laser shaping fidelity. In practice, the ZOD can be

further reduced or entirely eliminated with various methods, e.g. by applying a grating

pattern and only taking the first diffraction order or by adding a virtual focusing lens and

using an iris to filter out the rest of the light [143].

The training dataset for the NN consists of 10,000 pairs of such 32
2
grayscale images

taken from the experimental setup, as shown in Fig. 5.8(a, d). The network is then trained

to learn the inverse mapping 𝐼 ↦→ 𝐼target (d→ a) by minimizing the loss function 𝐿. It is

defined as the MSE between the NN output 𝐼𝑤 ≔ NN(𝐼 |𝑤) and target images 𝐼target

𝐿(𝑤) = 1

𝑁𝑥𝑁𝑦

∑︁
𝑥=1,...,𝑁𝑥

∑︁
𝑦=1,...,𝑁𝑦

√︃
(𝐼𝑤 (𝑥,𝑦) − 𝐼target(𝑥,𝑦)2, (5.4)

85

5. Photo-Injector Laser Pulse Shaping

(a) Original image

𝐼target

(d) Processed camera image

𝐼 =M(𝐼target)

(b) Phase pattern on SLM

GS(𝐼target)
(c) Screen image

Propagation of the

modulated laser

Cropping to ROIGenerate phase image

using GS

Training pair

,

Figure 5.8.: Generation and preprocessing of the CNN training data. (a) The original image

𝐼target to be displayed. (b) The phase pattern corresponding to the original image

is computed using GS and displayed on the SLM. (c) The laser is modulated by

the SLM and propagates onto the screen. A camera captures the screen image.

(d) The camera image is processed by cropping to the region of interest (ROI)

and re-scaling to the desired dimension. (a) and (d) are used as one data pair

for the NN training.

where𝑤 are the NN weights. The training process utilizes the Adam optimizer [63] with

an initial learning rate of 0.001. The training was conducted in mini-batches of 32, with

the process capped at a maximum of 100 epochs to prevent overfitting.

After the training was completed, the CNN was employed to generate laser patterns for

three different beam shapes, a digit, a Gaussian beam, and a flattop beam. The result of

the Gaussian beam is shown in Fig. 5.9. The target image (a) is input into the trained CNN

to predict an image that compensates for the distortions due to the light path setup. The

CNN attempted to suppress the zeroth-order diffraction by predicting less intensity to be

generated in the center of the image as shown in (d). The corresponding phase pattern

(e) is calculated and encoded on the SLM device. The resulting laser pulse at the screen

(f) is observed by the camera. As a comparison, the target image is directly transformed

to a phase modulation pattern (b) using the GS algorithm, with the camera image of

the modulated laser shown in (c). Comparing the two laser profiles shows a notable

improvement in the one from the CNN output, with reduced zeroth-order diffraction

visibility. This suggests that CNNs can effectively learn and compensate for systematic

86

5.4. Transverse Spatial Light Modulator Setup for FLUTE Photo-Injector Laser

(a) Target

SL
M

(f) Image with CNN

(c) Image with GS

CNN

(d) CNN prediction (e) CNN phase

(b) GS phase

generation phase pattern

GS

Input

Output

GS

Figure 5.9.: Results of the transverse laser shaping using the trained CNN. (a) The target

laser shape is a Gaussian distribution. (b) Direct generation of the phase mod-

ulation pattern using the GS algorithm. (c) The camera image corresponding

to the GS output. (d) The CNN prediction of the target laser shape. (e) The

corresponding phase pattern for the CNN prediction. (f) The camera image

of the laser modulation using the CNN prediction. More results are given in

Appendix A.3.

aberrations in the laser transportation path, and such an NN-enhanced approach is a

promising method for improving the modulation quality of SLMs. More results on the

CNN predictions at the transverse SLM setup are shown in Appendix A.3.

5.4. Transverse Spatial Light Modulator Setup for FLUTE
Photo-Injector Laser

The SLMwas then integrated into the beam path of the photo-injector laser at FLUTE [130].

The experimental setup is shown in Fig. 5.10. Two flip mirrors were installed to deflect the

Ti:Sa laser 𝜆 = 800 nm onto the SLM, allowing effortless switching between the operation

modes with and without the SLM. A 𝜆/2-waveplate was installed (not shown in the image)

to rotate the polarization of the laser pulse and ensure that the SLM correctly receives the

incoming laser with horizontal linear polarization. The SLM was placed in the laser clean

room due to the place constraints on the optical table close to the cathode, as shown in

Fig. 5.4. This results in a long in-air transportation path of ∼ 35m after the modulation

with SLM, including additional elements like the pulse picker, compressor, and the THG.

Before generating complex laser profiles, simple modulations were first performed to

study their effects on the photo-injector laser at FLUTE. As an initial test, SLM was used

87

5. Photo-Injector Laser Pulse Shaping

Figure 5.10.: Transverse laser modulation setup using SLM for FLUTE photo-injector laser.

Two flip mirrors (1,4) allow easy switching between operation modes with

and without the SLM. The setup is built in the laser clean room as shown in

Fig. 5.4.

to split the incoming laser and create two concurrent laser pulses for the photo-injector,

which was expected to generate two concurrent electron beams. Such beamlets can be

further used to characterize the photo-injector at FLUTE, e.g. by performing efficient beam-

based alignment of the solenoid. Such a modulation can be achieved by a blazed grating,
which can efficiently reflect the light in a given diffraction order. In comparison, for other

patterns such as the sinusoidal grating, the intensity of the light is distributed in many

diffraction orders. For an incoming light normal to the grating, the outgoing light gets

diffracted with an angle 𝜃

sin(𝜃) = 𝑚𝜆
𝑑
, (5.5)

where𝑚 ∈ N is the diffraction order, 𝜆 is the laser wavelength, and 𝑑 is the length of the

grating period. Such a diffraction grating can be electronically represented at the SLM by

phase images consisting of sequential linear ramps. The working principle of the blazed

grating and the corresponding phase image are illustrated in Fig. 5.11. In that case, the

grating period is an integer multiple of the pixel width 𝑑 = 𝑛 · 𝑑pixel = 𝑛 · 12.5 µm. The

strongest diffraction grating that can be achieved by the SLM is 3-pixel wide, with phase

values of {0, 𝜋, 2𝜋}. This corresponds to a maximum deflection angle of 1.22◦ in the first

88

5.4. Transverse Spatial Light Modulator Setup for FLUTE Photo-Injector Laser

diffraction order𝑚 = 1 with the 800 nm laser. In general, a horizontal blazed grating on

the SLM can be expressed as

𝑔(𝑥) = 𝑎 · 𝑥 mod 𝑛

𝑛
· 255, (5.6)

where 𝑎 is the amplitude of the grating pattern, controlling the fraction of light that will be

deflected. For 𝑎 = 0 the phase pattern becomes flat and no light is diffracted. This allows

a programmatic selection of the amount of laser power in the diffraction order and the

deflected angle.

𝑑

Modulation pattern on SLM

𝜃

Figure 5.11.: Illustration of the blazed grating and the corresponding modulation pattern

on SLM. The deflection angle 𝜃 of the laser can be controlled by varying the

grating period 𝑑 .

Here, 𝑎 = 0.6 and 𝑛 = 260 were chosen so that the zeroth and first diffraction order

could be simultaneously observed by the camera with similar intensities and a separation

of about 1mm. Figure 5.12 shows the experimental results captured by three cameras, with

the inset lines depicting the projected profiles in the horizontal and vertical directions. In

the first column are the laser distributions observed at the virtual cathode. The second

column shows the laser intensity observed directly at the cathode surface. The visible

strips in the laser distributions are expected to be artifacts from the surface of the injection

mirror, which reflects the laser onto the photocathode. The third column shows the

transverse electron bunch profiles projected on a Yttrium Aluminum Garnet (YAG) screen

positioned at 2.86m downstream of the cathode, with a bunch charge of 5 pC.

First, the reference images are taken without the modulation, as shown in the first row.

Dashed lines are added as a visual aid to the center of the laser and electron profiles. The

intensities of the images are normalized to the reference images respectively. Next, with

the grating pattern turned on, the laser spot on the cathode exhibited a division into two

points horizontally, as expected. Since the driving laser power was kept constant, each of

the pulses contained less intensity compared to the reference pulse after splitting. The

observed intensity ratio between the first diffraction order and the zeroth order appeared

to be higher than the specified 0.6/0.4 by the grating settings. This is partially attributed

to the non-linear conversion efficiency in the THG, which is larger for higher laser power.

With the modulated laser pulse, two co-propagating electron beams could be observed with

a vertical displacement. This is due to the off-axis propagation of the bunch in the solenoid

magnetic field. By scanning the strength of the solenoid, in addition to the focusing and

defocusing of the bunches, the off-center second electron bunch could also be observed

89

5. Photo-Injector Laser Pulse Shaping

−1

0

1
y

(m
m

)

(a)

Laser (v-cathode)

R
ef

er
en

ce

−1

0

1

(b)

Laser (cathode)

−2.5

0.0

2.5

(c)

Electron

−1 0 1

x (mm)

−1

0

1

y
(m

m
)

(d)

M
o
d

u
la

ti
on

−1 0 1

x (mm)

−1

0

1

(e)

−2.5 0.0 2.5

x (mm)

−2.5

0.0

2.5

(f)

0.05 0.10 0.15 0.20 0.25

Intensity (normalized)

Figure 5.12.: Double electron bunches generatedwith SLMmodulated laser. Camera images

of the laser at the virtual cathode (a, d), the cathode (b, e), and the electron

bunch on a diagnostic screen (c, f). Inset lines show the projected profiles onto

horizontal and vertical axes. The top row shows the images with unmodulated

laser and the bottom row (d, e, f) shows the images with SLM modulation.

The laser pulse was modulated via a blazed-grating pattern so that part of

the intensity was shifted to another position on the cathode, simultaneously

generating a second electron bunch. The second electron bunch was rotated

around the center bunch due to the solenoid magnetic field. The intensities of

the images are normalized column-wise to the reference images respectively.

Figure adapted from [130].

rotating around the centered original bunch. Overall, it successfully demonstrated that

the SLM is effective for modulating the photo-injector laser at FLUTE.

5.5. Outlook for Full Laser Modulation at FLUTE

The next step is to generate arbitrary transverse shapes as achieved in the proof-of-

principle setup in Section 5.3. However, this proves to be a non-trivial task in the current

photo-injector laser setup at FLUTE. Due to the non-linear conversions and the long

propagation path mentioned above, the intensity distribution of the final UV pulse is

very sensitive to the applied modulation pattern at the SLM. Arbitrary phase patterns

mostly lead to negligible conversion efficiencies and loss of the laser pulses. As a result,

90

5.5. Outlook for Full Laser Modulation at FLUTE

no meaningful dataset could be constructed for a NN to learn the mapping between the

modulation phase and the resulting laser profile.

In the following, the planned strategies are discussed that could address this challenge

and establish a full laser shaping setup at FLUTE. First and foremost, the SLM should be

positioned as close to the cathode as possible, minimizing the propagation length and

the number of optical elements between the SLM and the photo-injector. The long in-air

transportation path in the current setup not only limits the feasible modulation range

but also degrades the quality of the modulated laser significantly, as additional noise is

introduced by the air turbulence. Although the SLM still has to be put before the THG due

to wavelength limits, placing the SLM after the pulse picker and compressor is expected to

reduce the distortion significantly. However, this requires a new design of the laser path

and rearrangement of all the optical elements in the optical table. Due to time constraints,

this cannot be carried out within the scope of this dissertation but can be considered in

the future.

In addition, more diagnostics on the modulated laser can benefit the learning process.

The setups presented above only rely on the camera images, corresponding to the amplitude

part |𝐴| of the complex light field𝐴 = |𝐴| · exp(𝑖𝜙), providing only incomplete information

on the modulated light. A wavefront sensor could be employed to measure simultaneously

the actual wavefront of the modulated laser, providing direct information on the phase 𝜙 .

In this setup with the FLUTE photo-injector laser, it is no longer possible to apply

arbitrary phase patterns and observe the resulting laser image at the cathode plane. One

limitation comes from the long distance of in-air transportation, which limits the wave-

fronts that can be transported along the laser path. In addition, laser pulses with arbitrarily

modulated shapes have a poor conversion efficiency into UV, due to the non-linear ef-

ficiency by the THG. As a result, the laser pulses measured in the cathode plane often

have low intensities and high signal-to-noise ratios. The NN cannot learn a meaningful

mapping from the data pairs. To mitigate this issue, a pragmatic approach is to constrain

the training datasets to include only the ones that can generate physically feasible laser

pulses, which can be propagated through the laser path and have enough intensity after the

THG conversion. This essentially also reduces the degrees of freedom of the task. These

patterns should generate laser pulses that can survive the non-linear transformation and

can be measured at the photocathode with sufficient intensities. In addition, decreasing

the dimensionality of the actuators would significantly reduce the required number of

training samples.

Zernike polynomials are a promising solution to both reduce the degrees of freedom

and limit the patterns to physically feasible modulations. They form an orthogonal basis

of the functions defined on a 2D unit disk, which is discussed further in Appendix A.4.

In other words, any wavefront configuration can be decomposed into combinations of

those Zernike polynomials, and the dimension reduction can be effectively achieved by

discarding higher orders of the polynomials. They are particularly of interest as each

Zernike term corresponds to a specific aberration mode, such as tilt, astigmatism, and

spherical aberration. Figure 5.13 shows some early results of the laser pulses and electron

bunches resulting from applying Zernike polynomials on the SLM. More images can be

found in Fig. A.6.

91

5. Photo-Injector Laser Pulse Shaping

Zernike polynomial

n = 0
m = 0

n = 2
m = 0

n = 4
m = 4

Laser (v-cathode) Electron

−1 0 1

Amplitude (normalized)
0.00 0.25 0.50 0.75 1.00

Intensity (normalized)

Figure 5.13.: Results of laser shaping using Zernike polynomials. The left column visu-

alizes the Zernike terms applied on the SLM, the middle column shows the

laser pulses observed at the virtual cathode, and the right column shows the

generated electron bunches. Each row shows the modulation with a different

Zernike term with their indices (𝑛,𝑚). The image intensities are normalized

column-wise to the maximum pixel intensity.

It is clearly visible that with the (𝑛,𝑚) = (2, 0) term in the second row, the laser pulse

was more focused compared to the reference beam (𝑛,𝑚) = (0, 0), resulting in higher

intensities for both the laser and the electron bunch. Such results indicate that learning

a mapping between the different Zernike polynomials and the resulting laser pulse on

the photocathode is possible, especially with the help of additional information obtained

by wavefront sensors. Consequently, an adaptive controller can be trained, for example

using reinforcement learning, to control the Zernike coefficients to generate a desired

laser pulse.

92

5.6. Summary Machine Learning Enabled Laser Pulse Shaping

Lastly, although this chapter mostly focuses on transverse laser profile shaping, it is

important to note that temporal profile shaping is also possible using SLM. A separate

setup was built in the FLUTE laser clean room by Carl Sax and successfully shaped the

laser to a spectral quasi-flattop profile [129]. This was achieved by using a grating to

spatially separate the spectral components of a chirped laser pulse and image them onto

the SLM. The displayed pattern on the SLM modulated the laser in the spectral domain.

Afterward, the spectral components of the modulated laser pulse were reassembled using

a grating which is mirrored to the first one. The spectral modulation corresponded directly

to the temporal modulation when using a chirped laser. To achieve a spatial-temporal

laser shaping setup for future experiments, the temporal and the transverse modulation

setups could be combined. A full spatial-temporal laser shaping could be achieved with

a minimum of two SLMs, where one for the 𝑥 − 𝑦 plane and one for the 𝑧 (𝜆) plane as

described here. Alternatively, they could both be placed in the spectral modulation setup

and control 𝑥 − 𝑧 and 𝑦 − 𝑧 plane respectively as described in [145].

5.6. Summary Machine Learning Enabled Laser Pulse Shaping

Laser shaping with programmable devices like SLMs is a promising strategy to enhance

the performance of current and future photo-injector-based electron linear accelerators.

It enables full control of the laser shape and thus the electron bunch profile, which was

previously not achievable. They effectively extend the operation capabilities, for example

by increasing the maximum charge and reducing the beam emittances. The ability to

adaptively shape the laser with high-fidelity opens up avenues for novel operation modes

such as providing tailored electron bunches on demand during operation without changes

in hardware configurations or downtimes. Moreover, the utilization of shaped laser pulses

extends beyond optimizing the operation of RF photo-injectors. It also facilitates electron

shaping via other techniques, such as laser heater in the XFEL operation [161, 162] or direct

electron bunch shaping with ponderomotive forces [163]. Although such programmable

devices have very large degrees of freedom, common classical algorithms can only produce

limited modulation shapes or can be very time-consuming. It is also non-trivial to deal with

the degradation of the modulated laser due to non-linear processes in the transportation

path. Machine learning techniques are promising to mitigate these issues and provide

efficient, high-quality control for such SLM devices. Initial experiments in the transverse

laser shaping, as presented above in the section, have demonstrated that CNNs can enable

the modulation process and increase the quality of modulated laser pulses using SLMs.

Using FLUTE as a test bench, this chapter showcases how an existing facility can integrate

the SLM into the current laser setup. Several planned steps are discussed to achieve a full

spatial-temporal shaping of the photo-injector drive laser at FLUTE. In summary, laser

shaping represents a variant of how machine learning methods can contribute to enabling

diverse operation modes and achieving tailored control of the electron bunches in future

accelerators, advancing the frontiers of accelerator technologies.

93

6. Autonomous Online Accelerator Tuning

In particle accelerator operations, tuning the accelerator is a challenging task, but also

crucial for it to realize its full design performance [164]. The measured signals are often

noisy, both due to inherent random noise and uncertainties in the diagnostic devices. In

addition, the accelerator system is not fully stationary and subject to drifts at different time

scales, for example, due to the heating up of components, seasonal changes in temperatures,

and changes in the upstream beam parameters [64, 164]. These time-dependent effects

require either repeated parameter optimizations or some controller to keep track of the

achieved optimal settings. To date, manual tuning remains to be frequently employed in

most accelerator facilities. Nevertheless, the manual tuning is usually slow as humans

can only operate one actuator at a time. The performance of manual tuning also highly

depends on the operator’s experience and the state of the accelerator on that day. In the

past decade, more automated tuning routines have been developed and applied to assist the

manual tuning in particle accelerators and mitigate issues of high variance in performance

and scalability to higher dimensional tasks. This includes traditional optimization methods

like parameter scans, random search, Nelder-Mead simplex optimization [165, 166], robust

conjugate direction search (RCDS) [167, 168], and extremum seeking (ES) [169, 111].

Although they have been successful in individual applications, they are often limited in

some aspects, such as sample efficiency, robustness to noisy measurements, and the ability

to escape local optima and perform global optimization.

Automating the accelerator tuning process can greatly improve the availability It is also

an essential step towards a paradigm change in the accelerator operation scheme, allowing

the operators to specify high-level physical quantities required for experiments instead of

focusing on how individual parameters can be achieved. Machine learning (ML) algorithms

are promising methods to design novel intelligent controllers and optimizers and address

these challenges in online particle accelerator tuning. For online particle accelerator tuning,

two ML approaches have been especially successful and found wide adoptions, namely

Bayesian optimization (BO) and reinforcement learning (RL). BO is a class of algorithms

designed to globally optimize functions that are expensive to evaluate [170, 64]. It builds

a surrogate model for the objective and uses an acquisition function to guide the search.

Apart from its usage in simulated optimization tasks, BO can also be directly applied

for online tuning where the system dynamics are not fully known thanks to its sample

efficiency. RL is a paradigm closely related to control theory. It aims to find the strategy to

achieve optimal results in a data-driven approach, i.e. through trial-and-error interactions

with an environment. Although it is easier to justify the usage of RL algorithms for

time-sensitive tasks such as the microbunching control at storage rings [37, 38, 99] and

power supply regulations [39], RL has been successful also in tuning tasks where real-time

feedback is not necessarily required [36, 35, 171, 39]. The latter approach employs the idea

95

6. Autonomous Online Accelerator Tuning

that RL algorithms can be used to train domain-specific optimizers [172, 173] if enough

training data or a fast-executing environment is available.

As the field of applying ML methods for particle accelerator tuning is young and

emerging, most works in this field focus on exploring the feasibility of these methods and

applying them to new tuning tasks. There is a lack of overview or consensus on what

are the advantages of different ML methods and the practical challenges in applications.

In the scope of this dissertation, I worked on the Autonomous Accelerator project [53],

a collaboration between KIT and DESY devoted to developing novel and transferable

ML methods for the autonomous operation of linear accelerators. The developed tuning

methods are expected to be transferred between the two similar test facilities, the far-

infrared linac and test experiment (FLUTE) and the accelerator research experiment at

SINBAD (ARES). We investigated BO and RL in detail and performed systematic studies

comparing both methods in terms of performance, engineering effort, implementation

details, and potential limitations.

This chapter includes the simulated and experimental results of applying BO and RL

for online accelerator tuning at different particle accelerators, i.e. the European X-Ray

Free-Electron Laser (EuXFEL), the FLUTE, and the ARES. It showcases the workflow of

applying BO and RL methods for new online tuning tasks and provides a guideline on

method selection and the practicalities of implementations. First, Section 6.1 presents the

experiments of applying BO for the radiation intensity tuning at the EuXFEL. It shows

that the BO is now mature enough as a ready-to-use optimizer with performance on par

with the routine operational tools. Next, the FLUTE tuning task as presented in Section 4.2,

is used as a proof-of-principle task to demonstrate how such an accelerator task can be

alternatively formulated and solved as an RL problem. In Section 6.2, an RL agent is trained

to solve the FLUTE tuning task in simulation, with the goal of applying the agent for

online tuning in the future. To compare the performance of BO and RL experimentally, the

ARES Experimental Area (EA) beam tuning task is used as a benchmark. We performed

the first detailed comparison study of these two promising ML approaches in accelerator

tuning and evaluated them both in simulation and experiment. Section 6.3 presents the

comparison results and discusses the performance of each method in different realistic

scenarios. Based on the findings from the comparison study, Section 6.4 further discusses

the potential of these ML-based methods and points to future research directions. In

particular, the domain randomization technique is studied to train RL agents that can

be applied to similar lattice sections in ARES and FLUTE. This idea is further extended

using the meta-RL algorithm. It is expected that reliable and generalizable controllers

can be built for future accelerator operations by combining the strengths of RL and BO

algorithms, for example in the form of GP-MPC [174]. Parts of the results presented in

this chapter have previously been published in [76, 175, 42, 95, 176, 102].

6.1. SASE Tuning at European XFEL

A common scenario for online accelerator tuning is that the dependency of the optimization

objective on the input parameters is completely unknown or no accurate simulation model

exists. In such cases, one has to resort to black-box optimization methods. The self-

96

6.1. SASE Tuning at European XFEL

amplified spontaneous emission (SASE) process at linac-based free electron lasers (FELs)

is one prominent example of such tuning tasks. In SASE, the spontaneous undulator

radiation in the first section serves as the seed, modulating the electron bunches to

form microbunching and generating coherent narrowband radiations in the subsequent

undulator sections. High beam qualities, i.e. low emittance and low energy spread, as well

as a precise overlap between the bunches and the radiation pulses are required to maintain

the exponential power growth through the undulators until saturation. Tuning the SASE

intensity is a complicated task and needs to be performed on a day-to-day basis during the

FELs operations. At the EuXFEL, for example, over 400 devices have been used to perform

the SASE optimization [177]. The beam qualities entering the undulator beamlines can

be controlled by optimizing the injector sections, accelerating structures, and quadrupole

magnets, where detailed simulation models exist to assist the tuning process. However,

the electron beam trajectory inside the undulator sections is largely affected by real-world

issues such as the residual undulator fields, and beam-based orbit correction is needed. This

beam orbit tuning task is performed regularly using the Nelder-Mead simplex algorithm.

It is implemented within the OCELOT optimizer framework and has become the standard

tuning tool at EuXFEL. As I gained experience in BO both in simulation as shown in

Section 4.2 and experimentally for the storage ring injection optimization [31], I was also

invited to a beam time at EuXFEL, where I could test the BO method for FEL tuning.

Specifically, this section considers the beam orbit tuning task for the SASE1 beamline

at EuXFEL [6], the layout of which is shown in Fig. 2.8. The beamline consists of 35

undulator cells of 5m length, separated by 1.1m sections equipped with air coil correctors,

permanent magnet phase shifters, quadrupoles, and beam position monitors (BPMs). Two

combined horizontal and vertical air coil correctors are installed at the entrance and exit

of each undulator to perform fine orbit adjustments and compensate for the field errors.

The goal of the tuning task is to maximize the FEL pulse energy measured by the X-ray

gas monitor, which is an ionization chamber downstream of the undulators.

One of the challenges in the SASE tuning task is the noisy signal. As the seed radiation

comes from the shot noise in the initial charge density distribution of the bunch, the

output radiation will have a high shot-to-shot variance both in the temporal and spectral

profiles. The pulse energy measurements are averaged over 30 shots to reduce the noise

and stabilize the SASE tuning. Figure 6.1 shows the measured standard deviation of the

output signal depending on the pulse energy. Apart from the linear dependency for low

pulse energies, most signal noises are centered at 𝜇std = 126 µJ and 𝜎std = 100 µJ due to the

noisy SASE process. For the 10Hz repetition rate at EuXFEL, the averaging over 30 shots

corresponds to in total 3 s per observation.

6.1.1. Implementing Bayesian optimization for SASE tuning

The SASE energy maximization task can be viewed as a black-box optimization task. The

BO proves to be a promising technique to solve such kind of task in a sample efficient

way [64]. For this work, I implemented a custom version of BO using the BoTorch [178]

package. The Matérn-5/2 kernel is used as the Gaussian process (GP) kernel function and

upper confidence bound (UCB) is chosen as the acquisition function. The corresponding

GP hyperparameters are fitted dynamically during the optimization process. This data-

97

6. Autonomous Online Accelerator Tuning

µstd = 126 µJ

σstd = 100 µJ

0 200 400 600 800 1000 1200

Energy standard deviation (µJ)

0

500

1000

1500

2000

2500

3000

P
u

ls
e

en
er

gy
(µ

J
)

1

2

3

4

5

D
en

si
ty

×10−6

Figure 6.1.: Measurement noise with respect to the photon pulse energy. The lower plot

shows measured X-ray pulse energies averaged over 30 shots and the corre-

sponding standard deviations. The measured points are color-coded by their

density. The upper plot shows the measurement noise integrated over all

energies, giving an average noise of 126 µJ [76].

driven approach is more robust against machine condition changes compared to the earlier

applications [31, 28], where the hyperparameters are determined before the optimization

by fitting the archived data.

A well-known problem of BO is its over-exploration behavior as a global optimization

method. Due to the exploration-exploitation trade-off, it sometimes performs large steps

toward unexplored regions of the parameter space. In practice, this can either lead to

a sudden performance drop or even cause damage in the case of high-energy accelera-

tors [30, 31]. Safety or step size constraints are often introduced to mitigate this issue, but

hard limits can potentially over-constrain the search space and hamper the optimization

performance [64]. For the studied SASE tuning task, the proximal biasing [75] is employed

to mitigate this over-exploration issue. Taking the univariate optimization task as an

example, instead of setting hard limits on the optimization step sizes, the next sample point

is chosen by maximizing the product of the acquisition function and a normal distribution

N centered at the current settings 𝑥 (𝑡)

𝑥 (𝑡+1) = argmax𝑥 𝛼 (𝑥) · N (𝑥 (𝑡), 𝑙2b). (6.1)

98

6.1. SASE Tuning at European XFEL

This acts effectively as a soft limit, as the possibility to sample parameter settings that

are far away from the current setting is reduced. The amplitude of this penalization is

controlled by the biasing lengthscale 𝑙b. It can be easily extended to the multivariate

formulation, where the acquisition function is multiplied by the multivariate normal

distribution and the lengthscale becomes a vector 𝒍b, containing the bias terms for each

input parameter.

6.1.2. European XFEL SASE tuning results

The implemented BO method was benchmarked against the Nelder-Mead simplex algo-

rithm implemented in the OCELOT optimizer framework. The hyperparameters of the

simplex method, such as the initialization of the simplex, have been tuned by the operators

during years of operation. The detail on the Nelder-Mead simplex algorithm is further

described in Appendix A.5.1. To evaluate the performance of the optimization algorithms

in a reproducible manner, the corrector strengths were manually detuned to the same

initial settings, reducing the X-ray pulse energy to about one order of magnitude lower

than what is obtained in normal operation.

First, the BO and simplex methods are compared using one pair of horizontal and vertical

air coils starting from the same initial setting. The progress of the obtained X-ray pulse

energy is shown in Fig. 6.2 (a). Both methods could successfully maximize the pulse energy

to about 2800 µJ within 50 steps. The evolution of the two corrector values during the

optimization is visualized in Fig. 6.2 (b, c), where a clear distinction is visible. In the case of

simplex optimization, the correctors were varied back and forth in the allowed parameter

space before converging to the optimal settings. In comparison, the proximal biased

BO demonstrated a much smoother convergence towards the optimum, as the smaller

steps are preferred and the large oscillations are penalized. As the air coil correctors

investigated here do not suffer from magnetic hysteresis, both methods demonstrated

similar performance. In general, however, such a smooth parameter change could be more

beneficial when hysteresis is present or stress on the magnetic power supply needs to be

minimized.

The optimization was then repeated with an increasing number of randomly selected air

coil correctors up to 10 degrees of freedom. The final results are listed in Table 6.1. In most

cases, BO and simplex reached comparable final pulse energies, with the only exception

being the four-dimensional case, where BO seemed to converge to a local optimum. The

steps to convergence for each algorithm are also given. Here, the convergence is defined as

the step at which the variation of the objective values afterwards are smaller than 226 µJ,

i.e. the 1𝜎 upper bound of the measurement noise as calculated earlier. BO reached a

faster convergence than the simplex method in 4 out of 5 trials. As expected, the steps

to convergence for both methods increase with the number of tuning parameters, as

the parameter space of the task grows exponentially. For the 10-dimensional case, both

methods optimized the SASE intensity within about 100 steps, corresponding to about

5min of beamtime. Although the entire section offered over 100 actuators, in practice only

a subset of them need to be tuned to reach maximal FEL output power. In other words,

local optima with high enough objective values are sufficient for the SASE optimization

99

6. Autonomous Online Accelerator Tuning

0 10 20 30 40 50

Steps

0

1000

2000

3000

P
u

ls
e

E
n

er
gy

(µ
J
)

(a)

BO

Simplex

−0.10 −0.05 0.00 0.05 0.10

Horizontal corrector (mm)

V
er

ti
ca

l
co

rr
ec

to
r

(m
m

)

(b) BO

−0.10 −0.05 0.00 0.05 0.10

Horizontal corrector (mm)

(c) Simplex

0

10

20

30

40

50

S
te

p
s

Figure 6.2.: Progress of BO and simplex for the two-dimensional optimization task using

one pair of horizontal and vertical correctors in an undulator. The measured

X-ray pulse energies are shown in (a). The evolution of the corrector values

during the optimization steps for BO and simplex are visualized in (b) and (c)

respectively. [76]

task. Therefore, running several optimizations consecutively with a smaller amount of

actuators is often preferred, to reach a good enough setting in minimal beamtime.

In this beam orbit tuning task, the time for the objective evaluation is mainly attributed

to the averaging of the radiation signals, since the air coils have a fast settling time below

1 s. One possibility to further improve the tuning speed is by reducing the number of

averaging samples when measuring the output SASE pulse signals. The BO algorithm

was tested again on the 6-dimensional task with different numbers of averaging pulses,

corresponding to an averaging time of 3, 1, and 0.5 s. The progress is shown in Fig. 6.3.

Despite the more noisy signal, reducing the averaging samples to 𝑛avg = 10 does not seem

to have an impact on the BO performance. With 𝑛avg = 5, the optimization became slower

and reached a lower final pulse energy. However, at this configuration, the magnet settling

time and the computation time of BO started to become the major contributor to the

latency, taking up to about 1 s. Reducing the averaging number further will not effectively

speed up the tuning process. As a result, reducing the number of averaging samples to 10

100

6.1. SASE Tuning at European XFEL

Table 6.1.: Optimization results of BO and simplex with up to ten tuning parameters. The

number of steps to convergence is defined as the step after which the variation

of the objective values is smaller than the 226 µJ corresponding to the measured

signal noise.

of inputs Final pulse energy (µJ) Steps to convergence

BO Simplex BO Simplex

2 2880 2864 22 36

4 2500 2900 27 28

6 2845 2852 34 45

8 3120 2944 102 105

10 3011 3049 84 78

has the potential to maintain the FEL performance and reduce the overall tuning time by

a factor of two.

0 10 20 30 40 50

Steps

0

500

1000

1500

2000

2500

P
u

ls
e

en
er

gy
(µ

J
)

navg = 30

navg = 10

navg = 5

Figure 6.3.: EuXFEL tuning with BO for different numbers of averaging X-ray pulses. For

the 10Hz repetition rate, the numbers 𝑛avg = 30, 10, 5 correspond to 3, 1, and

0.5 s respectively. In all the runs, six tuning parameters were used with the

same initial settings.

An important feature of BO is that it can shed light on the optimization task by using its

GP model trained from the data points. The GP model can be viewed as a surrogate model,

as discussed in Section 4.1. For example, the SASE tuning task using four air coil correctors

is visualized in Fig. 6.4. In each subplot, the GP-predicted posterior mean function of one

pair of input parameters is shown, while the other two parameters take the average values.

The one-dimensional histograms at the top show the dependencies of the objective value

101

6. Autonomous Online Accelerator Tuning

on the individual corrector strength. It can be seen that the pulse energy is very sensitive

with respect to both horizontal and vertical correctors in cell 3, showing narrow peaks in

the posterior landscape. The condition is more relaxed for the horizontal corrector in cell

7, shown by a longer vertical strip in the posterior parameter space plot. This could either

assist the operator in monitoring the optimization process during operation or help gain a

better understanding of the system’s dynamics afterwards.

C
3.

Y
C

7.
X

C3.X

C
8.

Y

C3.Y C7.X

min max

min

max

0

500

1000

1500

2000

P
u

ls
e

en
er

gy
(µ

J
)

Figure 6.4.: GP Model visualization of the tuning task with four correctors located in

undulator cells 3, 7, and 8, where X and Y denote horizontal and vertical

respectively. The two-dimensional subspace plots show the posterior mean

predicted by the GP model with different combinations of correctors, while the

other parameters take their average values. The one-dimensional histograms

show the dependencies of the pulse energy on the individual corrector strength.

It can be concluded that BO proves to be a promising method for solving tasks like FEL

SASE pulse energy tuning. Even without fine-tuning to the specific task, BO achieved

comparable final pulse energies and faster convergence compared to the routinely used

simplex tuning method. In this custom implementation of BO, the overhead of applying

BO for new tuning tasks is largely reduced, so that little to no expert knowledge is required

during the application, making it an operator-friendly tool in the accelerator control room.

102

6.2. Reinforcement Learning Control for FLUTE Tuning

6.2. Reinforcement Learning Control for FLUTE Tuning

The task of efficiently tuning the performance of an accelerator during operation can

also be viewed as a control task, which can be solved using the framework of RL algo-

rithms [172, 173]. In such a formulation, the goal is to train a domain-specific optimizer
by interacting with the environment, which can subsequently solve the task efficiently

during operation [95]. In particle accelerators, the beamtime is often scarce and safety

constraints need to be respected during operation. This makes online training of RL agents

on real-world accelerators infeasible, unless the training can be performed at a very high

rate, such as using edge-computing techniques at storage rings [38, 99]. As a result, the

agents are often trained in a simulated environment and transferred to real-world tasks

afterwards. In this section, the FLUTE THz generation tasks as described in Section 4.2 are

investigated using an RL approach. The goal is to demonstrate the process of implementing

and training RL agents to solve a particle accelerator tuning task.

6.2.1. Formulation of the FLUTE Tuning as a Reinforcement Learning Task

Here a simplified version of the FLUTE tuning task is considered. The electron travels from

the exit of the linac into the bunch compressor and is observed at the end of the FLUTE

lattice. The final electron bunch length 𝜎𝑧 is to be minimized by tuning the strength of

the bunch compressor dipole magnets. The accelerator task first must be formulated as a

Markov decision process (MDP), i.e. the state, action, and reward tuple. In this task, a fixed

beam at the exit of the linac is considered, using the optimized tracking results obtained in

Section 4.2. Therefore, the final beam parameters depend only on the bunch compressor

setting. In a simulated environment, the state is fully observable. The observation is

defined as

𝒐 = (𝜃BC, 𝜎𝑧), (6.2)

where 𝜃BC is the bunch compressor strength expressed in bending angle, 𝜎𝑧 is the com-

pressed bunch length at the end of FLUTE. The action that the RL agent applies is the

change to the current magnet setting

𝒂𝑡 = Δ𝜃BC. (6.3)

This formulation of applying actions in limited increments prevents the RL from mem-

orizing the global optimal setting in the training environment and losing the ability to

generalize to other environments. It proves to be an important design choice when training

the agents in simulated environments and transferring them to real-world accelerators [36,

96]. The agent observes the current state and makes predictions based on the trend and

direction of changes, rather than directly predicting absolute values. To some extent, this

resembles the behavior of human operators. Here, the maximum allowed action is set to

be 10% of the complete action space range, allowing the task to be solved within 10 steps

for any initial conditions.

The reward function is chosen to be

𝑅(𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1) = 𝑤beam𝑅beam +𝑤action𝑅action, (6.4)

103

6. Autonomous Online Accelerator Tuning

which is a weighted sum of a reward based on beam parameters and a reward based on

action changes. The beam parameter reward is designed to encourage the RL agent to

achieve the target beam, i.e. the shortest bunch length. It is defined as

𝑅beam(𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1) = ELU(𝜎𝑧,threshold − 𝜎𝑧,𝑡+1) +𝑤improvementΘ(𝜎𝑧,𝑡 − 𝜎𝑧,𝑡+1), (6.5)

where Θ is the Heaviside step function giving only a positive reward if the bunch length is

improved in the current step, and 𝜎𝑧,𝑡+1 is the new bunch length after applying the action

𝒂𝑡 . The first term contains an exponential linear unit

ELU(𝑥) =
{
𝑥, 𝑥 > 0

exp(𝑥) − 1, 𝑥 ≤ 0,
(6.6)

which limits the reward between [−1, 𝜎𝑧,threshold]. Based on the simulated results obtained

in Section 4.2, the 𝜎𝑧,threshold is chosen to be 5 fs. Note that for simplicity, the bunch

length is expressed here in the unit of time. The RL agent receives a positive reward for

bunch lengths smaller than this threshold value. In addition, the agent will receive an

improvement reward if it reaches a better beam parameter than the current step.

The action change reward is defined as

𝑅action(𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1) = 1 − |𝒂𝑡/(𝒂max − 𝒂min) | , (6.7)

which is normalized in [0, 1] and penalizes large actions. This acts analogously as a

regularization term [179, 180] to prevent the trained agent from performing oscillating

actions around the optimal value. Such actions would lead to similar beam parameters

but are undesired when applying in real-world systems. In the training, the weighting

parameters are heuristically chosen to be𝑤beam = 1,𝑤improvement = 0.5, and𝑤action = 0.2 to

balance the behavior of the RL agent.

6.2.2. Implementation of FLUTE Tuning in a Reinforcement Learning
Framework

The RL task formulated above is implemented in the Gymnasium [181] environments, a

standard interface for representing general RL tasks in Python. The Gymnasium library is

the successor of the OpenAI Gym [182] library which was developed during the period

of this dissertation. For simplicity, the following sections refer to both libraries as Gym

environments.

To facilitate a seamless transfer of the trained RL agents between different simulation

models and potential future real-world deployments, the Gym environment is implemented

in a backend-agnostic manner, as shown in Fig. 6.5. The environment only implements the

basic logic of the RL task, i.e. the observations, the actions, and the reward function. How

the environment reacts to an action is implemented in the backends. In each step, the Gym

environment receives the new action from the RL agent, calculates the new parameters,

and sends the new parameters to the backends. For example in the simulation environment,

the backend runs the simulation with the new parameter settings and returns the output

beam parameters to the Gym environment. The interaction with real-world accelerator

104

6.2. Reinforcement Learning Control for FLUTE Tuning

RL Agent Gymnasium
environment

Backends
Simulation Real world

OCELOTCheetah

observation, reward

observation

action parameter settings

Figure 6.5.: Outline of the implemented RL framework. The accelerator tuning task is

encapsulated in the Gymnasium environment. The RL agent interacts with the

environment by taking actions and receiving observation and reward signals.

The Gymnasium environment includes different backends and interfaces with

either simulation or accelerator control systems.

control systems like EPICS [183] and DOOCS [184] can be implemented similarly. The

RL agent only interacts with the abstracted Gym environment, allowing the agent to be

directly transferred between different backends. For the FLUTE tuning task, the real-world

transfer is not tested as the required accelerator section is still under commissioning

at the time of completing this dissertation. Nevertheless, the same principle has been

demonstrated in the ARES tuning task, as described below in Section 6.3.

The Cheetah [42] simulation model is used as the training environment for its execution

speed. The RL agent is trained for 50 000 steps using the proximal policy optimization

(PPO) [89] algorithm as implemented in the Stable Baselines3 [185] package. The complete

list of parameters used for training is provided in Appendix A.6. In this training configura-

tion, most hyperparameters of the PPO take their default values without extensive tuning.

It needs to be mentioned that the large amount of training steps is mainly attributed to

the default values of PPO, which are optimized to solve more complex tasks. The required

number of steps can be significantly reduced if further adjusting the algorithm to the

complexity of the task, for example by increasing the frequency of the policy updates.

To demonstrate that the RL agent trained in simulation can also be deployed in a realistic

condition, we subsequently evaluated it in the OCELOT simulation including the space

charge and CSR effects. The result is shown in Fig. 6.6, with the evolution of bunch lengths

and the bending angles shown in (a) and (b) respectively. The trained RL could tune the

bunch compressor smoothly and converge towards a short bunch length of 𝜎𝑧 = 3.4 fs

within about 5 steps. It remains stable and does not oscillate any further afterwards, due

105

6. Autonomous Online Accelerator Tuning

20

40

σ
z

(f
s)

Step 0

Step 2
Step 20

(a)

0 5 10 15 20

Step

0.125

0.130

0.135

0.140

B
en

d
an

gl
e

(r
ad

)

(b)

−30 −20 −10 0 10 20 30

t (fs)

0.0

0.1

0.2

0.3

0.4

C
S

R
E

-fi
el

d
(M

V
/m

)

(c)

Step 0

Step 2

Step 20

Figure 6.6.: Evaluation of the trained RL agent for the FLUTE tuning task. The agent is

evaluated in the OCELOT simulation environment including collective effects.

(a) Evolution of the bunch lengths for the first 20 steps. (b) Evolution of the

bunch compressor bending angles. (c) The obtained coherent synchrotron

radiation (CSR) electric field at different stages of the tuning process.

106

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

to the action reward term. The corresponding electric fields of the emitted CSR pulses are

shown in (c). After the efficient tuning with RL, the CSR emission can be enhanced to a

peak field of 0.46MV/m. Although the agent is trained in the reduced-physics Cheetah

simulation, it can be effortlessly transferred in the more complex OCELOT simulation.

The evaluation at the real-world accelerator is not performed within the time frame of the

dissertation, as the bunch compressor section at FLUTE is still under commissioning. In

conclusion, such a beam tuning task can be easily formulated as an RL task. Once trained

using enough, the RL policy can be used as an efficient, domain-specific optimizer.

6.3. Comparing Reinforcement Learning with Bayesian
Optimization for Online Tuning

Although RL and BO originated from different research fields, they have both proven effec-

tive for online tuning tasks at particle accelerators, achieving superhuman performance.

Along with the traditional numerical optimizers like the simplex method and control

algorithms like ES, the toolbox of accelerator tuning now includes a variety of algorithms,

each with its unique advantages and limitations. When faced with a new tuning task,

it is natural to wonder which algorithm to choose, and what limitations and practical

challenges might arise. To address these questions, this section systematically compares

RL and BO for accelerator tuning in terms of the achieved results, convergence speed,

and the practical challenges associated with implementing and applying each algorithm.

Specifically, these algorithms are evaluated using their most common setups, where the

policy model of RL is completely trained in simulation due to the large number of required

training samples, while BO is evaluated from scratch without prior information, learning

the Gaussian process GP model entirely online. It needs to be noted that although these

setups are the most representative ways to apply RL and BO for online tuning tasks, addi-

tional modifications could be applied which will change the behavior of the algorithms.

The possibilities for task-specific modifications are also discussed below and in Section 6.4.

6.3.1. Transverse Beam Tuning at ARES Experimental Area

The benchmark task considered here is focusing and steering the electron beam on a

diagnostic screen by adjusting a set of magnets, which is a recurring task at many lin-

ear particle accelerators. The study is conducted at the EA section at the accelerator

research experiment at SINBAD (ARES) [186, 52], which is introduced in Section 2.4.2.

The EA section consists of three quadrupole magnets and two steering magnets, also

called steerers. Downstream of the magnets, a scintillating diagnostic screen equipped

with a camera is used to observe the electron bunch image. At the end of the EA section

is an experimental chamber, where user experiments with the electron beam take place.

The section is frequently used to fine-tune the pointing of the electron beam and provide

specific beam parameters for experiments, such as the dielectric accelerator experiment

requiring micrometer-level precision [187, 188].

The layout of the EA section is sketched in Fig. 6.7. The magnets are positioned in

the order of {𝑄1, 𝑄2,𝐶v, 𝑄3,𝐶h}, where 𝑄 stands for quadrupole magnets, 𝐶 stands for

107

6. Autonomous Online Accelerator Tuning

RL-trained
policy

BO
implementation

(Changes to)
magnet settings

Observed beam
parameters

Target beam
parameters

Operator

Quadrupole
magnet

Steering
magnet

Steering
magnet

Quadrupole
magnet

Quadrupole
magnet Camera looking

at diagnostic screen

Incoming electron
beam

Incoming beam

𝐼

Quadrupole

magnet

𝑄1

Quadrupole

magnet

𝑄2

Quadrupole

magnet

𝑄3

Steerer

𝐶v

Steerer

𝐶h

RL BO

Diagnostic screen

with camera

New magnet

settings

𝒖

Observed beam

𝒃

Target beam

𝒃′

Operator

Figure 6.7.: Simplified 3D illustration of the considered transverse beam tuning task at

the EA section of ARES particle accelerator. The section consists of three

quadrupole magnets and two steering magnets {𝑄1, 𝑄2,𝐶v, 𝑄3,𝐶h}, followed
by a diagnostic screen. The measured beam 𝒃 and the desired beam parameters

𝒃′ are provided to the algorithm performing the tuning. In the case of BO, they

are used to compute the objective. In the case of RL, they are provided along

with the magnet settings as input to the policy and are used to calculate the

reward. Both algorithms output either the next settings to the magnets 𝒖 or a

change Δ𝒖 to the current magnet strengths. Reproduced from [95].

corrector/steering magnets, and the subscripts stand for vertical and horizontal steerers

respectively. The quadrupole magnets can focus and defocus the beam and the steerers

can transversely deflect the angle of the beam. The quadrupole magnets can be operated

with normalized field strengths up to 𝑘 = 72m
−2
. The steering magnets can deflect the

beam at maximal 𝜃 = 6.2mrad. The camera observing the electron beam has a resolution

of 2448 × 2040 pixels and a size of 8mm by 5mm. The effective resolution of the screen

camera setup is about 20 µm.

For simplicity, the screen image of the electron bunch is reduced to four scalar values

representing the beam parameters 𝒃 = (𝜇ℎ, 𝜎ℎ, 𝜇𝑣 , 𝜎𝑣), which are the positions and the sizes

of the beam in the horizontal and vertical positions respectively. In the tuning process,

certain target beam parameters 𝒃′ are specified by the operator. The magnet settings are

given in the normalized field strengths 𝒖 = (𝑘𝑄1
, 𝑘𝑄2

, 𝜃v, 𝑘𝑄1
, 𝜃h), including the quadrupole

108

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

strengths and the deflecting angles of the steerers. The objective 𝑂 of the tuning task can

be generally defined as minimizing the difference between the current beam 𝒃 and an

arbitrary target beam 𝒃′

min

𝒖
𝑂 (𝒖 |𝑀, 𝐼, 𝒃′) = min𝐷 (𝒃 (𝒖 |𝑀, 𝐼), 𝒃′), (6.8)

with the component misalignments 𝑀 and an upstream incoming beam 𝐼 . Here, 𝐷 is a

distance metric quantifying the discrepancy between the current and target beam. In this

study, the mean aboslute error (MAE) is used as the difference metric for evaluation

𝐷MAE =
1

4

4∑︁
𝑖=1

���𝒃 (𝑖) − 𝒃′(𝑖) ��� , (6.9)

where 𝒃 (𝑖) denotes the 𝑖-th component of the beam parameters. The output beam parameter

depends on the incoming beam 𝐼 , the current magnet settings 𝒖, and the misalignments

of the components. In the simulations, the incoming beam can be described as a 13-

dimensional vector

𝐼 = 𝝁𝒙 ⊕ 𝝈𝒙 ⊕ (𝐸0) (6.10)

where 𝐸0 is the reference energy, ⊕ denotes the vector concatenation, and 𝒙 denotes the

6-dimensional canonical phase space coordinates as defined in Eq. (2.14)

𝒙 = (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧, 𝛿). (6.11)

In the simulation, we consider that the particles in the incoming beam are Gaussian

distributed in each phase space dimension, characterized by its mean 𝝁 and standard

deviation 𝝈 respectively. For the component misalignments, only the translation offsets

of the quadrupole magnets and the screen are considered. They can be described as an

8-dimensional vector

𝑀 =
(
𝑚𝑥,𝑄1

,𝑚𝑦,𝑄1
,𝑚𝑥,𝑄2

,𝑚𝑦,𝑄2
,𝑚𝑥,𝑄3

,𝑚𝑦,𝑄3
,𝑚𝑥,Screen,𝑚𝑦,Screen

)
, (6.12)

where𝑚𝑥 and𝑚𝑦 denotes the horizontal and vertical misalignments respectively. The

misaligned quadrupoles introduce additional dipole kicks and the screen offsets shift the

measured beam position. The steering magnets are not affected by the translation offsets.

In simulation, it is assumed that the components are not tilted or rotated.

6.3.2. ARES Experimental Area Tuning with Reinforcement Learning

The task is implemented using the Gym environments, similar to what is discussed in

Section 6.2. The EA lattice segment is implemented in the Cheetah simulation model to

provide fast interactions in the training phase.

6.3.2.1. Formulation as a Reinforcement Learning Task

The first step of applying RL algorithms for the tuning task is to formulate it as an RL task,

i.e. define the states, the observations, the actions, and the reward function. The task is

109

6. Autonomous Online Accelerator Tuning

defined as episodic, which means that the environment has initial and terminal states. An

episode ends when agent-environment interactions exceed some limits or the difference

between the current and target beam is smaller than a threshold value. As discussed above,

the output beam parameter depends on the incoming beam 𝐼 , the misalignments𝑀 , and

the current magnet settings 𝒖. The state is therefore defined as

𝒔𝑡 = 𝒖𝑡 ⊕ 𝒃𝑡 ⊕ 𝒃′ ⊕ (𝑀, 𝐼), (6.13)

where the subscript 𝑡 denotes the time step within one RL episode. The target beam 𝒃′ is
given at the beginning of one episode. Other values (𝑀, 𝐼) are also assumed to be constant

during the episode. The target beam 𝒃′ is included in the state definition so that the trained

RL agent can tune the magnets to achieve all the combinations of possible beam parameters

required during operation. In addition, letting the RL agent train with different target

beam parameters also allows it to be more easily transferred to the real-world accelerator

later.

Although in the simulation all the states could be specified or read, they are only partially
observable in the real world, as the incoming beam 𝐼 and the misalignments 𝑀 cannot

be fully measured. These hidden states also affect the output beam parameters and can

only be inferred during the episode. In other words, the ARES EA tuning task a partially

observable Markov decision process (POMDP). This is also one of the reasons for the

mismatch between simulation and real-world measurements and leads to the sim2real

transfer challenge. To match with what can be observed during operation, the observation

is defined as

𝒐𝑡 = 𝒖𝑡 ⊕ 𝒃𝑡 ⊕ 𝒃′, (6.14)

i.e. the current beam, the target beam, and the current magnet settings. To increase

the robustness of the RL agent when applied in the real world, a delta-action scheme is

employed, analogous to what is described in Section 6.2. The actions are defined as

𝒂𝑡 = Δ𝒖𝑡 = (Δ𝑘𝑄1
,Δ𝑘𝑄2

,Δ𝜃v,Δ𝑘𝑄1
,Δ𝜃h)𝑡 , (6.15)

which are the changes to be added to the current magnet settings. An RL agent trained

using direct actions, i.e. predicting the absolute magnet settings, will fail to transfer as there

is uncertainty in output beam parameters due to the hidden states. An additional important

mismatch between simulation models and real-world accelerators is the calibration error

in magnet settings. Overall, this delta-action scheme proves to be crucial for the success

of sim2real transfer [36, 96]. The reward function used for training is defined as

𝑅(𝒔𝑡 , 𝒂𝑡) =
(
1 + Θ(−Δ𝑂RL, 𝑡)

)
Δ𝑂RL, 𝑡

Δ𝑂RL, 𝑡 = 𝑂RL, 𝑡 −𝑂RL, 𝑡+1

𝑂RL, 𝑡 = ln

4∑︁
𝑖

𝑤𝑖

���𝒃 (𝑖)𝑡 − 𝒃′𝑡 (𝑖) ��� , (6.16)

where Θ is the Heaviside step function. The difference between the objectives Δ𝑂RL, 𝑡

represents the improvement the RL agent achieves at step 𝑡 . The Heaviside step function is

used to enhance the penalization (negative reward) the RL receives when the action results

110

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

in a negative improvement. Note that the objective used here 𝑂RL takes a different form

than the evaluation objective 𝑂 as defined in Eq. (6.8). The reason is to accelerate the RL

training. The weighting parameter𝒘 = (1, 2, 1, 2) assigns more weights for the beam sizes

than for the beam positions, as it is harder to achieve beam focusing than beam steering.

As the tuning task contains beam parameters across orders of magnitude, from millimeter

to micrometer range, the changes on the smaller scale will be negligible compared to the

initial changes. However, these final steps with precision at the tens of µm range are

especially desired and hard to reach in practice. The logarithm in the objective is used to

mitigate this effect and encourage the RL agent to perform such fine adjustments.

6.3.2.2. Training the Reinforcement Learning Agent

Here the training configuration of the RL agent is briefly described, more details can be

found in [36]. The allowed actions are 10% of magnet strengths ranges with ±30m−2
for quadrupole magnets, ±3mrad for the vertical steerer, and ±6mrad for the horizontal

steerer. The allowed changes for the vertical steerer are half of what is allowed for the

horizontal one. This is because the distance from the vertical steerer to the diagnostic

screen is two times the distance of the horizontal one to the screen. In such a way, both

steering magnets will have similar deflecting effects. In addition, the actions are normalized

to [−1, 1] to improve the performance of the RL policy, a 3-layer fully-connected neural

network (NN). The rewards and observation are also normalized using a running average

over the training progress.

The RL policy is trained using the twin delayed deep deterministic policy gradient

(TD3) [90] algorithm as implemented in the Stable Baselines3[185] package. The TD3 is

chosen for its relative sample efficiency compared to other algorithms. Nevertheless, other

popular RL algorithms like PPO can also be used to train agents with similar performances.

The training takes 6 000 000 steps in the fast-executing Cheetah simulation, corresponding

to a total of 6 hours of computation time.

As the RL agent is trained in Cheetah and needs to be applied on the ARES accelerator,

it is important to account for the discrepancies between the simulation model and the real-

world accelerator. During the training, domain randomization (DR) [189, 190] is applied to

train a robust RL policy. Specifically, at the beginning of each episode, the misalignments

𝑀 , the incoming beam 𝐼 , and the target beam 𝒃′ are randomly sampled from uniform

distributions. The misalignments𝑀 and incoming beam 𝐼 can be viewed as unknown in

the real world and contribute to the mismatch between the training environment and the

real-world environment. This ensures that the trained RL agent can solve the tuning task

in a variety of task configurations, with the hope that the real-world accelerator also falls

in the sampled distributions.

6.3.3. ARES Experimental Area Tuning with Bayesian Optimization

At the same time, the EA tuning task can be also treated as a function optimization task

straightforwardly. It has a clear objective which is to bring the measured electron beam as

111

6. Autonomous Online Accelerator Tuning

close as possible to the target beam. The goal can be described as maximizing the following

objective

max

𝒖
[−𝑂BO(𝒖 |𝑀, 𝐼, 𝒃′)] = max

𝒖
[− lnMAE(𝒃, 𝒃′) +𝑤on-screen(𝒃)] , (6.17)

which is the negative logarithm of the MAE between the current and target beam. An

additional on-screen reward𝑤on-screen = 10 is added to the objective when the beam can

be observed on the screen, and subtracted from the objective when the beam is off the

diagnostic screen. This is used to reduce the possibility that BO explores settings where

the beam has a large transversal offset. It needs to be noted that this effect can also be

achieved by explicitly modeling the beam positions as safety constraints and applying safe

BO [77, 78]. The BO objective function contains also the logarithm to encourage further

improvements when the beam parameters have already reached the sub-millimeter scales,

analogous to the case in RL.

In this study, a custom BO version is implemented using the BoTorch [178] library.

The magnet settings 𝒖 are min-max normalized to [−1, 1], and the objective values are

standardized to improve the numerical stability of GP model fitting. The covariance

function of the model is the sum of a Matérn-5/2 kernel and a white noise function. The GP

hyperparameters, such as the lengthscales and the signal noise, are dynamically fitted to the

data using maximum log-likelihood methods in each optimization step. For the evaluation

results shown below, the expected improvement (EI) is used as the acquisition function,

automatically balancing the exploration and exploitation behavior. Other acquisition

functions like UCB have been tested as well and reached a comparable performance.

A custom wrapper was developed for this study. During the period of this study, the

Xopt [15] package has been developed as a general-purpose optimization library for

accelerator tasks, which also includes implementations of state-of-the-art BO algorithms.

These algorithms in the Xopt package are also tested and a custom interface of Xoptwith the

Gym environment was developed. The results are further detailed in Appendix A.7. Overall,

the variant of BO implemented in this dissertation proves to match the performance of

those implemented in the Xopt package.

6.3.4. Benchmarking Reinforcement Learning and Bayesian Optimization
results

The BO and the trained RL agent were subsequently evaluated in simulation models and

at the ARES accelerator. In the simulation, a set of 300 randomly selected trials were used

as the evaluation configurations. Each trial is defined by

(𝒃′, 𝑀, 𝐼) , (6.18)

a tuple consisting of a target beam, components misalignments, and the incoming beam

parameters. The target beam was sampled in a range of ±2mm for beam positions and

0 - 2mm for beam sizes. The ranges are chosen to cover a wide range of measurable

beam parameters at the diagnostic screen. The incoming beam parameters are randomly

generated within the normal operating range of ARES. The misalignment range is chosen

112

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

to be ±0.4mm, which is larger than the estimated range in the real accelerator. For

evaluation, each episode is started from a fixed focusing-defocusing-focusing setting of

the quadrupole magnets, with the strengths being (𝑘𝑄1, 𝑘𝑄2, 𝑘𝑄3) = (10,−10, 10)m−2. The
steering magnets strengths are set to 0mrad.

0 20 40 60 80 100 120 140 160 180

Step

0.0

0.2

0.4

0.6

0.8

B
es

t
M

A
E

(m
m

)

RL
BO
ES

Simplex

Random

RL (real world)

RL (simulation)

BO (real world)

BO (simulation)

Simplex (simulation)

Random search (simulation)

ES (simulation)

Figure 6.8.: Beam difference convergence plots for different optimization algorithms. The

evaluation results of different algorithms are shown for the real-world experi-

ments (solid lines) and the simulated experiments (dashed lines), averaged over

all evaluated trials (300 in simulations and 22 in the real world). The simplex,

ES, and random search have only been evaluated in simulation. The shaded

envelopes show the 95 % confidence intervals of the beam differences averaged

over all trials. In the vertical axis, the best beam differences encountered up to

each step are shown, i.e. the beam differences that one would return to if the

optimization was terminated in the respective step. This metric is called the

best MAE. [95]

In addition to the learning-based algorithms RL and BO, Nelder-Mead simplex, ES, and

random search are also evaluated as baseline algorithms. Details on the Nelder-Mead

simplex method can be found in Appendix A.5.1 and ES is discussed in Appendix A.5.2.

Both of them are tuned to find the hyperparameter settings that produce the best MAE

results in the evaluated trials. The results of the simulation evaluations are shown in

Fig. 6.8, with the beam parameters and convergence steps listed in Table 6.2. The best

MAE shown in the plot is defined as the best beam differences the algorithm achieved up

113

6. Autonomous Online Accelerator Tuning

Table 6.2.: Performance of different optimization algorithms on the ARES task in simulation

and real world. The simulation study consists of 300 trials with different task

configurations. The real-world results consist of 22 trials. In the real-world

studies, RL was evaluated for 50 steps, and BO was evaluated for 75 steps due

to the limited beamtime. In simulation studies, all algorithms performed 150

steps. The steps to target are defined as the number of steps an algorithm took,

until MAE is below the threshold of 𝜖 = 40 µm. An optimization succeeds when

MAE below 𝜖 is reached. The steps to convergence are defined as the number of

steps, after which the improvement of best MAE is smaller than the threshold 𝜖 .

Optimizer

Final MAE (µm) Steps to target Steps to convergence

Median Mean Median Mean Success rate Median Mean

Simulation

RL 4 11 7 12 92% 6 7

BO 45 60 40 48 43% 19 29

ES 81 111 121 107 17% 43 47

Simplex 270 300 56 55 1% 28 25

Random 460 490 / / 0% 28 48

Real world

RL 24 29 12 13 55% 7 8

BO 44 58 45 48 45% 13 17

to each step. This is used as BO and random search can make large steps leading to a noisy

MAE progress. The system can always return to the previously obtained good settings,

assuming that the tuning task is not time-dependent. It can be seen that the learning-based

algorithms RL and BO outperform the baseline methods both in final beam parameters

and convergence speed. The reached MAEs are half of what is achieved by ES and almost

an order of magnitude smaller than the ones achieved by the simplex and random search

methods. The trained RL policy could even reach a median final beam difference of 4 µm,

which is an order of magnitude smaller than the BO result, and also smaller than what

could be realistically reached at the ARES accelerator with an effective screen resolution

of about 20 µm.

The convergence speed of the algorithms is reported in the Table 6.2 with two metrics.

The steps to target are defined as the number of steps an algorithm took until the MAE to

the target beam is below the threshold 𝜖 . In this study, the threshold value 𝜖 is defined as

two times the effective resolution of the real measurement setup 𝜖 = 40 µm. The steps to
convergence are defined as the number of steps, after which the improvement of the MAE

does not exceed the threshold 𝜖 . They roughly represent, how many steps an algorithm

needs to interact with the environment before reaching its best result.

It needs to be pointed out that the convergence speed difference is mostly attributed to

the experience RLO gained during the training phase. The number of steps required by

BO to convergence can be greatly reduced with an informed GP model, for example by

114

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

0 20 40 60 80 100

Step

10−1

100

B
es

t
M

A
E

(m
m

)

(a)

10−1 100

Evaluation task MAE
(mm)

10−1

100

S
am

p
le

ta
sk

M
A

E
(m

m
)

(b)

Warm start (r = 1.0)

Warm start (r = 0.9)

Warm start (r = 0.5)

Cold start

Figure 6.9.: BO warm start using data from previous runs. (a) The progress of BO using

historical data with various qualities, quantified by their correlations with the

current task, compared with running BO from scratch. (b) Correlation plot of

the historical data with respect to the current task. [95]

including historical samples and data from simulations. This idea is tested in the simulation

with the results visualized in Fig. 6.9. In the warm-start runs, 100 samples from previous

simulation results are used to build the initial GP model. The samples are taken from

another task, where the incoming beam was varied from the task where the evaluation

is run. As expected, the performance of BO improves when historical samples are taken

from a task configuration that is similar to the new task. The similarity between tasks

can be characterized by the correlation coefficient 𝑟 , calculated from the MAEs for the

sample task and the evaluation task with the same magnet settings. At the extreme, where

𝑟 = 1, i.e. previous samples stem from the same task, convergence can even be achieved in

one step. The required amount of data points for warm-starting BO before optimization

is four orders of magnitude lower than the samples required by RLO training, due to

the sample efficiency of GP models. This makes BO an especially appealing candidate

in the absence of fast-executing simulations. As expected, the benefit of using previous

samples is decreasing with the correlation 𝑟 between tasks and can even hamper the

performance when the tasks are less correlated, e.g. 𝑟 = 0.5. One way to mitigate this issue

is to introduce a weighting factor for the historical samples and gradually decrease their

contribution to the GP model building, analogous to what is used in prior-mean assisted

BO [112] or adaptive BO [73].

The RL and BO were also tested in the real world. During the evaluation, the settings

of the ARES accelerator were usual working points and not set to a particular state. The

purpose is to test algorithms’ robustness against the different usual conditions. The

upstream beam parameters are left at the same state that ARES was in from previous

115

6. Autonomous Online Accelerator Tuning

beamtimes, and therefore as unknown parameters for the evaluated algorithms. The

experiments were conducted on 9 different days, running with different bunch charges

at 2.6 - 29.9 pC, and reference energies around 154MeV. The evaluations of RL and BO

were run consecutively for each trial, to make sure that the accelerator conditions are

comparable. Before each episode, a rough beam-based alignment was performed so that

the upstream beam passes closely, but not exactly, through the magnetic centers of the

quadrupole magnets and the beam could be observed on the diagnostic screen. This can

also be assumed to be a standard operation condition, as the beam is not expected to

deviate too far from the design trajectory. The implication of this is further discussed

in Section 6.3.5.2. Due to the limited availability of beamtime, 22 distinct trials out of

the set of 300 trials were used for evaluation at the ARES accelerator. As opposed to the

simulated study, the misalignments and the incoming beam could not be measured or

changed during the experiment. Only the target beam parameters were set to the ones as

defined in the trials.

The convergence behavior of both algorithms at the ARES accelerator is also shown

in Fig. 6.8. It can be observed that although RL still reached a lower final MAEs than the

BO results, the differences between them are much smaller compared to the ones in the

simulation study. BO demonstrated almost the same performance in all metrics in the

simulation and the real-world studies. In comparison, the RL agent reached a median

MAE of 24 µm, which is worse than the result in the simulation. The possible reason for

the degradation is the mismatch between the training environment and the real-world

accelerator, despite dedicated measures to improve the robustness of the RL policy. Among

the 22 trials, RL still outperforms BO in the final MAE in 13 trials.

One example trial on the accelerator is shown in Fig. 6.10. The optimization progress of

RL is shown in the left panels (a,b,e,g) and the progress of BO is shown in the right ones

(b,d,f,h). At the real-world accelerator, the trained RL policy used much smoother actions

(a,c) compared to the ones using BO (b,d). This is also reflected in the smooth convergence

of the beam parameters (e,g). Due to the exploration behavior, strong oscillations in

the beam parameters (f,h) can be observed for the BO episode. The actual beam images

observed before and after the optimization are shown in (i,j), where the target beam

parameters are marked using dashed lines. Despite having completely different actions

during the optimization, both methods produced final beams visually close to the desired

beam.

6.3.5. Practical Challenges for Online Accelerator Tuning

The deployment of ML-based algorithms for online accelerator tuning is faced with various

practical challenges, including the sim2real transfer mentioned above. This section dis-

cusses the ability of the algorithms to deal with such realistic issues, for example, limited

diagnostic information and time-dependent systems.

6.3.5.1. Sim2real Transfer

One major challenge of designing an optimizer or controller and deploying it to an acceler-

ator tuning task is the sim2real challenge. This issue generally arises when the algorithm

116

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

0

1

RL

(a)

CV CH

−1

0

1
(c)

Q1 Q2 Q3

−2

0

2

(e)

µx µy

0 20 40

Step

0.0

0.5

1.0

1.5
(g)

σx σy

BO

(b)

(d)

(f)

0 20 40 60 80

Step

(h)

−2.5 0.0 2.5

x (mm)

−2

0

2

y
(m

m
)

Before

(i)

−2.5 0.0 2.5

x (mm)

After

−2.5 0.0 2.5

x (mm)

Before

(j)

−2.5 0.0 2.5

x (mm)

After

N
or

m
al

is
ed

ac
tu

at
or

se
tt

in
g

B
ea

m
p

ar
am

et
er

s
(m

m
)

Figure 6.10.: Example optimizations for one trial on the ARES accelerator. (a,c,e,g) show re-

sults using RL. (b,d,f,h) show results using BO. The steering magnets strengths

are shown in (a,b), and quadrupole strengths are shown in (c,d). (e,f) show the

beam positions and (g,h) the beam sizes. (i,j) show the beam images before

and after the optimization using RL and BO respectively. The target beam

size and position are indicated with dashed lines. [95]

117

6. Autonomous Online Accelerator Tuning

is developed using a cheap-to-evaluate model, where a large amount of data can be col-

lected, and there exist mismatches between the simulation and the real-world system.

To overcome the sim2real gap, one needs to be extra cautious in the task formulation.

As discussed in Section 6.3.2.1, many design decisions for the RL are made to ensure a

seamless transfer between the simulation and the real-world task. One example is the

delta-action scheme, which increases the robustness of the RL policy when the effect of an

action, changes of the magnet strengths, in simulation and the world are mismatched. The

DR technique during the training is also essential. By randomizing the task distribution,

in this case, the magnet misalignments and incoming beam, it produces a more robust

policy at the cost of increasing the complexity of the task itself.

The BO method, in comparison, usually does not have the sim2real problem. As the way

it is implemented in this study and applied to the ARES task, the entire dataset to build the

GP model is obtained online during the optimization and the GP hyperparameters such as

the lengthscales are fitted at every step. As a result, the trained model is expected to learn

the behavior of the real accelerator without any biases. The high-level hyperparameters,

such as the choice of kernel functions and acquisition functions, are usually applicable to

a wide range of objective functions and thus robust to the potential sim2real mismatches.

Nevertheless, if BO uses the simulation data to warm-start the GP model, similar sim2real

challenges as for RL will arise.

6.3.5.2. Robustness in the Presence of Sensor Blind Spots

Another challenge in online accelerator tuning is the noisy or erroneous measurements

due to the limitation of diagnostic devices. In the EA tuning task, erroneous beam mea-

surements can occur when the electron beam is off-screen. In such a case, the automatic

calculation of beam parameters will result in wrong values and falsify the predictions of

the algorithms.

During the evaluations, RL can usually recover the electron beam in just a few steps

when the beam is outside the diagnostic screen. This is because the pre-trained policy can

roughly predict the beam’s position based on the magnet settings, even though the non-

present beam is not part of its training experience. In comparison, BO struggles to recover

the electron beam especially when it is off-screen during the initial steps. The reason is

that the GP model is built entirely at the application time and faulty observations at the

first steps lead to a useless initial model. As BO lacks the information about the objective

function’s topology, it can take arbitrarily many steps before the beam is again detected

on the screen. On the other hand, steering the beam in the middle of the optimization is

not so critical, as this is punished by using the on-screen term in the objective definition

Eq. (6.17). Alternatively, this can be mitigated by introducing constraints [75, 30] in the

BO and marking the region with erroneous signals as invalid, so that it is only allowed

to take steps within the predicted safety regions. The sensor blindness issue can also be

addressed by using an informed prior-mean function for the GP model, either built from

previous data or directly from the Cheetah simulation [42] as discussed in Section 4.4.

To better understand the impact of sensor blindness, RL and BO are again evaluated in

simulation with finite sizes of the diagnostic screen. Both algorithms were tested again on

the same set of 300 trials. Unlike the previous evaluation, now the simulation will return

118

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

Table 6.3.: Performance of RL and BO in simulation with finite diagnostic screen. The

metrics reported here are as defined in Table 6.2, evaluated on the 300 trials

in simulation. The diagnostic screen is assumed to have finite dimension and

beam measurement returns an erroneous signal if the electron beam is not on

the screen. Both algorithms were tested once with incoming beams as defined

in the trials’ configuration (no beam-based alignment), and once with the beams

aligned to the quadrupole magnets (with beam-based alignment). [95]

Optimizer

Final MAE (µm) Steps to target Steps to convergence

Median Mean Median Mean Success rate Median Mean

No beam-based alignment

RL 4 13 7 12 93 % 6 7

BO 38 61 44 53 53 % 20 30

With beam-based alignment

RL 4 10 6 12 95 % 6 6

BO 23 28 33 37 85 % 19 20

an erroneous reading if the beam is outside the physical dimensions of the diagnostic

screen. Specifically, it will produce a centered large beam, analogous to the readout in the

real-world system. Two different operation conditions are considered, i.e. starting directly

from the randomized incoming beam as defined in the trials, and performing a beam-based

alignment beforehand to align the incoming beam to the middle of the quadrupole magnets.

The latter configuration ensures that the beam can at least be correctly observed on the

screen at the first step. The results are listed in Table 6.3. As expected, as RL policy

contains an internal model of the system, it is fairly robust against the sensor blind spots.

RL demonstrated almost identical performance in the two conditions, reaching a median

final MAE of 4 µm and over 90 % success rate of converging to the target beam. In contrast,

BO benefits from an initially aligned incoming beam. The final MAE is improved by 40 %,

the success rate is increased to 85%, and convergence speed is also increased by about

25 percent. Overall, it can be concluded that the initial data points are very important for

BO if the GP model is learned from scratch.

6.3.5.3. Robustness Against Non-static Systems

A common scenario in the real-world tuning task is the time-dependent system. This

happens in particle accelerators at multiple time scales, from the random noise in the

low-level control objects like RF appearing below the seconds level to long-term drifts

such as the environmental temperature change over months. The high-frequency noises

in the radio frequency (RF) or other components are often accounted for using low-level

feedback controllers. The long-term drifts occur beyond the period of one optimization

run and their impact on the objective function can often be neglected. For the optimization

algorithms running over minutes to an hour, the impact usually comes from the middle-

term effects such as the heating up of the magnets. The ability to perform optimization

119

6. Autonomous Online Accelerator Tuning

in a drifting system is thus an important feature of an optimization algorithm. Once

the RL policy is trained as in this study, it remains fixed during application time. The

next action is predicted merely based on the differences between the current settings

and beam parameters and the target beam. This makes the RL policy directly applicable

as a continuous feedback controller. On the contrary, BO is not designed to solve such

continuous tuning tasks. In this study, the BO implementation assumes that the task can be

formulated in a static objective function. Being time-dependent means that the objective

function can have different values for the same magnet settings. As a result, the GP model

built on the observed data points becomes no longer valid for the current system state,

rendering the BO prediction less informative or completely wrong. If the system is known

to have a time dependency that affects the objective function, the concept of contextual

BO (C-BO) [71], also known as adaptive BO [70], can be used to mitigate it. Instead of the

basic formulation, C-BO aims to maximize the noisy measurement signal

𝑦𝑡 = 𝑓 (𝑥𝑡 , 𝑐𝑡) + 𝜖, (6.19)

where 𝑓 : 𝑋 × 𝐶 → R is an unknown function mapping from the actuator space 𝑋

and context space 𝐶 to a real-numbered objective. The context is a set of additional

parameters that can be measured but not directly controlled. In particle accelerators,

contextual parameters could be the ambient temperature, electron beam current, or simply

the time. One application example is the injection at storage rings. The optimal parameter

settings change as the stored current increases due to the collective effects. It has been

demonstrated that including the beam current as a context variable leads to a more efficient

optimization [31].

In C-BO, the GP model approximates the joint mapping of the input parameters and

the contextual parameters to objective values. Even with the same parameter settings, the

previous data becomes less relevant if the context parameters are distant from the current

ones. The next sample to evaluate is chosen by

𝑥𝑡+1 = argmax𝑥 𝛼 (𝑥 |𝑐𝑡+1), (6.20)

maximizing the acquisition function conditioned on certain context values. They can

either be directly measured or inferred in general contextual optimizations, or set to the

time that the action is expected to take place in the case of using time as a contextual

variable [64].

The optimizers are again tested in simulation to evaluate their performance in the case

of a non-static system. In the evaluation, the simulated system remains constant for 10

episodes, and the incoming beam starts to drift afterwards. Concretely, the mean position

of the incoming beam demonstrates a sinusoidal pattern with a period of 100 steps. In

reality, this could be caused by the instabilities of the photo-injector laser system. The

progress of different optimizers is shown in Fig. 6.11, with the respective metrics listed in

Table 6.4. For each method, the best obtained MAE in the first 75 steps are reported, and

the mean and median MAEs are calculated over the steps afterwards. First, the changing

beam MAEs without any action are shown with the label "do nothing" as a baseline. The

magnitude of the changing incoming beam corresponds to about 237 µm. The RL policy

manages to act reliably as a feedback controller and maintain the MAE at a low level

120

6.3. Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning

0 50 100 150 200 250 300

Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
A

E
(m

m
)

(a)

100 200 300

Counts

(b)

Do Nothing

RL

BO

C-BO

C-BO (reduced β)

Figure 6.11.: Continuous control of the ARES-EA task with an alternating incoming beam.

(a) MAE results of the algorithms: do nothing as a baseline, RL, BO, contextual

BO (C-BO), and contextual BO with a reduced exploration factor 𝛽UCB after

75 steps. (b) Histogram data for MAE values after 75 steps.

Table 6.4.: Result of applying optimizers for a continuously changing system. "Do nothing"

is used as a baseline showing the impact of the changing incoming beam only.

The median and mean MAEs are calculated after step 75.

Optimizer

Beam MAE (µm)

Best before 75 step Median Mean with std

Do nothing 810 1001 1028 ± 237
RL 3 15 16 ± 9
BO 109 231 256 ± 110
Contextual BO 43 141 160 ± 75
Contextual BO (reduced 𝛽) 50 82 87 ± 38

with 16 ± 9 µm. The original BO implementation with UCB acquisition, on the other side,

starts to strongly oscillate as the incoming beam changes, resulting in a much worse MAE

compared to the static case. When the time is explicitly modeled in C-BO, it manages

121

6. Autonomous Online Accelerator Tuning

to reduce the amplitude of the changing beam parameters but still demonstrates large

steps due to the exploration behavior. By reducing the exploration factor 𝛽UCB after 75

steps, C-BO could follow the near-optimal setting more closely. It reached a mean MAE

of 87 ± 38 µm for the subsequent steps, reducing the changes from the incoming beam

by a factor of 6. In this test case, the covariance function for the context variable is also

Matérn-5/2 kernel. The performance of C-BO is expected to be further improved if a

periodic kernel is used when the structure of the time dependency is known.

It can be concluded that, RL is naturally more suited for controlling continuous systems.

BO can also handle optimization tasks with moderate time dependencies if formulated

correctly.

6.3.6. Inference Time

Lastly, the inference time is also an important factor to consider when choosing the proper

algorithm for an accelerator tuning task. For the benchmark task considered here, the

inference time happens to be negligible. In the ARES EA section, the settling time of

the magnets and the beam measurement takes tens of seconds in total, which is orders

of magnitude higher compared to the inference time of the algorithms. The inference

time for RL and BO can vary significantly depending on their choices of models and

hyperparameters. For the BO implementation investigated here, the GP as surrogate model

is used. One inference step would take about 0.7 s on a modern laptop. This is because BO

needs to perform an acquisition maximization at each step, which in turn involves matrix

inversions within the GP model with complexity 𝑂 (𝑛3), scaling with the number of data

points 𝑛. A more extensive study on the BO inference time can also be found in [64]. The

RL policy, in comparison, is a fully connected NN. At application time, only one forward

pass of the network is required for RL to predict the next action. The corresponding time

complexity is 𝑂 (1) with respect to the optimization steps. One inference step of RL takes

about 0.2ms on a laptop, orders of magnitude faster than what is needed for BO. The

inference time of RL can be further reduced to the microsecond range with dedicated

hardware [99, 38], rendering it a promising method for real-time control of ultra-fast

dynamic systems, such as the microbunching control at electron storage rings [37].

6.3.7. Discussion on the Benchmark Study

Based on the evaluation studies for the ARES beam tuning task, RL with a pre-trained

policy outperforms BO by achieving better final beam results and faster convergence.

Both learning-based algorithms clearly outperform other commonly used tuning methods

including the Nelder-Mead simplex and the ES. The implemented RL and BO could be

reliably applied at a real-world accelerator, and they always obtained a better beam after

optimization than the starting beam. As the RL policy is pre-trained with millions of

interactions in the simulation environment, the resulting policy becomes more robust

against realistic issues that might arise during the accelerator operation, such as sensor

blindness and drifts of the components. The BO, on the other hand, can be deployed

without any prior training. This makes it relatively easy to apply BO algorithms for a new

accelerator tuning task, as the GPmodel is very sample-efficient and can be learned entirely

122

6.4. Towards Generalizable Machine Learning-based Controller

online. When the accelerator conditions change in such a way that the environment that

the RL agent trained on becomes outdated or not reliable, the RL agent needs to be re-

trained. BO is more robust in such scenarios as it is trained fully online. Tailoring the

BO further for specific cases can also improve the performance compared to its basic

form. It can be concluded that RL should be the preferred option for online tuning, if the

upfront engineering effort can be afforded and enough training samples can be gathered,

for example via a fast-executing simulation like Cheetah. In comparison, BO is best suited

for scenarios without an informative simulation model or any previous experience, such

as the commissioning of a new experiment setup.

6.4. Towards Generalizable Machine Learning-based
Controller

As the number of accelerator components increases, the amount of distinct tuning tasks

increases accordingly. Therefore, it is essential to consider the generalization ability

when designing controllers and optimizers for future accelerator operations. Although RL

demonstrated promising results in the ARES tuning task, it required a huge amount of

upfront engineering effort and training time. The trained RL policy is also limited in terms

of transferability, being specialized in the task on which it is trained. It often requires

complete retraining when it is applied to another accelerator task. It is uneconomical or

even infeasible to train dedicated RL controllers for every single tuning task in a particle

accelerator. One future research avenue would be to design novel algorithms to produce

RL agents that are robust against changing systems for one single task or can be easily

transferred to various similar tuning tasks. This section discusses several approaches

to combine the strengths of different ML methods to build intelligent and generalizable

controllers to assist the operation of future particle accelerators.

6.4.1. Generalizable Reinforcement Learning Agent with Domain
Randomization

The ARES beam tuning task demonstrated that DR is a promising technique to train robust

RL agents. During the training phase, the RL agent is exposed to a distribution of MDPs,

forcing the agent to take actions under various conditions. This technique successfully

trains an RL agent in simulation that is robust enough to be applied in the real-world task

zero-shot, i.e. without any adaptation steps. It is natural to extend this idea by increasing

the magnitude of the randomness in the training phase, aiming to produce even more

robust RL agents.

Particle accelerators are designed following the same principles of physics, resulting in

similar lattice sections across different facilities. One example in the linear accelerators is

the EA section at ARES, consisting of three quadrupole magnets and a pair of horizontal

and vertical steering magnets. It is a recurring lattice section for beam transportation that

can be used to focus the beam and correct for orbit deviations. Such a section can be found

in many accelerators, also at the FLUTE accelerator [50].

123

6. Autonomous Online Accelerator Tuning

0.0 0.5 1.0 1.5 2.0

Position s (m)

ARES

FLUTE

Training

Quadrupole Steerer Screen

Figure 6.12.: Lattice sections with 3 quadrupoles and 2 steering magnets studied for the

transverse tuning task, including a dummy training lattice, the diagnostic

section of FLUTE, and the Experimental Area (EA) at ARES. [175]

As a proof of principle experiment, the DR technique is employed to train a robust

RL agent that can solve the beam tuning tasks in different lattices with similar magnet

configurations. The different accelerator lattices considered for training and evaluation

are shown in Fig. 6.12. The training lattice denotes an artificial section that is used for

training the RL agent. Two sections of the real accelerators are used for evaluating the

agent’s performance, namely the diagnostic section at FLUTE and the EA section at ARES.

The environment formulation for the RL task is similar to the ARES one as introduced

in Section 6.3.2.1. In each step, the agent applies an action 𝒂 = Δ𝒖, i.e. the changes of the
magnet strengths, which is limited to 10 % of the entire range of possible magnet strengths.

The observation is again a 13-dimensional vector, consisting of the magnet settings 𝒖,
the measured beam 𝒃 , and the target beam parameters 𝒃′. The reward is defined as the

normalized negative beam difference

𝑅𝑡 = −𝐷 (𝒃, 𝒃′)/𝐷max, (6.21)

where the normalization factor 𝐷max is the largest observable beam difference limited by

the screen size. Again, the MAE is used as the metric for measuring differences 𝐷 between

beam parameters. The agent will receive a higher reward when the beam parameters

are improved. In addition, as the reward is always negative, the agent is encouraged to

perform the tuning with fewer steps if possible. The accelerator lattices are implemented

using the Cheetah simulation code.

124

6.4. Towards Generalizable Machine Learning-based Controller

During the training phase, DR was performed on the positions of the components. In

each episode, the lengths of the drift sections between the elements are randomly sampled

while keeping the order of magnets (𝑄1, 𝑄2, 𝑄3,𝐶𝑣 ,𝐶ℎ) as in the training lattice. This

approach exposes the agent to a wide range of system dynamics, allowing it to learn

a more robust policy that can be transferred between different lattices. The RL policy

is trained for 500 000 steps in the Cheetah simulation using the soft actor-critic (SAC)

algorithm as implemented in the Stable Baselines3 package [185]. The SAC algorithm is

used here for its relative sample efficiency and being more robust against hyperparameters

than the TD3 algorithm. The hyperparameters of the SAC algorithm are tuned using BO

with the experiment tracking package Weights and Biases [191] and listed in Appendix A.8.

One example tuning episode using the trained RL agent is shown in Fig. 6.13. The goal

is to produce a focused beam centered at the diagnostic screen 𝒃′ = (0, 0, 0, 0) with random

initial magnet strengths in a focusing-defocusing-focusing setting. The evolution of the

beam parameters is shown in (b), with the quadrupole and steering magnets’ strengths

shown in (c) and (d) respectively. The RL agent changed the magnet settings smoothly and

successfully converged to the target beam within only 10 steps. This is consistent with

what has been achieved in the ARES tuning task with the same degrees of freedom and

significantly faster than manual tuning or numerical optimizers.

The trained policy using DR is evaluated on different lattices, with the results shown in

Table 6.5. The RL agent trained using SAC and the DR technique is benchmarked against

two other baseline agents, i.e. an untrained agent taking only random actions and an RL

agent trained using SAC but without DR. For each lattice configuration, the trained RL

agent is tested 100 times with different initial magnet settings and is allowed to interact

with the environment for up to 50 steps. The mean value of the best-obtained beam MAEs

within 50 steps are listed in the Table 6.5. It can be observed that all the trained RL agents

outperform the random actions by an order of magnitude. For the agent trained without

DR, its performance drops significantly when applied to the FLUTE lattice, reaching a

final MAE 3.6 times worse than the one on the training lattice. When trained with DR,

the agent performs much better on the FLUTE lattice, despite reaching a worse MAE on

the training lattice than the specialized agent. This decrease in performance is expected

when both agents are trained with the same number of steps, as the tuning task becomes

inherently more complicated when the magnet positions are changing.

In addition to the linear beam dynamics simulation in Cheetah, a more realistic FLUTE

model is implemented using the OCELOT simulation, including the space charge effect.

As expected, the RL agent trained on a reduced-physics simulation model could capture

the system dynamics and directly be applied to a higher-fidelity simulation model without

any degradation in performance. This is consistent with the findings in the ARES tuning

task, that the agent trained in simulation can also be applied to the real machine without

retraining. The trained agents are also evaluated using the EA section at the ARES linac,

with the results shown in the 4th column in Table 6.5. It needs to be noted, that the

vertical corrector in the EA section is positioned between the two quadrupoles 𝑄2, 𝑄3.

This places the EA section out-of-distribution concerning the DR training with a fixed

order of magnets (𝑄1, 𝑄2, 𝑄3,𝐶𝑣 ,𝐶ℎ). Nevertheless, the agent trained with DR is still able

to tune the beam and reach a similar performance as other lattice configurations. This

indicates that the agent is generalizing to unknown scenarios.

125

6. Autonomous Online Accelerator Tuning

−1

0

1

B
ea

m
p

ar
am

et
er

s
(m

m
)

(b)

µx
µy

σx
σy

−0.1

0.0

R
ew

ar
d

(a)

−10

0

10

20

k
(1
/m

2
)

(c)

Q1

Q2

Q3

0 5 10 15 20

Steps

0

1

2

θ
(m

ra
d

)

(d)

CV

CH

Figure 6.13.: One example tuning episode on the training lattice with the trained lattice-

agnostic RL agent. The aim is to focus and center the beam in the diagnostic

screen. (a) Progress of the rewards. (b) The evolution of the beam parameters

(𝜇𝑥 , 𝜇𝑦, 𝜎𝑥 , 𝜎𝑦). (c) Progress of the quadrupole strengths and (d) steering

magnets’ strengths.

The performance of an RL agent on a single lattice setting can be improved using fine-
tuning. This means that the pre-trained RL policy is further updated using interactions with

the new environments. To evaluate the feasibility of fine-tuning, the domain-randomized

agent is retrained for another 10 000 steps, corresponding to only 2% of the original

number of interactions, on the lattice it is tested on respectively. The fine-tuned agent

is again evaluated on the lattices, and the results are shown in the 4th row in Table 6.5.

After the fine-tuning process, the agent performed better on all the lattices and reached

a comparable or better performance than the original agent trained only on one lattice.

126

6.4. Towards Generalizable Machine Learning-based Controller

Table 6.5.: Performance of the trained RL agents on the simulated training, FLUTE, and

ARES lattices. The lattices are implemented in either the linear beam dynamics

simulation Cheetah or OCELOT including the space-charge effect. The beam

MAEs are averaged over 100 tasks with random initial magnet settings.

Mean best beam MAE (µm)

Lattice Training FLUTE FLUTE ARES

Simulation Code Cheetah Cheetah OCELOT Cheetah

Random 958 621 548 930

SAC 43 154 150 92

SAC + DR 86 63 60 67

SAC + DR + fine-tuning 52 31 31 36

This indicates that an RL agent trained using DR can be used as a starting point. It can

be subsequently retrained on the real accelerators within a reasonable amount of steps.

This significantly reduces the overhead of deploying an RL agent for a new tuning task,

making the method more accessible across different accelerator facilities.

This simulated study presents as a first step towards training lattice-agnostic RL con-

trollers. It shows that the agent trained using DR can be successfully transferred between

different particle accelerator sections with similar characteristics, solving the common

tuning tasks. To a certain extent, it can also be generalized for out-of-distribution lattices

that are not considered in the training phase. At the same time, the DR technique also has

its limitations. First, the sample requirement for the training process increases drastically,

when the RL task becomes more complicated. At the same time, the required size of the NN

policy to capture the dynamics of the task also increases, despite the universal approxima-

tion capability of deep NNs [192]. When applying DR with uniformly sampled tasks, the

RL policy is trained to optimize its reward on the mean of the task distribution. While this

produces a robust policy in the beam tuning task investigated here, the formulation will

break if the task distribution is too wide and some tasks require contradictory actions. To

conclude, the randomness in the task distribution should be kept to a minimum, containing

only what is necessary for solving the real-world task.

6.4.2. Fast Reinforcement Learning Deployment with Meta-Learning

As shown in the simulation results above, while DR produces an RL agent that can

solve a distribution of tasks, the trained agent might have inferior performance on the

individual tasks compared to specialized agents. This issue can be partially mitigated by

fine-tuning the DR-trained agent. As the agent is not specifically trained for this process,

fine-tuning still requires a large amount of data, that is sometimes not affordable in the

real accelerator. It can even cause an abrupt decrease in performance, referred to as

catastrophic forgetting [193]. Meta-learning is one ML paradigm that explicitly addresses

this issue. It trains ML models that can efficiently adapt to unseen tasks by leveraging

its prior experience. In the meta-RL case, a meta-policy is trained that can adapt to a

127

6. Autonomous Online Accelerator Tuning

specialized task-policy for one RL task among the task distribution, with only a limited

amount of training samples. A more detailed treatment on meta-RL can be found in [194].

The meta-RL consists of two levels: a inner-loop similar to the normal RL algorithms

where the policy is updated by interacting with an environment, and an outer-loop which

updates the meta parameters based on the results in the inner-loop. The inner-loop is also

called the adaptation and the outer-loop is called the meta-training Specifically, meta-RL

aims to maximize the following objective function

J (𝜽) = EM𝑖∼𝑝 (M)
ˆJM𝑖
(𝜋𝜽)

= EM𝑖∼𝑝 (M)

[
ED

[∑︁
𝜏∈D𝐾 :𝐻

𝐺 (𝜏)
�����𝜋𝜽 ,M𝑖

]]
,

(6.22)

where
ˆJM𝑖
(𝜋𝜽) is the estimated return when applying the policy on a single taskM𝑖 .

The goal is to train an RL policy 𝜋𝜽 that can efficiently adapt to a distribution of tasks

𝑝 (M). During adaptation, the policy is trained to learn a new taskM𝑖 drawn from the

distribution 𝑝 (M), using only 𝐾 episodes with the taskM𝑖 . 𝐾 denotes the number of

exploration steps the policy takes, also called shot. The policy interacts with the new

taskM𝑖 until a maximum number of steps 𝐻 in each episode is reached, also called the

horizon. Here, 𝐺 (𝜏) = ∑
𝑡=0 𝛾

𝑡𝑅𝑡 is the discounted return the policy receives along one

trajectory 𝜏 in the taskM𝑖 . The estimated return
ˆJM𝑖

is calculated with the expectation of

the discounted return over sampled trajectories when applying the task policy on a single

taskM𝑖 . This meta-RL objective J𝜽 is defined using the expectation over the sample tasks

drawn from the distribution 𝑝 (M). Formulated in such a way, the DR can also be viewed

as a special case of meta-RL, where the meta-policy is trained to maximize the zero-shot
performance 𝐾 = 0 on individual tasks.

Algorithm 2MAML algorithm for reinforcement learning [195]

Require: 𝑝 (M) distribution of tasks, (𝛼, 𝛽) learning rates
1: Initialize the meta-policy parameters 𝜽
2: for 𝑡 = 1, 2, ... do
3: Sample a batch of tasksM𝑖 ∼ 𝑝 (M).
4: for each taskM𝑖 do
5: Sample 𝐾 trajectories 𝐷 using the policy 𝜋𝜽
6: Compute adapted task policies 𝜽 ′𝑖 ← 𝜽 + 𝛼∇𝜽J (𝜋𝜽)
7: Sample new trajectories D′𝑖 with adapted policy 𝜋𝜽 ′

𝑖
in taskM𝑖

8: end for
9: Update meta-policy 𝜽 ← 𝜽 +𝛽∇𝜽

∑
M𝑖∼𝑝 (M) JM𝑖

(𝜋𝜽 ′
𝑖
) with each meta-trajectories

D′𝑖 and objective JM𝑖

10: end for

One of the most successful meta-learning algorithms is model agnostic meta-learning

(MAML) [195]. The algorithm is outlined in Algorithm 2. It trains a meta-policy 𝜋𝜽
and performs the updates on the inner loop using a policy gradient algorithm. When

adapting to the new task M𝑖 , the meta-policy is used as the initial policy to interact

128

6.4. Towards Generalizable Machine Learning-based Controller

with the environment, obtaining trajectories 𝐷 . The policy parameters can be adapted by

estimating the gradient ∇𝜽J (𝜋𝜽) using the returns

𝜽 ′𝑖 ← 𝜽 + 𝛼∇𝜽J (𝜋𝜽), (6.23)

where 𝛼 is the inner-loop learning rate. After the updates, the adapted task policy 𝜋𝜽 ′
𝑖

is used to sample new trajectories 𝐷′𝑖 . This is repeated for all the sampled tasks. The

meta-policy is then updated using the averaged returns over all the tasks

𝜽 ← 𝜽 + 𝛽∇𝜽
∑︁

M𝑖∼𝑝 (M)
JM𝑖
(𝜋𝜽 ′

𝑖
), (6.24)

with 𝛽 being the outer-loop learning rate. The outer-loop update is again performed using

a gradient-based algorithm.

In particle accelerator tuning, meta-RL can be applied to train adaptable RL agents

with task variations at different levels. First, the task distribution 𝑝 (M) could be the

simulation and the real-world tuning tasks. It can be used to model unknown parameters

in real-world particle accelerators, allowing the agent to overcome the sim2real gap with

a few adaptation steps. The task distribution can also contain the beam tuning tasks

in different lattices, such as the case in the lattice-agnostic RL study. Furthermore, the

distribution of tasks can represent the different working points in the same accelerator

section. One example is the beam trajectory tuning task at the AWAKE accelerator at

CERN [35]. Below the AWAKE tuning task using meta-RL is shortly discussed, with more

details given in [176, 102].

0 1 2 3 4 5 6 7 8 9

Corrector magnets

0
1

2
3

4
5

6
7

8
9

B
P

M
s

Original lattice

0 1 2 3 4 5 6 7 8 9

Corrector magnets

0
1

2
3

4
5

6
7

8
9

Varied lattice for task 1

−15

−10

−5

0

5

R
es

p
on

se
m

at
ri

x
va

lu
e

(a
rb

.
u

n
it

s)

Figure 6.14.: Example tasks visualization for the AWAKE beam tuning task. The tasks

are defined by the response matrices of the horizontal corrector magnets

(steerers) with respect to the BPM readings. Varying the quadrupole settings

along the beamline results in different response matrices, and different RL

tasks.

The AWAKE tuning task uses in total of 10 steering magnets to minimize the differences

between the beam trajectory and the target trajectory, using measurements from 10 BPMs.

129

6. Autonomous Online Accelerator Tuning

In this case, only the horizontal plane is considered. The task can be easily formulated

as an RL task, where the observations 𝒐 = 𝒔 = (𝑠1, · · · , 𝑠10) are the readings from the 10

BPMs, and actions 𝒂 = (𝑎1, ..., 𝑎10) are the strengths of the corrector magnets. The reward

is defined to be proportional to the negative root mean square (RMS) of the beam positions

𝑟 ∝ ||𝒔 | |
2
. The dynamics of the system are defined by the horizontal orbit response matrix

Δ𝑠𝑖 =
∑︁
𝑗

R𝑖 𝑗Δ𝑎 𝑗 , (6.25)

where Δ𝑎 𝑗 denotes the change in the 𝑗-th corrector magnet strength, and Δ𝑠𝑖 denotes
the change in the beam position measured by the 𝑖-th BPM. As the AWAKE is a linear

accelerator and the BPMs and corrector magnets are placed along the beamline, the

response matrix R is a lower-triangle matrix. The values of the response matrix elements,

however, depend on the quadrupole magnets’ strengths, which are in turn defined by

various working points at AWAKE. Two of such response matrices are visualized in

Fig. 6.14. By varying the quadrupole strengths, the impact of the corrector magnet changes,

especially for the ones at the beginning of the beamline. Meta-RL can be applied in this

case to train a meta-policy, which can quickly adapt to a new working point and perform

the orbit correction.

0 50 100 150 200 250 300

Steps

−50

−40

−30

−20

−10

0

R
et

u
rn

From scratch

Adaptation from meta policy

Figure 6.15.: Adapting the RL policy to new tasks using meta-trained policy and random

policy on the AWAKE beam tuning task. The lines show returns averaged

over 5 evaluation tasks, with the shaded region being the standard deviation.

MAML is applied for the meta-policy training. The inner-loop policy updates are

performed using the REINFORCE [57] algorithm and the outer-loop meat-policy updates

using the trust region policy optimization (TRPO) [87]. The quadrupole strengths are

varied by±25 % during the training phase, covering the realistic range of AWAKE operation.

130

6.4. Towards Generalizable Machine Learning-based Controller

The meta-training was performed for 100 steps, each time with inner-loop updates over 8

sampled tasks. For each task in the inner-loop, 16 episodes are sampled with a maximum

of 50 steps in each episode. The training process can be performed on a common laptop

with around 20min computation time. Once the meta-policy is trained, it is evaluated on

a fixed set of 5 tasks. The obtained return by the adapted policy is shown in Fig. 6.15. The

returns are averaged over the 5 tasks, with the standard deviation shown as the shaded

region. The meta-trained policy could achieve a good performance already zero-shot, and

it quickly adapts to the task within a few steps, reaching an averaged return of −1.3 at
the end. For comparison, a random initial policy is also tested. The adaptation process

corresponds to a normal RL training. It initially has a much worse return compared to the

meta-policy. The obtained return improves over training in about 200 steps. It converged

to a final return of −1.9, which is still lower than the one from the meta-policy. To some

extent, the meta-trained policy is more robust and performs better than the specialized

agent training only on one task, even with the same total steps.

The comparison results show that meta-RL is a promising learning technique to train

robust and adaptive RL agents, that can be applied efficiently on real-world particle

accelerators and account for different working points, potential environmental changes,

and drifts.

Lastly, it needs to be noted that the meta-RL and DR are not mutually exclusive ideas.

In practice, one could also combine both techniques as they aim to tackle different issues.

The meta-RL produces in the end an adapted agent, that is specialized on one instance

M𝑖 of the task distributions 𝑝 (M). By doing so, the adapted agent’s ability to solve the

other tasks in 𝑝 (M) decreases. Taking the ARES EA beam tuning task as an example, the

misalignments of the components should be fixed or change only slowly over a longer

period, whereas the incoming beam can change rather frequently on a day-to-day basis.

When applying meta-RL to the ARES EA task, the adaptation should not specialize to one

specific incoming beam. Otherwise, the RL agent will need to be trained repetitively each

time the working condition is changed. Ideally, it should adapt to the real-world hardware

configuration, such as misalignments, but remain robust against the uncertainties that

can appear during operation. To achieve that, the training could apply both meta-RL and

DR to different parts of the RL states. At the time of completing this dissertation, there

is an ongoing collaborative effort to apply meta-RL to the ARES task and evaluate its

performance against simple DR. When the lattice configurations are also considered in

the meta-training, it is expected that the trained RL agent can be applied to solve the same

beam-tuning task in different lattice sections at ARES, FLUTE, and other accelerators,

requiring only a little amount of beamtime for adaptations.

6.4.3. Towards More Sample Efficient and Explainable Machine
Learning-based Controller

The RL algorithms studied in this chapter are all model-free methods, which directly

learn a policy through trial-and-error interactions with the environment. As most of

the model-free methods are very sample inefficient, their successful applications rely

on a large number of training samples, often in the range of millions. For some of the

131

6. Autonomous Online Accelerator Tuning

accelerator tuning tasks shown above, the samples could be provided using the fast-

executing Cheetah simulation model. However, such a fast simulation environment is

not always available, for example in the SASE tuning task. If enough historical data is

available, data-driven surrogate models such as NN could be trained, which can provide

the required training samples in a computationally cheap way. Alternatively, one could

use model-based methods for better sample efficiency. The simulation optimization and

online tuning results with BO demonstrate that GPs are promising methods for modeling

general function mappings with a small amount of data in the presence of measurement

noise. It is also possible to combine the modeling strength of GP and the RL framework.

This approach is called Gaussian process model predictive control (GP-MPC) [174]. A

collection of GP models are used to approximate the system dynamics, i.e. the transition

function

(𝒔𝑡 , 𝒂𝑡) ↦→ 𝒔𝑡+1, (6.26)

mapping the tuple of current states 𝒔𝑡 and actions 𝒂𝑡 to the next states 𝒔𝑡+1. The GP models

can be trained using the data obtained through interactions with the environment. Then,

based on the predictions, model predictive control (MPC) can be applied to plan an optimal

sequence of actions, maximizing the expected returns.

The GP-MPC was successfully applied to the AWAKE beam trajectory tuning task [101,

196, 102], solving the 10 degrees of freedom task within 20 steps. Its sample efficiency is

more than three orders of magnitude higher than the one of model-free RL algorithms.

Compared to the usual BO algorithms, GP-MPC is explicitly designed for online control

and can more easily adapt to the changing conditions in real-world systems.

Furthermore, the trained GP models can also provide more insight into the system

dynamics, analogous to what is shown in Section 4.1 and Section 6.1. It allows reason-

ing about the decision-making process during the operation, opening doors to building

more explainable ML controllers. In conclusion, it proves to be a highly promising tech-

nique for training extremely data-efficient, robust, and adaptive controllers for accelerator

operations.

6.5. Summary Machine Learning-based Online Accelerator
Tuning

Online tuning is an essential component of particle accelerator operations. The accelerator

tuning task is very challenging due to the high number of actuators, non-linear system

dynamics, noisy or erroneous measurements, and time dependencies. Automatic tuning

methods are required to efficiently perform optimizations to minimize downtime and

maintain peak performance during operation. Classical numerical optimization algorithms

and manual tuning often suffer from slow convergence and struggle with uncertainties,

local optima, and drifting systems.

Two methods among the emerging ML-based algorithms are particularly of interest for

designing novel optimizers and controllers, namely BO and RL. They are both investigated

in this chapter using real-world accelerator tasks.

132

6.5. Summary Machine Learning-based Online Accelerator Tuning

On the one hand, BO is a powerful technique for efficient parameter optimization

problems with noisy observations. It was applied to the SASE tuning task at EuXFEL. Even

without any previous knowledge, it reached a comparable final result to the one from the

routinely used simplex optimizer. BO also demonstrated a smoother convergence behavior

with fewer steps and could provide an informative model using the obtained data.

On the other hand, RL trains an intelligent control policy through interactions with

an environment. We showed that the common accelerator optimization task, such as

the FLUTE THz tuning task, can also be formulated within the RL framework. The fast-

executing Cheetah simulation code provides enough samples for training the RL agent,

which can subsequently solve the accelerator tuning task reliably and efficiently.

The two ML methods were benchmarked on the transverse tuning task at the ARES

EA section. This marks the first comparison study of this kind in particle accelerators. In

the simulation studies, both approaches significantly outperformed other baseline tuning

methods like simplex and ES. When applied at the real-world accelerator, they obtained

final beam MAEs of 24 - 44 µm, around the effective resolution limit of the diagnostic setup.

The RL agent with a pre-trained policy reached overall the best performance in terms of

the final beam parameters and number of steps required for convergence. It is also robust

to erroneous measurements and time-dependent systems. In cases where the task needs

to be routinely performed and enough training data is available, RL controllers should be

used. BO has the advantage that it can be applied to new tasks with very little engineering

effort. It is more prone to erroneous measurements if the GP model is completely learned

with online data. With task-specific modifications such as the contextual BO, it can also

deal with time-dependent systems and act as an adaptive control.

By extending the idea of domain randomization (DR), robust RL agents were trained that

can be transferred to lattice sections at different accelerators, solving the same transverse

beam tuning task. Meta-RL improves further on the DR technique and explicitly treats

the various lattice settings as different tasks. At the AWAKE accelerator, the meta-trained

RL agent can adapt to a new working point with only a few episodes and solve the beam

trajectory tuning task. Future ML controllers are expected to leverage the strengths of RL

and BO. GP-MPC is a promising avenue to build such a controller. The extreme sample

efficiency allows it to be trained directly online at real accelerators. It also provides robust

and adaptive control in time-dependent systems.

133

7. Summary and Outlook

Particle accelerators are among the most complex physical systems in the world, com-

prising thousands of components and subsystems. The design and operation of a particle

accelerator are faced with various challenging tasks. There is an ever-increasing demand

for higher availability and better beam qualities such as high bunch charge, intensive

radiation output, and beam stability for light sources with electron linear accelerators. In

addition, as they are single-pass accelerators, tailored beam control and quick switching

between working points are essential to meet the requirement of multiple beamline exper-

iments. In the design stage, optimizations of the parameter settings and the layout need to

be performed using physics simulations that are expensive to evaluate. This is typically a

non-linear black-box optimization problem involving a large number of input parameters.

Overall the design optimization is very time-consuming and computationally intensive,

especially when the optimization needs to be repeated throughout the design process. In

online operations, the simulated optimal settings are usually not directly achieved, due to

mismatches between the simulation and real-world systems such as magnetic field errors

and component misalignments. Therefore, optimization algorithms are often required for

setting up the accelerator and maximizing its performance. In addition, the online tuning

of particle accelerators often contains noisy measurements and time-dependent systems.

Such tuning tasks also need to be performed regularly and with as little beamtime as

possible to achieve maximum availability.

Many of these mentioned challenges can be mitigated using machine learning (ML)

approaches. In the last decade, there has been an increasing interest in the ML methods in

the accelerator community. Several proof-of-principle studies on the ML applications have

been demonstrated by other people, such as speeding up the simulated optimization [108,

33, 16], providing additional measurements as virtual diagnostics [20, 19, 21], and efficient

online tuning [64, 111]. It is believed that a paradigm shift will happen with the develop-

ment and integration of ML methods, changing the way how the future accelerator will be

operated. Most importantly, different ML methods will work in orchestration and increase

the overall level of autonomy in the operation, such as utilizing the neural network (NN)

surrogate model and fast-executing simulation as prior knowledge for online optimizers.

Intending to provide a holistic study of the ML methods integrated into the life cycle of

linear accelerators, I showed various applications in this dissertation, both in simulation

and experiments. Some key contributions are summarized below.

• Application of ML for simulated optimization and virtual diagnostics [104,
105]. Using the low-energy section at the far-infrared linac and test experiment

(FLUTE) accelerator as an example, I demonstrated that a trained NN surrogate

model can provide fast, high-quality predictions in replacement of computationally

expensive physics simulations. Such a surrogate model can also serve as a virtual

135

7. Summary and Outlook

diagnostics to provide real-time non-destructive measurements during operations.

In addition, I showed that the parallel version of Bayesian optimization (BO) can

be employed for fast simulated optimization during the design stage, efficiently

obtaining the optimal parameter settings using fewer computational resources.

• Development of a fast-executing, backward-differentiable beam dynamics
simulation code Cheetah [42, 197]. Various use cases of such a differentiable

simulation code are shown throughout the thesis. First, simulated optimization can

be performed using the more sample-efficient gradient-based optimizes, which can

be easily scaled up to a high number of input parameters. Second, the Cheetah

simulation model can be combined with the BO algorithm as a prior-mean function

for the Gaussian process (GP) model. This allows even more efficient parameter

optimization in the presence of collective effects, which is still under development

in Cheetah. Lastly, its execution speed also makes it the ideal candidate for building

the environment and providing samples for the reinforcement learning (RL) agent

training.

• Feasibility study of convolutional neural network (CNN)-based spatial light
modulator (SLM) control for laser pulse shaping [129, 130]. Photo-injector laser

shaping is an important step to increase the operational limit of bunch current at

linear accelerators and provide tailored electron bunch for user experiments. The

SLM is shown to be a promising solution to achieve fine-grained control of the

laser pulse shape. At the FLUTE accelerator, two SLM setups were built for the

transverse laser profile shaping. For the first time, it is demonstrated that the CNN

can be combined with classical computer generated hologram (CGH) algorithms to

improve the quality of the shaped laser pulse in the accelerators community. An

alternative control method through Zernike polynomials is proposed, consisting of

fewer degrees of freedom to be controlled and is more robust against errors during

optical propagation. These approaches may lead to full spatial-temporal shaping

setups using ML control in the future.

• First detailed comparison of the Bayesian optimization (BO) and reinforce-
ment learning (RL) for online accelerator tuning [76, 95]. At the European

XFEL, I demonstrated that the BO is mature enough to be used as a turn-key tuning

solution, delivering comparable performance as other routinely used optimizers like

the simplex method. This dissertation showed in detail how common accelerator

tuning tasks can be formulated as BO and RL tasks respectively. This includes a

workflow for algorithm implementation and deployment, which applies generally to

many accelerator tasks. Using the accelerator research experiment at SINBAD (ARES)

beam tuning task as a benchmark, the performance of BO and RL in simulation and

experiments are systematically evaluated. The result shows that, when enough

upfront engineering effort can be justified, RL should be the preferred algorithm

for particle tuning tasks. It outperforms BO and other commonly used optimization

algorithms in terms of final tuning results and robustness against time-dependent

systems. In comparison, BO is ideal for tasks where no fast simulation environment

or not enough data is available. Its versatility and efficiency make it an extremely

136

promising algorithm in the toolbox of accelerator tuning methods. In addition, I

demonstrated how task-specific adaptions can further improve BO’s performance,

such as utilizing the Cheetah simulation as a physics-informed prior and adding

contextual parameters to handle time-dependent systems.

• Proof-of-principle studies of universal and sample-efficient RL-based con-
trollers [175, 176, 102, 196]. Based on the insights obtained from the BO and RL

comparison study, several extensions of the RL algorithm are further explored to

build transferable and more sample-efficient RL agent. The study showed that the

domain randomization technique is not only useful for transferring the simulation-

trained RL agent to real-world systems but also helpful in training agents that can

be applied to different accelerators. This idea is extended and generalized by the

meta-RL, explicitly taking into account the different lattices. The agent trained using

meta-RL is expected to adapt to specific accelerator tuning tasks, requiring only a

small amount of beamtime during operation. This allows the RL controllers to be

deployed at different facilities at low engineering costs. The GP-MPC is proposed

as a promising candidate to combine the strengths of BO and RL, which can be

learned entirely using online interactions with the particle accelerators for the beam

trajectory tuning tasks.

It is worth mentioning that although the applications shown in this dissertation are all

at linear electron accelerators, most of the developed methods and frameworks can be

directly transferred to similar tasks at any other kind of accelerator.

The works in this dissertation have been presented at numerous workshops and confer-

ences, which helped raise interest and awareness for ML-based methods in the particle

accelerator community. Notably, fruitful collaborations were formed during this disser-

tation. For instance, the first review article [64] on BO algorithms applied to particle

accelerators was written during this work. It provided both an extensive overview of the

methodology and details on the implementation details of BO for accelerator tuning tasks.

Second, we established the Reinforcement Learning for Autonomous Accelerator (RL4AA)

collaboration [198] and held two international workshops dedicated to the applications

of RL at accelerators. At these workshops, we transformed the developed RL codes, like

the ones used for the ARES tuning and the meta-RL, into hands-on tutorials [199, 196].

Our work on differentiable simulation Cheetah also gained interest among the community.

Many researchers have started using the code and contributing to new feature devel-

opment, including higher-order tracking maps, space charge effects, and phase-space

reconstruction [197, 23].

During the period of this dissertation (end 2020 until 2024), the ML applications for par-

ticle accelerators are undergoing an important transition phase, moving from exploratory

proof-of-principle works towards operational, routine tools that are made available in the

accelerator control room. One notable example is the now widely adopted BO algorithms.

New software packages were developed to provide the BO algorithms as read-to-use

optimizers, such as Xopt [15] and Optimas [16], and provide an easy interface to the

ML optimizers in the accelerator control room, such as Badger [17]. At the Karlsruhe

research accelerator (KARA), Badger has been integrated into the control room, which is

137

7. Summary and Outlook

now routinely used for commissioning and operation [200]. Looking forward, there is still

much work to be done to make ML widely applicable and accessible for daily accelerator

operations, apart from the development of general-purpose packages. For the BO, further

improvements will come from better incorporating the physics-informed prior knowledge

into the GP modeling. Whereas for RL, it is important to explore more approaches like

meta-RL for generalization, lowering the upfront cost of training an RL agent and deploy-

ing at real-world accelerators. For both BO and RL, the safety aspects need to be better

considered, for example using explicit uncertainty estimations [117].

Differentiable programming will undoubtedly be more investigated and developed in

the future. While the field is still young and under-developed in the particle accelera-

tor community, more impactful use cases will arise in addition to the already proposed

ones [42, 197] for accelerators. As more physics effects are being integrated into the new

generation of differentiable simulation codes, they can be expected to speed up the simu-

lated optimization process and provide valuable online information guiding the accelerator

operations.

In addition to the advancement and development of newMLmethods, it is also important

for the community to provide common frameworks, benchmark tasks, and baseline algo-

rithms. As compared to other research fields like robotics, particle accelerators lack those

classical benchmark tasks, mostly because each accelerator is built differently. However,

this potentially hinders the collaborative effort and slows down the method improvement,

as the merits and advantages of the methods might be obscure to people working on other

tasks or applying other approaches. As a result, some methods with the potential to be

transferred to similar tasks at other facilities, have only been applied to one specific task.

This is also one motivation for the comparison study of BO and RL in this dissertation. The

ARES beam tuning task studied in this dissertation was implemented in a modular way,

with the hope of providing it as one benchmark task for the accelerator community. In

addition, common accelerator tasks, such as the free electron laser (FEL) intensity tuning

and photo-injector section tuning, can also be included in the benchmark tasks. It is

expected that these efforts can spark future collaborations and speed up the development

of ML methods tailored to accelerator tasks. Such a collection of benchmark accelerator

tasks and environments provides a realistic test suite for the development of new ML

methods. It also allows the new method to be tested on more tasks, demonstrating easily

whether it would be applicable and beneficial for other tasks. A set of baseline algorithms

with clean implementation, on the other hand, enables unbiased and quantified evaluation

of the merits of a new ML approach.

In conclusion, the work presented in this dissertation has made significant contributions

to the field of applyingMLmethods for the simulation and operation of particle accelerators.

Further studies in these proposed directions will lead to a seamless integration of ML-

algorithms into the operation scheme of future accelerators.

138

List of Figures

1.1. Timeline of X-ray free electron lasers in the world. 2

1.2. Overview of applications of ML methods in the operation scheme of elec-

tron linear accelerators. 6

2.1. The curvelinear coordinate system . 10

2.2. Synchrotron radiation emitted by an electron passing through a bending

magnet . 15

2.3. Incoherent synchrotron radiation energy spectrum 15

2.4. Coherent synchrotron radiation spectrum 17

2.5. Working principle of a bunch compressor 18

2.6. Schematics overview of the FLUTE components 19

2.7. Schematic layout of the ARES accelerator 20

2.8. Simplified layout of the European XFEL facility. 20

3.1. Structure of perceptron . 22

3.2. Activation functions . 22

3.3. Visualization of Bayesian optimization steps. 25

3.4. GP prior and posterior visualizations. 27

3.5. Effects of the lengthscale hyperparameter on the GP model 28

3.6. Maximum log-likelihood fitting of the GP hyperparameters 29

3.7. Acquisition functions used in Bayesian optimization 30

3.8. Generalized policy iteration . 37

4.1. Structure of the NN surrogate model for FLUTE low-energy section . . . 45

4.2. Surrogate model prediction error compared to ASTRA simulation results 47

4.3. Beam size prediction by the surrogate model and the ASTRA simulation

results . 48

4.4. Feature importance study of the surrogate model for the transverse beam

size prediction . 48

4.5. Correlation coefficients of the FLUTE low energy section 49

4.6. Surrogate predictions compared to real measurements of RF power scan at

FLUTE . 51

4.7. Surrogate predictions compared to real measurements of RF phase scan . 52

4.8. Penalized acquisition function for parallel Bayesian optimization 56

4.9. Longitudinal phase spaces of the optimized 1 pC bunches 58

4.10. THz optimization results of the 1 pC bunch 59

4.11. Longitudinal phase spaces of the optimized 100 pC bunches 60

4.12. THz optimization results of the 100 pC bunch 61

4.13. Differentiable simulation of a FODO lattice in Cheetah 63

139

List of Figures

4.14. Kernel density estimation for the longitudinal beam profile 65

4.15. Gradient-based optimization of the THz radiation using differentiable

simulation Cheetah . 66

4.16. Longitudinal phase space of the electron bunches 67

4.17. Tracking results with different physical effects activated 68

4.18. Effect of using a non-zero prior mean for the GP modeling. 69

4.19. Progress of BO using the physics-informed prior mean 70

4.20. Longitudinal phase spaces of the final beam from different methods . . . 71

4.21. Resulting CSR spectra and electric fields using different optimization methods 72

5.1. Transverse space charge fields for different radial beam distributions . . 76

5.2. Emittance growth of the beam in the RF photo-injector for different initial

distributions . 77

5.3. Schematic working principle of a spatial light modulator 79

5.4. Schematic of the FLUTE laser path layout 80

5.5. Progress of Gerchberg-Saxton algorithm 82

5.6. Transverse SLM Test Setup . 83

5.7. Structure of the CNN . 85

5.8. Generation and preprocessing of the CNN training data 86

5.9. Results of laser shaping with a convolutional neural network 87

5.10. SLM setup for FLUTE photo-injector Laser 88

5.11. Blazed grating pattern . 89

5.12. Double electron bunches generated with SLM modulated laser 90

5.13. Modulated laser and electron bunches using Zernike polynomials 92

6.1. Measurement noise of the photon pulse energy at EuXFEL. 98

6.2. EuXFEL 2D tuning progress with BO and simplex 100

6.3. EuXFEL BO tuning with lower numbers of averaging shots 101

6.4. GP posterior visualization of the tuning task at EuXFEL. 102

6.5. Outline of the implemented reinforcement learning framework for accel-

erator tuning . 105

6.6. Evaluation of the trained RL agent on OCELOT environment for FLUTE

tuning . 106

6.7. Simplified 3D illustration of the considered transverse beam tuning task at

the ARES particle accelerator . 108

6.8. Beam difference convergence plots for different optimization algorithms. 113

6.9. BO warm start results with historical data 115

6.10. One example optimization trial using Reinforcement Learning and Bayesian

Optimization on the ARES accelerator . 117

6.11. Using BO and RL for continuous control 121

6.12. Lattice sections studied for the lattice-agnostic reinforcement learning agent 124

6.13. Tuning result with the lattice agnostic RL agent 126

6.14. Example tasks visualization for the AWAKE beam tuning task 129

6.15. Adapting to new tasks usingmeta-policy and random policy on the AWAKE

task . 130

140

List of Figures

A.1. Feature importance and dependence of the surrogate model 170

A.2. Working principle of kernel density estimation 172

A.3. Kernel density estimation . 172

A.4. Additional laser modulation results of the CNN-assisted laser shaping . . 173

A.5. Visualization of the Zernike polynomial 174

A.6. Modulated laser images using Zernike polynomials 175

A.7. Transformations of the Nelder-Mead simplex method 178

141

List of Acronyms

ABO adaptive BO

AD automatic differentiation

AI artificial intelligence

AOM acousto-optic modulator

ARES accelerator research experiment at SINBAD

BO Bayesian optimization

BPM beam position monitor

C-BO contextual BO

CDF cumulative density function

CERN European organization for nuclear research

CGH computer generated hologram

CNN convolutional neural network

CSR coherent synchrotron radiation

CTR coherent transition radiation

CW continuous wave

DDPG deep deterministic policy gradient

DC direct current

DESY Deutsches Elektronen-Synchrotron

DL deep learning

DQN deep Q-Learning

DR domain randomization

DRL deep reinforcement learning

EA Experimental Area

143

List of Acronyms

EI expected improvement

EIC Electron Ion Collider

ELU exponential linear unit

ER edge radiation

ES extremum seeking

EuXFEL European X-Ray Free-Electron Laser

FEL free electron laser

FLUTE far-infrared linac and test experiment

FPGA field-programmable gate array

FT Fourier transform

FFT fast Fourier transform

FWHM full width at half maximum

GA genetic algorithm

GP Gaussian process

GP-MPC Gaussian process model predictive control

GPU graphical processing unit

GS Gerchberg-Saxton

HPC high performance computing

IR infrared

ISR incoherent synchrotron radiation

KARA Karlsruhe research accelerator

KDE kernel density estimation

LC liquid crystal

LCLS Linac Coherent Light Source

LCoS liquid crystal on silicon

LHC large hadron collider

LHS latin hypercube sampling

144

List of Acronyms

linac linear accelerator

LSTM long short-term memory

MAE mean aboslute error

MAML model agnostic meta-learning

MC Monte-Carlo

MDP Markov decision process

ML machine learning

MLL marginal log likelihood

MLP multilayer perceptron

MPC model predictive control

MSE mean squared error

NN neural network

OOD out-of-distribution

PBO parallel Bayesian optimization

PDF probability density function

PINN physics-informed neural network

PITZ Photo Injector Test Facility at DESY in Zeuthen

POMDP partially observable Markov decision process

PPO proximal policy optimization

QE quantum efficiency

ReLU rectified linear unit

RBF radial basis function

RCDS robust conjugate direction search

RF radio frequency

RL reinforcement learning

RL4AA Reinforcement Learning for Autonomous Accelerator

RMS root mean square

145

List of Acronyms

RNN recurrent neural network

ROI region of interest

SAC soft actor-critic

SASE self-amplified spontaneous emission

SC space charge

SGD stochastic gradient descent

SHAP Shapley additive explanations

SLM spatial light modulator

TD temporal-difference

TD3 twin delayed deep deterministic policy gradient

THG third harmonic generation

Ti:Sa Titanium:Sapphire

TRPO trust region policy optimization

TPSA truncated power series algebra

UCB upper confidence bound

UV ultraviolet

YAG Yttrium Aluminum Garnet

ZOD zeroth order diffraction

146

List of Publications

This dissertation is largely based on the following publications.

• Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia, Oliver Stein,

Erik Bründermann, Willi Kuropka, Hannes Dinter, Frank Mayet, Thomas Vinatier,

Florian Burkart, and Holger Schlarb. “Reinforcement learning-trained optimisers and

Bayesian optimisation for online particle accelerator tuning”. In: Scientific Reports
14.1 (2024), p. 15733. doi: 10.1038/s41598-024-66263-y

• Jan Kaiser, Chenran Xu, Annika Eichler, and Andrea Santamaria Garcia. “Bridging

the gap between machine learning and particle accelerator physics with high-speed,

differentiable simulations”. In: Phys. Rev. Accel. Beams 27 (5 May 2024), p. 054601.

doi: 10.1103/PhysRevAccelBeams.27.054601

• Chenran Xu, Erik Bründermann, Anke-Susanne Müller, Andrea Santamaria Garcia,

and Sergey Tomin. “Bayesian Optimization for SASE Tuning at the European XFEL”.

in: Proc. IPAC’23. May 2023. doi: 10.18429/JACoW-IPAC2023-THPL028

• Chenran Xu, Erik Bründermann, Anke-Susanne Müller, Andrea Santamaria Garcia,

Jan Kaiser, and Annika Eichler. “Beam trajectory control with lattice-agnostic rein-

forcement learning”. In: Proc. IPAC’23. May 2023. doi: 10.18429/JACoW-IPAC2023-

THPL029

• Chenran Xu, Erik Bründermann, Anke-Susanne Müller, Andrea Santamaria Garcia,

Markus Schwarz, and Jens Schäfer. “Optimization Studies of Simulated THz Radiation

at FLUTE”. in: Proc. IPAC’22. July 2022. doi: 10.18429/JACoW-IPAC2022-WEPOMS023

• Chenran Xu, Erik Bründermann, Anke-Susanne Müller, Andrea Santamaria Garcia,

and Jens Schäfer. “Surrogate Modelling of the FLUTE Low-Energy Section”. In: Proc.
IPAC’22. July 2022, pp. 1182–1185. doi: 10.18429/JACoW-IPAC2022-TUPOPT070

• Matthias Nabinger et al. “Transverse and Longitudinal Modulation of Photoinjection

Pulses at FLUTE”. in: Proc. IPAC’22. July 2022. doi: 10.18429/JACoW-IPAC2022-

TUPOPT068

• Chenran Xu, Erik Bründermann, Annika Eichler, Anke-Susanne Müller, Michael J.

Nasse, Andrea Santamaria Garcia, Carl Sax, and Christina Widmann. “Machine

Learning Based Spatial Light Modulator Control for the Photoinjector Laser at

FLUTE”. in: Proc. IPAC’21. Aug. 2021. doi: 10.18429/JACoW-IPAC2021-WEPAB289

147

https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://doi.org/10.18429/JACoW-IPAC2023-THPL028
https://doi.org/10.18429/JACoW-IPAC2023-THPL029
https://doi.org/10.18429/JACoW-IPAC2023-THPL029
https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT070
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT068
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT068
https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289

List of Acronyms

• Annika Eichler, Erik Bründermann, Florian Burkart, Jan Kaiser, Willi Kuropka,

Andrea Santamaria Garcia, Oliver Stein, and Chenran Xu. “First Steps Toward
an Autonomous Accelerator, a Common Project Between DESY and KIT”. in: Proc.
IPAC’21. Aug. 2021. doi: 10.18429/JACoW-IPAC2021-TUPAB298

The following publications contain content related to this dissertation.

• Chenran Xu, Tobias Boltz, Akira Mochihashi, Andrea Santamaria Garcia, Marcel

Schuh, and Anke-Susanne Müller. “Bayesian optimization of the beam injection

process into a storage ring”. In: Phys. Rev. Accel. Beams 26 (3 Mar. 2023), p. 034601.

doi: 10.1103/PhysRevAccelBeams.26.034601

• Ryan Roussel, Auralee L. Edelen, Tobias Boltz, Dylan Kennedy, Zhe Zhang, Fuhao

Ji, Xiaobiao Huang, Daniel Ratner, Andrea Santamaria Garcia, Chenran Xu, Jan
Kaiser, Angel Ferran Pousa, Annika Eichler, Jannis O. Lübsen, Natalie M. Isenberg,

Yuan Gao, Nikita Kuklev, Jose Martinez, Brahim Mustapha, Verena Kain, Christopher

Mayes, Weijian Lin, Simone Maria Liuzzo, Jason St. John, Matthew J. V. Streeter, Remi

Lehe, and Willie Neiswanger. “Bayesian optimization algorithms for accelerator

physics”. In: Phys. Rev. Accel. Beams 27 (8 Aug. 2024), p. 084801. doi: 10.1103/

PhysRevAccelBeams.27.084801

• Chenran Xu, Edmund Blomley, Anke-Susanne Müller, Andrea Santamaria Garcia,

and Merritt Zhang. “Integration of an Optimizer Framework into the Control System

at KARA”. in: Proc. ICALEPCS’23. Jan. 2024. doi: 10.18429/JACoW-ICALEPCS2023-
TUPDP030

• Ryan Roussel, Gregor Charleux, Auralee Edelen, Annika Eichler, Juan Pablo Gonzalez-

Aguilera, Axel Huebl, Jan Kaiser, Remi Lehe, Andrea Santamaria Garcia, and Chen-
ran Xu. “Advancements in backwards differentiable beam dynamics simulations for

accelerator design, model calibration, and machine learning”. In: Proc. LINAC2024.
Aug. 2024, pp. 559–562. doi: 10.18429/JACoW-LINAC2024-THPB068

• Simon Hirlaender, Lukas Lamminger, Sabrina Pochaba, Jan Kaiser, Chenran Xu,
Andrea Santamaria Garcia, Luca Scomparin, and Verena Kain. “Towards few-shot

reinforcement learning in particle accelerator control”. In: Proc. IPAC’24. May 2024.

doi: 10.18429/JACoW-IPAC2024-TUPS60

• Simon Hirlaender, Sabrina Pochaba, Lamminger Lukas, Andrea Santamaria Garcia,

Chenran Xu, Jan Kaiser, Annika Eichler, and Verena Kain. “Deep Meta Rein-

forcement Learning for Rapid Adaptation In Linear Markov Decision Processes:

Applications to CERN’s AWAKE Project”. In: Combining, Modelling and Analyzing
Imprecision, Randomness and Dependence. Cham: Springer Nature Switzerland, 2024,

pp. 175–183. doi: 10.1007/978-3-031-65993-5_21

• Luca Scomparin, Andrea Santamaria Garcia, Andreas Kopmann, Anke-Susanne

Mueller, Chenran Xu, Edmund Blomley, Erik Bründermann, Johannes Steinmann,

Jürgen Becker, Marcel Schuh, Michelle Caselle, Timo Dritschler, Akira Mochihashi,

148

https://doi.org/10.18429/JACoW-IPAC2021-TUPAB298
https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.18429/JACoW-ICALEPCS2023-TUPDP030
https://doi.org/10.18429/JACoW-ICALEPCS2023-TUPDP030
https://doi.org/10.18429/JACoW-LINAC2024-THPB068
https://doi.org/10.18429/JACoW-IPAC2024-TUPS60
https://doi.org/10.1007/978-3-031-65993-5_21

List of Acronyms

and Marc Weber. “Preliminary results on the reinforcement learning-based control

of the microbunching instability”. In: Proc. IPAC’24. May 2024. doi: 10.18429/JACoW-

IPAC2024-TUPS61

• Andrea Santamaria Garcia, Luca Scomparin,ChenranXu, SimonHirlaender, Sabrina

Pochaba, Annika Eichler, Jan Kaiser, and Michael Schenk. “The reinforcement

learning for autonomous accelerators collaboration”. In: Proc. IPAC’24. May 2024.

doi: 10.18429/JACoW-IPAC2024-TUPS62

• Andrea Santamaria Garcia, Erik Bründermann, Michelle Caselle, Giovanni De Carne,

Anke-Susanne Müller, Luca Scomparin, and Chenran Xu. “How Can Machine

Learning Help Future Light Sources?” In: Proc. FLS’23. 67. Jan. 2024. doi: 10.18429/
JACoW-FLS2023-TH3D3

• Luca Scomparin, Michele Caselle, Andrea Santamaria Garcia, Chenran Xu, Ed-
mund Blomley, Timo Dritschler, Akira Mochihashi, Marcel Schuh, Johannes L. Stein-

mann, Erik Bründermann, Andreas Kopmann, Jürgen Becker, Anke-Susanne Müller,

and Marc Weber. Microsecond-Latency Feedback at a Particle Accelerator by On-
line Reinforcement Learning on Hardware. under review. 2024. arXiv: 2409.16177
[physics.acc-ph]

149

https://doi.org/10.18429/JACoW-IPAC2024-TUPS61
https://doi.org/10.18429/JACoW-IPAC2024-TUPS61
https://doi.org/10.18429/JACoW-IPAC2024-TUPS62
https://doi.org/10.18429/JACoW-FLS2023-TH3D3
https://doi.org/10.18429/JACoW-FLS2023-TH3D3
https://arxiv.org/abs/2409.16177
https://arxiv.org/abs/2409.16177

Bibliography

[1] Andrew Sessler and Edmund Wilson. Engines of Discovery. Vol. 34. 6. WORLD

SCIENTIFIC, Apr. 2014, pp. 38–41. isbn: 978-981-4417-18-1. doi: 10.1142/8552.

[2] Nanshun Huang et al. “Features and futures of X-ray free-electron lasers”. In: The
Innovation 2.2 (May 2021), p. 100097. issn: 26666758. doi: 10.1016/j.xinn.2021.

100097.

[3] P. Emma et al. “First lasing and operation of an ångstrom-wavelength free-electron

laser”. In: Nature Photonics 2010 4:9 4.9 (Aug. 2010), pp. 641–647. issn: 1749-4893.
doi: 10.1038/nphoton.2010.176.

[4] Tetsuya Ishikawa et al. “A compact X-ray free-electron laser emitting in the sub-

ångström region”. In: Nature Photonics 2012 6:8 6.8 (June 2012), pp. 540–544. issn:
1749-4893. doi: 10.1038/nphoton.2012.141.

[5] Heung Sik Kang et al. “Hard X-ray free-electron laser with femtosecond-scale

timing jitter”. In: Nature Photonics 2017 11:11 11.11 (Oct. 2017), pp. 708–713. issn:
1749-4893. doi: 10.1038/s41566-017-0029-8.

[6] W. Decking et al. “A MHz-repetition-rate hard X-ray free-electron laser driven

by a superconducting linear accelerator”. In: Nature Photonics 14.6 (June 2020),

pp. 391–397. issn: 1749-4885. doi: 10.1038/s41566-020-0607-z.

[7] Eduard Prat et al. “A compact and cost-effective hard X-ray free-electron laser

driven by a high-brightness and low-energy electron beam”. In: Nature Photonics
2020 14:12 14.12 (Nov. 2020), pp. 748–754. issn: 1749-4893. doi: 10.1038/s41566-
020-00712-8.

[8] Zhentang Zhao et al. “Status of the SXFEL Facility”. In: Applied Sciences 2017, Vol.
7, Page 607 7.6 (June 2017), p. 607. issn: 2076-3417. doi: 10.3390/APP7060607.

[9] Auralee Edelen et al. “Opportunities in Machine Learning for Particle Accelerators”.

In: (Nov. 2018).

[10] Andrea Santamaria Garcia et al. “How Can Machine Learning Help Future Light

Sources?” In: Proc. FLS’23. 67. Jan. 2024. doi: 10.18429/JACoW-FLS2023-TH3D3.

[11] C. Adolphsen et al. “European Strategy for Particle Physics – Accelerator R&D

Roadmap”. In: (Jan. 2022). doi: 10.23731/CYRM-2022-001.

[12] S. Gourlay et al. “Snowmass’21 Accelerator Frontier Report”. In: (Sept. 2022).

[13] S Biedron et al. “Snowmass21 Accelerator Modeling Community White Paper”. In:

(Mar. 2022).

151

https://doi.org/10.1142/8552
https://doi.org/10.1016/j.xinn.2021.100097
https://doi.org/10.1016/j.xinn.2021.100097
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/s41566-017-0029-8
https://doi.org/10.1038/s41566-020-0607-z
https://doi.org/10.1038/s41566-020-00712-8
https://doi.org/10.1038/s41566-020-00712-8
https://doi.org/10.3390/APP7060607
https://doi.org/10.18429/JACoW-FLS2023-TH3D3
https://doi.org/10.23731/CYRM-2022-001

Bibliography

[14] C. Allaire et al. “Artificial Intelligence for the Electron Ion Collider (AI4EIC)”. In:

Computing and Software for Big Science 8.1 (Dec. 2024), pp. 1–21. issn: 25102044.
doi: 10.1007/S41781-024-00113-4/FIGURES/4.

[15] R Roussel et al. “XOPT: a simplified framework for optimization of accelerator

problems using advanced algorithms”. In: Proc. IPAC’23. 2023. isbn: 9783954502318.
doi: 10.18429/JACoW-IPAC2023-THPL164.

[16] A. Ferran Pousa et al. “Bayesian optimization of laser-plasma accelerators assisted

by reduced physical models”. In: Physical Review Accelerators and Beams 26.8 (Aug.
2023), p. 084601. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.26.084601.

[17] Z Zhang et al. “BADGER: THE missing optimizer in ACR”. In: Proc. IPAC’22. 2022.
isbn: 9783954502271. doi: 10.18429/JACoW-IPAC2022-TUPOST058.

[18] Nico Madysa. Generic Optimisation Frontend and Framework (GeOFF).

[19] C. Emma et al. “Machine learning-based longitudinal phase space prediction of

particle accelerators”. In: Physical Review Accelerators and Beams 21.11 (Nov. 2018),
p. 112802. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.21.112802.

[20] J. Zhu et al. “High-Fidelity Prediction of Megapixel Longitudinal Phase-Space

Images of Electron Beams Using Encoder-Decoder Neural Networks”. In: Phys-
ical Review Applied 16.2 (Aug. 2021), p. 024005. issn: 2331-7019. doi: 10.1103/

PhysRevApplied.16.024005.

[21] Alexander Scheinker et al. “An adaptive approach to machine learning for compact

particle accelerators”. In: Scientific Reports 11.1 (Sept. 2021), p. 19187. issn: 2045-
2322. doi: 10.1038/s41598-021-98785-0.

[22] A. Wolski et al. “Transverse phase space tomography in an accelerator test facil-

ity using image compression and machine learning”. In: Physical Review Accel-
erators and Beams 25.12 (Dec. 2022), p. 122803. issn: 2469-9888. doi: 10.1103/

PhysRevAccelBeams.25.122803.

[23] R. Roussel et al. “Phase Space Reconstruction fromAccelerator BeamMeasurements

Using Neural Networks and Differentiable Simulations”. In: Physical Review Letters
130.14 (Apr. 2023), p. 145001. issn: 0031-9007. doi: 10.1103/PhysRevLett.130.

145001.

[24] M. Kranjčević et al. “Multiobjective optimization of the dynamic aperture using

surrogate models based on artificial neural networks”. In: Physical Review Ac-
celerators and Beams 24.1 (Jan. 2021), p. 014601. issn: 2469-9888. doi: 10.1103/

PhysRevAccelBeams.24.014601.

[25] E. Fol et al. “Detection of faulty beam position monitors using unsupervised learn-

ing”. In: Physical Review Accelerators and Beams 23.10 (Oct. 2020), p. 102805. issn:
2469-9888. doi: 10.1103/PhysRevAccelBeams.23.102805.

[26] G Azzopardi and G Ricci. “NEW MACHINE LEARNING MODEL APPLICATION

FOR THE AUTOMATIC LHC COLLIMATOR BEAM-BASED ALIGNMENT”. In:

ICALEPCS21. 2022. isbn: 9783954502219. doi: 10.18429/JACoW-ICALEPCS2021-
THPV040.

152

https://doi.org/10.1007/S41781-024-00113-4/FIGURES/4
https://doi.org/10.18429/JACoW-IPAC2023-THPL164
https://doi.org/10.1103/PhysRevAccelBeams.26.084601
https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevApplied.16.024005
https://doi.org/10.1103/PhysRevApplied.16.024005
https://doi.org/10.1038/s41598-021-98785-0
https://doi.org/10.1103/PhysRevAccelBeams.25.122803
https://doi.org/10.1103/PhysRevAccelBeams.25.122803
https://doi.org/10.1103/PhysRevLett.130.145001
https://doi.org/10.1103/PhysRevLett.130.145001
https://doi.org/10.1103/PhysRevAccelBeams.24.014601
https://doi.org/10.1103/PhysRevAccelBeams.24.014601
https://doi.org/10.1103/PhysRevAccelBeams.23.102805
https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV040
https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV040

[27] Sichen Li and Andreas Adelmann. “Time series forecasting methods and their

applications to particle accelerators”. In: Physical Review Accelerators and Beams
26.2 (Feb. 2023), p. 024801. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.26.

024801.

[28] J. Duris et al. “Bayesian Optimization of a Free-Electron Laser”. In: Physical Review
Letters 124.12 (Mar. 2020), p. 124801. issn: 0031-9007. doi: 10.1103/PhysRevLett.

124.124801.

[29] Alexander Scheinker et al. “Model-independent tuning for maximizing free electron

laser pulse energy”. In: Physical Review Accelerators and Beams 22.8 (Aug. 2019),
p. 082802. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.22.082802.

[30] Johannes Kirschner et al. “Tuning particle accelerators with safety constraints

using Bayesian optimization”. In: Physical Review Accelerators and Beams 25.6 (June
2022), p. 062802. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.25.062802.

[31] Chenran Xu et al. “Bayesian optimization of the beam injection process into a

storage ring”. In: Phys. Rev. Accel. Beams 26 (3 Mar. 2023), p. 034601. doi: 10.1103/

PhysRevAccelBeams.26.034601.

[32] A. Awal et al. “Optimization of the injection beam line at the Cooler Synchrotron

COSY using Bayesian Optimization”. In: Journal of Instrumentation 18.04 (Apr.

2023), P04010. issn: 1748-0221. doi: 10.1088/1748-0221/18/04/P04010.

[33] Auralee Edelen et al. “Machine learning for orders of magnitude speedup in mul-

tiobjective optimization of particle accelerator systems”. In: Physical Review Ac-
celerators and Beams 23.4 (Apr. 2020), p. 044601. issn: 2469-9888. doi: 10.1103/
PhysRevAccelBeams.23.044601.

[34] Sören Jalas et al. “Bayesian Optimization of a Laser-Plasma Accelerator”. In: Phys-
ical Review Letters 126.10 (Mar. 2021), p. 104801. issn: 0031-9007. doi: 10.1103/

PhysRevLett.126.104801.

[35] Verena Kain et al. “Sample-efficient reinforcement learning for CERN accelerator

control”. In: Physical Review Accelerators and Beams 23.12 (Dec. 2020), p. 124801.
issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.23.124801.

[36] Jan Kaiser, Oliver Stein, and Annika Eichler. “Learning-based Optimisation of

Particle Accelerators Under Partial Observability Without Real-World Training”.

In: PMLR 162 (2022), pp. 10575–10585.

[37] Weija Wang et al. “Accelerated Deep Reinforcement Learning for Fast Feedback

of Beam Dynamics at KARA”. In: IEEE Transactions on Nuclear Science 68.8 (Aug.
2021), pp. 1794–1800. issn: 0018-9499. doi: 10.1109/TNS.2021.3084515.

[38] Luca Scomparin et al. “Preliminary results on the reinforcement learning-based

control of the microbunching instability”. In: Proc. IPAC’24. May 2024. doi: 10.

18429/JACoW-IPAC2024-TUPS61.

[39] Jason St. John et al. “Real-time artificial intelligence for accelerator control: A study

at the Fermilab Booster”. In: Physical Review Accelerators and Beams 24.10 (Oct.
2021), p. 104601. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.24.104601.

153

https://doi.org/10.1103/PhysRevAccelBeams.26.024801
https://doi.org/10.1103/PhysRevAccelBeams.26.024801
https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevAccelBeams.22.082802
https://doi.org/10.1103/PhysRevAccelBeams.25.062802
https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.1088/1748-0221/18/04/P04010
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevLett.126.104801
https://doi.org/10.1103/PhysRevLett.126.104801
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1109/TNS.2021.3084515
https://doi.org/10.18429/JACoW-IPAC2024-TUPS61
https://doi.org/10.18429/JACoW-IPAC2024-TUPS61
https://doi.org/10.1103/PhysRevAccelBeams.24.104601

Bibliography

[40] N Thuerey et al. “Physics-based Deep Learning”. In: (2022).

[41] Facundo Sapienza et al. “Differentiable Programming for Differential Equations: A

Review”. In: (2024).

[42] Jan Kaiser et al. “Bridging the gap between machine learning and particle accelera-

tor physics with high-speed, differentiable simulations”. In: Phys. Rev. Accel. Beams
27 (5 May 2024), p. 054601. doi: 10.1103/PhysRevAccelBeams.27.054601.

[43] Andrzej Wolski. Beam Dynamics in High Energy Particle Accelerators. IMPERIAL

COLLEGE PRESS, Apr. 2014. isbn: 978-1-78326-277-9. doi: 10.1142/p899.

[44] Helmut Wiedemann. Particle Accelerator Physics. Graduate Texts in Physics. Cham:

Springer International Publishing, 2015. isbn: 978-3-319-18316-9. doi: 10.1007/978-

3-319-18317-6.

[45] S Y Lee. Accelerator Physics. 4th. WORLD SCIENTIFIC, Jan. 2019. isbn: 978-981-

327-467-9. doi: 10.1142/11111.

[46] Kevin Li. “Collective Effects – an introduction”. In: Proceedings of the CERN-
Accelerator-School course on Introduction to Accelerator Physics (July 2021).

[47] Joseph Duris et al. “Tunable isolated attosecond X-ray pulses with gigawatt peak

power from a free-electron laser”. In: Nature Photonics 14.1 (Jan. 2020), pp. 30–36.
issn: 1749-4885. doi: 10.1038/s41566-019-0549-5.

[48] Praveen Kumar Maroju et al. “Attosecond pulse shaping using a seeded free-

electron laser”. In: Nature 578.7795 (Feb. 2020), pp. 386–391. issn: 0028-0836. doi:
10.1038/s41586-020-2005-6.

[49] AlexanderWu Chao et al.Handbook of Accelerator Physics and Engineering. WORLD

SCIENTIFIC, May 2013, pp. 1–830. isbn: 978-981-4415-84-2. doi: 10.1142/8543.

[50] M. J. Nasse et al. “FLUTE: A versatile linac-based THz source”. In: Review of Scientific
Instruments 84.2 (Feb. 2013). issn: 0034-6748. doi: 10.1063/1.4790431.

[51] M. J. Nasse et al. “First Electron Beam at the Linear Accelerator FLUTE at KIT”.

In: Proceedings of the10th International Particle Accelerator Conference (IPAC 2019),
Melbourne, AUS, May 10-24, 2019. Ed.: M. Boland 10 (2019), p. 882. doi: 10.18429/

JACOW-IPAC2019-MOPTS018.

[52] F Burkart et al. “The ARES Linac at DESY”. In: Proceedings of LINAC2022 (Sept.

2022), pp. 691–694. issn: 2226-0366. doi: 10.18429/JACOW-LINAC2022-THPOJO01.

[53] Annika Eichler et al. “First Steps Toward an Autonomous Accelerator, a Common

Project Between DESY and KIT”. In: Proc. IPAC’21. Aug. 2021. doi: 10.18429/JACoW-
IPAC2021-TUPAB298.

[54] Sergey Tomin et al. “Undulator linear taper control at the European X-Ray Free-

Electron Laser facility”. In: Physical Review Accelerators and Beams 27.4 (Apr. 2024),
p. 042801. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.27.042801.

[55] Ian. Goodfellow, Yoshua. Bengio, and Aaron. Courville. Deep learning. The MIT

Press, 2016, p. 775. isbn: 9780262337373.

154

https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://doi.org/10.1142/p899
https://doi.org/10.1007/978-3-319-18317-6
https://doi.org/10.1007/978-3-319-18317-6
https://doi.org/10.1142/11111
https://doi.org/10.1038/s41566-019-0549-5
https://doi.org/10.1038/s41586-020-2005-6
https://doi.org/10.1142/8543
https://doi.org/10.1063/1.4790431
https://doi.org/10.18429/JACOW-IPAC2019-MOPTS018
https://doi.org/10.18429/JACOW-IPAC2019-MOPTS018
https://doi.org/10.18429/JACOW-LINAC2022-THPOJO01
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB298
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB298
https://doi.org/10.1103/PhysRevAccelBeams.27.042801

[56] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning. The MIT Press, 2005. isbn: 9780262256834. doi: 10.7551/mitpress/

3206.001.0001.

[57] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[58] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B”. In: ACM Transactions on Mathematical
Software 23.4 (Dec. 1997), pp. 550–560. issn: 0098-3500. doi: 10.1145/279232.

279236.

[59] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: NIPS’19. 2019, pp. 8026–8037. doi: 10.5555/3454287.3455008.

[60] Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic Python

Bytecode Transformation and Graph Compilation”. In: Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. Vol. 2. New York, NY, USA: ACM, Apr. 2024, pp. 929–

947. doi: 10.1145/3620665.3640366.

[61] Martín Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems”. In: (Mar. 2016).

[62] Roy Frostig, Matthew James Johnson, and Chris Leary. “Compiling machine learn-

ing programs via high-level tracing”. In: Systems for Machine Learning. 2018.

[63] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings (Dec. 2014).

[64] Ryan Roussel et al. “Bayesian optimization algorithms for accelerator physics”. In:

Phys. Rev. Accel. Beams 27 (8 Aug. 2024), p. 084801. doi: 10.1103/PhysRevAccelBeams.
27.084801.

[65] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Opti-
mization of Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning. Dec. 2010.

[66] Niranjan Srinivas et al. “Gaussian process optimization in the bandit setting: No

regret and experimental design”. In: ICML 2010 - Proceedings, 27th International
Conference on Machine Learning. 2010, pp. 1015–1022. isbn: 9781605589077. doi:
10.1109/TIT.2011.2182033.

[67] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient Global Opti-

mization of Expensive Black-Box Functions”. In: Journal of Global Optimization
13.4 (1998), pp. 455–492. issn: 09255001. doi: 10.1023/A:1008306431147.

[68] Daniel James Lizotte. “Practical Bayesian Optimization”. PhD thesis. University of

Alberta, 2008, p. 177. isbn: 978-0-494-46365-9.

[69] Adi Hanuka et al. “Physics model-informed Gaussian process for online optimiza-

tion of particle accelerators”. In: Physical Review Accelerators and Beams 24.7 (July
2021), p. 072802. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.24.072802.

155

https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1103/PhysRevAccelBeams.24.072802

Bibliography

[70] Favour M. Nyikosa, Michael A. Osborne, and Stephen J. Roberts. “Bayesian Opti-

mization for Dynamic Problems”. In: (Mar. 2018).

[71] Andreas Krause and Cheng Soon Ong. “Contextual Gaussian process bandit opti-

mization”. In: Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011, NIPS 2011. 2011. isbn:
9781618395993.

[72] N Kuklev et al. “Online Accelerator Tuning with Adaptive Bayesian Optimization”.

In: Proc. 5th Int. Particle Accel. Conf. (NAPAC’22). Oct. 2022, pp. 842–845. doi:
10.18429/JACoW-NAPAC2022-THXD4.

[73] N Kuklev et al. “Robust adaptive Bayesian optimization”. In: Proc. IPAC’23. 2023.
isbn: 9783954502318. doi: 10.18429/JACoW-IPAC2023-THPL007.

[74] F. Irshad, S. Karsch, and A. Döpp. “Multi-objective and multi-fidelity Bayesian

optimization of laser-plasma acceleration”. In: Physical Review Research 5.1 (Jan.

2023), p. 013063. issn: 2643-1564. doi: 10.1103/PhysRevResearch.5.013063.

[75] Ryan Roussel et al. “Turn-key constrained parameter space exploration for particle

accelerators using Bayesian active learning”. In: Nature Communications 12.1 (Sept.
2021), p. 5612. issn: 2041-1723. doi: 10.1038/s41467-021-25757-3.

[76] Chenran Xu et al. “Bayesian Optimization for SASE Tuning at the European XFEL”.

In: Proc. IPAC’23. May 2023. doi: 10.18429/JACoW-IPAC2023-THPL028.

[77] Johannes Kirschner et al. “Adaptive and safe Bayesian optimization in high di-

mensions via one-dimensional subspaces”. In: 36th International Conference on
Machine Learning, ICML 2019. Vol. 2019-June. International Machine Learning

Society (IMLS), 2019, pp. 5959–5971. isbn: 9781510886988.

[78] Jannis O. Lübsen et al. “A Safe Bayesian Optimization Algorithm for Tuning the

Optical Synchronization System at European XFEL”. In: IFAC-PapersOnLine 56.2
(Jan. 2023), pp. 3079–3085. issn: 2405-8963. doi: 10.1016/J.IFACOL.2023.10.1438.

[79] Ryan Roussel, Adi Hanuka, and Auralee Edelen. “Multiobjective Bayesian opti-

mization for online accelerator tuning”. In: Physical Review Accelerators and Beams
24.6 (June 2021), p. 062801. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.24.

062801.

[80] S. Jalas et al. “Tuning curves for a laser-plasma accelerator”. In: Physical Review
Accelerators and Beams 26.7 (July 2023), p. 071302. issn: 2469-9888. doi: 10.1103/

PhysRevAccelBeams.26.071302.

[81] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-

ing”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 0028-0836. doi: 10.1038/
nature14236.

[82] David Silver et al. “Mastering the game of Go with deep neural networks and

tree search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. issn: 0028-0836. doi:

10.1038/nature16961.

[83] David Silver et al. “Mastering the game of Gowithout human knowledge”. In:Nature
550.7676 (Oct. 2017), pp. 354–359. issn: 0028-0836. doi: 10.1038/nature24270.

156

https://doi.org/10.18429/JACoW-NAPAC2022-THXD4
https://doi.org/10.18429/JACoW-IPAC2023-THPL007
https://doi.org/10.1103/PhysRevResearch.5.013063
https://doi.org/10.1038/s41467-021-25757-3
https://doi.org/10.18429/JACoW-IPAC2023-THPL028
https://doi.org/10.1016/J.IFACOL.2023.10.1438
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.26.071302
https://doi.org/10.1103/PhysRevAccelBeams.26.071302
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270

[84] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep reinforce-

ment learning”. In: Nature 602.7897 (Feb. 2022), pp. 414–419. issn: 0028-0836. doi:
10.1038/s41586-021-04301-9.

[85] Elia Kaufmann et al. “Champion-level drone racing using deep reinforcement

learning”. In: Nature 620.7976 (Aug. 2023), pp. 982–987. issn: 0028-0836. doi: 10.
1038/s41586-023-06419-4.

[86] John Schulman et al. “High-Dimensional Continuous Control Using Generalized

Advantage Estimation”. In: (June 2015).

[87] John Schulman et al. “Trust Region Policy Optimization”. In: Proceedings of the 32nd
International Conference on Machine Learning. PMLR, June 2015, pp. 1889–1897.

[88] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, Mar. 2004. isbn: 9780521833783. doi: 10.1017/CBO9780511804441.

[89] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: (July 2017).

[90] Scott Fujimoto, Herke Van Hoof, and David Meger. “Addressing Function Approxi-

mation Error in Actor-Critic Methods”. In: (2018).

[91] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor”. In: 35th International Conference
on Machine Learning, ICML 2018 5 (Jan. 2018), pp. 2976–2989.

[92] Niky Bruchon et al. “Basic Reinforcement Learning Techniques to Control the

Intensity of a Seeded Free-Electron Laser”. In: Electronics 9.5 (May 2020), p. 781.

issn: 2079-9292. doi: 10.3390/electronics9050781.

[93] F. H. O’Shea, N. Bruchon, and G. Gaio. “Policy gradient methods for free-electron

laser and terahertz source optimization and stabilization at the FERMI free-electron

laser at Elettra”. In: Physical Review Accelerators and Beams 23.12 (Dec. 2020),

p. 122802. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.23.122802.

[94] Francesco Maria Velotti et al. “Towards automatic setup of 18 MeV electron beam-

line using machine learning”. In: Machine Learning: Science and Technology 4.2

(Apr. 2023), p. 025016. issn: 2632-2153. doi: 10.1088/2632-2153/ACCE21.

[95] Jan Kaiser et al. “Reinforcement learning-trained optimisers and Bayesian opti-

misation for online particle accelerator tuning”. In: Scientific Reports 14.1 (2024),
p. 15733. doi: 10.1038/s41598-024-66263-y.

[96] Xiaolong Chen et al. “Orbit correction based on improved reinforcement learning

algorithm”. In: Physical Review Accelerators and Beams 26.4 (Apr. 2023), p. 044601.
issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.26.044601.

[97] Xiaolong Chen et al. “Trend-Based SAC Beam Control Method with Zero-Shot in

Superconducting Linear Accelerator”. In: (May 2023).

[98] Tobias Boltz. “Micro-Bunching Control at Electron Storage Rings with Reinforce-

ment Learning”. PhD thesis. 2021. doi: 10.5445/IR/1000140271.

157

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.3390/electronics9050781
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://doi.org/10.1088/2632-2153/ACCE21
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.26.044601
https://doi.org/10.5445/IR/1000140271

Bibliography

[99] Luca Scomparin et al. Microsecond-Latency Feedback at a Particle Accelerator by
Online Reinforcement Learning on Hardware. under review. 2024. arXiv: 2409.16177
[physics.acc-ph].

[100] Simon Hirlaender and Niky Bruchon. “Model-free and Bayesian Ensembling Model-

based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated

on the FERMI FEL”. In: (Dec. 2020). doi: 10.48550/arxiv.2012.09737.

[101] Simon Hirlaender et al. “Ultra Fast Reinforcement Learning Demonstrated at CERN

AWAKE”. In: Proceedings of the 14th International Particle Accelerator Conference.
2023. doi: 10.18429/JACoW-IPAC2023-THPL038.

[102] Simon Hirlaender et al. “Towards few-shot reinforcement learning in particle

accelerator control”. In: Proc. IPAC’24. May 2024. doi: 10.18429/JACoW-IPAC2024-

TUPS60.

[103] Klaus Floettmann. ASTRA: A Space Charge Tracking Algorithm.

[104] Chenran Xu et al. “Optimization Studies of Simulated THz Radiation at FLUTE”.

In: Proc. IPAC’22. July 2022. doi: 10.18429/JACoW-IPAC2022-WEPOMS023.

[105] Chenran Xu et al. “Surrogate Modelling of the FLUTE Low-Energy Section”. In: Proc.
IPAC’22. July 2022, pp. 1182–1185. doi: 10.18429/JACoW-IPAC2022-TUPOPT070.

[106] Rohit K. Tripathy and Ilias Bilionis. “Deep UQ: Learning deep neural network

surrogate models for high dimensional uncertainty quantification”. In: Journal of
Computational Physics 375 (Dec. 2018), pp. 565–588. issn: 00219991. doi: 10.1016/
j.jcp.2018.08.036.

[107] Lukáš Bajer, Zbyněk Pitra, and Martin Holeňa. “Benchmarking Gaussian Processes

and Random Forests Surrogate Models on the BBOB Noiseless Testbed”. In: Pro-
ceedings of the Companion Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation. New York, NY, USA: ACM, July 2015, pp. 1143–1150.

isbn: 9781450334884. doi: 10.1145/2739482.2768468.

[108] Jinyu Wan, Paul Chu, and Yi Jiao. “Neural network-based multiobjective opti-

mization algorithm for nonlinear beam dynamics”. In: Physical Review Accel-
erators and Beams 23.8 (Aug. 2020), p. 081601. issn: 2469-9888. doi: 10.1103/

PhysRevAccelBeams.23.081601.

[109] Ryan Sandberg et al. “Synthesizing Particle-In-Cell Simulations through Learning

and GPU Computing for Hybrid Particle Accelerator Beamlines”. In: Proceedings of
the Platform for Advanced Scientific Computing Conference. Vol. 1. New York, NY,

USA: ACM, June 2024, pp. 1–11. doi: 10.1145/3659914.3659937.

[110] F. Mayet et al. “Predicting the transverse emittance of space charge dominated

beams using the phase advance scan technique and a fully connected neural net-

work”. In: Physical Review Accelerators and Beams 25.9 (Sept. 2022), p. 094601. issn:
2469-9888. doi: 10.1103/PhysRevAccelBeams.25.094601.

158

https://arxiv.org/abs/2409.16177
https://arxiv.org/abs/2409.16177
https://doi.org/10.48550/arxiv.2012.09737
https://doi.org/10.18429/JACoW-IPAC2023-THPL038
https://doi.org/10.18429/JACoW-IPAC2024-TUPS60
https://doi.org/10.18429/JACoW-IPAC2024-TUPS60
https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT070
https://doi.org/10.1016/j.jcp.2018.08.036
https://doi.org/10.1016/j.jcp.2018.08.036
https://doi.org/10.1145/2739482.2768468
https://doi.org/10.1103/PhysRevAccelBeams.23.081601
https://doi.org/10.1103/PhysRevAccelBeams.23.081601
https://doi.org/10.1145/3659914.3659937
https://doi.org/10.1103/PhysRevAccelBeams.25.094601

[111] Alexander Scheinker et al. “Demonstration of Model-Independent Control of

the Longitudinal Phase Space of Electron Beams in the Linac-Coherent Light

Source with Femtosecond Resolution”. In: Physical Review Letters 121.4 (July 2018),

p. 044801. issn: 0031-9007. doi: 10.1103/PhysRevLett.121.044801.

[112] Tobias Boltz et al. “More Sample-Efficient Tuning of Particle Accelerators with

Bayesian Optimization and Prior Mean Models”. In: (Feb. 2024).

[113] Thorsten Hellert et al. “Application of deep learning methods for beam size con-

trol during user operation at the Advanced Light Source”. In: Physical Review
Accelerators and Beams 27.7 (July 2024), p. 074602. issn: 2469-9888. doi: 10.1103/

PhysRevAccelBeams.27.074602.

[114] T Schmelzer et al. “DIAGNOSTICS AND FIRST BEAM MEASUREMENTS AT

FLUTE”. In: IPAC 2019 (2019). doi: 10.18429/JACoW-IPAC2019-WEPGW010.

[115] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-

tions”. In: (May 2017).

[116] T. Schmelzer et al. “Systematic Beam Parameter Studies at the Injector Section of

FLUTE”. In: 12th International Particle Accelerator Conference (Aug. 2021), pp. 2837–
2839. issn: 2673-5490. doi: 10.18429/JACOW-IPAC2021-WEPAB103.

[117] Moloud Abdar et al. “A review of uncertainty quantification in deep learning:

Techniques, applications and challenges”. In: Information Fusion 76 (Dec. 2021),

pp. 243–297. issn: 15662535. doi: 10.1016/j.inffus.2021.05.008.

[118] Markus Schwarz et al. “Analytic calculation of the electric field of a coherent THz

pulse”. In: Physical Review Special Topics - Accelerators and Beams 17.5 (May 2014),

p. 050701. issn: 1098-4402. doi: 10.1103/PhysRevSTAB.17.050701.

[119] Markus Schwarz et al. “Analytic calculation of electric fields of coherent THz

pulses”. In: IPAC’14. July 2014. isbn: 9783954501328. doi: 10.18429/JACoW-IPAC2014-
MOPRO067.

[120] I. Agapov et al. “OCELOT: A software framework for synchrotron light source and

FEL studies”. In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 768 (Dec. 2014),
pp. 151–156. issn: 01689002. doi: 10.1016/j.nima.2014.09.057.

[121] Minghao Song et al. “Storage ring nonlinear dynamics optimization with multi-

objective multi-generation Gaussian process optimizer”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 976 (Oct. 2020), p. 164273. issn: 01689002. doi: 10.1016/
j.nima.2020.164273.

[122] Javier González et al. “Batch Bayesian Optimization via Local Penalization”. In:

(May 2015).

[123] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems 2020-December (May 2020). issn: 10495258.

[124] J. Gonzalez-Aguilera et al. “Towards fully differentiable accelerator modeling”. In:

Proc. IPAC’23. May 2023, pp. 2673–5490. doi: 10.18429/JACoW-IPAC2023-WEPA065.

159

https://doi.org/10.1103/PhysRevLett.121.044801
https://doi.org/10.1103/PhysRevAccelBeams.27.074602
https://doi.org/10.1103/PhysRevAccelBeams.27.074602
https://doi.org/10.18429/JACoW-IPAC2019-WEPGW010
https://doi.org/10.18429/JACOW-IPAC2021-WEPAB103
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1103/PhysRevSTAB.17.050701
https://doi.org/10.18429/JACoW-IPAC2014-MOPRO067
https://doi.org/10.18429/JACoW-IPAC2014-MOPRO067
https://doi.org/10.1016/j.nima.2014.09.057
https://doi.org/10.1016/j.nima.2020.164273
https://doi.org/10.1016/j.nima.2020.164273
https://doi.org/10.18429/JACoW-IPAC2023-WEPA065

Bibliography

[125] Ji Qiang. “Differentiable self-consistent space-charge simulation for accelerator

design”. In: Physical Review Accelerators and Beams 26.2 (Feb. 2023), p. 024601. issn:
2469-9888. doi: 10.1103/PhysRevAccelBeams.26.024601.

[126] J Wan et al. “Developing nested auto-differentiation tracking code for beam dy-

namics optimization”. In: Proc. IPAC’24. 2024. isbn: 9783954502479. doi: 10.18429/
JACoW-IPAC2024-WEPR59.

[127] Robbie Watt and Brendan O’Shea. “A differentiable simulation package for per-

forming inference of synchrotron-radiation-based diagnostics”. In: Journal of Syn-
chrotron Radiation 31.2 (Mar. 2024), pp. 409–419. issn: 1600-5775. doi: 10.1107/

S1600577524000663.

[128] Karl L. Brown. “A First and Second Order Matrix Theory for the Design of Beam

Transport Systems and Charged Particle Spectrometers”. In: Adv. Part. Phys. (1968).

[129] Chenran Xu et al. “Machine Learning Based Spatial Light Modulator Control for the

Photoinjector Laser at FLUTE”. In: Proc. IPAC’21. Aug. 2021. doi: 10.18429/JACoW-
IPAC2021-WEPAB289.

[130] Matthias Nabinger et al. “Transverse and Longitudinal Modulation of Photoinjec-

tion Pulses at FLUTE”. In: Proc. IPAC’22. July 2022. doi: 10.18429/JACoW-IPAC2022-
TUPOPT068.

[131] Luca Serafini and James B. Rosenzweig. “Envelope analysis of intense relativistic

quasilaminar beams in rf photoinjectors:mA theory of emittance compensation”.

In: Physical Review E 55.6 (June 1997), pp. 7565–7590. issn: 1063-651X. doi: 10.

1103/PhysRevE.55.7565.

[132] O. J. Luiten et al. “How to Realize Uniform Three-Dimensional Ellipsoidal Electron

Bunches”. In: Physical Review Letters 93.9 (Aug. 2004), p. 094802. issn: 0031-9007.
doi: 10.1103/PhysRevLett.93.094802.

[133] Yuelin Li and John W. Lewellen. “Generating a Quasiellipsoidal Electron Beam by

3D Laser-Pulse Shaping”. In: Physical Review Letters 100.7 (Feb. 2008), p. 074801.
issn: 0031-9007. doi: 10.1103/PhysRevLett.100.074801.

[134] Sol M. Gruner et al. “Energy recovery linacs as synchrotron radiation sources

(invited)”. In: Review of Scientific Instruments 73.3 (Mar. 2002), pp. 1402–1406. issn:

0034-6748. doi: 10.1063/1.1420754.

[135] D. Filippetto et al. “Ultrafast electron diffraction: Visualizing dynamic states of

matter”. In: Reviews of Modern Physics 94.4 (Dec. 2022), p. 045004. issn: 0034-6861.
doi: 10.1103/RevModPhys.94.045004.

[136] Kwang-Je Kim. “Rf and space-charge effects in laser-driven rf electron guns”. In:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 275.2 (Feb. 1989), pp. 201–218. issn:
01689002. doi: 10.1016/0168-9002(89)90688-8.

160

https://doi.org/10.1103/PhysRevAccelBeams.26.024601
https://doi.org/10.18429/JACoW-IPAC2024-WEPR59
https://doi.org/10.18429/JACoW-IPAC2024-WEPR59
https://doi.org/10.1107/S1600577524000663
https://doi.org/10.1107/S1600577524000663
https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289
https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT068
https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT068
https://doi.org/10.1103/PhysRevE.55.7565
https://doi.org/10.1103/PhysRevE.55.7565
https://doi.org/10.1103/PhysRevLett.93.094802
https://doi.org/10.1103/PhysRevLett.100.074801
https://doi.org/10.1063/1.1420754
https://doi.org/10.1103/RevModPhys.94.045004
https://doi.org/10.1016/0168-9002(89)90688-8

[137] Feng Zhou et al. “Impact of the spatial laser distribution on photocathode gun

operation”. In: Physical Review Special Topics - Accelerators and Beams 15.9 (Sept.
2012), p. 090701. issn: 10984402. doi: 10.1103/PHYSREVSTAB.15.090701/FIGURES/

7/MEDIUM.

[138] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. “Coherence properties of the

radiation from X-ray free electron laser”. In: Optics Communications 281.5 (Mar.

2008), pp. 1179–1188. issn: 00304018. doi: 10.1016/j.optcom.2007.10.044.

[139] G. Penco et al. “Experimental Demonstration of Electron Longitudinal-Phase-Space

Linearization by Shaping the Photoinjector Laser Pulse”. In: Physical Review Letters
112.4 (Jan. 2014), p. 044801. issn: 0031-9007. doi: 10.1103/PhysRevLett.112.

044801.

[140] S. Bettoni et al. “Impact of laser stacking and photocathode materials on mi-

crobunching stability in photoinjectors”. In: Physical Review Accelerators and Beams
23.2 (Feb. 2020), p. 024401. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.23.

024401.

[141] Randy Lemons et al. “Temporal shaping of narrow-band picosecond pulses via

noncolinear sum-frequency mixing of dispersion-controlled pulses”. In: Physical
Review Accelerators and Beams 25.1 (Jan. 2022), p. 013401. issn: 2469-9888. doi:

10.1103/PhysRevAccelBeams.25.013401.

[142] Jared Maxson et al. “Adaptive electron beam shaping using a photoemission gun

and spatial light modulator”. In: Physical Review Special Topics - Accelerators and
Beams 18.2 (Feb. 2015), p. 023401. issn: 10984402. doi: 10.1103/PHYSREVSTAB.18.
023401/FIGURES/11/MEDIUM.

[143] Carmelo Rosales-Guzmán and Andrew Forbes. How to Shape Light with Spatial
Light Modulators. SPIE, June 2017. isbn: 9781510613010. doi: 10.1117/3.2281295.

[144] S. Yu. Mironov et al. “Shaping of cylindrical and 3D ellipsoidal beams for electron

photoinjector laser drivers”. In: Applied Optics 55.7 (Mar. 2016), p. 1630. issn: 0003-

6935. doi: 10.1364/AO.55.001630.

[145] James Good. “Experimental Characterization of the Photocathode Laser System

for Advanced 3D Pulse Shaping at PITZ”. PhD thesis. 2019.

[146] C Koschitzki et al. “CHIRPED PULSE LASER SHAPING FOR HIGH BRIGHTNESS

PHOTOINJECTORS”. In: (2022). doi: 10.18429/JACoW-FEL2022-WEAO4.

[147] Andreas Hoffmann et al. “Towards Implementation of 3D Amplitude Shaping at

515 nm and First Pulseshaping Experiments at PITZ”. In: Photonics 11.1 (Dec. 2023),
p. 6. issn: 2304-6732. doi: 10.3390/photonics11010006.

[148] Pierre Tournois. “Acousto-optic programmable dispersive filter for adaptive com-

pensation of group delay time dispersion in laser systems”. In: Optics Commu-
nications 140.4-6 (Aug. 1997), pp. 245–249. issn: 00304018. doi: 10.1016/S0030-
4018(97)00153-3.

161

https://doi.org/10.1103/PHYSREVSTAB.15.090701/FIGURES/7/MEDIUM
https://doi.org/10.1103/PHYSREVSTAB.15.090701/FIGURES/7/MEDIUM
https://doi.org/10.1016/j.optcom.2007.10.044
https://doi.org/10.1103/PhysRevLett.112.044801
https://doi.org/10.1103/PhysRevLett.112.044801
https://doi.org/10.1103/PhysRevAccelBeams.23.024401
https://doi.org/10.1103/PhysRevAccelBeams.23.024401
https://doi.org/10.1103/PhysRevAccelBeams.25.013401
https://doi.org/10.1103/PHYSREVSTAB.18.023401/FIGURES/11/MEDIUM
https://doi.org/10.1103/PHYSREVSTAB.18.023401/FIGURES/11/MEDIUM
https://doi.org/10.1117/3.2281295
https://doi.org/10.1364/AO.55.001630
https://doi.org/10.18429/JACoW-FEL2022-WEAO4
https://doi.org/10.3390/photonics11010006
https://doi.org/10.1016/S0030-4018(97)00153-3
https://doi.org/10.1016/S0030-4018(97)00153-3

Bibliography

[149] A. M. Weiner. “Femtosecond pulse shaping using spatial light modulators”. In:

Review of Scientific Instruments 71.5 (May 2000), pp. 1929–1960. issn: 0034-6748.

doi: 10.1063/1.1150614.

[150] Yannick Schrödel et al. “Acousto-optic modulation of gigawatt-scale laser pulses

in ambient air”. In: Nature Photonics 18.1 (Jan. 2024), pp. 54–59. issn: 1749-4885.
doi: 10.1038/s41566-023-01304-y.

[151] Yuelin Li, Sergey Chemerisov, and John Lewellen. “Laser pulse shaping for gener-

ating uniform three-dimensional ellipsoidal electron beams”. In: Physical Review
Special Topics - Accelerators and Beams 12.2 (Feb. 2009), p. 020702. issn: 1098-4402.
doi: 10.1103/PhysRevSTAB.12.020702.

[152] A E Pollard et al. “Machine learning approach to temporal pulse shaping for the

photoinjector laser at CLARA”. In: Proceedings of IPAC2022 (2022), pp. 2917–2920.
doi: 10.18429/JACoW-IPAC2022-THPOTK061.

[153] Futoshi Matsui et al. “Genetic-algorithm-based method to optimize spatial profile

utilizing characteristics of electrostatic actuator deformable mirror”. In: Optical
Review 15.3 (May 2008), pp. 156–161. issn: 1340-6000. doi: 10.1007/s10043-008-

0025-9.

[154] G. Ha et al. “Bunch shaping in electron linear accelerators”. In: Reviews of Modern
Physics 94.2 (May 2022), p. 025006. issn: 0034-6861. doi: 10.1103/RevModPhys.94.

025006.

[155] Matthias Nabinger et al. “Efficient Terahertz Generation by Tilted-Pulse-Front

Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE”.

In: 12th International Particle Accelerator Conference (Aug. 2021), pp. 4299–4302.
issn: 2673-5490. doi: 10.18429/JACOW-IPAC2021-THPAB251.

[156] Eliot Bolduc et al. “Exact solution to simultaneous intensity and phase encryption

with a single phase-only hologram”. In: Optics Letters 38.18 (Sept. 2013), p. 3546.
issn: 0146-9592. doi: 10.1364/OL.38.003546.

[157] Ryoichi Horisaki, Ryosuke Takagi, and Jun Tanida. “Deep-learning-generated

holography”. In: Applied Optics 57.14 (May 2018), p. 3859. issn: 1559-128X. doi:

10.1364/AO.57.003859.

[158] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-

works for Biomedical Image Segmentation”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 9351 (2015), pp. 234–241. issn: 1611-3349. doi: 10.1007/978-3-319-

24574-4{_}28.

[159] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume
37. 2015, pp. 448–456. doi: 10.5555/3045118.3045167.

162

https://doi.org/10.1063/1.1150614
https://doi.org/10.1038/s41566-023-01304-y
https://doi.org/10.1103/PhysRevSTAB.12.020702
https://doi.org/10.18429/JACoW-IPAC2022-THPOTK061
https://doi.org/10.1007/s10043-008-0025-9
https://doi.org/10.1007/s10043-008-0025-9
https://doi.org/10.1103/RevModPhys.94.025006
https://doi.org/10.1103/RevModPhys.94.025006
https://doi.org/10.18429/JACOW-IPAC2021-THPAB251
https://doi.org/10.1364/OL.38.003546
https://doi.org/10.1364/AO.57.003859
https://doi.org/10.1007/978-3-319-24574-4{_}28
https://doi.org/10.1007/978-3-319-24574-4{_}28
https://doi.org/10.5555/3045118.3045167

[160] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE 86.11 (1998), pp. 2278–2323. issn: 00189219. doi: 10.1109/5.

726791.

[161] A. Marinelli et al. “Optical Shaping of X-Ray Free-Electron Lasers”. In: Physi-
cal Review Letters 116.25 (June 2016), p. 254801. issn: 0031-9007. doi: 10.1103/

PhysRevLett.116.254801.

[162] D. Cesar et al. “Electron beam shaping via laser heater temporal shaping”. In:

Physical Review Accelerators and Beams 24.11 (Nov. 2021), p. 110703. issn: 2469-
9888. doi: 10.1103/PhysRevAccelBeams.24.110703.

[163] Marius Constantin Chirita Mihaila et al. “Transverse Electron-Beam Shaping with

Light”. In: Physical Review X 12.3 (Sept. 2022), p. 031043. issn: 2160-3308. doi:

10.1103/PhysRevX.12.031043.

[164] Xiaobiao Huang. Beam-based Correction and Optimization for Accelerators. Boca
Raton: CRC Press, Dec. 2019. isbn: 9780429434358. doi: 10.1201/9780429434358.

[165] Xiaobiao Huang. “Robust simplex algorithm for online optimization”. In: Physical
Review Accelerators and Beams 21.10 (Oct. 2018), p. 104601. issn: 2469-9888. doi:
10.1103/PhysRevAccelBeams.21.104601.

[166] S Tomin et al. “Progress in automatic software-based optimization of accelerator

performance”. In: IPAC 2016 - Proceedings of the 7th International Particle Accelerator
Conference. 2016, pp. 3064–3066. isbn: 9783954501472.

[167] Xiaobiao Huang et al. “An algorithm for online optimization of accelerators”.

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 726 (Oct. 2013), pp. 77–83. issn:
01689002. doi: 10.1016/j.nima.2013.05.046.

[168] Xiaobiao Huang and James Safranek. “Online optimization of storage ring nonlinear

beam dynamics”. In: Physical Review Special Topics - Accelerators and Beams 18.8
(Aug. 2015), p. 084001. issn: 1098-4402. doi: 10.1103/PhysRevSTAB.18.084001.

[169] Alexander Scheinker, Xiaoying Pang, and Larry Rybarcyk. “Model-independent

particle accelerator tuning”. In: Physical Review Special Topics - Accelerators and
Beams 16.10 (Oct. 2013), p. 102803. issn: 1098-4402. doi: 10.1103/PhysRevSTAB.16.
102803.

[170] Peter I. Frazier. “A Tutorial on Bayesian Optimization”. In: (July 2018).

[171] David Meier et al. “Optimizing a superconducting radio-frequency gun using deep

reinforcement learning”. In: Physical Review Accelerators and Beams 25.10 (Oct.

2022), p. 104604. issn: 2469-9888. doi: 10.1103/PhysRevAccelBeams.25.104604.

[172] Ke Li and Jitendra Malik. “Learning to Optimize”. In: (June 2016).

[173] Tianlong Chen et al. “Learning to Optimize: A Primer and A Benchmark”. In:

Journal of Machine Learning Research 23 (2022), pp. 1–59.

163

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1103/PhysRevLett.116.254801
https://doi.org/10.1103/PhysRevLett.116.254801
https://doi.org/10.1103/PhysRevAccelBeams.24.110703
https://doi.org/10.1103/PhysRevX.12.031043
https://doi.org/10.1201/9780429434358
https://doi.org/10.1103/PhysRevAccelBeams.21.104601
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1103/PhysRevSTAB.18.084001
https://doi.org/10.1103/PhysRevSTAB.16.102803
https://doi.org/10.1103/PhysRevSTAB.16.102803
https://doi.org/10.1103/PhysRevAccelBeams.25.104604

Bibliography

[174] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. “Gaussian Pro-

cesses for Data-Efficient Learning in Robotics and Control”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 37.2 (Feb. 2015), pp. 408–423. issn:

0162-8828. doi: 10.1109/TPAMI.2013.218.

[175] Chenran Xu et al. “Beam trajectory control with lattice-agnostic reinforcement

learning”. In: Proc. IPAC’23. May 2023. doi: 10.18429/JACoW-IPAC2023-THPL029.

[176] Simon Hirlaender et al. “Deep Meta Reinforcement Learning for Rapid Adaptation

In Linear Markov Decision Processes: Applications to CERN’s AWAKE Project”.

In: Combining, Modelling and Analyzing Imprecision, Randomness and Dependence.
Cham: Springer Nature Switzerland, 2024, pp. 175–183. doi: 10.1007/978-3-031-

65993-5_21.

[177] S. Tomin, L. Fröhlich, and M. Scholz. “STATUS OF AUTOMATED OPTIMIZATION

PROCEDURES AT THE EUROPEAN XFEL ACCELERATOR”. In: Proc. IPAC’19
(2019). doi: 10.18429/JACoW-IPAC2019-TUZZPLM2.

[178] Maximilian Balandat et al. “BoTorch: A Framework for Efficient Monte-Carlo

Bayesian Optimization”. In: Advances in Neural Information Processing Systems
2020-December (Oct. 2019). issn: 10495258.

[179] Antonin Raffin, Jens Kober, and Freek Stulp. “Smooth Exploration for Robotic

Reinforcement Learning”. In: (May 2020).

[180] Siddharth Mysore et al. “Regularizing Action Policies for Smooth Control with

Reinforcement Learning”. In: (Dec. 2020).

[181] Mark Towers et al. Gymnasium. May 2024. doi: 10.5281/zenodo.8127025.

[182] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[183] EPICS collaboration. EPICS - Experimental Physics and Industrial Control System.

[184] DOOCS: The Distributed Object-Oriented Control System Framework.

[185] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Imple-

mentations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8.

[186] Eva Panofski et al. “Commissioning Results and Electron Beam Characterization

with the S-Band Photoinjector at SINBAD-ARES”. In: Instruments 5.3 (Aug. 2021),
p. 28. issn: 2410-390X. doi: 10.3390/instruments5030028.

[187] W. Kuropka et al. “Full PIC simulation of a first ACHIP experiment @ SINBAD”.

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 909 (Nov. 2018), pp. 193–195.
issn: 01689002. doi: 10.1016/j.nima.2018.02.042.

[188] F. Mayet et al. “Simulations and plans for possible DLA experiments at SINBAD”.

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 909 (Nov. 2018), pp. 213–216.
issn: 01689002. doi: 10.1016/j.nima.2018.01.088.

164

https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.18429/JACoW-IPAC2023-THPL029
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.18429/JACoW-IPAC2019-TUZZPLM2
https://doi.org/10.5281/zenodo.8127025
arXiv:1606.01540
https://doi.org/10.3390/instruments5030028
https://doi.org/10.1016/j.nima.2018.02.042
https://doi.org/10.1016/j.nima.2018.01.088

[189] Josh Tobin et al. “Domain Randomization for Transferring Deep Neural Networks

from Simulation to the Real World”. In: (Mar. 2017). doi: 10.1109/IROS.2017.

8202133.

[190] OpenAI et al. “Solving Rubik’s Cube with a Robot Hand”. In: (Oct. 2019).

[191] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available
from wandb.com. 2020.

[192] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators”. In: Neural Networks 2.5 (Jan. 1989), pp. 359–
366. issn: 08936080. doi: 10.1016/0893-6080(89)90020-8.

[193] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Connection-

ist Networks: The Sequential Learning Problem”. In: Psychology of Learning and
Motivation - Advances in Research and Theory. Vol. 24. C. Academic Press, Jan. 1989,

pp. 109–165. doi: 10.1016/S0079-7421(08)60536-8.

[194] Jacob Beck et al. “A Survey of Meta-Reinforcement Learning”. In: (Jan. 2023).

[195] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning

for Fast Adaptation of Deep Networks”. In: 34th International Conference on Machine
Learning, ICML 2017 3 (Mar. 2017), pp. 1856–1868. doi: 10.48550/arxiv.1703.

03400.

[196] Simon Hirlaender et al. Tutorial on Meta-Reinforcement Learning and GP-MPC at
the RL4AA’24 Workshop. Version v1.0.2. Mar. 2024. doi: 10.5281/zenodo.10887397.

[197] Ryan Roussel et al. “Advancements in backwards differentiable beam dynamics sim-

ulations for accelerator design, model calibration, and machine learning”. In: Proc.
LINAC2024. Aug. 2024, pp. 559–562. doi: 10.18429/JACoW-LINAC2024-THPB068.

[198] Andrea Santamaria Garcia et al. “The reinforcement learning for autonomous

accelerators collaboration”. In: Proc. IPAC’24. May 2024. doi: 10.18429/JACoW-

IPAC2024-TUPS62.

[199] Chenran Xu, Andrea Santamaria Garcia, and Jan Kaiser. Tutorial on Applying
Reinforcement Learning to the Particle Accelerator ARES. Version v1.0.1. Mar. 2024.

doi: 10.5281/zenodo.10777477.

[200] Chenran Xu et al. “Integration of an Optimizer Framework into the Control System

at KARA”. In: Proc. ICALEPCS’23. Jan. 2024. doi: 10.18429/JACoW-ICALEPCS2023-
TUPDP030.

[201] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4 (Jan. 1965), pp. 308–313. issn: 0010-4620. doi: 10.1093/

comjnl/7.4.308.

[202] Alexander Scheinker. “100 years of extremum seeking: A survey”. In: Automatica
161 (Mar. 2024), p. 111481. issn: 00051098. doi: 10.1016/j.automatica.2023.

111481.

165

https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.48550/arxiv.1703.03400
https://doi.org/10.48550/arxiv.1703.03400
https://doi.org/10.5281/zenodo.10887397
https://doi.org/10.18429/JACoW-LINAC2024-THPB068
https://doi.org/10.18429/JACoW-IPAC2024-TUPS62
https://doi.org/10.18429/JACoW-IPAC2024-TUPS62
https://doi.org/10.5281/zenodo.10777477
https://doi.org/10.18429/JACoW-ICALEPCS2023-TUPDP030
https://doi.org/10.18429/JACoW-ICALEPCS2023-TUPDP030
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/j.automatica.2023.111481
https://doi.org/10.1016/j.automatica.2023.111481

Bibliography

[203] Alexander Scheinker, En-Chuan Huang, and Charles Taylor. “Extremum Seeking-

Based Control System for Particle Accelerator Beam Loss Minimization”. In: IEEE
Transactions on Control Systems Technology 30.5 (Sept. 2022), pp. 2261–2268. issn:

1063-6536. doi: 10.1109/TCST.2021.3136133.

166

https://doi.org/10.1109/TCST.2021.3136133

AI Assistance Disclosure

In the preparation of this dissertation, generative AI tools, including OpenAI’s ChatGPT

and Grammarly, were used to enhance writing style and to check spelling and grammar.

All AI-generated content was carefully reviewed and edited, and I take full responsibility

for the final content and conclusions presented in this dissertation.

167

A. Appendix

A.1. Feature importance study of the Surrogate Model

In Section 4.1, a surrogate model is trained for the low-energy section of FLUTE using a

fully-connected neural network. Although the surrogate model can make fast predictions

with high accuracy, it is still important to get insights into the model’s decision-making

process.

As the NN is a non-linear black-box model, simple methods like correlation analysis,

which assumes a global linear dependency, will be biased to explain the trained model.

Shapley additive explanations (SHAP) was proposed to provide amore accurate explanation

of the model’s decision-making process by estimating the Shapley value derived from

cooperative game theory. In recent years, it has become a popular method to explain the

predictions of NNs and other machine learning models. The SHAP values can be calculated

separately for each of the output parameters. For each input parameter, they attribute to

the change in the output prediction when conditioning on the input parameter. In other

words, they quantify the importance of each input parameter to the model’s prediction.

In Fig. A.1, the SHAP values for the surrogate model are visualized for the output beam

parameters. The order of the input parameters is sorted by their importance to the model’s

prediction. The color of the points indicates the values of the input parameter, where red

denotes a high (positive) value and blue is a low (negative) value. Their horizontal positions

denote their impact on the respective output, i.e. a positive impact leads to a large output

value. By analyzing the SHAP values, one can easily identify the most important input

parameters for each output parameter and use these parameters for further optimization

or online operation. For example, the bunch length is most sensitive to the gun phase. The

gun gradient comes second and has a negative impact on the bunch length, which means

a higher gun gradient leads to a shorter bunch length. The bunch energy is predominantly

determined by the gun gradient while the energy spread is largely influenced by the

gun phase, which determines the slope of the accelerating field that the electron bunch

experiences. The percentage of the remaining particles is mostly influenced by the gun

phase and insensitive to other incoming parameters. This is because particles may be lost

in the photo-injector if the gun phase is not properly tuned. Lastly, it is visible that the

beam emittance depends on all the input parameters, with the bunch charge being the

most important one, due to the strong space charge effects in the low-energy section of

the accelerator. This non-linear dependence also makes the beam emittance optimization

for photo-injectors a challenging and recurring task in many accelerator facilities.

169

A. Appendix

−0.1 0.0 0.1 0.2 0.3 0.4

SHAP value, impact on the output σz

Solenoid

Charge

Gun gradient

Gun phase

(a)

Low

High

F
ea

tu
re

va
lu

es

−0.2 −0.1 0.0 0.1 0.2

SHAP value, impact on the output E

Charge

Solenoid

Gun phase

Gun gradient

(b)

Low

High

F
ea

tu
re

va
lu

es
−0.1 0.0 0.1 0.2 0.3

SHAP value, impact on the output ∆E

Solenoid

Charge

Gun gradient

Gun phase

(c)

Low

High

F
ea

tu
re

va
lu

es

−0.4 −0.3 −0.2 −0.1 0.0

SHAP value, impact on the output Nremain

Charge

Gun gradient

Solenoid

Gun phase

(d)

Low

High

F
ea

tu
re

va
lu

es

−1.0 −0.5 0.0 0.5 1.0

SHAP value, impact on the output εx

Gun phase

Solenoid

Gun gradient

Charge

(e)

Low

High

F
ea

tu
re

va
lu

es

Figure A.1.: Feature importance and dependence of the surrogate model.

170

A.2. Kernel Density Estimation

A.2. Kernel Density Estimation

In Section 4.3, kernel density estimation (KDE) is used instead of histogram as a tech-

nique to obtain the charge density profile from the macroparticles while maintaining the

differentiability. Some more detailed explanations of this method are provided below.

kernel density estimation (KDE) is a non-parametric method to estimate the proba-

bility density function (probability density function (PDF)) of a random variable. Let

{𝑥1, 𝑥2, . . . , 𝑥𝑛} be a set of random samples drawn from a univariate distribution with an

unknown PDF 𝑓PDF. The KDE estimate of the PDF is given by

ˆ𝑓PDF(𝑥) =
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾 (𝑥 − 𝑥𝑖
ℎ
), (A.1)

where 𝐾 is the kernel function, and ℎ is the bandwidth parameter. The kernel function

is a non-negative function, similar to what is used in Bayesian optimization (BO). The

most common choice is the Gaussian kernel, where 𝐾 (𝑥) = 1√
2𝜋

exp

(
−𝑥2

2

)
. The bandwidth

parameter ℎ controls the smoothness of the estimated PDF. In the case of the Gaussian

kernel, the bandwidth parameter becomes the standard deviation of the Gaussian distribu-

tion. In short, the kernel values are calculated for each sample, and the estimated PDF is

the sum of all the individual kernels.

Since the estimated PDF is a continuous function, it remains differentiable, which is a

prerequisite for the gradient-based optimization algorithms presented in the simulation

study.

The KDE process is visualized in Fig. A.2. Here, a mixture of two Gaussian distributions

is used as the underlying distribution

𝑓PDF(𝑥) =
1

3

(N (𝜇 = −0.5, 𝜎 = 0.5) + 2 · N (𝜇 = 1.5, 𝜎 = 0.5)) . (A.2)

The purple lines show the values of the 100 samples drawn from the distribution. The

dashed gray lines represent the kernel function values for each sample. The estimated PDF

using the KDE is shown in red, which is the sum of all the individual kernels. As shown in

the figure, the KDE can capture the double-peak structure of the underlying distribution.

The comparison of the results obtained using KDE and the conventional histogram method

is shown in Fig. A.3. The KDE result (red) demonstrates a smooth approximation compared

to the discrete histogram values (blue), approximating the underlying PDF more closely.

171

A. Appendix

−2 −1 0 1 2 3

x

0.0

0.1

0.2

0.3

0.4

0.5
D

en
si

ty
Individual kernel

Samples

KDE

True PDF

Figure A.2.: Working principle of KDE. Purple lines denote 100 samples obtained from the

underlying PDF in green. For each sample, the kernel function value (gray)

is calculated. The estimated PDF using the KDE (red) is the sum of all the

individual kernels.

−2 −1 0 1 2 3

x

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

KDE

True PDF

Histogram

Figure A.3.: Density estimation using Gaussian KDE (red) and histogram method (blue).

The random variable has a double peak structure and is distributed according

to the PDF (dashed green).

172

A.3. Laser Modulation Results with Convolutional Neural Network

A.3. Laser Modulation Results with Convolutional Neural
Network

In Section 5.3, a CNN is trained to assist the transverse laser profile shaping using an

SLM. Some additional results of the shaping results are shown in Fig. A.4, generating a

digit, a Gaussian profile, and a flattop profile. Although the CNN corrected images show

some improvement compared to the ones without correction, the modulation still shows

visible discrepancies. For example, in the flattop profile, the zeroth-order diffraction is

not fully compensated. Further improvement can be expected when scaling up the image

resolution, using another NN structure, or controlling with physics-informed actuators

like the Zernike polynomials as proposed in Section 5.5.

Figure A.4.: Experimental results of the CNN-assisted laser shaping. (a) Target pat-

terns/input of the CNN: digit (left), Gaussian (middle), and flattop (right).

(b) Output patterns of the CNN. (c) Holograms corresponding to the CNN

predictions and (d) the camera-captured patterns. (e) GS-only holograms and

(f) the captured images. Figure adapted from [129].

173

A. Appendix

A.4. Laser Modulation with Zernike Polynomials

Zernike polynomials are a set of polynomials defined on a 2D unit disk in the Cartesian

coordinate system. Fig. A.5 shows the first 10 terms of the Zernike polynomials. They are

defined as

𝑍𝑚𝑛 (𝜌, 𝜑) = 𝑅𝑚𝑛 (𝜌) cos𝑚𝜑
𝑍−𝑚𝑛 (𝜌, 𝜑) = 𝑅𝑚𝑛 (𝜌) cos𝑚𝜑,

(A.3)

where (𝜌, 𝜑) are the radius and azimuthal angle in the polar representation.

n = 0,m = 0

n = 1,m = −1 n = 1,m = 1

n = 2,m = −2 n = 2,m = 0 n = 2,m = 2

n = 3,m = −3 n = 3,m = −1 n = 3,m = 1 n = 3,m = 3

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

(n
or

m
al

iz
ed

)

Figure A.5.: Visualization of the first 10 Zernike polynomials 𝑛 ∈ {0, 1, 2, 3}.

The radial polynomials are defined as

𝑅𝑚𝑛 (𝜌) =
{∑𝑛−𝑚

2

𝑘=0

(−1)𝑘 ·(𝑛−𝑘)!
𝑘!·(𝑛+𝑚

2
−𝑘)!·(𝑛−𝑚

2
−𝑘)! · 𝜌

𝑛−2𝑘 , if 𝑛 − 2𝑚 ∈ Z
0 , if 𝑛 − 2𝑚 + 1 ∈ Z

(A.4)

They form an orthogonal basis over the unit disk and each Zernike polynomial corre-

sponds to a specific aberration mode. Therefore, an arbitrary wavefront can be decomposed

into a sum of Zernike polynomials. By neglecting higher-order terms, the dimensions of

the actuators can be effectively reduced for wavefront correction using SLMs as discussed

in Section 5.5. Figure A.6 shows additional experimental results of using individual Zernike

terms for the laser shaping and the corresponding laser images at the cathode and the

virtual cathode. The double spot for the 𝑛 = 0 reference pulse on the virtual cathode was

174

A.4. Laser Modulation with Zernike Polynomials

n = 0
m = 0

Zernike Polynomials Cathode Virtual Cathode

n = 1
m = −1

n = 2
m = −2

n = 2
m = 0

n = 3
m = −3

n = 3
m = −1

−1 0 1

Amplitude (normalized)
0.00 0.25 0.50 0.75 1.00

Intensity (normalized)

Figure A.6.: Modulated laser images using Zernike polynomials captured at the cathode

and the virtual cathode.

not a result of the modulation, but an artifact due to the double reflection on the mirror

coupling to the virtual cathode. The effects of different orders of the Zernike polynomial

can be visually identified, such as the 𝑛 = 1 term creates a tilt that shifts the pulse, the

𝑛 = 2,𝑚 = −2 introduces astigmatism, and the 𝑛 = 2,𝑚 = 0 term (de-)focuses the laser.

175

A. Appendix

A.5. Non-Machine Learning Algorithms for Accelerator Tuning

A.5.1. Nelder-Mead Simplex

The Nelder-Mead simplex method [201] is an efficient model-free optimization algorithm.

Due to its effectiveness, it has been applied widely for online accelerator optimization tasks

where an accurate model is absent. In this dissertation, it is used as a baseline method for

benchmarking the performance of the proposed ML methods. Without loss of generality,

here a maximization task is considered. In this section, the method is briefly introduced.

The outline of the Nelder-Mead simplex algorithm is shown in Algorithm 3, and the details

of each step are described in the following part.

The algorithm is controlled by four hyperparameters, which are the coefficients of

reflection (𝛼), expansion (𝛾), contraction (𝛽) and shrinkage (𝛿). These parameters satisfy the

following conditions

𝛼 > 0, 𝛾 > 1, 0 < 𝛽 < 1, 0 < 𝛿 < 1 . (A.5)

Commonly, the following parametrization are used

(𝛼,𝛾, 𝛽, 𝛿) =
(
1, 2,

1

2

,
1

2

)
. (A.6)

1. Initialization

The Nelder-Mead algorithm is based on a non-degenerate simplex 𝑆 , i.e. a convex

polytope with 𝑛+1 vertices in the 𝑛-dimensional parameter space. The initial simplex

can be chosen randomly. Commonly, the initial simplex is expanded around an initial

input point 𝑥1

𝒙𝑖+1 = 𝒙1 + 𝑙𝑖 · 𝒆𝑖 , 𝑖 ∈ {1, . . . , 𝑛} , (A.7)

where 𝒆𝑖 is the unit vector and 𝑙𝑖 is the characteristic lengthscale of each input

dimension.

2. Ordering

The vertices of the simplex 𝑆 are sorted and relabeled, so that

𝑓 (𝒙1) < 𝑓 (𝒙2) < · · · < 𝑓 (𝒙𝑛+1) , (A.8)

where 𝒙1 is the point with the least objective value and 𝒙𝑛+1 is the best point.

3. Centroid

The centroid 𝒄 of all vertices except for 𝒙1 is calculated

𝒄 =
1

𝑛

𝑛+1∑︁
𝑖=2

𝒙𝑖 . (A.9)

This point is the basis of each transformation.

176

A.5. Non-Machine Learning Algorithms for Accelerator Tuning

4. Transformation

The simplex is reshaped and updated in one of the following ways. The transforma-

tions in a 2-dimensional space are illustrated in Figure A.7.

a) Reflection

The reflected point 𝒙𝑟 is calculated as

𝒙𝑟 = 𝒄 + 𝛼 (𝒄 − 𝒙1), (A.10)

Then, the point 𝒙𝑟 is evaluated. If 𝑓 (𝒙2) < 𝑓 (𝒙𝑟) < 𝑓 (𝒙3), then 𝒙1 is replaced
by 𝒙𝑟 and the simplex is updated. If this is not the case, other transformations

are performed.

b) Expansion

If the reflected point is better than the current best point 𝑓 (𝒙𝑟) > 𝑓 (𝒙𝑛+1), the
expansion point is computed

𝒙𝑒 = 𝒄 + 𝛾 (𝒙𝑟 − 𝒄). (A.11)

If 𝑓 (𝒙𝑟) < 𝑓 (𝒙𝑒), then 𝒙1 is replaced by the expanded point 𝒙𝑒 . Otherwise, if
𝑓 (𝒙𝑒) < 𝑓 (𝒙𝑟), the reflected point 𝒙𝑟 is accepted and the algorithm moves to

the next iteration.

c) Contraction

• Outside If 𝑓 (𝒙1) < 𝑓 (𝒙𝑟) < 𝑓 (𝒙2), the simplex is contracted outside

𝒙𝑐,(out) = 𝒄 + 𝛽 (𝒙𝑟 − 𝒄). (A.12)

If the contracted point is better than the reflected 𝑓 (𝒙𝑟) < 𝑓 (𝒙𝑐,(out)), 𝒙𝑐,(out)
is accepted. Otherwise, a shrink step is performed.

• Inside If 𝑓 (𝒙𝑟) < 𝑓 (𝒙1), the simplex is contracted inside

𝒙𝑐,(in) = 𝒄 + 𝛽 (𝒙1 − 𝒄). (A.13)

If the contracted point is better than the worst 𝑓 (𝒙1) < 𝑓 (𝒙𝑐,(in)), 𝒙𝑐,(in) is
accepted. Otherwise, a shrink step is performed.

d) Shrinkage

If none of the above transformations succeed, the shrink transformation is

performed. Only the best point 𝒙𝑛+1 is kept, and all other vertices are changed

𝒙𝑖 = 𝒙𝑛+1 + 𝛿 (𝒙𝑖 − 𝒙𝑛+1) , 𝑖 ∈ {1, . . . , 𝑛} , (A.14)

This is the most time-consuming transformation. Since for 𝑛 dimensional

problem, 𝑛 new vertices are calculated and the objective function needs to be

evaluated 𝑛 times.

177

A. Appendix

Algorithm 3 Pseudo-code of the Nelder-Mead simplex algorithm

1: Construct the initial simplex 𝑆0
2: for 𝑡 = 1, 2, ... do
3: Order the vertices of the current simplex 𝑆𝑡−1
4: Calculate the centroid 𝑐

5: Transform and update the simplex 𝑆𝑡
6: end for

𝑥1

𝑥2

𝑥3

𝑐

𝑥𝑟

(a) Reflection

𝑥1

𝑥2

𝑥3

𝑐

𝑥𝑟

𝑥𝑒

(b) Expansion

𝑥1

𝑥2

𝑥3

𝑐

𝑥𝑟𝑥𝑐

(c) Contraction outside

𝑥1

𝑥2

𝑥3

𝑐

𝑥𝑟

𝑥𝑐

(d) Contraction inside

𝑥1

𝑥2

𝑥3

𝑥
′
1

𝑥
′
2

(e) Shrinkage

Figure A.7.: Transformations of the Nelder-Mead simplex method. In a 2-dimensional

parameter space, the simplex is a triangle. In each panel, the blue-shaded

region is the original simplex, and the red lines depict the transformed simplex.

The vertices are already ordered, so that 𝑓 (𝑥1) < 𝑓 (𝑥2) < 𝑓 (𝑥3). In all five

transformations, the worst point 𝑥1 is replaced by a better point. In the case

of shrinkage, only the best point 𝑥3 is kept.

In practice, the Nelder-Mead algorithm mostly takes one or two evaluations for each

iteration and converges relatively fast. However, when the dimension of the parameter

space gets higher, the shrink transformation scales badly.

Another problem with the Nelder-Mead algorithm is its robustness against noise. When

applied to tasks with noisy objective signals, the Nelder-Mead tends to get stuck in local

optima and continues to contract/shrink. In that case, the algorithm needs to be restarted

to allow further exploration of the parameter space.

178

A.5. Non-Machine Learning Algorithms for Accelerator Tuning

A.5.2. Extremum Seeking

Extremum seeking (ES) generally describes the problem of optimizing the performance of

a dynamic system by tracking its extremum [202]. In the past decades, ES algorithms have

been extensively applied for the online control and optimization of time-varying dynamic

systems, such as particle accelerator operations [169, 111, 29].

In Section 6.3, the ES algorithm is used as a baseline to compare the performances of

RL and BO algorithms. In the following, this method is shortly introduced based on the

description in [203]. It aims to maximize an arbitrary cost function of the form

𝐶 (𝒑, 𝒙, 𝑡) =
∑︁
𝑖

ℎ𝑖 (𝑦𝑖 (𝒑, 𝒙, 𝑡),𝒑), (A.15)

where 𝒙 are the observable parameters, such as beam sizes and energies, 𝒑 are the actuators

that can be controlled, and 𝑡 is the time. The measured signals 𝑦𝑖 contain noise and ℎ𝑖 are

the customizable functions based on the noisy measurements and the actuator settings

themselves. For such a dynamic system, the input parameter 𝑝𝑖 in step 𝑛 can be updated

by

𝑝𝑖 (𝑛 + 1) = 𝑝𝑖 (𝑛) + Δ𝑡
√
𝛼𝑖𝜔𝑖 cos (𝜔𝑖𝑛Δ𝑡 + 𝑘𝑖𝐶 (𝑛)) , (A.16)

where 𝐶 is the objective value, 𝛼𝑖 the amplitude, 𝜔𝑖 the dittering frequency, and Δ𝑡 the
timestep for each update. When reaching equilibrium, the parameters will oscillate around

fixed points with amplitudes of 𝑠 =
√︁
𝛼/𝜔 .

The evaluation study uses the implementation provided by the Xopt [15] Python package.

According to the original paper, the input parameters were normalized to [−1, 1], the
dithering frequencies were chosen to be 𝜔𝑖 = 𝑟𝑖𝜔0 with 𝑟𝑖 linearly spanned in the range

[1.0, 1.75], and Δ𝑡 =
2𝜋

10max𝜔𝑖
. BO was used within the WandB framework to perform the

hyperparameter tuning across the full set of trails, minimizing the best mean aboslute error

(MAE) after 150 steps. The hyperparameter values used for the evaluated ES algorithm are

listed in Table A.1. It is worth noting that in the evaluation study in this dissertation, the

oscillation amplitude is decayed exponentially by a factor 𝜆 to improve the convergence

to the target beam parameters. While the original implementation used ES without decay

to achieve stable long-term control, the decay rate helps convergence when using ES in

an optimization setting. Tuning the oscillation amplitude without a decay rate 𝜆 leads to

either local optimization or large oscillation at the final steps, resulting in a worse final

MAE.

Table A.1.: Hyperparamter values used for the ES algorithm.

Hyperparamter Value

Feedback gain 𝑘 3.7

Oscillation size 𝑠 =
√︁
𝛼/𝜔 0.11

Decay rate 𝜆 0.987

179

A. Appendix

A.6. FLUTE Reinforcement Learning Training Configurations

The parameters used for training the RL agent for the FLUTE tuning task are shown in

Table A.2. They are grouped in environment parameters and RL algorithm parameters.

The naming conventions for the parameters are consistent with the ones used in the Stable

Baselines3 [185]. If not listed, parameters take their default values as implemented in

the Stable Baselines3. The proximal policy optimization (PPO) implementation supports

training with vectorized environments, where 𝑛envs denotes the number of environments

used in parallel. The 𝑛steps denotes the number of steps each environment runs before

an update. In total, the PPO updates its policy whenever the rollout buffer is filled with

𝑛envs ∗ 𝑛steps samples. The training speed on this simple task can be improved by reducing

these numbers and increasing the learning rate.

Table A.2.: Parameters used for the FLUTE reinforcement learning training

Parameter Value

Environment 𝑤beam 1.0

𝑤improvement 0.5

𝑤action 0.2

Max episode step 50

RL algorithm Learning rate 5 × 10−4
𝑛steps 128

𝑛envs 10

Total timesteps 50 000

180

A.7. Benchmarking BayesianOptimization Implementations in the Xopt Package on EATuning Task

A.7. Benchmarking Bayesian Optimization Implementations
in the Xopt Package on EA Tuning Task

In this dissertation, a custom version of the BO algorithm is implemented for the bench-

marking test at the ARES accelerator in Section 6.3. To ensure that this in-house BO

version matches other available variants and implementations of BO, it is compared to

the state-of-the-art Xopt package [15], which has been widely adopted in the particle

accelerator community.

For benchmarking purposes, two BO versions are evaluated from the Xopt backend,

one using a hard step-size constraint and the other one using the proximal-biasing [75]

technique as a soft step-size constraint. Both versions use upper confidence bound (UCB)

acquisition with 𝛽 = 2 and perform the default pre-processing steps, i.e. normalizing the

input to [0, 1] and standardizing the objective values. The hard version used the same

step-size limit of 0.1 (in the normalized space) as the BO and RL versions used in this study.

The proximal weight was set to be 0.5, which means the acquisition drops to 1/𝑒 over 10 %
of the action space. This was obtained from a hyperparameter tuning, optimizing for the

best MAE within 150 steps. Note that this is higher than the original value 0.1 proposed

in [75], which was used for a much smoother objective landscape. In the studied ARES

task, smaller proximal weights would mostly lead to premature convergence, due to a

large number of local optima.

The comparison results are shown in the supplementary materials in [95]. While in

simulation, the custom BO implementation falls right in between the two provided by

Xopt, on the real ARES accelerator, the custom implementation consistently performs the

best. It proves that the BO implementation used in this dissertation represents the state

of the art in BO for particle accelerator tuning. It is worth noting that the proximal BO

produced smoother action than the other versions, as also observed in the application in

the EuXFEL shown in Section 6.1. This smooth convergence could be favorable in other

situations where smooth actions are more critical, for example, to reduce the mechanical

stress of actuators or tuning systems with a non-negligible hysteresis effect.

181

A. Appendix

A.8. Lattice-agnostic Reinforcement Learning Training
Configurations

Table A.3 lists the hyperparameters used for training the lattice-agnostic RL agent in

Section 6.4.1. The naming conventions are consistent with the ones used in the Stable

Baselines3 package [185]. The values are empirically tuned with the help of the WandB

package [191]. The hyperparameters not listed in the table take their default values. Soft

actor-critic (SAC) is used for the RL training. Parameters are tuned using the experiment

tracking package Weights and Biases.

Table A.3.: Parameters used for lattice-agnostic reinforcement learning training

Parameter Value

Discount factor 𝛾 0.99

Learning rate 𝛼 0.0003

Replay buffer size 10 000

Batch size 100

Gradient steps 1

Total timesteps 500 000

Max episode length 50

182

A.9. Code Availability

A.9. Code Availability

• The code showcasing the Cheetah applications is available at the Cheetah repository

https://github.com/desy-ml/cheetah and the accompanying repository with the

demonstrations https://github.com/desy-ml/cheetah-demos.

• The code for the BO beamtime at the European X-Ray Free-Electron Laser (EuXFEL)

is available at the GitHub repository https://github.com/cr-xu/bo-4-euxfel.

• The code for benchmarking the BO and RL at the ARES accelerator is available at

https://github.com/desy-ml/rl-vs-bo.

• The code for the meta-RL study is available in the tutorial repository [196].

• The rest of the code is available in the KIT Gitlab instance https://gitlab.kit.edu/

kit/ibpt/ai4accelerators/, which can be accessed upon reasonable request.

183

https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah-demos
https://github.com/cr-xu/bo-4-euxfel
https://github.com/desy-ml/rl-vs-bo
https://gitlab.kit.edu/kit/ibpt/ai4accelerators/
https://gitlab.kit.edu/kit/ibpt/ai4accelerators/

Acknowledgments

The successful completion of this thesis would not have been possible without the support

of many individuals. I would like to take the opportunity to extend my heartfelt gratitude

to everyone who contributed to this journey.

First and foremost, I would like to thank Prof. Anke-Susanne Müller for providing the

opportunity to conduct my doctoral study at IBPT, and allowing me to freely pursue all

these projects that interest me.

I want to thank Prof. Torben Ferber for kindly taking over the task of being the second

reviewer of this thesis on a cross-disciplinary topic.

I would also like to thank Erik Bründermann who not only advised me scientifically,

but also provided guidance on administrative perspectives and pursuing a scientific career

in general.

I want to thank Andrea Santamaria Garcia for being my scientific advisor, providing

invaluable insights on everything from science to life itself. I cherished all the discussions,

meetings that we sat through together, and, of course, many memorable road trips that

we shared. Thank you for the countless hours spent proofreading my manuscripts and

for helping me (hopefully now) embrace better writing habits. Your aesthetic critiques of

my plots and slides were indeed spot-on as well. Without your guidance, this dissertation

would be surely less enjoyable to read. I am deeply grateful for your mentorship. None of

this would be possible without your support!

I also acknowledge the support of the Doctoral School "Karlsruhe School of Elementary

Particle and Astroparticle Physics: Science and Technology" (KSETA).

I feel extremely fortunate to have Jan Kaiser along the path, both as a fellow doctoral and

a dear friend. We started around the same time and worked in collaboration for a majority

part of the projects. As a traditional saying goes, "By using people as a mirror, one can see
one’s gains and losses." I am continually in awe of his passion for the field, boundless energy,

and incredible productivity. Being able to chat about all the little details and brainstorming

bizarre ideas with him keep me motivated and excited about this subject, which remains

to be relatively niche. My coding skills have also significantly improved, thanks to the

watchful eyes of a computer scientist.

I would also like to thank Luca Scomparin for the fun memories, and opening up the

world of embedded system and low-level programming for me. Combining RL methods

with edge computing for real-time accelerator control is arguably the coolest project that I

have worked on.

In the process of conducting this thesis, I also received assistance from colleagues in

other groups. I would like to thank the colleagues from DESY, especially Prof. Annika

Eichler, Florian Burkart, and Oliver Stein, for the fruitful collaborations. I would also like to

thank Sergey Tomin for insightful discussions and the possibility to conduct experiments

185

Acknowledgments

at the European XFEL. I want to also thank Simon Hirlaender at Salzburg for his insights

and guidance on reinforcement learning topics.

I want to thank all the present and former colleagues in the THz group at IBPT for the

friendly and enjoyable working environment. In particular, I want to thank everyone who

has contributed to this thesis in various ways and helped proofread the content. A special

thank you to Tobias Boltz. He presented to me the possibility of combining AI/ML methods

with accelerator physics and convinced me to conduct the master thesis on this topic. I

would not have treaded this path without his encouragement and passion in this field. I

want to thank Edmund Blomley, Julian Gethmann, and Johanees Steinmann who taught

me a lot about software, hardware, and control systems. I also want to thank Markus

Schwarz and Michael Nasse for the technical discussions and support.

I want to thank my fellow doctoral students Jens Schäfer, Sebastian Maier, Micha Reißig,

Matthias Nabinger, Marvin Noll, and Felipe Donoso Aguirre for all the lengthy discussions

and cheerful moments we shared during the coffee breaks. In addition, I want to thank

Matthias also for his expertise in laser and for his patience while working with a lab

newbie like me. The SLM experiments at FLUTE were made possible thanks to his support.

A special thank you also to Sebastian Maier for being my office mate over four years

and enduring my increasing number of online meetings. Thanks to his punctuality and

self-discipline, I somehow managed to never miss a registration or submission deadline.

Finally, I want to express my gratitude to my dear family for their unwavering faith in

me. To my parents, thank you for always giving me the freedom and supporting my rather

unconventional life choices, from "I want to major in physics... in Germany", to "I feel like

doing a PhD in physics", to "I want to continue on research". To my sister, thank you for

being always so cheerful and loving. And lastly, to Zhenlin, my dear partner, thank you

for being there with me from the beginning. Thank you for putting up with me through

all the up and downs. We have taken the first step in faith, and together, we will continue

forward through whatever comes next.

186

	Abstract
	Introduction
	Terminology
	Machine Learning Enabled Future Accelerator Operation Scheme
	Contributions of this Dissertation
	Collaborators

	Beam Dynamics and Linear Particle Accelerators
	Beam Dynamics in Particle Accelerators
	Multipole Expansion of Transverse Magnetic Fields
	Hamiltonian of Charged Particles
	Transfer Maps
	Collective Effects

	Accelerator-based Radiation Generation
	Linear Particle Accelerators
	Accelerators Studied in this Dissertation
	FLUTE
	ARES
	European XFEL

	Machine Learning Methods
	Neural Networks
	Automatic Differentiation and Gradient Descent Optimization

	Bayesian Optimization
	Gaussian Process Modeling
	Acquisition Function
	Tailoring Bayesian Optimization Methods for Particle Accelerators

	Introduction to Reinforcement Learning
	Reinforcement Learning Problem Formulation
	Policy and Value Functions
	Basic Learning Concepts
	Policy Gradient Methods
	Modern RL Algorithms
	Reinforcement Learning Applications for Accelerators

	Applying Machine Learning Methods for Accelerator Simulation
	Surrogate Modeling of FLUTE
	Training the Surrogate Model
	Applications of the Surrogate Model

	Simulated Optimization for Intense THz Radiation
	Calculation of the Coherent Synchrotron Radiation Generation at FLUTE
	Parallelized Bayesian Optimization
	Optimization Settings
	Optimization Results

	Differentiable Beam Dynamics Simulation
	Simulation Code Cheetah
	Differentiable Modeling of the THz CSR Generation at FLUTE

	Bayesian Optimization with Physics-informed Prior
	Summary Machine Learning Assisted Simulated Optimization

	Photo-Injector Laser Pulse Shaping
	Motivation for Photo-injector Drive Laser Shaping
	Laser Shaping with Spatial Light Modulators
	Implementing the Laser Modulation Setup at FLUTE
	Controlling the Spatial Light Modulator

	Demonstration of Transverse Laser Modulation
	Laser Modulation Correction using Convolutional Neural Network

	Transverse Spatial Light Modulator Setup for FLUTE Photo-Injector Laser
	Outlook for Full Laser Modulation at FLUTE
	Summary Machine Learning Enabled Laser Pulse Shaping

	Autonomous Online Accelerator Tuning
	SASE Tuning at European XFEL
	Implementing Bayesian optimization for SASE tuning
	European XFEL SASE tuning results

	Reinforcement Learning Control for FLUTE Tuning
	Formulation of the FLUTE Tuning as a Reinforcement Learning Task
	Implementation of FLUTE Tuning in a Reinforcement Learning Framework

	Comparing Reinforcement Learning with Bayesian Optimization for Online Tuning
	Transverse Beam Tuning at ARES Experimental Area
	ARES Experimental Area Tuning with Reinforcement Learning
	ARES Experimental Area Tuning with Bayesian Optimization
	Benchmarking Reinforcement Learning and Bayesian Optimization results
	Practical Challenges for Online Accelerator Tuning
	Inference Time
	Discussion on the Benchmark Study

	Towards Generalizable Machine Learning-based Controller
	Generalizable Reinforcement Learning Agent with Domain Randomization
	Fast Reinforcement Learning Deployment with Meta-Learning
	Towards More Sample Efficient and Explainable Machine Learning-based Controller

	Summary Machine Learning-based Online Accelerator Tuning

	Summary and Outlook
	List of Figures
	List of Acronyms
	List of Publications
	Bibliography
	AI Assistance Disclosure
	Appendix
	Feature importance study of the Surrogate Model
	Kernel Density Estimation
	Laser Modulation Results with Convolutional Neural Network
	Laser Modulation with Zernike Polynomials
	Non-Machine Learning Algorithms for Accelerator Tuning
	Nelder-Mead Simplex
	Extremum Seeking

	FLUTE Reinforcement Learning Training Configurations
	Benchmarking Bayesian Optimization Implementations in the Xopt Package on EA Tuning Task
	Lattice-agnostic Reinforcement Learning Training Configurations
	Code Availability

	Acknowledgments

