

## FeCrAl Oxidation Model Development on the ASTEC Code and Preliminary Validation Against QUENCH Experiments

Z. I. Jiménez, F. Gabrielli, M. E. Cazado, V.H. Sanchez-Espinoza, L. Laborde, L. Carenini, P. Drai.

## **Institute for Neutron Physics and Reactor Technology**





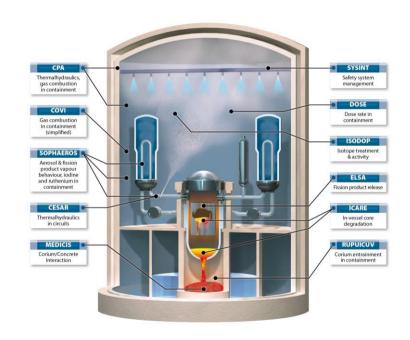
## Content



- Motivation
- The ASTEC code
- Accident Tolerant Fuels
- ASTEC code improvement for FeCrAl
- FeCrAl Oxidation Model
- Model Implementation
- Model Validation
- Conclusion
- Outlook

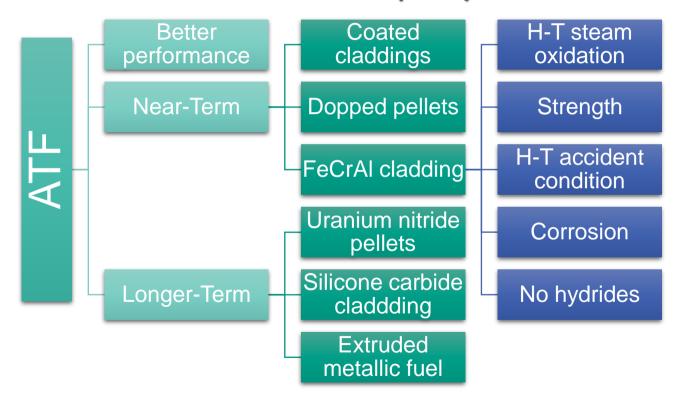
## **Motivation**




- KIT strategy for severe accident (SA) analyses → continuous improvement of the codes to evaluate the progression and the radiological consequences of SA in current and innovative NPPs
- ATF claddings have the potential to mitigate the progress of hypothetical severe accident scenarios, e.g., delayed hydrogen onset timing, reducing the hydrogen production, compared with Zr cladding
- A KIT/INR and IRSN shared activity is going on to improve the ATF-related modelling capabilities (cladding) of the ASTEC\* code
- Goals of the work
  - Improvement and implementation of the ASTEC modelling for predicting the hydrogen generation and mass gain by the oxidation of FeCrAl under steam atmosphere
  - ASTEC validation against the SETs and QUENCH-19 bundle test performed at the KIT QUENCH large-scale facility

\*CHATELARD, P., et al., "Main modelling features of the ASTEC V2.1 major version", Annals of Nuclear Energy 93 (2016) 83–93.

## The Accident Source Term Evaluation Code (ASTEC)




- Developed by IRSN (IRSN all rights reserved, [2024])
- Simulating the entire Severe Accident (SA) sequence from the initiator up to the fission product release to the environment
- ASTEC models all the physical phenomena that occur during a core meltdown accident
- ICARE module describes the in-vessel degradation phenomena
- Chemistry model: Oxidation of cladding material by steam or O2



## **Accident Tolerant Fuels (ATF)**





#### B136Y3

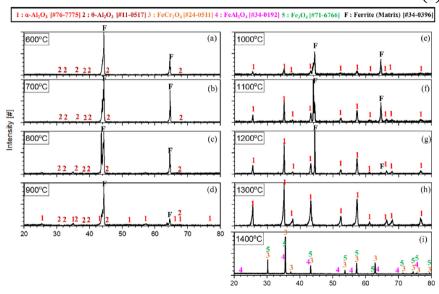
- □ Fe
- □ 12.97 Cr
- □ 6.19 AI
- □ 0.03 Y
- □ <0.01 C

#### C26M2

- □ Fe
- □ 11.87 Cr
- □ 6.22 AI
- □ 1.98 Mo
- □ 0.03 Y
- □ <0.01 C
- □ 0.2 Si

## ASTEC code improvement for FeCrAl: approach




- Based on the experimental data from the QUENCH team...
- Simplification of the FeCrAl oxidation process in steam environment
- Implementation of the oxide kinetics physical models
- Implementation of the physical models for the mass gain and thickness oxide layer evaluations
- Use of the FeCrAl thermophysical properties, i.e. specific enthalpy, density, heat capacity

#### **FeCrAl Oxidation Model**



#### Steam oxidation reaction

$$3 \text{ FeCrAl}_{(s)} + 4 \text{H}_2 \text{O}_{(g)} \rightarrow \text{Fe}_3 \text{O}_{4(s)} + 3 \text{ Cr}_2 \text{O}_{3(s)} + 4 \text{ Al}_2 \text{O}_{3(s)} + 6 \text{ H}_{2(g)}$$



## Single oxide layer model

$$2 \text{ Al}_{(s)} + 3 \text{ H}_2 \text{ O}_{(g)} \rightarrow \text{ Al}_2 \text{ O}_{3(s)} + 3 \text{ H}_{2(g)}$$

#### Composition

80.8%Fe12.97%Cr6.19%Al

**Fig. 1** Oxidation kinetics present in the FeCrAl alloy oxidation process from: Kim, C., Tang, C., Grosse, M., Maeng, Y., Jang, C., & Steinbrueck, M. (2022). Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500–1500 C in steam. *Journal of Nuclear Materials*, *564*, 153696.

## **Oxidation kinetics**



It evaluates the rate of

$$1173 \le T \le 1273$$

1273 < T < 1648

 $T \ge 1648$ 

Transient Alumina

Alumina

α-Alumina

FeO-Oxide

### Oxygen Mass Gain

- parabolic correlation
- different coefficients according oxidation kinetics

$$\frac{dm_{O_2}^2}{dt} = K_p$$

(1)

$$K_{p} \left[ \frac{kg^{2}}{m^{4} \cdot s} \right] = A_{gain} e^{\left( -\frac{B_{gain}}{RT} \right)}$$
 (2)

aluminum oxide mass gain

- dm<sub>O2</sub>: mass gain
- K<sub>p</sub>: rate constant for mass gain
- A<sub>gain</sub>: pre-exponential constant
- B<sub>gain</sub>: energy activation
- R: ideal gas constant
- T: temperature
- dt: time

## **Oxidation kinetics implementation**



```
Transient Alumina 873 < T < 1173 A_{gain} = 5.37582 \cdot 10^{-3} B_{gain} = 1.84730 \cdot 10^{5}
```

# Alumina $1173 \le T \le 1273$ $A_{gain} = 4.69155 \cdot 10^{-12}$ $B_{gain} = 0.00000 \cdot 10^{0}$

## $\begin{array}{c} \text{$\alpha$-Alumina} \\ 1273 < T < 1648 \\ A_{gain} = 5.01760 \cdot 10^0 \\ B_{gain} = 2.87748 \cdot 10^5 \end{array}$

```
FeO-Oxide T \ge 1648 \\ A_{gain} = 2.39940 \cdot 10^8 \\ B_{gain} = 3.52514 \cdot 10^5
```

#### **ASTEC** equation

$$\bullet \frac{dm_O^2}{dt} = K_p \rightarrow m_O^{i+1} = \sqrt{\left\{ \left( m_O^{i+1} \right)^2 + \left[ A_{gain} e^{\left( \frac{-B_{gain}}{RT} \right)} \Delta t \right] \right\}}$$

```
STRUCTURE PROPERTY NAME "SteamOxidation"

STRU TEST X 1000. END

HELP "Oxygen mass gain obey to the following law :"

HELP "m_0 (t+dt) = S ((m_0 (t)/S)**(1/model) + AGAIN EXP(-BGAIN/(R.T)) * dt )**model"

STRUCTURE MODEL NAME 'ATFKIT' LAW 'COEFF' VARIABLE 'T' VUNIT 'K' RUNLOW 0. RUNUPP 5000.

SRG VALUE AGAIN 5.0176000D0 BGAIN 2.8774800D5 MODEL 0.5 TERM

END

STRUCTURE MODEL NAME 'ATF-KIT' LAW 'COEFF' VARIABLE 'T' VUNIT 'K' RUNLOW 0. RUNUPP 5000.

SRG VALUE AGAIN 5.3758224D-3 BGAIN 1.8473000D5 MODEL 0.5 TERM

X 1172.9K

SRG VALUE AGAIN 4.6915560D-12 BGAIN 0.0000000D5 MODEL 0.5 TERM

X 1273.K

SRG VALUE AGAIN 5.0176000D0 BGAIN 2.8774800D5 MODEL 0.5 TERM

X 1652.9K

SRG VALUE AGAIN 2.3994010D8 BGAIN 3.5251400D5 MODEL 0.5 TERM

END

END
```

Fig. 2 FeCrAl oxidation kinetics implementation on ASTEC code

#### Thickness Oxide Layer

$$2 \text{ Al} + \frac{3}{2} \text{ O}_2 \rightarrow \text{ Al}_2 \text{O}_3$$

$$m_{Al_2O_3} = m_{O_2} \frac{MM_{Al_2O_3}}{f_SMM_{O_2}}$$
 (3)

$$\delta_{\text{Al}_2\text{O}_3} = \frac{{}^{\text{m}}_{\text{Al}_2\text{O}_3}}{S} \left[ \frac{1}{\rho_{\text{Al}_2\text{O}_3}} \right] \tag{4}$$

$$\delta_{\text{Al}_2\text{O}_3} = m_0 \frac{\text{MM}_{\text{Al}_2\text{O}_3}}{f_\text{S}\text{MM}_{\text{O}_2}} \frac{1}{\rho_{\text{Al}_2\text{O}_3}}$$
 (5)

#### Hydrogen Production

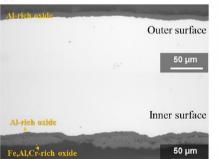
$$2 \text{ Al}_{(s)} + 3 \text{ H}_2 \text{O}_{(g)} \rightarrow \text{ Al}_2 \text{O}_{3(s)} + 3 \text{H}_{2(g)}$$

$$mH_2 = \frac{3m_{Al_2O_3MMH_2}}{PM_{Al_2O_3}}$$
 (6)

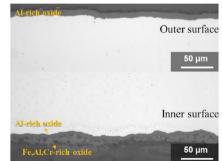
#### Implementation

$$\frac{\mathbf{m}_{O_2}^{i+1}}{\mathbf{s}} = \sqrt{\left\{ \left( \mathbf{m}_{O_2}^{i+1} \right)^2 + \left[ \mathbf{A}_{gain} e^{\left( \frac{-\mathbf{B}_{gain}}{\mathbf{RT}} \right)} \Delta t \right] \right\}} \tag{7}$$



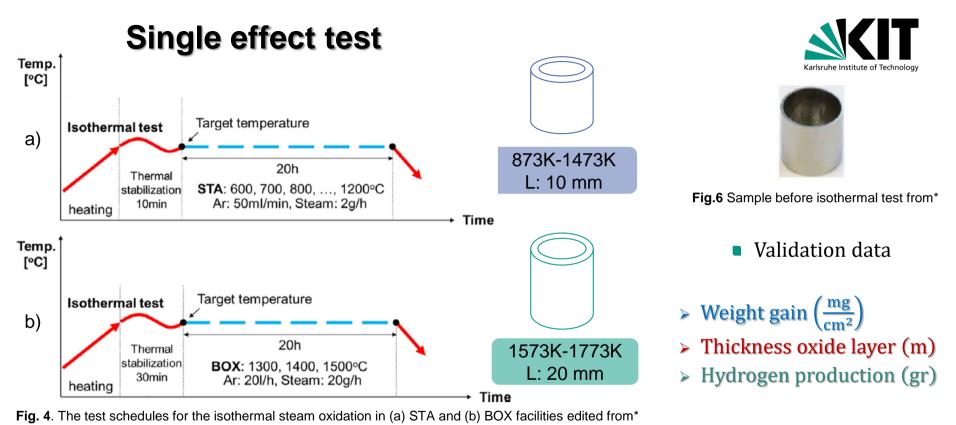

(11)

$$\frac{m_{Al_2O_3}^{i+1}}{S} = \frac{m_{O_2}^{i+1}}{S} \frac{2MM_{Al_2O_3}}{3MM_{O_2}}$$
 (8)


$$\delta_{\text{Al}_2\text{O}_3}^{\text{i+1}} = \frac{m_{\text{Al}_2\text{O}_3}^{\text{i+1}}}{S} \frac{1}{\rho_{\text{Al}_2\text{O}_2}} \tag{9}$$

$$m_{\text{Al}_2\text{O}_3}^{i+1} = \frac{m_{\text{Al}_2\text{O}_3}^{i+1}}{S}(S)$$
 (10)

(a) B136Y3








 $m_{H_2}^{i+1} = \frac{3m_{\text{Al}_2O_3}^{i+1} \cdot \text{MM}_{\text{H}_2}}{PM_{\text{Al}_2O_3}}$ 

Fig. 3 Thickness oxide layer for FeCrAl alloys from\*





## Mass gain

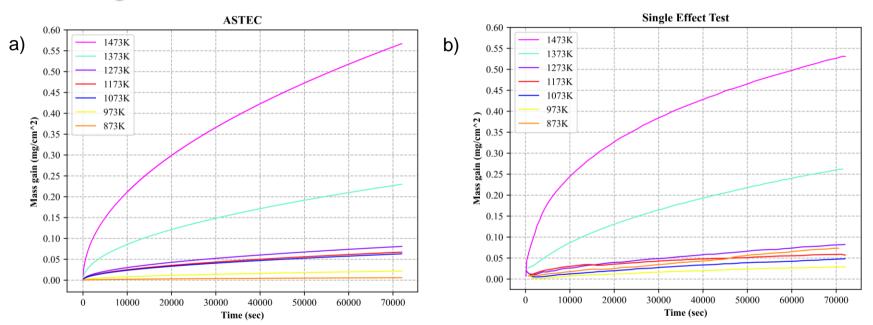
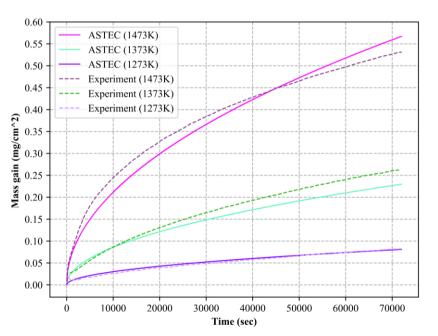




Fig. 5 Weight gains a) obtained from ASTEC b) from isothermal single effect test (extracted data from\*)

## ASTEC vs. Experiments Comparison





The improvements allow ASTEC to reasonably well predict the experimental results.

#### **Total Mass Gain 'ASTEC'**

> 1373K

$$\Delta m = 0.567$$

➤ 1473K

$$\Delta m = 0.229$$

➤ 1573K

$$\Delta m = 0.080$$

Fig. 6 Weight gains comparison Isothermal single effect test vs ASTEC

## Thickness oxide layer



| T (K) | Experiment Inner Surface (µm) | ASTEC<br>Inner Surface (µm) | Difference<br>Inner Surface (µm) | Experiment Outer Surface (µm) | ASTEC<br>Outer Surface (μm) | Difference<br>Outer Surface (µm |
|-------|-------------------------------|-----------------------------|----------------------------------|-------------------------------|-----------------------------|---------------------------------|
| 873   | Nodular oxides                | 0.047                       |                                  | Too thin                      | 0.047                       |                                 |
| 973   | Thin thickness                | 0.017                       |                                  | Thin thickness                | 0.175                       |                                 |
| 1073  | Thin thickness                | 0.509                       |                                  | Thin thickness                | 0.509                       |                                 |
| 1173  | Thin thickness                | 0.543                       |                                  | Thin thickness                | 0.543                       |                                 |
| 1273  | Thin thickness                | 0.654                       |                                  | Thin thickness                | 0.654                       |                                 |
| 1373  | ~2.000                        | 1.864                       | 0.136                            | ~1.500                        | 1.864                       | 0.364                           |
| 1473  | ~4.000                        | 4.605                       | 0.605                            | ~3.000                        | 4.608                       | 1.608                           |
| 1573  | ~6.500                        | 8.258                       | 1.758                            | ~6.500                        | 8.258                       | 1.758                           |

> ASTEC results are in reasonable agreement with the experimental data

## Hydrogen production



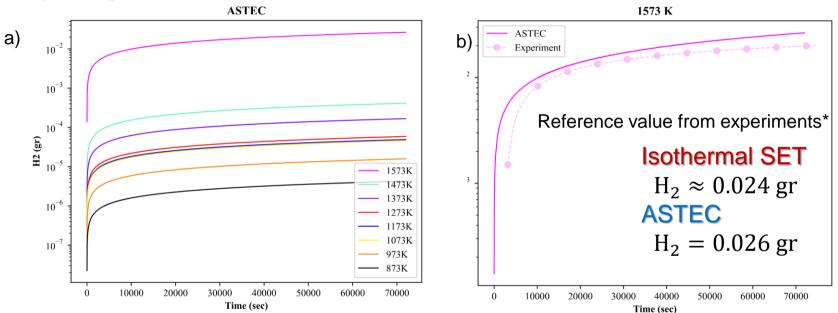
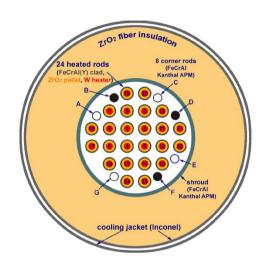
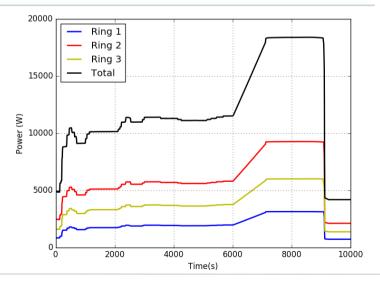
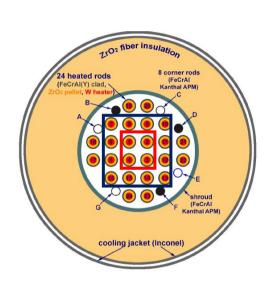



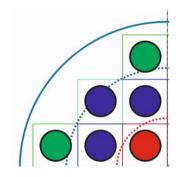

Fig. 7 a) Hydrogen production calculated in ASTEC for the isothermal steam oxidation test at 873 K to 1573 K b) H2 at 1573 K


## **QUENCH 19 test conduct**





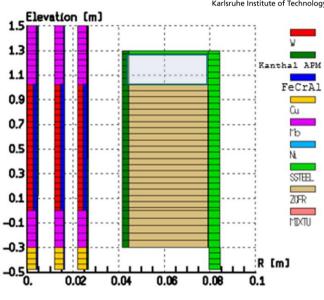

| Phase 1 | Heating up to ~600 °C (4 kW).                                       |
|---------|---------------------------------------------------------------------|
| Phase 2 | Power increase up to 11.5 kW (pre-oxidation).                       |
| Phase 3 | Power increased up to 18.12 kW (5 W/s) (T <sub>pct</sub> ~1500 °C). |
| Phase 4 | Phase 4: power reduced to 4.1 kW.                                   |


- ➤ Atmosphere of Ar (3.45 g/s) and superheated steam (3.6 g/s).
- > Reflooding at ~9100 s
  - ➤ Fast initial injection of 4 L of water
  - ➤ Slow injection 48 ~ g/s of water



## **ASTEC model of QUENCH 19**








Ch. 3, 8 rods,  $r_{ext}$ = 41.5 cm

Ch. 2, 12 rods,  $r_{ext}$ = 28.4 cm

Ch. 1, 4 rods,  $r_{ext}$ =14.2 cm



➤ Accidental presence of 4 I of water in the gap between the shroud and the cooling jacket modelled (J. Stuckert).

## Cladding temperature



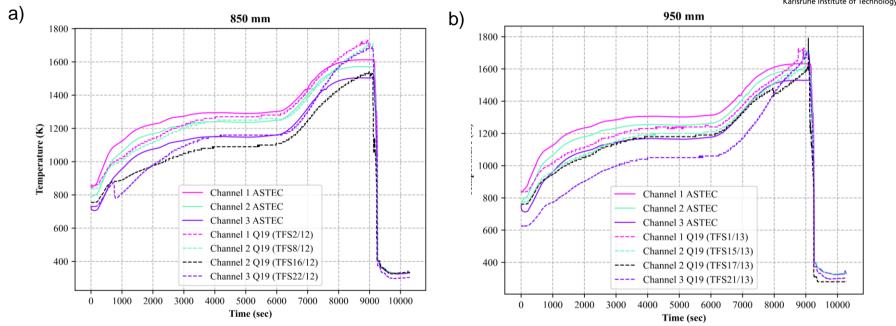
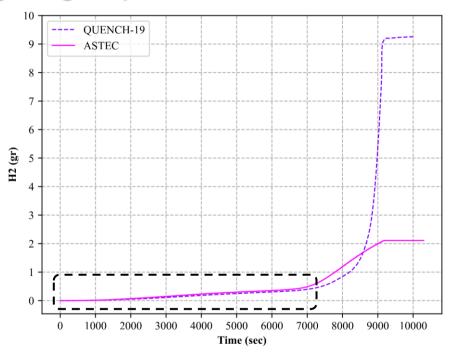




Fig. 8 Comparison Clad Temperature ASTEC vs bundle test a) 850 and b) 950 mm

- Higher temperatures from ASTEC
- Different behavior of temperature curves

## Hydrogen production





- **Experiment**  $H_2 = 9.3 \text{ grams}$
- ► Cladding oxidation process  $H_2 = 7.2 \text{ grams}$
- **ASTEC**  $H_2 = 2.1 \text{ grams}$

Fig. 9 Comparison total amount of hydrogen production from ASTEC vs bundle test QUENCH-19

### Conclusion



- A KIT/INR and IRSN shared activity has been going on to improve the ASTEC modelling for FeCrAl cladding behavior in steam environment at low and moderate temperatures
- Modelling extensions have been implemented in ASTEC also based on the physical models resulting from the experimental investigations by the QUENCH team
- Validation of the improved ASTEC FeCrAl modelling has been performed
- QUENCH SETs:
  - ASTEC rather well predicts the experimental data with respect to Weight gain, Thickness oxide layer, and Hydrogen production in the experimental temperature range (873 K – 1573 K)
- QUENCH-19 bundle test
  - ASTEC well reproduces the experimental temperatures and hydrogen production as long as T<1500K</li>
  - At very high T, important deviations appear in temperatures and H2 production, due to current model limitations:
    - Oxidation of Al only in the model overestimates Al<sub>2</sub>O<sub>3</sub> layer and leads to a too strong stable protective role
    - Real Fe oxidation must be included in the modelling, with corresponding oxide layers

## **Outlook**



 Application of the improved ASTEC modelling capabilities to postulated accidental scenarios in a generic SMR

 Application of ASTEC to the activities on the Cr-coated cladding materials in the frame of the OECD/NEA QUENCH-ATF project

## Thank you for your attention



