KIT | KIT-Bibliothek | Impressum | Datenschutz

Leveraging Constraints for User-Centric Feature Selection

Bach, Jakob ORCID iD icon

Abstract:

Feature selection in machine learning aims to identify the variables in a dataset that are most useful for predictions. Feature-selection methods are ubiquitous for a variety of reasons: They can increase prediction quality, reduce hardware requirements, and ease understanding of the data. However, existing feature-selection methods do not satisfy user needs in certain scenarios: (1) Users may want to integrate domain knowledge into feature selection. For example, established laws or hypotheses from the domain can make selecting certain feature combinations unintuitive for users. In contrast, existing feature-selection methods typically ignore domain knowledge or only support particular types of it. (2) Multiple, differently composed feature sets may yield good predictions. Such alternatives may provide users with different explanations for predictions. In contrast, existing feature-selection methods typically yield just one feature set.

In this thesis, we make feature selection more user-centric by introducing constraints on the composition of feature sets. Integrating such constraints into existing feature-selection methods is challenging since constraints may limit admissible feature sets arbitrarily, particularly when combining different constraint types. ... mehr


Volltext §
DOI: 10.5445/IR/1000178649
Veröffentlicht am 06.02.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Hochschulschrift
Publikationsdatum 06.02.2025
Sprache Englisch
Identifikator KITopen-ID: 1000178649
Verlag Karlsruher Institut für Technologie (KIT)
Umfang ix, 156 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Programmstrukturen und Datenorganisation (IPD)
Prüfungsdatum 20.01.2025
Externe Relationen Siehe auch
Schlagwörter feature selection; subgroup discovery; constraints; alternatives; explainability; interpretability; XAI
Nachgewiesen in OpenAlex
Relationen in KITopen
Referent/Betreuer Böhm, Klemens
Assent, Ira
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page