KIT | KIT-Bibliothek | Impressum | Datenschutz

Online Ramsey Numbers of Ordered Paths and Cycles

Clemen, Felix Christian 1; Heath, Emily; Lavrov, Mikhail
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

An ordered graph is a graph with a linear ordering on its vertices. The online Ramsey game for ordered graphs G and H is played on an infinite sequence of vertices; on each turn, Builder draws an edge between two vertices, and Painter colors it red or blue. Builder tries to create a red G or a blue H as quickly as
possible, while Painter wants the opposite. The online ordered Ramsey number r$_o$(G, H) is the number of turns the game lasts with optimal play. In this paper, we consider the behavior of r$_o$(G, P$_n$) for fixed G, where P$_n$ is the monotone ordered path. We prove an O(n log2 n) bound on r$_o$(G, P$_n$) for all G and an O(n) bound when G is 3-ichromatic; we partially classify graphs G with r$_o$(G, P$_n$) = n + O(1). Many of these results extend to r$_o$(G, C$_n$), where C$_n$ is an ordered cycle obtained from Pn by adding one edge.


Verlagsausgabe §
DOI: 10.5445/IR/1000178667
Veröffentlicht am 04.02.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1077-8926
KITopen-ID: 1000178667
Erschienen in The Electronic Journal of Combinatorics
Verlag Electronic Journal of Combinatorics
Band 31
Heft 4
Seiten Art.-Nr.: P4.79
Vorab online veröffentlicht am 27.12.2024
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page