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Abstract

This dissertation presents two novel models for investigating ferroelectric materials,
based on the multiphase-field approach—a powerful tool in materials science and
engineering for predicting microstructural and morphological evolution.

The first model integrates the multiphase-field approach with the Landau-Ginzburg-
Devonshire Theory (LGDT) for ferroelectric materials. The objective is to investigate
the microstructural evolution of coexisting ferroelectric phases, such as the co-existing
ferroelectric tetragonal phase (FT) and ferroelectric rhombohedral phase (FR) near the
morphotropic phase boundary (MPB) of Pb(Zr1−xTix)O3 (PZT) material. As both the
phase-field ϕ and polarization vector P are order parameters, this model enables the
calculation of the transformation between ferroelectric phases, as well as the associ-
ated domain structures within each ferroelectric phase. Using this model, this work
investigates the PZT-based material PIC 151, in both single-crystal and polycrystalline
structures, under external stimuli.
The second model employs the multiphase-field concept to compute ferroelectric

materials, with the polarization states of each ferroelectric phase variant predetermined.
Unlike the time-dependent Ginzburg-Landau (TDGL) equation, which computes domain
structures through the spatial and temporal evolution of the polarization vector, the
second model computed them by evolving the multiphase-field order parameter ϕ,
representing the predetermined polarization variants. The total energy functional in this
model comprises the general interfacial energy in the multiphase-field framework and
the phase-dependent bulk energy, accounting for the contributions from the mechanical
and electric fields. This model was applied to bulk BaTiO3 (BTO) ferroelectrics to
explore domain structure formation, domain switching, and material properties under
external stimuli. It was also extended to investigate (001)-oriented PbTiO3 (PTO)
thin films, examining its epitaxial growth on various conditions. Additionally, this
model studies the mechanism of domain structure formation in single-crystal and
polycrystalline Methylammonium Lead Iodide (MAPbI3) thin films, which is the first
application of the phase-field approach to compute domain structure formation in
Organic metal halide (OMH) perovskite ferroelectrics. The dissertation also discusses
potential extensions of the secondmodel for further investigating ferroelectric materials.
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Zusammenfassung

Diese Dissertation stellt zwei neuartigeModelle zur Untersuchung von ferroelektrischen
Materialien vor, die auf dem Mehrphasenfeldansatz basieren—einem leistungsstarken
Werkzeug in der Materialwissenschaft und im Ingenieurwesen zur Vorhersage mi-
krostruktureller und morphologischer Entwicklungen.
Das erste Modell integriert den Mehrphasen-Feldansatz mit der Landau-Ginzburg-

Devonshire-Theorie (LGDT) für ferroelektrische Materialien. Das Ziel ist es, die mi-
krostrukturelle Entwicklung koexistierender ferroelektrischer Phasen, wie beispielswei-
se der koexistierenden ferroelektrische tetragonale Phase und ferroelektrische rhom-
bohedrale Phase nahe der morphotropische Phasengrenze des Pb(Zr1−xTix)O3 (PZT)-
Materials, zu untersuchen. Da sowohl das Phasenfeldϕ als auch der Polarisationsvektor
P Ordnungsparameter sind, ermöglicht dieses Modell die Berechnung der Umwandlung
zwischen ferroelektrischen Phasen sowie der damit verbundenen Domänenstrukturen
innerhalb jeder ferroelektrischen Phase. Mit diesem Modell wird in dieser Arbeit das
einkristalline und polykristalline PIC 151 Material, ein auf PZT basierendes Material,
unter äußeren Einflüssen umfassend untersucht.
Das zweite Modell verwendet das Multiphasenfeld-Konzept zur Berechnung von

Domänenstrukturen, bei denen die Polarisationszustände innerhalb jeder Variante vor-
gegeben sind. Im Gegensatz zur zeitabhängigen Ginzburg-Landau-Gleichung (TDGL),
das Domänenstrukturen durch räumliche und zeitliche Entwicklung des Polarisati-
onsvektors jeder ferroelektrischen Variante berechnet, werden bei diesem Modell die
Domänenstrukturen durch Minimierung des Gesamtenergie-Funktionals in Bezug auf
den Ordnungsparameter des Multiphasenfelds ϕ berechnet. Das Energie-Funktional
beinhaltet die allgemeine Grenzflächenenergie im Rahmen des Multiphasenfeldmodells
sowie die phasenabhängige Volumenenergie, wobei die Beiträge der mechanischen
und elektrischen Felder berücksichtigt werden. Dieses Modell wurde auf voluminöse
BaTiO3 (BTO)-Ferroelektrika angewendet, um die Domänenbildung/-umschaltung
und Materialeigenschaften unter äußeren Einflüssen zu untersuchen. Es wurde zu-
dem erweitert, um (001)-orientierte PbTiO3 (PTO)-Dünnfilme zu untersuchen und
deren epitaktisches Wachstum unter verschiedenen Bedingungen zu analysieren. Zu-
sätzlich untersucht dieses Modell den Mechanismus der Domänenstrukturformation
in Methylammoniumbleiiodid (MAPbI3)-Filmen, was die erste Anwendung des Pha-
senfeldansatzes zur Berechnung der Domänenstrukturen von MAPbI3 darstellt. Die
Dissertation präsentiert auch mögliche Erweiterungen des Modells zur weiteren Unter-
suchung von ferroelektrischen Materialien.
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1. Introduction

1.1. Motivation

Drawing upon the Landau-Ginzburg-Devonshire Theory (LGDT) [1–3], the phase-field
method, incorporating the time-dependent Ginzburg-Landau (TDGL) equation, has
been employed to study ferroelectric phase coexistence, bidirectional ferroelectric phase
transformations, and their associated domain structures in Pb(Zr1−xTix)O3 (PZT) ma-
terial at morphotropic phase boundary (MPB), as outlined in Refs. [4–12]. Nonetheless,
regarding polycrystalline ferroelectrics exhibiting a composition near the MPB, a model
for computing the domain structures, phase coexistence, and grain boundary phenom-
ena is currently absent. To address this gap, the first aim of this dissertation involves
enhancing the phase-field model of ferroelectric materials. This is achieved by coupling
the multiphase-field method with the TDGL equation, which is based on LGDT, and is
referred to as Model I in this dissertation. This combination provides a more compre-
hensive understanding of microstructural changes and domain morphological evolution
under various influencing factors, contributing to the advancement of materials science
and engineering.

In using the TDGL equation to study ferroelectric materials, the polarization vector
serves as the order parameter [13]. Depending on LGDT, the thermodynamic descrip-
tion of the polarization state is governed by a Landau potential, a high-order polynomial
function of the polarization vector. Besides, the analysis of domain walls incorporates
the domain wall energy, introduced through the polarization gradient. Consequently,
determining the domain walls requires a set of phenomenological Landau and gradient
coefficients. However, Landau coefficients are available to only a limited subset of
materials [14], and their determination poses significant challenges in materials science.
For instance, to investigate domain structures and ferroelectric phase transformations
in the PZT-based PIC 151 material using Model I, extensive effort has been dedicated to
determining the phase-dependent Landau coefficients in the first work [15]. The lack of
coefficients also leaves an unexplored understanding of the domain structure formation
and the associated properties of many materials, such as the ferroelectric semiconductor
Methylammonium Lead Iodide (MAPbI3). Consequently, this work proposes a new
model based on the multiphase-field approach, termed Model II, to study ferroelectric
materials [16, 17].
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1. Introduction

1.2. Structure of this work

The present work is structured as follows: In Chapter 2, an exploration of the literature
review on ferroelectric materials and their thermodynamic theory is undertaken. The
phase-field approach is briefly presented in the same chapter, and the phase-field
models of the ferroelectrics are summarized. The model description of this dissertation
is delineated in Chapters 3 and 4. Chapter 3 thoroughly explains Model I, while the
in-depth analysis of Model II is presented in Chapter 4. The research results are
primarily covered in Chapters 5 through 8. Employing Model I, Chapter 5 is dedicated
to simulating PIC 151 material to explore ferroelectric phase transformations and
domain structures. Chapters 6 to 8 provide insights into modeling ferroelectric material
using Model II. Chapter 6 studies the domain structure formation and switching in
single-crystal and polycrystalline bulk BaTiO3 (BTO) material, while Chapters 7 and 8
focus on simulating ferroelectric thin films with epitaxial growth and polycrystalline
structures, respectively. The contents of Chapters 3 to 7 are adopted from publications
in Refs. [15–17]. Lastly, Chapter 9 summarizes the key findings and achievements of the
current research. This chapter also suggests potential directions for further exploration.

1.3. Notation

Notation in this work follows Einstein’s summation convention [18]. Since a fixed
Cartesian coordinate system is assumed throughout, only subscripts are used in the
notation. The 0th-order tensors, i.e., scalars, are demonstrated by letters without indices
in this dissertation, e.g. α or β. This thesis employs two representations for tensors of
high order. One is indicated by bold font, while the other is indicated by tensor notation.
For instance, vectors such as polarization are represented by both P and Pi (i = 1, 2, 3)
while the second-order stress tensor is denoted as σ or σij (i, j = 1, 2, 3). Besides, the
fourth-order tensor with the bold model is described by calligraphic font to distinguish
it from the second-order tensor. The exemplar is the elastic stiffness tensor, which is
denoted as C or Cijkl. The Kronecker’s symbol

δij = {
1 for i = j
0 for i ≠ j

(1.1)

is introduced to represent the identity in index notation.

3



2. Literature review

Ferroelectric materials compose an important class of functional materials that generate
spontaneous polarization upon transformation from the paraelectric to ferroelectric
phases, with this polarization being switched with an induced electric field. Domain
structures, which represent the organized arrangement of electric dipoles and can be eas-
ilymanipulated by external stimuli, consist of the inherent characteristics of ferroelectric
materials. Hence, understanding domain structures and their response to external fields
is crucial for the practical using ferroelectric materials. The advancements in computer
science and technical capabilities have enabled adopting numerical methodologies such
as the phase-field method [13, 19], first-principle calculations [20, 21], Monte Carlo
simulations [22–24], Molecular Dynamics [25–27], Machine Learning [28, 29] and so on,
for investigating ferroelectric materials. Among them, the phase-field approach enables
the probing, prediction, and design of domain structures under various electromechani-
cal boundary conditions, as well as the investigation of the domain switching under
electric and mechanical stimuli, accelerating overall analysis and understanding of
the behavior and properties of ferroelectric materials. Therefore, this section provides
an overview of ferroelectric materials alongside their thermodynamic foundations,
supplemented by a brief introduction to the phase-field method and its applications in
modeling ferroelectric materials.

2.1. Understanding ferroelectric materials: from polarity
origins to domain structures

2.1.1. The origin and description of polarity

The concept of polarity primarily originates from the study of electromagnetism and the
behavior of charged particles. With the understanding of the microstructure of matter,
the essence of electromagnetic phenomena lies in the existence and movement status
of charged particles, recognized in the 19th century. Matter is formed by aggregating
positively charged atomic nuclei and negatively charged electrons through Coulomb
interactions. Concurrently, those charged particles can be redistributed by external
loads. These transfer characteristics of charges have long been known to humanity, for a
long time. For instance, one can easily observe static electricity and lightning in nature.
Due to the attraction of opposite charges, the system tends to return to an electrically

4



2. Literature review

neutral state after transformation in these phenomena. Therefore, the condition of
electrical neutrality of macroscopic matter is widely accepted as an empirical rule at
that time. However, although the overall matter is still electrically neutral, its centers
of positive and negative charges no longer coincide under an imposed electric field.
Therefore, a new physical quantity—polarization— is introduced to describe such a
phenomenon.

Mathematically, the concept of electric multipole moments can be introduced to rep-
resent polarization, where the electric dipole moment vector (p) is the most commonly
used, described as:

p = qd. (2.1)
q represents the magnitude of charges that are equal in magnitude but opposite in
sign [30]. d denotes the displacement vector, which points from the negative charge
toward the positive charge. The polarization vector P is defined as the average value
of dipole moment within the volume V [31], described as:

P =
1

V
∑p. (2.2)

Using the notion of polarization, Maxwell introduced the concept of electric displace-
ment,D, refining the fundamental framework of electromagnetic theory. The corre-
sponding constitutive equation is expressed as:

D = κ0E +P , (2.3)

within which κ0 = 8.85 × 10−12F/m denotes the vacuum permittivity, and E is the
external electric field vector [31]. Drawing up the definition of polarization in Eq. (2.2),
D and P are the statistical averaging results. It should be highlighted that the symbol ε
typically represents the permittivity. To avoid confusion with the elastic strain symbol,
which is also denoted by ε, this thesis employs κ as the symbol for permittivity.

2.1.2. Polarization in dielectric material

When subjected to an external electric field, dielectric materials that act as insulators or
poor conductors due to the absence of mobile charge carriers can exhibit polarization,
denoted as:

P = κ0χE, (2.4)
in which χ represents the dielectric susceptibility [31]. By integrating Eqs. (2.2) (2.3),
and (2.4), the electric displacementD in a dielectric material is further formulated as:

D = κ0E + κ0χE = κ0(1 + χ)E = κ0κrE = κE. (2.5)

κr denotes the relative dielectric permittivity, and κ = κ0κr, which signifies the dielectric
permittivity of the material. It is crucial to recognize that when materials exhibit

5



2. Literature review

anisotropy, both the dielectric susceptibility and dielectric permittivity are described by
second-order tensors, denoted as χij (orχ) and κij (or κ), respectively. The relationship

κij = κ0(δij + χij) (2.6)

remains valid.
The physical process of dielectric polarization is commonly attributed to electronic

polarization, ionic polarization, orientation polarization, and space charge polariza-
tion [32]. As outlined in Fig. 2.1, the electronic contribution behaves through the
displacement of the negatively charged electron shell to a positively charged nucleus,
a phenomenon observable across all dielectrics. The ionic contribution denotes the
displacement of cations relative to anions, notably observed within ionic crystals. Ori-
entation polarization delineates the alignment of molecules, exemplified by water,
possessing a permanent electric dipole moment under an electric field. Space charge
polarization results from the non-uniform accumulation of charge carriers at struc-
tural interfaces, including grain boundaries, phase boundaries, and domain walls. In
perovskite ferroelectrics like PbTiO3 (PTO) and BTO, spontaneous polarization arises
from a combination of the four mechanisms, primarily driven by the ionic contribution,
especially the off-centered displacement of Ti atoms. The contribution of each mecha-
nism to the overall polarization of a dielectric material is contingent upon its material
type, form, and the frequency of the applied electric field.

E > 0

E = 0

Electronic Ionic Dipole reorientation Space charge

Figure 2.1.: Schematic diagram of the primary physical processes of dielectric polariza-
tion.

2.1.3. From dielectrics to ferroelectrics

Depending on the crystal structure, centers of positive and negative charges in special
dielectrics may not align without an external electric field. Crystals exhibiting this phe-
nomenon are described as having spontaneous polarization. When an external electric

6



2. Literature review

Dielectric
⋄ Polarization arises under an external electric field

Piezoelectrics
⋄ Polar unit cell

⋄ Deformation leads to charge displacement

⋄ Charge displacement leads to deformation

Pyroelectrics
⋄ Spontaneous polarization (Ps)

⋄ |Ps| is temperature-dependent

Ferroelectrics
⋄ Domain structures

⋄ Polarization switching

Figure 2.2.: The relationship and character within dielectric, piezoelectrics, pyroelectrics,
and ferroelectric. Based on Ref. [33].

field can switch the polarization, such dielectrics are termed ferroelectric. For ferroelec-
tric material characterized by spontaneous polarization, the electric displacement in
Eq. (2.5) requires adjustment to:

D = κ0(1 + χ)E +P s, (2.7)

where 1 + χ = κb with κb represents the background dielectric constant [34–36].
Similarly, the background dielectric constant also turns into a second tensor when the
material has anisotropic characteristics.

There are piezoelectric and pyroelectric materials between dielectric and ferroelectric
materials. The foundation of this classification lies in the crystal structures of the mate-
rials. According to crystallographic principles, describing three-dimensional crystal
structures entails 14 distinct Bravais lattices and 32 unique point groups, resulting in 230
space groups when translational symmetry is considered. Dielectric materials adhere
to classification principles, wherein 21 of the 32-point groups lack spatial symmetry,
while 11 exhibit spatial symmetry. Within the non-symmetric classification, materials
that omit the highly symmetric ‘432’ point group and belong to the remaining 20 point
groups capable of generating electric charge under stress are denoted as piezoelec-
tric materials. Of the 20 piezoelectric crystal classes, 10 exhibit a uniquely polar axis.
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These classes are characterized by generating spontaneous polarization without an
applied electric field and are termed pyroelectric. A pyroelectric material is further
defined as ferroelectric when it exhibits domain structures and an external electric
field can reorient its spontaneous polarization. For more detail, one could refer to [37].
Fig. 2.2 summarizes the relationship of dielectrics, piezoelectrics, pyroelectrics, and
ferroelectric.

2.1.4. Polarization generation in perovskite ferroelectrics

ABC3

A site

C site
B site

PP

(a) Paraelectric cubic

(b) Ferroelectric tetragonal

Figure 2.3.: Schematic diagram of displacement-type polarization in perovskite ferro-
electric materials.

Despite ferroelectric materials exhibiting diverse crystal structures and phase trans-
formation forms, perovskite-structured displacement ferroelectrics, defined by the
chemical formula ABC3, stand as the foremost subjects of study and are widely recog-
nized as essential exemplars in the ferroelectricity field. Fig. 2.3 illustrates the crystal
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structure of ABC3 in both its paraelectric cubic and ferroelectric tetragonal phases.
The A-site cation, typically a large ion, is located at the corners of the unit cell, and
the B-site cation, usually a smaller ion such as a transition metal ion, occupies the
body-centered position. The C-site anion, which could be oxygen or a halide, resides
at the face-centered positions of the unit cell. Thus, the compositions of ABC3 can
include A2+B4+C−23 compounds, examples of which are BTO, PTO, and PZT, and other
formulae like A1+B2+C−13 , such as MAPbI3.
The polarization generation in perovskite ferroelectrics primarily stems from the

displacement of ions and distortion of the unit cell induced by phase transformations.
In the transition from a cubic paraelectric phase to a tetragonal ferroelectric phase,
for example, an elongation of the unit cell along the c-axis can occur by comparing
Fig. 2.3(b) to (a), leading to a change in the axis ratio where c/a > 1. Simultaneously,
distortion along the c-axis affects the body-centered B-site, resulting in a displacement
of the central positions of positive and negative charges. Specifically, the upward
shifting of the positive charge from the central position generates polarization oriented
along the positive c-axis. Analogously, polarization along the negative c-axis can be
induced when the positive charge is shifted downward.

Figure 2.4.: The phase transformation pathway of rhombohedral, orthorhombic, tetrago-
nal, cubic perovskite ferroelectrics (from low to high temperature), and three intermedi-
ate monoclinic phasesMA,MB , andMC . The arrows denote the polarization direction
in the Cartesian coordinate system. The shaded triangle in monoclinic phases indicates
the ranges where the polarization orientation can vary. Adapted from Ref. [38].
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Polarization in the perovskite ferroelectrics may also be generated along the edge or
corner directions, based on thematerial symmetry. As discussed in Ref. [38], for instance,
typical perovskite ferroelectric materials undergo distinct first-order ferroelectric phase
transitions upon cooling, sequentially transitioning through tetragonal, orthorhombic,
and rhombohedral phases, as illustrated in Fig. 2.4. Monoclinic may also appear as
intermediate or secondary phases in materials such as BTO. During the transition from
the tetragonal to the monoclinic phase, distinct polarization emerges in each phase,
aligning with their energetically equivalent directions.

2.1.5. Domain structures in ferroelectric materials

In order to minimize the energy of the system, different regions within the crystal
align the polarization vectors along their energetically equivalent directions. This
results in the ferroelectric domain, where the consistent polarization orientation is
exhibited in a contiguous region. These domains are demarcated from adjacent ones by
domain walls, typically ranging from a few unit cells to the nanometer scale. A domain
wall is predicated on the relative orientation between the polarization directions of
the neighboring domains. For example, surfaces perpendicular to the ferroelectric
polarization exhibit bound charges, generating a depolarizing field, Edep, as shown
in Fig. 2.5(a). Strategies to release Edep include: (i) compensating these charges with
surface adsorbates or metallic electrodes (see Fig. 2.5 (b)); or (ii) forming the 180○

ferroelectric domain walls to ensure that the net polarization at the surface averages to
zero (see Fig. 2.5(c)). When the elastic energy is predominated in the system, non-180○
ferroelastic domain walls could even be formed. Examples include the 90○ domain
wall in the tetragonal ferroelectric (Fig. 2.5 (d)), and 71○ or 109○ domain walls in the
ferroelectric rhombohedral phase. The ferroelectric domain walls only react to the
electric field, whereas ferroelastic domain walls are responsible for both the electric
and mechanical fields. Those domain walls are also termed neutral domain walls,
ideally minimizing the total polarization charge to zero. This occurs when either the
polarization projection onto the domain wall plane is zero or the polarization vector
maintains continuity across the domain wall.
In contrast to neutral domain walls, charged domain walls with head-to-head or

tail-to-tail orientations may arise [40–44], as depicted in Fig. 2.6. Charged domain
walls induce a discontinuity in polarization, resulting in the uncompensated domain
wall bound charges, i.e., ∇ ⋅ P ≠ 0. As a result, the mobility of carriers is modified,
leading to unusually electronic transport characteristics at the domain boundaries [45–
47]. For instance, as demonstrated in Ref. [47], the charged domain configurations in
MAPbI3 could release the Shockley–Read–Hall recombination losses within grains,
enhancing the fill factor and overall power conversion efficiency of associated solar
cells. Charged domain walls may also represent intrinsic two-dimensional systems
possessing functional properties that can be intentionally introduced, manipulated,
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P Edep

(a) (b) (c) (d)

Figure 2.5.: (a)-(c) elucidate the formation of a 180○ domain wall in the ferroelectric
material (adapted from Ref. [39] ), while (d) demonstrates a 90○ domain wall. The
dark blue arrow indicates the polarization direction, and the black field lines in (a)
and (c) depict the electric fields resulting from a ferroelectric monodomain state. The
accumulation of the electric fields in (a) induces a depolarizing field (Edep) in the
opposing direction, denoted by the dark purple arrow. (b) illustrates the complete
polarization screening by surface charges, and (c) represents the 180○ domain wall to
release the depolarization field. The thick red lines in (c) and (d) show the domain walls.

or eliminated as required [40–44, 48, 49]. The currently theoretical mechanisms for
forming charged domain walls include the stabilization of charged impurities [50], the
favorable energetic configurations [51], the distribution of screening charges [52], and
the interactions with oxygen vacancies [53].

Figure 2.6.: 180○ and 90○ charged domain wall with head-to-head and tail-to-tail config-
uration. Adapted from Refs. [39] and [40].

In addition to the neutrally uniform domains, topological domain walls formed by
complex polarization patterns have also been reported in recent years. Of particular
interest, Fig. 2.7 illustrates typical topological domain walls including vortex [54],
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skyrmion [55], hopfion [56], and meron [57]. These structures are likely to be applied
in devices such as ferroelectric memories.

(a) (b)

(c) (d)

Figure 2.7.: The typical topological domain walls. (a) vortex domain walls in the super-
lattice [54]; (b)skyrmions [55]; (c) hopfions [56]; (d) merons [57].

2.1.6. Manipulation of domain structures

It is known that the morphology and stability of domain walls can be manipulated,
as their formation depends on the details of the energy cost associated with creating
domain walls, the local defect structure, and the boundary conditions such as grain size,
shape, and orientation. An illustrative example of manipulation is the epitaxial growth
of ferroelectric thin films on a substrate. Normally, proper growth requires matching
the lattice parameters of the thin film with the substrate in the plane, resulting in misfit
strain in thin films, denoted as εmis in 1D. With as and af respectively denote the lattice
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constants of the substrate and thin film, εmis can be expressed as:

εmis =
as − af
af

. (2.8)

When as > af , the film experiences tensile stress, whereas for as < af , it is subjected
to compressive stress. Thus, by adjusting the substrate, one can design domain struc-
tures, as tensor and compressive misfit strains influence the stability of in-plane and
out-of-plane domains, respectively. Additionally, domain configurations can be al-
tered through external stimuli, such as electric fields and mechanical loading. Doping
and manipulating boundary effects also offer potential means for controlling domain
structures.

2.1.6.1. Domain switching and hysteresis loop

Domain switching by an external electric field (Eext) is an important phenomenon
observed in ferroelectric materials. The polarization and strain responses to an electric
field are depicted by the polarization versus electric field loop and the butterfly-shaped
strain versus electric field loop, respectively. These loops are also commonly referred
to as hysteresis loops. Fig. 2.8 illustrates the hysteresis loop for an ideal single-crystal
ferroelectric material, for instance. Firstly, the spontaneous polarization directions are

Polarization hysteresis

P

Eext

PS

PR

PS

PR

Ec Ec

Strain hysteresis

ε

Eext

Figure 2.8.: The schematic diagram for polarization hysteresis and strain hysteresis of
an ideal single-crystal with the application of an external electric field.

distributed such that the net polarization is zero (the origin point). As the electric field
is increased positively, polarization directions switch so that polarization can align
along the induced electric field, generating and increasing the average polarization
and strain in the same orientation. Until the maximum electric field, all the domains
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are aligned along the applied electric field. This point is called saturation polarization
(PS) and beyond it, there is no further increase in the value of polarization and strain.
Further, if the applied electric field is reduced forward, polarization tends to decrease
and reaches a particular value where Eext is zero. At this point, only some domains
back-switched, resulting in a net non-zero polarization, known as remnant polarization
(PR). Simultaneously, the existence of such polarization leads to non-zero average
strain, as shown in the right plot of Fig. 2.8. Remnant polarization is the measure of
the permanence of the materials used specifically for memory and storage capacity. In
order to attain zero polarization, the applied electric field must be further decreased.
The magnitude of the applied electric field where the whole polarization becomes zero
is called the coercive field, denoted as Ec. Since the average polarization is zero, the
average strain also reaches zero at this point. It should be noted that in the practical
ferroelectrics, microstructural features, such as grain boundaries and other extended
structural defects, may significantly affect the shape of hysteresis loops, resulting in
the variation of PS, Pr and Ec. In most ferroelectrics, a polarization domain can also
be reoriented by an externally applied stress field as the lattice degree of freedom is
coupled to the polarization order parameter.

2.2. Phenomenological theory of thermodynamics in
ferroelectric material

2.2.1. Thermodynamic theory of ferroelectric phase transitions

The phenomenological theory of thermodynamics in ferroelectric materials seeks to
decompose free energy into powers of polarization while establishing correlations
between each coefficient in the expansion and experimentally measurable macroscopic
quantities. According to thermodynamic theory, a single thermodynamic characteristic
function, i.e., a potential function, is deemed sufficient for elucidating the equilibrium
state of a homogeneous thermodynamic system depending upon the selection of inde-
pendent variables. In a homogeneous elastic ferroelectric material, the thermodynamic
parameters—temperature (T ) and entropy (S), mechanical parameters—stress (denoted
as σ or σij) and strain (denoted as ε or εij), and electric parameters— electric field and
electric displacement (or polarization) are employed to describe the state of the system.
The construction of the potential function entails the arbitrary selection of a variant
from the pairs of these variables, in which one selection corresponds to a potential
function, as listed in Table 2.1.
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Table 2.1.: The potential function of ferroelectric material, where i, j, m range from 1
to 3.

Potential functions Equations Independent variable
Internal energy (U ) - εij , Dm, S
Helmholtz free energy (F ) F = U − TS εij , Dm, T
Enthalpy (H) H = U − σijεij −EmDm σij , Em, S
Elastic enthalpy (H1) H1 = U − σijεij σij , Dm, S
Electric enthalpy (H2) H2 = U −EmDm εij , Em, S
Gibbs function (G) G =H − TS σij , Em, T
Elastic Gibbs function (G1) G1 =H1 − TS σij , Dm, T
Electric Gibbs function (G2) G2 =H2 − TS εij , Em, T

The first law of thermodynamics states that the variation in the internal energy U of
a system is represented as:

dU = dQ + dW, (2.9)

where dQ denotes the heat acquired by the system, and dW signifies the work per-
formed on the system. In the case of an elastic dielectric, dW encompasses contributions
from both mechanical and electrostatic energies, expressed as:

dW = σijdεij +EmdDm. (2.10)

For a reversible process, the heat transfer dQ is governed by:

dQ = TdS. (2.11)

Hence, it follows straightforwardly that:

dU = TdS + σijdεij +EmdDm. (2.12)

Consequently, the potential functions in Table 2.1 can be derived in differential form,
described as:

dF = −SdT + σijdεij +EmdDm, ,

dH = TdS − εijdσij −DmdEm,

dH1 = TdS − εijdσij +EmdDm,

dH2 = TdS + σijdεij −DmdEm,

dG = −SdT − εijdσij −DmdEm,

dG1 = −SdT − εijdσij +EmdDm,

dG2 = −SdT + σijdεij −DmdEm,

(2.13)

in which i, j, m range from 1 to 3.
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According to Table 2.1, the elastic Gibbs function G1 is a function of temperature,
stress, and dielectric displacement. Since temperature and stress can be readily con-
trolled during the experimental determination, it is better to choose them as independent
variables. Hence, G1 emerges as the most convenient potential for analysis. Under
isothermal and stress-free conditions, namely dT = 0 and dσij = 0, G1 along one axis
can be expanded as:

G1 = G10 +
1

2
αP 2 +

1

4
βP 4 +

1

6
γP 6. (2.14)

This formulation is the so-called Landau-Devonshire Theory (LDT) concerning the
ferroelectric phase transformation, which is the development of the Landau theory in
ferroelectric materials [1, 2]. G10 is the elastic Gibbs energy density of the paraelectric
phase, and α, β, and γ are the theory coefficients. α is temperature-dependent and can
be calculated based on a Curie–Weiss temperature T0, denoted as:

α = α0(T − T0), (2.15)

within which α0 is positive. The sign of β determines the nature of the phase transition.
β < 0 indicates a first-order phase transformation, while β > 0 corresponds to a
second-order phase transformation. The sixth-order coefficient γ is required to remain
non-negative, otherwise, the minimal energy state of the system may be represented
by an infinite polarization.
By examining the expressions for dG1 in Eq. (2.13), it becomes straightforward to

derive the electric field by
E =

∂G1

∂P
(2.16)

under isothermal and stress-free conditions. In conjunction with Eq. (2.14), the electric
field can be determined as:

E = αP + βP 3 + γP 5. (2.17)

The second derivative of G1 for polarization is expressed as:

∂2G1

∂P 2
=
∂E

∂P
= α + 3βP 2 + 5γP 4. (2.18)

Solving Eq. (2.17) leads to the solutions of polarization as:

P1 = 0,

P2,3 = ±{
−β +

√
β2 − 4αγ

2γ
}

1
2

,

P4,5 = ±{
−β −

√
β2 − 4αγ

2γ
}

1
2

.

(2.19)
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It is evident that there is always an identical zero polarization solution. When T > T0, α
is positive (Eq. (2.15)), resulting in a positive second derivative, ∂2G1/∂P 2. This implies
that G1 reaches its minimum at P = 0. Conversely, when T < T0, α becomes negative,
leading to ∂2G1/∂P 2 < 0. This suggests that the system is unstable at P = 0, as G1

reaches its maximum. These results indicate that as the temperature decreases below
T0, the zero polarization state shifts from stable to unstable, causing the transformation
from paraelectric to ferroelectric phase.
By combining Eqs. (2.5) with (2.18), the relationship between the dielectric permit-

tivity of paraelectric phase and parameter α can be derived, expressed as:
dE

dP
∣
P=0
=
1

κ
= a. (2.20)

Rewriting κ as the reciprocal of a and integrating Eq. (2.15), the so called Curie-Weiss
law is obtained:

κ =
1

α
=

1

α0(T − T0)
. (2.21)

Building on Ref. [58, 59], it follows that:

α0 =
1

κ0C
(2.22)

with C the Curie constant.

2.2.1.1. Second order phase transformation

As previously mentioned, β > 0 corresponds to a second-order phase transformation,
in which the Curie-Weiss temperature T0 aligns with the Curie temperature (denoted
as Tc). In accordance with the definition, a second-order phase transformation implies
that the polarization is continuous at the transition temperatures [60, 61], as depicted
in Fig. 2.9 (a). Fig. 2.9 (b) illustrates the relationship between the elastic Gibbs energy
G1 and the polarization P . When T < T0, the system exhibits a ferroelectric state
characterized by two distinct minimums, each representing spontaneous polarizations
of equal magnitude but opposite directions. These spontaneous polarization solutions
correspond to P2,3 as delineated in Eq. (2.19). This is because [−β −

√
β2 − 4αγ] of

P4,5 yield negative value when β > 0, resulting in imaginary solutions that are not
physically meaningful in representing polarization states. The spontaneous polarization
diminishes at T = T0. For T > T0, stability is only maintained when P = 0, signifying
the paraelectric state. Regarding the second-order phase transformation, the higher-
order terms such as P 6 can be negligible. The temperature-dependent spontaneous
polarization P2,3 can thus be derived as:

P =

√
α0(Tc − T )

β
, (2.23)
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relaying on Eqs. (2.17) and (2.15). This equation illustrates the continuous decrease in
spontaneous polarization with increasing temperature until reaching the Curie point,
where no latent heat is detected.

Polarization P
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Figure 2.9.: (a) displays the variation of the spontaneous polarization around Tc for the
second-order phase transition; (b) illustrates G1 at T < T0, T = T0, and T > T0 for the
second-order phase transition, where T0 = Tc.

2.2.1.2. First order phase transformation
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Figure 2.10.: (a) displays the variation of the spontaneous polarization around Tc for the
first-order phase transition; (b) illustrates G1 at T < T0, T0 < T < Tc, T = Tc and T > Tc
for the first-order phase transition, where T0 < Tc.
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β < 0 corresponds to a first-order ferroelectric phase transformation, wherein the
spontaneous polarization undergoes a discontinuous jump to zero at the transformation
temperature Tc, as depicted in Fig. 2.10 (a). In this case, the sixth-order terms of the
function G1 cannot be disregarded, and the solved spontaneous polarizations are P4,5

in Eq. (2.19). T0 < Tc in the first-order phase transformation, and the ferroelectric
materials exhibit different behavior near temperatures T0 and Tc. This distinction is
illustrated through the plotted free energy versus spontaneous polarization in Fig. 2.10
(b). The phase transformation behavior above Tc depends on the temperature difference
(∆T = T − Tc) between the investigated temperature T and Tc. The energy minimum
appears at P = 0 for a significantly large ∆T , suggesting that only the paraelectric
phase is stable in the material. Whereas, a small ∆T leads to two minimum values
appearing when P ≠ 0. In this state, the ferroelectric phase is metastable and can be
induced by applying an electric field. At T = Tc, the system exhibits three energetically
degenerate minima points. When T0 < T < Tc, G1 also exhibits two equal minima
values at P ≠ 0 and a distinct minimum at P = 0. G1 corresponding to P = 0 surpasses
that of G1 associated with the other two minima, indicating that the paraelectric phase
is in the metastable state in this case. For T0 < Tc, it is observed that the ferroelectric
minima are thermodynamically favored. At least two minima of the free energy can
be identified, each corresponding to spontaneous polarizations with distinct spatial
orientations.

Figure 2.11.: The energy landscape of four typical points in the polarization hysteresis.
Based on Ref. [62].
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Based on the plottedG1 in Fig. (2.10)(b), it is evident that the system at Tc depends on
whether it is approached by heating or cooling. For example, if the system is heated from
an initial low temperature such as T < Tc, it settles into one of the two finite polarization
(P ≠ 0) minima. In contrast, it assumes a paraelectric state when cooled from a higher
initial temperature of T > Tc. This is prevalent in numerous first-order ferroelectrics,
including BTO and PTO. The existing energy barrier at temperatures below T0 also
implies that small electric fields are insufficient for switching the polarization, leading to
the hysteresis loop illustrated in Fig. 2.8. Fig. 2.11 further outlines the energy distribution
of the polarization hysteresis of Fig. 2.8. The LDT suggests that in the ideal scenario, all
dipoles must undergo an overall switch to transition from one polarization orientation
to another.

2.2.2. Landau-Ginzburg Theory

LDT provides a well-suited framework for elucidating the behavior of a ferroelectric
material near its phase transition temperature when the polarization exhibits spatial
uniformity below T0. In response to the challenges posed by spatially inhomogeneous
polarization, the Landau-Ginzburg Theory (LGT) was further formulated by integrating
spatial polarization variations within the dissertation of LDT. The Landau-Ginzburg
free energy for the entire system is accordingly expressed as:

F = ∫ (
1

2
α{P (x)}2 +

1

4
β{P (x)}4 +

1

6
γ{P (x)}6 + g{∇P (x)}2)d3x (2.24)

The last term represents the gradient energy and g represents the gradient coefficient.
The gradient energy is a short-range interaction energy, also termed domain wall
energy, as inhomogeneities only occur in the domain wall region.

2.2.3. Landau-Ginzburg-Devonshire theory

In addition to using the LDT to describe the phase transformation and the gradient
term to calculate the spatial distribution, the LGDT further incorporates the elastic and
electric energies to explain the mechanics and electrostatic interactions of ferroelectric
materials, respectively. When the system is at constant temperature (dT = 0) and stress
(dσij = 0) condition, LGDT using the tensor notation in the case of a central-symmetric
paraelectric phase is written as:

G(P , σ) =
1

2
αijPiPj +

1

4
βijklPiPjPkPl +

1

6
γijklmnPiPjPkPlPmPm +⋯

−
1

2
Sijklσijσkl −QijklσijPkPl

−EiPi +
1

2
gijklPi,jPk,l,

(2.25)
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in which αij , βijkl and γijklmn are the phenomenological Landau expansion coefficients.
Sijkl is the elastic compliance tensors, which are inversely related to the fourth-order
elastic stiffness tensors Cijkl. Qijkl are the electrostrictive coefficients measured ex-
perimental and gijkl represent the gradient coefficients. i, j, k, l, m, n range from 1
to 3. Whereas, if at constant volume (dεij = 0) and temperature (dT = 0), the appro-
priate thermodynamic potential expression for the independent variables forms the
Helmholtz-free energy. The LGDT in this case is expressed as:

F (P , ε) =
1

2
aijPiPj +

1

4
γijklPiPjPkPl +

1

6
ωijklmnPiPjPkPlPmPm

+
1

2
Cijklεijεkl −

1

2
qijklεijPkPl

−EiPi +
1

2
gijklPi,jPk,l.

(2.26)

defined in the Helmholtz-free energy represents the electrostrictive constant tensors,
which can be obtained from Q by

qijkl = 2CijklQijkl. (2.27)

Accordingly,
Qijkl =

1

2
Sijklqijkl. (2.28)

There exist four possible solutions for Eqs. (2.25) and (2.26), corresponding to cubic,
tetragonal, orthorhombic, and rhombohedral structures. By establishing the relationship
between the polarization of each possible solution and the energy profile described
in Eq. (2.25) or Eq. (2.26), the phenomenological coefficients in these equations can be
determined by experimental determination or theoretical calculations. Examples can
be found in Refs. [58, 63–67].

2.3. Phase-field method

Owing to its primary attribute of distinguishing regions with a diffusion interface,
the phase-field approach eliminates the requirements of explicitly tracking a distinct
interface or making a priori assumptions about its shape. As a result, it has gained
popularity in recent years for describing the free-boundary problems in areas such as
the microstructure evolution [68–72]. The phase-field method was initially developed
to model the two-phase system, in which the microstructural evolution is analyzed
employing phase-field variables that are continuous functions of time and spatial coor-
dinates. In this case, the phase-field variable mostly denoted as ϕ(x, t), is often referred
to as an order parameter or a phase field. While the former naming reflects its original
use to distinguish between an ordered and a disordered phase, the latter is applied
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to separate a domain into coexisting thermodynamic phases. The order parameter is
further classified as either a conserved order parameter if it meets the criteria for local
conservation, or a nonconserved order parameter if it does not. Essentially, ϕ = 1 and
ϕ = 0 respectively designate two distinct bulk regions, whereas 0 < ϕ < 1 denotes the
diffusion interface. That is, the interface occurs at the point where ϕ transitions from
one phase to another, with the transition range defining the width of the interface. The
positions of interfaces are determined implicitly by contours of constant ϕ, in which
the temporal evolution of ϕ is described by a set of partial differential equations solved
numerically. The driving force for such evolution is the potential reduction in the free
energy that comprises the interfacial and bulk energies of the system. Interfacial energy
is the combination of potential and gradient energies, while bulk free energy may
encompass interactions such as chemical potential, elasticity, magnetic, or electrostatic
energies. The two-phase system has also been extended to compute multiple systems,
accounting for any number of phases and components. This subsection begins with a
discussion of two-phase models, followed by an introduction to the multiphase-field
approach.

2.3.1. Two-phase models

2.3.1.1. Energy functional

The construction of a phase-field model usually starts with the formulation of a free-
energy functional F based on the order parameter in the domain Ω of volume V . To
start, the simplest two-phase case is considered, with the corresponding phase variables
ϕ1 and ϕ2. In this case, a single order parameter ϕ is sufficient for distinguishing both
phases using ϕ1 = ϕ and ϕ2 = 1 − ϕ. The most basic form of the energy function, which
does not take into account the bulk energy [71–73], can be formulated as:

F = ∫
V
f(ϕ) +K ∣∇ϕ∣2 dV. (2.29)

f(ϕ) represents the potential energy, delineating the energetic barrier governing phase
transitions. The double-obstacle or the double-well potential are the two common
choices for f(ϕ) [73], expressed as:

{
f(ϕ) =Hobϕ(1 − ϕ) double-obstacle,
f(ϕ) =Hwellϕ

2(1 − ϕ)2 double-well,
(2.30)

in which Hob and Hwell (in J/m3) are constant factors. K ∣∇ϕ∣2 in Eq.(2.29) represents
the gradient energy with a constant factorK (in J/m), which acts to penalize gradients
within the order parameter and facilitates interface diffusion result from spatial inho-
mogeneities. The interplay between the potential and gradient energies is significant
for the efficacy of a phase-field model.
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2.3.1.2. Allen-Cahn equation

The evolution of the order parameter in a two-phase system is mainly governed by
the Allen-Cahn [74] or Cahn-Hilliard [75] models. Following the principles of non-
equilibrium thermodynamics, the progression of a non-conserved order parameter
correlates directly with the thermodynamic driving force, as represented by:

∂ϕ(x, t)

∂t
= −

M

ϵ

δF

δϕ
= −

M

ϵ

⎡
⎢
⎢
⎢
⎢
⎣

∂f(ϕ)

∂ϕ
− 2K

∂2ϕ

∂x2

⎤
⎥
⎥
⎥
⎥
⎦

. (2.31)

M is the mobility parameter and ϵ scales the interface width. This governing equation
is commonly referred to as the Allen-Cahn equation [74], where the essence of the
phase variable aims to approach its equilibrium by minimizing the free energy of the
system. The Allen-Cahn model is also recognized as the TDGL model.

2.3.1.3. Cahn-Hillard

Composition variables such as molar fractions or concentrations (c) are typically con-
served properties. The functional derivative of the energy functional concerning such
a conserved order parameter equals a chemical potential µ, expressed as:

µ =
δF

δc
. (2.32)

The derivative of µ is defined as the mass current j, denoted as:

j = −∇µ. (2.33)

Since it is a conserved quantity, c conforms to a continuity equation, formulated as:

∂c

∂t
= −m∇ ⋅ j, (2.34)

withinm represents the atomic mobility. The combination of Eqs. (2.32), (2.33) and (2.34)
gives the so called Cahn-Hilliard equation [75], denoted as:

∂c

∂t
=m∇2 δF

δc
. (2.35)

2.3.1.4. Equilibrium profile

In a straightforward 1D scenario depicting a two-phase flat interface, the stable equilib-
rium requires

∂ϕ

∂t
= 0, (2.36)
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leading to
d2ϕ

dx2
=

1

2K

df(ϕ)

dϕ
(2.37)

when taking the Allen-Cahn model Eq. (2.31) into account. Multiplying Eq. (2.37) by
dϕ
dx on both sides and integrating over the interval [0, x] follows:

∫

x

0

dϕ

dx

d2ϕ

dx2
dx = ∫

x

0

1

2K

df(ϕ)

dϕ

dϕ

dx
dx,

∫

x

0

1

2

d

dx
(
dϕ

dx
)
2

dx =
1

2K ∫
ϕ(x)

0

df(ϕ)

dϕ
dϕ.

(2.38)

If the potential vanishes in f(0) = 0 holds for both well and obstacle potential, Eq. (2.38)
can be further derived as:

dϕ

dx
= ±

√
f(ϕ)
K . (2.39)

Choosing the positive sign for Eq. (2.39), and subsequent division of the right-hand
side, followed by integration through substitution, results in:

∫

ϕ(x)
1
2

√
K

f(ϕ(x)) dϕ = x (2.40)

when considering ϕ(x = 0) = 1/2 as boundary condition. Consequently, one can
initially solve for x in terms of ϕ for both obstacle and well potentials, expressed as:

x =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−

√
K
Hob

arcsin (1 − 2ϕ(x)) in f(ϕ) =Hobϕ(1 − ϕ),

− 2
√

K
Hwell

arctanh (1 − 2ϕ(x)) in f(ϕ) =Hwellϕ
2(1 − ϕ)2.

(2.41)

Subsequently, the relationship between ϕ and x can be obtained as:

ϕ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1

2
+
1

2
sin (

√
Hob

K x) in f(ϕ) =Hobϕ(1 − ϕ),

1

2
+
1

2
tanh (

√
Hwell

4K x) in f(ϕ) =Hwellϕ
2(1 − ϕ)2.

(2.42)

The equilibrium solutions of Eq. (2.42) are shown in Fig. 2.12, which is plotted
against the dimensionless coordinate

√
Hob/Kx and

√
Hwell/Kx, respectively. It is

obvious that the transition between the two bulk states occurs within a region in both
potential formulations respectively proportional to the length

√
K/Hob and

√
K/Hwell.

This suggests the equilibrium interface thickness arising from a balance between the
gradient and potential energy terms. Increasing the factor of the potential energy
(Hob or Hwell) enhances the potential term, leading to a thinner interfacial width. In
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−4 −2 0 2 4
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1 Well
Obstacle

√
H/Kx

ϕ

Figure 2.12.: Equilibrium profile of a diffuse interface in a two-phase model for both the
obstacle potential as well as the well potential. x represents the signed distance from
the location ϕ = 1/2, while K and H are the parameters that scale the gradient and
potential energy density, respectively.

contrast, increasing K strengthens the gradient term, which results in a large diffusion
thickness. Defining the interface thickness as L =∶ ∣xϕ=1 − xϕ=0∣, it has been found that
only the obstacle potential results in a finite interface thickness, which equals

√
K/Hobπ,

whereas the well potential tends toward values of ϕ = 1 and ϕ = 0 at x = ±∞.
The interfacial energy, σint, can be calculated for such an equilibrium interface as:

σint = ∫
+∞

−∞
[f(ϕ) +K(

dϕ

dx
)
2

]dx. (2.43)

According to the first-order ordinary differential equation in Eq. (2.39), σint can be
further derived as:

σint = ∫
+∞

−∞
2f(ϕ)dx. (2.44)

By setting x = ϕ and using Eq. (2.39) once more, one can derive Eq. (2.44) as:

σint = 2∫
ϕ(+∞)

ϕ(−∞)

f(ϕ(x))

ϕ′
dϕ

= 2
√
K ∫

ϕ(+∞)

ϕ(−∞)

√

f(ϕ(x))dϕ.

(2.45)

Subsequently, by incorporating the expressions for obstacle and well potentials in
Eq. (2.30) into Eq. (2.45) and assuming ϕ(+∞) = 1 and ϕ(−∞) = 0, σint can finally be
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expressed as:

σint =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

π

4

√
KHob in f(ϕ) =Hobϕ(1 − ϕ),

1

3

√
KHwell in f(ϕ) =Hwellϕ

2(1 − ϕ)2.
(2.46)

This indicates that the interfacial energy σint is directly proportional to the square
root of the product of the potential energy factor and the gradient energy factor, one
could find the same conclusion in Ref. [72]. With this result, one can connect K and
Hob/Hwell to σint, attributing these prefactors with more physical significance.

2.3.2. Multiphase-field models

The two-phase formalism was extended to address multiphase, multigrain, and multi-
component systems as described in Refs. [76–79]. In this framework, a system with N
coexisting phases is described through N phase-fields ϕN , i.e., ϕ = {ϕ1, ϕ2, ..., ϕN}. As
a result, a sum constraint is enforced to guarantee the summation of the phase variables
as one at each point x within the system, denoted by:

N

∑
α=1

ϕα = 1 with ϕα > 0,∀α. (2.47)

Thus, one can conclude that only N − 1 phase fields are independent in a system
containing N phases. The energy functional including the bulk energy (denoted as
Fbulk), can be formulated as:

F = Fintf + Fbulk

= ∫
V
(fpot + fgrad + f̃bulk) dV,

(2.48)

where f̃bulk is the bulk energy density, fpot and fgrad represent the potential energy
density and gradient energy, respectively.
The construction of the potential energy within the multiphase-field framework

begins by substituting ϕ and 1−ϕ to ϕα and ϕβ , respectively. Using the double-obstacle
and double-well formulations as presented in Eq. (2.30), the potential energies can be
initially expressed as:

f ob,1
pot = ∑

α=1
∑

β=α+1
γαβϕαϕβ, fwell,1

pot = ∑
α=1
∑

β=α+1
γαβϕ

2
αϕ

2
β. (2.49)

However, the potential energies in the current format result in the so-called spurious
phases. Consequently, these energies must be reformulated according to the summation

26



2. Literature review

rule in Eq. (2.47). A thorough review of this topic can be found in Ref. [73]. In general,
the formulated multi-obstacle potential can be denoted as:

f ob
pot =

16

ϵπ2

N

∑
α=1

N

∑
β=α+1

γαβϕαϕβ +
N

∑
α=1

N

∑
β=α+1

N

∑
τ=β+1

γαβτϕαϕβϕτ , (2.50)

in which γαβ is the interfacial energy between phases α and β, and γαβτ is the interfacial
energy among α, β and τ . The triplet term scaled by γαβτ is used to remove spurious
phases that may appear at triple or higher-order junctions. Similarly to the two-phase
model, ϵ scales the interface width. Numerically, a Gibbs simplex function, defined as

G =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
N

∑
α=1

ϕα = 1 ∩ ϕα ≥ 0∀1 ⩽ α ⩽ N

∞ else,
(2.51)

can be incorporated into the multi-obstacle potential to enforce ϕα ≥ 0. Several multi-
phase extensions of the well-potential have also been widely applied in the phase-field
community, and details can be found in Ref. [73].

Similarly, the gradient energy for the multiphase field model can be formulated as a
generalization of the two-phase case K ∣∇ϕ∣2. For example, it can be formulated as:

fgrad = ϵ
N

∑
α=1

N

∑
β>α

γαβ ∣ϕα∇ϕβ − ϕβ∇ϕα∣
2, (2.52)

as documented in Refs. [76, 78]. Alternatively, in accordance with the formulation
provided in Ref. [77], the gradient energy can also be computed by:

fgrad = −ϵ
N

∑
α=1

N

∑
β>α

γαβ∇ϕα ⋅∇ϕβ. (2.53)

For a more in-depth examination of the distinctions and alternative formulations of gra-
dient energy, and their interactions with various potential energies, it is recommended
to consult Ref. [73].

The condition ϕα = 1−ϕβ always holds when reducing multiple phases to two phases,
resulting in the simplification of the multi-obstacle potential in Eq. (2.50) as:

f ob
pot =

16γαβ
ϵπ2

ϕα(1 − ϕα). (2.54)

Besides, ϕα = 1−ϕβ leads to∇ϕβ = −∇ϕα, resulting in the gradient energy in Eqs. (2.52)
and (2.53) reducing to

fgrad = ϵγαβ∇ϕα (2.55)
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for a two-phase system. Comparing Eqs. (2.54) and (2.55) with Eqs. (2.29) and (2.30), it
is straightforward to determine K and Hob in terms of ϵ and γαβ as:

K = ϵγαβ, Hob =
16γαβ
ϵπ2

. (2.56)

Thus, the equilibrium interface thickness L for a binary interface in the application of
a multi-obstacle potential can be calculated as:

L =

√
K

Hob

π =

√
ϵγαβϵπ2

16γαβ
π =

π2ϵ

4
. (2.57)

Referring to Eq. 2.46, the interfacial energy σint is expressed as:

σint =
π

4

√
ϵγαβ16γαβ

ϵπ2 = γαβ, (2.58)

which in addition suggests that γαβ is the parameter governing the interfacial energy
at α and β phases interface.

The bulk energy f̃bulk can be further express by means of the interpolation function
hα(ϕ), denoted as:

f̃bulk = ∑ fα
bulkh

α(ϕα), (2.59)
where hα(ϕ) satisfies conditions:

hα(ϕα = 1, ϕβ≠α = 0) = 1,
hα(ϕα = 0, ...) = 0.

(2.60)

For deeper discussions of the interpolation function, one can refer to Ref. [80].
To fulfill the condition ∑N

α=1 ϕα = 1, the Allen-Cahn model can be extended for the
multiphase-field evolution with a Language Multiplier λ [77], denoted as:

∂ϕα(x, t)

∂t
= −

1

τ(ϕ)ϵ

δF

δϕα

− λ. (2.61)

τ(ϕ) is a time relaxation parameter, which represents the reverse of the mobility. With
an arithmetic interpolation, τ(ϕ) can be calculated by:

τ(ϕ) =
∑

N
α=1∑

N
β=α+1 ταβϕαϕβ

∑
N
α=1∑

N
β=α+1 ϕαϕβ

, (2.62)

in which ταβ represents the relaxation parameter between phases α and β. By consid-
ering the mobility matrix as the sum of binary interactions, Steinbach and Pezzolla
proposed an alternative evolution of ϕ in Ref. [77], expressed as:

∂ϕα(x, t)

∂t
= −

1

Ñϵ

N

∑
β≠α

⎡
⎢
⎢
⎢
⎢
⎣

1

ταβ
(
δF

δϕα

−
δF

δϕβ

)

⎤
⎥
⎥
⎥
⎥
⎦

. (2.63)
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Ñ denotes the number of locally active phases. This model does not involve any
averaging or interpolation for time relaxation and eliminates the Lagrange multiplier
since the form implicitly ensures the sum constraint if the initial condition complies.
When employing the obstacle-type potential, Eq. (2.63) does not yield the correct
kinetics, as demonstrated in the analytical discussion in Ref. [70]. Therefore, it can be
further refined and implemented as:

∂ϕα(x, t)

∂t
= −

1

Ñϵ

N

∑
β≠α

⎡
⎢
⎢
⎢
⎢
⎣

Mαβ
⎛

⎝

δFintf

δϕα

−
δFintf

δϕβ

−
8
√
ϕαϕβ

π
∆αβ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (2.64)

by taking the influence of the interpolation function into account. ∆αβ scales the
driving force from the bulk energy, which is defined as:

∆αβ = (
δ

δϕα

−
δ

δϕβ

)f̃bulk. (2.65)

2.4. Phase-field model of ferroelectric materials

The phase-field simulation is a powerful technique for exploring ferroelectric mate-
rials, enabling the elucidation, prediction, and strategic manipulation of ferroelectric
domain structures. As of present, two methodologies have been developed to compute
domain structures/evolution using the phase-field framework. The first method is
the Allen-Cahn type TDGL model, which computes the domain structures using the
polarization vector P as the order parameter. The second approach is Model II in this
work, which relies on the multiphase-field methodology, and the domain morphologies
are determined by minimizing the total energy functional concerning the phase field ϕ.

2.4.1. TDGL Model

The development of the TDGL equation for investigating domain structures, domain
switching dynamics, and their associated material properties in ferroelectrics dates
back more than two decades. Since then, it has undergone extensive development to
explore a myriad of physical phenomena. In general, the TDGL equation is expressed
as:

∂P (x, t)

∂t
= −Mi

δFLGDT

δP (x, t)
+ Gi(x, t). (2.66)

Mi is a kinetic coefficient representing the mobility of domains. Gi(x, t) denotes a
negligible Gaussian random fluctuation, detailed in [86]. FLGDT demonstrates the total
energy functional consisting of the Landau potential, gradient, electric and elastic
energies, which is based on the LGDT in Eq. (2.26).
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(a) (b)

(c)
(d)

(e) (f)

Figure 2.13.: Examples of the computed domain structures using the TDGL model.
(a) depicts a simple 90○ domain wall in single-crystal bulk PTO [81]; (b) shows the
domain morphologies of a polycrystalline bulk PTO [82]; (c) illustrates the 2D domain
morphologies of an epitaxial film grown on substrates with different heights; (d) to (f)
demonstrate the topological domain walls formed in superlattice (d, [83]), nanoislands
(e, [84]), and nanowire (f, [85]).

Fig. 2.13 shows examples of the computed domain structures using the TDGL model.
The investigation extends across a wide range of physical systems, including single-
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crystal [81] and polycrystalline bulk materials [82, 87, 88], epitaxial thin films [13,
89–91], superlattices [83, 92, 92], and nanostructures such as nanoislands [84, 93],
nanowires [85, 94] and nanodots [95]. Furthermore, the computed explorations also
include the space charge evolution in semiconductor materials [96–98], the charac-
terization of polarization domain structures and switching mechanisms in improper
ferroelectrics [99–101], the high performance in relaxor ferroelectrics [102], the two-
dimensional van der Waals ferroelectrics [103]. This model has also been favorable in
examining the intricate interplay between ferroelectric domains and structural defects
such as dislocations [104–106] and cracks [107]. The strain-related effects such as
anisotropic strains [108, 109] and strain gradients [110–113] are also computed. It has
also been applied to analyze thermal properties such as thermal conductivity [114] and
electrocaloric effects [115, 116]. Moreover, concerted efforts have also been made to
integrate TDGL model into multi-scale simulations of ferroelectrics [117, 118].

2.4.2. Multiphase-field model

All the aforementioned studies using the TDGL equation, however, were confined to
materials such as PZT, BiFeO3 [119, 120], CaTiO3 [121], LiTaO3 [122] LiNbO3 [123],
SrTiO3 [124, 125], K1−xNaxNbO3 [126, 127], and SrBi2Nb2O9 [91], with particular
emphasis on PTO and BTO. This limitation arises from the fact that only the phe-
nomenological parameters in those materials were determined [14]. In the work of
Ref. [128], the multiphase-field approach was initially proposed for ferroelectric mate-
rials to resolve the dynamic motion of domain walls. This work has also developed a
novel approach based on the multiphase-field technique demonstrated in Section 2.3.2
for ferroelectric material, details outlined in Section 4 of the Methodology Chapter in
this dissertation. At its current stage of development, the primary focus of research is
primarily on computing domain structures and material properties in simple physical
scenarios, including single and polycrystalline bulk materials [16], as well as the growth
of the epitaxial thin films [17].
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3. Model I: Coupling of multiphase-field
approach with the TDGL model

Model I is adapted from the Methodology Section of Ref. [15].

3.1. Energy functional

To simulate ferroelectric phase coexistence within grains with different orientations in
ferroelectric material, the general multiphase-field functional from Ref. [78] is coupled
with the LGDT model, resulting in a novel energy functional, expressed as:

F = ∫
V
(fint + fbulk)dV ,

fint = fgrad(∇ϕ) + fob(ϕ),

fbulk =
N

∑
α=1
(fα

Landau(P ) + f
α
elast(ε

α,P ) + fα
G(∇P ))h

α(ϕ) + felec(E,P ).

(3.1)

ϕ = (ϕα, ..., ϕN) is the N−tuple phase-field order parameter. ϕα describes the local
fraction of a ferroelectric phase α within a grain or the orientation of a single grain
in a polycrystalline system. fint represents the interfacial energy density, consisting
of the gradient energy density (fgrad(∇ϕ)) and the multi-obstacle-type potential en-
ergy density (fob(ϕ)). fbulk denotes the bulk energy density, which comprises the
phase-dependent Landau potential energy density (fα

Landau(P )), elastic energy density
(fα

elast(ε
α,P )), domain wall energy density (fα

G(∇P )), and the phase-independent elec-
tric energy (felec(E,P )). hα(ϕ) represents the interpolation function of the phase α,
defined as:

hα(ϕ) = ϕα. (3.2)
The polarization vector P is cross-phased in the interface by the interpolation function.

The gradient energy in Model I is formulated based on Eq. (2.52). Considering a
Gibbs simplex function (G in Eq. (2.51)), the multi-obstacle type potential in Eq. (2.50)
is employed, expressed as:

fob(ϕ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

16

ϵπ2 ∑
α<β

γαβϕαϕβ +
N

∑
α=1

N

∑
β=α+1

N

∑
τ=β+1

γαβτϕαϕβϕτ , if ϕ ∈ G

∞, else.
(3.3)
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As described in Section 2.3, ϵ is a numerical parameter that scales the interface thickness.
γαβ and γαβγ represent the isotropic interfacial energy density.

3.2. LGDT for a polycrystalline ferroelectric material

Based on the LGDT, the total energy functional with regard to the polarization vector
for a phase α in a single-crystal system can be expressed as:

Fα
LGDT = ∫

V
(fα

Landau + f
α
G + f

α
elast + f

α
elec)dV. (3.4)

3.2.1. Polarization distribution in polycrystalline ferroelectric materials

To characterize domain structures within grains, it is necessary to describe both the ori-
entation of each grain as well as its associated polarization states. Thus, the global and
local coordinates are applied during the simulation. The grain orientations are demon-
strated in the global coordinate system, and the domain structures are represented by
the polarization distribution in a local coordinate system, denoted by a superscript L.
The orientation of an individual grain within a polycrystalline structure is characterized
by three Euler angles, φ1, φ2, φ3. These angles represent a sequence of three counter-
clockwise rotations relative to the global coordinates, x1, x2, and x3. Specifically, φ1

corresponds to a rotation about the x3-axis, followed by φ2, which represents a rotation
about the subsequently rotated x′1-axis, and finally φ3, corresponding to a rotation
about the newly established x′2-axis.

Accordingly, the second-order transformation matrix from the global to local coordi-
nate system is defined as tr, which has the components given as:

tr11 = cos [φ1] cos [φ3] − cos [φ2] sin [φ1] sin [φ3],

tr12 = sin [φ1] cos [φ3] + cos [φ2] cos [φ1] sin [φ3],

tr13 = sin [φ2] sin [φ3],

tr21 = − cos [φ1] sin [φ3] − cos [φ2] sin [φ1] cos [φ3],

tr22 = − sin [φ1] sin [φ3] + cos [φ2] cos [φ1] cos [φ3],

tr23 = sin [φ2] cos [φ3],

tr31 = sin [φ2] sin [φ1],

tr32 = − sin [φ2] cos [φ1],

tr33 = cos [φ2].

(3.5)

Thus, the polarization in the local system (P L
i ) is related to the global system (Pi) by:

P L
i = trijPj. (3.6)
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3.2.2. Landau potential energy density

In accordance with the LDT, the phase-dependent Landau potential fα
Landau(P ) for

a phase α in a polycrystalline system can be represented with the local spontaneous
polarization components P L

i (i =1, 2, 3) as:

fα
Landau(P ) = αα

1 (T )[(P
L
1 )

2 + (P L
2 )

2 + (P L
3 )

2]

+ αα
11[(P

L
1 )

4 + (P L
2 )

4 + (P L
3 )

4]

+ αα
12[(P

L
1 P

L
2 )

2 + (P L
2 P

L
3 )

2 + (P L
1 P

L
3 )

2]

+ αα
111[(P

L
1 )

6 + (P L
2 )

6 + (P L
3 )

6]

+ αα
112[(P

L
1 )

2{(P L
2 )

4 + (P L
3 )

4} + (P L
2 )

2{(P L
1 )

4 + (P L
3 )

4}

+ (P L
3 )

2{(P L
1 )

4 + (P L
2 )

4}]

+ αα
123[P

L
1 P

L
2 P

L
3 ]

2
.

(3.7)

αα
1 , αα

11, αα
12, αα

111, αα
112, and αα

123 represent the dielectric stiffness coefficients of phase
α, denoted in the Voigt notation under the stress-free conditions. The parameter αα

1 is
temperature-dependent, while others are independent of the temperature.

3.2.3. Gradient energy density

The gradient energy is regarded as isotropic in the global coordinate system, which can
be calculated as:

fα
G(∇P ) =

1

2
Gα

11(P
2
1,1 + P

2
1,2 + P

2
1,3 + P

2
2,1 + P

2
2,2 + P

2
2,3 + P

2
3,1 + P

2
3,2 + P

2
3,3), (3.8)

based on Ref. [129]. Gα
11 is the gradient energy coefficient of phase α, and

Pi,j =
∂Pi

∂xj
(i, j = 1,2,3) (3.9)

is the spatial differentiation of the polarization components.

3.2.4. Elastic energy density

The elastic energy density associated with phase α is expressed within the global
coordinate system by:

fα
elast(ε

α,P ) =
1

2
[(εα − εα0(P )) ⋅ Cα ⋅ (εα − εα0(P ))]. (3.10)
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C
α represents the forth-order elastic stiffness tensor specific to phase α. εα − εα0(P ),

εα, and εα0(P ) denote the elastic strain, the total strain, and the spontaneous strain,
respectively.

With u denotes the displacement vector, the total strain ε is defined as:

ε =
1

2
(∇u + (∇u)T), (3.11)

which captures the symmetric part of the displacement gradient ∇u. With the ap-
plication of the jump condition approach described in Refs. [130–133], ε is further
decomposed into its phase components via

ε = ∑
α

εαhα(ϕ). (3.12)

A corresponding volumetric decomposition of stresses, σ, can similarly be denoted as:

σ = ∑
α

σαhα(ϕ). (3.13)

The spontaneous strain in the global coordinate system, εα0(P ), can be derived from
the local spontaneous strain εα0L(P ) through:

εα0ij = trkitrljε
α0L
kl . (3.14)

εα0Lij is the local spontaneous strain, written as:

εα0Lij = Q
α
ijkl(P

L
k )(P

L
l ), (3.15)

in which Qα
ijkl represents the electrostrictive coefficient tensor of phase α. Using Voigt

notation to express the electrostrictive tensor coefficient, the spontaneous strains can
be further expanded as:

εα0L11 = Q
α
11(P

L
1 )

2 +Qα
12((P

L
2 )

2 + (P L
3 )

2),

εα0L22 = Q
α
11(P

L
2 )

2 +Qα
12((P

L
1 )

2 + (P L
3 )

2),

εα0L33 = Q
α
11(P

L
3 )

2 +Qα
12((P

L
1 )

2 + (P L
2 )

2),

εα0L12 = Q
α
44(P

L
1 P

L
2 ),

εα0L13 = Q
α
44(P

L
1 P

L
3 ),

εα0L23 = Q
α
44(P

L
2 P

L
3 ),

(3.16)

in which Q11 = Q1111, Q12 = Q1122 and Q44 = Q4444.
The mechanical jump condition approach is applied to solve the mechanical field.

For resolving the local and global mechanical equilibrium, with the segregation of the
phase-dependent components for strain and stress using a jump condition framework,
it is directed to Refs. [132, 133].
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3. Model I: Coupling of multiphase-field approach with the TDGL model

3.2.5. Electric energy density

The electric energy felec(E,P ) arises from the depolarization fieldED and the external
electric field Eext, formulated as:

felec(P,E) = −
1

2
Ei,DPi −Ei,extPi, (3.17)

with the total polarization as the order parameter [35]. Ei,D is calculated by the gradient
of the electric potential ψ, denoted by:

Ei,D = −
∂ψ

∂xi
(3.18)

where i changes from 1 to 3. By solving the electrostatic equilibrium equation of the
electric displacement

∂Di

∂xi
= 0, (3.19)

ψ can be obtained from the Poisson equation, given by:

∂Di

∂xi
= −κ0κr∇

2ψ +∇ ⋅ Pi = 0. (3.20)

κ0 denotes the absolute dielectric permittivity and κr is the relative dielectric permit-
tivity.

3.3. Governing Equations

3.3.1. Phase-field evolution

The phase transformation between the ferroelectric phases is formulated based on
Ref. [77], denoted as:

∂ϕα(x, t)

∂t
= −

1

Ñϵ
∑
α<β

Mαβ (
δF

δϕα

−
δF

δϕβ

) , (3.21)

whereinMαβ is the phase-field mobility matrix for phases α and β, and Ñ denotes the
number of the locally active phases. δF/δϕα represents the variational derivative of
the total energy concerning ϕα, given by:

δF

δϕα

=
∂f

∂ϕα

−∇ ⋅
∂f

∂∇ϕα

. (3.22)
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3.3.2. Polarization evolution

Considering the total free energy as a function of the global coordinate for the polariza-
tion vector, the domain structure in each ferroelectric phase is determined by solving
the TDGL equation based on Eq. (2.66), given by:

∂Pi(x, t)

∂t
= −M

δF

δPi(x, t)
(i = 1,2,3), (3.23)

whereM represents the mobility constant of a domain.

3.3.3. Electrostatic and mechanical equilibrium

Apart from the phase and polarization evolution, the system must also satisfy the
electrostatic and mechanical equilibrium. The electrostatic equilibrium is given by the
Poisson equation in Eq. (3.20), while the mechanical equilibrium is described by the
static momentum balance, expressed as:

∇ ⋅ σ̄ = 0. (3.24)

σ̄ denotes the effective stress tensor in the jump condition framework [132, 133].
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4. Model II: Multiphase-field model for
ferroelectric material

Model II is adapted from the Methodology Section of Refs. [16, 17].

4.1. Model description

The Schematic diagram of Model II for computing domain structures in ferroelectric
material is shown in Fig. 4.1. Based on the multiphase-field approach, the fundamen-
tal concept of Model II involves defining the polarization (domain) variants in each
ferroelectric material as “phases (ϕ)", with the formation of domain structures de-
pending on the transformations between these phases. Besides domain variants, the
order parameter ϕα can also represent other distinct physical regions, such as ferro-
electric phases, grains, films, or substrates. These regions are parts of the N -tuple
ϕ(x, t) = (ϕ1(x, t), . . . , ϕN(x, t)). N quantifies the total number of phases delineated
by the diffuse interface, which could manifest as a domain wall, a ferroelectric phase
boundary, a grain boundary, or a film-substrate interface. As shown in Fig. 4.1(a),
ϕα(x, t) = 1 inside phase α, ϕα(x, t) = 0 outside phase α, and ϕα(x, t) smoothly
changes between 0 and 1 in the diffuse interface region. Since ϕα represents the volume
fraction of the individual phase, the local condition ∑α ϕα(x, t) = 1 must always be
fulfilled.
N for a single crystal with only one ferroelectric phase is determined by the polar-

ization states of the material. When Nv represents the number of polarization variants
in such a case, N equals Nv. For instance, there are six polarization variants oriented
along the <100>-orientation for the tetragonal ferroelectrics, as shown in Figs. 4.1(a)
and (b), resulting in N = Nv = 6. These domain variants could form either 180○ or 90○
domain walls, as further detailed in Fig. 4.1(a). By extending N , it is allowed to model
polycrystalline systems comprising grains with a single ferroelectric phase (Fig. 4.1(c)),
or multiple ferroelectric phases of distinguished polarization states (Fig. 4.1(d)). In the
case of Fig. 4.1(c),N is equal toNgNv andϕgrain = ∑

Nv
α=1 ϕα, whereNg is the grain count

and ϕgrain describes a grain. Regarding the case of Fig. 4.1(d), each grain is defined as
ϕgrain = ∑

Nfp

FP=1∑
Nv
α=1 ϕFP,α(x, t), in which∑Nv

α=1 ϕFP,α(x, t) denotes the domain variants
in each ferroelectric phase. FP represents the ferroelectric phase and Nfp signifies the
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Figure 4.1.: Schematic diagram of Model II. (a) Illustration of the tetragonal variants
(T1 and T4) and their associated domain walls across the diffusion region, in which
ϵ scales the interfacial thickness; T1 to T4 corresponds to the variants in (b), which
shows the six polarization variants in the tetragonal phase; (c) The polycrystalline
system with a single ferroelectric phase, where GNg represents the Ng-th grain (Ng =

1, 2 . . .), and VNv denotes the Nv-th variant of the ferroelectric phase (Nv = 1, 2 . . .);
(d) A polycrystalline structure with multiple ferroelectric phases, where FP1 to FPNp

represents the ferroelectric phases from 1 to Np. Based on Ref. [16].

total number of these phases. Hence N = Ng∑
Nfp

fp=1Nv,fp, where Nv,fp corresponds to
the total polarization variants in each ferroelectric phase FP.
Epitaxial film growth on a substrate can also be simulated by constraining the

phase transformation between the film and the substrate. For a single-crystal thin
film, the substrate can be characterized via the order parameter ϕsub, coupled with
an introduction of ϕfilm to represent a film. Thus, ϕfilm is algebraically defined as
the summation ∑Nv

i=1 ϕi, where each ϕi denotes an order parameter corresponding to
individual polarization variants, and Nv signifies the number of polarization variants
intrinsic to the ferroelectric film. Consequently, in the scenario of a single-grain
thin film containing exclusively one ferroelectric phase, N = Nv + 1. Analogous to
bulk polycrystalline simulations, polycrystalline ferroelectric films can be modeled by
extending ϕ values. When accounting for the substrate, however, the total number of ϕ
values in polycrystalline films exceeds that of bulk polycrystalline materials by one.
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4. Model II: Multiphase-field model for ferroelectric material

4.2. Energy formulation

4.2.1. Total energy functional

Elastic and electrostatic energies play a determinative role in the formation and stabi-
lization of domain structures in ferroelectrics. Based on the general multiphase-field
approach formulated by Nestler et al. [78], the total energy functional of Model II hence
can be expressed as:

F = ∫
V
[fgrad(∇ϕ) + fob(ϕ) +

N

∑
α=1
(fα

elast(ε
α, P α

) + fα
elec(P

α,E))hα(ϕ)] dV.

(4.1)
Similar to Model I, the first two terms in Eq. (4.1)—the gradient energy density (fgrad)
and the multi-obstacle potential (fob)—constitute the interfacial energy density of the
system. The summation term represents the phase-dependent bulk energy, including
the elastic energy felast and the electric energy density felec, where εα is the strain tensor
and Eext is the external electric field. P α denotes the polarization of α phase. The
orientation of P α is determined by the crystal structure of phase α, while its amplitude
is predefined as the absolute value of its spontaneous polarization. hα(ϕ) represents
an interpolation function, also defined as hα(ϕ) = ϕα in Model II. The interpolation
function allows capturing the transition of polarization states over the interface, helping
to compute the bulk driving force across the diffusion region. The gradient energy
is calculated using the equation provided in Eq. (2.53), and the multi-obstacle type
potential in Eq. (3.3) without the high-order term is applied in Model II. An alternative
choice would be considering a multi-well potential, as used in Ref. [128]. The multi-
obstacle potential is chosen in this work because it allows ϕα to take values of 0 and 1
within the interface width, preserving interface information and conserving memory
in numerical computations [70]. Additionally, it effectively prevents the expansion of
multiple junctions into the interface region [70].

4.2.2. Elastic energy density

In Model II, the multiphase elasticity model is used, which is capable of fulfilling the
mechanical jump conditions proposed in Refs. [132–134]. In general, the elastic energy
density for phase α is defined as:

fα
elast(ε

α,P α
) =

1

2
[(εα − ε̃α) ⋅ Cα ⋅ (εα − ε̃α)], (4.2)

where Cα denotes the elastic stiffness of the material, which is ferroelectric-phase-
dependent and independent of the domain variants of a ferroelectric phase. εα and ε̃α

represent the total strain and the inelastic strain, respectively. The definition as well as
the calculation of the total strain can refer to Section 3.2.4.
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4. Model II: Multiphase-field model for ferroelectric material

For bulk materials, the inelastic strain corresponds to the spontaneous strain, εα,0,
denoted as:

ε̃α = εα,0 (4.3)
As polarizations are assigned based on ϕ, it can automatically align with the grain
orientation in the polycrystalline system. Therefore, the spontaneous strain for a
polycrystalline bulk material is defined as:

εα,0ij =Q
α
ijlkP

α
k P

α
l , (4.4)

by using the Einstein summation convention. Qα
ijkl are the electrostrictive coefficients

that are characteristic of each ferroelectric phase.
The mechanical driving force is important in forming domain structures in ferroelec-

tric materials. This is particularly evident in epitaxial films constrained by substrates.
The intrinsic characteristics of the substrate, which encompass aspects such as its
crystalline structure and its coefficient of thermal expansion, result in a misfit strain
between the thin film and the substrate. Such a strain gives rise to significant alterations
in the energy landscape of the domain structures, thereby exerting a profound impact
on their behavior, such as switching, dimensions, and orientation. Therefore, it is
essential to accurately mimic the misfit strain between the substrate and the film and its
associated impact on the driving forces between ferroelectric variants. Therefore, with
regards to a thin film system, the nonelastic strain ε̃α comprises both the spontaneous
strain of Eq. 4.4 and the misfit strain εmis, resulting in:

ε̃α = εα,0(P α
) + εmis. (4.5)

The misfit strain is computed by:

εmis
11 = ε

mis
22 =

as − af
af

,

εmis
12 = ε

mis
i3 = 0, (i = 1,2,3),

(4.6)

where af and as denote the lattice parameters of the film and substrate, respectively.

4.2.3. Electric energy density

As the magnitude of the spontaneous polarization is used as the predetermined value
for computing the bulk driving force, the electric energy is formulated as:

felec(P,E) = EiPi −
1

2
κ0κij,bEiEj. (4.7)

This depends on the consideration of the spontaneous polarization as the order parame-
ter [35]. κij,b represents the background dielectric constants that satisfy the Kronecker
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4. Model II: Multiphase-field model for ferroelectric material

delta condition. The electric field Ei in this case is the summation of the external
electric field as well as the depolarization field, i.e.,

Ei = Ei,ext +Ei,D. (4.8)

Additionally, ψ is determined by the solution of a Poisson equation with background
dielectric constant, which reads:

κ0κij,b∆ψ = −∇ ⋅ Pi. (4.9)

i and j range from 1 to 3.

4.3. Governing equation

The minimization of the energy functional (Eq. (4.1)) leads to the formation of the
domain structure. Relying on Refs. [77, 134], the governing of the order parameter ϕα

is denoted as:

∂ϕα(x, t)

∂t
= −

1

Ñϵ

Ñ

∑
β≠α

⎡
⎢
⎢
⎢
⎢
⎣

Mαβ
⎛

⎝

δF

δϕα

+ ϵα̂(ϕα,∇ϕα) −
δF

δϕβ

− ϵα̂(ϕβ,∇ϕβ)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+
∂£
∂ϕα

,

(4.10)

whereMαβ is the mobility coefficients between phases α and β, and Ñ denotes the
number of the locally active phases. Aiming for a more stale interface and describing
the right kinetics, as discussed in Ref.[70], Eq. (4.10) can be further improved as:

∂ϕα(x, t)

∂t
= −

1

Ñϵ

Ñ

∑
β≠α

⎡
⎢
⎢
⎢
⎢
⎣

Mαβ
⎛

⎝

δFint

δϕα

+ ϵα̂(ϕα,∇ϕα) −
δFint

δϕβ

− ϵα̂(ϕβ,∇ϕβ)

−
8
√
ϕαϕβ

π
∆αβ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+
∂£
∂ϕα

,

(4.11)

in which ∆αβ is defined as:

∆αβ =
⎛

⎝

δ

δϕα

−
δ

δϕβ

⎞

⎠
Fbulk. (4.12)

Fbulk denotes the bulk contribution, including elastic and electrostatic energy compo-
nents.
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δF/δϕα is the variational derivative of the total energy with regards to ϕα, expressed
by:

δF

δϕα

=
∂f

∂ϕα

−∇ ⋅
∂f

∂∇ϕα

. (4.13)

Thus, the driving force stemming from the electric energy can be written as:

∆αβ
elec(P, E) = fβ

elec

∂hβ(ϕ)

∂ϕβ

− fα
elec

∂hα(ϕ)

∂ϕα

. (4.14)

According to Ref. [16, 133–135], the resulting elastic driving force with the jump condi-
tion approach can be characterized as:

∆αβ
elast(ϕ,ε,P ) =

∂Welast

∂ϕβ

−
∂Welast

∂ϕα

, (4.15)

where Welast is the overall elastic potential based on the continuous variables. The
detailed expression can be found in Appendix A of [16, 17], and Refs. [133–135].
With the application of the multiple-obstacle-type potential, to describe the nucle-

ation of the polarization variants from the interface, such as domain boundaries, phase
boundaries, or grain boundaries, a noise term £ is introduced to account for the thermal
fluctuations described as:

£ =
N,N,N

∑
α<β<δ

ϕαϕβϕδ ⋅D ⋅A. (4.16)

D characterizes various forms of noise distribution, including uniform, Gaussian, and
others, whereas A determines the magnitude of the fluctuations. The inclusion of £
to model the nucleation is unnecessary if the simulation uses a multiwell potential.
This is because the isotropic interface in the multiwell potential naturally induces
thermodynamic fluctuations at the interface in external stimuli.

To ensure reasonable interface quality while maintaining highly effective simulation
efficiency, an additional ϵα̂(ϕα,∇ϕα) is integrated into the multiphase content and
included in the phase-field evolution equations (Eqs. (4.10) and (4.11)). ϵα̂(ϕα,∇ϕα) is
defined as:

ϵα̂(ϕα,∇ϕα) = ϵγ
c
α (∆ϕα − ∣∇ϕα∣∇ ⋅ (

∇ϕα

∣∇ϕα∣
)) , (4.17)

where γcα can be understood as a factor that calibrates the strength of the artificially
constructed interface. Eq. (4.17) helps strike a balance between low interfacial energy,
high bulk driving forces, and appropriate grid resolution. The second term compensates
for the curvature-minimizing property of the Laplace operator, avoiding dynamic
curvature minimization to ensure correct interaction between the gradient and the
potential energy density. Regarding the nucleation mechanism of Eq. (4.16) and the
physical meaning behind Eq. (4.17), the reader is recommended to Ref. [134].

44



4. Model II: Multiphase-field model for ferroelectric material

In addition to phase evolution, there are static momentum balance

∇ ⋅ σ̄ = 0, (4.18)

and Poisson equations in Eq. (4.9) that control the mechanical and electrostatic equilib-
rium of the system, respectively.

45



Part III
Results and Discussion



5. Domain evolution and phase
transformation in PZT material using
Model I

5.1. Introduction

MPB in the phase-diagram of PZT material separating the stability regions of the fer-
roelectric rhombohedral phase (FR) and the ferroelectric tetragonal phase (FT) [136],
as illustrated in Fig. 5.1(a). The coexistence of these phases in the vicinity of the MPB
leads to complex domain structures. For instance, Fig. 5.1(b) presents the Piezoresponse
Force Microscopy (PFM) analysis conducted on PZT ceramic with 48% Pb, as reported
in Ref. [137]. The analysis reveals a complex twinned domain structure within a sin-
gle grain, exhibiting multiple configurations. Additionally, some large grains exhibit
domain structures consistent with FT and FR. Therefore, domain switching and phase
transformations within this boundary under the influence of an external stimulus
significantly impact the material properties, prompting extensive academic studies.
Thus far, investigations into phase-field simulations at the MPB within the PZT

system have primarily been undertaken by Rao and Wang [4–7]. In the first work,
they developed a bridging domain mechanism to interpret the coexistence of ferroelec-
tric phases, wherein minority phases are represented as metastable states to connect
the majority stable phase [4]. Expanding on this concept, they further observed that
the width of the phase coexistence composition range increases as grain sizes de-
crease in polycrystalline systems [5]. Rao et al [6] further integrated the TDGL model
with the Cahn-Hilliard equation to explore coherent phase decomposition with local
concentration fluctuations. To elucidate the mechanism of inter-ferroelectric phase
transformation under an electric field, Rao and Wang also proposed a domain wall
broadening theory in Refs. [7, 138]. This theory notes that phase transformation ad-
vances through a nucleation-and-growth process within domain boundaries. Building
upon this theory, Liu et al investigated the synergy between phase transformation
and domain switching [9], as well as the reversible phase transformations [10], under
imposed electric fields. In general, the TDGL model that describes ferroelectric phase
coexistence in Refs. [7, 9, 10, 138] tracks phase transformations through polarization
reorientation.
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(a)

(b)

Figure 5.1.: (a) The phase diagram of PZT material (taken from Ref. [136]); (b) Domain
configurations of PZT polycrystalline around the MPB region (adapted from Ref. [137]).

In a polycrystalline ferroelectric material positioned at the MPB region, each grain
typically consists of two or more ferroelectric phases, delineated by interphase bound-
aries. Within each ferroelectric phase, distinct domain structures emerge due to domain
walls. It is clear that one ferroelectric phase could grow at the expense of another when
subjected to external stimuli. Ref. [139] clarifies the mechanism of inter-ferroelectric
phase transformation through two distinct approaches. Firstly, a ferroelectric phase
may nucleate and grow within others, a concept akin to the domain wall broadening
theory outlined in Ref. [88]. Secondly, an existing phase boundary might move towards,
inducing the formation of another phase. The second phenomenon remains viable due
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to the relatively flat energy landscapes surrounding the MPB, enabling phase transfor-
mations at interphase boundaries even under comparatively low electric fields [140].
However, this theory has not been addressed within the scope of the publications.
Therefore, the objective of this chapter is to apply Model I to investigate domain

structures and phase transformations in polycrystalline PIC 151 that consists of a com-
position near the MPB of the PZT solid solution. To drive the phase transformation,
ferroelectric phase-dependent material coefficients are required to compute the driving
force, as outlined in Eq. (3.1). Therefore, this chapter initially determined the material
coefficients for the FT and FR in PIC 151 based on experimental measurements and a
proposed numerical approach. Subsequently, phase-field simulations were conducted
to investigate domain structures and phase transitions in both single-crystal and poly-
crystalline PIC 151, under varying external stimuli. This chapter constitutes a primary
part of Ref. [15].

5.2. Determination of the coefficients

5.2.1. Determination based on the LDT and experimental measurement

The experimental measurements of cell parameters and atomic positions of PIC 151
are listed in Table 5.1, detailed in Ref. [15]. Based on these data, the phase-dependent
spontaneous polarization can be calculated. In the perovskite cell, the approach assumes
uniform charge and displacement for all ions (Zr, Ti, Ni, and Sb in the PIC 151) on
the B-site, while the Pb ion on the A-site is considered stationary, acting as the origin.
Hence the spontaneous polarization of the FT, denoted as P s,FT, can be estimate by:

P s,FT = [4R(B) − 4R(O2,3) − 2R(O1)]
e

a2
z, (5.1)

in which e represents the elementary charge, a denotes the unit cell parameter, z is
the unit vector along the c axis and R signifies the displacement of the atomic position
away from the pseudocubic position. The rhombohedral cell is configured within a
hexagonal setup. The polarization vector [111] in the rhombohedral cell aligns with
the [001] orientation in the tetragonal cell. The absolute value of the spontaneous
polarization for the FR, Ps,FR, can therefore be computed by:

P s,h =
12e
√
3a2
(2ta + sa)z, Ps,FR =

Ps,h
√
3
, (5.2)

within which P s,h represents the spontaneous polarization of the hexagonal cell. ta
and sa are atomic positions, specified by Megaw et al. in Ref. [141].
The spontaneous strain is a measurement of the lattice distortion induced by the

spontaneous polarization. In the context of the tetragonal structure, the spontaneous
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Table 5.1.: Rietveld refinement results of neutron and X-ray diffraction for the PIC 151
material [15]. a and c: unit cell parameters; VPC : volume of the pseudocubic primitive
cell; Θ: unit cell distortion; Φ: unit cell angle; Vϕ: phase volume fraction. Adapted from
Ref. [15].

Coefficients FT Hexagonal FR Unit
a 4.03669 (3) 5.72881 (5) 4.05740 (8) Å
c 4.09552 (4) 7.05012 (13) - Å
VPC 66.7362 (15) 200.381 (5) 66.794 (6) Å3

Θ 1.45 - 0.428 (8) %
Φ 90.00 - 89.81621(9) ○

Vϕ 52.71 (0.43) 47.29 (0.44) - %

strains xFT,1 and xFT,3 are characterized by:

xFT,1 =
aFT − ac,pseudo
ac,pseudo

, xFT,3 =
cFT − ac,pseudo
ac,pseudo

, (5.3)

where aFT and cFT are the unit cell parameters of the FT, and ac,pseudo corresponds to
the unit cell parameter of the pseudo-cubic structure as indicated in Table 5.1. Based
on Ref. [142], the spontaneous strains of a rhombohedral cell were determined using a
transformation matrix U in a cubic basis, defined by:

U =
⎛
⎜
⎝

Γ Λ Λ
Λ Γ Λ
Λ Λ Γ

⎞
⎟
⎠
, (5.4)

in which
Γ =

1

3
(
√
1 + 2cos(Φ) + 2

√
1 − cos(Φ)), (5.5)

and
Λ =

1

3
(
√
1 + 2cos(Φ) −

√
1 − cos(Φ)). (5.6)

Φ is the trigonal angle, as found in Table 5.1. The spontaneous strain xFR,1 and xFR,4 in
the FR thus can be computed using linearised distortion tensors, expressed as:

xFR,1 = 0.5(Γ
2 − 1), xFR,4 = 0.5Λ

2. (5.7)

Since there is a linear dependence between the squared spontaneous polarization and
the elastic strain in tetragonal cell [58], the isotopic electrostrictive tensor coefficients
in Voigt notation for the FT can be derived by:

QFT,11 =
xFT,3

P 2
FT,3

, QFT,12 =
xFT,1

P 2
FT,3

, (5.8)
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in which PFT,3 represents the value of the spontaneous polarization along the c-axis.
For the rhombohedral phase, electrostrictive stiffness coefficients in the Voigt notation
can be calculated by:

2QFR,12 +QFR,11 =
xFR,1

P 2
FR,3

, QFR,44 =
xFR,4

P 2
FR,3

. (5.9)

To determine QFR,12, the value of QFR,11 is sourced from Ref. [143].
The dielectric stiffness coefficients in Eq. (3.7) are calculated under a zero-stress

condition. Relying on Ref. [58], the energy function in the LGDT with respect to the
polarization for FT and FR can be defined as:

∆GFT = α1P
2
FT,3 + α11P

4
FT,3 + α111P

6
FT,3, (5.10)

and

∆GFR = 3α1P
2
FR,3 + 3(α11 + α12)P

4
FR,3 + (3α111 + 6α112 + α123)P

6
FR,3, (5.11)

respectively. As mentioned in the description of Eq. (3.7), all-dielectric stiffness coeffi-
cients remain temperature-independent, except for α1, which was subjected to a linear
temperature dependency following the Curie-Weiss law. Based on Eqs. (2.21), (2.22)
and (3.7), α1 can be expressed as:

α1(T ) =
T − T0
2κ0C

. (5.12)

where T0 denotes the Curie-Weiss temperature, κ0 represents the absolute dielectric
permittivity and C is the Curie constant. To determine T0 and C , the Curie-Weiss law
was employed to fit the inverse of the relative permittivity in the paraelectric state, as
depicted in Fig. 5.2. It is assumed that the dielectric stiffness coefficient α1 remains
phase-independent in this study.

According to Ref. [64], the higher-order dielectric constants α11 and α111 in Eq. (5.10)
can be further calculated by:

α11 =
−(TC − T0)

κ0CP 2
FT,3C

, α111 =
TC − T0

2κ0CP 4
FT,3C

. (5.13)

TC , denoting the Curie temperature, is specified as 250 ○C by the manufacturer PI
Ceramic GmbH. PFT,3C represents the spontaneous polarization of FT at the Curie
temperature, which is proportional to PFT,3, represented as:

P 2
FT,3C =

1

Ψ
P 2
FT,3, Ψ =

⎛

⎝
1 +

⎡
⎢
⎢
⎢
⎢
⎣

1 −
3(T − T0)

4(TC − T0)

⎤
⎥
⎥
⎥
⎥
⎦

1
2
⎞

⎠
. (5.14)
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Figure 5.2.: Plot of the inverse susceptibility over temperature for PIC 151. Adapted
from Ref. [15].

Furthermore, the forth-order and sixth-order dielectric stiffness coefficients of the FR
can be summarized by symbols ζ and ξ, denoted as:

ζ = 3(α11 + α12) =
−3(TC − T0)

κ0CP 2
FR,3C

ξ = 3α111 + 6α112 + α123 =
3(TC − T0)

2κ0CP 4
FR,3C

,

(5.15)

where PFR,3C is the spontaneous polarization for FR at the Curie temperature. The
measurable and calculated constants are summarized in Table 5.2.
In order to predict α12, α112 and α123, the phase-dependent dielectric stiffnesses

presented in Table 5.2 were treated as coefficients corresponding to coexisting phases.
α12 therefore can be determined by substituting α11 from the FT phase into Eq. (5.15).
To further obtain α112 and α123, the experimentally determined, phase-independent
piezoelectric modulus coefficient d15 in Table 5.2 was derived into phase-related by a
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Table 5.2.: The thermophysical properties of the PIC 151 material. Adapted from
Ref. [15].

Coefficients Coexistence FT FR Unit
d33 4.23 - - 10−10⋅[C/N]
d31 -2.14 - - 10−10⋅[C/N]
d15 6.10 - - 1010⋅[C/N]
C 6.70 - - 105⋅[○C]
T0 246.00 - - ○C
α1 -1.89 - - 107⋅[m/F]
PFT,3 - 29.47 - µC/cm2

xFT,1 - -4.81 - 10−3

xFT,3 - 9.69 - 10−3

QFT,11 - 11.16 - 10−2⋅[m4/C2]
QFT,12 - -5.54 - 10−2⋅[m4/C2]
α11 - 3.88 - 107⋅[m5/(C

2
F)]

α111 - 1.12 - 109⋅[m9/(C
4
F)]

PFR,3 - - 23.34 µC/cm2

xFR,1 - - -2.57 10−6

xFR,4 - - 1.28 10−6

QFR,44 - - 7.07 10−5⋅[m4/C2]
Qsum

1 - - -14.14 10−5⋅[m4/C2]
ζ - - -5.57 108⋅[m5/(C

2
F)]

ξ - - 7.69 1010⋅[m9/(C
4
F)]

linear integration of dFT,15 and dFR,15, expressed as:

d15 = Vϕ ∗ dFT,15 + (1 − Vϕ,FT) ∗ dFR,15. (5.16)

Vϕ,FT denotes the determined volume fraction of the FT in Table 5.1, and d15 is rep-
resented by the matrix notation defined in Chapter VII of Ref. [144]. Furthermore,
according to Ref. [144], the piezoelectric modulus dij is the proportionality matrix
relating the polarization Pi to the Voigt-nation stress tensor σj , expressed as:

Pi = dijσj (i = 1,2,3; j = 1,2,⋯6). (5.17)

As a result, the piezoelectric modulus for each ferroelectric phase can be computed with
details provided in Appendix A.1. Overall, the piezoelectric modulus dFT,15 and dFR,15

can be formulated with respect to α112 and α123 from Eqs. (A.12) to (A.14), and (A.25) to
(A.27), respectively. Since the value ofQFT,44 is required according to Eqs. (A.12)-(A.14),
an isotropic conditions

QFT,44 = 2(QFT,11 −QFT,12) (5.18)
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was assumed based upon Ref. [1]. In the end, α123 can be computed by substituting
Eqs. (5.15), (A.12), (A.13), (A.14), (A.25), (A.26) and (A.27) into Eq. (5.16), resulting in:

6.852 ⋅ 10−20α2
123 − 6.693 ⋅ 10

−5α123 + 7.048 ⋅ 105

1.123 ⋅ 10−10α2
123 − 1.097 ⋅ 10

5α123 + 1.156 ⋅ 1015
= 0. (5.19)

α112 was further computed using Eq. (5.15). To be clear, the dielectric stiffness coeffi-
cients corresponding to phase coexistence at room temperature are detailed in Table 5.3.

Table 5.3.: Dielectric stiffness coefficients of PIC 151 with phase coexistence at room
temperature. Adapted from Ref. [15].

Coefficient Value Unit
α1 -1.861 107⋅[m/F]
α11 -0.388 108⋅[m5/(C

2
F)]

α12 -1.473 108⋅[m5/(C
2
F)]

α111 1.120 109⋅[m9/(C
4
F)]

α112 10.505 109⋅[m9/(C
4
F)]

α123 10.532 109⋅[m9/(C
4
F)]

5.2.2. Separating the thermodynamic coefficients based on phases

To validate the determined dielectric stiffness and electrostrictive coefficients, the 3D
energy surface of a single dipole is plotted by minimizing the free energy functional F
in Eq. (3.1). This approach has been previously used to study structural anisotropy, as
demonstrated in Refs. [143, 145, 146]. By considering only fLandau, the energy landscape
was plotted using the value of dielectric stiffness coefficients fromTable 5.3, as illustrated
in Fig. 5.3(a). The contour and color represent the free energy, in which blue and red
denote the energetic minimum and maximum, respectively. It is evident that the
energetic minima are located along the {100} orientations, indicating the stability of
the FT. Additionally, the presence of the FR is suggested by an energy saddle point in
the {111} direction.
According to Eq. (3.1), each phase should have the driving force to induce the cor-

responding phase transformation. When mapped onto the energy contour plot, the
energy landscape of the FT should lie below the landscape of the FR along the {100} di-
rection, and conversely. While Fig. 5.3(a) suggests a higher occurrence of the FT over
the FR, the coefficients in Table 5.3 do not provide the required distinction between
their respective driving forces. Accordingly, an independent set of thermodynamic
coefficients for each phase should promote the solution of the phase-dependent free
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energy. Moreover, as detailed in Section 5.2.1, the thermodynamic coefficients have
been recognized as phase-dependent from an experimental perspective. Therefore, a
numerical approach was formulated to visually construct phase-dependent coefficients
for the energy boundary condition at the MPB, enabling computation of the unknown
phenomenological constants.

Figure 5.3.: (a) Phase-coexisting Landau potential energy density fLandau based on
Table 5.3. (b) The estimated combination of Landau potential energy density and elastic
energy density, fLandau + f strain0

elast , when εij = 0. (c) The assumed fLandau + f strain0
elast for

the FT. (d) The assumed fLandau + f strain0
elast for the FR. (e) and (f) respectively depict the

polarization overview of the single tetragonal and rhombohedral phases, as determined
by the coefficients from Table 5.4. Adapted from Ref. [15].

The essential concept of the approach is to numerically determine the remaining
parameters based on phase-dependent structural characteristics and microscopically
measured dielectric and electromechanical parameters. To achieve this objective, the
assumption is established that the driving force for each phase is equal in the absence
of an external field. This establishes the plotted energy boundary condition for phase
coexistence in PIC 151. The gradient energy fG in Eq. (3.1) was not taken into account
in this approach as the energy contour is drawn for a single dipole. Therefore, the focus
was on the combination of the Landau potential energy density fLandau and the elastic
energy density felast. Furthermore, to account for the majority of dipoles being within a
domain, the influence of neighboring dipoles was minimized by imposing a total strain
condition of εij = 0. This condition could be denoted as:

felast = f
strain0
elast =

1

2
ε0ij ⋅ Cijkl ⋅ ε

0
kl (5.20)

Expanding upon the aforementioned points, it was further postulated that the coeffi-
cients under consideration should adhere to the following principles: (I) the energy
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overlap between the phases remains independent of the phase itself, and (II) the ener-
getic minima of each phase should be identical in numerical value while being aligned
with their respective polarization directions. These concepts are visually depicted in
Figs. 5.3(b)-(d). Besides, the polarization strength within each domain must remain
consistent to ensure the stability of the experimental data (Table 5.2). This adherence to
Eqs. (5.13) and (5.15) to accurately qualify the parameters involved. The determined pa-
rameters thus satisfy the clamped boundary condition. To align with Eq. (3.7), additional
conversion is necessary, following the methodology outlined in Ref. [13]. Particularly,
Table 5.4 details a solution that corresponds to these assumptions and matches with
experimental findings.

Table 5.4.: The coefficients for computing the bulk driving force in Eq. (3.1), including
the separated dielectric stiffness coefficients and electrostrictive constants for the FT
and FR under stress-free conditions, and the isotropic elastic tensor coefficients obtained
from Ref. [147]. All coefficients are denoted in Voigt notation. Adapted from Ref. [15].

Coefficients FR FT Unit
α1 -1.861 -1.861 107⋅[m/F]
α11 9.000 -0.388 108⋅[m5/(C

2
F)]

α12 -10.861 -1.473 108⋅[m5/(C
2
F)]

α111 1.120 1.120 109⋅[m5/(C
2
F)]

α112 4.000 1.054 1010⋅[m5/(C
2
F)]

α123 -16.623 7.447 1010⋅[m5/(C
2
F)]

Q11 1.720 11.164 10−2⋅[m4/C2]
Q12 -0.867 -5.547 10−2⋅[m4/C2]
Q44 0.007 98.120 10−2⋅[m4/C2]
C11 107.650 107.650 109⋅[N/m2]
C12 63.124 63.124 109⋅[N/m2]
C44 19.624 19.624 109⋅[N/m2]

To validate the calculations, the landscapes of the spontaneous polarization for the
tetragonal and rhombohedral phases are represented in Figs. 5.3(e) and (f), with shapes
indicating orientation and colors representing magnitude. The polarization for each
phase is expected to correspond to its respective crystal structure. Accordingly, the
maximum polarization length of the FT appears along the {100} crystallographic direc-
tions, whereas the polar axes of the FR align with the {111} orientations. Furthermore,
the calculated maximum polarizations, PFR,3 = 23.2 µC/cm2 and PFT,3 = 29.5 µC/cm2,
demonstrate significant consistency with the experimental data presented in Table 5.2.
These findings underscore the validity of the polarization profiles in representing the
individual material characteristics.
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5.3. Numerical setup

The simulations were performed using the in-house software package, Parallel Al-
gorithms for Crystal Evolution in 3D (Pace3D) [148]. The quasi-2D simulation was
performed to analyze the microstructural evolution of PIC 151 material, given the
computational intensity associated with a 3D. The computational domain for the single-
crystal system consisted of 200 × 200 × 1 cells. The polycrystalline structure was
simulated using a 181 × 209 × 1 voxel grid, generated via Voronoi tessellation. Regard-
less of the computed size, the domain was discretized into cells with unified dimensions,
where ∆x1 = ∆x2 = ∆x3 = 0.33nm. The length scale parameter, ϵ, was at 5∆x1.
Although both phases and grains are described by ϕ, it is important to note that they
represent different physical phenomena. As a result, the interfacial energies at the
phase boundary and the grain boundary are distinct physically, despite having the same
diffusion thickness ϵ. A periodic boundary condition was employed to solve all relevant
fields, including the phase field, polarization field, mechanical field, and electric field.
To optimize computational efficiency, domain decomposition was implemented using
the Message-Passing Interface (MPI).

The finite-difference algorithm employing an explicit forward Euler scheme was used
to determine the evolution of the polarization vector and phase transformation at room
temperature. The solution process is illustrated in Fig. 5.4. The system initialization
begins with phases in which the polarization vectors are randomly distributed. This
is followed by solving the electrostatic and mechanical equilibrium of the system.
Subsequently, the polarization is updated by solving the TDGL equation, as presented
in Eq. (3.23). Next, the phase transformation is determined by solving Eq. (3.21) to
minimize the energy functional specified in Eq. (3.1). This iterative process of solving
for polarization and phases continues until the system achieves both electrical and
mechanical equilibrium.
The phase-dependent dielectric coefficients and electrostrictive stiffness for the

phase-field simulation are listed in Table 5.4. The elastic stiffness tensor was treated
as isotropic and phase-independent, taken from Ref. [147] with values also listed in
Table 5.4. Regarding the gradient energy calculation within domain wall regions, the
gradient coefficient G11 for both the FT and FR was derived from G11/G110 = 0.6,
where G110 = 1.73 × 10−10 C−2m4N [87]. The relative dielectric permittivity κr = 1110
in Ref. [147] was applied to calculate the depolarization energy. The interface width
parameter ϵ is set as 5∆x1, and the interfical energy density parameter γαβ and γαβτ are
set as 0.01 J/m2. The dimensionless value of the polarization mobilityM∗ (Eq. (3.23))
and the mobility coefficient M∗αβ (Eq. (3.21)) of the inter-phases were both set as
1 to ensure the stable evolution of domain structures at the domain walls and the
steady phases transformation at the phase interfaces while maintaining highly efficient
computation. It is also important to emphasize that the simulated results are valid
within 0 <M/Mαβ < 1.167. In PIC 151, grain growth or shrinkage at room temperature
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Figure 5.4.: An overview of the solution procedure involves applying Model I to compute
domain structures and phase transformations.

is prevented because the activation energy required for grain movement is too high. As
a result, the mobility between grains was set to zero.
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5.4. Phase-field simulations

5.4.1. Single-crystal simulation

5.4.1.1. Single phase simulation

A slice along the x2-axis

(b)Domain structure in the FR

A slice along the x1-axis.

(a) Domain structure in the FT

x1

x2

Figure 5.5.: The simulated domain structures of the tetragonal and rhombohedral phases
within the single crystal are depicted. The black isolines illustrate the distribution of
the von Mises stresses. Adapted from Ref. [15].

To validate both the model and the phase-dependent coefficients outlined in Table 5.4,
numerical simulations were initiated to compute the domain structure of the pure phase
inside a single grain without any stimulus. Figs. 5.5(a) and (b) respectively illustrate the
domain structures of pure tetragonal and rhombohedral phases, with the arrow orienta-
tion indicating the polarization direction and its color representing the amplitude. The
black lines represent the contours of the von Mises stresses, depicting the distribution of
elastic energy density. As depicted in Fig. 5.5, the maximum polarization occurs within
the domain, with dipoles aligning along various crystallographic directions that are
distinct yet equivalent in each phase. The 90○ domains form in the FT with {110} twin
planes in the equilibrium state (Fig. 5.5(a)), signifying the predominance of the strain
energy. The simulated domain walls exhibit a head-to-tail arrangement that agrees with
findings in Ref. [81]. Furthermore, the computed domain structures for the pure FR
in a single crystal are consistent with Ref. [149], where 109○ domain walls are formed
with {100} twin planes to accommodate internal mechanical stress fields, as illustrated
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in Fig. 5.5(b). The distribution of the Mises stresses in each phase reveals that elastic
strains vary at the domain walls but are equivalent within the domains.

5.4.1.2. Multiphase simulation

Phase-field simulations of a multiphase system within a single crystal were carried
out to further verify the coefficients. Fig. 5.6 illustrates the formation of the domain
structures as well as associated phase transformations under a zero external electric
file condition, where the tetragonal and rhombohedral phases are respectively denoted
by the light and dark gray colors. The orientation and color of the arrows within each
phase illustrate their respective polarization vectors. At the start of the simulation,
polarization vectors were randomly assigned within the computational unit to emulate
a paraelectric state. The nucleation and growth of the domain walls can be observed in
Fig. 5.6(a), where the polarization in each phase attempted to align with its correspond-
ing crystallographic directions. Fig. 5.6(b) illustrates the domain morphologies after a
simulation of 150∆t time steps, within which 90○ domain walls begin to form FT. This
phenomenon arises because the polarization in neighboring domains is perpendicular
to each other, configured head-to-tail. It is also demonstrated that the single domain in
FR stabilizes once the unstable domain walls observed in Fig. 5.6(a) disappear.
An interesting observation from the comparison of microstructures in Figs.5.6(c)

and (d) is the continuous transformation of the FR into the FT at the phase interface.
This transformation leads to the extension and connection of 90○ domain walls in the
FT phase, as shown in Figs.5.6(d) and (e). Fig. 5.6(f) illustrates the equilibrium state,
highlighting stable polarization directions with white thick arrows. Observations reveal
that the entire region adopts an FT with a 90○-domain configuration in its minimum
energy state, primarily due to the transformation of almost the entire FR into FT. This
finding aligns with polycrystalline samples that predominantly exhibit a tetragonal
structure, as observed in Ref. [150]. A high-density isoline of von Mises stresses at
the equilibrium state is also depicted with white thin lines in Fig.5.6(f). Given the
predominance of the FT phase in the single grain after the phase transformation, the
stress distribution resembles that shown in Fig. 5.5(a).
Fig. 5.7 reveals the domain switching, the associated phase transformation, and

the von Mises stresses when ∣Eext∣ = 10kV/mm is applied along the [100] direction
(the red thick arrow) to the initial state in Fig. 5.7(a), which is a copy of Fig. 5.6(b)).
Similarly to Fig. 5.6(f)), the white thick arrows in Fig. 5.7(a) represent the e polarization
orientation in the tetragonal phase. Comparing Figs. 5.7(a) and (b) shows that the
external electric field switched the dipoles in the tetragonal phase, causing the head-
to-tail 90○ domain configuration to disappear. This behavior can be explained by the
plotted energy landscape of the pure FT in Fig. 5.3(c). Without an external stimulus,
there are six equivalent energetic minima in the energy landscape, suggesting six
polarization orientations with the same possibility toward six face centers. However,
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(a) t = 0.25 ×103 (b) t = 15 ×103x1

x2

(c) t = 45 ×103 (d) t = 400 ×103

(e) t = 500 ×103 (f) t = 600 ×103

Figure 5.6.: Temporal evolution of domain structures and the phase transformations in
a multiphase single crystal in the absence of an external electric field (Eext = 0). The
thick white arrows in (f) indicate the polarization orientation in the stable state, while
the thin white lines show the isolines of von Mises stresses. t represents the number of
the simulated steps. Adapted from Ref. [15].
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the energy landscape deforms with the application of external electric fields, leading
to the reorientation of the polarization vector, as described in Ref. [146]. Therefore,
dipoles in the FT are switched by 90○, so as to align themselves with the induced field.
Additionally, the polarization orientation in the FR remains unchanged when comparing
Figs. 5.7(a) and (b). This is because the applied electric field in Fig. 5.7(a) favors the
existing domains in the FR in the special cases of Fig. 5.7.
In addition to the polarization switching, it is noteworthy that the phase transfor-

mation from FR to FT occurred precisely at the phase interface, as shown in Fig. 5.7(c).
Referring to the energy overlap depicted in Fig. 5.3(c), the induced electric field along its
crystallographic direction creates a favorable condition for the driving force toward the
FT. Moreover, experimental findings reported in Ref. [140] confirm that the activation
energy for this phase transformation is sufficiently low around the phase boundary.
Hence, the rhombohedral phase transitions to the tetragonal phase at the phase interface
when induced by such an applied electric field. In addition, the observed polarization
reorientation in the transferred FT along the induced electric field direction is consis-
tent with the experiment [140]. Figs. 5.7(d) and (e) respectively depict the evolution
after 50×103 and 100×103 time steps, suggesting that the microstructure evolution is a
synergy between the polarization reorientation as well as the phase transformation,
as expected. As can be seen in Fig. 5.7(f), the system reached the equilibrium after a
simulation of 250×103 time steps, where almost the entire FR was transformed into
FT. The evolution of the von Mises stresses also illustrates that the induced phase
transformation helps to release the stresses.

The same external electric field, ∣Eext∣ = 10kV/mm, was also applied along the [111]
direction to the identical initial state. The temporal evolution of the microstructure is
illustrated in Fig. 5.8, where Fig. 5.8(a) replicates Fig. 5.6(b). Similarly, a comparison
of Figs. 5.8(a) and (b) demonstrates that polarization switching is initially activated by
the applied electric field. As the existing polarization vector in the FR is parallel to the
induced electric field, the magnitude of polarization increases without any reorientation
in this phase. The 90○ domain configurations form in the FT, as shown in Fig. 5.8(b).
When the induced electric field is insufficient to switch the polarization to align with
the external direction, the polarization of the FT is governed by its crystallographic
direction and the external field. Consequently, the 90○ domain structure, with the
{110} domain wall plane in the FT, serves to minimize both elastic and electrostatic
energies. Based on Figs. 5.8(b) to (f), it can be concluded that the phase transformation
from FT to FR can be induced at the phase boundary when the ∣Eext∣ is applied in a
direction favorable to the FR. Immediately following the phase transformation, it is
observed that the polarization tends to align with the direction of ∣Eext∣. In contrast to
the aforementioned simulation, the white isolines indicate that the gradient stresses
cannot be released by the electric field applied along the [111] direction.
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(a) t = 0 (b) t = 2.5×103

(c) t = 25×103 (d) t = 50×103

(e) t = 100×103 (f) t = 250×103

Figure 5.7.: Domain switching and the associated phase transformation over time in
the multiphase single crystal under an external electric field of ∣Eext∣ = 10kV/mm
(indicated by the red thick arrow) along the [100] direction. The white thick arrows
in the FT demonstrate the polarization direction, while the white thin lines represent
the isolines of von Mises stresses. t represents the simulation time step. Adapted from
Ref. [15].
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(a) t = 0 (b) t = 2.5×103

(c) t = 25×103 (d) t = 50×103

(e) t = 100×103 (f) t = 250×103

Figure 5.8.: Domain switching and the associated phase transformation over time in
the multiphase single crystal under an external electric field of ∣Eext∣ = 10kV/mm
(indicated by the red thick arrow) along the [111] direction. The white thick arrows
in the FT demonstrate the polarization direction, while the white thin lines represent
the isolines of von Mises stresses. t represents the simulation time step. Adapted from
Ref. [15].
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The phase transformation between the tetragonal and rhombohedral phases indeed
depends on the applied electric field, as expected. In PIC 151, the activation energy
for such phase transformations is sufficiently low to be induced by ∣Eext∣ as low as
10 kV/mm. Equilibrium state simulations indicate a strong tendency of the material to
adopt tetragonal domain configurations, consistent with findings from experimental
studies in Refs. [140, 150]. The simulations further demonstrate that the energy land-
scape supports stabilization of either tetragonal or rhombohedral phases, depending on
the direction of the applied electric field as well. Specifically, applying the electric field
along the tetragonal {100} direction stabilizes the FT, whereas applying it along the
{111} direction enhances the stability of FR. These results validate Model I, including
the distinct coefficients assigned to each phase.

5.4.2. Phase-field simulation of polycrystals

5.4.2.1. Domain structures formation and the associated phase transformation

(b) Energy overlap(a) The polycrystalline structure
x1

x2

Figure 5.9.: (a) illustrates the simulated polycrystalline structure, in which A, B, C, and
D denote four hexagonal grains. The light and dark colors within each grain represent
the FT and FR, respectively. The dotted lines within each grain construct the local
coordinates, in which φ represents the grain orientation. (b) shows the energy overlap
of the FT and FR within each grain. Arrows indicate the applied electric field along the
[100] and [111] directions of grain A, with the transparent region denoting the area
pointed by the arrows, which is not visible. Adapted from Ref. [15].
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(a) t = 0.5×103 (b) t = 2.5×103 (c) t = 5×103

(d) t = 10×103 (e) t = 25×103 (f) t = 100×103

Figure 5.10.: The temporal evolution shows domain structure formation and the cor-
responding phase transformation in the polycrystalline system, with t representing
the simulation time step. The white color in (f) displays the von Mises stress contour.
Adapted from Ref. [15].

Fig. 5.9(a) illustrates a schematic diagram of the computed polycrystalline structure,
which consists of four hexagonal grains (denoted as A, B, C, and D) with different
orientations but equivalent dimensions. The light and dark colors within each grain
respectively represent the FT and FR. The computed polycrystalline system consists of
a limited range of crystals, taking the limitation of computation time into account. The
grain orientations within each grain are denoted by φ, with the dotted line representing
the local coordinates, within which the crystalline axes of the grains only rotate in the
x1x2-plane. In order to establish a reference, the orientation of grain A was fixed at
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zero. The rotation angles of the other grains, however, were assigned such that their
polarization orientations of FT or FR attempted to align with the [100] or [111] direction
of grain A (grain B), or they were set to random orientations (grains C and D).

To offer a theoretical explanation for the later calculated results, the energy landscape
inside each grain, including the Landau potential energy density (fLandau) and the
elastic energy density under a stress-free condition (f strain0

elast ), was plotted, as depicted in
Fig. 5.9(b). The coordinate in Fig. 5.9(b) refers to Fig. 5.9(a). In Fig. 5.9(b), the direction
of the energetic minimum in each phase corresponds to its polarization orientation.
Additionally, the arrows in the energy landscape (Fig. 5.9(b)) denote the external electric
field induced along the [111] and [100] directions of grain A. The simulations begin to
investigate the domain structure formations and the associated phase transformations
with ∣Eext∣ = 0. After reaching the equilibrium state where both P and ϕ no longer
change, electric fields were applied along the [111] and [100] directions to investigate
the response of the microstructure, respectively.
Fig. 5.10 illustrates the temporal evolution without an external stimulus, within

which the color and orientation of the arrows represent the size and direction of the
polarization, respectively. It is evident that domain nucleation inside each phase was
observed after a simulation of 0.5×103 time steps, as shown in Fig. 5.10(a). After 2.5×103
and 5×103 time steps, as depicted in Figs. 5.10(b) and (c), one can find that dipoles inside
each phase start to orient along their crystallographic direction. In the zoomed-in view
of Figs. 5.10(b) and (c), it is also clear that polarizations within the neighboring grains
attempt to align with each other, contributing to the release of the electric energy. For
instance, the dipole rearrangement can be observed in the FR of grain C (pink), where
the polarization vector can align closely with the adjacent FR in grain D (red).
Moreover, one can find that the FR and FT in the neighboring grains influence the

polarization evolution of the FT in grain A (blue), suggesting the effect of neighboring
grains on domain structures formation, as illustrated in Figs. 5.10(d) and (e). Based
on the above description of the domain configurations, one can conclude that the
formation of the domain structures in the polycrystalline PIC 151, which has multiple
ferroelectric phases, results from the coupling between grain orientations and the
crystalline structure of the corresponding ferroelectric phases. In addition to the
polarization evolution, the phase transformation induced by a polar reorientation is
suggested by a comparison of enlarged regions in Figs. 5.10(d) and (e). For example,
complex domain morphologies form in the FT of Grain A as a result of the polarization
evolution. During the process of the domain walls formation, the transformation from
FT to FR occurs when dipoles reorient closely to the crystallographic direction of the
FR. Similarly, one can observe the phase transformation of FR → FT in grain D (red).
Finally, the system reaches the equilibrium state after an evolution of 100×103 time
steps (Fig. 5.10(f)) with the cooperative motion of the polarization rotation and the
phase transformation. At this energy minimum stage, complex domain structures with
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different configurations are formed in grain A, while a single-type domain predominates
in other grains due to computational limitations. The distribution of the vonMises stress
at the stable state has also been shown using white isolines in Fig. 5.10(f). The grain
boundary and grain orientation affect the distribution of the elastic strain, resulting in
a more complicated distribution of stresses in the polycrystalline system being formed
compared to Fig. 5.6(f).

5.4.2.2. Domain switching and the associated phase transformation

Fig. 5.11 shows the temporal evolution of the polarization switching and the related
phase transformation when ∣Eext∣ = 30kV/mm is applied along the [111] direction.
Fig. 5.11(a) depicts the initial state copied from Fig. 5.10(f), in which the white thick
arrow indicates the induced electric field direction. Firstly, the domain morphologies
after the computations of 10 and 50-time steps, shown in Figs. 5.11(b) and (c) demonstrate
the ongoing polarization switching. This occurs because the imposed Eext disrupts
the energy minimum state of the polycrystalline system in Fig. 5.11(a), leading to the
domain reorientation. In addition, the evolution process of the FR in grain B and the FT
in grain A suggested that the polarization vector initially switches to the orientation of
the applied electric field to release the external electric energy. WhenEext is insufficient
to maintain this alignment, the polarization then aligns with its corresponding crystal
direction. Based on the domain evolution of grains A (blue), B (green), and D (red) in
Figs. 5.11 (b)-(c), it can also be seen that polarization reversal in the polycrystalline
material occurs through the movement of the domain wall, which nucleates at the grain
boundary. Such an observation is consistent with Refs.[82, 87]. To release both the
elastic free energy and the electrostatic energy, the 90○ domain walls form in the FT
inside grain A under the induced electric field, as illustrated in a simulation of 2.5×103
time steps in Fig. 5.11(d). In general, the polarization in the polycrystalline system
tends to align as closely with Eext as permitted by its associated crystal symmetry to
facilitate domain switching.
Apart from the domain switching, another interesting observation of the polycrys-

talline system shown in Fig. 5.11(d) is the bidirectional phase transformation, starting
from the phase interface. For instance, the expected phase transformation from FT
to FR due to the induced electric field in grain A is evident, as Eext is applied exactly
along the [111] direction of grain A (Fig. 5.9(b)). According to the energy landscape
in Fig. 5.9(b), the orientation of Eext is also close to the [111] direction of grain D,
demonstrating the stability of grain D. Whereas, the phase transformation of FR →
FT can be observed in grains B and C, indicating that such an electric field favors the
corresponding [100] orientations in those grains. Similarly, this observation aligns with
the energy landscape plotted in Fig. 5.9(b).

Figs. 5.11(e)-(f) depict the evolution of this bidirectional phase transformation, which
is linked to the polarization reorientation in the polycrystalline material. It is easy
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(a) t = 0 (b) t = 0.05×103

(c) t = 2.5×103 (d) t = 7.5×103

(e) t = 25×103 (f) t = 70×103

Figure 5.11.: Domain switching and the associated phase transformation over time in the
polycrystalline PIC 151 material under an external electric field of ∣Eext∣ = 30kV/mm
(indicated by the white thick arrow) along the [111] direction. The white thin lines in
(f) represent contour plots of the von Mises stresses. t represents the simulation time
step. Adapted from Ref. [15].
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to find that the phase transformation results in the realignment of the polarization
vector in the generated phase towards the orientation of the Eext. Compared to the
single crystal simulation mentioned above, it is evident that the phase transformation
induced by the external electric field is also dependent on the grain orientation in
polycrystalline ferroelectrics with coexisting ferroelectric phases. Again, the white
thin color in Fig. 5.11(f) represents the distribution of the von Mises stresses, with the
highest stress densities mainly occurring at the phase boundaries inside each grain.
This can be attributed to the polarization difference between ferroelectric phases in
each grain.
To explore how the amplitude of the external electric field affects both the domain

switching and the behavior of phase transformation, a higher electric field strength
of ∣Eext∣ = 100kV/mm was applied to the same initial state, oriented along the [111]
direction. The simulated results are illustrated in Fig. 5.12, showcasing both the polariza-
tion switching and the corresponding phase transformation with the same mechanism
as discussed above. A comparison between Fig. 5.11 and Fig. 5.12 reveals that the
increased field intensity results in a quicker response and a more thorough phase trans-
formation. This observation is supported by Table 5.5, which details the phase volume
fractions within each grain in the equilibrium state of each simulation. Therefore, it
can be inferred that the amplitude of the electric field dictates the extent of the phase
transformation.

Table 5.5.: Volume fractions of each phase within each grain at the stable state, measured
in %. WE represent the simulated result of Eext = 0; E1 and E2 represent the computed
results with ∣Eext∣ = 30kV/mm and ∣Eext∣ = 100kV/mm applied along the [111] direc-
tion, respectively. E3 and E4 represent the computed results with ∣Eext∣ = 30kV/mm
and ∣Eext∣ = 100kV/mm applied along the [100] direction, respectively. Adapted from
Ref. [15].

Grain Phase WE E1 E2 E3 E4

Grain A FT 73.47 35.26 11.28 94.58 97.33
FR 26.53 64.74 88.72 5.42 2.67

Grain B FT 68.14 93.42 94.77 92.38 94.46
FR 31.86 6.58 5.23 7.62 5.54

Grain C FT 41.11 86.54 100.00 81.32 94.17
FR 58.89 13.46 0.00 18.68 5.83

Grain D FT 16.56 15.23 5.04 78.97 85.86
FR 83.44 84.77 94.96 21.03 14.14

In order to investigate how the orientation of the induced electric fields influences
both domain switching and phase transformation in the polycrystalline material, an
electric field was applied to the same initial state along the [100] direction, with magni-
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(a) t = 0 (b) t = 0.05×103

(c) t = 2.5×103 (d) t = 7.5×103

(e) t = 25×103 (f) t = 70×103

Figure 5.12.: Domain switching and the associated phase transformation over time in the
polycrystalline PIC 151 material under an external electric field of ∣Eext∣ = 100kV/mm
(indicated by the white thick arrow) along the [111] direction. The white thin lines in
(f) represent contour plots of the von Mises stresses. t represents the simulation time
step. Adapted from Ref. [15].
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(a) t = 0 (b) t = 0.05×103

(c) t = 2.5×103 (d) t = 7.5×103

(e) t = 25×103 (f) t = 70×103

Figure 5.13.: Domain switching and the associated phase transformation over time in the
polycrystalline PIC 151 material under an external electric field of ∣Eext∣ = 30kV/mm
(indicated by the white thick arrow) along the [100] direction. The thin white lines in
(f) represent contour plots of the von Mises stresses. t represents the simulation time
step. Adapted from Ref. [15].
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tudes of 30 and 100 kV/mm, respectively. The corresponding temporal evolution of
the domain structure and the phase transition can be observed in Fig. 5.13 and Fig. 5.14,
respectively. Fig. 5.13(a) and Fig. 5.14(a) are the initial states. First of all, the polarization
vectors of the tetragonal phase in grain A can be easily and completely switched to
the [100] direction when the induced electric field is applied along the [100] direction,
as depicted in Fig. 5.13(b) and Fig. 5.14(b). A comparison of Figs. 5.13(b) and 5.14(b)
suggests that a large ∣Eext∣ can manipulate the polarization vector to align more closely
with the direction of the external electric field. Therefore, the polarization switching
of FR in grain A propagates to the neighboring grain D, resulting in a corresponding
polar change in FR.

As shown in Fig. 5.13(c) and Fig. 5.14(c), after a simulation of 2.5×103 time steps, the
induced electric field generates a phase transformation of FR → FT, indicating that the
applied electric field in the [100] direction favors FT for the entire polycrystalline system.
Once again, this can be explained by the drawing energy surface in Fig. 5.9(b), where the
external electric field along [100] direction directly aligns with or is close to the favorable
direction of the tetragonal phase within each grain. The phase transformations with
∣Eext∣ = 30 and 100 kV/mm are primarily illustrated in Figs. 5.13(d)-(f) and Figs. 5.14(d)-
(f), respectively. Comparing these figures reveals a significant difference in the evolution
of grain C (pink). Under a smaller induced electric field, the domains of FT in grain C
were unable to switch completely, as FR nucleates and grows to separate FT into two
regions. Thus, the 90○ domain structure forms, which promotes the growth of FR along
the domain wall, as shown in Figs. 5.13(d)-(f).
Furthermore, the volume fraction of FR and FT in Table 5.5 again shows that the

microstructure can be manipulated with different imposed electric fields. In particular,
the phase transformation is more gradual and less complete at lower field strengths
(Figs. 5.13), while it is faster and more extensive at higher field strengths (Figs. 5.14).
Moreover, PIC 151 material exhibits a predominantly tetragonal symmetry, which
increases the tendency for FR to transform into FT. For instance, when the external
electric field is applied along the [100] orientation of grain A, neighboring grains, such
as B and C, which have crystallographic directions deviating from the tetragonal polar
orientation, still predominately exhibit FT. This also suggests that when the direction
of the induced electric field is ideal for one grain (grain A in this case), the domain
switching from complex domain structures to a single domain state may affect the
neighboring grains with less ideal grain orientations.

To sum up, the simulated results discussed above describe the mechanisms of domain
formation, domain switching, and their associated phase transformation in polycrys-
talline ferroelectrics with multiple ferroelectric phases under different electric fields.
The formation of domain structures results from the interaction between the crystal-
lographic orientations of the ferroelectric phases, the orientations of the grains, and
the accompanying phase transformation processes. With the application of external
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(a) t = 0 (b) t = 0.05×103

(c) t = 2.5×103 (d) t = 7.5×103

(e) t = 25×103 (f) t = 70×103

Figure 5.14.: Domain switching and the associated phase transformation over time in the
polycrystalline PIC 151 material under an external electric field of ∣Eext∣ = 100kV/mm
(indicated by the white thick arrow) along the [100] direction. The white thin lines in
(f) represent contour plots of the von Mises stresses. t represents the simulation time
step. Adapted from Ref. [15].
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electric fields, domain switching is always the first response, significantly dependent
upon the size and direction of the imposed electric field. For example, the polarization
vector can be aligned with the orientation of the applied electric field when it reaches a
suitable magnitude. Following domain switching, the induced phase transformation
occurs at the phase or grain boundary. In particular, the observed bidirectional phase
transformation suggests that the phase transition between ferroelectric phases is de-
termined by both induced electric fields and grain orientations. This has already been
predicted by experimental results from Refs. [140, 150, 151]. On a local scale, however,
direct observation of these processes is still lacking. The phase-field simulation results
in the current work provide insight into the local processes and mechanisms involved
in the response of materials to different imposed electric fields. It is also evident that the
magnitude of the external electric field plays a significant role in controlling the degree
of phase transformation, specifically in manipulating the residual volume fraction of
each phase. While the minor phase of PIC 151 (FR) can only be stabilized with a high
electric field, the major phase (FT) stabilizes early to a large fraction at a lower applied
electric field. This also indicates a preferential phase fraction under the influence of
an induced electric field. The simulated results have implications for the fundamental
understanding of the role of the applied field on the domain structure and phase trans-
formation, providing valuable understanding for the development of polycrystalline
ferroelectric materials with phase coexistence.

5.5. Conclusions

Model I, which integrates the TDGL with the general multiphase phase-field functional,
has been employed in this chapter to investigate the domain structure and associated
phase transformations in ferroelectric materials exhibiting ferroelectric phase coex-
istence. To determine the phase-dependent coefficients, i.e., the dielectric stiffness
and electrostrictive stiffness coefficients, a numerical energy-overlap approach was
designed based on the coefficients identified for phase coexistence. The reliability
of the phase-dependent parameters and the practicality of Model I was validated by
conducting single crystal simulations with both single and multiple phases. The do-
main structures and associated phase transformations under different external electric
fields have been investigated in the polycrystalline material. It was observed that the
equilibrium of a polycrystalline system depends on the cooperative interplay between
polarization evolution and phase transformation when without any induced external
fields. Simulations conducted under different external-electric-field values demonstrate
externally induced polarization switching as well as phase transformation. In general,
the polarization switching firstly occurs under an external electric field, followed by the
corresponding phase transformation at the phase interface or grain boundary. It has
been shown that the phase transformation varies depending on the grain orientations
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when an electric field is applied. It was also observed that the magnitude of the induced
electric field significantly influences both the domain structure and the proportion of
the phase volume fraction.
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6. Computing domain structures in bulk
ferroelectrics using Model II

6.1. Introduction

Research employing the multiphase-field approach to analyze ferroelectric materials
has increased in recent years [15, 152–159]. For instance, Torres et al. has developed
a multiphase-field model that couples four Allen-Cahn-type formulas to study the
transformation kinetics as well as domain structures for ferroelectric materials [152–
155]. This model has been used to study the mechanisms responsible for the coexisting
ferroelectric phases and the correspondingly enhanced electromechanical properties
found in experiments performed near the polymorphic phase boundary in barium
zirconate titanate-barium calcium titanate. It enables a thermodynamically correct and
more accurate analysis near the inter-ferroelectric phase transitions, as it incorporates
the homogeneous free energy density of the individual ferroelectric phases with phase-
dependent Landau coefficients. However, the model proposed by Torres et al. ignored
the mechanical field, which influences the formation of non-180○ ferroelastic domain
walls. Besides, the straightforward coupling of the Allen-Cahn equations confines the
calculations to a single crystal in one or two spatial dimensions [153].
As outlined in Chapter 5, Model I was further developed through integrating the

TDGL equation with the multiphase-field approach in the work [15]. Compared with
the work of Torres et al., this model extends the numerical calculations to polycrystalline
ferroelectric materials with multiple ferroelectric phases in arbitrary dimensions, in
which it can also accurately describe and quantitatively compute the contribution
of the mechanical field on domain structures. By using this new model, the phase
transformation between FT and FR along with the corresponding domain structures
have been studied for both the single- and polycrystalline PIC 151 material. Apart
from these, the multiphase-field method has also demonstrated broader applicability
beyond perovskite ferroelectric materials. For example, Sugathan et al. coupled the
multiphase-field approach proposed by Steinbach et al. in Ref. [77] with TDGL model
to compute the switching behavior of polycrystalline Hf1−xZrxO2 thin films, while Zhu
et al. [156], Li et al. [157], Chen et al. [158], and others [159] employed it to investigate
domain structures in different Hf-based ferroelectric materials.
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However, despite the primary focus of these works being on distinguishing para-
electric/ferroelectric phases or coexisting ferroelectric phases, the domain formation
and switching are still controlled by the TDGL model. That is, domain structures are
computed by evolving the polarization vector. Interestingly, in order to capture the
nonlinear dynamic motions of domain walls, Guin et al. [128] have also proposed a
novel model based on the multiphase-field approach. In contrast to the conventional
approach of using polarization as the order parameter, their model employs the possible
polarization states within the ferroelectric phase as phase-field variables. As a result, the
domain structure is determined by the transformation and evolution of the phase-field
variables. Nevertheless, contributions from the mechanical field have been overlooked
in their work. Possessing the same concept, Model II was created to ferroelectric materi-
als. In contrast to Ref. [128], Model II employs a multi-obstacle potential in conjunction
with a distinct gradient energy formulation to quantify the interfacial energy, so as to
capture the interphase profile. In addition, the mechanical field is evolved and solved
using the jump condition technique described in Refs. [132, 133, 160]. This chapter
presents an application of Model II to study the BTO material, with reference to the
published results presented in Ref. [16].

6.2. Numerical simulation setup

Simulations were conducted in Pace3D. An overview of the computing process is
shown in Fig. 6.1. A finite difference algorithm with an explicit forward Euler scheme
is used to solve the phase-field evolution equation (Eq. (4.10)), so as to determine
the domain structure at room temperature (T = 300K). The mechanical equilibrium
condition (Eq. (3.24)) is subsequently solved implicitly in every time step after solving
Eq. (4.10). The reader is recommended to [132, 161, 162] for detailed insights into
this procedure. In parallel, the electrostatic equilibrium condition of Eq. 4.9 is solved
using the conjugate gradient approach. The Voronoi tessellation was used to create the
calculated structures for both single-crystal and polycrystalline systems. Regardless of
the system size, the computed region was discretized into cells with uniform dimensions
of ∆x1 =∆x2 =∆x3 = 0.5nm. Using the MPI standard, the computational cells were
decomposed in both the x1- and x2-directions to reduce simulation time and achieve
high computational efficiency.
The ferroelectric phase in BTO of this work was limited to the tetragonal struc-

ture. One can also investigate other ferroelectric structures, such as rhombohedral,
monoclinic, orthorhombic, and others, by defining their corresponding polarization
variants. To ensure numerical stability, the diffuse interface width parameter ϵ was
set as 4∆x1 with the application of a multi-obstacle-type potential. This parameter
yields the interface width as L ≈ 4.9nm based on Eq. (2.57). Given that L aligns with
the observed 90○ domain wall widths in BTO, which ranges from 2 nm to 25 nm, it can
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Figure 6.1.: Overview of the solution procedure for the numerical simulations.

be concluded that such an interfacial width is physically meaningful. Furthermore,
to convey a physical implication rather than a computational input coefficient, the
interfacial energy γαβ was set as the 180○ domain wall energy in 1 nm, denoted by:

γαβ = 1.26∣α1∣l0P
2
0 , (6.1)

relying on Ref. [82]. α1 in Eq. (6.1) represents the first-order dielectric stiffness at room
temperature. l0 is calculated as:

l0 =
√
G11/(0.6∣α1∣) (6.2)

with G11 the gradient coefficient. P0 is the spontaneous polarization with a value
of 26 µC/cm2, obtained from Ref. [163]. In order to solve the Poisson formula, the
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Table 6.1.: The phase-field parameters and material coefficients used in the current
simulation. Adapted from Ref. [16].

Material Coefficients Symbol Value Unit
Dielectric stiffness α1 (T-381)*3.34 105 ⋅ [m/F]
Interfacial length parameter ϵ/∆x 4 -
Interfacial energy γαβ 0.01 J/m2

- γcα 0.01 J/m2

Elastic tensor C11 27.50 1010⋅[N/m2]
C12 17.90 1010⋅[N/m2]
C44 4.80 1010⋅[N/m2]

Electrostrictive tensor Q11 11.00 10−2⋅[m4/C2]
Q12 4.50 10−2⋅[m4/C2]
Q44 7.75 10−2⋅[m4/C2]

Gradient coefficient G11 51 10−11 ⋅ [Nm4/C2]

Values of dielectric stiffness, elastic tensor, and Electrostrictive
tensor coefficients are taken from Ref. [97]

background dielectric constant was set to a value of 50. γcα, which scales the compensate
of the curvature effect in Eq. (4.17), was set to the same value as γαβ . As there is no
reliable data for capturing the kinetics of the tetragonal domain walls in BTO, the
discrete-time step width was set as ∆t∗=1 and the mobilityMαβ was determined to
ensure numerical stability. In general, the dimensionless value of mobility coefficient
Mαβ between ferroelectric variants was set to one. In the case whereMαβ represents
the mobility between grains, it was set as zero because grains are immobilized in BTO
at room temperature. For clarity, the simulated parameters are listed in Table 6.1.
To achieve high computational efficiency and increase accuracy, the input data is
transformed into a dimensionless form, with the main dimensionless formulas given
by:

Q∗ijkl = QijklP
2
0 ,

C∗ijkl =
Cijkl

∣α1P 2
0 ∣
,

κ∗0 = κ0 ⋅ ∣α1∣.

(6.3)
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6.3. Phase-field simulation in a single-crystal system

6.3.1. Domain structures formation

T3T4

T1
T2

G1

G2

(a) t = 0 ΔC (b) t = 100 ΔC (c) t = 1300 ΔC

(d) t = 1800 ΔC (e) t = 2100 ΔC (f) k and Von-Mises stress of (e)
-0.003

0.003

k
(+

)

Figure 6.2.: (a)represents the initial configuration of the quasi-2D single crystal, while
(b-e) illustrates the temporal evolution of domain structure formation. (f) illustrates
the distribution of the von Mises stress (black lines) and the electric potential ψ at the
equilibrium state (t = 2100∆t). Red arrows represent the polarization orientation of
each variant. Adapted from Ref. [16].

To achieve computational convenience, the current work mainly focuses on quasi-2D
simulations using 100×100×1 cells to illustrate the domain structures formation and the
response of domain walls to an external field. Additionally, to validate the dimensional
extension of the model, a 3D calculation of a single crystal with 100×100×100 voxels
was further performed, as shown in Fig. 6.4. At the start of the simulations, the domain
structure within a single grain was calculated without applying any external field,
as shown in Fig. 6.2, with periodic boundary conditions employed to solve all fields.
Fig. 6.2(a) demonstrates the initialization of the quasi-2D single crystal, in which four
tetragonal polarization variants randomly occupy the computational area. The red
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arrows inside each variant represent their corresponding orientation, with each variant
represented by a dark color if its polarization vector is aligned with the positive direction
of the axis, and vice versa. Since all variants in the quasi-2D case can be presented in the
initial state, the phase-field governing equation (Eq.(4.10)) is solved without activating
the nucleation function, so as to reduce the computational time.
The main process for the domain formation is shown in Figs. 6.2(b)-(e). Firstly, the

system naturally forms head-to-tail domain walls by consuming T3 and T2 variants
to remove the initially assigned charged domain configurations (head-to-head or tail-
to-tail domain structures), thereby releasing the depolarization field (Figs. 6.2(b)-(d)).
Fig. 6.2(e) illustrates the equilibrium profile after 2100 time steps, where 90○ domain
walls form with {100} twin planes. This suggests the contribution of the strain energy
to the formation of the domain structures. The simulated 90○ domain walls with head-
to-tail configurations are in agreement with Refs. [81] and [15], where the simulation
was conducted using a TDGL framework. This provides the first reliable validation of
Model II. Fig. 6.2(f) additionally shows the distribution of ψ (color map) as well as the
contours of the von Mises stresses (black lines) at the equilibrium state, reflecting the
effect of the electrostatic energy and elastic energy, respectively. It is clear that both
energies are uniform throughout the domain, with variations at the domain walls.

(a) Initial setup (b) Equilibrium state

T2

T1

T3
T4

(c) ψ and Von Mises stress of (b)

-0.004

0.007

ψ
(V

)

Figure 6.3.: (a) is the initial setup of a 2D single crystal with 500×500×1 cells. (b)
represents the domain configurations of (a) at the equilibrium state. Red arrows in (a)
and (b) represent the direction of the polarization. (c) illustrates the electric potential ψ
and the distribution of the von Mises stress (shown as black thin lines) of (b). Adapted
from Ref. [16].

It should be addressed that in addition to the simple 90○ lamellar domain structures,
complex domain configurations can also be obtained where both 90○and180○ domain
walls are stable. These complex structures depend on the interaction between elastic
and electric energies, as well as on the original setup or computed geometry. For
instance, Fig. 6.3 depicts the simulated results of a single quasi-2D tetragonal crystal
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with 500 × 500 × 1 cells. With different sizes and initial setup compared to Fig. 6.2(a),
both the 90○ ferroelastic domain walls and the 180○ ferroelectric domains coexist at
the equilibrium state (Fig. 6.3(b)), starting from the initial state shown in Fig. 6.3(a).
This leads to more intricate distributions of von Mises stress and a complex variation
in electric potential (Fig. 6.3(c)).
The first column of Fig. 6.4 illustrates the initial setup, the computed domain struc-

tures at the equilibrium state as well as the associated ε11 and ε33 for a 3D single crystal.
The polarization direction for each variant corresponds to Fig. 4.1(d). Similarly, the
dark colors indicate tetragonal variants with the polarization direction aligned along
the positive x1, x2, or x3-axis, while the light colors correspond to variants with the
polar vector in the opposite direction. The computed domain structure is configured by
head-to-tail 90○ domain walls, constructed by T2 and T6 variants. In the 3D tetragonal
single crystal, the domain structure and distribution of total strain suggest that strain
energy predominantly influences the formation of the domain structure. To provide
insight into the formation mechanism of the domain configuration in a 3D system,
the temporal evolution of the morphologies across three sectional planes (x1x2, x1x3,
and x2x3) is also illustrated from the second column to the fourth column in Fig. 6.4.
In order to ensure a consistent point of comparison, the sections in the x1x2, x1x3,
and x2x3 planes are centered at the midpoint of the axis that is perpendicular to each
plane. Evolution from 0 to 100 steps in each section indicates the influence of the
depolarization field to dismiss the tail-to-tail and head-to-head charged domain walls.
The notable observation of the unfilled T6 variant appearing at the boundary in the
x1x3 plane suggests that the domain structure formation in one plane is influenced by
interactions with other domains. With time, the 90○ domain structure stabilizes in each
plane, leading to the formation of 90○ ferroelastic domain walls within the whole 3D
single crystal.
During the simulation at t = 100∆t, one may observe the emergence of a curved

interface, characterized by a curvature domain wall connecting the T4 and T6 variants
in the x1x2-plane, located between the highlighted red circles. The presence of such
a curved interface could be attributed to the reduced resolution in 3D simulations,
particularly around the triple junction where the phase interfaces could intersect at a
120○ angle and advance accordingly because of the associated driving force. As a result,
the phase interface that bridges two triple junctions could be affected by two different
directions, leading to the manifestation of curvature in the domain wall during the
simulation.

6.3.2. Domain switching induced by an electric field

The domain switching under an external electric field was conducted, so as to further
validate the practical applicability of the current model in depicting the behavior of
ferroelectric materials. Switching domain in ferroelectrics under induced electric field
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Figure 6.4.: The simulation of the 3D single crystal with 100 × 100 × 100 cells. The
initial setup, the computed domain structure and strain ε11 and ε33 are illustrated in
the first column. The temporal evolution of the x1x2-plane at x3 = 50, the x1x3-plane
at x2 = 50, and the x2x3-plane at x1 = 50 are shown in the second, third, and fourth
columns, respectively. The polarization orientation for each variant is consistent with
Fig. 4.1(d). Adapted from Ref. [16].

can be categorized into three primary stages [164]: (1) domain nucleation aligns its
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polarization direction with an imposed electric field, typically at interfaces or defects
where local free energy is elevated; (2) the high energy at the leading edge of the
newly formed and unstable charged domain results in rapid propagation in the induced
electric field to release the depolarization field; meanwhile, (3) lateral domain growth
perpendicular to the imposed electric field is facilitated by lateral movement of the
neutral domain wall. That is, domain switching comprises nucleation, growth, and the
movement of the corresponding domain walls. In order to simulate these processes
using Model II, the noise term £ in Eq. (4.10) is applied at every fiftieth-time step,
following a uniform distribution for the initial 1000 iteration steps. Likewise, periodic
boundary conditions are implemented on all sides to solve the phase field, electric field,
and mechanical field.

(a) t = 1 ∆t

T1

T4

(b) t = 225 ∆t (c) t = 425 ∆t

(d) t = 600 ∆t (e) t = 1050 ∆t (f) t = 1200 ∆t

Eext

T2

T4

Figure 6.5.: Domain switching when E∗ext was induced along the direction of T2 variant
([1̄00] direction), in which (a)-(f) shows the temporal evolution. Red arrows represent
the associated polarization orientation within each variant and the blue arrow in (f)
depicts the direction of E∗ext. Adapted from Ref. [16].

Fig. 6.5 illustrates the simulated results when inducing the dimensionless electric
field E∗ext = 1 (∣Eext∣ = E∗ext∣α1∣P0 × 106 kV/mm) to the equilibrium profile shown in
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Fig. 6.2(e), along the direction of T2 variant ([1̄00]-orientation). Due to the inclusion of
the noise term £, T2 and T3 appear initially and temporarily in small quantities at the
binary T1-T4 interface, as depicted in Fig. 6.5(a). The growth of the new phase depends
on the energy dynamics of the system. If the new phase is energetically favorable, it
may overcome the energy barrier to growth. Otherwise, the introduced disturbances
typically dissipate within a few time steps. As a result, T2 grows while T3 disappears in
Figs. 6.5(b) and (c). This approach improves simulation efficiency and enables precise
computation of all interpolated quantities. The choice of the interval between two noise
steps plays a significant role during the simulation. It should be small enough to avoid
significant effects on the resulting microstructure, while large enough to allow the
system to suppress undesired variations at energetically unfavorable nucleation sites.
Meanwhile, T4 is energetically more favorable compared to T1, as E∗ext was applied
along the [1̄00] direction. As shown in Fig. 6.5(d), thus T4 grow while consuming T1
phase (Fig. 6.5(d)). Simultaneously, the most favorable T2 nucleate successfully and
grow from the domain wall by consuming both T1 and T4 variants, as illustrated in
Figs. 6.5(d) and (e). Eventually, the system reaches a stable state in Fig. 6.5(f), where a
90○ domain wall is formed composed of T2 and T4. The domain wall has been switched
from the [110] plane to the [1̄10] plane.
In contrast, Figs. 6.6(a)-(d) illustrate the process of the domain switching when the

same E∗ext is applied to the [100] direction. It can be observed that T2 and T3 variants
do not nucleate, despite repeated thermodynamic perturbations caused by the noise £.
This is due to such an external electric field favoring the T1 variant, allowing it to
remain stable in the system. Domain switching in this case occurred by either widening
or narrowing the corresponding variants. In general, domain switching in Model II is
achieved through the nucleation and growth of ferroelectric variants, consistent with
the previous discussion.
E∗ext with the same amplitude was applied to the positive and negative x2 axes as

well, as shown in Figs. 6.6(e) and (f). Comparing Figs. 6.5(f) and Figs. 6.6 (d)-(f) reveals
that after switching from the initial domain structure (Fig .6.2(e)) under varying E∗ext,
not only can the orientation of the domain change, but its size and configuration can
also be altered. These simulations demonstrate that domain switching of both 180○

and 90○ occurs when E∗ext aligns with the direction of the absent variants. Conversely,
when the induced field aligns parallel to the existing variants, domain switching of 90○
is exclusively observed. The computed results with the current model align with the
previous simulations described in Ref. [81], confirming the suitability of Model II for
investigating domain switching.

6.3.3. Polarization and strain hysteresis

Besides the qualitative analysis of domain structures, a phase-field model for ferro-
electrics should also allow for quantitative calculations when an external stimulus is

86



6. Computing domain structures in bulk ferroelectrics using Model II

(a) t = 10 ∆t (b) t = 450 ∆t (c) t = 505 ∆t

(d) t = 1200 ∆t

T1

T4

Eext

(e) t = 1200 ∆t

Eext

T1 T3

(f) t = 1200 ∆t

Eext

T1

T4

Figure 6.6.: Domain switching of E∗ext was applied along the direction of T1, T3, and
T4 variants, respectively. (a)-(d) show the temporal evolution of E∗ext applied along
the [100] orientation, while (e) and (f) display the simulated results of applying Eext

along [010] and [01̄0] direction, respectively. The blue arrows in (d)-(f) represent the
direction of the induced electric field, and the red arrows illustrate the polarization
direction of each variant. Adapted from Ref. [16].

applied. As discussed in Section 2.1.6.1, ferroelectrics exhibit nonlinear polarization
and mechanical variations under cyclic external electric fields. Thus, the polarization
and strain hysteresis of the BTO material under external electric fields are calculated in
this subsection. Firstly, Fig. 6.2(e) was established as the original state. The E∗ext was
applied to parallel to the positive x1−axis if it had a positive magnitude. In contrast, for
a negative magnitude of E∗ext, the field aligned antiparallel to the positive x1-axis. The
applying E∗ext detail proceeded as follows: starting from 0 to 1.2, it increased initially
by in by increments of 0.24 in strength. Subsequently, maintaining the same strength,
it decreased from 1.2 to −1.2, followed by another increase from −1.2 to 1.2. At each
loading point, iterations consisting of 4000 steps were performed to ensure that the
computed domain structures reached an equilibrium profile. Meanwhile, the same
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Figure 6.7.: (a) and (b) respectively illustrate the computed polarization and strain
hysteresis under circularly applied electric fields. Adapted from Ref. [16].

nucleation mechanism discussed in Section 6.3.2 was applied during the first 1000 steps
at each point. The average polarization P̄ ∗1 (P ∗1 = P1/∣P0∣) and the average strain ε̄11
along the [100] direction were evaluated as the microscopical response of the BTO to
external electric fields. Figs. 6.7(a) and (b) respectively depict the computed polarization
hysteresis and strain hysteresis, while the domain structures of the correspondingly
marked points A-H are illustrated in Figs. 6.8(a)-(h).

Starting from Fig. 6.2(e), applying E∗ext along [100] direction leads to an increment in
both the average polarization and the average strain along the positive x1-direction,
as illustrated in Figs. 6.7(a) and (b). A comparison of the domain configurations in
Figs. 6.8(a) and Fig. 6.2(e) suggests that the T1 is more energetically favorable, which
explains the absence of nucleation and growth of T2 and T3. Thus, domain switching
from the original state to point A is caused by the movement of the domain walls,
resulting in the growth of the T1 at the expense of T4. The multiple domains in point
A also indicate that under E∗ext = 1.2, the system has not yet reached the saturation
state with only one domain existing. As shown in Figs. 6.7(a)-(c), the domain structures
indicate that both the average polarization P̄ ∗1 and the average strain ε̄11 decrease
linearly, consistent with the plots in Figs. 6.7(a) and (b). With an increase in the
magnitude of E∗ext applied along the [ ¯100] direction, domain walls initially in the [110]
plane were switched into the [1̄10] plane, causing a jump from point C to point D in
both the polarization hysteresis plot (Fig. 6.7(a)) and strain hysteresis plot (Fig. 6.7(b)).
The coercive field in such a single crystal system can then be evaluated based on this
jump. According to domain structures in Fig. 6.8(e), T2 grows when the size of E∗ext
increases to point E, which accordingly increases P̄ ∗1 and ε̄11, as demonstrated in Fig. 6.7.
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(a) A
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(b) B (c) C (d) D
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(e) E (f) F (g) G (h) H

Figure 6.8.: Domain configurations for the marked points of Fig. 6.7. Red arrows
demonstrate the polarization orientations of variants. Adapted from Ref. [16].

As E∗ext gradually varies from −1.2 to 1.2, both the absolute value of the average
polarization and the average strain decreases steadily. This can be explained by the
growth of T4 in the domain structures, as shown in Figs. 6.8(e)-(g). Similarly, P ∗1 jumps
from negative to positive when the electric field reaches the coercive field, as indicated
by points G and H in Fig. 6.7 (a). Meanwhile, there is also a jump in the strain hysteresis
(Fig. 6.7(b)). Comparing Figs. 6.8(g) and (h), this is consistent with the associated change
in the domain structures. Even though the jumps and their associated domain switching
have been observed in Figs. 6.15 and 6.8 using Model II, the computed hysteresis loop
generally exhibits linearly variations in the average polarization and average strain.
This is because polarization does not evolve during the simulation and the spontaneous
polarization with a constant magnitude of ∣P ∣ = 26µC/cm2 was kept constant even
under different electric fields.

6.3.4. Domain switching induced by a mechanical field

Domain switching under mechanical loading, either through external stress or strain,
is another important property of ferroelectric materials. Therefore, this subsection
computes the domain evolution induced by an applied strain along the [100] direction
using Model II. Typically, Fig. 6.9 demonstrates the temporal evolution of the domain
switching as well as its associated elastic strain evolution when a compressive strain
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εext11 = 0.01 is applied to the domain configuration shown in Fig. 6.2(e). To mimic the
variant nucleation, the same nucleation mechanism was employed in this calculation.
However, observations from Fig. 6.9 suggest that variants T2 and T3 do not successfully
nucleate and grow, revealing that the energetically favorable variant already present in
the initial state is T4 in this case. The domain switching induced by mechanical loading
is therefore achieved through the movement of the already-present variants. Thus, one
can find the growth of the T4 variant by shrinking T1, as shown in Fig. 6.9(a). This
transformation continues until multiple domains are completely replaced by a single
domain where the T4 variant occupies the entire region after 1200 simulation steps.
Comparing the equilibrium structure at 300 steps with the initial structure (0 steps) in
Figs. 6.9(a) also indicates that only a 90-degree domain wall switching occurs under
such an external strain.
Figs. 6.9(b) and (c) additionally demonstrate the temporal evolution of ε11 and ε22,

respectively. It is clear that the 90○ domain wall switching leads to a change in the strain
distribution. This, in turn, reduces the induced strain energy to minimize the free energy
of the system. Since the 180○ domain switching is mainly driven by electric energy
penalties instead of strain energy penalties, the nucleation of T2 and T3 variants—
essential for such domain switching—does not take place in the simulation. This result
is in agreement with the work of Wang et al. in Ref.[81], where it was found that only
90○ domain switching can occur under external mechanical loading. Meanwhile, such
a conclusion is also consistent with the predictions of the continuum theory, which
suggests that the external mechanical loading can only lead to 90○ domain switching in
ferroelectrics.
To sum up, this section employs Model II to investigate domain formation and

switching under various external stimuli in a single-crystal bulk BTO material. The
computed results align with existing literature [81], confirming the efficacy of Model II
with the multiphase-field framework for accurately characterizing domain structures
in ferroelectric materials.

6.4. Phase-field simulation in polycrystalline systems

6.4.1. Simulations in bicrystalline system

6.4.1.1. Domain formation

To explore mechanisms of domain formation and switching in polycrystalline fer-
roelectrics with varying orientations, simulations were initially conducted for four
bicrystalline systems labeled B0, B1, B2, and B3. Fig. 6.10(a) illustrates the initial con-
figuration of these bicrystalline structures, employing a quasi-2D grid consisting of
300×300 ×1 voxels. The grain orientation in each bicrystalline system is confined to
rotations within the x1x2-plane. For comparison, Grain 2 in each bicrystalline system
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Figure 6.9.: The temporal evolution is illustrated when a compressive strain is introduced
along the [100] direction to Fig. 6.2(e). (a) shows the domain switching, while (b) and
(c) depict ε11 (%) and ε22 (%), respectively. Adapted from Ref. [16].

maintains an orientation with φ2 = 0, while Grain 1 is rotated to different angles in each
system. Additionally, each grain consists of four randomly assigned tetragonal variants.
The grains are distinguished by the different color series, specifically blue colors denote
Grain 1 while Grain 2 is represented with purple. Colors in each grain range from dark
to light, depicting variants from T1 to T4. For these bicrystalline systems, periodic
boundary conditions are applied for the phase, electric as well as mechanical fields
along the top and bottom surfaces. To solve the phase-field ϕ on the left and right
surface, a homogeneous Neumann boundary condition is used, denoted as:

∂ϕ

∂xi
∣
xi∈∂Ωi

= 0, (6.4)

where i represents the x1− or x2−direction, and ∂Ωi stands for the corresponding field
edge. Regarding the solving of the depolarization field, a short circuit condition, i.e.,
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ψi = 0, was applied to the left and right surfaces. In addition, the clamped boundary
condition was employed for solving the mechanical field on the left and right surfaces,
ensuring zero displacements in the orthogonal directions. In particular, the mechanical
field of all polycrystalline systems of BTO in this work using Model II is effectively
resolved through the application of a mechanical jump condition approach at a diffuse
interface. Such an interface can also represent a grain boundary, rather than a domain
wall. This approach aligns with a no-slip mechanical boundary condition that has also
been used in Ref. [165] to characterize domain structures for ferroelectric polycrystalline
systems.
The simulation was first performed in the absence of an external stimulus, so as to

investigate the process of domain structure formation. The temporal evolution for B0
to B3 is shown in Figs. 6.10(b)-(e), where the white arrows represent the polarization
orientation of each variant. The electric potential ψ as well as an isoline of the von
Mises stress (thin black line) are also illustrated in Figs. 6.10(b)-(e) to compare the
influence of the bulk energy to the domain structure formation. For reference, the
simulation of a particular grain named B0, which has the same initial configuration but
without any grain orientation (φ1 = φ2 = 0), was performed. It should be addressed
that B0 differs from the single crystal as it has a dielectric grain boundary formed by
setting the mobility of the grain boundary to zero. The computed results for 200 and
1200 time steps in Fig. 6.10(b) indicate that the absence of a grain orientation difference
results in the formation of a continuous 90○ domain structure. Similarly to Section 6.3.1,
B0 initially releases electric energy to avoid the charged domain walls (t = 200∆t),
while minimizing the elastic energy (t = 1200∆t) to from the ferroelastic domain walls.
However, despite forming a 90○ domain wall, B0 exhibits significant differences in
both the electric potential and the von Mises stress when comparing Fig. 6.10(b) and
Fig. 6.2(f). This can be attributed to the influence of a grain boundary.
Simulations of B1 to B3 over 200 iterations also reveal that these systems attempt

to release the depolarization field to prevent the formation of tail-to-tail or head-to-
head domain walls, despite differences in grain orientations. For example, one can
observe that T3 tends to align parallel to T4 to form a natural 180○ domain wall in B1.
Furthermore, a comparison of Figs. 6.10(b) and 6.10(c) suggests the influence of the
grain orientation on the primary simulation process of variant transformations, causing
different domain structures at equilibrium in B1. For instance, the 5○ rotation of Grain
1 in B1 stabilized a metastable ferroelectric domain wall formed by variants T1 and
T2, leading to a distinct transformation pathway for domains in Grain 2 (500 and 1200
iterations in B1). At equilibrium, the domain morphology of B1 also reveals that both
180○ and 90○ domain walls could be stable in the polycrystalline system, highlighting
the effect of the 5○ rotation in Grain 1 on the domain structure formation. Figs. 6.10(d)
and (e) depict the temporal evolution of domain profiles in B2 and B3, respectively. It
is additionally observed that the grain orientations impact not only just the domain
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Figure 6.10.: Domain formation in the bicrystalline systems. (a) represents the initial
state and schematic diagram of the bi-crystals. φ1 and φ2 respectively represent the
orientations of grains in each bicrystalline system, in which φ2 is maintained as zero,
while φ1 varies across the systems: φ1 = 0 in B0, φ1 = 5○ in B1, φ1 = 25○ in B2, and
φ1 = 45○ in B3. (b)-(e) shows the process of the domain structures formation, and
the electric potential ψ as well as the distribution of von Mises stress (represented as
contour plots with thin black lines) at the equilibrium state for bicrystalline systems B0
to B3. White arrows demonstrate the polarization orientation of each variant. Adapted
from Ref. [16].
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morphology but also the domain size, leading to varied domain structures in Grain 2.
Furthermore, comparing the von Mises stress and electrical potential at equilibrium in
the bicrystalline system reveals that an increasing orientation difference between Grain
1 and Grain 2 promotes the formation of a 180○ domain structure in Grain 1. Therefore,
B1 demonstrates a dense stress distribution around the domain wall and the domain
junctions, while systems B2 and B3 primarily concentrate stresses at the junctions,
influenced by the inherent 180○ domains crucial for releasing the electrostatic energy.

6.4.1.2. Domain switching under an external field

(a) 120∆t (c) 400∆t (d) 800∆t; ψ and Mises stress (right)
-0.002

0.002

ψ
(
V
)

(b) 160∆t (e) 1200∆t (f) 800∆t; ψ and Mises stress (right)
-0.005

0.005

ψ
(
V
)

Figure 6.11.: The domain switching process of B1 when E∗ext = 1 was applied along
[1̄10] direction to its equilibrium state shown in Fig. 6.10(c). The transparent red arrow
in (a) shows the orientation of E∗ext, while the white arrows in (f) denote polarization
directions. The right images of (d) and (f) show their associated von Mises stress
(represented as contour plots with thin black lines) and electric potential (ψ). Adapted
from Ref. [16].

To investigate the influence of grain orientation on domain switching, an external
electric field E∗ext = 1 was applied along the [1̄10] direction to the equilibrium profile of
B0 to B3 ( Fig. 6.10). Typically, the temporal evolution of domain switching in the B1
system is shown in Fig. 6.11, where the boundary conditions described in Section 6.4.1.1
were used. Additionally, Fig. A.1 in Appendix A.2 provides the temporal evolution of B2
and B3 systems under the same E∗ext. A perturbation with a frequency of 50 intervals
was introduced during the first 1000 steps to mimic the nucleation of absent variants.
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The nucleation of the T2 variant in Grain 1, starting from the boundary between T1 and
T4 variants after 120 iterations, can be observed by the marked red circle in Fig. 6.11(a).
Afterward, the nucleated T2 in Grain 1 grows and extends to the grain boundary, leading
to another T2 nucleation in Grain 2, depicted by an additional red circle in Fig. 6.11(b).
In Fig. 6.11(c), it is evident that the T2 variant within each grain subsequently grew over
time, predominantly consuming T1. However, as illustrated in the depicted electric
potential and distribution of von Misses stress in Fig. 6.11(d), the growth of T2 after
800 time steps cased in a high concentration of both electric and elastic energy at the
junction of different variants at the grain boundary, indicated by the highlighted red
circle. This phenomenon is attributed to the orientation difference between grains 1
and 2. As marked by the red circle in Fig. 6.11(e), to overcome this energy concentration,
T3 nucleated and grew around the grain boundary region. Eventually, the domain
structures of B1 shown in Fig. 6.10(c) are switched into two 90○ domain walls composed
of T2 and T3 in both grains, as depicted in Fig. 6.11(f), where the red arrows represent
the polarization directions for the associated variants.
Similar to the single crystal simulation, the present study also investigates domain

switching under an external mechanical field. In particular, Fig. 6.12 represents the
temporal evolution of the B2 system in the equilibrium (Fig. 6.10(d)) under an external
strain εext22 = −0.005 along the [010] direction. The temporal evolution of the switching
process under the same condition for B1 and B3 bicrystalline systems can be further
found in Fig. A.2 of Appendix A.2. With the same nucleation parameters, a simulation of
150 iterations shows the nucleation of T1 and T2 in Grain 1 from the grain boundary, as
indicated by the red circle in Fig. 6.12(a). As the driving force is the same when subjected
to a compressive strain in the x2-direction, T1 and T2 grow equally by consuming the T4
variant, as observed in Fig. 6.12(b). Domain switching under the external strain is still
driven by the growth of energetically favorable variants at the expense of unfavorable
variants in the domain wall region, even in the bicrystalline system. Moreover, it is easy
to observe that there is no domain switching in Grain 1, within which has a 180○ domain
wall. This suggests that mechanical loading is unable to induce domain switching in
the natural domain structures. This finding is also in agreement with the calculation of
B3 in Fig. A.2 of Appendix A.2.

6.4.2. Phase-field simulation in a 10-grain polycrystalline BTO material

The simulations for both single-crystal and bicrystalline systems discussed above have
validated the reliability of Model II for analyzing domain structures under different
conditions. Here, Model II is further employed to compute domain formation, domain
switching, and the associated material properties such as polarization and strain hys-
teresis in a 10-grain polycrystalline system. The schematic diagram of such a system is
shown in Fig. 6.14(a), which consists of 400 × 400 × 1 voxels and each grain randomly
rotates on the x1x2-plane. Each grain is uniquely identified by a distinct set of colors.
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Figure 6.12.: The domain switching process of B2 under a compressive strain εext22 = 0.005
applied along the x2-edges to its equilibrium (Fig. 6.10(c)). The white arrows in (d)
represent the associated polarization orientations, while the right image in (d) shows
von Mises stress (contour plots with thin black lines) and the electric potential (ψ).
Adapted from Ref. [16].

Similar to the bi-crystal simulations in Fig. 6.10(a), those colors range from light to dark
to distinguish variants T4 to T1 within each grain. Periodic boundary conditions are
applied to solve all fields during the simulations.
The process of forming the domain structures without any external stimulus is

illustrated in Fig. 6.14, in which the white arrows represent the polarization directions
of the corresponding variants. Differing from the initialization of bicrystalline systems
in Fig. 6.10(a) and the single-crystal system in Fig .6.2(a), variants within each grain
could be missing because of the size limitation when using the Voronoi approach to
generate the computational structures. Therefore, the noise function £ (Eq. (4.10)) was
activated to promote the nucleation of the unassigned variants in order to obtain self-
consistent domain structures in equilibrium. Additionally, the allowed nucleation time
step was set to 10000 with a frequency of 200 time steps, ensuring a stable simulation.
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Figure 6.13.: Schematic diagram of the simulated 10-grain polycrystalline system, in
which grains are distinguished by different color series, and colors from dark to light in
each grain represent variants from T1 to T4. Adapted from Ref. [16].

An observation of Grains 4 and 5 in Fig. 6.14(a) suggests the formation of ferroelectric
domain walls to release the high energy density generated by the depolarization field.
Apart from that, the marked circles in Figs. 6.14(a) and (b) show the nucleation and
growth of variants near the grain boundary. This phenomenon occurs as variants in
neighboring grains attempt to align their polarization directions, which leads to the
release of the built-in depolarization field generated at the grain boundary. As depicted
in Figs. 6.14(c) and (d), domain structures are subsequently formed by the continuous
nucleation, growth, and disappearance of variants in each grain, aiming to minimize the
elastic and electric energy. After reaching the equilibrium state shown in Fig. 6.14(f),
a complex domain structure is formed, characterized by the coexistence of 90○ and
180○ domain walls. The corresponding von Mises stress and electric potential ψ, which
respectively represent the contributions from the mechanical and depolarization fields,
are also demonstrated in the right image of Fig. 6.14(f). In addition to domain wall
regions within each grain, stress concentration is also observed at the grain boundary,
especially in areas with multiple junctions, suggesting that elastic energy plays an
important role in forming domain structures in these regions.
Following the calculation procedure described in Section 6.3.3, Figs. 6.15(a) and (b)

depict the computed polarization and strain hysteresis for the polycrystalline system,
with the equilibrium state shown in Fig. 6.14(f) as the original state. To ensure stability
at each Eext, simulations were performed with 50000 iterations at each induced point,
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(a) t = 900∆t (b) t = 2500∆t (c) t = 6000∆t

(d) t = 10000∆t (e) t = 50000∆t; ψ and von Mises stress (right)
-0.664

0.478

ψ
(V

)

Figure 6.14.: Domain formation of the 10-grain polycrystalline system is represented in
Fig. 6.13. The right image of (f) additionally shows von Mises stress (black thin line)
and electric potential ψ at equilibrium. Adapted from Ref. [16].

which differs from the simulations in the single-grain case. Besides, a noise disturbance
with a frequency of 200 time steps was introduced during the first 10000 time steps.
Similarly, the polarization calculated in Fig. 6.15(a) and strain computed in Fig. 6.15(b)
represents the average values in the x1-direction. In general, the average polarization
increases or decreases with increasing or decreasing the external electric field strength
(∣E∗ext∣).

Interestingly, when comparing the profile of the simulated polarization and strain
hysteresis of the single-crystal structure (depicted in Fig. 6.7) with that of the 10-
grain structure (illustrated in Figs. 6.15(a)-(b)), a notable finding is that the change in
polarization in response to variations in E∗ext exhibits nonlinear behavior. Even when
the magnitude of the polarization remains constant under different induced electric
fields, nonlinear behavior is observed, indicating the influence of grain orientations on
domain switching. The domain structures of marked points A to F at equilibrium are
shown in Figs. 6.15(c) to (h), with white arrows indicating the polarization direction.
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(a) Polarization hysteresis

(b) Strain hysteresis

(c) A

(d) B

(e) C (f) D

(g) E

(h) F

Figure 6.15.: (a) and (b) respectively demonstrate the simulated polarization and strain
hysteresis of the polycrystalline system with the application of external electric fields.
The associated domain structures of points A to F are shown in (c)-(h). Adapted from
Ref. [16].

Imposing the electric field in the reverse direction, the domain morphology of point A
(refer to Fig. 6.15(c)) tends the domain in certain grains to align with the applied field,
particularly near the grain boundaries. As the external electric field varies from A to C,
there is a notable increase in the formation and growth of domains aligned with the
external electric field, as depicted in Figs. 6.15(d) and (e). This domain switching causes
a significant jump in polarization and strain (Figs. 6.15(a) and (b)). One can observe
another contrasting jump when the magnitude ofE∗ext along [100] direction is increased
(point E), where the polarization direction in each grain is once again switched to
align with [100] direction. The domain morphology at the endpoint of the external
electric field (point F) is illustrated in Fig. 6.15(h). It can be seen that the polarization
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direction in the grains aligns with the imposed electric field and the respective crystal
orientations. Whereas, the presence of multiple domains within certain grains suggests
that the saturation polarization state has not been reached in the current calculation,
analogous to point C.
As a summary, this section illustrates the mechanisms of domain formation and

switching under an external field in polycrystalline ferroelectric materials, using Model
II based on themultiphase-field approach. In general, to achieve a self-consistent domain
structure for complex polycrystalline systems, it is recommended to activate variant
nucleation at the beginning of the simulations, regardless of whether there is an external
stimulus. Akin to the single-crystal simulations, incorporating variants nucleation also
enables domain switching under external fields in polycrystalline systems. Therefore,
Model II can also compute polarization and strain hysteresis in polycrystalline systems.
However, differing from single crystal simulations, grain boundaries, and orientations
affect the domain formation and domain switching, leading to the nonlinear behavior
in the calculated hysteresis loop.

6.5. Conclusion

This chapter shows the application of Model II to calculate domain structures and
domain switching in the single-crystal, bi-crystal, and polycrystalline BTO material. In
general, noise perturbations are unnecessary for domain formation in a single crystal or
a simple multigrain system like a bi-crystal system where all variants can be assigned
initially, and if there are no external fields. However, for more complex polycrystalline
structures where all energetically equivalent polarization states of ferroelectric phases
could not be assigned due to dimension limitations, the noise function £ in Eq. (4.10)
is required to form self-consistent domain structures. Apart from that, the thermal
fluctuation should also be included to account for the nucleation of all lacking variants
near the interface such as domain walls or grain boundaries, so as to accurately simulate
domain switching under external fields. Based on the computed domain switching
process, the polarization and strain hysteresis loops under external electric fields are
computed for the single crystal and 10-grain polycrystalline system. A comparison
of the simulated results suggests the influence of grain boundary and orientations
on the properties of the ferroelectric material. In the present study, the noise term is
integrated to represent the nucleation process because of the use of the multi-obstacle
type potential. In contrast, it is unnecessary to activate the noise term when using a
multiwell potential. The computed results in this chapter are in agreement with the
literature, verifying the reliability and feasibility of Model II.

Model II is based on the multiphase and multicomponent concept in Ref. [78], within
which the mechanical solution is performed using a jump condition technique described
in Refs. [132, 133, 160]. This enables the calculation of both single-crystal and polycrys-
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talline systems, in addition to the analysis of the influence of the mechanical field on
the domain structures. By replacing the domain wall energy density with a phase-field
gradient energy density and substituting the Landau potential with a multi-obstacle
potential, Model II facilitates numerical simulations of BTO materials without using
gradient and Landau coefficients. Moreover, Model II can allow the interfacial energy to
be independently adjusted to capture specific interfacial properties, including interfaces
for varying variants, grains with different orientations, or interfaces separating distinct
ferroelectric phases. In summary, the simulations in this chapter serve as a significant
reference for the further development of the multiphase concept in ferroelectrics.
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7.1. Introduction

Due to their intrinsic electrical polarization at nanometer thicknesses, ferroelectric thin
films exhibit remarkable properties. Their ability to switch domains in response to an
electric field, coupledwith their extraordinary piezoelectric, nonlinear optical properties,
and pyroelectric, positions them at the forefront of research and development in diverse
fields such as sensors, memory devices, photovoltaic, and other applications [166–169].
Domain structure is an inherent property of ferroelectric thin films, playing a crucial
role in determining their performance. A deep understanding of the domain structures,
together with the ability to manipulate their configurations, is therefore of importance
for developing ferroelectric thin films.
Since Li et al. introduced their methodology for solving the mechanical field of an

epitaxial ferroelectric film constrained by a substrate in Ref. [89], the TDGL approach
has been extensively adopted for in-depth studies of ferroelectric thin films. For instance,
over the past two decades, this approach has played a significant role in understanding
the complexities of ferroelectric phase transformations in various ferroelectric thin films
and the corresponding domain structures [13, 19, 90, 170–172]. The effect of awide range
of scenarios on the domain structures has been covered in these investigations, such
as the effects of mechanical strain, thin film thickness, electrical control, paraelectric-
ferroelectric transformation temperature, and other relevant variables. Besides, taking
the strain gradient effect into account, investigations of the flexoelectric properties in
ferroelectric films have also been extended in literature such as [110, 173, 174].

However, the lack of Landau coefficients limits the examination of domain formations
and the mechanisms underlying the exceptional performance of some recently devel-
oped ferroelectric thin films. Therefore, Model II has been extended to investigate the
ferroelectric thin films in this chapter, based on the publication in Ref. [17]. The analy-
sis includes investigating domain wall stability influenced by substrate deformation,
substrate constraints, film thicknesses, and paraelectric-ferroelectric transformation
temperature.
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7.2. Simulation setup

The schematic diagram for the simulated film system is visually illustrated in Fig. 7.1(a).
The investigation centers on the domain structures of an epitaxial single-crystal PTO
thin film with (001)-oriented growth on a cubic substrate. The PTO film, with a thick-
ness hf characterized by a vertical dimension along the growth axis, is subjected to
confinement from a substrate that has an allowed deformation height hs. As shown
in Fig. 7.1(b), the order parameters in the film area have the values ϕfilm(x, t) = 1
and ϕsub(x, t) = 0, while ϕfilm(x, t) = 0 and ϕsub(x, t) = 1 are maintained within the
spatial extent of the substrate region. The diffuse interface represents the region of
transformation between the film and the substrate, where the mobility of the phase
transformation is set to zero. This allows for representing time invariance between the
two phases. Moreover, the thin film consists of different regions representing different
polarization variants. In the PTO material with a tetragonal ferroelectric phase, there
are also six polarization variants oriented along the <100>-directions, as depicted in
Fig. 7.1(c). In this work, domains with the polarization direction aligned with the
in-plane directions are termed a-domains, while those perpendicular to the substrate
are classified as c-domains (see Fig. 7.1(c)).

Substrate

Film

hs

hf

x1

x2

x3

ϵπ2/4

x3

ϕ

ϕ
sub

ϕ s
ub

0

1

diffusioninterface

a1-domain

a2-domain

c-domain[001]

[010]
[100]

T6
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T3
T2 T1

(a)(b) (c)

Figure 7.1.: Application of Model II in an epitaxial ferroelectric thin film. (a) describes
the simulated system; (b) exhibit the thin film and the substrate across the diffusion
region, in which ϵπ2/4 describes the interfacial thickness; (c) presents the variants and
their associated polarization state in the tetragonal phase. Adapted from Ref. [17].

Once again, all simulations are conducted in Pace3D [148] from our group. The flow
chart illustrating the overview of the solution process is referred to Fig. 6.1 in Chapter 6.
Similarly, a finite difference algorithm using an explicit forward Euler scheme was
employed to rigorously solve the phase-field evolution equation given by Eq. (4.11).
The equidistant Cartesian grid is used for the spatial discretization of all governing
equations. Following this, the stationary momentum balance formulae (Eq. (3.24)) is
solved implicitly to evolve the displacement field u. Concurrently, the electrostatic
equilibrium condition in Eq. (4.9) is addressed using conjugate gradient methodology.
Voronoi tessellation was used to create the initial configuration for the computed film.
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In order to enhance the computational efficiency, the domain was partitioned in both
x1- and x2-directions using the MPI standard during the simulation.

The domain structure formation within a ferroelectric thin film depends on the use
of well-defined boundary conditions to solve for variables including the phase-field
tuple ϕ, the mechanical fields, as well as the electric field. Firstly, all fields are subjected
to periodic boundary conditions along the x1 and x2 axes. For solving the phase-field
field on the top (x3 = hf ) and bottom (x3 = 0) surfaces of the thin film, Neumann
boundary conditions were used, denoted as:

∇ϕ ⋅ e3 = 0, (7.1)

in which e3 denote the unit vector in x3-direction. This boundary condition enforces all
interfaces to be perpendicular to the film boundary. Since the polarization is predeter-
mined for each variant and its value across the interface is obtained by the interpolation
ofϕ, this boundary condition forϕ thus corresponds to a Neumann boundary condition
for polarization, expressed as:

∇P ⋅ e3 = 0. (7.2)

Based on the Poisson equation in Eq.(4.9), this suggests that the electric potential ψ
equals zero at the boundary, indicating no electric charge flux across the boundary.
Therefore, short-circuited boundary conditions are applied on the top and bottom
surfaces for solving the electric field, denoted as:

ψ ⋅ e3 = 0. (7.3)

With regard to the mechanic fields, a condition of

σi3∣x3=hf
= 0 (7.4)

is enforced at x3 = hf (top surface) to simulate a stress-free interface, whereas the
lowermost layer of the substrate (bottom surface of the film-substrate system) is held
in a fixed position via prescribing a vanishing displacement, denoted as:

u∣x3=−hs = 0. (7.5)
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Table 7.1.: The material coefficients and phase-field parameters used in the current
simulation. Adapted from Ref. [17].

Material Coefficients Symbol Value Unit
Dielectric stiffness α1 (T-497)*3.8a 105 ⋅ [m/F]
Interfacial energy γαβ 0.01 J/m2

- γcα 0.01 J/m2

Elastic tensor C11 17.46 1010⋅[N/m2]
PTOa C12 7.94 1010⋅[N/m2]

C44 11.11 1010⋅[N/m2]
Electrostrictive tensor Q11 8.90 10−2⋅[m4/C2]

PTOa Q12 -2.60 10−2⋅[m4/C2]
Q44 6.75 10−2⋅[m4/C2]

Elastic tensor C11 43.10 1010⋅[N/m2]
KTOb C12 10.30 1010⋅[N/m2]

C44 10.90 1010⋅[N/m2]
Gradient coefficient G11 10.56 10−11 ⋅ [Nm4/C2]

Thermal expansionc αf 12.60 10−6 ⋅ [1/K]
αs 6.67 10−6 ⋅ [1/K]

a The dielectric stiffness, elastic tensor coefficients, and electrostric-
tive tensor coefficients of PTO are from Ref. [89].

b Elastic tensor coefficients of KTO are found in Ref. [175].
c Ref. [176] describe the thermal expansion of αf and αs.

The computed region was partitioned into cells with dimensions of ∆x1 = ∆x2 =
1nm and ∆x3 = 0.5nm. ϵ was established at a value of 2∆x3 by talking the interface
stability into account. The input interfacial energy γαβ is assigned physical meaning
by setting it equal to the domain wall energy density. PTO exhibits a ferroelectric
tetragonal phase, capable of formatting either 90○ or 180○ domain structures in this
work. The case of the 180○ domain wall energy is employed for γαβ , which is computed
based on Eq. (6.1). The parameter γcα in Eq. (4.17) is assigned the same value as γαβ .
TheMαβ in Eq. (4.11) governs the mobility of variants within the film set to be one
while setting as zero between film and substrate. Similarly, the background dielectric
constant was set to 50.

The simulation starts with exploring the impact of substrate heights and constraints
on domain morphologies. This is followed by examining the epitaxial growth of PTO
on a (001)-oriented KTO substrate, in which the formation of domain structures was
explored with varying film thickness and different paraelectric-ferroelectric transfor-
mation temperatures. The required phase-field parameters and material coefficients
of PTO in the current simulation are listed in Table 7.1. In order to increase accuracy,
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the input coefficients were transformed into dimensionless values with further details
available in Eq. (6.3).

7.3. Results and discussion

7.3.1. Influence of substrate deformation on the domain structures

The simulations begin with investigating how substrate deformation influences domain
structures. This is achieved through implementing simulations of the thin film with
a thickness of 20 nm growth on varying substrate heights (hs) at room temperature.
Simultaneously, the film is subjected to a specified tensile misfit strain with a value
of 0.006. Here, hs also represents the deformation region of the substrate, while
x3 = −hs indicates the surface of zero displacements enforced by appropriate boundary
conditions. The scenario where hs = 0 corresponds to a rigid substrate. Following
this, the volume fraction and morphology of the c-domains are compared and analyzed
across different hs. These simulations were conducted in a quasi-2D thin film system, in
which the initial configuration is shown in Fig. 7.2(a). The system was discretized into
128 × 1 × (40 + ns) cells, where ns = hs/∆x3 denotes the number of cells discretizing
the substrate, depending on the considered hs. Topically, ns was allowed to vary in a
range from 0 to 36, with an internal step size of 3. The film region was divided into
six randomly distributed polarization states. The polarization directions for T1, T2,
T5, and T6 variants are illustrated by the black arrows. In the T3 and T4 variants, the
dots and cross indicate their polarization direction towards or away from the observer,
respectively.

Figs. 7.2(b)-(h) depict the domain structures for typical substrate thickness hs. Each
figure corresponds to a point marked on graphical Fig. 7.2(i), which represents the com-
puted volume fraction of the c-domain (Vc) within the film at the equilibrium stage for
different substrate heights hs. From Figs. 7.2(b)-(h), it is apparent that the morphology
of the domain changes with varying substrate height. However, it eventually stabilizes
into a consistent configuration once the substrate height reaches a convergent value
that cases only slightly changes in Vc. This observation aligns with the data plotted in
Fig. 7.2(i), where Vc exhibits a decrease and finally converges to a constant value as hs
increases sufficiently. These findings indicate that the influence of the displacement
boundary condition at x3 = −hs on the domain evolution becomes negligible. To explain
the simulated results, the average bulk driving force f∗bulk = f∗elast + f∗elec and its elastic
contribution f∗elast of the thin film as a function of the substrate height have also been
plotted in Fig. 7.2(i). Notably, both the elastic energy and the total bulk energy (the
sum of the elastic and electrostatic energy) demonstrate a consistent decreasing trend,
mirroring the behavior observed in Vc. This suggests that the driving force stemming
from the elastic energy promotes and contributes to the stability of the a-domain across
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various substrate deformation thicknesses. The substrate deformation results from the
non-uniform deformations within the thin film, leading to the displacements in the
substrate to approach zero at a sufficient distance from the substrate-film interface. This
contributes to reduced elastic energy density, thus resulting in a decrease of c-domains.
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Figure 7.2.: (a) is the initial setup of the simulated 2D-film system. (b)-(h) are the
computed domain structures for varying substrate height hs in the equilibrium state.
(i) illustrates the computed volume fraction of the c-domain (Vc), the dimensionless
elastic energy (f∗elast), and the summation of elastic energy and electrostatic energy
(f∗bulk). Domain morphologies from (b)-(h) correspond to the marked points A to G in
(i). Adapted from Ref. [17].

Furthermore, the substrate thickness has a recognizable influence on the domain
morphology, as shown in Figs. 7.2(b)-(h). At Point A, where the substrate height hs = 0,
a-domains are unable to exist near the film-substrate interface. Even for substrate
heights hs ranging from 1.5 nm to 7.5 nm (points B to D), the width of the a-domains
near the surface appears slightly narrower. Interestingly, at hs =4.5 nm, the emergence
of T2 is observed. As depicted in Figs. 7.2(f) to (h), as the substrate height changes
from 10.5 nm to 16.5 nm, both the 90○ and 180○ domain walls stabilize. Concurrently,
the orientation of the domain walls between a-domains and c-domains shows a slight
deviation from the ideal 45○ angle relative to the film-substrate interface.

It is worth mentioning that the motivation for conducting these simulations was to
determine the critical height of the substrate deformation, identified in the simulation
as hs = 0.6hf . Beyond this threshold, the influence of substrate deformation on the
domain structures of the film converges to a specific value. For large-scale simulations,
knowing this critical value is important because it indicates that substrate thickness
beyond this threshold has a negligible influence on the domain structures of films.
Thus, by identifying this critical height as a key parameter to determine the substrate
thickness corresponding to its film, efficient preservation of computing resources can
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be achieved. Depending on the simulation results, the substrate height hs was chosen
as 0.75hf in subsequent simulations.

7.3.2. Effects of substrate constraints on volume fractions and the
morphology of domains

To study the influence of substrate constraints on the domain configuration and volume
fraction of c-domains at room temperature, a 3D simulation was conducted in this
subsection. The simulated system is fixed as 128nm × 128nm × 35nm, with a film
thickness hf = 20nm and substrate height hs = 15nm. The initial 3D setup is shown in
Fig. 7.3, where each color in the thin film corresponds to a tetragonal variant, similar to
the representation in Fig. 7.2. Additionally, the polarization direction for each variant
can be cross-referenced in Fig. 7.1, in which the red color series represents the c-domains.
The computed Vc, average ε̄33, and the domain morphologies under varying misfit strain
are also shown in Fig. 7.3.
From the observations presented in Fig. 7.3, it is clear that the misfit strains signif-

icantly influence both the domain structures and the stability of polarization states
across different orientations. For example, under significant tensile strain with a value
of 0.012, the c-domain does not remain stable. Consequently, all domain walls between
a1- and a2-domains align perpendicular to the film surface as well as follow the [110] or
[11̄0] crystallographic directions. However, as the magnitude of misfit strain decreases
(indicating a reduction in tensile strain), the c-domain starts to emerge, resulting in an
increment in the volume fraction of the c-domains in its plotted profile. As a result,
the equilibrium domain structures consist of both a− and c-domains. Additionally, the
domain walls between the a- and c-domains exhibit orientations that deviate slightly
from the 45○ angle relative to the film-substrate interface. Based on the simulated
results in Fig. 7.3, it is additionally clear that a-domains can be absent when the film is
subjected to a compressive misfit strain with an amplitude of 0.003 or more.

For misfits of εmis ≥ 0.01, the domain morphologies exhibit the typical 90° configura-
tions characteristic of tetragonal compositions. In these cases, the polarization vectors
are aligned parallel to the plane of the film, producing the characteristic stripe patterns.
In contrast, for misfits of εmis ≤ −0.001, the domain morphologies display the typical
watermark patterns associated with 180° domain configurations. In these instances with
different domain variants, the polarization vectors are oriented perpendicular to the
plane of the film, leading to the observed meandering domain walls. It is worth noting
that the critical thresholds for the absolute magnitudes of compressive and tensile misfit
strains, which are necessary to sustain either only c-domains or a-domains, are not
the same. The difference can be attributed to the short-circuited boundary conditions
imposed at both the top and bottom surfaces of the thin film. Such an observation aligns
with earlier findings from TDGL-based phase-field simulations in Ref. [90], which sug-
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gest that applying the short-circuited boundary conditions is a benefit for the stability
of c-domains.
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Figure 7.3.: The initial setup of the 3D structure for the current simulation, and the
computed domain structures, the volume fraction of the c-domain, and ε̄33, under
different misfit strains. Adapted from Ref. [17].

The average value of ε̄33 in the ε̄33 vs. εmis plot of Fig. 7.3 illustrates a significant
decrease as the misfit strain shifts from the compressive to tensile value, which enhances
the stability of the a-domains. Therefore, a similar varied shape can be observed in the
plot of Vc versus εmis. It should be mentioned that because of the use of the periodic
boundary conditions along the x1- and x2-axes, both the average value of ε11 and
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ε22 equal to zero. Therefore, these components are not considered in this paper. In
order to investigate the formation mechanisms of domain structures under varying
substrate constraints, the temporal evolution of domain structures formation at misfit
strain of εmis ∈ {0.012,0.006,−0.003} is further illustrated from Figs. 7.4 to 7.6. For a
comparative analysis of how different constraints affect the final domain morphology,
the associated evolution of the principal strains, ε11, ε22, and ε33for each respective
case, has also been included in Figs. 7.4 to 7.6.
As illustrated in Fig. 7.4, with a significant tensile strain εmis = 0.012, the gradual

disappearance of c-domains over time suggests that substrate confinement promotes the
preferential formation of a-domains with the application of the short-circuited electric
boundary conditions, in line with the above discussion. Upon examining the evolution
of the principal strains, a significant decrease in ε33 becomes apparent, stemming from
the unstable of c-domains. At the equilibrium state, it is evident that only the two
principal strains which are aligned with the orientations of the a-domains remain.
This observation underscores the notion that elastic energy has a strong influence in
favoring the formation of the a-domains under large tensile constraints.
As the value of the misfit strain decreases from 0.012 to 0.006, the evolution of

domain structures shown in Fig. 7.5 over time suggests the stability of both a- and
c-domains, leading to the formation of a complex domain morphology at equilibrium.
In this scenario, all principal strains are present evidently. Differing from the tensile
constraint, the compressive constraint from the substrate with εmis = −0.003 causes
an absence of the a-domains, as depicted in Fig. 7.6. In comparison to Fig. 7.4, this
alteration results in a complete change in the stability of a- and c-domains during
the domain structures formation, finally characterizing the domain morphology with
only c-domains. ε11 and ε22 disappear in this case, indicating that the compressive
constraint strengthens the elastic driving force favoring c-domains while weakening it
for a-domains.
The computed influence of substrate deformations and constraints on domain mor-

phologies are in agreement with publications that employ the TDGL approach in
Refs. [89, 90]. Thus, the following subsections will explore the domain structures
associated with PTO growth on the real substrate KTO.

7.3.3. Impact of film thickness on domain structures

In this simulation, the (001)-oriented PTO films with varying thickness grown on
KTO substrates were analyzed. The in-plane dimensions of the film were represented
using a computational grid consisting of 128 cells along the x1- and x2-axes. In the
above simulations, the ferroelectric film was assumed to be completely constrained
by the underlying substrate. Except for the spontaneous stresses stemming from the
ferroelectric phase transition, such an assumption leads to the emergence of internal
stresses from the epitaxy. If the internal stresses caused by lattice misfit exceed a

110



7. Computing domain structures in PTO thin film using Model II
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Figure 7.4.: The temporal evolution of domain structures, along with the associated
ε11, ε22, and ε33, at a misfit strain with a value of 0.012. Adapted from Ref. [17].

critical value, the internal stresses could be immediately relaxed. As a result, the above
assumption becomes inappropriate in situations where internal stresses are excessively
high, which may lead to an overestimation of the misfit strain. To address this issue,
the misfit strain at room temperature was considered as thickness-dependent, denoted
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(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure 7.5.: The temporal evolution of domain structures, along with the associated
ε11, ε22, and ε33, at a misfit strain with a value of 0.006. Adapted from Ref. [17].

as εmis
ij (h) and expressed as:

εmis
ij (h) = 1 −

1 − ε̃0ij
1 − ε̃0ij(1 − hc/h)

(i, j = 1,2, and i = j). (7.6)

ε̃0ij illustrates the ideal misfit strain at room temperature, which is determined by
Eq. (4.6). Based on the lattice parameters of cubic unstrained PTO (3.956Å) and KTO
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Domain structures ε11
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ε22

-0.004 0.051

ε33
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(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure 7.6.: The temporal evolution of domain structures, along with the associated
ε11, ε22, and ε33, at a misfit strain with a value of −0.003. Adapted from Ref. [17].

(3.989Å) at room temperature [172], ε̃0ij for PTO growing on KTO is calculated to be
0.83%. hc in Eq. (7.6) is the critical thickness for the dislocation formation, which is
derived by a People–Bean model [177, 178] in this work. The application for using the
People–Bean model to calculate hc can be found in Ref. [172], wherein the computed
results in Figs. 1 and 3 are employed as a reference for this simulation.

Fig. 7.7 illustrates the computed domain morphologies, the dimensional elastic energy
(f∗elast), and the volume fraction of the c-domains (Vc), with varying film thickness. The
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temporal evolution of domain structure formation and the associated ε11, ε22 and ε33
for three film thicknesses, hf = 10, 30, 50 nm, are additionally illustrated in Figs. 7.8
to 7.10. It is evident to observe that the domain morphologies depend on the film
thickness. Besides, the reduction of the in-plane domains, a1 and a2 domains, was
found to increase with the thickness of the film. This finding is consistent with the
plotted Vc vs. hf profile, which suggests that there is an increase in the volume of
c-domains corresponding to larger film thicknesses. This phenomenon can be explained
by reference to plotted f∗elast, which demonstrates that f∗elast is elevated with increasing
film thickness.

(a) hf = 10 nm (b) hf = 20 nm (c) hf = 30 nm

(d) hf = 40 nm (e) hf = 50 nm
10 20 30 40 50

0.15

0.23

0.30

0.38

0.90

1.35

1.80

2.25
Vc
felast

hf (nm)

V
c

f
∗elast

(f) Vc vs. hf and f∗elast vs. hf

Figure 7.7.: Computed result of (001)-oriented PTO epitaxial thin films with different
thicknesses grown on KTO. (a)-(e) shows the domain structures with different thick-
nesses at the equilibrium state. (f) demonstrates the variations of f∗elast as well as Vc
with varying film thickness. Adapted from Ref. [17].

Depending on Fig. 7.8-7.10, it is easy to observe that the temporal evolution of films at
different thicknesses (hf = 10, 30, 50 nm ) has an increasing tendency in the distribution
of ε33 and a decreasing trend in ε11 and ε22. This behavior explains the increment of
c-domains with increasing film thickness. Specifically, the significant increase in the c-
domains results from the strain relaxation in the system, with thicker films experiencing
comparatively less strain than thinner films. It is worth noting that while the observed
phenomenon of increasing c-domains with greater film thickness aligns with findings
in Ref. [172], a quantitative inconsistency in the assessment of c-domains between this
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Domain structures ε11

-0.047 0.049

ε22

-0.050 0.047

ε33
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(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure 7.8.: The temporal evolution of the domain structure formation and the associated
ε11, ε22 and ε33 for a film thickness of hf = 10nm. Adapted from Ref. [17].

work and Ref. [172]. This could stem from applying short-circuited boundary conditions
for solving electric fields, as it promotes the formation of c-domains, aligning with
the outcome mentioned above. Thus, this condition determines a significant volume
fraction of the c-domain, even when hf is only 10 nm. Furthermore, the elastic tensor
stiffness of KTO was used to replicate a real system during the simulation, while the
details in Ref. [172] are not specified.
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Domain structures ε11
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ε33
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(a) t = 100∆t

(b) t = 1000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure 7.9.: The temporal evolution of the domain structure formation and the associated
ε11, ε22 and ε33 for a film thickness of hf = 30nm. Adapted from Ref. [17].

7.3.4. Temperature-dependent domain fraction and configuration

In this study, domain structures were investigated during the growth of (001)-oriented
PTO films with 128×128×40 cells (20 cells for the PTO film) on KTO substrates under
varying temperatures. Given that temperature influences thermal expansion, thermal
vibrations, and phase transitions, it is expected that the magnitude of both the sponta-

116



7. Computing domain structures in PTO thin film using Model II

Domain structures ε11
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(e) t = 20000∆t

Figure 7.10.: The temporal evolution of the domain structure formation and the associ-
ated ε11, ε22 and ε33 for a film thickness of hf = 50nm. Adapted from Ref. [17].

neous polarization and inelastic strain depend on the temperature. The effect of high
temperatures on the spontaneous polarization of PTO has been previously investigated
in Ref. [63], which provides a reference for the present simulation. As the thermal
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expansion properties of PTO and KTO are different, the corresponding misfit strain
between them at different temperatures is respectively defined as:

ε̃mis,f
ij = ε̃0ij + αf∆T,

ε̃mis,s
ij = ε̃0ij + αs∆T,

(7.7)

where i, j = 1, 2 and i = j. In Eq. (7.7), αf and αs are the thermal expansion coefficients
for PTO and KTO, respectively, as provided in Table 7.1. ε̃0ij ≈ 0.83% is the mismatch
between PTO and KTO at room temperature, as discussed in the above subsection. ∆T
represents the temperature difference between the calculated temperature and the room
temperature. By Eq. (7.7), the graphical representation of the temperature-dependent
misfit strains of the PTO and KTO systems is plotted in Fig.7.11(a). Furthermore, the
lattice distortion used to evaluate the electrostatic coefficients has the same temperature-
dependent profile as the spontaneous polarization, which leads to subtle changes in the
electrostatic coefficients [63]. Therefore, the electrostatic coefficients are considered to
be temperature-independent, and the variations in spontaneous strain are primarily
attributed to changes in spontaneous polarization induced by temperature.
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Figure 7.11.: (a) illustrates the temperature-dependent elastic strain of the PTO and KTO
systems without considering the spontaneous strain. (b) demonstrates the variation of
the average elastic energy density (f∗elast) and the volume fraction of the c-domain (Vc)
with temperature. Adapted from Ref. [17].

The initial configuration was taken from Fig. 7.3 and a homogeneous temperature
distribution is assumed for each simulation. The computed volume fraction of the
c-domain and average elastic energy was illustrated in Fig. 7.11(b), while the domain
configurations at the equilibrium of different temperatures were shown in Fig. 7.12.
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Fig. 7.12(a) demonstrates the temperature-dependent variations in the domain mor-
phologies, showing a significant decrease in the c-domain as temperature increases.
Referring to Fig. 7.11, it is evident that the magnitude of misfit strain increases with
temperature for both PTO and KTO materials. Building upon the above subsection, it
has been deduced that the tensile misfit promotes the formation of a-domains, therefore
leading to a decrease in c-domains at higher temperatures. It can also be observed from
Fig. 7.11(a) that the different thermal expansion of PTO and KTO result in different am-
plitudes of the increase in eigenstrain. This helps to maintain the stability of c-domains.
Therefore, c-domains can still be observed even at the elevated temperature of 400 ○C,
in which the PTO film has a tensile misfit strain of 0.0125. This contrasts with the
findings in Fig. 7.3, where it was found that the stability of the c-domain could not be
maintained when εmis = 0.012.

50°C 150°C 200°C

300°C 400°C

Figure 7.12.: Domain structures of (001)-oriented PTO epitaxial thin films growing on
the KTO substrate, at different temperatures. Adapted from Ref. [17].

As shown in Fig.7.11(b), the dark red line demonstrates that the computed Vc shows
a decrease with increasing temperature, which is in agreement with the expected
variation in domain configurations. The observed phenomenon is also consistent with
the findings in Ref. [179]. In Fig. 7.11(b), the dark blue line depicts the variation of
the average elastic energy density of the thin film with temperature. It is evident
that f∗elast decreases with increasing temperature, showing a similar trend as Vc vs.
temperature. The computed results in Fig. 7.2 clearly suggest that a higher average
elastic energy f∗elast within the thin film system contributes to the formation and stability
of c-domains. The increasing magnitude of inelastic strain results in a reduction of
elastic energy within the thin film, as temperature increases. This decrease in elastic
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energy subsequently diminishes the driving force responsible for the transformation
from the a-domains to the c-domains. As a result, c-domains decrease, and the system
reaches an equilibrium with different domain configurations at higher temperatures,
driven by the minimization of the total energy. It is worth mentioning that the electric
energy also decreases with increasing temperature. Nonetheless, due to its relatively
minor influence on the overall analysis, it was not included in the context. The temporal
evolution of domain structure formations and the corresponding ε11, ε22, and ε33 are
represented in Appendix. A.3. There is a clear trend where the distribution of ε33 shows
a decreasing pattern as temperatures increase. This indicates a decrease in elastic
energy correlated with increasing temperature. Therefore, the observed decrease in the
occurrence of c-domains is linked to higher temperatures.

7.4. Advantages and limitations of Model II for investigating
domain structures in ferroelectric thin film

The advantages of Model II have been previously discussed in Section 6.5. This section
will present an extension of those advantages and limitations for modeling ferroelectric
thin films, which is achieved by comparison with the TDGL model.

As it solves for the polarization vector, the TDGL model could be employed to predict
the equilibrium polarization state at varying temperatures or under different constraints,
enabling the computation of misfit strain–temperature phase diagrams like Ref. [89].
However, given that the domain structures are computed by minimizing the energy
functional with regard to polarization, the polarization vector undergoes a temporal
evolution, which results in an inhomogeneous distribution of polarization within a
single domain. The polarization state is predefined for each ferroelectric variant in
Model II, leading to the polarization within each variant remaining homogeneous.
This is more realistic compared with the TDGL model. Whereas, the orientation and
magnitude of polarization for the ferroelectric variants are predefined in Model II with
the current format, preventing the calculation of the misfit strain-temperature phase
diagram as demonstrated in Ref. [89]. Instead, to explore domain morphologies of films
at specific temperatures alongside corresponding misfit strains, such a phase diagram
can be used as a reference for predetermining the polarization state for ferroelectric
variants. The predetermination data can also be obtained through experimental de-
terminations or other theoretical simulations such as first-principle calculations. The
absence of polarization evolution within a single domain could enhance computational
efficiency by allowing a large time-scale factor to be selected while maintaining system
stability. Model II is based on the multiphase-field concepts, which enable the simula-
tion of large-scale phenomena such as martensite transformations, as demonstrated in
Ref. [134].
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7.5. Conclusion

In summary, this chapter has advanced the application of Model II to study PTO thin
films. In contrast with the periodic boundary conditions employed in Chapter 6 for bulk
materials, the specific boundary conditions were implemented at the top and bottom of
the system in order to simulate a constraint film. Using the jump condition approach
provides an accurate scheme for calculating the mechanical field across the film and
substrate, allowing the easy capture of the misfit strain between the film and substrate.
The simulation starts with analyzing substrate deformation, where its influence on
domain morphologies converges to a critical substrate height. As expected, the domain
structures vary when subjected to different misfit strains. In the case of tensile misfit
strain, the a-domains are favored, while compressive misfit strain enhances the stability
of c-domains. Furthermore, the research was expanded to study the growth of PTO
on KTO, incorporating a range of film thickness and temperatures. The simulations
reveal an increasing distribution of c-domains in conjunction with either a higher film
thickness or a lower growth temperature.
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8.1. Introduction

Properties such as efficient charge separation and transport discovered in Organic metal
halide (OMH) perovskites havemade this class ofmaterial ideal for use in solar cells [180–
183]. Up to now, several computational studies have investigated the crystal properties
of MAPbI3, to understand the fundamental mechanisms behind the exceptional charge
carrier dynamics of OMH materials [184–186]. These studies suggest that MAPbI3 may
exhibit ferroelectric properties. Upon cooling, MAPbI3 exhibit centrosymmetric cubic
(Pm3m, paraelectric phase), non-centrosymmetric tetragonal (I4cm, ferroelectric phase)
and orthorhombic (Pna21, ferroelectric phase) crystal structures [187, 188]. For solar
cell applications, the relevant phases are the room-temperature-stable tetragonal and
the high-temperature cubic that is stable above 327K. Fig. 8.1(a) depicts the tetragonal
crystal structure of MAPbI3 at room temperature, taken from Ref. [47]. The unit cell
of MAPbI3 consists of two perovskite cubes with slightly twisted PbI6 octahedrons
(shown in purple). Due to the 0.5% strained along the c-axis, the quasi-cubic perovskite
lattice adopts a tetragonal crystal structure.

(a) (b)

Figure 8.1.: (a) is the schematic diagram of the MAPbI3 tetragonal unit cell at room
temperature (green frame), in which the red arrows indicate the polarization direction
along the c-axis and the black frames indicate the pseudocubic perovskite lattice. (b)
represents the charged domain walls and the associated separation of electrons and
holes. Both (a) and (b) are adapted from Ref. [47].
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Figure 8.2.: Effects of thermal annealing on polycrystalline MAPbI3 thin films. Samples
1–5 (left to right) annealed for 5 s to 60min showed changes in grain sizes and domain
structures. Atomic force microscopy (AFM) topography, Vertical PFM (VPFM) and
Lateral PFM (LPFM) amplitude are shown in rows, with cantilever orientation indicated
by a small grey arrow. Grain growth was most pronounced within the first 30 s (samples
1 and 2). Sample 1 initially had uniform vertical and lateral ferroelectric polarization
due to small grain size and varied surface facets. With longer annealing and increased
grain size, polarization evolved to a predominant lateral orientation with alternating
domains in sample 5. Adapted from Ref. [189].

On the one hand, 90○ ferroelastic and 180○ ferroelectric domain walls are known
to form for minimizing energy within the tetragonal phase. Early investigations pre-
dicted that these domain walls have a positive influence on solar cell properties by
creating separate charge carrier pathways. Such pathways are energetically favorable
for electrons or holes, thus reducing charge carrier recombination losses. Specifically,
forming head-to-head and tail-to-tail charged domain walls can create a built-in electric
field that drives electrons and holes apart toward different domain walls, reducing the
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overall charge carrier recombination rate. A schematic diagram of such domain walls
and their associated electron-hole separation is illustrated in Fig. 8.1(b) [190].
On the other hand, the correlation between ferroelectric polarization and device

performance discussed in Ref. [189] suggests that the configuration and evolution of
ferroelectric domains should be considered a critical mechanism affecting solar cell
characteristics. Leonhard et al. in Ref. [189] investigated the grain growth and formation
of domain structures under different annealing processes and their associated effects on
solar cell properties. As shown in Fig. 8.2 (adapted from Ref. [189]), it has been found
that vertical domains (c-domains) become unstable with increasing annealing time due
to grain growth. This instability influences the current density-voltage characteristics
of the materials. Solar cells with alternating lateral domains (a-domains) exhibit the
best fill factors and efficiencies. In contrast, solar cells with shortly-annealed MAPbI3
thin films and c-domains show only moderate performance.

Given the above reasons, it is evident that understanding the mechanism of domain
structure formation and manipulating domain walls are crucial for the application of
MAPbI3 materials. The intricate crystal structure in MAPbI3 obscures the determination
of its Landau coefficients, which has impeded the investigation of domain structures
using the TDGL equation. Model II has successfully investigated ferroelectric bulk and
thin film materials without relying on Landau coefficients, as discussed in Chapters 6
and 7. Consequently, this chapter aims to further employ it to explore the domain
structure formation in MAPbI3 film.

8.2. Simulation setup

It was confirmed that the constraint from the substrate does not influence the domain
structures in polycrystalline MAPbI3 thin film. Therefore, simulations in this chapter
consider a rigid-body film by setting substrate height (hs) to zero, so as to streamline
the simulated system and reduce the computational time. All simulations are conducted
in Pace3D as well. The calculating process is referred to in Fig. 6.1, and the approach
for solving each governing equation is detailed in Section 7.2. Again, the initial setups
of the film structures were created by Voronoi tessellation, and the computed region
was discrete with a MPI standard during the simulation.

Similarly to PTO simulations, all fields are solved by employing periodic boundary
conditions along the x1 and x2 axes and Neumann type boundary condition is imposed
for solving ϕ at the top and bottom surfaces of the film. The open-circuited electric
boundary conditions are applied at both the top and bottom surfaces when solving for
the electric field, denoted as:

D3∣x3=0, x3=hf
= 0,

∇ψ ⋅ e3 = 0.
(8.1)
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To reduce the depolarization field, the polarization is set as zero at the upper and lower
surfaces of the film, denoted as:

P ∣x3=0, x3=hf
= 0. (8.2)

In addressing the mechanical field solution, the stresses on the top surface were set
freely based on Eq. (7.4). Conversely, the bottom of the film was constrained by:

u∣x3=−hs = 0 (8.3)

Table 8.1.: Material parameters of MAPbI3 material for the phase-field simulation (TW:
This work).

Material Coefficients Symbol Value Unit Ref
Spontaneous polarization Ps 0.12 (±0.27/±0.04) µC/cm2 [191]
Elastic tensor C11 21.8 109⋅[N/m2] [192]

C12 11.3 109⋅[N/m2] [192]
C44 7.8 109⋅[N/m2] [192]

Spontaneous strain xFT,1 -0.00303 - [191]
xFT,3 0.00609 - [191]

Electrostrictive stiffness Q11 0.423 m4/C2 TW
Q12 -0.210 m4/C2 TW
Q44 1.267 m4/C2 TW

Interfacial energy γαβ 0.01 J/m2 TW
- γcα 0.01 J/m2 TW

The computational geometry was divided into cells with different dimensions in
the in-plane and out-of-plane. Specifically, ∆x3 was set to 2nm, while ∆x1 and ∆x2
were set to 4nm. ϵ was set to a value of 3.75∆x1. Due to the lack of the dielectric
constant α0 in MAPbI3 for competing for the domain wall energy density, the interfacial
energy density parameter γαβ was selected to ensure numerical stability during the
simulation. Similarly, γcα was assigned the same value as γαβ . The dimensionless value
of the mobility coefficientMαβ in Eq. (4.11) was set to one to govern the dynamic of
domain formation within the film. The required material coefficients of MAPbI3 in the
current simulation are listed in Table 8.1.
Based on Section 4, the absolute value of the spontaneous polarization (Ps), the

elastic and electrostrictive stiffness coefficients are also required to determine the bulk
energy density, except for the above-mentioned parameters. The material was deemed
isotropic, and the value of the elastic stiffness coefficients was derived from Ref. [192].
The value of ∣Ps∣ as determined by Ref. [191] is listed in Table 8.1. It has been found
that P0 was determined to be 0.12 µC/cm2 with an associated error of 0.27 µC/cm2,
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approximately twice the magnitude of P0. Such a considerable error can be attributed
to the large positional uncertainty of the CH3-NH3 groups, whose positional error is
about an order of magnitude greater than that of the other atoms. Excluding these
groups, the error would be around 0.04 µC/cm2. P0 was chosen to be 0.12 µC/cm2 for
this simulation. Additionally, with the determined spontaneous strain from Table 8.1,
the electrostrictive stiffness coefficients Q11 and Q12 (Voigt notation) were calculated
on the basis of Eq. (5.8). QFT,44 was derived under the isotropic condition in Eq. (5.18).
Relying on Eq. (6.3), all input coefficients for the phase-field modeling were transformed
into dimensionless values during the simulation.

8.3. Results

8.3.1. Phase-field simulation of a single-crystal thin film

Simulations were conducted on a single-crystal thin film with dimensions of 512nm ×
512nm × hf , in which film thickness hf ranges from 80 nm to 140 nm with an interval
of 10 nm. The resulting domain structures and the computed average f∗elast and ψ∗
are demonstrated in Fig. 8.3, where the variant of each color and its corresponding
polarization orientation are referenced in Fig. 7.1 (c). Firstly, the absence of c-domains
is evident, which can be attributed to the assumption of a complete compensation of
the free charge on the top and bottom surfaces of the film. Without polarization flux,
the driving force from the electric energy favors the formation of a-domains. This
observation aligns with the findings in Ref. [189], within which the vertical domains
can not remain stable as annealing time increases. In addition, it is easily found that
the domain morphologies vary with different film thicknesses. The domain structures
become more complex with narrower domain widths at smaller film thicknesses, while
simpler structures with wider domains can be seen at larger film thicknesses.

The plotted f∗elast vs. hf and ψ∗ vs. hf provide an interpretation of these observations.
In the absence of polarization flux at the top and bottom surfaces of the film, and
in accordance with the periodic boundary conditions applied along x1 and x2, the
average f∗elec is consistently zero. Consequently, to compare the contributions from
electric energy, the average electric potential ψ, which quantifies the contribution of
electric energy to domain structure formation, is considered in this work. It has been
demonstrated that electric energy plays a critical role in the formation of ferroelectric
domain walls, specifically 180○ domain walls. Conversely, the ferroelastic domain walls
(non180○ domain walls) are predominantly governed by elastic energy. The increase in
f∗elast and the decrease in ψ with increasing film thickness thus leads to the reduction
and disappearance of 180○ domain walls, resulting in the formation of only 90○ domain
walls at high film thicknesses. It should be noted that simulations were also performed
for film thicknesses greater than 140 nm, such as 200 nm, but the domain configurations
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Figure 8.3.: Simulations of single-crystal MAPbI3 thin films with varying film thickness.
(a)-(g) shows the domain morphologies, while (h) represents the computed average
f∗elast and ψ∗ across film thicknesses.

were identical to those observed at 140 nm. Therefore, the results for these thicker
films are not shown.
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8.3.2. Phase-field simulations of polycrystalline thin film

(d) Width = 400 nm

(a) Initial Setup

(c) Width = 300 nm

(b) Width = 200 nm
x1

x2
x3

(e) Width = 500 nm (f) Width = 600 nm

(g) Width = 700 nm (h) Width =800 nm

Figure 8.4.: (a) is the initial setup of a polycrystalline MAPbI3 thin film composing four
grains, where grains are rotated only along the x3-axis; (b)-(h) are equilibrium domain
structures with varying in-plane width, with hf set to 40 nm in each simulation.
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Fig. 8.4 shows simulations of the polycrystalline MAPbI3 thin film, which includes
four grains separated by grain boundaries illustrated as black. The initial setup is
demonstrated in Fig. 8.4(a), in which six tetragonal variants are randomly assigned in
each domain. The grain orientation in the x3-direction barely exists, as described in
Ref. [193], grains are thus only rotated along the x1x2-plane in the current simulation.
Red regions in Fig. 8.4(a) still represent the c-domains. To simulate domain structure
formation with different grain sizes, the film thickness was kept as 40 nm, while the
in-plane width varied from 200 nm to 800 nm. As a result, each grain has an average
size with a diameter ranging from 50 nm to 200 nm. The noise function in Eq. (4.16)
is activated to obtain a self-consistent domain configuration in each grain, with the
nucleation time step set to 2000 and a frequency of 200 time steps.

Fig. 8.4 (b)-(h) represent the computed domain structures. It is evident that c-domains
become unstable with grain growth. For instance, a substantial number of c-domains
can be observed when the grain diameter is approximately 50 nm. However, they
gradually decrease from 75 nm to 125 nm and ultimately vanishes as the grain diameter
reaches 150 nm. Furthermore, it can be observed that a complex domain configuration
consisting of both 90○ and 180○ domainwalls, rather than a single domain, can be formed
and stable with grain growth. These findings are consistent with the experimental
observations presented in Ref. [189], which concluded that due to the small grain
diameters and diverse surface facets, each grain exhibits uniform a− and c− domains.
Concurrently, the polarization changes and evolves towards a predominant in-plane
orientation with alternating domains upon grain growth.

8.4. Conclusion

This chapter presents single-crystal and polycrystalline simulations to investigate
MAPbI3 thin films. For the single-crystal simulations, films of varying thickness were
considered. The results indicate that c-domains are unstable when polarization is fully
compensated at the top and bottom surfaces of the film. Moreover, the domain width
increases with film thickness, with domain configurations transitioning from complex
to simpler forms as thickness increases. In the polycrystalline simulations, variations
in in-plane width were implemented to model grain growth. It was observed that the
out-of-plane domains are present in films with small grain sizes but gradually decrease
and eventually disappear as the grains grow. Furthermore, in films with large grain
sizes, domain structures are characterized by the presence of both 90○ and 180○ domain
walls. All simulations are consistent with experimental observations, thus providing a
fundamental framework for investigating domain structures in MAPbI3 thin films.
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9. Conclusion and outlook

9.1. Conclusions and remark

In this dissertation, two models, Model I and Model II, were created to investigate
ferroelectric materials.
Model I couples the multiphase-field approach with the LGDT. Both polarization

vectors and phase-field ϕ are the order parameters in Model I, and the domain struc-
tures are formed by evolving polarization. Using this model, the evolution of domain
structures and the corresponding phase transformation between FT and FR in PIC 151
material under the influence of external stimuli has been investigated, as detailed in
Chapter 5. To calculate the phase transformation driving force, the phenomenolog-
ical coefficients for FT and FR are determined separately based on the experimental
examination and the designed numerical energy overlap. The simulated results reveal
that polarization switching is the first response with the application of an external
electric field, followed by the corresponding phase transformation. This suggests the
synergistic effect between the polarization switching and phase transformation. Besides,
the single crystal simulation suggests the predominate of the tetragonal phase in the
PIC 151 material, which is in agreement with the experimental observation. More-
over, the simulations of the polycrystalline system show that the phase transformation
is bi-directional between FT and FR, decided by the grain orientations. In general,
Model I has provided a foundational framework for investigating domain structures in
coexisting ferroelectric phases by considering polarization evolution.

Model II was designed to compute domain structures of ferroelectric materials based
on the multiphase-field concept, where the polarization state of each variant was pre-
determined during the simulation and the domain structures are calculated by evolving
the phase-field ϕ. Using Model II, Chapter 6 investigates the formation of domain
structure in both single-crystal and polycrystalline BTO materials. The mechanism
of domain switching was also studied under the influence of external electric fields
and mechanical loading in these systems. Based on these investigations, the hysteresis
loops in BTO material are further computed. Chapter 6 has also offered examples for
adding thermal fluctuations to mimic the variant nucleation under different scenarios.
Model II was also extended to investigate ferroelectric thin films, as demonstrated in
Chapters 7 and 8. In Chapters 7, the (001)-orientated PTO film has been investigated
when considering it grows on a cubic substrate. The influence of substrate deformation,
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substrate constraints, film thicknesses, and growth temperature on domain structure
formation has been studied systematically. By analyzing the driving force, Model II
enables the exploration of the mechanism behind domain structure formation under
these conditions. Chapter 8 illustrates the simulation of single-crystal MAPbI3 films
under varying film thickness and polycrystalline MAPbI3 films with varying in-plane
width. This highlighted the application of Model II because it showcases its significant
advantage—the ability to calculate domain walls of ferroelectrics without relying on
Landau coefficients. Chapter 8 also marks the first instance of using the phase-field
approach to investigate domain structure formation in the OMH material. Generally
speaking, the simulations using Model II demonstrate the success of applying the
multiphase-field approach to study ferroelectric materials, which can also serve as a
fundamental reference.

In Model I, the phenomenological representation of thermodynamics for each ferro-
electric phase is treated separately, providing greater freedom of phase transformations.
However, computing polarization and ϕ simultaneously results in a low computational
efficiency. Besides, the lack of the phenomenological coefficients for ferroelectric phases
causes an obstacle to investigating other ferroelectric systems. Since the polarization
state is predetermined for each variant, Model II does not require computing polar-
ization states over time. Except for the non-requirement of Landau coefficients, this
achieves a high computational efficiency. However, a disadvantage can also serve as
an advantage. With the polarization magnitude fixed, except for the jump caused by
the 180○ domain switching when external electric fields are applied, the computed
hysteresis loops for a single-crystal BTO display a linear change. Since polarization
information is predefined, Model II is unable to calculate the temperature-misfit strain
phase diagram in the current format.

9.2. Outlook

While the work detailed in this dissertation stands well on its own, there are several
interesting extensions for further development. Since it is the first application of the
multiphase-field approach to study domain structures without involving the evolution of
polarization states in variants, this subsection specifically explores potential extensions
related to Model II.

The present studies constitute the initial phase in the development of Model II, and
there are numerous potential research directions for its further extension. For instance,
the predetermined polarization state for each variant should be determined based on
external stimuli, such as external electric fields and mechanical loading. With regard to
the film material, the predefined polarization states should also depend on the misfit
strain when accounting for the substrate constraints. These could be improved by
incorporating findings from experimental research or theoretical studies. Moreover,
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by including the flexoelectric energy, simulations can be further conducted to study
the influence of strain gradient on the formation and stability of domain walls. By
applying specific boundary conditions and controlling computed geometry, Model
II can be further extended to study topological domain walls in nanostructures like
nano-dots, nano-wires, and nano-islands. Understanding the Relaxor ferroelectrics and
the mechanism of their domain switching using Model II may be enhanced to explore
their structure-property relationships.

Furthermore, the computational results presented in Chapter 8 offer a reference foun-
dation for investigating the solar properties of the MAPbI3 materials. However, only
simulation studies of ferroelectric domain formation in single-grain MAPbI3 films have
been conducted. For future studies, simulations of microstructure formation during the
annealing process and large-scale 2D and 3D simulation studies of domain structure
and grain formation in polycrystalline MAPbI3 films can be performed. Based on these
studies, one can also conduct simulations targeting the growth of OMH perovskite thin
films related to experimental investigations of grain growth with a large number of
grains in 3D. The simulation results could be analyzed to quantify the ferroelectric and
solar cell properties of these films at different growth stages and under varying growth
conditions. This analysis would provide valuable information for designing target-
oriented, novel light-harvesting perovskites. Besides, theoretical studies have indicated
that charged domain walls are more effective in reducing the recombination between
holes and electrons in MAPbI3 material. However, the mechanisms underlying the
formation and stability of these unnaturally charged domain structures in MAPbI3 films
remain unexplored. As a result, another potential research direction could involve in-
vestigating the formations and stability of charged domain walls under special physical
conditions, such as unique electric or mechanical boundary conditions, doping, charge
screening, or other applicable approaches. Additionally, given the strong correlation
between solar cell properties and the dynamics of electrons and holes, incorporating the
transport equation of the space charge into Model II could provide a valuable reference
for investigating ferroelectric domain structures and space charge evolution. Based on
this, Model II can be further employed to guide the engineering of ferroelectric domain
walls and the design of solar cell devices.

In summary, this dissertation presents a workflow, results, and analysis approach that
can guide the proposal, development, and execution of research projects integrating
both experimental and numerical approaches. These guidelines are especially useful
for projects that bridge different scientific disciplines. By using precise experimental
data, researchers can refine, correct, and validate phase-field models, resulting in the
achievement of more accurate and detailed modeling of the processes under study.
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A.1. The dielectric susceptibility and piezoelectric charge
coefficients

Based on Ref. [58], the relative dielectric stiffness ηij in tensor notation can be denoted
as:

ηij =
∂2G

∂Pi∂Pj

(i, j = 1,2,3) (A.1)

With regards to FT, ηij can be written as:

ηFT,ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ηFT,11 0 0
0 ηFT,22 0
0 0 ηFT,33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A.2)

in which
ηFT,11 = ηFT,22 = P

4
FTα112 + P

2
FTα12 + α1, (A.3)

and
ηFT,33 = 15P

4
FTα111 + 6P

2
FTα11 + α1. (A.4)

Regarding FR, ηij becomes:

ηFR,ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ηFR,11 ηFR,12 ηFR,13

ηFR,21 ηFR,22 ηFR,23

ηFR,31 ηFR,32 ηFR,33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A.5)

where

ηFR,11 = ηFR,22 = ηFR,33

= 2α1 + 4α11P
2
FR +

4

3
α12P

2
FR +

10

3
α111P

4
FR +

28

9
α112P

4
FR +

2

9
α123P

4
FR,

(A.6)

and
ηFR,12 = ηFR,13 = ηFR,21 = ηFR,23 = ηFR,31 = ηFR,32

=
4

3
α12P

2
FR +

16

9
α112P

2
FR +

4

9
α123P

2
FR.

(A.7)
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The dielectric susceptibility stiffness χij is the reciprocal of ηij , i.e.,

χij =
Aij

∆
(i, j = 1,2,3) (A.8)

where ∆ is the determinant of ηij and Aij is the cofactor.
The piezoelectric coefficients, denoted by bij in matrix notation (Chapter VII of

Ref. [144]), is calculated by:

bij = −
∂2G

∂Pi∂σj
(i = 1,2,3; j = 1,2,⋯6). (A.9)

Based on Ref. [3], the piezoelectric moduli coefficients (dij) can be computed according
to bij , denoted as:

dij = bkjχik (i, k = 1,2,3; j = 1,2,⋯6). (A.10)

Thus, for the FT around MPB of PZT system, the coefficients of dij can be further
extended as:

dFT,ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 dFT,15 0
0 0 0 dFT,24 0 0

dFT,31 dFT,32 dFT,33 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A.11)

where
dFT,31 = dFT,32 =

Q12PFT

α1 + 6α11P 2
FT + 15α111P 4

FT

, (A.12)

dFT,33 =
Q11PFT

α1 + 6α11P 2
FT + 15α111P 4

FT

, (A.13)

and
dFT,15 = dFT,24 =

Q44PFT

2(α1 + α12P 2
FT + 2α112P 4

FT)
. (A.14)

Similarly, coefficients within dij for the FR phase results in:

dFR,ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

dFR,11 dFR,12 dFR,13 dFR,14 dFR,15 dFR,16

dFR,21 dFR,22 dFR,23 dFR,24 dFR,25 dFR,26

dFR,31 dFR,32 dFR,33 dFR,34 dFR,35 dFR,36

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (A.15)

For ease of reading, defining

dFR,11 = dFR,22 = dFR,33 =
num1

den1
(A.16)
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where num1 is defined by:

num1 = − 3
√
3PFR[4P

2
FRQ12(4P

2
FRα112 + P

2
FRα123 + 3α12)

−Q11(15P
4
FRα111 + 22P

4
FRα112 + 3P

4
FRα123

+ 18P 2
FRα11 + 12P

2
FRα12 + 9α1)],

(A.17)

and den1 is denoted as:

den1 = 225P
8
FRα

2
111 + 540P

8
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FRα
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(A.18)

Similarly,

dFR,12 = dFR,21 = dFR,13 = dFR,31 = dFR,23 = dFR,32 =
num2

den2
(A.19)

with num2 calculated from:
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(A.20)

and den2 based on:
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(A.21)

In addition,
dFR,14 = dFR,25 = dFR,36 =

num3

den3

, (A.22)

where num3 is defined as:

num3 = −6
√
3P 3

FRQ44(4P
2
FRα112 + P

2
FRα123 + 3α12), (A.23)
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and den3 is:
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(A.24)

Additionally,

dFR,15 = dFR,16 = dFR,24 = dFR,26 = dFR,34 = dFR,35 =
num4

den4

, (A.25)

in which num4 can be calculated by:
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√
3PFRQ44(15P

4
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4
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2
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(A.26)

and den4 is expressed as:
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(A.27)
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A.2. Simulated domain structures of BTO using Model II

(a) B2: 500∆t (b) B2: 2000∆t (c) B2: 5000∆t; ψ and Mises stress (right)
-1.516

0.023

ψ
(
V
)

(d) B3: 500∆t (e) B3: 2000∆t (f) B3: 5000∆t; ψ and Mises stress(right)
-0.630

0.674

ψ
(
V
)

Figure A.1.: Temporal evolution of the domain switching in the B2 and B3 system when
applying an external electric field of E∗ext = 1 to their equilibrium state in Figs. 6.10(d)
and (e). Red arrows in (a) and (d) indicate the orientation of the applied electric field,
while the white arrows in (c) and (f) indicate the polarization direction of each variant
at equilibrium. In addition, the right images in (c) and (f) show the corresponding
distribution of vonMises stress (contour plots with thin black lines) and electric potential
(ψ). Adapted from Ref. [16].
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(a) B1: 100∆t

εext
22

(b) B1: 500∆t (c) B1: 1200∆t; ψ and Mises stress (right)
-0.180

0.220

ψ
(
V
)

(d) B3: 100∆t

εext
22

(e) B3: 500∆t (f) B3: 1200∆t; ψ and Mises stress (right)
-0.392

0.472

ψ
(
V
)

Figure A.2.: Temporal evolution of the domain switching in the B2 and B3 system when
a compressive strain εext22 = 0.005 was induced to the y-edges. The initial configurations
can be found in their equilibrium state of Figs. 6.10(d) and (e). The white arrows in (c)
and (f) indicate the polarization direction of each variant after switching domains. In
addition, the right images in (c) and (f) show the corresponding distribution of von
Mises stress (contour plots with thin black lines) and electric potential (ψ). Adapted
from Ref. [16].
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A.3. Temporal evolution of (001)-oriented PTO grows on KTO
at various temperatures

Domain structures ε11

-0.040 0.057

ε22

-0.037 0.056

ε33

-0.030 0.053

(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure A.3.: The temporal evolution of domain structures, along with the corresponding
ε11, ε22, and ε33, in the context of PTO growth on KTO at 25 ○C. Adapted from Ref. [17].
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Domain structures ε11

-0.040 0.057

ε22

-0.037 0.056

ε33

-0.030 0.053

(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure A.4.: The temporal evolution of domain structures, along with the corresponding
ε11, ε22, and ε33, in the context of PTO growth on KTO at 200 ○C. Adapted fromRef. [17].
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Domain structures ε11

-0.040 0.057

ε22

-0.037 0.056

ε33

-0.030 0.053

(a) t = 1000∆t

(b) t = 2000∆t

(c) t = 3000∆t

(d) t = 8000∆t

(e) t = 20000∆t

Figure A.5.: The temporal evolution of domain structures, along with the corresponding
ε11, ε22, and ε33, in the context of PTO growth on KTO at 400 ○C. Adapted fromRef. [17].
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